SemaDecl.cpp revision 48c2e909741a7b67ead01143edabd7b3fe42ee50
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
32  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
33
34  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
35                 isa<ObjCInterfaceDecl>(IIDecl) ||
36                 isa<TagDecl>(IIDecl)))
37    return IIDecl;
38  return 0;
39}
40
41DeclContext *Sema::getDCParent(DeclContext *DC) {
42  // If CurContext is a ObjC method, getParent() will return NULL.
43  if (isa<ObjCMethodDecl>(DC))
44    return Context.getTranslationUnitDecl();
45
46  // A C++ inline method is parsed *after* the topmost class it was declared in
47  // is fully parsed (it's "complete").
48  // The parsing of a C++ inline method happens at the declaration context of
49  // the topmost (non-nested) class it is declared in.
50  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
51    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
52    DC = MD->getParent();
53    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
54      DC = RD;
55
56    // Return the declaration context of the topmost class the inline method is
57    // declared in.
58    return DC;
59  }
60
61  return DC->getParent();
62}
63
64void Sema::PushDeclContext(DeclContext *DC) {
65  assert(getDCParent(DC) == CurContext &&
66       "The next DeclContext should be directly contained in the current one.");
67  CurContext = DC;
68}
69
70void Sema::PopDeclContext() {
71  assert(CurContext && "DeclContext imbalance!");
72  CurContext = getDCParent(CurContext);
73}
74
75/// Add this decl to the scope shadowed decl chains.
76void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
77  S->AddDecl(D);
78
79  // C++ [basic.scope]p4:
80  //   -- exactly one declaration shall declare a class name or
81  //   enumeration name that is not a typedef name and the other
82  //   declarations shall all refer to the same object or
83  //   enumerator, or all refer to functions and function templates;
84  //   in this case the class name or enumeration name is hidden.
85  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
86    // We are pushing the name of a tag (enum or class).
87    IdentifierResolver::iterator
88        I = IdResolver.begin(TD->getIdentifier(),
89                             TD->getDeclContext(), false/*LookInParentCtx*/);
90    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
99    FunctionDecl *FD = cast<FunctionDecl>(D);
100    // We are pushing the name of a function, which might be an
101    // overloaded name.
102    IdentifierResolver::iterator
103        I = IdResolver.begin(FD->getIdentifier(),
104                             FD->getDeclContext(), false/*LookInParentCtx*/);
105    if (I != IdResolver.end() &&
106        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
107        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
108      // There is already a declaration with the same name in the same
109      // scope. It must be a function or an overloaded function.
110      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
111      if (!Ovl) {
112        // We haven't yet overloaded this function. Take the existing
113        // FunctionDecl and put it into an OverloadedFunctionDecl.
114        Ovl = OverloadedFunctionDecl::Create(Context,
115                                             FD->getDeclContext(),
116                                             FD->getIdentifier());
117        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
118
119        // Remove the name binding to the existing FunctionDecl...
120        IdResolver.RemoveDecl(*I);
121
122        // ... and put the OverloadedFunctionDecl in its place.
123        IdResolver.AddDecl(Ovl);
124      }
125
126      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
127      // to its list of overloads.
128      Ovl->addOverload(FD);
129
130      return;
131    }
132  }
133
134  IdResolver.AddDecl(D);
135}
136
137void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
138  if (S->decl_empty()) return;
139  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
140
141  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
142       I != E; ++I) {
143    Decl *TmpD = static_cast<Decl*>(*I);
144    assert(TmpD && "This decl didn't get pushed??");
145
146    if (isa<CXXFieldDecl>(TmpD)) continue;
147
148    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
149    ScopedDecl *D = cast<ScopedDecl>(TmpD);
150
151    IdentifierInfo *II = D->getIdentifier();
152    if (!II) continue;
153
154    // We only want to remove the decls from the identifier decl chains for
155    // local scopes, when inside a function/method.
156    if (S->getFnParent() != 0)
157      IdResolver.RemoveDecl(D);
158
159    // Chain this decl to the containing DeclContext.
160    D->setNext(CurContext->getDeclChain());
161    CurContext->setDeclChain(D);
162  }
163}
164
165/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
166/// return 0 if one not found.
167ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
168  // The third "scope" argument is 0 since we aren't enabling lazy built-in
169  // creation from this context.
170  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
171
172  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
173}
174
175/// LookupDecl - Look up the inner-most declaration in the specified
176/// namespace.
177Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
178                       Scope *S, bool enableLazyBuiltinCreation) {
179  if (II == 0) return 0;
180  unsigned NS = NSI;
181  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
182    NS |= Decl::IDNS_Tag;
183
184  // Scan up the scope chain looking for a decl that matches this identifier
185  // that is in the appropriate namespace.  This search should not take long, as
186  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
187  for (IdentifierResolver::iterator
188       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
189    if ((*I)->getIdentifierNamespace() & NS)
190      return *I;
191
192  // If we didn't find a use of this identifier, and if the identifier
193  // corresponds to a compiler builtin, create the decl object for the builtin
194  // now, injecting it into translation unit scope, and return it.
195  if (NS & Decl::IDNS_Ordinary) {
196    if (enableLazyBuiltinCreation) {
197      // If this is a builtin on this (or all) targets, create the decl.
198      if (unsigned BuiltinID = II->getBuiltinID())
199        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
200    }
201    if (getLangOptions().ObjC1) {
202      // @interface and @compatibility_alias introduce typedef-like names.
203      // Unlike typedef's, they can only be introduced at file-scope (and are
204      // therefore not scoped decls). They can, however, be shadowed by
205      // other names in IDNS_Ordinary.
206      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
207      if (IDI != ObjCInterfaceDecls.end())
208        return IDI->second;
209      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
210      if (I != ObjCAliasDecls.end())
211        return I->second->getClassInterface();
212    }
213  }
214  return 0;
215}
216
217void Sema::InitBuiltinVaListType() {
218  if (!Context.getBuiltinVaListType().isNull())
219    return;
220
221  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
222  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
223  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
224  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
225}
226
227/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
228/// lazily create a decl for it.
229ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
230                                      Scope *S) {
231  Builtin::ID BID = (Builtin::ID)bid;
232
233  if (Context.BuiltinInfo.hasVAListUse(BID))
234    InitBuiltinVaListType();
235
236  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
237  FunctionDecl *New = FunctionDecl::Create(Context,
238                                           Context.getTranslationUnitDecl(),
239                                           SourceLocation(), II, R,
240                                           FunctionDecl::Extern, false, 0);
241
242  // Create Decl objects for each parameter, adding them to the
243  // FunctionDecl.
244  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
245    llvm::SmallVector<ParmVarDecl*, 16> Params;
246    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
247      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
248                                           FT->getArgType(i), VarDecl::None, 0,
249                                           0));
250    New->setParams(&Params[0], Params.size());
251  }
252
253
254
255  // TUScope is the translation-unit scope to insert this function into.
256  PushOnScopeChains(New, TUScope);
257  return New;
258}
259
260/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
261/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
262/// situation, merging decls or emitting diagnostics as appropriate.
263///
264TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
265  // Allow multiple definitions for ObjC built-in typedefs.
266  // FIXME: Verify the underlying types are equivalent!
267  if (getLangOptions().ObjC1) {
268    const IdentifierInfo *typeIdent = New->getIdentifier();
269    if (typeIdent == Ident_id) {
270      Context.setObjCIdType(New);
271      return New;
272    } else if (typeIdent == Ident_Class) {
273      Context.setObjCClassType(New);
274      return New;
275    } else if (typeIdent == Ident_SEL) {
276      Context.setObjCSelType(New);
277      return New;
278    } else if (typeIdent == Ident_Protocol) {
279      Context.setObjCProtoType(New->getUnderlyingType());
280      return New;
281    }
282    // Fall through - the typedef name was not a builtin type.
283  }
284  // Verify the old decl was also a typedef.
285  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
286  if (!Old) {
287    Diag(New->getLocation(), diag::err_redefinition_different_kind,
288         New->getName());
289    Diag(OldD->getLocation(), diag::err_previous_definition);
290    return New;
291  }
292
293  // If the typedef types are not identical, reject them in all languages and
294  // with any extensions enabled.
295  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
296      Context.getCanonicalType(Old->getUnderlyingType()) !=
297      Context.getCanonicalType(New->getUnderlyingType())) {
298    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
299         New->getUnderlyingType().getAsString(),
300         Old->getUnderlyingType().getAsString());
301    Diag(Old->getLocation(), diag::err_previous_definition);
302    return Old;
303  }
304
305  if (getLangOptions().Microsoft) return New;
306
307  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
308  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
309  // *either* declaration is in a system header. The code below implements
310  // this adhoc compatibility rule. FIXME: The following code will not
311  // work properly when compiling ".i" files (containing preprocessed output).
312  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
313    SourceManager &SrcMgr = Context.getSourceManager();
314    if (SrcMgr.isInSystemHeader(Old->getLocation()))
315      return New;
316    if (SrcMgr.isInSystemHeader(New->getLocation()))
317      return New;
318  }
319
320  Diag(New->getLocation(), diag::err_redefinition, New->getName());
321  Diag(Old->getLocation(), diag::err_previous_definition);
322  return New;
323}
324
325/// DeclhasAttr - returns true if decl Declaration already has the target
326/// attribute.
327static bool DeclHasAttr(const Decl *decl, const Attr *target) {
328  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
329    if (attr->getKind() == target->getKind())
330      return true;
331
332  return false;
333}
334
335/// MergeAttributes - append attributes from the Old decl to the New one.
336static void MergeAttributes(Decl *New, Decl *Old) {
337  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
338
339  while (attr) {
340     tmp = attr;
341     attr = attr->getNext();
342
343    if (!DeclHasAttr(New, tmp)) {
344       New->addAttr(tmp);
345    } else {
346       tmp->setNext(0);
347       delete(tmp);
348    }
349  }
350
351  Old->invalidateAttrs();
352}
353
354/// MergeFunctionDecl - We just parsed a function 'New' from
355/// declarator D which has the same name and scope as a previous
356/// declaration 'Old'.  Figure out how to resolve this situation,
357/// merging decls or emitting diagnostics as appropriate.
358/// Redeclaration will be set true if this New is a redeclaration OldD.
359///
360/// In C++, New and Old must be declarations that are not
361/// overloaded. Use IsOverload to determine whether New and Old are
362/// overloaded, and to select the Old declaration that New should be
363/// merged with.
364FunctionDecl *
365Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
366  assert(!isa<OverloadedFunctionDecl>(OldD) &&
367         "Cannot merge with an overloaded function declaration");
368
369  Redeclaration = false;
370  // Verify the old decl was also a function.
371  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
372  if (!Old) {
373    Diag(New->getLocation(), diag::err_redefinition_different_kind,
374         New->getName());
375    Diag(OldD->getLocation(), diag::err_previous_definition);
376    return New;
377  }
378
379  // Determine whether the previous declaration was a definition,
380  // implicit declaration, or a declaration.
381  diag::kind PrevDiag;
382  if (Old->isThisDeclarationADefinition())
383    PrevDiag = diag::err_previous_definition;
384  else if (Old->isImplicit())
385    PrevDiag = diag::err_previous_implicit_declaration;
386  else
387    PrevDiag = diag::err_previous_declaration;
388
389  QualType OldQType = Context.getCanonicalType(Old->getType());
390  QualType NewQType = Context.getCanonicalType(New->getType());
391
392  if (getLangOptions().CPlusPlus) {
393    // (C++98 13.1p2):
394    //   Certain function declarations cannot be overloaded:
395    //     -- Function declarations that differ only in the return type
396    //        cannot be overloaded.
397    QualType OldReturnType
398      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
399    QualType NewReturnType
400      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
401    if (OldReturnType != NewReturnType) {
402      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
403      Diag(Old->getLocation(), PrevDiag);
404      return New;
405    }
406
407    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
408    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
409    if (OldMethod && NewMethod) {
410      //    -- Member function declarations with the same name and the
411      //       same parameter types cannot be overloaded if any of them
412      //       is a static member function declaration.
413      if (OldMethod->isStatic() || NewMethod->isStatic()) {
414        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
415        Diag(Old->getLocation(), PrevDiag);
416        return New;
417      }
418    }
419
420    // (C++98 8.3.5p3):
421    //   All declarations for a function shall agree exactly in both the
422    //   return type and the parameter-type-list.
423    if (OldQType == NewQType) {
424      // We have a redeclaration.
425      MergeAttributes(New, Old);
426      Redeclaration = true;
427      return MergeCXXFunctionDecl(New, Old);
428    }
429
430    // Fall through for conflicting redeclarations and redefinitions.
431  }
432
433  // C: Function types need to be compatible, not identical. This handles
434  // duplicate function decls like "void f(int); void f(enum X);" properly.
435  if (!getLangOptions().CPlusPlus &&
436      Context.typesAreCompatible(OldQType, NewQType)) {
437    MergeAttributes(New, Old);
438    Redeclaration = true;
439    return New;
440  }
441
442  // A function that has already been declared has been redeclared or defined
443  // with a different type- show appropriate diagnostic
444
445  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
446  // TODO: This is totally simplistic.  It should handle merging functions
447  // together etc, merging extern int X; int X; ...
448  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
449  Diag(Old->getLocation(), PrevDiag);
450  return New;
451}
452
453/// Predicate for C "tentative" external object definitions (C99 6.9.2).
454static bool isTentativeDefinition(VarDecl *VD) {
455  if (VD->isFileVarDecl())
456    return (!VD->getInit() &&
457            (VD->getStorageClass() == VarDecl::None ||
458             VD->getStorageClass() == VarDecl::Static));
459  return false;
460}
461
462/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
463/// when dealing with C "tentative" external object definitions (C99 6.9.2).
464void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
465  bool VDIsTentative = isTentativeDefinition(VD);
466  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
467
468  for (IdentifierResolver::iterator
469       I = IdResolver.begin(VD->getIdentifier(),
470                            VD->getDeclContext(), false/*LookInParentCtx*/),
471       E = IdResolver.end(); I != E; ++I) {
472    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
473      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
474
475      // Handle the following case:
476      //   int a[10];
477      //   int a[];   - the code below makes sure we set the correct type.
478      //   int a[11]; - this is an error, size isn't 10.
479      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
480          OldDecl->getType()->isConstantArrayType())
481        VD->setType(OldDecl->getType());
482
483      // Check for "tentative" definitions. We can't accomplish this in
484      // MergeVarDecl since the initializer hasn't been attached.
485      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
486        continue;
487
488      // Handle __private_extern__ just like extern.
489      if (OldDecl->getStorageClass() != VarDecl::Extern &&
490          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
491          VD->getStorageClass() != VarDecl::Extern &&
492          VD->getStorageClass() != VarDecl::PrivateExtern) {
493        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
494        Diag(OldDecl->getLocation(), diag::err_previous_definition);
495      }
496    }
497  }
498}
499
500/// MergeVarDecl - We just parsed a variable 'New' which has the same name
501/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
502/// situation, merging decls or emitting diagnostics as appropriate.
503///
504/// Tentative definition rules (C99 6.9.2p2) are checked by
505/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
506/// definitions here, since the initializer hasn't been attached.
507///
508VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
509  // Verify the old decl was also a variable.
510  VarDecl *Old = dyn_cast<VarDecl>(OldD);
511  if (!Old) {
512    Diag(New->getLocation(), diag::err_redefinition_different_kind,
513         New->getName());
514    Diag(OldD->getLocation(), diag::err_previous_definition);
515    return New;
516  }
517
518  MergeAttributes(New, Old);
519
520  // Verify the types match.
521  QualType OldCType = Context.getCanonicalType(Old->getType());
522  QualType NewCType = Context.getCanonicalType(New->getType());
523  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
524    Diag(New->getLocation(), diag::err_redefinition, New->getName());
525    Diag(Old->getLocation(), diag::err_previous_definition);
526    return New;
527  }
528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
529  if (New->getStorageClass() == VarDecl::Static &&
530      (Old->getStorageClass() == VarDecl::None ||
531       Old->getStorageClass() == VarDecl::Extern)) {
532    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
533    Diag(Old->getLocation(), diag::err_previous_definition);
534    return New;
535  }
536  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
537  if (New->getStorageClass() != VarDecl::Static &&
538      Old->getStorageClass() == VarDecl::Static) {
539    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
540    Diag(Old->getLocation(), diag::err_previous_definition);
541    return New;
542  }
543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
544  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
545    Diag(New->getLocation(), diag::err_redefinition, New->getName());
546    Diag(Old->getLocation(), diag::err_previous_definition);
547  }
548  return New;
549}
550
551/// CheckParmsForFunctionDef - Check that the parameters of the given
552/// function are appropriate for the definition of a function. This
553/// takes care of any checks that cannot be performed on the
554/// declaration itself, e.g., that the types of each of the function
555/// parameters are complete.
556bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
557  bool HasInvalidParm = false;
558  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
559    ParmVarDecl *Param = FD->getParamDecl(p);
560
561    // C99 6.7.5.3p4: the parameters in a parameter type list in a
562    // function declarator that is part of a function definition of
563    // that function shall not have incomplete type.
564    if (Param->getType()->isIncompleteType() &&
565        !Param->isInvalidDecl()) {
566      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
567           Param->getType().getAsString());
568      Param->setInvalidDecl();
569      HasInvalidParm = true;
570    }
571  }
572
573  return HasInvalidParm;
574}
575
576/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
577/// no declarator (e.g. "struct foo;") is parsed.
578Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
579  // TODO: emit error on 'int;' or 'const enum foo;'.
580  // TODO: emit error on 'typedef int;'
581  // if (!DS.isMissingDeclaratorOk()) Diag(...);
582
583  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
584}
585
586bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
587  // Get the type before calling CheckSingleAssignmentConstraints(), since
588  // it can promote the expression.
589  QualType InitType = Init->getType();
590
591  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
592  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
593                                  InitType, Init, "initializing");
594}
595
596bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
597  const ArrayType *AT = Context.getAsArrayType(DeclT);
598
599  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
600    // C99 6.7.8p14. We have an array of character type with unknown size
601    // being initialized to a string literal.
602    llvm::APSInt ConstVal(32);
603    ConstVal = strLiteral->getByteLength() + 1;
604    // Return a new array type (C99 6.7.8p22).
605    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
606                                         ArrayType::Normal, 0);
607  } else {
608    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
609    // C99 6.7.8p14. We have an array of character type with known size.
610    // FIXME: Avoid truncation for 64-bit length strings.
611    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
612      Diag(strLiteral->getSourceRange().getBegin(),
613           diag::warn_initializer_string_for_char_array_too_long,
614           strLiteral->getSourceRange());
615  }
616  // Set type from "char *" to "constant array of char".
617  strLiteral->setType(DeclT);
618  // For now, we always return false (meaning success).
619  return false;
620}
621
622StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
623  const ArrayType *AT = Context.getAsArrayType(DeclType);
624  if (AT && AT->getElementType()->isCharType()) {
625    return dyn_cast<StringLiteral>(Init);
626  }
627  return 0;
628}
629
630bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
631                                 SourceLocation InitLoc,
632                                 std::string InitEntity) {
633  // C++ [dcl.init.ref]p1:
634  //   A variable declared to be a T&, that is “reference to type T”
635  //   (8.3.2), shall be initialized by an object, or function, of
636  //   type T or by an object that can be converted into a T.
637  if (DeclType->isReferenceType())
638    return CheckReferenceInit(Init, DeclType);
639
640  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
641  // of unknown size ("[]") or an object type that is not a variable array type.
642  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
643    return Diag(InitLoc,
644                diag::err_variable_object_no_init,
645                VAT->getSizeExpr()->getSourceRange());
646
647  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
648  if (!InitList) {
649    // FIXME: Handle wide strings
650    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
651      return CheckStringLiteralInit(strLiteral, DeclType);
652
653    // C++ [dcl.init]p14:
654    //   -- If the destination type is a (possibly cv-qualified) class
655    //      type:
656    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
657      QualType DeclTypeC = Context.getCanonicalType(DeclType);
658      QualType InitTypeC = Context.getCanonicalType(Init->getType());
659
660      //   -- If the initialization is direct-initialization, or if it is
661      //      copy-initialization where the cv-unqualified version of the
662      //      source type is the same class as, or a derived class of, the
663      //      class of the destination, constructors are considered.
664      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
665          IsDerivedFrom(InitTypeC, DeclTypeC)) {
666        CXXConstructorDecl *Constructor
667          = PerformInitializationByConstructor(DeclType, &Init, 1,
668                                               InitLoc, Init->getSourceRange(),
669                                               InitEntity, IK_Copy);
670        return Constructor == 0;
671      }
672
673      //   -- Otherwise (i.e., for the remaining copy-initialization
674      //      cases), user-defined conversion sequences that can
675      //      convert from the source type to the destination type or
676      //      (when a conversion function is used) to a derived class
677      //      thereof are enumerated as described in 13.3.1.4, and the
678      //      best one is chosen through overload resolution
679      //      (13.3). If the conversion cannot be done or is
680      //      ambiguous, the initialization is ill-formed. The
681      //      function selected is called with the initializer
682      //      expression as its argument; if the function is a
683      //      constructor, the call initializes a temporary of the
684      //      destination type.
685      // FIXME: We're pretending to do copy elision here; return to
686      // this when we have ASTs for such things.
687      if (PerformImplicitConversion(Init, DeclType))
688        return Diag(InitLoc,
689                    diag::err_typecheck_convert_incompatible,
690                    DeclType.getAsString(), InitEntity,
691                    "initializing",
692                    Init->getSourceRange());
693      else
694        return false;
695    }
696
697    // C99 6.7.8p16.
698    if (DeclType->isArrayType())
699      return Diag(Init->getLocStart(),
700                  diag::err_array_init_list_required,
701                  Init->getSourceRange());
702
703    return CheckSingleInitializer(Init, DeclType);
704  } else if (getLangOptions().CPlusPlus) {
705    // C++ [dcl.init]p14:
706    //   [...] If the class is an aggregate (8.5.1), and the initializer
707    //   is a brace-enclosed list, see 8.5.1.
708    //
709    // Note: 8.5.1 is handled below; here, we diagnose the case where
710    // we have an initializer list and a destination type that is not
711    // an aggregate.
712    // FIXME: In C++0x, this is yet another form of initialization.
713    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
714      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
715      if (!ClassDecl->isAggregate())
716        return Diag(InitLoc,
717                    diag::err_init_non_aggr_init_list,
718                    DeclType.getAsString(),
719                    Init->getSourceRange());
720    }
721  }
722
723  InitListChecker CheckInitList(this, InitList, DeclType);
724  return CheckInitList.HadError();
725}
726
727Sema::DeclTy *
728Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
729  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
730  IdentifierInfo *II = D.getIdentifier();
731
732  // All of these full declarators require an identifier.  If it doesn't have
733  // one, the ParsedFreeStandingDeclSpec action should be used.
734  if (II == 0) {
735    Diag(D.getDeclSpec().getSourceRange().getBegin(),
736         diag::err_declarator_need_ident,
737         D.getDeclSpec().getSourceRange(), D.getSourceRange());
738    return 0;
739  }
740
741  // The scope passed in may not be a decl scope.  Zip up the scope tree until
742  // we find one that is.
743  while ((S->getFlags() & Scope::DeclScope) == 0)
744    S = S->getParent();
745
746  // See if this is a redefinition of a variable in the same scope.
747  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
748  ScopedDecl *New;
749  bool InvalidDecl = false;
750
751  // In C++, the previous declaration we find might be a tag type
752  // (class or enum). In this case, the new declaration will hide the
753  // tag type.
754  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
755    PrevDecl = 0;
756
757  QualType R = GetTypeForDeclarator(D, S);
758  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
759
760  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
761    // Check that there are no default arguments (C++ only).
762    if (getLangOptions().CPlusPlus)
763      CheckExtraCXXDefaultArguments(D);
764
765    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
766    if (!NewTD) return 0;
767
768    // Handle attributes prior to checking for duplicates in MergeVarDecl
769    ProcessDeclAttributes(NewTD, D);
770    // Merge the decl with the existing one if appropriate. If the decl is
771    // in an outer scope, it isn't the same thing.
772    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
773      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
774      if (NewTD == 0) return 0;
775    }
776    New = NewTD;
777    if (S->getFnParent() == 0) {
778      // C99 6.7.7p2: If a typedef name specifies a variably modified type
779      // then it shall have block scope.
780      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
781        // FIXME: Diagnostic needs to be fixed.
782        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
783        InvalidDecl = true;
784      }
785    }
786  } else if (R.getTypePtr()->isFunctionType()) {
787    FunctionDecl::StorageClass SC = FunctionDecl::None;
788    switch (D.getDeclSpec().getStorageClassSpec()) {
789      default: assert(0 && "Unknown storage class!");
790      case DeclSpec::SCS_auto:
791      case DeclSpec::SCS_register:
792        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
793             R.getAsString());
794        InvalidDecl = true;
795        break;
796      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
797      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
798      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
799      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
800    }
801
802    bool isInline = D.getDeclSpec().isInlineSpecified();
803    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
804    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
805
806    FunctionDecl *NewFD;
807    if (D.getKind() == Declarator::DK_Constructor) {
808      // This is a C++ constructor declaration.
809      assert(D.getContext() == Declarator::MemberContext &&
810             "Constructors can only be declared in a member context");
811
812      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
813
814      // Create the new declaration
815      NewFD = CXXConstructorDecl::Create(Context,
816                                         cast<CXXRecordDecl>(CurContext),
817                                         D.getIdentifierLoc(), II, R,
818                                         isExplicit, isInline,
819                                         /*isImplicitlyDeclared=*/false);
820
821      if (isInvalidDecl)
822        NewFD->setInvalidDecl();
823    } else if (D.getKind() == Declarator::DK_Destructor) {
824      // This is a C++ destructor declaration.
825      assert(D.getContext() == Declarator::MemberContext &&
826             "Destructor can only be declared in a member context");
827
828      bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
829
830      NewFD = CXXDestructorDecl::Create(Context,
831                                        cast<CXXRecordDecl>(CurContext),
832                                        D.getIdentifierLoc(), II, R,
833                                        isInline,
834                                        /*isImplicitlyDeclared=*/false);
835
836      if (isInvalidDecl)
837        NewFD->setInvalidDecl();
838    } else if (D.getContext() == Declarator::MemberContext) {
839      // This is a C++ method declaration.
840      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
841                                    D.getIdentifierLoc(), II, R,
842                                    (SC == FunctionDecl::Static), isInline,
843                                    LastDeclarator);
844    } else {
845      NewFD = FunctionDecl::Create(Context, CurContext,
846                                   D.getIdentifierLoc(),
847                                   II, R, SC, isInline, LastDeclarator,
848                                   // FIXME: Move to DeclGroup...
849                                   D.getDeclSpec().getSourceRange().getBegin());
850    }
851    // Handle attributes.
852    ProcessDeclAttributes(NewFD, D);
853
854    // Handle GNU asm-label extension (encoded as an attribute).
855    if (Expr *E = (Expr*) D.getAsmLabel()) {
856      // The parser guarantees this is a string.
857      StringLiteral *SE = cast<StringLiteral>(E);
858      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
859                                                  SE->getByteLength())));
860    }
861
862    // Copy the parameter declarations from the declarator D to
863    // the function declaration NewFD, if they are available.
864    if (D.getNumTypeObjects() > 0) {
865      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
866
867      // Create Decl objects for each parameter, adding them to the
868      // FunctionDecl.
869      llvm::SmallVector<ParmVarDecl*, 16> Params;
870
871      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
872      // function that takes no arguments, not a function that takes a
873      // single void argument.
874      // We let through "const void" here because Sema::GetTypeForDeclarator
875      // already checks for that case.
876      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
877          FTI.ArgInfo[0].Param &&
878          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
879        // empty arg list, don't push any params.
880        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
881
882        // In C++, the empty parameter-type-list must be spelled "void"; a
883        // typedef of void is not permitted.
884        if (getLangOptions().CPlusPlus &&
885            Param->getType().getUnqualifiedType() != Context.VoidTy) {
886          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
887        }
888      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
889        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
890          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
891      }
892
893      NewFD->setParams(&Params[0], Params.size());
894    } else if (R->getAsTypedefType()) {
895      // When we're declaring a function with a typedef, as in the
896      // following example, we'll need to synthesize (unnamed)
897      // parameters for use in the declaration.
898      //
899      // @code
900      // typedef void fn(int);
901      // fn f;
902      // @endcode
903      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
904      if (!FT) {
905        // This is a typedef of a function with no prototype, so we
906        // don't need to do anything.
907      } else if ((FT->getNumArgs() == 0) ||
908          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
909           FT->getArgType(0)->isVoidType())) {
910        // This is a zero-argument function. We don't need to do anything.
911      } else {
912        // Synthesize a parameter for each argument type.
913        llvm::SmallVector<ParmVarDecl*, 16> Params;
914        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
915             ArgType != FT->arg_type_end(); ++ArgType) {
916          Params.push_back(ParmVarDecl::Create(Context, CurContext,
917                                               SourceLocation(), 0,
918                                               *ArgType, VarDecl::None,
919                                               0, 0));
920        }
921
922        NewFD->setParams(&Params[0], Params.size());
923      }
924    }
925
926    // C++ constructors and destructors are handled by separate
927    // routines, since they don't require any declaration merging (C++
928    // [class.mfct]p2) and they aren't ever pushed into scope, because
929    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
930    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
931      return ActOnConstructorDeclarator(Constructor);
932    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
933      return ActOnDestructorDeclarator(Destructor);
934
935    // Extra checking for C++ overloaded operators (C++ [over.oper]).
936    if (NewFD->isOverloadedOperator() &&
937        CheckOverloadedOperatorDeclaration(NewFD))
938      NewFD->setInvalidDecl();
939
940    // Merge the decl with the existing one if appropriate. Since C functions
941    // are in a flat namespace, make sure we consider decls in outer scopes.
942    if (PrevDecl &&
943        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
944      bool Redeclaration = false;
945
946      // If C++, determine whether NewFD is an overload of PrevDecl or
947      // a declaration that requires merging. If it's an overload,
948      // there's no more work to do here; we'll just add the new
949      // function to the scope.
950      OverloadedFunctionDecl::function_iterator MatchedDecl;
951      if (!getLangOptions().CPlusPlus ||
952          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
953        Decl *OldDecl = PrevDecl;
954
955        // If PrevDecl was an overloaded function, extract the
956        // FunctionDecl that matched.
957        if (isa<OverloadedFunctionDecl>(PrevDecl))
958          OldDecl = *MatchedDecl;
959
960        // NewFD and PrevDecl represent declarations that need to be
961        // merged.
962        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
963
964        if (NewFD == 0) return 0;
965        if (Redeclaration) {
966          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
967
968          if (OldDecl == PrevDecl) {
969            // Remove the name binding for the previous
970            // declaration. We'll add the binding back later, but then
971            // it will refer to the new declaration (which will
972            // contain more information).
973            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
974          } else {
975            // We need to update the OverloadedFunctionDecl with the
976            // latest declaration of this function, so that name
977            // lookup will always refer to the latest declaration of
978            // this function.
979            *MatchedDecl = NewFD;
980
981            // Add the redeclaration to the current scope, since we'll
982            // be skipping PushOnScopeChains.
983            S->AddDecl(NewFD);
984
985            return NewFD;
986          }
987        }
988      }
989    }
990    New = NewFD;
991
992    // In C++, check default arguments now that we have merged decls.
993    if (getLangOptions().CPlusPlus)
994      CheckCXXDefaultArguments(NewFD);
995  } else {
996    // Check that there are no default arguments (C++ only).
997    if (getLangOptions().CPlusPlus)
998      CheckExtraCXXDefaultArguments(D);
999
1000    if (R.getTypePtr()->isObjCInterfaceType()) {
1001      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
1002           D.getIdentifier()->getName());
1003      InvalidDecl = true;
1004    }
1005
1006    VarDecl *NewVD;
1007    VarDecl::StorageClass SC;
1008    switch (D.getDeclSpec().getStorageClassSpec()) {
1009    default: assert(0 && "Unknown storage class!");
1010    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1011    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1012    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1013    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1014    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1015    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1016    }
1017    if (D.getContext() == Declarator::MemberContext) {
1018      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1019      // This is a static data member for a C++ class.
1020      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
1021                                      D.getIdentifierLoc(), II,
1022                                      R, LastDeclarator);
1023    } else {
1024      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1025      if (S->getFnParent() == 0) {
1026        // C99 6.9p2: The storage-class specifiers auto and register shall not
1027        // appear in the declaration specifiers in an external declaration.
1028        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1029          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1030               R.getAsString());
1031          InvalidDecl = true;
1032        }
1033      }
1034        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
1035                                II, R, SC, LastDeclarator,
1036                                // FIXME: Move to DeclGroup...
1037                                D.getDeclSpec().getSourceRange().getBegin());
1038        NewVD->setThreadSpecified(ThreadSpecified);
1039    }
1040    // Handle attributes prior to checking for duplicates in MergeVarDecl
1041    ProcessDeclAttributes(NewVD, D);
1042
1043    // Handle GNU asm-label extension (encoded as an attribute).
1044    if (Expr *E = (Expr*) D.getAsmLabel()) {
1045      // The parser guarantees this is a string.
1046      StringLiteral *SE = cast<StringLiteral>(E);
1047      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1048                                                  SE->getByteLength())));
1049    }
1050
1051    // Emit an error if an address space was applied to decl with local storage.
1052    // This includes arrays of objects with address space qualifiers, but not
1053    // automatic variables that point to other address spaces.
1054    // ISO/IEC TR 18037 S5.1.2
1055    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1056      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1057      InvalidDecl = true;
1058    }
1059    // Merge the decl with the existing one if appropriate. If the decl is
1060    // in an outer scope, it isn't the same thing.
1061    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
1062      NewVD = MergeVarDecl(NewVD, PrevDecl);
1063      if (NewVD == 0) return 0;
1064    }
1065    New = NewVD;
1066  }
1067
1068  // If this has an identifier, add it to the scope stack.
1069  if (II)
1070    PushOnScopeChains(New, S);
1071  // If any semantic error occurred, mark the decl as invalid.
1072  if (D.getInvalidType() || InvalidDecl)
1073    New->setInvalidDecl();
1074
1075  return New;
1076}
1077
1078void Sema::InitializerElementNotConstant(const Expr *Init) {
1079  Diag(Init->getExprLoc(),
1080       diag::err_init_element_not_constant, Init->getSourceRange());
1081}
1082
1083bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1084  switch (Init->getStmtClass()) {
1085  default:
1086    InitializerElementNotConstant(Init);
1087    return true;
1088  case Expr::ParenExprClass: {
1089    const ParenExpr* PE = cast<ParenExpr>(Init);
1090    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1091  }
1092  case Expr::CompoundLiteralExprClass:
1093    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1094  case Expr::DeclRefExprClass: {
1095    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1096    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1097      if (VD->hasGlobalStorage())
1098        return false;
1099      InitializerElementNotConstant(Init);
1100      return true;
1101    }
1102    if (isa<FunctionDecl>(D))
1103      return false;
1104    InitializerElementNotConstant(Init);
1105    return true;
1106  }
1107  case Expr::MemberExprClass: {
1108    const MemberExpr *M = cast<MemberExpr>(Init);
1109    if (M->isArrow())
1110      return CheckAddressConstantExpression(M->getBase());
1111    return CheckAddressConstantExpressionLValue(M->getBase());
1112  }
1113  case Expr::ArraySubscriptExprClass: {
1114    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1115    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1116    return CheckAddressConstantExpression(ASE->getBase()) ||
1117           CheckArithmeticConstantExpression(ASE->getIdx());
1118  }
1119  case Expr::StringLiteralClass:
1120  case Expr::PredefinedExprClass:
1121    return false;
1122  case Expr::UnaryOperatorClass: {
1123    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1124
1125    // C99 6.6p9
1126    if (Exp->getOpcode() == UnaryOperator::Deref)
1127      return CheckAddressConstantExpression(Exp->getSubExpr());
1128
1129    InitializerElementNotConstant(Init);
1130    return true;
1131  }
1132  }
1133}
1134
1135bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1136  switch (Init->getStmtClass()) {
1137  default:
1138    InitializerElementNotConstant(Init);
1139    return true;
1140  case Expr::ParenExprClass:
1141    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1142  case Expr::StringLiteralClass:
1143  case Expr::ObjCStringLiteralClass:
1144    return false;
1145  case Expr::CallExprClass:
1146    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1147    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1148           Builtin::BI__builtin___CFStringMakeConstantString)
1149      return false;
1150
1151    InitializerElementNotConstant(Init);
1152    return true;
1153
1154  case Expr::UnaryOperatorClass: {
1155    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1156
1157    // C99 6.6p9
1158    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1159      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1160
1161    if (Exp->getOpcode() == UnaryOperator::Extension)
1162      return CheckAddressConstantExpression(Exp->getSubExpr());
1163
1164    InitializerElementNotConstant(Init);
1165    return true;
1166  }
1167  case Expr::BinaryOperatorClass: {
1168    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1169    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1170
1171    Expr *PExp = Exp->getLHS();
1172    Expr *IExp = Exp->getRHS();
1173    if (IExp->getType()->isPointerType())
1174      std::swap(PExp, IExp);
1175
1176    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1177    return CheckAddressConstantExpression(PExp) ||
1178           CheckArithmeticConstantExpression(IExp);
1179  }
1180  case Expr::ImplicitCastExprClass:
1181  case Expr::CStyleCastExprClass: {
1182    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1183    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1184      // Check for implicit promotion
1185      if (SubExpr->getType()->isFunctionType() ||
1186          SubExpr->getType()->isArrayType())
1187        return CheckAddressConstantExpressionLValue(SubExpr);
1188    }
1189
1190    // Check for pointer->pointer cast
1191    if (SubExpr->getType()->isPointerType())
1192      return CheckAddressConstantExpression(SubExpr);
1193
1194    if (SubExpr->getType()->isIntegralType()) {
1195      // Check for the special-case of a pointer->int->pointer cast;
1196      // this isn't standard, but some code requires it. See
1197      // PR2720 for an example.
1198      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1199        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1200          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1201          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1202          if (IntWidth >= PointerWidth) {
1203            return CheckAddressConstantExpression(SubCast->getSubExpr());
1204          }
1205        }
1206      }
1207    }
1208    if (SubExpr->getType()->isArithmeticType()) {
1209      return CheckArithmeticConstantExpression(SubExpr);
1210    }
1211
1212    InitializerElementNotConstant(Init);
1213    return true;
1214  }
1215  case Expr::ConditionalOperatorClass: {
1216    // FIXME: Should we pedwarn here?
1217    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1218    if (!Exp->getCond()->getType()->isArithmeticType()) {
1219      InitializerElementNotConstant(Init);
1220      return true;
1221    }
1222    if (CheckArithmeticConstantExpression(Exp->getCond()))
1223      return true;
1224    if (Exp->getLHS() &&
1225        CheckAddressConstantExpression(Exp->getLHS()))
1226      return true;
1227    return CheckAddressConstantExpression(Exp->getRHS());
1228  }
1229  case Expr::AddrLabelExprClass:
1230    return false;
1231  }
1232}
1233
1234static const Expr* FindExpressionBaseAddress(const Expr* E);
1235
1236static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1237  switch (E->getStmtClass()) {
1238  default:
1239    return E;
1240  case Expr::ParenExprClass: {
1241    const ParenExpr* PE = cast<ParenExpr>(E);
1242    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1243  }
1244  case Expr::MemberExprClass: {
1245    const MemberExpr *M = cast<MemberExpr>(E);
1246    if (M->isArrow())
1247      return FindExpressionBaseAddress(M->getBase());
1248    return FindExpressionBaseAddressLValue(M->getBase());
1249  }
1250  case Expr::ArraySubscriptExprClass: {
1251    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1252    return FindExpressionBaseAddress(ASE->getBase());
1253  }
1254  case Expr::UnaryOperatorClass: {
1255    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1256
1257    if (Exp->getOpcode() == UnaryOperator::Deref)
1258      return FindExpressionBaseAddress(Exp->getSubExpr());
1259
1260    return E;
1261  }
1262  }
1263}
1264
1265static const Expr* FindExpressionBaseAddress(const Expr* E) {
1266  switch (E->getStmtClass()) {
1267  default:
1268    return E;
1269  case Expr::ParenExprClass: {
1270    const ParenExpr* PE = cast<ParenExpr>(E);
1271    return FindExpressionBaseAddress(PE->getSubExpr());
1272  }
1273  case Expr::UnaryOperatorClass: {
1274    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1275
1276    // C99 6.6p9
1277    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1278      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1279
1280    if (Exp->getOpcode() == UnaryOperator::Extension)
1281      return FindExpressionBaseAddress(Exp->getSubExpr());
1282
1283    return E;
1284  }
1285  case Expr::BinaryOperatorClass: {
1286    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1287
1288    Expr *PExp = Exp->getLHS();
1289    Expr *IExp = Exp->getRHS();
1290    if (IExp->getType()->isPointerType())
1291      std::swap(PExp, IExp);
1292
1293    return FindExpressionBaseAddress(PExp);
1294  }
1295  case Expr::ImplicitCastExprClass: {
1296    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1297
1298    // Check for implicit promotion
1299    if (SubExpr->getType()->isFunctionType() ||
1300        SubExpr->getType()->isArrayType())
1301      return FindExpressionBaseAddressLValue(SubExpr);
1302
1303    // Check for pointer->pointer cast
1304    if (SubExpr->getType()->isPointerType())
1305      return FindExpressionBaseAddress(SubExpr);
1306
1307    // We assume that we have an arithmetic expression here;
1308    // if we don't, we'll figure it out later
1309    return 0;
1310  }
1311  case Expr::CStyleCastExprClass: {
1312    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1313
1314    // Check for pointer->pointer cast
1315    if (SubExpr->getType()->isPointerType())
1316      return FindExpressionBaseAddress(SubExpr);
1317
1318    // We assume that we have an arithmetic expression here;
1319    // if we don't, we'll figure it out later
1320    return 0;
1321  }
1322  }
1323}
1324
1325bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1326  switch (Init->getStmtClass()) {
1327  default:
1328    InitializerElementNotConstant(Init);
1329    return true;
1330  case Expr::ParenExprClass: {
1331    const ParenExpr* PE = cast<ParenExpr>(Init);
1332    return CheckArithmeticConstantExpression(PE->getSubExpr());
1333  }
1334  case Expr::FloatingLiteralClass:
1335  case Expr::IntegerLiteralClass:
1336  case Expr::CharacterLiteralClass:
1337  case Expr::ImaginaryLiteralClass:
1338  case Expr::TypesCompatibleExprClass:
1339  case Expr::CXXBoolLiteralExprClass:
1340    return false;
1341  case Expr::CallExprClass: {
1342    const CallExpr *CE = cast<CallExpr>(Init);
1343
1344    // Allow any constant foldable calls to builtins.
1345    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1346      return false;
1347
1348    InitializerElementNotConstant(Init);
1349    return true;
1350  }
1351  case Expr::DeclRefExprClass: {
1352    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1353    if (isa<EnumConstantDecl>(D))
1354      return false;
1355    InitializerElementNotConstant(Init);
1356    return true;
1357  }
1358  case Expr::CompoundLiteralExprClass:
1359    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1360    // but vectors are allowed to be magic.
1361    if (Init->getType()->isVectorType())
1362      return false;
1363    InitializerElementNotConstant(Init);
1364    return true;
1365  case Expr::UnaryOperatorClass: {
1366    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1367
1368    switch (Exp->getOpcode()) {
1369    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1370    // See C99 6.6p3.
1371    default:
1372      InitializerElementNotConstant(Init);
1373      return true;
1374    case UnaryOperator::SizeOf:
1375    case UnaryOperator::AlignOf:
1376    case UnaryOperator::OffsetOf:
1377      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1378      // See C99 6.5.3.4p2 and 6.6p3.
1379      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1380        return false;
1381      InitializerElementNotConstant(Init);
1382      return true;
1383    case UnaryOperator::Extension:
1384    case UnaryOperator::LNot:
1385    case UnaryOperator::Plus:
1386    case UnaryOperator::Minus:
1387    case UnaryOperator::Not:
1388      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1389    }
1390  }
1391  case Expr::SizeOfAlignOfTypeExprClass: {
1392    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1393    // Special check for void types, which are allowed as an extension
1394    if (Exp->getArgumentType()->isVoidType())
1395      return false;
1396    // alignof always evaluates to a constant.
1397    // FIXME: is sizeof(int[3.0]) a constant expression?
1398    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1399      InitializerElementNotConstant(Init);
1400      return true;
1401    }
1402    return false;
1403  }
1404  case Expr::BinaryOperatorClass: {
1405    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1406
1407    if (Exp->getLHS()->getType()->isArithmeticType() &&
1408        Exp->getRHS()->getType()->isArithmeticType()) {
1409      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1410             CheckArithmeticConstantExpression(Exp->getRHS());
1411    }
1412
1413    if (Exp->getLHS()->getType()->isPointerType() &&
1414        Exp->getRHS()->getType()->isPointerType()) {
1415      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1416      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1417
1418      // Only allow a null (constant integer) base; we could
1419      // allow some additional cases if necessary, but this
1420      // is sufficient to cover offsetof-like constructs.
1421      if (!LHSBase && !RHSBase) {
1422        return CheckAddressConstantExpression(Exp->getLHS()) ||
1423               CheckAddressConstantExpression(Exp->getRHS());
1424      }
1425    }
1426
1427    InitializerElementNotConstant(Init);
1428    return true;
1429  }
1430  case Expr::ImplicitCastExprClass:
1431  case Expr::CStyleCastExprClass: {
1432    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1433    if (SubExpr->getType()->isArithmeticType())
1434      return CheckArithmeticConstantExpression(SubExpr);
1435
1436    if (SubExpr->getType()->isPointerType()) {
1437      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1438      // If the pointer has a null base, this is an offsetof-like construct
1439      if (!Base)
1440        return CheckAddressConstantExpression(SubExpr);
1441    }
1442
1443    InitializerElementNotConstant(Init);
1444    return true;
1445  }
1446  case Expr::ConditionalOperatorClass: {
1447    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1448
1449    // If GNU extensions are disabled, we require all operands to be arithmetic
1450    // constant expressions.
1451    if (getLangOptions().NoExtensions) {
1452      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1453          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1454             CheckArithmeticConstantExpression(Exp->getRHS());
1455    }
1456
1457    // Otherwise, we have to emulate some of the behavior of fold here.
1458    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1459    // because it can constant fold things away.  To retain compatibility with
1460    // GCC code, we see if we can fold the condition to a constant (which we
1461    // should always be able to do in theory).  If so, we only require the
1462    // specified arm of the conditional to be a constant.  This is a horrible
1463    // hack, but is require by real world code that uses __builtin_constant_p.
1464    APValue Val;
1465    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1466      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1467      // won't be able to either.  Use it to emit the diagnostic though.
1468      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1469      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1470      return Res;
1471    }
1472
1473    // Verify that the side following the condition is also a constant.
1474    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1475    if (Val.getInt() == 0)
1476      std::swap(TrueSide, FalseSide);
1477
1478    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1479      return true;
1480
1481    // Okay, the evaluated side evaluates to a constant, so we accept this.
1482    // Check to see if the other side is obviously not a constant.  If so,
1483    // emit a warning that this is a GNU extension.
1484    if (FalseSide && !FalseSide->isEvaluatable(Context))
1485      Diag(Init->getExprLoc(),
1486           diag::ext_typecheck_expression_not_constant_but_accepted,
1487           FalseSide->getSourceRange());
1488    return false;
1489  }
1490  }
1491}
1492
1493bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1494  Init = Init->IgnoreParens();
1495
1496  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1497  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1498    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1499
1500  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1501    return CheckForConstantInitializer(e->getInitializer(), DclT);
1502
1503  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1504    unsigned numInits = Exp->getNumInits();
1505    for (unsigned i = 0; i < numInits; i++) {
1506      // FIXME: Need to get the type of the declaration for C++,
1507      // because it could be a reference?
1508      if (CheckForConstantInitializer(Exp->getInit(i),
1509                                      Exp->getInit(i)->getType()))
1510        return true;
1511    }
1512    return false;
1513  }
1514
1515  if (Init->isNullPointerConstant(Context))
1516    return false;
1517  if (Init->getType()->isArithmeticType()) {
1518    QualType InitTy = Context.getCanonicalType(Init->getType())
1519                             .getUnqualifiedType();
1520    if (InitTy == Context.BoolTy) {
1521      // Special handling for pointers implicitly cast to bool;
1522      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1523      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1524        Expr* SubE = ICE->getSubExpr();
1525        if (SubE->getType()->isPointerType() ||
1526            SubE->getType()->isArrayType() ||
1527            SubE->getType()->isFunctionType()) {
1528          return CheckAddressConstantExpression(Init);
1529        }
1530      }
1531    } else if (InitTy->isIntegralType()) {
1532      Expr* SubE = 0;
1533      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1534        SubE = CE->getSubExpr();
1535      // Special check for pointer cast to int; we allow as an extension
1536      // an address constant cast to an integer if the integer
1537      // is of an appropriate width (this sort of code is apparently used
1538      // in some places).
1539      // FIXME: Add pedwarn?
1540      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1541      if (SubE && (SubE->getType()->isPointerType() ||
1542                   SubE->getType()->isArrayType() ||
1543                   SubE->getType()->isFunctionType())) {
1544        unsigned IntWidth = Context.getTypeSize(Init->getType());
1545        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1546        if (IntWidth >= PointerWidth)
1547          return CheckAddressConstantExpression(Init);
1548      }
1549    }
1550
1551    return CheckArithmeticConstantExpression(Init);
1552  }
1553
1554  if (Init->getType()->isPointerType())
1555    return CheckAddressConstantExpression(Init);
1556
1557  // An array type at the top level that isn't an init-list must
1558  // be a string literal
1559  if (Init->getType()->isArrayType())
1560    return false;
1561
1562  if (Init->getType()->isFunctionType())
1563    return false;
1564
1565  // Allow block exprs at top level.
1566  if (Init->getType()->isBlockPointerType())
1567    return false;
1568
1569  InitializerElementNotConstant(Init);
1570  return true;
1571}
1572
1573void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1574  Decl *RealDecl = static_cast<Decl *>(dcl);
1575  Expr *Init = static_cast<Expr *>(init);
1576  assert(Init && "missing initializer");
1577
1578  // If there is no declaration, there was an error parsing it.  Just ignore
1579  // the initializer.
1580  if (RealDecl == 0) {
1581    delete Init;
1582    return;
1583  }
1584
1585  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1586  if (!VDecl) {
1587    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1588         diag::err_illegal_initializer);
1589    RealDecl->setInvalidDecl();
1590    return;
1591  }
1592  // Get the decls type and save a reference for later, since
1593  // CheckInitializerTypes may change it.
1594  QualType DclT = VDecl->getType(), SavT = DclT;
1595  if (VDecl->isBlockVarDecl()) {
1596    VarDecl::StorageClass SC = VDecl->getStorageClass();
1597    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1598      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1599      VDecl->setInvalidDecl();
1600    } else if (!VDecl->isInvalidDecl()) {
1601      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1602                                VDecl->getName()))
1603        VDecl->setInvalidDecl();
1604
1605      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1606      if (!getLangOptions().CPlusPlus) {
1607        if (SC == VarDecl::Static) // C99 6.7.8p4.
1608          CheckForConstantInitializer(Init, DclT);
1609      }
1610    }
1611  } else if (VDecl->isFileVarDecl()) {
1612    if (VDecl->getStorageClass() == VarDecl::Extern)
1613      Diag(VDecl->getLocation(), diag::warn_extern_init);
1614    if (!VDecl->isInvalidDecl())
1615      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1616                                VDecl->getName()))
1617        VDecl->setInvalidDecl();
1618
1619    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1620    if (!getLangOptions().CPlusPlus) {
1621      // C99 6.7.8p4. All file scoped initializers need to be constant.
1622      CheckForConstantInitializer(Init, DclT);
1623    }
1624  }
1625  // If the type changed, it means we had an incomplete type that was
1626  // completed by the initializer. For example:
1627  //   int ary[] = { 1, 3, 5 };
1628  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1629  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1630    VDecl->setType(DclT);
1631    Init->setType(DclT);
1632  }
1633
1634  // Attach the initializer to the decl.
1635  VDecl->setInit(Init);
1636  return;
1637}
1638
1639void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1640  Decl *RealDecl = static_cast<Decl *>(dcl);
1641
1642  // If there is no declaration, there was an error parsing it. Just ignore it.
1643  if (RealDecl == 0)
1644    return;
1645
1646  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1647    QualType Type = Var->getType();
1648    // C++ [dcl.init.ref]p3:
1649    //   The initializer can be omitted for a reference only in a
1650    //   parameter declaration (8.3.5), in the declaration of a
1651    //   function return type, in the declaration of a class member
1652    //   within its class declaration (9.2), and where the extern
1653    //   specifier is explicitly used.
1654    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1655      Diag(Var->getLocation(),
1656           diag::err_reference_var_requires_init,
1657           Var->getName(),
1658           SourceRange(Var->getLocation(), Var->getLocation()));
1659      Var->setInvalidDecl();
1660      return;
1661    }
1662
1663    // C++ [dcl.init]p9:
1664    //
1665    //   If no initializer is specified for an object, and the object
1666    //   is of (possibly cv-qualified) non-POD class type (or array
1667    //   thereof), the object shall be default-initialized; if the
1668    //   object is of const-qualified type, the underlying class type
1669    //   shall have a user-declared default constructor.
1670    if (getLangOptions().CPlusPlus) {
1671      QualType InitType = Type;
1672      if (const ArrayType *Array = Context.getAsArrayType(Type))
1673        InitType = Array->getElementType();
1674      if (InitType->isRecordType()) {
1675        const CXXConstructorDecl *Constructor
1676          = PerformInitializationByConstructor(InitType, 0, 0,
1677                                               Var->getLocation(),
1678                                               SourceRange(Var->getLocation(),
1679                                                           Var->getLocation()),
1680                                               Var->getName(),
1681                                               IK_Default);
1682        if (!Constructor)
1683          Var->setInvalidDecl();
1684      }
1685    }
1686
1687#if 0
1688    // FIXME: Temporarily disabled because we are not properly parsing
1689    // linkage specifications on declarations, e.g.,
1690    //
1691    //   extern "C" const CGPoint CGPointerZero;
1692    //
1693    // C++ [dcl.init]p9:
1694    //
1695    //     If no initializer is specified for an object, and the
1696    //     object is of (possibly cv-qualified) non-POD class type (or
1697    //     array thereof), the object shall be default-initialized; if
1698    //     the object is of const-qualified type, the underlying class
1699    //     type shall have a user-declared default
1700    //     constructor. Otherwise, if no initializer is specified for
1701    //     an object, the object and its subobjects, if any, have an
1702    //     indeterminate initial value; if the object or any of its
1703    //     subobjects are of const-qualified type, the program is
1704    //     ill-formed.
1705    //
1706    // This isn't technically an error in C, so we don't diagnose it.
1707    //
1708    // FIXME: Actually perform the POD/user-defined default
1709    // constructor check.
1710    if (getLangOptions().CPlusPlus &&
1711        Context.getCanonicalType(Type).isConstQualified() &&
1712        Var->getStorageClass() != VarDecl::Extern)
1713      Diag(Var->getLocation(),
1714           diag::err_const_var_requires_init,
1715           Var->getName(),
1716           SourceRange(Var->getLocation(), Var->getLocation()));
1717#endif
1718  }
1719}
1720
1721/// The declarators are chained together backwards, reverse the list.
1722Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1723  // Often we have single declarators, handle them quickly.
1724  Decl *GroupDecl = static_cast<Decl*>(group);
1725  if (GroupDecl == 0)
1726    return 0;
1727
1728  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1729  ScopedDecl *NewGroup = 0;
1730  if (Group->getNextDeclarator() == 0)
1731    NewGroup = Group;
1732  else { // reverse the list.
1733    while (Group) {
1734      ScopedDecl *Next = Group->getNextDeclarator();
1735      Group->setNextDeclarator(NewGroup);
1736      NewGroup = Group;
1737      Group = Next;
1738    }
1739  }
1740  // Perform semantic analysis that depends on having fully processed both
1741  // the declarator and initializer.
1742  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1743    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1744    if (!IDecl)
1745      continue;
1746    QualType T = IDecl->getType();
1747
1748    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1749    // static storage duration, it shall not have a variable length array.
1750    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1751        IDecl->getStorageClass() == VarDecl::Static) {
1752      if (T->isVariableArrayType()) {
1753        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1754        IDecl->setInvalidDecl();
1755      }
1756    }
1757    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1758    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1759    if (IDecl->isBlockVarDecl() &&
1760        IDecl->getStorageClass() != VarDecl::Extern) {
1761      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1762        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1763             T.getAsString());
1764        IDecl->setInvalidDecl();
1765      }
1766    }
1767    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1768    // object that has file scope without an initializer, and without a
1769    // storage-class specifier or with the storage-class specifier "static",
1770    // constitutes a tentative definition. Note: A tentative definition with
1771    // external linkage is valid (C99 6.2.2p5).
1772    if (isTentativeDefinition(IDecl)) {
1773      if (T->isIncompleteArrayType()) {
1774        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1775        // array to be completed. Don't issue a diagnostic.
1776      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1777        // C99 6.9.2p3: If the declaration of an identifier for an object is
1778        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1779        // declared type shall not be an incomplete type.
1780        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1781             T.getAsString());
1782        IDecl->setInvalidDecl();
1783      }
1784    }
1785    if (IDecl->isFileVarDecl())
1786      CheckForFileScopedRedefinitions(S, IDecl);
1787  }
1788  return NewGroup;
1789}
1790
1791/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1792/// to introduce parameters into function prototype scope.
1793Sema::DeclTy *
1794Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1795  const DeclSpec &DS = D.getDeclSpec();
1796
1797  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1798  VarDecl::StorageClass StorageClass = VarDecl::None;
1799  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1800    StorageClass = VarDecl::Register;
1801  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1802    Diag(DS.getStorageClassSpecLoc(),
1803         diag::err_invalid_storage_class_in_func_decl);
1804    D.getMutableDeclSpec().ClearStorageClassSpecs();
1805  }
1806  if (DS.isThreadSpecified()) {
1807    Diag(DS.getThreadSpecLoc(),
1808         diag::err_invalid_storage_class_in_func_decl);
1809    D.getMutableDeclSpec().ClearStorageClassSpecs();
1810  }
1811
1812  // Check that there are no default arguments inside the type of this
1813  // parameter (C++ only).
1814  if (getLangOptions().CPlusPlus)
1815    CheckExtraCXXDefaultArguments(D);
1816
1817  // In this context, we *do not* check D.getInvalidType(). If the declarator
1818  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1819  // though it will not reflect the user specified type.
1820  QualType parmDeclType = GetTypeForDeclarator(D, S);
1821
1822  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1823
1824  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1825  // Can this happen for params?  We already checked that they don't conflict
1826  // among each other.  Here they can only shadow globals, which is ok.
1827  IdentifierInfo *II = D.getIdentifier();
1828  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1829    if (S->isDeclScope(PrevDecl)) {
1830      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1831           dyn_cast<NamedDecl>(PrevDecl)->getName());
1832
1833      // Recover by removing the name
1834      II = 0;
1835      D.SetIdentifier(0, D.getIdentifierLoc());
1836    }
1837  }
1838
1839  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1840  // Doing the promotion here has a win and a loss. The win is the type for
1841  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1842  // code generator). The loss is the orginal type isn't preserved. For example:
1843  //
1844  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1845  //    int blockvardecl[5];
1846  //    sizeof(parmvardecl);  // size == 4
1847  //    sizeof(blockvardecl); // size == 20
1848  // }
1849  //
1850  // For expressions, all implicit conversions are captured using the
1851  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1852  //
1853  // FIXME: If a source translation tool needs to see the original type, then
1854  // we need to consider storing both types (in ParmVarDecl)...
1855  //
1856  if (parmDeclType->isArrayType()) {
1857    // int x[restrict 4] ->  int *restrict
1858    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1859  } else if (parmDeclType->isFunctionType())
1860    parmDeclType = Context.getPointerType(parmDeclType);
1861
1862  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1863                                         D.getIdentifierLoc(), II,
1864                                         parmDeclType, StorageClass,
1865                                         0, 0);
1866
1867  if (D.getInvalidType())
1868    New->setInvalidDecl();
1869
1870  if (II)
1871    PushOnScopeChains(New, S);
1872
1873  ProcessDeclAttributes(New, D);
1874  return New;
1875
1876}
1877
1878Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1879  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1880  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1881         "Not a function declarator!");
1882  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1883
1884  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1885  // for a K&R function.
1886  if (!FTI.hasPrototype) {
1887    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1888      if (FTI.ArgInfo[i].Param == 0) {
1889        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1890             FTI.ArgInfo[i].Ident->getName());
1891        // Implicitly declare the argument as type 'int' for lack of a better
1892        // type.
1893        DeclSpec DS;
1894        const char* PrevSpec; // unused
1895        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1896                           PrevSpec);
1897        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1898        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1899        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1900      }
1901    }
1902  } else {
1903    // FIXME: Diagnose arguments without names in C.
1904  }
1905
1906  Scope *GlobalScope = FnBodyScope->getParent();
1907
1908  return ActOnStartOfFunctionDef(FnBodyScope,
1909                                 ActOnDeclarator(GlobalScope, D, 0));
1910}
1911
1912Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1913  Decl *decl = static_cast<Decl*>(D);
1914  FunctionDecl *FD = cast<FunctionDecl>(decl);
1915
1916  // See if this is a redefinition.
1917  const FunctionDecl *Definition;
1918  if (FD->getBody(Definition)) {
1919    Diag(FD->getLocation(), diag::err_redefinition,
1920         FD->getName());
1921    Diag(Definition->getLocation(), diag::err_previous_definition);
1922  }
1923
1924  PushDeclContext(FD);
1925
1926  // Check the validity of our function parameters
1927  CheckParmsForFunctionDef(FD);
1928
1929  // Introduce our parameters into the function scope
1930  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1931    ParmVarDecl *Param = FD->getParamDecl(p);
1932    // If this has an identifier, add it to the scope stack.
1933    if (Param->getIdentifier())
1934      PushOnScopeChains(Param, FnBodyScope);
1935  }
1936
1937  return FD;
1938}
1939
1940Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1941  Decl *dcl = static_cast<Decl *>(D);
1942  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1943    FD->setBody((Stmt*)Body);
1944    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1945  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1946    MD->setBody((Stmt*)Body);
1947  } else
1948    return 0;
1949  PopDeclContext();
1950  // Verify and clean out per-function state.
1951
1952  // Check goto/label use.
1953  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1954       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1955    // Verify that we have no forward references left.  If so, there was a goto
1956    // or address of a label taken, but no definition of it.  Label fwd
1957    // definitions are indicated with a null substmt.
1958    if (I->second->getSubStmt() == 0) {
1959      LabelStmt *L = I->second;
1960      // Emit error.
1961      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1962
1963      // At this point, we have gotos that use the bogus label.  Stitch it into
1964      // the function body so that they aren't leaked and that the AST is well
1965      // formed.
1966      if (Body) {
1967        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1968        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1969      } else {
1970        // The whole function wasn't parsed correctly, just delete this.
1971        delete L;
1972      }
1973    }
1974  }
1975  LabelMap.clear();
1976
1977  return D;
1978}
1979
1980/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1981/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1982ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1983                                           IdentifierInfo &II, Scope *S) {
1984  // Extension in C99.  Legal in C90, but warn about it.
1985  if (getLangOptions().C99)
1986    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1987  else
1988    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1989
1990  // FIXME: handle stuff like:
1991  // void foo() { extern float X(); }
1992  // void bar() { X(); }  <-- implicit decl for X in another scope.
1993
1994  // Set a Declarator for the implicit definition: int foo();
1995  const char *Dummy;
1996  DeclSpec DS;
1997  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1998  Error = Error; // Silence warning.
1999  assert(!Error && "Error setting up implicit decl!");
2000  Declarator D(DS, Declarator::BlockContext);
2001  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2002  D.SetIdentifier(&II, Loc);
2003
2004  // Insert this function into translation-unit scope.
2005
2006  DeclContext *PrevDC = CurContext;
2007  CurContext = Context.getTranslationUnitDecl();
2008
2009  FunctionDecl *FD =
2010    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2011  FD->setImplicit();
2012
2013  CurContext = PrevDC;
2014
2015  return FD;
2016}
2017
2018
2019TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2020                                    ScopedDecl *LastDeclarator) {
2021  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2022  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2023
2024  // Scope manipulation handled by caller.
2025  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2026                                           D.getIdentifierLoc(),
2027                                           D.getIdentifier(),
2028                                           T, LastDeclarator);
2029  if (D.getInvalidType())
2030    NewTD->setInvalidDecl();
2031  return NewTD;
2032}
2033
2034/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2035/// former case, Name will be non-null.  In the later case, Name will be null.
2036/// TagType indicates what kind of tag this is. TK indicates whether this is a
2037/// reference/declaration/definition of a tag.
2038Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2039                             SourceLocation KWLoc, IdentifierInfo *Name,
2040                             SourceLocation NameLoc, AttributeList *Attr) {
2041  // If this is a use of an existing tag, it must have a name.
2042  assert((Name != 0 || TK == TK_Definition) &&
2043         "Nameless record must be a definition!");
2044
2045  TagDecl::TagKind Kind;
2046  switch (TagType) {
2047  default: assert(0 && "Unknown tag type!");
2048  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2049  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2050  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2051  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2052  }
2053
2054  // Two code paths: a new one for structs/unions/classes where we create
2055  //   separate decls for forward declarations, and an old (eventually to
2056  //   be removed) code path for enums.
2057  if (Kind != TagDecl::TK_enum)
2058    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
2059
2060  // If this is a named struct, check to see if there was a previous forward
2061  // declaration or definition.
2062  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2063  ScopedDecl *PrevDecl =
2064    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
2065
2066  if (PrevDecl) {
2067    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2068            "unexpected Decl type");
2069    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2070      // If this is a use of a previous tag, or if the tag is already declared
2071      // in the same scope (so that the definition/declaration completes or
2072      // rementions the tag), reuse the decl.
2073      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
2074        // Make sure that this wasn't declared as an enum and now used as a
2075        // struct or something similar.
2076        if (PrevTagDecl->getTagKind() != Kind) {
2077          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2078          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2079          // Recover by making this an anonymous redefinition.
2080          Name = 0;
2081          PrevDecl = 0;
2082        } else {
2083          // If this is a use or a forward declaration, we're good.
2084          if (TK != TK_Definition)
2085            return PrevDecl;
2086
2087          // Diagnose attempts to redefine a tag.
2088          if (PrevTagDecl->isDefinition()) {
2089            Diag(NameLoc, diag::err_redefinition, Name->getName());
2090            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2091            // If this is a redefinition, recover by making this struct be
2092            // anonymous, which will make any later references get the previous
2093            // definition.
2094            Name = 0;
2095          } else {
2096            // Okay, this is definition of a previously declared or referenced
2097            // tag. Move the location of the decl to be the definition site.
2098            PrevDecl->setLocation(NameLoc);
2099            return PrevDecl;
2100          }
2101        }
2102      }
2103      // If we get here, this is a definition of a new struct type in a nested
2104      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2105      // type.
2106    } else {
2107      // PrevDecl is a namespace.
2108      if (isDeclInScope(PrevDecl, CurContext, S)) {
2109        // The tag name clashes with a namespace name, issue an error and
2110        // recover by making this tag be anonymous.
2111        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2112        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2113        Name = 0;
2114      }
2115    }
2116  }
2117
2118  // If there is an identifier, use the location of the identifier as the
2119  // location of the decl, otherwise use the location of the struct/union
2120  // keyword.
2121  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2122
2123  // Otherwise, if this is the first time we've seen this tag, create the decl.
2124  TagDecl *New;
2125  if (Kind == TagDecl::TK_enum) {
2126    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2127    // enum X { A, B, C } D;    D should chain to X.
2128    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
2129    // If this is an undefined enum, warn.
2130    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2131  } else {
2132    // struct/union/class
2133
2134    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2135    // struct X { int A; } D;    D should chain to X.
2136    if (getLangOptions().CPlusPlus)
2137      // FIXME: Look for a way to use RecordDecl for simple structs.
2138      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
2139    else
2140      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
2141  }
2142
2143  // If this has an identifier, add it to the scope stack.
2144  if (Name) {
2145    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2146    // we find one that is.
2147    while ((S->getFlags() & Scope::DeclScope) == 0)
2148      S = S->getParent();
2149
2150    // Add it to the decl chain.
2151    PushOnScopeChains(New, S);
2152  }
2153
2154  if (Attr)
2155    ProcessDeclAttributeList(New, Attr);
2156  return New;
2157}
2158
2159/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2160///  the logic for enums, we create separate decls for forward declarations.
2161///  This is called by ActOnTag, but eventually will replace its logic.
2162Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2163                             SourceLocation KWLoc, IdentifierInfo *Name,
2164                             SourceLocation NameLoc, AttributeList *Attr) {
2165
2166  // If this is a named struct, check to see if there was a previous forward
2167  // declaration or definition.
2168  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2169  ScopedDecl *PrevDecl =
2170    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
2171
2172  if (PrevDecl) {
2173    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2174           "unexpected Decl type");
2175
2176    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2177      // If this is a use of a previous tag, or if the tag is already declared
2178      // in the same scope (so that the definition/declaration completes or
2179      // rementions the tag), reuse the decl.
2180      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
2181        // Make sure that this wasn't declared as an enum and now used as a
2182        // struct or something similar.
2183        if (PrevTagDecl->getTagKind() != Kind) {
2184          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2185          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2186          // Recover by making this an anonymous redefinition.
2187          Name = 0;
2188          PrevDecl = 0;
2189        } else {
2190          // If this is a use, return the original decl.
2191
2192          // FIXME: In the future, return a variant or some other clue
2193          //  for the consumer of this Decl to know it doesn't own it.
2194          //  For our current ASTs this shouldn't be a problem, but will
2195          //  need to be changed with DeclGroups.
2196          if (TK == TK_Reference)
2197            return PrevDecl;
2198
2199          // The new decl is a definition?
2200          if (TK == TK_Definition) {
2201            // Diagnose attempts to redefine a tag.
2202            if (RecordDecl* DefRecord =
2203                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2204              Diag(NameLoc, diag::err_redefinition, Name->getName());
2205              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2206              // If this is a redefinition, recover by making this struct be
2207              // anonymous, which will make any later references get the previous
2208              // definition.
2209              Name = 0;
2210              PrevDecl = 0;
2211            }
2212            // Okay, this is definition of a previously declared or referenced
2213            // tag.  We're going to create a new Decl.
2214          }
2215        }
2216        // If we get here we have (another) forward declaration.  Just create
2217        // a new decl.
2218      }
2219      else {
2220        // If we get here, this is a definition of a new struct type in a nested
2221        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2222        // new decl/type.  We set PrevDecl to NULL so that the Records
2223        // have distinct types.
2224        PrevDecl = 0;
2225      }
2226    } else {
2227      // PrevDecl is a namespace.
2228      if (isDeclInScope(PrevDecl, CurContext, S)) {
2229        // The tag name clashes with a namespace name, issue an error and
2230        // recover by making this tag be anonymous.
2231        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2232        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2233        Name = 0;
2234      }
2235    }
2236  }
2237
2238  // If there is an identifier, use the location of the identifier as the
2239  // location of the decl, otherwise use the location of the struct/union
2240  // keyword.
2241  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2242
2243  // Otherwise, if this is the first time we've seen this tag, create the decl.
2244  TagDecl *New;
2245
2246  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2247  // struct X { int A; } D;    D should chain to X.
2248  if (getLangOptions().CPlusPlus)
2249    // FIXME: Look for a way to use RecordDecl for simple structs.
2250    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2251                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2252  else
2253    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2254                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2255
2256  // If this has an identifier, add it to the scope stack.
2257  if ((TK == TK_Definition || !PrevDecl) && Name) {
2258    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2259    // we find one that is.
2260    while ((S->getFlags() & Scope::DeclScope) == 0)
2261      S = S->getParent();
2262
2263    // Add it to the decl chain.
2264    PushOnScopeChains(New, S);
2265  }
2266
2267  // Handle #pragma pack: if the #pragma pack stack has non-default
2268  // alignment, make up a packed attribute for this decl. These
2269  // attributes are checked when the ASTContext lays out the
2270  // structure.
2271  //
2272  // It is important for implementing the correct semantics that this
2273  // happen here (in act on tag decl). The #pragma pack stack is
2274  // maintained as a result of parser callbacks which can occur at
2275  // many points during the parsing of a struct declaration (because
2276  // the #pragma tokens are effectively skipped over during the
2277  // parsing of the struct).
2278  if (unsigned Alignment = PackContext.getAlignment())
2279    New->addAttr(new PackedAttr(Alignment * 8));
2280
2281  if (Attr)
2282    ProcessDeclAttributeList(New, Attr);
2283
2284  return New;
2285}
2286
2287
2288/// Collect the instance variables declared in an Objective-C object.  Used in
2289/// the creation of structures from objects using the @defs directive.
2290static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2291                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2292  if (Class->getSuperClass())
2293    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2294
2295  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2296  for (ObjCInterfaceDecl::ivar_iterator
2297        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2298
2299    ObjCIvarDecl* ID = *I;
2300    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2301                                                ID->getIdentifier(),
2302                                                ID->getType(),
2303                                                ID->getBitWidth()));
2304  }
2305}
2306
2307/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2308/// instance variables of ClassName into Decls.
2309void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2310                     IdentifierInfo *ClassName,
2311                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2312  // Check that ClassName is a valid class
2313  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2314  if (!Class) {
2315    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2316    return;
2317  }
2318  // Collect the instance variables
2319  CollectIvars(Class, Context, Decls);
2320}
2321
2322QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2323  // This method tries to turn a variable array into a constant
2324  // array even when the size isn't an ICE.  This is necessary
2325  // for compatibility with code that depends on gcc's buggy
2326  // constant expression folding, like struct {char x[(int)(char*)2];}
2327  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2328    APValue Result;
2329    if (VLATy->getSizeExpr() &&
2330        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2331      llvm::APSInt &Res = Result.getInt();
2332      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2333        return Context.getConstantArrayType(VLATy->getElementType(),
2334                                            Res, ArrayType::Normal, 0);
2335    }
2336  }
2337  return QualType();
2338}
2339
2340/// ActOnField - Each field of a struct/union/class is passed into this in order
2341/// to create a FieldDecl object for it.
2342Sema::DeclTy *Sema::ActOnField(Scope *S,
2343                               SourceLocation DeclStart,
2344                               Declarator &D, ExprTy *BitfieldWidth) {
2345  IdentifierInfo *II = D.getIdentifier();
2346  Expr *BitWidth = (Expr*)BitfieldWidth;
2347  SourceLocation Loc = DeclStart;
2348  if (II) Loc = D.getIdentifierLoc();
2349
2350  // FIXME: Unnamed fields can be handled in various different ways, for
2351  // example, unnamed unions inject all members into the struct namespace!
2352
2353  if (BitWidth) {
2354    // TODO: Validate.
2355    //printf("WARNING: BITFIELDS IGNORED!\n");
2356
2357    // 6.7.2.1p3
2358    // 6.7.2.1p4
2359
2360  } else {
2361    // Not a bitfield.
2362
2363    // validate II.
2364
2365  }
2366
2367  QualType T = GetTypeForDeclarator(D, S);
2368  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2369  bool InvalidDecl = false;
2370
2371  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2372  // than a variably modified type.
2373  if (T->isVariablyModifiedType()) {
2374    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2375    if (!FixedTy.isNull()) {
2376      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2377      T = FixedTy;
2378    } else {
2379      // FIXME: This diagnostic needs work
2380      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2381      InvalidDecl = true;
2382    }
2383  }
2384  // FIXME: Chain fielddecls together.
2385  FieldDecl *NewFD;
2386
2387  if (getLangOptions().CPlusPlus) {
2388    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2389    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2390                                 Loc, II, T, BitWidth);
2391    if (II)
2392      PushOnScopeChains(NewFD, S);
2393  }
2394  else
2395    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2396
2397  ProcessDeclAttributes(NewFD, D);
2398
2399  if (D.getInvalidType() || InvalidDecl)
2400    NewFD->setInvalidDecl();
2401  return NewFD;
2402}
2403
2404/// TranslateIvarVisibility - Translate visibility from a token ID to an
2405///  AST enum value.
2406static ObjCIvarDecl::AccessControl
2407TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2408  switch (ivarVisibility) {
2409  default: assert(0 && "Unknown visitibility kind");
2410  case tok::objc_private: return ObjCIvarDecl::Private;
2411  case tok::objc_public: return ObjCIvarDecl::Public;
2412  case tok::objc_protected: return ObjCIvarDecl::Protected;
2413  case tok::objc_package: return ObjCIvarDecl::Package;
2414  }
2415}
2416
2417/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2418/// in order to create an IvarDecl object for it.
2419Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2420                              SourceLocation DeclStart,
2421                              Declarator &D, ExprTy *BitfieldWidth,
2422                              tok::ObjCKeywordKind Visibility) {
2423  IdentifierInfo *II = D.getIdentifier();
2424  Expr *BitWidth = (Expr*)BitfieldWidth;
2425  SourceLocation Loc = DeclStart;
2426  if (II) Loc = D.getIdentifierLoc();
2427
2428  // FIXME: Unnamed fields can be handled in various different ways, for
2429  // example, unnamed unions inject all members into the struct namespace!
2430
2431
2432  if (BitWidth) {
2433    // TODO: Validate.
2434    //printf("WARNING: BITFIELDS IGNORED!\n");
2435
2436    // 6.7.2.1p3
2437    // 6.7.2.1p4
2438
2439  } else {
2440    // Not a bitfield.
2441
2442    // validate II.
2443
2444  }
2445
2446  QualType T = GetTypeForDeclarator(D, S);
2447  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2448  bool InvalidDecl = false;
2449
2450  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2451  // than a variably modified type.
2452  if (T->isVariablyModifiedType()) {
2453    // FIXME: This diagnostic needs work
2454    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2455    InvalidDecl = true;
2456  }
2457
2458  // Get the visibility (access control) for this ivar.
2459  ObjCIvarDecl::AccessControl ac =
2460    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2461                                        : ObjCIvarDecl::None;
2462
2463  // Construct the decl.
2464  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2465                                             (Expr *)BitfieldWidth);
2466
2467  // Process attributes attached to the ivar.
2468  ProcessDeclAttributes(NewID, D);
2469
2470  if (D.getInvalidType() || InvalidDecl)
2471    NewID->setInvalidDecl();
2472
2473  return NewID;
2474}
2475
2476void Sema::ActOnFields(Scope* S,
2477                       SourceLocation RecLoc, DeclTy *RecDecl,
2478                       DeclTy **Fields, unsigned NumFields,
2479                       SourceLocation LBrac, SourceLocation RBrac,
2480                       AttributeList *Attr) {
2481  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2482  assert(EnclosingDecl && "missing record or interface decl");
2483  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2484
2485  if (Record)
2486    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2487      // Diagnose code like:
2488      //     struct S { struct S {} X; };
2489      // We discover this when we complete the outer S.  Reject and ignore the
2490      // outer S.
2491      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2492           DefRecord->getKindName());
2493      Diag(RecLoc, diag::err_previous_definition);
2494      Record->setInvalidDecl();
2495      return;
2496    }
2497
2498  // Verify that all the fields are okay.
2499  unsigned NumNamedMembers = 0;
2500  llvm::SmallVector<FieldDecl*, 32> RecFields;
2501  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2502
2503  for (unsigned i = 0; i != NumFields; ++i) {
2504
2505    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2506    assert(FD && "missing field decl");
2507
2508    // Remember all fields.
2509    RecFields.push_back(FD);
2510
2511    // Get the type for the field.
2512    Type *FDTy = FD->getType().getTypePtr();
2513
2514    // C99 6.7.2.1p2 - A field may not be a function type.
2515    if (FDTy->isFunctionType()) {
2516      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2517           FD->getName());
2518      FD->setInvalidDecl();
2519      EnclosingDecl->setInvalidDecl();
2520      continue;
2521    }
2522    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2523    if (FDTy->isIncompleteType()) {
2524      if (!Record) {  // Incomplete ivar type is always an error.
2525        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2526        FD->setInvalidDecl();
2527        EnclosingDecl->setInvalidDecl();
2528        continue;
2529      }
2530      if (i != NumFields-1 ||                   // ... that the last member ...
2531          !Record->isStruct() ||  // ... of a structure ...
2532          !FDTy->isArrayType()) {         //... may have incomplete array type.
2533        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2534        FD->setInvalidDecl();
2535        EnclosingDecl->setInvalidDecl();
2536        continue;
2537      }
2538      if (NumNamedMembers < 1) {  //... must have more than named member ...
2539        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2540             FD->getName());
2541        FD->setInvalidDecl();
2542        EnclosingDecl->setInvalidDecl();
2543        continue;
2544      }
2545      // Okay, we have a legal flexible array member at the end of the struct.
2546      if (Record)
2547        Record->setHasFlexibleArrayMember(true);
2548    }
2549    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2550    /// field of another structure or the element of an array.
2551    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2552      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2553        // If this is a member of a union, then entire union becomes "flexible".
2554        if (Record && Record->isUnion()) {
2555          Record->setHasFlexibleArrayMember(true);
2556        } else {
2557          // If this is a struct/class and this is not the last element, reject
2558          // it.  Note that GCC supports variable sized arrays in the middle of
2559          // structures.
2560          if (i != NumFields-1) {
2561            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2562                 FD->getName());
2563            FD->setInvalidDecl();
2564            EnclosingDecl->setInvalidDecl();
2565            continue;
2566          }
2567          // We support flexible arrays at the end of structs in other structs
2568          // as an extension.
2569          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2570               FD->getName());
2571          if (Record)
2572            Record->setHasFlexibleArrayMember(true);
2573        }
2574      }
2575    }
2576    /// A field cannot be an Objective-c object
2577    if (FDTy->isObjCInterfaceType()) {
2578      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2579           FD->getName());
2580      FD->setInvalidDecl();
2581      EnclosingDecl->setInvalidDecl();
2582      continue;
2583    }
2584    // Keep track of the number of named members.
2585    if (IdentifierInfo *II = FD->getIdentifier()) {
2586      // Detect duplicate member names.
2587      if (!FieldIDs.insert(II)) {
2588        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2589        // Find the previous decl.
2590        SourceLocation PrevLoc;
2591        for (unsigned i = 0; ; ++i) {
2592          assert(i != RecFields.size() && "Didn't find previous def!");
2593          if (RecFields[i]->getIdentifier() == II) {
2594            PrevLoc = RecFields[i]->getLocation();
2595            break;
2596          }
2597        }
2598        Diag(PrevLoc, diag::err_previous_definition);
2599        FD->setInvalidDecl();
2600        EnclosingDecl->setInvalidDecl();
2601        continue;
2602      }
2603      ++NumNamedMembers;
2604    }
2605  }
2606
2607  // Okay, we successfully defined 'Record'.
2608  if (Record) {
2609    Record->defineBody(Context, &RecFields[0], RecFields.size());
2610    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2611    // Sema::ActOnFinishCXXClassDef.
2612    if (!isa<CXXRecordDecl>(Record))
2613      Consumer.HandleTagDeclDefinition(Record);
2614  } else {
2615    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2616    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2617      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2618    else if (ObjCImplementationDecl *IMPDecl =
2619               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2620      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2621      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2622      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2623    }
2624  }
2625
2626  if (Attr)
2627    ProcessDeclAttributeList(Record, Attr);
2628}
2629
2630Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2631                                      DeclTy *lastEnumConst,
2632                                      SourceLocation IdLoc, IdentifierInfo *Id,
2633                                      SourceLocation EqualLoc, ExprTy *val) {
2634  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2635  EnumConstantDecl *LastEnumConst =
2636    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2637  Expr *Val = static_cast<Expr*>(val);
2638
2639  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2640  // we find one that is.
2641  while ((S->getFlags() & Scope::DeclScope) == 0)
2642    S = S->getParent();
2643
2644  // Verify that there isn't already something declared with this name in this
2645  // scope.
2646  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2647    // When in C++, we may get a TagDecl with the same name; in this case the
2648    // enum constant will 'hide' the tag.
2649    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2650           "Received TagDecl when not in C++!");
2651    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2652      if (isa<EnumConstantDecl>(PrevDecl))
2653        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2654      else
2655        Diag(IdLoc, diag::err_redefinition, Id->getName());
2656      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2657      delete Val;
2658      return 0;
2659    }
2660  }
2661
2662  llvm::APSInt EnumVal(32);
2663  QualType EltTy;
2664  if (Val) {
2665    // Make sure to promote the operand type to int.
2666    UsualUnaryConversions(Val);
2667
2668    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2669    SourceLocation ExpLoc;
2670    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2671      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2672           Id->getName());
2673      delete Val;
2674      Val = 0;  // Just forget about it.
2675    } else {
2676      EltTy = Val->getType();
2677    }
2678  }
2679
2680  if (!Val) {
2681    if (LastEnumConst) {
2682      // Assign the last value + 1.
2683      EnumVal = LastEnumConst->getInitVal();
2684      ++EnumVal;
2685
2686      // Check for overflow on increment.
2687      if (EnumVal < LastEnumConst->getInitVal())
2688        Diag(IdLoc, diag::warn_enum_value_overflow);
2689
2690      EltTy = LastEnumConst->getType();
2691    } else {
2692      // First value, set to zero.
2693      EltTy = Context.IntTy;
2694      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2695    }
2696  }
2697
2698  EnumConstantDecl *New =
2699    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2700                             Val, EnumVal,
2701                             LastEnumConst);
2702
2703  // Register this decl in the current scope stack.
2704  PushOnScopeChains(New, S);
2705  return New;
2706}
2707
2708// FIXME: For consistency with ActOnFields(), we should have the parser
2709// pass in the source location for the left/right braces.
2710void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2711                         DeclTy **Elements, unsigned NumElements) {
2712  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2713
2714  if (Enum && Enum->isDefinition()) {
2715    // Diagnose code like:
2716    //   enum e0 {
2717    //     E0 = sizeof(enum e0 { E1 })
2718    //   };
2719    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2720         Enum->getName());
2721    Diag(EnumLoc, diag::err_previous_definition);
2722    Enum->setInvalidDecl();
2723    return;
2724  }
2725  // TODO: If the result value doesn't fit in an int, it must be a long or long
2726  // long value.  ISO C does not support this, but GCC does as an extension,
2727  // emit a warning.
2728  unsigned IntWidth = Context.Target.getIntWidth();
2729
2730  // Verify that all the values are okay, compute the size of the values, and
2731  // reverse the list.
2732  unsigned NumNegativeBits = 0;
2733  unsigned NumPositiveBits = 0;
2734
2735  // Keep track of whether all elements have type int.
2736  bool AllElementsInt = true;
2737
2738  EnumConstantDecl *EltList = 0;
2739  for (unsigned i = 0; i != NumElements; ++i) {
2740    EnumConstantDecl *ECD =
2741      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2742    if (!ECD) continue;  // Already issued a diagnostic.
2743
2744    // If the enum value doesn't fit in an int, emit an extension warning.
2745    const llvm::APSInt &InitVal = ECD->getInitVal();
2746    assert(InitVal.getBitWidth() >= IntWidth &&
2747           "Should have promoted value to int");
2748    if (InitVal.getBitWidth() > IntWidth) {
2749      llvm::APSInt V(InitVal);
2750      V.trunc(IntWidth);
2751      V.extend(InitVal.getBitWidth());
2752      if (V != InitVal)
2753        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2754             InitVal.toString(10));
2755    }
2756
2757    // Keep track of the size of positive and negative values.
2758    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2759      NumPositiveBits = std::max(NumPositiveBits,
2760                                 (unsigned)InitVal.getActiveBits());
2761    else
2762      NumNegativeBits = std::max(NumNegativeBits,
2763                                 (unsigned)InitVal.getMinSignedBits());
2764
2765    // Keep track of whether every enum element has type int (very commmon).
2766    if (AllElementsInt)
2767      AllElementsInt = ECD->getType() == Context.IntTy;
2768
2769    ECD->setNextDeclarator(EltList);
2770    EltList = ECD;
2771  }
2772
2773  // Figure out the type that should be used for this enum.
2774  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2775  QualType BestType;
2776  unsigned BestWidth;
2777
2778  if (NumNegativeBits) {
2779    // If there is a negative value, figure out the smallest integer type (of
2780    // int/long/longlong) that fits.
2781    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2782      BestType = Context.IntTy;
2783      BestWidth = IntWidth;
2784    } else {
2785      BestWidth = Context.Target.getLongWidth();
2786
2787      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2788        BestType = Context.LongTy;
2789      else {
2790        BestWidth = Context.Target.getLongLongWidth();
2791
2792        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2793          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2794        BestType = Context.LongLongTy;
2795      }
2796    }
2797  } else {
2798    // If there is no negative value, figure out which of uint, ulong, ulonglong
2799    // fits.
2800    if (NumPositiveBits <= IntWidth) {
2801      BestType = Context.UnsignedIntTy;
2802      BestWidth = IntWidth;
2803    } else if (NumPositiveBits <=
2804               (BestWidth = Context.Target.getLongWidth())) {
2805      BestType = Context.UnsignedLongTy;
2806    } else {
2807      BestWidth = Context.Target.getLongLongWidth();
2808      assert(NumPositiveBits <= BestWidth &&
2809             "How could an initializer get larger than ULL?");
2810      BestType = Context.UnsignedLongLongTy;
2811    }
2812  }
2813
2814  // Loop over all of the enumerator constants, changing their types to match
2815  // the type of the enum if needed.
2816  for (unsigned i = 0; i != NumElements; ++i) {
2817    EnumConstantDecl *ECD =
2818      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2819    if (!ECD) continue;  // Already issued a diagnostic.
2820
2821    // Standard C says the enumerators have int type, but we allow, as an
2822    // extension, the enumerators to be larger than int size.  If each
2823    // enumerator value fits in an int, type it as an int, otherwise type it the
2824    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2825    // that X has type 'int', not 'unsigned'.
2826    if (ECD->getType() == Context.IntTy) {
2827      // Make sure the init value is signed.
2828      llvm::APSInt IV = ECD->getInitVal();
2829      IV.setIsSigned(true);
2830      ECD->setInitVal(IV);
2831      continue;  // Already int type.
2832    }
2833
2834    // Determine whether the value fits into an int.
2835    llvm::APSInt InitVal = ECD->getInitVal();
2836    bool FitsInInt;
2837    if (InitVal.isUnsigned() || !InitVal.isNegative())
2838      FitsInInt = InitVal.getActiveBits() < IntWidth;
2839    else
2840      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2841
2842    // If it fits into an integer type, force it.  Otherwise force it to match
2843    // the enum decl type.
2844    QualType NewTy;
2845    unsigned NewWidth;
2846    bool NewSign;
2847    if (FitsInInt) {
2848      NewTy = Context.IntTy;
2849      NewWidth = IntWidth;
2850      NewSign = true;
2851    } else if (ECD->getType() == BestType) {
2852      // Already the right type!
2853      continue;
2854    } else {
2855      NewTy = BestType;
2856      NewWidth = BestWidth;
2857      NewSign = BestType->isSignedIntegerType();
2858    }
2859
2860    // Adjust the APSInt value.
2861    InitVal.extOrTrunc(NewWidth);
2862    InitVal.setIsSigned(NewSign);
2863    ECD->setInitVal(InitVal);
2864
2865    // Adjust the Expr initializer and type.
2866    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2867    ECD->setType(NewTy);
2868  }
2869
2870  Enum->defineElements(EltList, BestType);
2871  Consumer.HandleTagDeclDefinition(Enum);
2872}
2873
2874Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2875                                          ExprTy *expr) {
2876  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2877
2878  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2879}
2880
2881Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2882                                     SourceLocation LBrace,
2883                                     SourceLocation RBrace,
2884                                     const char *Lang,
2885                                     unsigned StrSize,
2886                                     DeclTy *D) {
2887  LinkageSpecDecl::LanguageIDs Language;
2888  Decl *dcl = static_cast<Decl *>(D);
2889  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2890    Language = LinkageSpecDecl::lang_c;
2891  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2892    Language = LinkageSpecDecl::lang_cxx;
2893  else {
2894    Diag(Loc, diag::err_bad_language);
2895    return 0;
2896  }
2897
2898  // FIXME: Add all the various semantics of linkage specifications
2899  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2900}
2901
2902void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
2903                           ExprTy *alignment, SourceLocation PragmaLoc,
2904                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
2905  Expr *Alignment = static_cast<Expr *>(alignment);
2906
2907  // If specified then alignment must be a "small" power of two.
2908  unsigned AlignmentVal = 0;
2909  if (Alignment) {
2910    llvm::APSInt Val;
2911    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
2912        !Val.isPowerOf2() ||
2913        Val.getZExtValue() > 16) {
2914      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
2915      delete Alignment;
2916      return; // Ignore
2917    }
2918
2919    AlignmentVal = (unsigned) Val.getZExtValue();
2920  }
2921
2922  switch (Kind) {
2923  case Action::PPK_Default: // pack([n])
2924    PackContext.setAlignment(AlignmentVal);
2925    break;
2926
2927  case Action::PPK_Show: // pack(show)
2928    // Show the current alignment, making sure to show the right value
2929    // for the default.
2930    AlignmentVal = PackContext.getAlignment();
2931    // FIXME: This should come from the target.
2932    if (AlignmentVal == 0)
2933      AlignmentVal = 8;
2934    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
2935    break;
2936
2937  case Action::PPK_Push: // pack(push [, id] [, [n])
2938    PackContext.push(Name);
2939    // Set the new alignment if specified.
2940    if (Alignment)
2941      PackContext.setAlignment(AlignmentVal);
2942    break;
2943
2944  case Action::PPK_Pop: // pack(pop [, id] [,  n])
2945    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
2946    // "#pragma pack(pop, identifier, n) is undefined"
2947    if (Alignment && Name)
2948      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
2949
2950    // Do the pop.
2951    if (!PackContext.pop(Name)) {
2952      // If a name was specified then failure indicates the name
2953      // wasn't found. Otherwise failure indicates the stack was
2954      // empty.
2955      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
2956           Name ? "no record matching name" : "stack empty");
2957
2958      // FIXME: Warn about popping named records as MSVC does.
2959    } else {
2960      // Pop succeeded, set the new alignment if specified.
2961      if (Alignment)
2962        PackContext.setAlignment(AlignmentVal);
2963    }
2964    break;
2965
2966  default:
2967    assert(0 && "Invalid #pragma pack kind.");
2968  }
2969}
2970
2971bool PragmaPackStack::pop(IdentifierInfo *Name) {
2972  if (Stack.empty())
2973    return false;
2974
2975  // If name is empty just pop top.
2976  if (!Name) {
2977    Alignment = Stack.back().first;
2978    Stack.pop_back();
2979    return true;
2980  }
2981
2982  // Otherwise, find the named record.
2983  for (unsigned i = Stack.size(); i != 0; ) {
2984    --i;
2985    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
2986      // Found it, pop up to and including this record.
2987      Alignment = Stack[i].first;
2988      Stack.erase(Stack.begin() + i, Stack.end());
2989      return true;
2990    }
2991  }
2992
2993  return false;
2994}
2995