SemaDecl.cpp revision 4843e584b54460973b8445d38907bab0401ebb0c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// Used in MergeFunctionDecl to keep track of function parameters in
514/// C.
515struct GNUCompatibleParamWarning {
516  ParmVarDecl *OldParm;
517  ParmVarDecl *NewParm;
518  QualType PromotedType;
519};
520
521/// MergeFunctionDecl - We just parsed a function 'New' from
522/// declarator D which has the same name and scope as a previous
523/// declaration 'Old'.  Figure out how to resolve this situation,
524/// merging decls or emitting diagnostics as appropriate.
525///
526/// In C++, New and Old must be declarations that are not
527/// overloaded. Use IsOverload to determine whether New and Old are
528/// overloaded, and to select the Old declaration that New should be
529/// merged with.
530///
531/// Returns true if there was an error, false otherwise.
532bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
533  assert(!isa<OverloadedFunctionDecl>(OldD) &&
534         "Cannot merge with an overloaded function declaration");
535
536  // Verify the old decl was also a function.
537  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
538  if (!Old) {
539    Diag(New->getLocation(), diag::err_redefinition_different_kind)
540      << New->getDeclName();
541    Diag(OldD->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // Determine whether the previous declaration was a definition,
546  // implicit declaration, or a declaration.
547  diag::kind PrevDiag;
548  if (Old->isThisDeclarationADefinition())
549    PrevDiag = diag::note_previous_definition;
550  else if (Old->isImplicit())
551    PrevDiag = diag::note_previous_implicit_declaration;
552  else
553    PrevDiag = diag::note_previous_declaration;
554
555  QualType OldQType = Context.getCanonicalType(Old->getType());
556  QualType NewQType = Context.getCanonicalType(New->getType());
557
558  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
559      New->getStorageClass() == FunctionDecl::Static &&
560      Old->getStorageClass() != FunctionDecl::Static) {
561    Diag(New->getLocation(), diag::err_static_non_static)
562      << New;
563    Diag(Old->getLocation(), PrevDiag);
564    return true;
565  }
566
567  if (getLangOptions().CPlusPlus) {
568    // (C++98 13.1p2):
569    //   Certain function declarations cannot be overloaded:
570    //     -- Function declarations that differ only in the return type
571    //        cannot be overloaded.
572    QualType OldReturnType
573      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
574    QualType NewReturnType
575      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
576    if (OldReturnType != NewReturnType) {
577      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
578      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
579      return true;
580    }
581
582    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
583    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
584    if (OldMethod && NewMethod) {
585      //    -- Member function declarations with the same name and the
586      //       same parameter types cannot be overloaded if any of them
587      //       is a static member function declaration.
588      if (OldMethod->isStatic() || NewMethod->isStatic()) {
589        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
590        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
591        return true;
592      }
593
594      // C++ [class.mem]p1:
595      //   [...] A member shall not be declared twice in the
596      //   member-specification, except that a nested class or member
597      //   class template can be declared and then later defined.
598      if (OldMethod->getLexicalDeclContext() ==
599            NewMethod->getLexicalDeclContext()) {
600        unsigned NewDiag;
601        if (isa<CXXConstructorDecl>(OldMethod))
602          NewDiag = diag::err_constructor_redeclared;
603        else if (isa<CXXDestructorDecl>(NewMethod))
604          NewDiag = diag::err_destructor_redeclared;
605        else if (isa<CXXConversionDecl>(NewMethod))
606          NewDiag = diag::err_conv_function_redeclared;
607        else
608          NewDiag = diag::err_member_redeclared;
609
610        Diag(New->getLocation(), NewDiag);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612      }
613    }
614
615    // (C++98 8.3.5p3):
616    //   All declarations for a function shall agree exactly in both the
617    //   return type and the parameter-type-list.
618    if (OldQType == NewQType)
619      return MergeCompatibleFunctionDecls(New, Old);
620
621    // Fall through for conflicting redeclarations and redefinitions.
622  }
623
624  // C: Function types need to be compatible, not identical. This handles
625  // duplicate function decls like "void f(int); void f(enum X);" properly.
626  if (!getLangOptions().CPlusPlus &&
627      Context.typesAreCompatible(OldQType, NewQType)) {
628    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
629    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
630    const FunctionProtoType *OldProto = 0;
631    if (isa<FunctionNoProtoType>(NewFuncType) &&
632        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
633      // The old declaration provided a function prototype, but the
634      // new declaration does not. Merge in the prototype.
635      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
636                                                 OldProto->arg_type_end());
637      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
638                                         &ParamTypes[0], ParamTypes.size(),
639                                         OldProto->isVariadic(),
640                                         OldProto->getTypeQuals());
641      New->setType(NewQType);
642      New->setInheritedPrototype();
643
644      // Synthesize a parameter for each argument type.
645      llvm::SmallVector<ParmVarDecl*, 16> Params;
646      for (FunctionProtoType::arg_type_iterator
647             ParamType = OldProto->arg_type_begin(),
648             ParamEnd = OldProto->arg_type_end();
649           ParamType != ParamEnd; ++ParamType) {
650        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
651                                                 SourceLocation(), 0,
652                                                 *ParamType, VarDecl::None,
653                                                 0);
654        Param->setImplicit();
655        Params.push_back(Param);
656      }
657
658      New->setParams(Context, &Params[0], Params.size());
659    }
660
661    return MergeCompatibleFunctionDecls(New, Old);
662  }
663
664  // GNU C permits a K&R definition to follow a prototype declaration
665  // if the declared types of the parameters in the K&R definition
666  // match the types in the prototype declaration, even when the
667  // promoted types of the parameters from the K&R definition differ
668  // from the types in the prototype. GCC then keeps the types from
669  // the prototype.
670  if (!getLangOptions().CPlusPlus &&
671      !getLangOptions().NoExtensions &&
672      Old->hasPrototype() && !New->hasPrototype() &&
673      New->getType()->getAsFunctionProtoType() &&
674      Old->getNumParams() == New->getNumParams()) {
675    llvm::SmallVector<QualType, 16> ArgTypes;
676    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
677    const FunctionProtoType *OldProto
678      = Old->getType()->getAsFunctionProtoType();
679    const FunctionProtoType *NewProto
680      = New->getType()->getAsFunctionProtoType();
681
682    // Determine whether this is the GNU C extension.
683    bool GNUCompatible =
684      Context.typesAreCompatible(OldProto->getResultType(),
685                                 NewProto->getResultType()) &&
686      (OldProto->isVariadic() == NewProto->isVariadic());
687    for (unsigned Idx = 0, End = Old->getNumParams();
688         GNUCompatible && Idx != End; ++Idx) {
689      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
690      ParmVarDecl *NewParm = New->getParamDecl(Idx);
691      if (Context.typesAreCompatible(OldParm->getType(),
692                                     NewProto->getArgType(Idx))) {
693        ArgTypes.push_back(NewParm->getType());
694      } else if (Context.typesAreCompatible(OldParm->getType(),
695                                            NewParm->getType())) {
696        GNUCompatibleParamWarning Warn
697          = { OldParm, NewParm, NewProto->getArgType(Idx) };
698        Warnings.push_back(Warn);
699        ArgTypes.push_back(NewParm->getType());
700      } else
701        GNUCompatible = false;
702    }
703
704    if (GNUCompatible) {
705      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
706        Diag(Warnings[Warn].NewParm->getLocation(),
707             diag::ext_param_promoted_not_compatible_with_prototype)
708          << Warnings[Warn].PromotedType
709          << Warnings[Warn].OldParm->getType();
710        Diag(Warnings[Warn].OldParm->getLocation(),
711             diag::note_previous_declaration);
712      }
713
714      New->setType(Context.getFunctionType(NewProto->getResultType(),
715                                           &ArgTypes[0], ArgTypes.size(),
716                                           NewProto->isVariadic(),
717                                           NewProto->getTypeQuals()));
718      return MergeCompatibleFunctionDecls(New, Old);
719    }
720
721    // Fall through to diagnose conflicting types.
722  }
723
724  // A function that has already been declared has been redeclared or defined
725  // with a different type- show appropriate diagnostic
726  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
727    // The user has declared a builtin function with an incompatible
728    // signature.
729    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
730      // The function the user is redeclaring is a library-defined
731      // function like 'malloc' or 'printf'. Warn about the
732      // redeclaration, then ignore it.
733      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
734      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
735        << Old << Old->getType();
736      return true;
737    }
738
739    PrevDiag = diag::note_previous_builtin_declaration;
740  }
741
742  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
743  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
744  return true;
745}
746
747/// \brief Completes the merge of two function declarations that are
748/// known to be compatible.
749///
750/// This routine handles the merging of attributes and other
751/// properties of function declarations form the old declaration to
752/// the new declaration, once we know that New is in fact a
753/// redeclaration of Old.
754///
755/// \returns false
756bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
757  // Merge the attributes
758  MergeAttributes(New, Old, Context);
759
760  // Merge the storage class.
761  New->setStorageClass(Old->getStorageClass());
762
763  // FIXME: need to implement inline semantics
764
765  // Merge "pure" flag.
766  if (Old->isPure())
767    New->setPure();
768
769  // Merge the "deleted" flag.
770  if (Old->isDeleted())
771    New->setDeleted();
772
773  if (getLangOptions().CPlusPlus)
774    return MergeCXXFunctionDecl(New, Old);
775
776  return false;
777}
778
779/// Predicate for C "tentative" external object definitions (C99 6.9.2).
780static bool isTentativeDefinition(VarDecl *VD) {
781  if (VD->isFileVarDecl())
782    return (!VD->getInit() &&
783            (VD->getStorageClass() == VarDecl::None ||
784             VD->getStorageClass() == VarDecl::Static));
785  return false;
786}
787
788/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
789/// when dealing with C "tentative" external object definitions (C99 6.9.2).
790void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
791  bool VDIsTentative = isTentativeDefinition(VD);
792  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
793
794  // FIXME: I don't think this will actually see all of the
795  // redefinitions. Can't we check this property on-the-fly?
796  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
797                                    E = IdResolver.end();
798       I != E; ++I) {
799    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
800      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
801
802      // Handle the following case:
803      //   int a[10];
804      //   int a[];   - the code below makes sure we set the correct type.
805      //   int a[11]; - this is an error, size isn't 10.
806      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
807          OldDecl->getType()->isConstantArrayType())
808        VD->setType(OldDecl->getType());
809
810      // Check for "tentative" definitions. We can't accomplish this in
811      // MergeVarDecl since the initializer hasn't been attached.
812      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
813        continue;
814
815      // Handle __private_extern__ just like extern.
816      if (OldDecl->getStorageClass() != VarDecl::Extern &&
817          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
818          VD->getStorageClass() != VarDecl::Extern &&
819          VD->getStorageClass() != VarDecl::PrivateExtern) {
820        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
821        Diag(OldDecl->getLocation(), diag::note_previous_definition);
822        // One redefinition error is enough.
823        break;
824      }
825    }
826  }
827}
828
829/// MergeVarDecl - We just parsed a variable 'New' which has the same name
830/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
831/// situation, merging decls or emitting diagnostics as appropriate.
832///
833/// Tentative definition rules (C99 6.9.2p2) are checked by
834/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
835/// definitions here, since the initializer hasn't been attached.
836///
837bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
838  // Verify the old decl was also a variable.
839  VarDecl *Old = dyn_cast<VarDecl>(OldD);
840  if (!Old) {
841    Diag(New->getLocation(), diag::err_redefinition_different_kind)
842      << New->getDeclName();
843    Diag(OldD->getLocation(), diag::note_previous_definition);
844    return true;
845  }
846
847  MergeAttributes(New, Old, Context);
848
849  // Merge the types
850  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
851  if (MergedT.isNull()) {
852    Diag(New->getLocation(), diag::err_redefinition_different_type)
853      << New->getDeclName();
854    Diag(Old->getLocation(), diag::note_previous_definition);
855    return true;
856  }
857  New->setType(MergedT);
858  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
859  if (New->getStorageClass() == VarDecl::Static &&
860      (Old->getStorageClass() == VarDecl::None ||
861       Old->getStorageClass() == VarDecl::Extern)) {
862    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
863    Diag(Old->getLocation(), diag::note_previous_definition);
864    return true;
865  }
866  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
867  if (New->getStorageClass() != VarDecl::Static &&
868      Old->getStorageClass() == VarDecl::Static) {
869    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
870    Diag(Old->getLocation(), diag::note_previous_definition);
871    return true;
872  }
873  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
874  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
875    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
876    Diag(Old->getLocation(), diag::note_previous_definition);
877    return true;
878  }
879  return false;
880}
881
882/// CheckParmsForFunctionDef - Check that the parameters of the given
883/// function are appropriate for the definition of a function. This
884/// takes care of any checks that cannot be performed on the
885/// declaration itself, e.g., that the types of each of the function
886/// parameters are complete.
887bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
888  bool HasInvalidParm = false;
889  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
890    ParmVarDecl *Param = FD->getParamDecl(p);
891
892    // C99 6.7.5.3p4: the parameters in a parameter type list in a
893    // function declarator that is part of a function definition of
894    // that function shall not have incomplete type.
895    if (!Param->isInvalidDecl() &&
896        RequireCompleteType(Param->getLocation(), Param->getType(),
897                               diag::err_typecheck_decl_incomplete_type)) {
898      Param->setInvalidDecl();
899      HasInvalidParm = true;
900    }
901
902    // C99 6.9.1p5: If the declarator includes a parameter type list, the
903    // declaration of each parameter shall include an identifier.
904    if (Param->getIdentifier() == 0 &&
905        !Param->isImplicit() &&
906        !getLangOptions().CPlusPlus)
907      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
908  }
909
910  return HasInvalidParm;
911}
912
913/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
914/// no declarator (e.g. "struct foo;") is parsed.
915Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
916  TagDecl *Tag = 0;
917  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
918      DS.getTypeSpecType() == DeclSpec::TST_struct ||
919      DS.getTypeSpecType() == DeclSpec::TST_union ||
920      DS.getTypeSpecType() == DeclSpec::TST_enum)
921    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
922
923  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
924    if (!Record->getDeclName() && Record->isDefinition() &&
925        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
926      if (getLangOptions().CPlusPlus ||
927          Record->getDeclContext()->isRecord())
928        return BuildAnonymousStructOrUnion(S, DS, Record);
929
930      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
931        << DS.getSourceRange();
932    }
933
934    // Microsoft allows unnamed struct/union fields. Don't complain
935    // about them.
936    // FIXME: Should we support Microsoft's extensions in this area?
937    if (Record->getDeclName() && getLangOptions().Microsoft)
938      return Tag;
939  }
940
941  if (!DS.isMissingDeclaratorOk() &&
942      DS.getTypeSpecType() != DeclSpec::TST_error) {
943    // Warn about typedefs of enums without names, since this is an
944    // extension in both Microsoft an GNU.
945    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
946        Tag && isa<EnumDecl>(Tag)) {
947      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
948        << DS.getSourceRange();
949      return Tag;
950    }
951
952    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
953      << DS.getSourceRange();
954    return 0;
955  }
956
957  return Tag;
958}
959
960/// InjectAnonymousStructOrUnionMembers - Inject the members of the
961/// anonymous struct or union AnonRecord into the owning context Owner
962/// and scope S. This routine will be invoked just after we realize
963/// that an unnamed union or struct is actually an anonymous union or
964/// struct, e.g.,
965///
966/// @code
967/// union {
968///   int i;
969///   float f;
970/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
971///    // f into the surrounding scope.x
972/// @endcode
973///
974/// This routine is recursive, injecting the names of nested anonymous
975/// structs/unions into the owning context and scope as well.
976bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
977                                               RecordDecl *AnonRecord) {
978  bool Invalid = false;
979  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
980                               FEnd = AnonRecord->field_end();
981       F != FEnd; ++F) {
982    if ((*F)->getDeclName()) {
983      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
984                                                LookupOrdinaryName, true);
985      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
986        // C++ [class.union]p2:
987        //   The names of the members of an anonymous union shall be
988        //   distinct from the names of any other entity in the
989        //   scope in which the anonymous union is declared.
990        unsigned diagKind
991          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
992                                 : diag::err_anonymous_struct_member_redecl;
993        Diag((*F)->getLocation(), diagKind)
994          << (*F)->getDeclName();
995        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
996        Invalid = true;
997      } else {
998        // C++ [class.union]p2:
999        //   For the purpose of name lookup, after the anonymous union
1000        //   definition, the members of the anonymous union are
1001        //   considered to have been defined in the scope in which the
1002        //   anonymous union is declared.
1003        Owner->makeDeclVisibleInContext(*F);
1004        S->AddDecl(*F);
1005        IdResolver.AddDecl(*F);
1006      }
1007    } else if (const RecordType *InnerRecordType
1008                 = (*F)->getType()->getAsRecordType()) {
1009      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1010      if (InnerRecord->isAnonymousStructOrUnion())
1011        Invalid = Invalid ||
1012          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1013    }
1014  }
1015
1016  return Invalid;
1017}
1018
1019/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1020/// anonymous structure or union. Anonymous unions are a C++ feature
1021/// (C++ [class.union]) and a GNU C extension; anonymous structures
1022/// are a GNU C and GNU C++ extension.
1023Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1024                                                RecordDecl *Record) {
1025  DeclContext *Owner = Record->getDeclContext();
1026
1027  // Diagnose whether this anonymous struct/union is an extension.
1028  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1029    Diag(Record->getLocation(), diag::ext_anonymous_union);
1030  else if (!Record->isUnion())
1031    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1032
1033  // C and C++ require different kinds of checks for anonymous
1034  // structs/unions.
1035  bool Invalid = false;
1036  if (getLangOptions().CPlusPlus) {
1037    const char* PrevSpec = 0;
1038    // C++ [class.union]p3:
1039    //   Anonymous unions declared in a named namespace or in the
1040    //   global namespace shall be declared static.
1041    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1042        (isa<TranslationUnitDecl>(Owner) ||
1043         (isa<NamespaceDecl>(Owner) &&
1044          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1045      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1046      Invalid = true;
1047
1048      // Recover by adding 'static'.
1049      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1050    }
1051    // C++ [class.union]p3:
1052    //   A storage class is not allowed in a declaration of an
1053    //   anonymous union in a class scope.
1054    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1055             isa<RecordDecl>(Owner)) {
1056      Diag(DS.getStorageClassSpecLoc(),
1057           diag::err_anonymous_union_with_storage_spec);
1058      Invalid = true;
1059
1060      // Recover by removing the storage specifier.
1061      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1062                             PrevSpec);
1063    }
1064
1065    // C++ [class.union]p2:
1066    //   The member-specification of an anonymous union shall only
1067    //   define non-static data members. [Note: nested types and
1068    //   functions cannot be declared within an anonymous union. ]
1069    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1070                                 MemEnd = Record->decls_end();
1071         Mem != MemEnd; ++Mem) {
1072      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1073        // C++ [class.union]p3:
1074        //   An anonymous union shall not have private or protected
1075        //   members (clause 11).
1076        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1077          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1078            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1079          Invalid = true;
1080        }
1081      } else if ((*Mem)->isImplicit()) {
1082        // Any implicit members are fine.
1083      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1084        // This is a type that showed up in an
1085        // elaborated-type-specifier inside the anonymous struct or
1086        // union, but which actually declares a type outside of the
1087        // anonymous struct or union. It's okay.
1088      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1089        if (!MemRecord->isAnonymousStructOrUnion() &&
1090            MemRecord->getDeclName()) {
1091          // This is a nested type declaration.
1092          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1093            << (int)Record->isUnion();
1094          Invalid = true;
1095        }
1096      } else {
1097        // We have something that isn't a non-static data
1098        // member. Complain about it.
1099        unsigned DK = diag::err_anonymous_record_bad_member;
1100        if (isa<TypeDecl>(*Mem))
1101          DK = diag::err_anonymous_record_with_type;
1102        else if (isa<FunctionDecl>(*Mem))
1103          DK = diag::err_anonymous_record_with_function;
1104        else if (isa<VarDecl>(*Mem))
1105          DK = diag::err_anonymous_record_with_static;
1106        Diag((*Mem)->getLocation(), DK)
1107            << (int)Record->isUnion();
1108          Invalid = true;
1109      }
1110    }
1111  }
1112
1113  if (!Record->isUnion() && !Owner->isRecord()) {
1114    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1115      << (int)getLangOptions().CPlusPlus;
1116    Invalid = true;
1117  }
1118
1119  // Create a declaration for this anonymous struct/union.
1120  NamedDecl *Anon = 0;
1121  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1122    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1123                             /*IdentifierInfo=*/0,
1124                             Context.getTypeDeclType(Record),
1125                             /*BitWidth=*/0, /*Mutable=*/false);
1126    Anon->setAccess(AS_public);
1127    if (getLangOptions().CPlusPlus)
1128      FieldCollector->Add(cast<FieldDecl>(Anon));
1129  } else {
1130    VarDecl::StorageClass SC;
1131    switch (DS.getStorageClassSpec()) {
1132    default: assert(0 && "Unknown storage class!");
1133    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1134    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1135    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1136    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1137    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1138    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1139    case DeclSpec::SCS_mutable:
1140      // mutable can only appear on non-static class members, so it's always
1141      // an error here
1142      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1143      Invalid = true;
1144      SC = VarDecl::None;
1145      break;
1146    }
1147
1148    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1149                           /*IdentifierInfo=*/0,
1150                           Context.getTypeDeclType(Record),
1151                           SC, DS.getSourceRange().getBegin());
1152  }
1153  Anon->setImplicit();
1154
1155  // Add the anonymous struct/union object to the current
1156  // context. We'll be referencing this object when we refer to one of
1157  // its members.
1158  Owner->addDecl(Anon);
1159
1160  // Inject the members of the anonymous struct/union into the owning
1161  // context and into the identifier resolver chain for name lookup
1162  // purposes.
1163  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1164    Invalid = true;
1165
1166  // Mark this as an anonymous struct/union type. Note that we do not
1167  // do this until after we have already checked and injected the
1168  // members of this anonymous struct/union type, because otherwise
1169  // the members could be injected twice: once by DeclContext when it
1170  // builds its lookup table, and once by
1171  // InjectAnonymousStructOrUnionMembers.
1172  Record->setAnonymousStructOrUnion(true);
1173
1174  if (Invalid)
1175    Anon->setInvalidDecl();
1176
1177  return Anon;
1178}
1179
1180
1181/// GetNameForDeclarator - Determine the full declaration name for the
1182/// given Declarator.
1183DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1184  switch (D.getKind()) {
1185  case Declarator::DK_Abstract:
1186    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1187    return DeclarationName();
1188
1189  case Declarator::DK_Normal:
1190    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1191    return DeclarationName(D.getIdentifier());
1192
1193  case Declarator::DK_Constructor: {
1194    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1195    Ty = Context.getCanonicalType(Ty);
1196    return Context.DeclarationNames.getCXXConstructorName(Ty);
1197  }
1198
1199  case Declarator::DK_Destructor: {
1200    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1201    Ty = Context.getCanonicalType(Ty);
1202    return Context.DeclarationNames.getCXXDestructorName(Ty);
1203  }
1204
1205  case Declarator::DK_Conversion: {
1206    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1207    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1208    Ty = Context.getCanonicalType(Ty);
1209    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1210  }
1211
1212  case Declarator::DK_Operator:
1213    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1214    return Context.DeclarationNames.getCXXOperatorName(
1215                                                D.getOverloadedOperator());
1216  }
1217
1218  assert(false && "Unknown name kind");
1219  return DeclarationName();
1220}
1221
1222/// isNearlyMatchingFunction - Determine whether the C++ functions
1223/// Declaration and Definition are "nearly" matching. This heuristic
1224/// is used to improve diagnostics in the case where an out-of-line
1225/// function definition doesn't match any declaration within
1226/// the class or namespace.
1227static bool isNearlyMatchingFunction(ASTContext &Context,
1228                                     FunctionDecl *Declaration,
1229                                     FunctionDecl *Definition) {
1230  if (Declaration->param_size() != Definition->param_size())
1231    return false;
1232  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1233    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1234    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1235
1236    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1237    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1238    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1239      return false;
1240  }
1241
1242  return true;
1243}
1244
1245Sema::DeclTy *
1246Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1247                      bool IsFunctionDefinition) {
1248  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1249  DeclarationName Name = GetNameForDeclarator(D);
1250
1251  // All of these full declarators require an identifier.  If it doesn't have
1252  // one, the ParsedFreeStandingDeclSpec action should be used.
1253  if (!Name) {
1254    if (!D.getInvalidType())  // Reject this if we think it is valid.
1255      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1256           diag::err_declarator_need_ident)
1257        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1258    return 0;
1259  }
1260
1261  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1262  // we find one that is.
1263  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1264         (S->getFlags() & Scope::TemplateParamScope) != 0)
1265    S = S->getParent();
1266
1267  DeclContext *DC;
1268  NamedDecl *PrevDecl;
1269  NamedDecl *New;
1270  bool InvalidDecl = false;
1271
1272  QualType R = GetTypeForDeclarator(D, S);
1273  if (R.isNull()) {
1274    InvalidDecl = true;
1275    R = Context.IntTy;
1276  }
1277
1278  // See if this is a redefinition of a variable in the same scope.
1279  if (D.getCXXScopeSpec().isInvalid()) {
1280    DC = CurContext;
1281    PrevDecl = 0;
1282    InvalidDecl = true;
1283  } else if (!D.getCXXScopeSpec().isSet()) {
1284    LookupNameKind NameKind = LookupOrdinaryName;
1285
1286    // If the declaration we're planning to build will be a function
1287    // or object with linkage, then look for another declaration with
1288    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1289    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1290      /* Do nothing*/;
1291    else if (R->isFunctionType()) {
1292      if (CurContext->isFunctionOrMethod())
1293        NameKind = LookupRedeclarationWithLinkage;
1294    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1295      NameKind = LookupRedeclarationWithLinkage;
1296
1297    DC = CurContext;
1298    PrevDecl = LookupName(S, Name, NameKind, true,
1299                          D.getDeclSpec().getStorageClassSpec() !=
1300                            DeclSpec::SCS_static,
1301                          D.getIdentifierLoc());
1302  } else { // Something like "int foo::x;"
1303    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1304    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1305
1306    // C++ 7.3.1.2p2:
1307    // Members (including explicit specializations of templates) of a named
1308    // namespace can also be defined outside that namespace by explicit
1309    // qualification of the name being defined, provided that the entity being
1310    // defined was already declared in the namespace and the definition appears
1311    // after the point of declaration in a namespace that encloses the
1312    // declarations namespace.
1313    //
1314    // Note that we only check the context at this point. We don't yet
1315    // have enough information to make sure that PrevDecl is actually
1316    // the declaration we want to match. For example, given:
1317    //
1318    //   class X {
1319    //     void f();
1320    //     void f(float);
1321    //   };
1322    //
1323    //   void X::f(int) { } // ill-formed
1324    //
1325    // In this case, PrevDecl will point to the overload set
1326    // containing the two f's declared in X, but neither of them
1327    // matches.
1328
1329    // First check whether we named the global scope.
1330    if (isa<TranslationUnitDecl>(DC)) {
1331      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1332        << Name << D.getCXXScopeSpec().getRange();
1333    } else if (!CurContext->Encloses(DC)) {
1334      // The qualifying scope doesn't enclose the original declaration.
1335      // Emit diagnostic based on current scope.
1336      SourceLocation L = D.getIdentifierLoc();
1337      SourceRange R = D.getCXXScopeSpec().getRange();
1338      if (isa<FunctionDecl>(CurContext))
1339        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1340      else
1341        Diag(L, diag::err_invalid_declarator_scope)
1342          << Name << cast<NamedDecl>(DC) << R;
1343      InvalidDecl = true;
1344    }
1345  }
1346
1347  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1348    // Maybe we will complain about the shadowed template parameter.
1349    InvalidDecl = InvalidDecl
1350      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1351    // Just pretend that we didn't see the previous declaration.
1352    PrevDecl = 0;
1353  }
1354
1355  // In C++, the previous declaration we find might be a tag type
1356  // (class or enum). In this case, the new declaration will hide the
1357  // tag type. Note that this does does not apply if we're declaring a
1358  // typedef (C++ [dcl.typedef]p4).
1359  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1360      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1361    PrevDecl = 0;
1362
1363  bool Redeclaration = false;
1364  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1365    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1366                                 InvalidDecl, Redeclaration);
1367  } else if (R->isFunctionType()) {
1368    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1369                                  IsFunctionDefinition, InvalidDecl,
1370                                  Redeclaration);
1371  } else {
1372    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1373                                  InvalidDecl, Redeclaration);
1374  }
1375
1376  if (New == 0)
1377    return 0;
1378
1379  // Set the lexical context. If the declarator has a C++ scope specifier, the
1380  // lexical context will be different from the semantic context.
1381  New->setLexicalDeclContext(CurContext);
1382
1383  // If this has an identifier and is not an invalid redeclaration,
1384  // add it to the scope stack.
1385  if (Name && !(Redeclaration && InvalidDecl))
1386    PushOnScopeChains(New, S);
1387  // If any semantic error occurred, mark the decl as invalid.
1388  if (D.getInvalidType() || InvalidDecl)
1389    New->setInvalidDecl();
1390
1391  return New;
1392}
1393
1394/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1395/// types into constant array types in certain situations which would otherwise
1396/// be errors (for GCC compatibility).
1397static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1398                                                    ASTContext &Context,
1399                                                    bool &SizeIsNegative) {
1400  // This method tries to turn a variable array into a constant
1401  // array even when the size isn't an ICE.  This is necessary
1402  // for compatibility with code that depends on gcc's buggy
1403  // constant expression folding, like struct {char x[(int)(char*)2];}
1404  SizeIsNegative = false;
1405
1406  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1407    QualType Pointee = PTy->getPointeeType();
1408    QualType FixedType =
1409        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1410    if (FixedType.isNull()) return FixedType;
1411    FixedType = Context.getPointerType(FixedType);
1412    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1413    return FixedType;
1414  }
1415
1416  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1417  if (!VLATy)
1418    return QualType();
1419  // FIXME: We should probably handle this case
1420  if (VLATy->getElementType()->isVariablyModifiedType())
1421    return QualType();
1422
1423  Expr::EvalResult EvalResult;
1424  if (!VLATy->getSizeExpr() ||
1425      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1426      !EvalResult.Val.isInt())
1427    return QualType();
1428
1429  llvm::APSInt &Res = EvalResult.Val.getInt();
1430  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1431    return Context.getConstantArrayType(VLATy->getElementType(),
1432                                        Res, ArrayType::Normal, 0);
1433
1434  SizeIsNegative = true;
1435  return QualType();
1436}
1437
1438/// \brief Register the given locally-scoped external C declaration so
1439/// that it can be found later for redeclarations
1440void
1441Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1442                                       Scope *S) {
1443  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1444         "Decl is not a locally-scoped decl!");
1445  // Note that we have a locally-scoped external with this name.
1446  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1447
1448  if (!PrevDecl)
1449    return;
1450
1451  // If there was a previous declaration of this variable, it may be
1452  // in our identifier chain. Update the identifier chain with the new
1453  // declaration.
1454  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1455    // The previous declaration was found on the identifer resolver
1456    // chain, so remove it from its scope.
1457    while (S && !S->isDeclScope(PrevDecl))
1458      S = S->getParent();
1459
1460    if (S)
1461      S->RemoveDecl(PrevDecl);
1462  }
1463}
1464
1465NamedDecl*
1466Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1467                             QualType R, Decl* LastDeclarator,
1468                             Decl* PrevDecl, bool& InvalidDecl,
1469                             bool &Redeclaration) {
1470  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1471  if (D.getCXXScopeSpec().isSet()) {
1472    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1473      << D.getCXXScopeSpec().getRange();
1474    InvalidDecl = true;
1475    // Pretend we didn't see the scope specifier.
1476    DC = 0;
1477  }
1478
1479  // Check that there are no default arguments (C++ only).
1480  if (getLangOptions().CPlusPlus)
1481    CheckExtraCXXDefaultArguments(D);
1482
1483  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1484  if (!NewTD) return 0;
1485
1486  // Handle attributes prior to checking for duplicates in MergeVarDecl
1487  ProcessDeclAttributes(NewTD, D);
1488  // Merge the decl with the existing one if appropriate. If the decl is
1489  // in an outer scope, it isn't the same thing.
1490  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1491    Redeclaration = true;
1492    if (MergeTypeDefDecl(NewTD, PrevDecl))
1493      InvalidDecl = true;
1494  }
1495
1496  if (S->getFnParent() == 0) {
1497    QualType T = NewTD->getUnderlyingType();
1498    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1499    // then it shall have block scope.
1500    if (T->isVariablyModifiedType()) {
1501      bool SizeIsNegative;
1502      QualType FixedTy =
1503          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1504      if (!FixedTy.isNull()) {
1505        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1506        NewTD->setUnderlyingType(FixedTy);
1507      } else {
1508        if (SizeIsNegative)
1509          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1510        else if (T->isVariableArrayType())
1511          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1512        else
1513          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1514        InvalidDecl = true;
1515      }
1516    }
1517  }
1518  return NewTD;
1519}
1520
1521/// \brief Determines whether the given declaration is an out-of-scope
1522/// previous declaration.
1523///
1524/// This routine should be invoked when name lookup has found a
1525/// previous declaration (PrevDecl) that is not in the scope where a
1526/// new declaration by the same name is being introduced. If the new
1527/// declaration occurs in a local scope, previous declarations with
1528/// linkage may still be considered previous declarations (C99
1529/// 6.2.2p4-5, C++ [basic.link]p6).
1530///
1531/// \param PrevDecl the previous declaration found by name
1532/// lookup
1533///
1534/// \param DC the context in which the new declaration is being
1535/// declared.
1536///
1537/// \returns true if PrevDecl is an out-of-scope previous declaration
1538/// for a new delcaration with the same name.
1539static bool
1540isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1541                                ASTContext &Context) {
1542  if (!PrevDecl)
1543    return 0;
1544
1545  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1546  // case we need to check each of the overloaded functions.
1547  if (!PrevDecl->hasLinkage())
1548    return false;
1549
1550  if (Context.getLangOptions().CPlusPlus) {
1551    // C++ [basic.link]p6:
1552    //   If there is a visible declaration of an entity with linkage
1553    //   having the same name and type, ignoring entities declared
1554    //   outside the innermost enclosing namespace scope, the block
1555    //   scope declaration declares that same entity and receives the
1556    //   linkage of the previous declaration.
1557    DeclContext *OuterContext = DC->getLookupContext();
1558    if (!OuterContext->isFunctionOrMethod())
1559      // This rule only applies to block-scope declarations.
1560      return false;
1561    else {
1562      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1563      if (PrevOuterContext->isRecord())
1564        // We found a member function: ignore it.
1565        return false;
1566      else {
1567        // Find the innermost enclosing namespace for the new and
1568        // previous declarations.
1569        while (!OuterContext->isFileContext())
1570          OuterContext = OuterContext->getParent();
1571        while (!PrevOuterContext->isFileContext())
1572          PrevOuterContext = PrevOuterContext->getParent();
1573
1574        // The previous declaration is in a different namespace, so it
1575        // isn't the same function.
1576        if (OuterContext->getPrimaryContext() !=
1577            PrevOuterContext->getPrimaryContext())
1578          return false;
1579      }
1580    }
1581  }
1582
1583  return true;
1584}
1585
1586NamedDecl*
1587Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1588                              QualType R, Decl* LastDeclarator,
1589                              NamedDecl* PrevDecl, bool& InvalidDecl,
1590                              bool &Redeclaration) {
1591  DeclarationName Name = GetNameForDeclarator(D);
1592
1593  // Check that there are no default arguments (C++ only).
1594  if (getLangOptions().CPlusPlus)
1595    CheckExtraCXXDefaultArguments(D);
1596
1597  if (R.getTypePtr()->isObjCInterfaceType()) {
1598    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1599    InvalidDecl = true;
1600  }
1601
1602  VarDecl *NewVD;
1603  VarDecl::StorageClass SC;
1604  switch (D.getDeclSpec().getStorageClassSpec()) {
1605  default: assert(0 && "Unknown storage class!");
1606  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1607  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1608  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1609  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1610  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1611  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1612  case DeclSpec::SCS_mutable:
1613    // mutable can only appear on non-static class members, so it's always
1614    // an error here
1615    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1616    InvalidDecl = true;
1617    SC = VarDecl::None;
1618    break;
1619  }
1620
1621  IdentifierInfo *II = Name.getAsIdentifierInfo();
1622  if (!II) {
1623    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1624      << Name.getAsString();
1625    return 0;
1626  }
1627
1628  if (DC->isRecord()) {
1629    // This is a static data member for a C++ class.
1630    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1631                                    D.getIdentifierLoc(), II,
1632                                    R);
1633  } else {
1634    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1635    if (S->getFnParent() == 0) {
1636      // C99 6.9p2: The storage-class specifiers auto and register shall not
1637      // appear in the declaration specifiers in an external declaration.
1638      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1639        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1640        InvalidDecl = true;
1641      }
1642    }
1643    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1644                            II, R, SC,
1645                            // FIXME: Move to DeclGroup...
1646                            D.getDeclSpec().getSourceRange().getBegin());
1647    NewVD->setThreadSpecified(ThreadSpecified);
1648  }
1649  NewVD->setNextDeclarator(LastDeclarator);
1650
1651  // Handle attributes prior to checking for duplicates in MergeVarDecl
1652  ProcessDeclAttributes(NewVD, D);
1653
1654  // Handle GNU asm-label extension (encoded as an attribute).
1655  if (Expr *E = (Expr*) D.getAsmLabel()) {
1656    // The parser guarantees this is a string.
1657    StringLiteral *SE = cast<StringLiteral>(E);
1658    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1659                                                        SE->getByteLength())));
1660  }
1661
1662  // Emit an error if an address space was applied to decl with local storage.
1663  // This includes arrays of objects with address space qualifiers, but not
1664  // automatic variables that point to other address spaces.
1665  // ISO/IEC TR 18037 S5.1.2
1666  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1667    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1668    InvalidDecl = true;
1669  }
1670
1671  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1672    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1673  }
1674
1675  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1676  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1677  if (isIllegalVLA || isIllegalVM) {
1678    bool SizeIsNegative;
1679    QualType FixedTy =
1680        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1681    if (!FixedTy.isNull()) {
1682      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1683      NewVD->setType(FixedTy);
1684    } else if (R->isVariableArrayType()) {
1685      NewVD->setInvalidDecl();
1686
1687      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1688      // FIXME: This won't give the correct result for
1689      // int a[10][n];
1690      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1691
1692      if (NewVD->isFileVarDecl())
1693        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1694          << SizeRange;
1695      else if (NewVD->getStorageClass() == VarDecl::Static)
1696        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1697          << SizeRange;
1698      else
1699        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1700            << SizeRange;
1701    } else {
1702      InvalidDecl = true;
1703
1704      if (NewVD->isFileVarDecl())
1705        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1706      else
1707        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1708    }
1709  }
1710
1711  // If name lookup finds a previous declaration that is not in the
1712  // same scope as the new declaration, this may still be an
1713  // acceptable redeclaration.
1714  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1715      !(NewVD->hasLinkage() &&
1716        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1717    PrevDecl = 0;
1718
1719  if (!PrevDecl && NewVD->isExternC(Context)) {
1720    // Since we did not find anything by this name and we're declaring
1721    // an extern "C" variable, look for a non-visible extern "C"
1722    // declaration with the same name.
1723    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1724      = LocallyScopedExternalDecls.find(Name);
1725    if (Pos != LocallyScopedExternalDecls.end())
1726      PrevDecl = Pos->second;
1727  }
1728
1729  // Merge the decl with the existing one if appropriate.
1730  if (PrevDecl) {
1731    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1732      // The user tried to define a non-static data member
1733      // out-of-line (C++ [dcl.meaning]p1).
1734      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1735        << D.getCXXScopeSpec().getRange();
1736      NewVD->Destroy(Context);
1737      return 0;
1738    }
1739
1740    Redeclaration = true;
1741    if (MergeVarDecl(NewVD, PrevDecl))
1742      InvalidDecl = true;
1743
1744    if (D.getCXXScopeSpec().isSet()) {
1745      // No previous declaration in the qualifying scope.
1746      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1747        << Name << D.getCXXScopeSpec().getRange();
1748      InvalidDecl = true;
1749    }
1750  }
1751
1752  // If this is a locally-scoped extern C variable, update the map of
1753  // such variables.
1754  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1755      !InvalidDecl)
1756    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1757
1758  return NewVD;
1759}
1760
1761NamedDecl*
1762Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1763                              QualType R, Decl *LastDeclarator,
1764                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1765                              bool& InvalidDecl, bool &Redeclaration) {
1766  assert(R.getTypePtr()->isFunctionType());
1767
1768  DeclarationName Name = GetNameForDeclarator(D);
1769  FunctionDecl::StorageClass SC = FunctionDecl::None;
1770  switch (D.getDeclSpec().getStorageClassSpec()) {
1771  default: assert(0 && "Unknown storage class!");
1772  case DeclSpec::SCS_auto:
1773  case DeclSpec::SCS_register:
1774  case DeclSpec::SCS_mutable:
1775    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1776         diag::err_typecheck_sclass_func);
1777    InvalidDecl = true;
1778    break;
1779  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1780  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1781  case DeclSpec::SCS_static: {
1782    if (DC->getLookupContext()->isFunctionOrMethod()) {
1783      // C99 6.7.1p5:
1784      //   The declaration of an identifier for a function that has
1785      //   block scope shall have no explicit storage-class specifier
1786      //   other than extern
1787      // See also (C++ [dcl.stc]p4).
1788      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1789           diag::err_static_block_func);
1790      SC = FunctionDecl::None;
1791    } else
1792      SC = FunctionDecl::Static;
1793    break;
1794  }
1795  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1796  }
1797
1798  bool isInline = D.getDeclSpec().isInlineSpecified();
1799  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1800  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1801
1802  FunctionDecl *NewFD;
1803  if (D.getKind() == Declarator::DK_Constructor) {
1804    // This is a C++ constructor declaration.
1805    assert(DC->isRecord() &&
1806           "Constructors can only be declared in a member context");
1807
1808    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1809
1810    // Create the new declaration
1811    NewFD = CXXConstructorDecl::Create(Context,
1812                                       cast<CXXRecordDecl>(DC),
1813                                       D.getIdentifierLoc(), Name, R,
1814                                       isExplicit, isInline,
1815                                       /*isImplicitlyDeclared=*/false);
1816
1817    if (InvalidDecl)
1818      NewFD->setInvalidDecl();
1819  } else if (D.getKind() == Declarator::DK_Destructor) {
1820    // This is a C++ destructor declaration.
1821    if (DC->isRecord()) {
1822      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1823
1824      NewFD = CXXDestructorDecl::Create(Context,
1825                                        cast<CXXRecordDecl>(DC),
1826                                        D.getIdentifierLoc(), Name, R,
1827                                        isInline,
1828                                        /*isImplicitlyDeclared=*/false);
1829
1830      if (InvalidDecl)
1831        NewFD->setInvalidDecl();
1832    } else {
1833      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1834
1835      // Create a FunctionDecl to satisfy the function definition parsing
1836      // code path.
1837      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1838                                   Name, R, SC, isInline,
1839                                   /*hasPrototype=*/true,
1840                                   // FIXME: Move to DeclGroup...
1841                                   D.getDeclSpec().getSourceRange().getBegin());
1842      InvalidDecl = true;
1843      NewFD->setInvalidDecl();
1844    }
1845  } else if (D.getKind() == Declarator::DK_Conversion) {
1846    if (!DC->isRecord()) {
1847      Diag(D.getIdentifierLoc(),
1848           diag::err_conv_function_not_member);
1849      return 0;
1850    } else {
1851      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1852
1853      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1854                                        D.getIdentifierLoc(), Name, R,
1855                                        isInline, isExplicit);
1856
1857      if (InvalidDecl)
1858        NewFD->setInvalidDecl();
1859    }
1860  } else if (DC->isRecord()) {
1861    // This is a C++ method declaration.
1862    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1863                                  D.getIdentifierLoc(), Name, R,
1864                                  (SC == FunctionDecl::Static), isInline);
1865  } else {
1866    NewFD = FunctionDecl::Create(Context, DC,
1867                                 D.getIdentifierLoc(),
1868                                 Name, R, SC, isInline,
1869                                 /*hasPrototype=*/
1870                                   (getLangOptions().CPlusPlus ||
1871                                    (D.getNumTypeObjects() &&
1872                                     D.getTypeObject(0).Fun.hasPrototype)),
1873                                 // FIXME: Move to DeclGroup...
1874                                 D.getDeclSpec().getSourceRange().getBegin());
1875  }
1876  NewFD->setNextDeclarator(LastDeclarator);
1877
1878  // Set the lexical context. If the declarator has a C++
1879  // scope specifier, the lexical context will be different
1880  // from the semantic context.
1881  NewFD->setLexicalDeclContext(CurContext);
1882
1883  // Handle GNU asm-label extension (encoded as an attribute).
1884  if (Expr *E = (Expr*) D.getAsmLabel()) {
1885    // The parser guarantees this is a string.
1886    StringLiteral *SE = cast<StringLiteral>(E);
1887    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1888                                                        SE->getByteLength())));
1889  }
1890
1891  // Copy the parameter declarations from the declarator D to
1892  // the function declaration NewFD, if they are available.
1893  if (D.getNumTypeObjects() > 0) {
1894    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1895
1896    // Create Decl objects for each parameter, adding them to the
1897    // FunctionDecl.
1898    llvm::SmallVector<ParmVarDecl*, 16> Params;
1899
1900    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1901    // function that takes no arguments, not a function that takes a
1902    // single void argument.
1903    // We let through "const void" here because Sema::GetTypeForDeclarator
1904    // already checks for that case.
1905    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1906        FTI.ArgInfo[0].Param &&
1907        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1908      // empty arg list, don't push any params.
1909      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1910
1911      // In C++, the empty parameter-type-list must be spelled "void"; a
1912      // typedef of void is not permitted.
1913      if (getLangOptions().CPlusPlus &&
1914          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1915        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1916      }
1917    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1918      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1919        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1920    }
1921
1922    NewFD->setParams(Context, &Params[0], Params.size());
1923  } else if (R->getAsTypedefType()) {
1924    // When we're declaring a function with a typedef, as in the
1925    // following example, we'll need to synthesize (unnamed)
1926    // parameters for use in the declaration.
1927    //
1928    // @code
1929    // typedef void fn(int);
1930    // fn f;
1931    // @endcode
1932    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1933    if (!FT) {
1934      // This is a typedef of a function with no prototype, so we
1935      // don't need to do anything.
1936    } else if ((FT->getNumArgs() == 0) ||
1937               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1938                FT->getArgType(0)->isVoidType())) {
1939      // This is a zero-argument function. We don't need to do anything.
1940    } else {
1941      // Synthesize a parameter for each argument type.
1942      llvm::SmallVector<ParmVarDecl*, 16> Params;
1943      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1944           ArgType != FT->arg_type_end(); ++ArgType) {
1945        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1946                                                 SourceLocation(), 0,
1947                                                 *ArgType, VarDecl::None,
1948                                                 0);
1949        Param->setImplicit();
1950        Params.push_back(Param);
1951      }
1952
1953      NewFD->setParams(Context, &Params[0], Params.size());
1954    }
1955  }
1956
1957  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1958    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1959  else if (isa<CXXDestructorDecl>(NewFD)) {
1960    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1961    Record->setUserDeclaredDestructor(true);
1962    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1963    // user-defined destructor.
1964    Record->setPOD(false);
1965  } else if (CXXConversionDecl *Conversion =
1966             dyn_cast<CXXConversionDecl>(NewFD))
1967    ActOnConversionDeclarator(Conversion);
1968
1969  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1970  if (NewFD->isOverloadedOperator() &&
1971      CheckOverloadedOperatorDeclaration(NewFD))
1972    NewFD->setInvalidDecl();
1973
1974  // If name lookup finds a previous declaration that is not in the
1975  // same scope as the new declaration, this may still be an
1976  // acceptable redeclaration.
1977  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1978      !(NewFD->hasLinkage() &&
1979        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1980    PrevDecl = 0;
1981
1982  if (!PrevDecl && NewFD->isExternC(Context)) {
1983    // Since we did not find anything by this name and we're declaring
1984    // an extern "C" function, look for a non-visible extern "C"
1985    // declaration with the same name.
1986    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1987      = LocallyScopedExternalDecls.find(Name);
1988    if (Pos != LocallyScopedExternalDecls.end())
1989      PrevDecl = Pos->second;
1990  }
1991
1992  // Merge or overload the declaration with an existing declaration of
1993  // the same name, if appropriate.
1994  bool OverloadableAttrRequired = false;
1995  if (PrevDecl) {
1996    // Determine whether NewFD is an overload of PrevDecl or
1997    // a declaration that requires merging. If it's an overload,
1998    // there's no more work to do here; we'll just add the new
1999    // function to the scope.
2000    OverloadedFunctionDecl::function_iterator MatchedDecl;
2001
2002    if (!getLangOptions().CPlusPlus &&
2003        AllowOverloadingOfFunction(PrevDecl, Context)) {
2004      OverloadableAttrRequired = true;
2005
2006      // Functions marked "overloadable" must have a prototype (that
2007      // we can't get through declaration merging).
2008      if (!R->getAsFunctionProtoType()) {
2009        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2010          << NewFD;
2011        InvalidDecl = true;
2012        Redeclaration = true;
2013
2014        // Turn this into a variadic function with no parameters.
2015        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
2016                                    0, 0, true, 0);
2017        NewFD->setType(R);
2018      }
2019    }
2020
2021    if (PrevDecl &&
2022        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2023         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2024      Redeclaration = true;
2025      Decl *OldDecl = PrevDecl;
2026
2027      // If PrevDecl was an overloaded function, extract the
2028      // FunctionDecl that matched.
2029      if (isa<OverloadedFunctionDecl>(PrevDecl))
2030        OldDecl = *MatchedDecl;
2031
2032      // NewFD and PrevDecl represent declarations that need to be
2033      // merged.
2034      if (MergeFunctionDecl(NewFD, OldDecl))
2035        InvalidDecl = true;
2036
2037      if (!InvalidDecl) {
2038        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2039
2040        // An out-of-line member function declaration must also be a
2041        // definition (C++ [dcl.meaning]p1).
2042        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
2043            !InvalidDecl) {
2044          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2045            << D.getCXXScopeSpec().getRange();
2046          NewFD->setInvalidDecl();
2047        }
2048      }
2049    }
2050  }
2051
2052  if (D.getCXXScopeSpec().isSet() &&
2053      (!PrevDecl || !Redeclaration)) {
2054    // The user tried to provide an out-of-line definition for a
2055    // function that is a member of a class or namespace, but there
2056    // was no such member function declared (C++ [class.mfct]p2,
2057    // C++ [namespace.memdef]p2). For example:
2058    //
2059    // class X {
2060    //   void f() const;
2061    // };
2062    //
2063    // void X::f() { } // ill-formed
2064    //
2065    // Complain about this problem, and attempt to suggest close
2066    // matches (e.g., those that differ only in cv-qualifiers and
2067    // whether the parameter types are references).
2068    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2069      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2070    InvalidDecl = true;
2071
2072    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2073                                            true);
2074    assert(!Prev.isAmbiguous() &&
2075           "Cannot have an ambiguity in previous-declaration lookup");
2076    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2077         Func != FuncEnd; ++Func) {
2078      if (isa<FunctionDecl>(*Func) &&
2079          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2080        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2081    }
2082
2083    PrevDecl = 0;
2084  }
2085
2086  // Handle attributes. We need to have merged decls when handling attributes
2087  // (for example to check for conflicts, etc).
2088  ProcessDeclAttributes(NewFD, D);
2089  AddKnownFunctionAttributes(NewFD);
2090
2091  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2092    // If a function name is overloadable in C, then every function
2093    // with that name must be marked "overloadable".
2094    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2095      << Redeclaration << NewFD;
2096    if (PrevDecl)
2097      Diag(PrevDecl->getLocation(),
2098           diag::note_attribute_overloadable_prev_overload);
2099    NewFD->addAttr(::new (Context) OverloadableAttr());
2100  }
2101
2102  if (getLangOptions().CPlusPlus) {
2103    // In C++, check default arguments now that we have merged decls. Unless
2104    // the lexical context is the class, because in this case this is done
2105    // during delayed parsing anyway.
2106    if (!CurContext->isRecord())
2107      CheckCXXDefaultArguments(NewFD);
2108
2109    // An out-of-line member function declaration must also be a
2110    // definition (C++ [dcl.meaning]p1).
2111    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2112      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2113        << D.getCXXScopeSpec().getRange();
2114      InvalidDecl = true;
2115    }
2116  }
2117
2118  // If this is a locally-scoped extern C function, update the
2119  // map of such names.
2120  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2121      && !InvalidDecl)
2122    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2123
2124  return NewFD;
2125}
2126
2127bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2128  // FIXME: Need strict checking.  In C89, we need to check for
2129  // any assignment, increment, decrement, function-calls, or
2130  // commas outside of a sizeof.  In C99, it's the same list,
2131  // except that the aforementioned are allowed in unevaluated
2132  // expressions.  Everything else falls under the
2133  // "may accept other forms of constant expressions" exception.
2134  // (We never end up here for C++, so the constant expression
2135  // rules there don't matter.)
2136  if (Init->isConstantInitializer(Context))
2137    return false;
2138  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2139    << Init->getSourceRange();
2140  return true;
2141}
2142
2143void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2144  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2145}
2146
2147/// AddInitializerToDecl - Adds the initializer Init to the
2148/// declaration dcl. If DirectInit is true, this is C++ direct
2149/// initialization rather than copy initialization.
2150void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2151  Decl *RealDecl = static_cast<Decl *>(dcl);
2152  // If there is no declaration, there was an error parsing it.  Just ignore
2153  // the initializer.
2154  if (RealDecl == 0)
2155    return;
2156
2157  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2158  if (!VDecl) {
2159    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2160    RealDecl->setInvalidDecl();
2161    return;
2162  }
2163
2164  // Take ownership of the expression, now that we're sure we have somewhere
2165  // to put it.
2166  Expr *Init = static_cast<Expr *>(init.release());
2167  assert(Init && "missing initializer");
2168
2169  // Get the decls type and save a reference for later, since
2170  // CheckInitializerTypes may change it.
2171  QualType DclT = VDecl->getType(), SavT = DclT;
2172  if (VDecl->isBlockVarDecl()) {
2173    VarDecl::StorageClass SC = VDecl->getStorageClass();
2174    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2175      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2176      VDecl->setInvalidDecl();
2177    } else if (!VDecl->isInvalidDecl()) {
2178      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2179                                VDecl->getDeclName(), DirectInit))
2180        VDecl->setInvalidDecl();
2181
2182      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2183      // Don't check invalid declarations to avoid emitting useless diagnostics.
2184      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2185        if (SC == VarDecl::Static) // C99 6.7.8p4.
2186          CheckForConstantInitializer(Init, DclT);
2187      }
2188    }
2189  } else if (VDecl->isFileVarDecl()) {
2190    if (VDecl->getStorageClass() == VarDecl::Extern)
2191      Diag(VDecl->getLocation(), diag::warn_extern_init);
2192    if (!VDecl->isInvalidDecl())
2193      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2194                                VDecl->getDeclName(), DirectInit))
2195        VDecl->setInvalidDecl();
2196
2197    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2198    // Don't check invalid declarations to avoid emitting useless diagnostics.
2199    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2200      // C99 6.7.8p4. All file scoped initializers need to be constant.
2201      CheckForConstantInitializer(Init, DclT);
2202    }
2203  }
2204  // If the type changed, it means we had an incomplete type that was
2205  // completed by the initializer. For example:
2206  //   int ary[] = { 1, 3, 5 };
2207  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2208  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2209    VDecl->setType(DclT);
2210    Init->setType(DclT);
2211  }
2212
2213  // Attach the initializer to the decl.
2214  VDecl->setInit(Init);
2215  return;
2216}
2217
2218void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2219  Decl *RealDecl = static_cast<Decl *>(dcl);
2220
2221  // If there is no declaration, there was an error parsing it. Just ignore it.
2222  if (RealDecl == 0)
2223    return;
2224
2225  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2226    QualType Type = Var->getType();
2227    // C++ [dcl.init.ref]p3:
2228    //   The initializer can be omitted for a reference only in a
2229    //   parameter declaration (8.3.5), in the declaration of a
2230    //   function return type, in the declaration of a class member
2231    //   within its class declaration (9.2), and where the extern
2232    //   specifier is explicitly used.
2233    if (Type->isReferenceType() &&
2234        Var->getStorageClass() != VarDecl::Extern &&
2235        Var->getStorageClass() != VarDecl::PrivateExtern) {
2236      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2237        << Var->getDeclName()
2238        << SourceRange(Var->getLocation(), Var->getLocation());
2239      Var->setInvalidDecl();
2240      return;
2241    }
2242
2243    // C++ [dcl.init]p9:
2244    //
2245    //   If no initializer is specified for an object, and the object
2246    //   is of (possibly cv-qualified) non-POD class type (or array
2247    //   thereof), the object shall be default-initialized; if the
2248    //   object is of const-qualified type, the underlying class type
2249    //   shall have a user-declared default constructor.
2250    if (getLangOptions().CPlusPlus) {
2251      QualType InitType = Type;
2252      if (const ArrayType *Array = Context.getAsArrayType(Type))
2253        InitType = Array->getElementType();
2254      if (Var->getStorageClass() != VarDecl::Extern &&
2255          Var->getStorageClass() != VarDecl::PrivateExtern &&
2256          InitType->isRecordType()) {
2257        const CXXConstructorDecl *Constructor = 0;
2258        if (!RequireCompleteType(Var->getLocation(), InitType,
2259                                    diag::err_invalid_incomplete_type_use))
2260          Constructor
2261            = PerformInitializationByConstructor(InitType, 0, 0,
2262                                                 Var->getLocation(),
2263                                               SourceRange(Var->getLocation(),
2264                                                           Var->getLocation()),
2265                                                 Var->getDeclName(),
2266                                                 IK_Default);
2267        if (!Constructor)
2268          Var->setInvalidDecl();
2269      }
2270    }
2271
2272#if 0
2273    // FIXME: Temporarily disabled because we are not properly parsing
2274    // linkage specifications on declarations, e.g.,
2275    //
2276    //   extern "C" const CGPoint CGPointerZero;
2277    //
2278    // C++ [dcl.init]p9:
2279    //
2280    //     If no initializer is specified for an object, and the
2281    //     object is of (possibly cv-qualified) non-POD class type (or
2282    //     array thereof), the object shall be default-initialized; if
2283    //     the object is of const-qualified type, the underlying class
2284    //     type shall have a user-declared default
2285    //     constructor. Otherwise, if no initializer is specified for
2286    //     an object, the object and its subobjects, if any, have an
2287    //     indeterminate initial value; if the object or any of its
2288    //     subobjects are of const-qualified type, the program is
2289    //     ill-formed.
2290    //
2291    // This isn't technically an error in C, so we don't diagnose it.
2292    //
2293    // FIXME: Actually perform the POD/user-defined default
2294    // constructor check.
2295    if (getLangOptions().CPlusPlus &&
2296        Context.getCanonicalType(Type).isConstQualified() &&
2297        Var->getStorageClass() != VarDecl::Extern)
2298      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2299        << Var->getName()
2300        << SourceRange(Var->getLocation(), Var->getLocation());
2301#endif
2302  }
2303}
2304
2305/// The declarators are chained together backwards, reverse the list.
2306Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2307  // Often we have single declarators, handle them quickly.
2308  Decl *Group = static_cast<Decl*>(group);
2309  if (Group == 0)
2310    return 0;
2311
2312  Decl *NewGroup = 0;
2313  if (Group->getNextDeclarator() == 0)
2314    NewGroup = Group;
2315  else { // reverse the list.
2316    while (Group) {
2317      Decl *Next = Group->getNextDeclarator();
2318      Group->setNextDeclarator(NewGroup);
2319      NewGroup = Group;
2320      Group = Next;
2321    }
2322  }
2323  // Perform semantic analysis that depends on having fully processed both
2324  // the declarator and initializer.
2325  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2326    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2327    if (!IDecl)
2328      continue;
2329    QualType T = IDecl->getType();
2330
2331    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2332    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2333    if (IDecl->isBlockVarDecl() &&
2334        IDecl->getStorageClass() != VarDecl::Extern) {
2335      if (!IDecl->isInvalidDecl() &&
2336          RequireCompleteType(IDecl->getLocation(), T,
2337                                 diag::err_typecheck_decl_incomplete_type))
2338        IDecl->setInvalidDecl();
2339    }
2340    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2341    // object that has file scope without an initializer, and without a
2342    // storage-class specifier or with the storage-class specifier "static",
2343    // constitutes a tentative definition. Note: A tentative definition with
2344    // external linkage is valid (C99 6.2.2p5).
2345    if (isTentativeDefinition(IDecl)) {
2346      if (T->isIncompleteArrayType()) {
2347        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2348        // array to be completed. Don't issue a diagnostic.
2349      } else if (!IDecl->isInvalidDecl() &&
2350                 RequireCompleteType(IDecl->getLocation(), T,
2351                                        diag::err_typecheck_decl_incomplete_type))
2352        // C99 6.9.2p3: If the declaration of an identifier for an object is
2353        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2354        // declared type shall not be an incomplete type.
2355        IDecl->setInvalidDecl();
2356    }
2357    if (IDecl->isFileVarDecl())
2358      CheckForFileScopedRedefinitions(S, IDecl);
2359  }
2360  return NewGroup;
2361}
2362
2363/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2364/// to introduce parameters into function prototype scope.
2365Sema::DeclTy *
2366Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2367  const DeclSpec &DS = D.getDeclSpec();
2368
2369  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2370  VarDecl::StorageClass StorageClass = VarDecl::None;
2371  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2372    StorageClass = VarDecl::Register;
2373  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2374    Diag(DS.getStorageClassSpecLoc(),
2375         diag::err_invalid_storage_class_in_func_decl);
2376    D.getMutableDeclSpec().ClearStorageClassSpecs();
2377  }
2378  if (DS.isThreadSpecified()) {
2379    Diag(DS.getThreadSpecLoc(),
2380         diag::err_invalid_storage_class_in_func_decl);
2381    D.getMutableDeclSpec().ClearStorageClassSpecs();
2382  }
2383
2384  // Check that there are no default arguments inside the type of this
2385  // parameter (C++ only).
2386  if (getLangOptions().CPlusPlus)
2387    CheckExtraCXXDefaultArguments(D);
2388
2389  // In this context, we *do not* check D.getInvalidType(). If the declarator
2390  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2391  // though it will not reflect the user specified type.
2392  QualType parmDeclType = GetTypeForDeclarator(D, S);
2393
2394  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2395
2396  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2397  // Can this happen for params?  We already checked that they don't conflict
2398  // among each other.  Here they can only shadow globals, which is ok.
2399  IdentifierInfo *II = D.getIdentifier();
2400  if (II) {
2401    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2402      if (PrevDecl->isTemplateParameter()) {
2403        // Maybe we will complain about the shadowed template parameter.
2404        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2405        // Just pretend that we didn't see the previous declaration.
2406        PrevDecl = 0;
2407      } else if (S->isDeclScope(PrevDecl)) {
2408        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2409
2410        // Recover by removing the name
2411        II = 0;
2412        D.SetIdentifier(0, D.getIdentifierLoc());
2413      }
2414    }
2415  }
2416
2417  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2418  // Doing the promotion here has a win and a loss. The win is the type for
2419  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2420  // code generator). The loss is the orginal type isn't preserved. For example:
2421  //
2422  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2423  //    int blockvardecl[5];
2424  //    sizeof(parmvardecl);  // size == 4
2425  //    sizeof(blockvardecl); // size == 20
2426  // }
2427  //
2428  // For expressions, all implicit conversions are captured using the
2429  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2430  //
2431  // FIXME: If a source translation tool needs to see the original type, then
2432  // we need to consider storing both types (in ParmVarDecl)...
2433  //
2434  if (parmDeclType->isArrayType()) {
2435    // int x[restrict 4] ->  int *restrict
2436    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2437  } else if (parmDeclType->isFunctionType())
2438    parmDeclType = Context.getPointerType(parmDeclType);
2439
2440  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2441                                         D.getIdentifierLoc(), II,
2442                                         parmDeclType, StorageClass,
2443                                         0);
2444
2445  if (D.getInvalidType())
2446    New->setInvalidDecl();
2447
2448  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2449  if (D.getCXXScopeSpec().isSet()) {
2450    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2451      << D.getCXXScopeSpec().getRange();
2452    New->setInvalidDecl();
2453  }
2454  // Parameter declarators cannot be interface types. All ObjC objects are
2455  // passed by reference.
2456  if (parmDeclType->isObjCInterfaceType()) {
2457    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2458         << "passed";
2459    New->setInvalidDecl();
2460  }
2461
2462  // Add the parameter declaration into this scope.
2463  S->AddDecl(New);
2464  if (II)
2465    IdResolver.AddDecl(New);
2466
2467  ProcessDeclAttributes(New, D);
2468  return New;
2469
2470}
2471
2472void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2473  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2474         "Not a function declarator!");
2475  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2476
2477  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2478  // for a K&R function.
2479  if (!FTI.hasPrototype) {
2480    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2481      if (FTI.ArgInfo[i].Param == 0) {
2482        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2483          << FTI.ArgInfo[i].Ident;
2484        // Implicitly declare the argument as type 'int' for lack of a better
2485        // type.
2486        DeclSpec DS;
2487        const char* PrevSpec; // unused
2488        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2489                           PrevSpec);
2490        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2491        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2492        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2493      }
2494    }
2495  }
2496}
2497
2498Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2499  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2500  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2501         "Not a function declarator!");
2502  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2503
2504  if (FTI.hasPrototype) {
2505    // FIXME: Diagnose arguments without names in C.
2506  }
2507
2508  Scope *ParentScope = FnBodyScope->getParent();
2509
2510  return ActOnStartOfFunctionDef(FnBodyScope,
2511                                 ActOnDeclarator(ParentScope, D, 0,
2512                                                 /*IsFunctionDefinition=*/true));
2513}
2514
2515Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2516  Decl *decl = static_cast<Decl*>(D);
2517  FunctionDecl *FD = cast<FunctionDecl>(decl);
2518
2519  ActiveScope = FnBodyScope;
2520
2521  // See if this is a redefinition.
2522  const FunctionDecl *Definition;
2523  if (FD->getBody(Definition)) {
2524    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2525    Diag(Definition->getLocation(), diag::note_previous_definition);
2526  }
2527
2528  // Builtin functions cannot be defined.
2529  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2530    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2531      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2532      FD->setInvalidDecl();
2533    }
2534  }
2535
2536  // The return type of a function definition must be complete
2537  // (C99 6.9.1p3)
2538  if (FD->getResultType()->isIncompleteType() &&
2539      !FD->getResultType()->isVoidType()) {
2540    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2541    FD->setInvalidDecl();
2542  }
2543
2544  PushDeclContext(FnBodyScope, FD);
2545
2546  // Check the validity of our function parameters
2547  CheckParmsForFunctionDef(FD);
2548
2549  // Introduce our parameters into the function scope
2550  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2551    ParmVarDecl *Param = FD->getParamDecl(p);
2552    Param->setOwningFunction(FD);
2553
2554    // If this has an identifier, add it to the scope stack.
2555    if (Param->getIdentifier())
2556      PushOnScopeChains(Param, FnBodyScope);
2557  }
2558
2559  // Checking attributes of current function definition
2560  // dllimport attribute.
2561  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2562    // dllimport attribute cannot be applied to definition.
2563    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2564      Diag(FD->getLocation(),
2565           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2566        << "dllimport";
2567      FD->setInvalidDecl();
2568      return FD;
2569    } else {
2570      // If a symbol previously declared dllimport is later defined, the
2571      // attribute is ignored in subsequent references, and a warning is
2572      // emitted.
2573      Diag(FD->getLocation(),
2574           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2575        << FD->getNameAsCString() << "dllimport";
2576    }
2577  }
2578  return FD;
2579}
2580
2581static bool StatementCreatesScope(Stmt* S) {
2582  bool result = false;
2583  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2584    for (DeclStmt::decl_iterator i = DS->decl_begin();
2585         i != DS->decl_end(); ++i) {
2586      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2587        result |= D->getType()->isVariablyModifiedType();
2588        result |= !!D->getAttr<CleanupAttr>();
2589      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2590        result |= D->getUnderlyingType()->isVariablyModifiedType();
2591      }
2592    }
2593  }
2594
2595  return result;
2596}
2597
2598void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2599                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2600                                    std::vector<void*>& ScopeStack,
2601                                    Stmt* CurStmt,
2602                                    Stmt* ParentCompoundStmt) {
2603  for (Stmt::child_iterator i = CurStmt->child_begin();
2604       i != CurStmt->child_end(); ++i) {
2605    if (!*i) continue;
2606    if (StatementCreatesScope(*i))  {
2607      ScopeStack.push_back(*i);
2608      PopScopeMap[*i] = ParentCompoundStmt;
2609    } else if (isa<LabelStmt>(CurStmt)) {
2610      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2611    }
2612    if (isa<DeclStmt>(*i)) continue;
2613    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2614    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2615                             *i, CurCompound);
2616  }
2617
2618  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2619    ScopeStack.pop_back();
2620  }
2621}
2622
2623void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2624                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2625                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2626                                   std::vector<void*>& ScopeStack,
2627                                   Stmt* CurStmt) {
2628  for (Stmt::child_iterator i = CurStmt->child_begin();
2629       i != CurStmt->child_end(); ++i) {
2630    if (!*i) continue;
2631    if (StatementCreatesScope(*i))  {
2632      ScopeStack.push_back(*i);
2633    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2634      void* LScope = LabelScopeMap[GS->getLabel()];
2635      if (LScope) {
2636        bool foundScopeInStack = false;
2637        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2638          if (LScope == ScopeStack[i-1]) {
2639            foundScopeInStack = true;
2640            break;
2641          }
2642        }
2643        if (!foundScopeInStack) {
2644          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2645        }
2646      }
2647    }
2648    if (isa<DeclStmt>(*i)) continue;
2649    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2650                            ScopeStack, *i);
2651  }
2652
2653  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2654    ScopeStack.pop_back();
2655  }
2656}
2657
2658Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2659  Decl *dcl = static_cast<Decl *>(D);
2660  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2661  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2662    FD->setBody(Body);
2663    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2664  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2665    assert(MD == getCurMethodDecl() && "Method parsing confused");
2666    MD->setBody((Stmt*)Body);
2667  } else {
2668    Body->Destroy(Context);
2669    return 0;
2670  }
2671  PopDeclContext();
2672
2673  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2674  // class C2 {
2675  //   void f() {
2676  //     class LC1 {
2677  //       int m() { return 1; }
2678  //     };
2679  //   }
2680  // };
2681  if (ActiveScope == 0)
2682    return D;
2683
2684  // Verify and clean out per-function state.
2685
2686  bool HaveLabels = !ActiveScope->LabelMap.empty();
2687  // Check goto/label use.
2688  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2689       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2690    // Verify that we have no forward references left.  If so, there was a goto
2691    // or address of a label taken, but no definition of it.  Label fwd
2692    // definitions are indicated with a null substmt.
2693    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2694    if (L->getSubStmt() == 0) {
2695      // Emit error.
2696      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2697
2698      // At this point, we have gotos that use the bogus label.  Stitch it into
2699      // the function body so that they aren't leaked and that the AST is well
2700      // formed.
2701      if (Body) {
2702#if 0
2703        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2704        // and the AST is malformed anyway.  We should just blow away 'L'.
2705        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2706        cast<CompoundStmt>(Body)->push_back(L);
2707#else
2708        L->Destroy(Context);
2709#endif
2710      } else {
2711        // The whole function wasn't parsed correctly, just delete this.
2712        L->Destroy(Context);
2713      }
2714    }
2715  }
2716  // This reset is for both functions and methods.
2717  ActiveScope = 0;
2718
2719  if (!Body) return D;
2720
2721  if (HaveLabels) {
2722    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2723    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2724    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2725    std::vector<void*> ScopeStack;
2726    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2727    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2728  }
2729
2730  return D;
2731}
2732
2733/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2734/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2735NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2736                                          IdentifierInfo &II, Scope *S) {
2737  // Before we produce a declaration for an implicitly defined
2738  // function, see whether there was a locally-scoped declaration of
2739  // this name as a function or variable. If so, use that
2740  // (non-visible) declaration, and complain about it.
2741  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2742    = LocallyScopedExternalDecls.find(&II);
2743  if (Pos != LocallyScopedExternalDecls.end()) {
2744    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2745    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2746    return Pos->second;
2747  }
2748
2749  // Extension in C99.  Legal in C90, but warn about it.
2750  if (getLangOptions().C99)
2751    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2752  else
2753    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2754
2755  // FIXME: handle stuff like:
2756  // void foo() { extern float X(); }
2757  // void bar() { X(); }  <-- implicit decl for X in another scope.
2758
2759  // Set a Declarator for the implicit definition: int foo();
2760  const char *Dummy;
2761  DeclSpec DS;
2762  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2763  Error = Error; // Silence warning.
2764  assert(!Error && "Error setting up implicit decl!");
2765  Declarator D(DS, Declarator::BlockContext);
2766  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2767                                             0, 0, 0, Loc, D),
2768                SourceLocation());
2769  D.SetIdentifier(&II, Loc);
2770
2771  // Insert this function into translation-unit scope.
2772
2773  DeclContext *PrevDC = CurContext;
2774  CurContext = Context.getTranslationUnitDecl();
2775
2776  FunctionDecl *FD =
2777    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2778  FD->setImplicit();
2779
2780  CurContext = PrevDC;
2781
2782  AddKnownFunctionAttributes(FD);
2783
2784  return FD;
2785}
2786
2787/// \brief Adds any function attributes that we know a priori based on
2788/// the declaration of this function.
2789///
2790/// These attributes can apply both to implicitly-declared builtins
2791/// (like __builtin___printf_chk) or to library-declared functions
2792/// like NSLog or printf.
2793void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2794  if (FD->isInvalidDecl())
2795    return;
2796
2797  // If this is a built-in function, map its builtin attributes to
2798  // actual attributes.
2799  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2800    // Handle printf-formatting attributes.
2801    unsigned FormatIdx;
2802    bool HasVAListArg;
2803    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2804      if (!FD->getAttr<FormatAttr>())
2805        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2806                                               FormatIdx + 2));
2807    }
2808
2809    // Mark const if we don't care about errno and that is the only
2810    // thing preventing the function from being const. This allows
2811    // IRgen to use LLVM intrinsics for such functions.
2812    if (!getLangOptions().MathErrno &&
2813        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2814      if (!FD->getAttr<ConstAttr>())
2815        FD->addAttr(::new (Context) ConstAttr());
2816    }
2817  }
2818
2819  IdentifierInfo *Name = FD->getIdentifier();
2820  if (!Name)
2821    return;
2822  if ((!getLangOptions().CPlusPlus &&
2823       FD->getDeclContext()->isTranslationUnit()) ||
2824      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2825       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2826       LinkageSpecDecl::lang_c)) {
2827    // Okay: this could be a libc/libm/Objective-C function we know
2828    // about.
2829  } else
2830    return;
2831
2832  unsigned KnownID;
2833  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2834    if (KnownFunctionIDs[KnownID] == Name)
2835      break;
2836
2837  switch (KnownID) {
2838  case id_NSLog:
2839  case id_NSLogv:
2840    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2841      // FIXME: We known better than our headers.
2842      const_cast<FormatAttr *>(Format)->setType("printf");
2843    } else
2844      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2845    break;
2846
2847  case id_asprintf:
2848  case id_vasprintf:
2849    if (!FD->getAttr<FormatAttr>())
2850      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2851    break;
2852
2853  default:
2854    // Unknown function or known function without any attributes to
2855    // add. Do nothing.
2856    break;
2857  }
2858}
2859
2860TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2861                                    Decl *LastDeclarator) {
2862  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2863  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2864
2865  // Scope manipulation handled by caller.
2866  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2867                                           D.getIdentifierLoc(),
2868                                           D.getIdentifier(),
2869                                           T);
2870
2871  if (TagType *TT = dyn_cast<TagType>(T)) {
2872    TagDecl *TD = TT->getDecl();
2873
2874    // If the TagDecl that the TypedefDecl points to is an anonymous decl
2875    // keep track of the TypedefDecl.
2876    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
2877      TD->setTypedefForAnonDecl(NewTD);
2878  }
2879
2880  NewTD->setNextDeclarator(LastDeclarator);
2881  if (D.getInvalidType())
2882    NewTD->setInvalidDecl();
2883  return NewTD;
2884}
2885
2886/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2887/// former case, Name will be non-null.  In the later case, Name will be null.
2888/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2889/// reference/declaration/definition of a tag.
2890Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2891                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2892                             IdentifierInfo *Name, SourceLocation NameLoc,
2893                             AttributeList *Attr) {
2894  // If this is not a definition, it must have a name.
2895  assert((Name != 0 || TK == TK_Definition) &&
2896         "Nameless record must be a definition!");
2897
2898  TagDecl::TagKind Kind;
2899  switch (TagSpec) {
2900  default: assert(0 && "Unknown tag type!");
2901  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2902  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2903  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2904  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2905  }
2906
2907  DeclContext *SearchDC = CurContext;
2908  DeclContext *DC = CurContext;
2909  NamedDecl *PrevDecl = 0;
2910
2911  bool Invalid = false;
2912
2913  if (Name && SS.isNotEmpty()) {
2914    // We have a nested-name tag ('struct foo::bar').
2915
2916    // Check for invalid 'foo::'.
2917    if (SS.isInvalid()) {
2918      Name = 0;
2919      goto CreateNewDecl;
2920    }
2921
2922    DC = static_cast<DeclContext*>(SS.getScopeRep());
2923    SearchDC = DC;
2924    // Look-up name inside 'foo::'.
2925    PrevDecl = dyn_cast_or_null<TagDecl>(
2926                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2927
2928    // A tag 'foo::bar' must already exist.
2929    if (PrevDecl == 0) {
2930      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2931      Name = 0;
2932      goto CreateNewDecl;
2933    }
2934  } else if (Name) {
2935    // If this is a named struct, check to see if there was a previous forward
2936    // declaration or definition.
2937    // FIXME: We're looking into outer scopes here, even when we
2938    // shouldn't be. Doing so can result in ambiguities that we
2939    // shouldn't be diagnosing.
2940    LookupResult R = LookupName(S, Name, LookupTagName,
2941                                /*RedeclarationOnly=*/(TK != TK_Reference));
2942    if (R.isAmbiguous()) {
2943      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2944      // FIXME: This is not best way to recover from case like:
2945      //
2946      // struct S s;
2947      //
2948      // causes needless err_ovl_no_viable_function_in_init latter.
2949      Name = 0;
2950      PrevDecl = 0;
2951      Invalid = true;
2952    }
2953    else
2954      PrevDecl = R;
2955
2956    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2957      // FIXME: This makes sure that we ignore the contexts associated
2958      // with C structs, unions, and enums when looking for a matching
2959      // tag declaration or definition. See the similar lookup tweak
2960      // in Sema::LookupName; is there a better way to deal with this?
2961      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2962        SearchDC = SearchDC->getParent();
2963    }
2964  }
2965
2966  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2967    // Maybe we will complain about the shadowed template parameter.
2968    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2969    // Just pretend that we didn't see the previous declaration.
2970    PrevDecl = 0;
2971  }
2972
2973  if (PrevDecl) {
2974    // Check whether the previous declaration is usable.
2975    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2976
2977    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2978      // If this is a use of a previous tag, or if the tag is already declared
2979      // in the same scope (so that the definition/declaration completes or
2980      // rementions the tag), reuse the decl.
2981      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2982        // Make sure that this wasn't declared as an enum and now used as a
2983        // struct or something similar.
2984        if (PrevTagDecl->getTagKind() != Kind) {
2985          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2986          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2987          // Recover by making this an anonymous redefinition.
2988          Name = 0;
2989          PrevDecl = 0;
2990          Invalid = true;
2991        } else {
2992          // If this is a use, just return the declaration we found.
2993
2994          // FIXME: In the future, return a variant or some other clue
2995          // for the consumer of this Decl to know it doesn't own it.
2996          // For our current ASTs this shouldn't be a problem, but will
2997          // need to be changed with DeclGroups.
2998          if (TK == TK_Reference)
2999            return PrevDecl;
3000
3001          // Diagnose attempts to redefine a tag.
3002          if (TK == TK_Definition) {
3003            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3004              Diag(NameLoc, diag::err_redefinition) << Name;
3005              Diag(Def->getLocation(), diag::note_previous_definition);
3006              // If this is a redefinition, recover by making this
3007              // struct be anonymous, which will make any later
3008              // references get the previous definition.
3009              Name = 0;
3010              PrevDecl = 0;
3011              Invalid = true;
3012            } else {
3013              // If the type is currently being defined, complain
3014              // about a nested redefinition.
3015              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3016              if (Tag->isBeingDefined()) {
3017                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3018                Diag(PrevTagDecl->getLocation(),
3019                     diag::note_previous_definition);
3020                Name = 0;
3021                PrevDecl = 0;
3022                Invalid = true;
3023              }
3024            }
3025
3026            // Okay, this is definition of a previously declared or referenced
3027            // tag PrevDecl. We're going to create a new Decl for it.
3028          }
3029        }
3030        // If we get here we have (another) forward declaration or we
3031        // have a definition.  Just create a new decl.
3032      } else {
3033        // If we get here, this is a definition of a new tag type in a nested
3034        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3035        // new decl/type.  We set PrevDecl to NULL so that the entities
3036        // have distinct types.
3037        PrevDecl = 0;
3038      }
3039      // If we get here, we're going to create a new Decl. If PrevDecl
3040      // is non-NULL, it's a definition of the tag declared by
3041      // PrevDecl. If it's NULL, we have a new definition.
3042    } else {
3043      // PrevDecl is a namespace, template, or anything else
3044      // that lives in the IDNS_Tag identifier namespace.
3045      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3046        // The tag name clashes with a namespace name, issue an error and
3047        // recover by making this tag be anonymous.
3048        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3049        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3050        Name = 0;
3051        PrevDecl = 0;
3052        Invalid = true;
3053      } else {
3054        // The existing declaration isn't relevant to us; we're in a
3055        // new scope, so clear out the previous declaration.
3056        PrevDecl = 0;
3057      }
3058    }
3059  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3060             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3061    // C.scope.pdecl]p5:
3062    //   -- for an elaborated-type-specifier of the form
3063    //
3064    //          class-key identifier
3065    //
3066    //      if the elaborated-type-specifier is used in the
3067    //      decl-specifier-seq or parameter-declaration-clause of a
3068    //      function defined in namespace scope, the identifier is
3069    //      declared as a class-name in the namespace that contains
3070    //      the declaration; otherwise, except as a friend
3071    //      declaration, the identifier is declared in the smallest
3072    //      non-class, non-function-prototype scope that contains the
3073    //      declaration.
3074    //
3075    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3076    // C structs and unions.
3077    //
3078    // GNU C also supports this behavior as part of its incomplete
3079    // enum types extension, while GNU C++ does not.
3080    //
3081    // Find the context where we'll be declaring the tag.
3082    // FIXME: We would like to maintain the current DeclContext as the
3083    // lexical context,
3084    while (SearchDC->isRecord())
3085      SearchDC = SearchDC->getParent();
3086
3087    // Find the scope where we'll be declaring the tag.
3088    while (S->isClassScope() ||
3089           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3090           ((S->getFlags() & Scope::DeclScope) == 0) ||
3091           (S->getEntity() &&
3092            ((DeclContext *)S->getEntity())->isTransparentContext()))
3093      S = S->getParent();
3094  }
3095
3096CreateNewDecl:
3097
3098  // If there is an identifier, use the location of the identifier as the
3099  // location of the decl, otherwise use the location of the struct/union
3100  // keyword.
3101  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3102
3103  // Otherwise, create a new declaration. If there is a previous
3104  // declaration of the same entity, the two will be linked via
3105  // PrevDecl.
3106  TagDecl *New;
3107
3108  if (Kind == TagDecl::TK_enum) {
3109    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3110    // enum X { A, B, C } D;    D should chain to X.
3111    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3112                           cast_or_null<EnumDecl>(PrevDecl));
3113    // If this is an undefined enum, warn.
3114    if (TK != TK_Definition && !Invalid)  {
3115      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3116                                              : diag::ext_forward_ref_enum;
3117      Diag(Loc, DK);
3118    }
3119  } else {
3120    // struct/union/class
3121
3122    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3123    // struct X { int A; } D;    D should chain to X.
3124    if (getLangOptions().CPlusPlus)
3125      // FIXME: Look for a way to use RecordDecl for simple structs.
3126      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3127                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3128    else
3129      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3130                               cast_or_null<RecordDecl>(PrevDecl));
3131  }
3132
3133  if (Kind != TagDecl::TK_enum) {
3134    // Handle #pragma pack: if the #pragma pack stack has non-default
3135    // alignment, make up a packed attribute for this decl. These
3136    // attributes are checked when the ASTContext lays out the
3137    // structure.
3138    //
3139    // It is important for implementing the correct semantics that this
3140    // happen here (in act on tag decl). The #pragma pack stack is
3141    // maintained as a result of parser callbacks which can occur at
3142    // many points during the parsing of a struct declaration (because
3143    // the #pragma tokens are effectively skipped over during the
3144    // parsing of the struct).
3145    if (unsigned Alignment = getPragmaPackAlignment())
3146      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3147  }
3148
3149  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3150    // C++ [dcl.typedef]p3:
3151    //   [...] Similarly, in a given scope, a class or enumeration
3152    //   shall not be declared with the same name as a typedef-name
3153    //   that is declared in that scope and refers to a type other
3154    //   than the class or enumeration itself.
3155    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3156    TypedefDecl *PrevTypedef = 0;
3157    if (Lookup.getKind() == LookupResult::Found)
3158      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3159
3160    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3161        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3162          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3163      Diag(Loc, diag::err_tag_definition_of_typedef)
3164        << Context.getTypeDeclType(New)
3165        << PrevTypedef->getUnderlyingType();
3166      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3167      Invalid = true;
3168    }
3169  }
3170
3171  if (Invalid)
3172    New->setInvalidDecl();
3173
3174  if (Attr)
3175    ProcessDeclAttributeList(New, Attr);
3176
3177  // If we're declaring or defining a tag in function prototype scope
3178  // in C, note that this type can only be used within the function.
3179  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3180    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3181
3182  // Set the lexical context. If the tag has a C++ scope specifier, the
3183  // lexical context will be different from the semantic context.
3184  New->setLexicalDeclContext(CurContext);
3185
3186  if (TK == TK_Definition)
3187    New->startDefinition();
3188
3189  // If this has an identifier, add it to the scope stack.
3190  if (Name) {
3191    S = getNonFieldDeclScope(S);
3192    PushOnScopeChains(New, S);
3193  } else {
3194    CurContext->addDecl(New);
3195  }
3196
3197  return New;
3198}
3199
3200void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3201  AdjustDeclIfTemplate(TagD);
3202  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3203
3204  // Enter the tag context.
3205  PushDeclContext(S, Tag);
3206
3207  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3208    FieldCollector->StartClass();
3209
3210    if (Record->getIdentifier()) {
3211      // C++ [class]p2:
3212      //   [...] The class-name is also inserted into the scope of the
3213      //   class itself; this is known as the injected-class-name. For
3214      //   purposes of access checking, the injected-class-name is treated
3215      //   as if it were a public member name.
3216      RecordDecl *InjectedClassName
3217        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3218                                CurContext, Record->getLocation(),
3219                                Record->getIdentifier(), Record);
3220      InjectedClassName->setImplicit();
3221      PushOnScopeChains(InjectedClassName, S);
3222    }
3223  }
3224}
3225
3226void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3227  AdjustDeclIfTemplate(TagD);
3228  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3229
3230  if (isa<CXXRecordDecl>(Tag))
3231    FieldCollector->FinishClass();
3232
3233  // Exit this scope of this tag's definition.
3234  PopDeclContext();
3235
3236  // Notify the consumer that we've defined a tag.
3237  Consumer.HandleTagDeclDefinition(Tag);
3238}
3239
3240bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3241                          QualType FieldTy, const Expr *BitWidth) {
3242  // C99 6.7.2.1p4 - verify the field type.
3243  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3244  if (!FieldTy->isIntegralType()) {
3245    // Handle incomplete types with specific error.
3246    if (FieldTy->isIncompleteType())
3247      return Diag(FieldLoc, diag::err_field_incomplete)
3248        << FieldTy << BitWidth->getSourceRange();
3249    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3250      << FieldName << BitWidth->getSourceRange();
3251  }
3252
3253  llvm::APSInt Value;
3254  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3255    return true;
3256
3257  // Zero-width bitfield is ok for anonymous field.
3258  if (Value == 0 && FieldName)
3259    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3260
3261  if (Value.isNegative())
3262    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3263
3264  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3265  // FIXME: We won't need the 0 size once we check that the field type is valid.
3266  if (TypeSize && Value.getZExtValue() > TypeSize)
3267    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3268       << FieldName << (unsigned)TypeSize;
3269
3270  return false;
3271}
3272
3273/// ActOnField - Each field of a struct/union/class is passed into this in order
3274/// to create a FieldDecl object for it.
3275Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3276                               SourceLocation DeclStart,
3277                               Declarator &D, ExprTy *BitfieldWidth) {
3278  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3279                     static_cast<Expr*>(BitfieldWidth));
3280}
3281
3282/// HandleField - Analyze a field of a C struct or a C++ data member.
3283///
3284FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3285                             SourceLocation DeclStart,
3286                             Declarator &D, Expr *BitWidth) {
3287  IdentifierInfo *II = D.getIdentifier();
3288  SourceLocation Loc = DeclStart;
3289  if (II) Loc = D.getIdentifierLoc();
3290
3291  QualType T = GetTypeForDeclarator(D, S);
3292  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3293  bool InvalidDecl = false;
3294
3295  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3296  // than a variably modified type.
3297  if (T->isVariablyModifiedType()) {
3298    bool SizeIsNegative;
3299    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3300                                                           SizeIsNegative);
3301    if (!FixedTy.isNull()) {
3302      Diag(Loc, diag::warn_illegal_constant_array_size);
3303      T = FixedTy;
3304    } else {
3305      if (SizeIsNegative)
3306        Diag(Loc, diag::err_typecheck_negative_array_size);
3307      else
3308        Diag(Loc, diag::err_typecheck_field_variable_size);
3309      T = Context.IntTy;
3310      InvalidDecl = true;
3311    }
3312  }
3313
3314  if (BitWidth) {
3315    if (VerifyBitField(Loc, II, T, BitWidth)) {
3316      InvalidDecl = true;
3317      DeleteExpr(BitWidth);
3318      BitWidth = 0;
3319    }
3320  } else {
3321    // Not a bitfield.
3322
3323    // validate II.
3324
3325  }
3326
3327  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3328                                       Loc, II, T, BitWidth,
3329                                       D.getDeclSpec().getStorageClassSpec() ==
3330                                       DeclSpec::SCS_mutable);
3331
3332  if (II) {
3333    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3334    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3335        && !isa<TagDecl>(PrevDecl)) {
3336      Diag(Loc, diag::err_duplicate_member) << II;
3337      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3338      NewFD->setInvalidDecl();
3339      Record->setInvalidDecl();
3340    }
3341  }
3342
3343  if (getLangOptions().CPlusPlus) {
3344    CheckExtraCXXDefaultArguments(D);
3345    if (!T->isPODType())
3346      cast<CXXRecordDecl>(Record)->setPOD(false);
3347  }
3348
3349  ProcessDeclAttributes(NewFD, D);
3350  if (T.isObjCGCWeak())
3351    Diag(Loc, diag::warn_attribute_weak_on_field);
3352
3353  if (D.getInvalidType() || InvalidDecl)
3354    NewFD->setInvalidDecl();
3355
3356  if (II) {
3357    PushOnScopeChains(NewFD, S);
3358  } else
3359    Record->addDecl(NewFD);
3360
3361  return NewFD;
3362}
3363
3364/// TranslateIvarVisibility - Translate visibility from a token ID to an
3365///  AST enum value.
3366static ObjCIvarDecl::AccessControl
3367TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3368  switch (ivarVisibility) {
3369  default: assert(0 && "Unknown visitibility kind");
3370  case tok::objc_private: return ObjCIvarDecl::Private;
3371  case tok::objc_public: return ObjCIvarDecl::Public;
3372  case tok::objc_protected: return ObjCIvarDecl::Protected;
3373  case tok::objc_package: return ObjCIvarDecl::Package;
3374  }
3375}
3376
3377/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3378/// in order to create an IvarDecl object for it.
3379Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3380                              SourceLocation DeclStart,
3381                              Declarator &D, ExprTy *BitfieldWidth,
3382                              tok::ObjCKeywordKind Visibility) {
3383
3384  IdentifierInfo *II = D.getIdentifier();
3385  Expr *BitWidth = (Expr*)BitfieldWidth;
3386  SourceLocation Loc = DeclStart;
3387  if (II) Loc = D.getIdentifierLoc();
3388
3389  // FIXME: Unnamed fields can be handled in various different ways, for
3390  // example, unnamed unions inject all members into the struct namespace!
3391
3392  QualType T = GetTypeForDeclarator(D, S);
3393  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3394  bool InvalidDecl = false;
3395
3396  if (BitWidth) {
3397    // 6.7.2.1p3, 6.7.2.1p4
3398    if (VerifyBitField(Loc, II, T, BitWidth)) {
3399      InvalidDecl = true;
3400      DeleteExpr(BitWidth);
3401      BitWidth = 0;
3402    }
3403  } else {
3404    // Not a bitfield.
3405
3406    // validate II.
3407
3408  }
3409
3410  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3411  // than a variably modified type.
3412  if (T->isVariablyModifiedType()) {
3413    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3414    InvalidDecl = true;
3415  }
3416
3417  // Get the visibility (access control) for this ivar.
3418  ObjCIvarDecl::AccessControl ac =
3419    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3420                                        : ObjCIvarDecl::None;
3421
3422  // Construct the decl.
3423  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3424                                             (Expr *)BitfieldWidth);
3425
3426  if (II) {
3427    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3428    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3429        && !isa<TagDecl>(PrevDecl)) {
3430      Diag(Loc, diag::err_duplicate_member) << II;
3431      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3432      NewID->setInvalidDecl();
3433    }
3434  }
3435
3436  // Process attributes attached to the ivar.
3437  ProcessDeclAttributes(NewID, D);
3438
3439  if (D.getInvalidType() || InvalidDecl)
3440    NewID->setInvalidDecl();
3441
3442  if (II) {
3443    // FIXME: When interfaces are DeclContexts, we'll need to add
3444    // these to the interface.
3445    S->AddDecl(NewID);
3446    IdResolver.AddDecl(NewID);
3447  }
3448
3449  return NewID;
3450}
3451
3452void Sema::ActOnFields(Scope* S,
3453                       SourceLocation RecLoc, DeclTy *RecDecl,
3454                       DeclTy **Fields, unsigned NumFields,
3455                       SourceLocation LBrac, SourceLocation RBrac,
3456                       AttributeList *Attr) {
3457  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3458  assert(EnclosingDecl && "missing record or interface decl");
3459
3460  // If the decl this is being inserted into is invalid, then it may be a
3461  // redeclaration or some other bogus case.  Don't try to add fields to it.
3462  if (EnclosingDecl->isInvalidDecl()) {
3463    // FIXME: Deallocate fields?
3464    return;
3465  }
3466
3467
3468  // Verify that all the fields are okay.
3469  unsigned NumNamedMembers = 0;
3470  llvm::SmallVector<FieldDecl*, 32> RecFields;
3471
3472  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3473  for (unsigned i = 0; i != NumFields; ++i) {
3474    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3475    assert(FD && "missing field decl");
3476
3477    // Get the type for the field.
3478    Type *FDTy = FD->getType().getTypePtr();
3479
3480    if (!FD->isAnonymousStructOrUnion()) {
3481      // Remember all fields written by the user.
3482      RecFields.push_back(FD);
3483    }
3484
3485    // If the field is already invalid for some reason, don't emit more
3486    // diagnostics about it.
3487    if (FD->isInvalidDecl())
3488      continue;
3489
3490    // C99 6.7.2.1p2 - A field may not be a function type.
3491    if (FDTy->isFunctionType()) {
3492      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3493        << FD->getDeclName();
3494      FD->setInvalidDecl();
3495      EnclosingDecl->setInvalidDecl();
3496      continue;
3497    }
3498    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3499    if (FDTy->isIncompleteType()) {
3500      if (!Record) {  // Incomplete ivar type is always an error.
3501        RequireCompleteType(FD->getLocation(), FD->getType(),
3502                               diag::err_field_incomplete);
3503        FD->setInvalidDecl();
3504        EnclosingDecl->setInvalidDecl();
3505        continue;
3506      }
3507      if (i != NumFields-1 ||                   // ... that the last member ...
3508          !Record->isStruct() ||  // ... of a structure ...
3509          !FDTy->isArrayType()) {         //... may have incomplete array type.
3510        RequireCompleteType(FD->getLocation(), FD->getType(),
3511                               diag::err_field_incomplete);
3512        FD->setInvalidDecl();
3513        EnclosingDecl->setInvalidDecl();
3514        continue;
3515      }
3516      if (NumNamedMembers < 1) {  //... must have more than named member ...
3517        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3518          << FD->getDeclName();
3519        FD->setInvalidDecl();
3520        EnclosingDecl->setInvalidDecl();
3521        continue;
3522      }
3523      // Okay, we have a legal flexible array member at the end of the struct.
3524      if (Record)
3525        Record->setHasFlexibleArrayMember(true);
3526    }
3527    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3528    /// field of another structure or the element of an array.
3529    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3530      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3531        // If this is a member of a union, then entire union becomes "flexible".
3532        if (Record && Record->isUnion()) {
3533          Record->setHasFlexibleArrayMember(true);
3534        } else {
3535          // If this is a struct/class and this is not the last element, reject
3536          // it.  Note that GCC supports variable sized arrays in the middle of
3537          // structures.
3538          if (i != NumFields-1)
3539            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3540              << FD->getDeclName();
3541          else {
3542            // We support flexible arrays at the end of structs in
3543            // other structs as an extension.
3544            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3545              << FD->getDeclName();
3546            if (Record)
3547              Record->setHasFlexibleArrayMember(true);
3548          }
3549        }
3550      }
3551    }
3552    /// A field cannot be an Objective-c object
3553    if (FDTy->isObjCInterfaceType()) {
3554      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3555      FD->setInvalidDecl();
3556      EnclosingDecl->setInvalidDecl();
3557      continue;
3558    }
3559    // Keep track of the number of named members.
3560    if (FD->getIdentifier())
3561      ++NumNamedMembers;
3562  }
3563
3564  // Okay, we successfully defined 'Record'.
3565  if (Record) {
3566    Record->completeDefinition(Context);
3567  } else {
3568    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3569    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3570      ID->setIVarList(ClsFields, RecFields.size(), Context);
3571      ID->setLocEnd(RBrac);
3572
3573      // Must enforce the rule that ivars in the base classes may not be
3574      // duplicates.
3575      if (ID->getSuperClass()) {
3576        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3577             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3578          ObjCIvarDecl* Ivar = (*IVI);
3579          IdentifierInfo *II = Ivar->getIdentifier();
3580          ObjCIvarDecl* prevIvar =
3581            ID->getSuperClass()->lookupInstanceVariable(II);
3582          if (prevIvar) {
3583            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3584            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3585          }
3586        }
3587      }
3588    } else if (ObjCImplementationDecl *IMPDecl =
3589                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3590      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3591      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3592      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3593    }
3594  }
3595
3596  if (Attr)
3597    ProcessDeclAttributeList(Record, Attr);
3598}
3599
3600Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3601                                      DeclTy *lastEnumConst,
3602                                      SourceLocation IdLoc, IdentifierInfo *Id,
3603                                      SourceLocation EqualLoc, ExprTy *val) {
3604  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3605  EnumConstantDecl *LastEnumConst =
3606    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3607  Expr *Val = static_cast<Expr*>(val);
3608
3609  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3610  // we find one that is.
3611  S = getNonFieldDeclScope(S);
3612
3613  // Verify that there isn't already something declared with this name in this
3614  // scope.
3615  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3616  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3617    // Maybe we will complain about the shadowed template parameter.
3618    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3619    // Just pretend that we didn't see the previous declaration.
3620    PrevDecl = 0;
3621  }
3622
3623  if (PrevDecl) {
3624    // When in C++, we may get a TagDecl with the same name; in this case the
3625    // enum constant will 'hide' the tag.
3626    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3627           "Received TagDecl when not in C++!");
3628    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3629      if (isa<EnumConstantDecl>(PrevDecl))
3630        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3631      else
3632        Diag(IdLoc, diag::err_redefinition) << Id;
3633      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3634      if (Val) Val->Destroy(Context);
3635      return 0;
3636    }
3637  }
3638
3639  llvm::APSInt EnumVal(32);
3640  QualType EltTy;
3641  if (Val) {
3642    // Make sure to promote the operand type to int.
3643    UsualUnaryConversions(Val);
3644
3645    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3646    SourceLocation ExpLoc;
3647    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3648      Val->Destroy(Context);
3649      Val = 0;  // Just forget about it.
3650    } else {
3651      EltTy = Val->getType();
3652    }
3653  }
3654
3655  if (!Val) {
3656    if (LastEnumConst) {
3657      // Assign the last value + 1.
3658      EnumVal = LastEnumConst->getInitVal();
3659      ++EnumVal;
3660
3661      // Check for overflow on increment.
3662      if (EnumVal < LastEnumConst->getInitVal())
3663        Diag(IdLoc, diag::warn_enum_value_overflow);
3664
3665      EltTy = LastEnumConst->getType();
3666    } else {
3667      // First value, set to zero.
3668      EltTy = Context.IntTy;
3669      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3670    }
3671  }
3672
3673  EnumConstantDecl *New =
3674    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3675                             Val, EnumVal);
3676
3677  // Register this decl in the current scope stack.
3678  PushOnScopeChains(New, S);
3679
3680  return New;
3681}
3682
3683// FIXME: For consistency with ActOnFields(), we should have the parser
3684// pass in the source location for the left/right braces.
3685void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3686                         DeclTy **Elements, unsigned NumElements) {
3687  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3688  QualType EnumType = Context.getTypeDeclType(Enum);
3689
3690  // TODO: If the result value doesn't fit in an int, it must be a long or long
3691  // long value.  ISO C does not support this, but GCC does as an extension,
3692  // emit a warning.
3693  unsigned IntWidth = Context.Target.getIntWidth();
3694
3695  // Verify that all the values are okay, compute the size of the values, and
3696  // reverse the list.
3697  unsigned NumNegativeBits = 0;
3698  unsigned NumPositiveBits = 0;
3699
3700  // Keep track of whether all elements have type int.
3701  bool AllElementsInt = true;
3702
3703  for (unsigned i = 0; i != NumElements; ++i) {
3704    EnumConstantDecl *ECD =
3705      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3706    if (!ECD) continue;  // Already issued a diagnostic.
3707
3708    // If the enum value doesn't fit in an int, emit an extension warning.
3709    const llvm::APSInt &InitVal = ECD->getInitVal();
3710    assert(InitVal.getBitWidth() >= IntWidth &&
3711           "Should have promoted value to int");
3712    if (InitVal.getBitWidth() > IntWidth) {
3713      llvm::APSInt V(InitVal);
3714      V.trunc(IntWidth);
3715      V.extend(InitVal.getBitWidth());
3716      if (V != InitVal)
3717        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3718          << InitVal.toString(10);
3719    }
3720
3721    // Keep track of the size of positive and negative values.
3722    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3723      NumPositiveBits = std::max(NumPositiveBits,
3724                                 (unsigned)InitVal.getActiveBits());
3725    else
3726      NumNegativeBits = std::max(NumNegativeBits,
3727                                 (unsigned)InitVal.getMinSignedBits());
3728
3729    // Keep track of whether every enum element has type int (very commmon).
3730    if (AllElementsInt)
3731      AllElementsInt = ECD->getType() == Context.IntTy;
3732  }
3733
3734  // Figure out the type that should be used for this enum.
3735  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3736  QualType BestType;
3737  unsigned BestWidth;
3738
3739  if (NumNegativeBits) {
3740    // If there is a negative value, figure out the smallest integer type (of
3741    // int/long/longlong) that fits.
3742    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3743      BestType = Context.IntTy;
3744      BestWidth = IntWidth;
3745    } else {
3746      BestWidth = Context.Target.getLongWidth();
3747
3748      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3749        BestType = Context.LongTy;
3750      else {
3751        BestWidth = Context.Target.getLongLongWidth();
3752
3753        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3754          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3755        BestType = Context.LongLongTy;
3756      }
3757    }
3758  } else {
3759    // If there is no negative value, figure out which of uint, ulong, ulonglong
3760    // fits.
3761    if (NumPositiveBits <= IntWidth) {
3762      BestType = Context.UnsignedIntTy;
3763      BestWidth = IntWidth;
3764    } else if (NumPositiveBits <=
3765               (BestWidth = Context.Target.getLongWidth())) {
3766      BestType = Context.UnsignedLongTy;
3767    } else {
3768      BestWidth = Context.Target.getLongLongWidth();
3769      assert(NumPositiveBits <= BestWidth &&
3770             "How could an initializer get larger than ULL?");
3771      BestType = Context.UnsignedLongLongTy;
3772    }
3773  }
3774
3775  // Loop over all of the enumerator constants, changing their types to match
3776  // the type of the enum if needed.
3777  for (unsigned i = 0; i != NumElements; ++i) {
3778    EnumConstantDecl *ECD =
3779      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3780    if (!ECD) continue;  // Already issued a diagnostic.
3781
3782    // Standard C says the enumerators have int type, but we allow, as an
3783    // extension, the enumerators to be larger than int size.  If each
3784    // enumerator value fits in an int, type it as an int, otherwise type it the
3785    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3786    // that X has type 'int', not 'unsigned'.
3787    if (ECD->getType() == Context.IntTy) {
3788      // Make sure the init value is signed.
3789      llvm::APSInt IV = ECD->getInitVal();
3790      IV.setIsSigned(true);
3791      ECD->setInitVal(IV);
3792
3793      if (getLangOptions().CPlusPlus)
3794        // C++ [dcl.enum]p4: Following the closing brace of an
3795        // enum-specifier, each enumerator has the type of its
3796        // enumeration.
3797        ECD->setType(EnumType);
3798      continue;  // Already int type.
3799    }
3800
3801    // Determine whether the value fits into an int.
3802    llvm::APSInt InitVal = ECD->getInitVal();
3803    bool FitsInInt;
3804    if (InitVal.isUnsigned() || !InitVal.isNegative())
3805      FitsInInt = InitVal.getActiveBits() < IntWidth;
3806    else
3807      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3808
3809    // If it fits into an integer type, force it.  Otherwise force it to match
3810    // the enum decl type.
3811    QualType NewTy;
3812    unsigned NewWidth;
3813    bool NewSign;
3814    if (FitsInInt) {
3815      NewTy = Context.IntTy;
3816      NewWidth = IntWidth;
3817      NewSign = true;
3818    } else if (ECD->getType() == BestType) {
3819      // Already the right type!
3820      if (getLangOptions().CPlusPlus)
3821        // C++ [dcl.enum]p4: Following the closing brace of an
3822        // enum-specifier, each enumerator has the type of its
3823        // enumeration.
3824        ECD->setType(EnumType);
3825      continue;
3826    } else {
3827      NewTy = BestType;
3828      NewWidth = BestWidth;
3829      NewSign = BestType->isSignedIntegerType();
3830    }
3831
3832    // Adjust the APSInt value.
3833    InitVal.extOrTrunc(NewWidth);
3834    InitVal.setIsSigned(NewSign);
3835    ECD->setInitVal(InitVal);
3836
3837    // Adjust the Expr initializer and type.
3838    if (ECD->getInitExpr())
3839      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3840                                                      /*isLvalue=*/false));
3841    if (getLangOptions().CPlusPlus)
3842      // C++ [dcl.enum]p4: Following the closing brace of an
3843      // enum-specifier, each enumerator has the type of its
3844      // enumeration.
3845      ECD->setType(EnumType);
3846    else
3847      ECD->setType(NewTy);
3848  }
3849
3850  Enum->completeDefinition(Context, BestType);
3851}
3852
3853Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3854                                          ExprArg expr) {
3855  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3856
3857  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3858}
3859
3860