SemaDecl.cpp revision 4a480d6ebe944d528cd1453dbc6681bfbe8d3fc2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  LookupResult Result = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  Decl *IIDecl = 0;
45  switch (Result.getKind()) {
46  case LookupResult::NotFound:
47  case LookupResult::FoundOverloaded:
48  case LookupResult::AmbiguousBaseSubobjectTypes:
49  case LookupResult::AmbiguousBaseSubobjects:
50    // FIXME: In the event of an ambiguous lookup, we could visit all of
51    // the entities found to determine whether they are all types. This
52    // might provide better diagnostics.
53    return 0;
54
55  case LookupResult::Found:
56    IIDecl = Result.getAsDecl();
57    break;
58  }
59
60  if (isa<TypedefDecl>(IIDecl) ||
61      isa<ObjCInterfaceDecl>(IIDecl) ||
62      isa<TagDecl>(IIDecl) ||
63      isa<TemplateTypeParmDecl>(IIDecl))
64    return IIDecl;
65  return 0;
66}
67
68DeclContext *Sema::getContainingDC(DeclContext *DC) {
69  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
70    // A C++ out-of-line method will return to the file declaration context.
71    if (MD->isOutOfLineDefinition())
72      return MD->getLexicalDeclContext();
73
74    // A C++ inline method is parsed *after* the topmost class it was declared in
75    // is fully parsed (it's "complete").
76    // The parsing of a C++ inline method happens at the declaration context of
77    // the topmost (non-nested) class it is lexically declared in.
78    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
79    DC = MD->getParent();
80    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
81      DC = RD;
82
83    // Return the declaration context of the topmost class the inline method is
84    // declared in.
85    return DC;
86  }
87
88  if (isa<ObjCMethodDecl>(DC))
89    return Context.getTranslationUnitDecl();
90
91  if (Decl *D = dyn_cast<Decl>(DC))
92    return D->getLexicalDeclContext();
93
94  return DC->getLexicalParent();
95}
96
97void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
98  assert(getContainingDC(DC) == CurContext &&
99      "The next DeclContext should be lexically contained in the current one.");
100  CurContext = DC;
101  S->setEntity(DC);
102}
103
104void Sema::PopDeclContext() {
105  assert(CurContext && "DeclContext imbalance!");
106
107  CurContext = getContainingDC(CurContext);
108}
109
110/// Add this decl to the scope shadowed decl chains.
111void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
112  // Move up the scope chain until we find the nearest enclosing
113  // non-transparent context. The declaration will be introduced into this
114  // scope.
115  while (S->getEntity() &&
116         ((DeclContext *)S->getEntity())->isTransparentContext())
117    S = S->getParent();
118
119  S->AddDecl(D);
120
121  // Add scoped declarations into their context, so that they can be
122  // found later. Declarations without a context won't be inserted
123  // into any context.
124  CurContext->addDecl(D);
125
126  // C++ [basic.scope]p4:
127  //   -- exactly one declaration shall declare a class name or
128  //   enumeration name that is not a typedef name and the other
129  //   declarations shall all refer to the same object or
130  //   enumerator, or all refer to functions and function templates;
131  //   in this case the class name or enumeration name is hidden.
132  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
133    // We are pushing the name of a tag (enum or class).
134    if (CurContext->getLookupContext()
135          == TD->getDeclContext()->getLookupContext()) {
136      // We're pushing the tag into the current context, which might
137      // require some reshuffling in the identifier resolver.
138      IdentifierResolver::iterator
139        I = IdResolver.begin(TD->getDeclName(), CurContext,
140                             false/*LookInParentCtx*/),
141        IEnd = IdResolver.end();
142      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
143        NamedDecl *PrevDecl = *I;
144        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
145             PrevDecl = *I, ++I) {
146          if (TD->declarationReplaces(*I)) {
147            // This is a redeclaration. Remove it from the chain and
148            // break out, so that we'll add in the shadowed
149            // declaration.
150            S->RemoveDecl(*I);
151            if (PrevDecl == *I) {
152              IdResolver.RemoveDecl(*I);
153              IdResolver.AddDecl(TD);
154              return;
155            } else {
156              IdResolver.RemoveDecl(*I);
157              break;
158            }
159          }
160        }
161
162        // There is already a declaration with the same name in the same
163        // scope, which is not a tag declaration. It must be found
164        // before we find the new declaration, so insert the new
165        // declaration at the end of the chain.
166        IdResolver.AddShadowedDecl(TD, PrevDecl);
167
168        return;
169      }
170    }
171  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
172    // We are pushing the name of a function, which might be an
173    // overloaded name.
174    FunctionDecl *FD = cast<FunctionDecl>(D);
175    DeclContext *DC = FD->getDeclContext()->getLookupContext();
176    IdentifierResolver::iterator Redecl
177      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
178                                      false/*LookInParentCtx*/),
179                     IdResolver.end(),
180                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
181                                  FD));
182    if (Redecl != IdResolver.end()) {
183      // There is already a declaration of a function on our
184      // IdResolver chain. Replace it with this declaration.
185      S->RemoveDecl(*Redecl);
186      IdResolver.RemoveDecl(*Redecl);
187    }
188  }
189
190  IdResolver.AddDecl(D);
191}
192
193void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
194  if (S->decl_empty()) return;
195  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
196	 "Scope shouldn't contain decls!");
197
198  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
199       I != E; ++I) {
200    Decl *TmpD = static_cast<Decl*>(*I);
201    assert(TmpD && "This decl didn't get pushed??");
202
203    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
204    NamedDecl *D = cast<NamedDecl>(TmpD);
205
206    if (!D->getDeclName()) continue;
207
208    // Remove this name from our lexical scope.
209    IdResolver.RemoveDecl(D);
210  }
211}
212
213/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
214/// return 0 if one not found.
215ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
216  // The third "scope" argument is 0 since we aren't enabling lazy built-in
217  // creation from this context.
218  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
219
220  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
221}
222
223/// getNonFieldDeclScope - Retrieves the innermost scope, starting
224/// from S, where a non-field would be declared. This routine copes
225/// with the difference between C and C++ scoping rules in structs and
226/// unions. For example, the following code is well-formed in C but
227/// ill-formed in C++:
228/// @code
229/// struct S6 {
230///   enum { BAR } e;
231/// };
232///
233/// void test_S6() {
234///   struct S6 a;
235///   a.e = BAR;
236/// }
237/// @endcode
238/// For the declaration of BAR, this routine will return a different
239/// scope. The scope S will be the scope of the unnamed enumeration
240/// within S6. In C++, this routine will return the scope associated
241/// with S6, because the enumeration's scope is a transparent
242/// context but structures can contain non-field names. In C, this
243/// routine will return the translation unit scope, since the
244/// enumeration's scope is a transparent context and structures cannot
245/// contain non-field names.
246Scope *Sema::getNonFieldDeclScope(Scope *S) {
247  while (((S->getFlags() & Scope::DeclScope) == 0) ||
248         (S->getEntity() &&
249          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
250         (S->isClassScope() && !getLangOptions().CPlusPlus))
251    S = S->getParent();
252  return S;
253}
254
255/// LookupDecl - Look up the inner-most declaration in the specified
256/// namespace. NamespaceNameOnly - during lookup only namespace names
257/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
258/// 'When looking up a namespace-name in a using-directive or
259/// namespace-alias-definition, only namespace names are considered.'
260///
261/// Note: The use of this routine is deprecated. Please use
262/// LookupName, LookupQualifiedName, or LookupParsedName instead.
263Sema::LookupResult
264Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
265                 const DeclContext *LookupCtx,
266                 bool enableLazyBuiltinCreation,
267                 bool LookInParent,
268                 bool NamespaceNameOnly) {
269  LookupCriteria::NameKind Kind;
270  if (NSI == Decl::IDNS_Ordinary) {
271    if (NamespaceNameOnly)
272      Kind = LookupCriteria::Namespace;
273    else
274      Kind = LookupCriteria::Ordinary;
275  } else if (NSI == Decl::IDNS_Tag)
276    Kind = LookupCriteria::Tag;
277  else {
278    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
279    Kind = LookupCriteria::Member;
280  }
281
282  if (LookupCtx)
283    return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
284                               LookupCriteria(Kind, !LookInParent,
285                                              getLangOptions().CPlusPlus));
286
287  // Unqualified lookup
288  return LookupName(S, Name,
289                    LookupCriteria(Kind, !LookInParent,
290                                   getLangOptions().CPlusPlus));
291}
292
293void Sema::InitBuiltinVaListType() {
294  if (!Context.getBuiltinVaListType().isNull())
295    return;
296
297  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
298  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
299  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
300  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
301}
302
303/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
304/// lazily create a decl for it.
305NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
306                                     Scope *S) {
307  Builtin::ID BID = (Builtin::ID)bid;
308
309  if (Context.BuiltinInfo.hasVAListUse(BID))
310    InitBuiltinVaListType();
311
312  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
313  FunctionDecl *New = FunctionDecl::Create(Context,
314                                           Context.getTranslationUnitDecl(),
315                                           SourceLocation(), II, R,
316                                           FunctionDecl::Extern, false);
317
318  // Create Decl objects for each parameter, adding them to the
319  // FunctionDecl.
320  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
321    llvm::SmallVector<ParmVarDecl*, 16> Params;
322    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
323      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
324                                           FT->getArgType(i), VarDecl::None, 0));
325    New->setParams(Context, &Params[0], Params.size());
326  }
327
328
329
330  // TUScope is the translation-unit scope to insert this function into.
331  // FIXME: This is hideous. We need to teach PushOnScopeChains to
332  // relate Scopes to DeclContexts, and probably eliminate CurContext
333  // entirely, but we're not there yet.
334  DeclContext *SavedContext = CurContext;
335  CurContext = Context.getTranslationUnitDecl();
336  PushOnScopeChains(New, TUScope);
337  CurContext = SavedContext;
338  return New;
339}
340
341/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
342/// everything from the standard library is defined.
343NamespaceDecl *Sema::GetStdNamespace() {
344  if (!StdNamespace) {
345    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
346    DeclContext *Global = Context.getTranslationUnitDecl();
347    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Ordinary,
348                           0, Global, /*enableLazyBuiltinCreation=*/false);
349    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
350  }
351  return StdNamespace;
352}
353
354/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
355/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
356/// situation, merging decls or emitting diagnostics as appropriate.
357///
358TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
359  bool objc_types = false;
360  // Allow multiple definitions for ObjC built-in typedefs.
361  // FIXME: Verify the underlying types are equivalent!
362  if (getLangOptions().ObjC1) {
363    const IdentifierInfo *TypeID = New->getIdentifier();
364    switch (TypeID->getLength()) {
365    default: break;
366    case 2:
367      if (!TypeID->isStr("id"))
368        break;
369      Context.setObjCIdType(New);
370      objc_types = true;
371      break;
372    case 5:
373      if (!TypeID->isStr("Class"))
374        break;
375      Context.setObjCClassType(New);
376      objc_types = true;
377      return New;
378    case 3:
379      if (!TypeID->isStr("SEL"))
380        break;
381      Context.setObjCSelType(New);
382      objc_types = true;
383      return New;
384    case 8:
385      if (!TypeID->isStr("Protocol"))
386        break;
387      Context.setObjCProtoType(New->getUnderlyingType());
388      objc_types = true;
389      return New;
390    }
391    // Fall through - the typedef name was not a builtin type.
392  }
393  // Verify the old decl was also a typedef.
394  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
395  if (!Old) {
396    Diag(New->getLocation(), diag::err_redefinition_different_kind)
397      << New->getDeclName();
398    if (!objc_types)
399      Diag(OldD->getLocation(), diag::note_previous_definition);
400    return New;
401  }
402
403  // If the typedef types are not identical, reject them in all languages and
404  // with any extensions enabled.
405  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
406      Context.getCanonicalType(Old->getUnderlyingType()) !=
407      Context.getCanonicalType(New->getUnderlyingType())) {
408    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
409      << New->getUnderlyingType() << Old->getUnderlyingType();
410    if (!objc_types)
411      Diag(Old->getLocation(), diag::note_previous_definition);
412    return New;
413  }
414  if (objc_types) return New;
415  if (getLangOptions().Microsoft) return New;
416
417  // C++ [dcl.typedef]p2:
418  //   In a given non-class scope, a typedef specifier can be used to
419  //   redefine the name of any type declared in that scope to refer
420  //   to the type to which it already refers.
421  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
422    return New;
423
424  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
425  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
426  // *either* declaration is in a system header. The code below implements
427  // this adhoc compatibility rule. FIXME: The following code will not
428  // work properly when compiling ".i" files (containing preprocessed output).
429  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
430    SourceManager &SrcMgr = Context.getSourceManager();
431    if (SrcMgr.isInSystemHeader(Old->getLocation()))
432      return New;
433    if (SrcMgr.isInSystemHeader(New->getLocation()))
434      return New;
435  }
436
437  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
438  Diag(Old->getLocation(), diag::note_previous_definition);
439  return New;
440}
441
442/// DeclhasAttr - returns true if decl Declaration already has the target
443/// attribute.
444static bool DeclHasAttr(const Decl *decl, const Attr *target) {
445  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
446    if (attr->getKind() == target->getKind())
447      return true;
448
449  return false;
450}
451
452/// MergeAttributes - append attributes from the Old decl to the New one.
453static void MergeAttributes(Decl *New, Decl *Old) {
454  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
455
456  while (attr) {
457     tmp = attr;
458     attr = attr->getNext();
459
460    if (!DeclHasAttr(New, tmp)) {
461       tmp->setInherited(true);
462       New->addAttr(tmp);
463    } else {
464       tmp->setNext(0);
465       delete(tmp);
466    }
467  }
468
469  Old->invalidateAttrs();
470}
471
472/// MergeFunctionDecl - We just parsed a function 'New' from
473/// declarator D which has the same name and scope as a previous
474/// declaration 'Old'.  Figure out how to resolve this situation,
475/// merging decls or emitting diagnostics as appropriate.
476/// Redeclaration will be set true if this New is a redeclaration OldD.
477///
478/// In C++, New and Old must be declarations that are not
479/// overloaded. Use IsOverload to determine whether New and Old are
480/// overloaded, and to select the Old declaration that New should be
481/// merged with.
482FunctionDecl *
483Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
484  assert(!isa<OverloadedFunctionDecl>(OldD) &&
485         "Cannot merge with an overloaded function declaration");
486
487  Redeclaration = false;
488  // Verify the old decl was also a function.
489  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
490  if (!Old) {
491    Diag(New->getLocation(), diag::err_redefinition_different_kind)
492      << New->getDeclName();
493    Diag(OldD->getLocation(), diag::note_previous_definition);
494    return New;
495  }
496
497  // Determine whether the previous declaration was a definition,
498  // implicit declaration, or a declaration.
499  diag::kind PrevDiag;
500  if (Old->isThisDeclarationADefinition())
501    PrevDiag = diag::note_previous_definition;
502  else if (Old->isImplicit())
503    PrevDiag = diag::note_previous_implicit_declaration;
504  else
505    PrevDiag = diag::note_previous_declaration;
506
507  QualType OldQType = Context.getCanonicalType(Old->getType());
508  QualType NewQType = Context.getCanonicalType(New->getType());
509
510  if (getLangOptions().CPlusPlus) {
511    // (C++98 13.1p2):
512    //   Certain function declarations cannot be overloaded:
513    //     -- Function declarations that differ only in the return type
514    //        cannot be overloaded.
515    QualType OldReturnType
516      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
517    QualType NewReturnType
518      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
519    if (OldReturnType != NewReturnType) {
520      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
521      Diag(Old->getLocation(), PrevDiag);
522      Redeclaration = true;
523      return New;
524    }
525
526    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
527    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
528    if (OldMethod && NewMethod) {
529      //    -- Member function declarations with the same name and the
530      //       same parameter types cannot be overloaded if any of them
531      //       is a static member function declaration.
532      if (OldMethod->isStatic() || NewMethod->isStatic()) {
533        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
534        Diag(Old->getLocation(), PrevDiag);
535        return New;
536      }
537
538      // C++ [class.mem]p1:
539      //   [...] A member shall not be declared twice in the
540      //   member-specification, except that a nested class or member
541      //   class template can be declared and then later defined.
542      if (OldMethod->getLexicalDeclContext() ==
543            NewMethod->getLexicalDeclContext()) {
544        unsigned NewDiag;
545        if (isa<CXXConstructorDecl>(OldMethod))
546          NewDiag = diag::err_constructor_redeclared;
547        else if (isa<CXXDestructorDecl>(NewMethod))
548          NewDiag = diag::err_destructor_redeclared;
549        else if (isa<CXXConversionDecl>(NewMethod))
550          NewDiag = diag::err_conv_function_redeclared;
551        else
552          NewDiag = diag::err_member_redeclared;
553
554        Diag(New->getLocation(), NewDiag);
555        Diag(Old->getLocation(), PrevDiag);
556      }
557    }
558
559    // (C++98 8.3.5p3):
560    //   All declarations for a function shall agree exactly in both the
561    //   return type and the parameter-type-list.
562    if (OldQType == NewQType) {
563      // We have a redeclaration.
564      MergeAttributes(New, Old);
565      Redeclaration = true;
566      return MergeCXXFunctionDecl(New, Old);
567    }
568
569    // Fall through for conflicting redeclarations and redefinitions.
570  }
571
572  // C: Function types need to be compatible, not identical. This handles
573  // duplicate function decls like "void f(int); void f(enum X);" properly.
574  if (!getLangOptions().CPlusPlus &&
575      Context.typesAreCompatible(OldQType, NewQType)) {
576    MergeAttributes(New, Old);
577    Redeclaration = true;
578    return New;
579  }
580
581  // A function that has already been declared has been redeclared or defined
582  // with a different type- show appropriate diagnostic
583
584  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
585  // TODO: This is totally simplistic.  It should handle merging functions
586  // together etc, merging extern int X; int X; ...
587  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
588  Diag(Old->getLocation(), PrevDiag);
589  return New;
590}
591
592/// Predicate for C "tentative" external object definitions (C99 6.9.2).
593static bool isTentativeDefinition(VarDecl *VD) {
594  if (VD->isFileVarDecl())
595    return (!VD->getInit() &&
596            (VD->getStorageClass() == VarDecl::None ||
597             VD->getStorageClass() == VarDecl::Static));
598  return false;
599}
600
601/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
602/// when dealing with C "tentative" external object definitions (C99 6.9.2).
603void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
604  bool VDIsTentative = isTentativeDefinition(VD);
605  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
606
607  // FIXME: I don't think this will actually see all of the
608  // redefinitions. Can't we check this property on-the-fly?
609  for (IdentifierResolver::iterator
610       I = IdResolver.begin(VD->getIdentifier(),
611                            VD->getDeclContext(), false/*LookInParentCtx*/),
612       E = IdResolver.end(); I != E; ++I) {
613    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
614      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
615
616      // Handle the following case:
617      //   int a[10];
618      //   int a[];   - the code below makes sure we set the correct type.
619      //   int a[11]; - this is an error, size isn't 10.
620      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
621          OldDecl->getType()->isConstantArrayType())
622        VD->setType(OldDecl->getType());
623
624      // Check for "tentative" definitions. We can't accomplish this in
625      // MergeVarDecl since the initializer hasn't been attached.
626      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
627        continue;
628
629      // Handle __private_extern__ just like extern.
630      if (OldDecl->getStorageClass() != VarDecl::Extern &&
631          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
632          VD->getStorageClass() != VarDecl::Extern &&
633          VD->getStorageClass() != VarDecl::PrivateExtern) {
634        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
635        Diag(OldDecl->getLocation(), diag::note_previous_definition);
636      }
637    }
638  }
639}
640
641/// MergeVarDecl - We just parsed a variable 'New' which has the same name
642/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
643/// situation, merging decls or emitting diagnostics as appropriate.
644///
645/// Tentative definition rules (C99 6.9.2p2) are checked by
646/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
647/// definitions here, since the initializer hasn't been attached.
648///
649VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
650  // Verify the old decl was also a variable.
651  VarDecl *Old = dyn_cast<VarDecl>(OldD);
652  if (!Old) {
653    Diag(New->getLocation(), diag::err_redefinition_different_kind)
654      << New->getDeclName();
655    Diag(OldD->getLocation(), diag::note_previous_definition);
656    return New;
657  }
658
659  MergeAttributes(New, Old);
660
661  // Merge the types
662  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
663  if (MergedT.isNull()) {
664    Diag(New->getLocation(), diag::err_redefinition_different_type)
665      << New->getDeclName();
666    Diag(Old->getLocation(), diag::note_previous_definition);
667    return New;
668  }
669  New->setType(MergedT);
670  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
671  if (New->getStorageClass() == VarDecl::Static &&
672      (Old->getStorageClass() == VarDecl::None ||
673       Old->getStorageClass() == VarDecl::Extern)) {
674    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
675    Diag(Old->getLocation(), diag::note_previous_definition);
676    return New;
677  }
678  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
679  if (New->getStorageClass() != VarDecl::Static &&
680      Old->getStorageClass() == VarDecl::Static) {
681    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
682    Diag(Old->getLocation(), diag::note_previous_definition);
683    return New;
684  }
685  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
686  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
687    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
688    Diag(Old->getLocation(), diag::note_previous_definition);
689  }
690  return New;
691}
692
693/// CheckParmsForFunctionDef - Check that the parameters of the given
694/// function are appropriate for the definition of a function. This
695/// takes care of any checks that cannot be performed on the
696/// declaration itself, e.g., that the types of each of the function
697/// parameters are complete.
698bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
699  bool HasInvalidParm = false;
700  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
701    ParmVarDecl *Param = FD->getParamDecl(p);
702
703    // C99 6.7.5.3p4: the parameters in a parameter type list in a
704    // function declarator that is part of a function definition of
705    // that function shall not have incomplete type.
706    if (!Param->isInvalidDecl() &&
707        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
708                               diag::err_typecheck_decl_incomplete_type)) {
709      Param->setInvalidDecl();
710      HasInvalidParm = true;
711    }
712
713    // C99 6.9.1p5: If the declarator includes a parameter type list, the
714    // declaration of each parameter shall include an identifier.
715    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
716      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
717  }
718
719  return HasInvalidParm;
720}
721
722/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
723/// no declarator (e.g. "struct foo;") is parsed.
724Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
725  TagDecl *Tag
726    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
727  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
728    if (!Record->getDeclName() && Record->isDefinition() &&
729        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
730      return BuildAnonymousStructOrUnion(S, DS, Record);
731
732    // Microsoft allows unnamed struct/union fields. Don't complain
733    // about them.
734    // FIXME: Should we support Microsoft's extensions in this area?
735    if (Record->getDeclName() && getLangOptions().Microsoft)
736      return Tag;
737  }
738
739  if (!DS.isMissingDeclaratorOk()) {
740    // Warn about typedefs of enums without names, since this is an
741    // extension in both Microsoft an GNU.
742    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
743        Tag && isa<EnumDecl>(Tag)) {
744      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
745        << DS.getSourceRange();
746      return Tag;
747    }
748
749    // FIXME: This diagnostic is emitted even when various previous
750    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
751    // DeclSpec has no means of communicating this information, and the
752    // responsible parser functions are quite far apart.
753    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
754      << DS.getSourceRange();
755    return 0;
756  }
757
758  return Tag;
759}
760
761/// InjectAnonymousStructOrUnionMembers - Inject the members of the
762/// anonymous struct or union AnonRecord into the owning context Owner
763/// and scope S. This routine will be invoked just after we realize
764/// that an unnamed union or struct is actually an anonymous union or
765/// struct, e.g.,
766///
767/// @code
768/// union {
769///   int i;
770///   float f;
771/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
772///    // f into the surrounding scope.x
773/// @endcode
774///
775/// This routine is recursive, injecting the names of nested anonymous
776/// structs/unions into the owning context and scope as well.
777bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
778                                               RecordDecl *AnonRecord) {
779  bool Invalid = false;
780  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
781                               FEnd = AnonRecord->field_end();
782       F != FEnd; ++F) {
783    if ((*F)->getDeclName()) {
784      Decl *PrevDecl = LookupDecl((*F)->getDeclName(), Decl::IDNS_Ordinary,
785                                  S, Owner, false, false, false);
786      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
787        // C++ [class.union]p2:
788        //   The names of the members of an anonymous union shall be
789        //   distinct from the names of any other entity in the
790        //   scope in which the anonymous union is declared.
791        unsigned diagKind
792          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
793                                 : diag::err_anonymous_struct_member_redecl;
794        Diag((*F)->getLocation(), diagKind)
795          << (*F)->getDeclName();
796        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
797        Invalid = true;
798      } else {
799        // C++ [class.union]p2:
800        //   For the purpose of name lookup, after the anonymous union
801        //   definition, the members of the anonymous union are
802        //   considered to have been defined in the scope in which the
803        //   anonymous union is declared.
804        Owner->makeDeclVisibleInContext(*F);
805        S->AddDecl(*F);
806        IdResolver.AddDecl(*F);
807      }
808    } else if (const RecordType *InnerRecordType
809                 = (*F)->getType()->getAsRecordType()) {
810      RecordDecl *InnerRecord = InnerRecordType->getDecl();
811      if (InnerRecord->isAnonymousStructOrUnion())
812        Invalid = Invalid ||
813          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
814    }
815  }
816
817  return Invalid;
818}
819
820/// ActOnAnonymousStructOrUnion - Handle the declaration of an
821/// anonymous structure or union. Anonymous unions are a C++ feature
822/// (C++ [class.union]) and a GNU C extension; anonymous structures
823/// are a GNU C and GNU C++ extension.
824Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
825                                                RecordDecl *Record) {
826  DeclContext *Owner = Record->getDeclContext();
827
828  // Diagnose whether this anonymous struct/union is an extension.
829  if (Record->isUnion() && !getLangOptions().CPlusPlus)
830    Diag(Record->getLocation(), diag::ext_anonymous_union);
831  else if (!Record->isUnion())
832    Diag(Record->getLocation(), diag::ext_anonymous_struct);
833
834  // C and C++ require different kinds of checks for anonymous
835  // structs/unions.
836  bool Invalid = false;
837  if (getLangOptions().CPlusPlus) {
838    const char* PrevSpec = 0;
839    // C++ [class.union]p3:
840    //   Anonymous unions declared in a named namespace or in the
841    //   global namespace shall be declared static.
842    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
843        (isa<TranslationUnitDecl>(Owner) ||
844         (isa<NamespaceDecl>(Owner) &&
845          cast<NamespaceDecl>(Owner)->getDeclName()))) {
846      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
847      Invalid = true;
848
849      // Recover by adding 'static'.
850      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
851    }
852    // C++ [class.union]p3:
853    //   A storage class is not allowed in a declaration of an
854    //   anonymous union in a class scope.
855    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
856             isa<RecordDecl>(Owner)) {
857      Diag(DS.getStorageClassSpecLoc(),
858           diag::err_anonymous_union_with_storage_spec);
859      Invalid = true;
860
861      // Recover by removing the storage specifier.
862      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
863                             PrevSpec);
864    }
865
866    // C++ [class.union]p2:
867    //   The member-specification of an anonymous union shall only
868    //   define non-static data members. [Note: nested types and
869    //   functions cannot be declared within an anonymous union. ]
870    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
871                                 MemEnd = Record->decls_end();
872         Mem != MemEnd; ++Mem) {
873      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
874        // C++ [class.union]p3:
875        //   An anonymous union shall not have private or protected
876        //   members (clause 11).
877        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
878          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
879            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
880          Invalid = true;
881        }
882      } else if ((*Mem)->isImplicit()) {
883        // Any implicit members are fine.
884      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
885        if (!MemRecord->isAnonymousStructOrUnion() &&
886            MemRecord->getDeclName()) {
887          // This is a nested type declaration.
888          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
889            << (int)Record->isUnion();
890          Invalid = true;
891        }
892      } else {
893        // We have something that isn't a non-static data
894        // member. Complain about it.
895        unsigned DK = diag::err_anonymous_record_bad_member;
896        if (isa<TypeDecl>(*Mem))
897          DK = diag::err_anonymous_record_with_type;
898        else if (isa<FunctionDecl>(*Mem))
899          DK = diag::err_anonymous_record_with_function;
900        else if (isa<VarDecl>(*Mem))
901          DK = diag::err_anonymous_record_with_static;
902        Diag((*Mem)->getLocation(), DK)
903            << (int)Record->isUnion();
904          Invalid = true;
905      }
906    }
907  } else {
908    // FIXME: Check GNU C semantics
909    if (Record->isUnion() && !Owner->isRecord()) {
910      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
911        << (int)getLangOptions().CPlusPlus;
912      Invalid = true;
913    }
914  }
915
916  if (!Record->isUnion() && !Owner->isRecord()) {
917    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
918      << (int)getLangOptions().CPlusPlus;
919    Invalid = true;
920  }
921
922  // Create a declaration for this anonymous struct/union.
923  NamedDecl *Anon = 0;
924  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
925    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
926                             /*IdentifierInfo=*/0,
927                             Context.getTypeDeclType(Record),
928                             /*BitWidth=*/0, /*Mutable=*/false);
929    Anon->setAccess(AS_public);
930    if (getLangOptions().CPlusPlus)
931      FieldCollector->Add(cast<FieldDecl>(Anon));
932  } else {
933    VarDecl::StorageClass SC;
934    switch (DS.getStorageClassSpec()) {
935    default: assert(0 && "Unknown storage class!");
936    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
937    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
938    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
939    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
940    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
941    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
942    case DeclSpec::SCS_mutable:
943      // mutable can only appear on non-static class members, so it's always
944      // an error here
945      Diag(Record->getLocation(), diag::err_mutable_nonmember);
946      Invalid = true;
947      SC = VarDecl::None;
948      break;
949    }
950
951    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
952                           /*IdentifierInfo=*/0,
953                           Context.getTypeDeclType(Record),
954                           SC, DS.getSourceRange().getBegin());
955  }
956  Anon->setImplicit();
957
958  // Add the anonymous struct/union object to the current
959  // context. We'll be referencing this object when we refer to one of
960  // its members.
961  Owner->addDecl(Anon);
962
963  // Inject the members of the anonymous struct/union into the owning
964  // context and into the identifier resolver chain for name lookup
965  // purposes.
966  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
967    Invalid = true;
968
969  // Mark this as an anonymous struct/union type. Note that we do not
970  // do this until after we have already checked and injected the
971  // members of this anonymous struct/union type, because otherwise
972  // the members could be injected twice: once by DeclContext when it
973  // builds its lookup table, and once by
974  // InjectAnonymousStructOrUnionMembers.
975  Record->setAnonymousStructOrUnion(true);
976
977  if (Invalid)
978    Anon->setInvalidDecl();
979
980  return Anon;
981}
982
983bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
984                                  bool DirectInit) {
985  // Get the type before calling CheckSingleAssignmentConstraints(), since
986  // it can promote the expression.
987  QualType InitType = Init->getType();
988
989  if (getLangOptions().CPlusPlus) {
990    // FIXME: I dislike this error message. A lot.
991    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
992      return Diag(Init->getSourceRange().getBegin(),
993                  diag::err_typecheck_convert_incompatible)
994        << DeclType << Init->getType() << "initializing"
995        << Init->getSourceRange();
996
997    return false;
998  }
999
1000  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1001  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1002                                  InitType, Init, "initializing");
1003}
1004
1005bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1006  const ArrayType *AT = Context.getAsArrayType(DeclT);
1007
1008  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1009    // C99 6.7.8p14. We have an array of character type with unknown size
1010    // being initialized to a string literal.
1011    llvm::APSInt ConstVal(32);
1012    ConstVal = strLiteral->getByteLength() + 1;
1013    // Return a new array type (C99 6.7.8p22).
1014    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1015                                         ArrayType::Normal, 0);
1016  } else {
1017    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1018    // C99 6.7.8p14. We have an array of character type with known size.
1019    // FIXME: Avoid truncation for 64-bit length strings.
1020    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1021      Diag(strLiteral->getSourceRange().getBegin(),
1022           diag::warn_initializer_string_for_char_array_too_long)
1023        << strLiteral->getSourceRange();
1024  }
1025  // Set type from "char *" to "constant array of char".
1026  strLiteral->setType(DeclT);
1027  // For now, we always return false (meaning success).
1028  return false;
1029}
1030
1031StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1032  const ArrayType *AT = Context.getAsArrayType(DeclType);
1033  if (AT && AT->getElementType()->isCharType()) {
1034    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1035  }
1036  return 0;
1037}
1038
1039bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1040                                 SourceLocation InitLoc,
1041                                 DeclarationName InitEntity,
1042                                 bool DirectInit) {
1043  if (DeclType->isDependentType() || Init->isTypeDependent())
1044    return false;
1045
1046  // C++ [dcl.init.ref]p1:
1047  //   A variable declared to be a T&, that is "reference to type T"
1048  //   (8.3.2), shall be initialized by an object, or function, of
1049  //   type T or by an object that can be converted into a T.
1050  if (DeclType->isReferenceType())
1051    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1052
1053  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1054  // of unknown size ("[]") or an object type that is not a variable array type.
1055  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1056    return Diag(InitLoc,  diag::err_variable_object_no_init)
1057      << VAT->getSizeExpr()->getSourceRange();
1058
1059  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1060  if (!InitList) {
1061    // FIXME: Handle wide strings
1062    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1063      return CheckStringLiteralInit(strLiteral, DeclType);
1064
1065    // C++ [dcl.init]p14:
1066    //   -- If the destination type is a (possibly cv-qualified) class
1067    //      type:
1068    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1069      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1070      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1071
1072      //   -- If the initialization is direct-initialization, or if it is
1073      //      copy-initialization where the cv-unqualified version of the
1074      //      source type is the same class as, or a derived class of, the
1075      //      class of the destination, constructors are considered.
1076      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1077          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1078        CXXConstructorDecl *Constructor
1079          = PerformInitializationByConstructor(DeclType, &Init, 1,
1080                                               InitLoc, Init->getSourceRange(),
1081                                               InitEntity,
1082                                               DirectInit? IK_Direct : IK_Copy);
1083        return Constructor == 0;
1084      }
1085
1086      //   -- Otherwise (i.e., for the remaining copy-initialization
1087      //      cases), user-defined conversion sequences that can
1088      //      convert from the source type to the destination type or
1089      //      (when a conversion function is used) to a derived class
1090      //      thereof are enumerated as described in 13.3.1.4, and the
1091      //      best one is chosen through overload resolution
1092      //      (13.3). If the conversion cannot be done or is
1093      //      ambiguous, the initialization is ill-formed. The
1094      //      function selected is called with the initializer
1095      //      expression as its argument; if the function is a
1096      //      constructor, the call initializes a temporary of the
1097      //      destination type.
1098      // FIXME: We're pretending to do copy elision here; return to
1099      // this when we have ASTs for such things.
1100      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1101        return false;
1102
1103      if (InitEntity)
1104        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1105          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1106          << Init->getType() << Init->getSourceRange();
1107      else
1108        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1109          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1110          << Init->getType() << Init->getSourceRange();
1111    }
1112
1113    // C99 6.7.8p16.
1114    if (DeclType->isArrayType())
1115      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1116        << Init->getSourceRange();
1117
1118    return CheckSingleInitializer(Init, DeclType, DirectInit);
1119  } else if (getLangOptions().CPlusPlus) {
1120    // C++ [dcl.init]p14:
1121    //   [...] If the class is an aggregate (8.5.1), and the initializer
1122    //   is a brace-enclosed list, see 8.5.1.
1123    //
1124    // Note: 8.5.1 is handled below; here, we diagnose the case where
1125    // we have an initializer list and a destination type that is not
1126    // an aggregate.
1127    // FIXME: In C++0x, this is yet another form of initialization.
1128    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1129      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1130      if (!ClassDecl->isAggregate())
1131        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1132           << DeclType << Init->getSourceRange();
1133    }
1134  }
1135
1136  InitListChecker CheckInitList(this, InitList, DeclType);
1137  return CheckInitList.HadError();
1138}
1139
1140/// GetNameForDeclarator - Determine the full declaration name for the
1141/// given Declarator.
1142DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1143  switch (D.getKind()) {
1144  case Declarator::DK_Abstract:
1145    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1146    return DeclarationName();
1147
1148  case Declarator::DK_Normal:
1149    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1150    return DeclarationName(D.getIdentifier());
1151
1152  case Declarator::DK_Constructor: {
1153    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1154    Ty = Context.getCanonicalType(Ty);
1155    return Context.DeclarationNames.getCXXConstructorName(Ty);
1156  }
1157
1158  case Declarator::DK_Destructor: {
1159    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1160    Ty = Context.getCanonicalType(Ty);
1161    return Context.DeclarationNames.getCXXDestructorName(Ty);
1162  }
1163
1164  case Declarator::DK_Conversion: {
1165    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1166    Ty = Context.getCanonicalType(Ty);
1167    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1168  }
1169
1170  case Declarator::DK_Operator:
1171    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1172    return Context.DeclarationNames.getCXXOperatorName(
1173                                                D.getOverloadedOperator());
1174  }
1175
1176  assert(false && "Unknown name kind");
1177  return DeclarationName();
1178}
1179
1180/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1181/// functions Declaration and Definition are "nearly" matching. This
1182/// heuristic is used to improve diagnostics in the case where an
1183/// out-of-line member function definition doesn't match any
1184/// declaration within the class.
1185static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1186                                           FunctionDecl *Declaration,
1187                                           FunctionDecl *Definition) {
1188  if (Declaration->param_size() != Definition->param_size())
1189    return false;
1190  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1191    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1192    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1193
1194    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1195    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1196    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1197      return false;
1198  }
1199
1200  return true;
1201}
1202
1203Sema::DeclTy *
1204Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1205                      bool IsFunctionDefinition) {
1206  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1207  DeclarationName Name = GetNameForDeclarator(D);
1208
1209  // All of these full declarators require an identifier.  If it doesn't have
1210  // one, the ParsedFreeStandingDeclSpec action should be used.
1211  if (!Name) {
1212    if (!D.getInvalidType())  // Reject this if we think it is valid.
1213      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1214           diag::err_declarator_need_ident)
1215        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1216    return 0;
1217  }
1218
1219  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1220  // we find one that is.
1221  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1222        (S->getFlags() & Scope::TemplateParamScope) != 0)
1223    S = S->getParent();
1224
1225  DeclContext *DC;
1226  Decl *PrevDecl;
1227  NamedDecl *New;
1228  bool InvalidDecl = false;
1229
1230  // See if this is a redefinition of a variable in the same scope.
1231  if (!D.getCXXScopeSpec().isSet()) {
1232    DC = CurContext;
1233    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1234  } else { // Something like "int foo::x;"
1235    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1236    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1237
1238    // C++ 7.3.1.2p2:
1239    // Members (including explicit specializations of templates) of a named
1240    // namespace can also be defined outside that namespace by explicit
1241    // qualification of the name being defined, provided that the entity being
1242    // defined was already declared in the namespace and the definition appears
1243    // after the point of declaration in a namespace that encloses the
1244    // declarations namespace.
1245    //
1246    // Note that we only check the context at this point. We don't yet
1247    // have enough information to make sure that PrevDecl is actually
1248    // the declaration we want to match. For example, given:
1249    //
1250    //   class X {
1251    //     void f();
1252    //     void f(float);
1253    //   };
1254    //
1255    //   void X::f(int) { } // ill-formed
1256    //
1257    // In this case, PrevDecl will point to the overload set
1258    // containing the two f's declared in X, but neither of them
1259    // matches.
1260    if (!CurContext->Encloses(DC)) {
1261      // The qualifying scope doesn't enclose the original declaration.
1262      // Emit diagnostic based on current scope.
1263      SourceLocation L = D.getIdentifierLoc();
1264      SourceRange R = D.getCXXScopeSpec().getRange();
1265      if (isa<FunctionDecl>(CurContext)) {
1266        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1267      } else {
1268        Diag(L, diag::err_invalid_declarator_scope)
1269          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1270      }
1271      InvalidDecl = true;
1272    }
1273  }
1274
1275  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1276    // Maybe we will complain about the shadowed template parameter.
1277    InvalidDecl = InvalidDecl
1278      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1279    // Just pretend that we didn't see the previous declaration.
1280    PrevDecl = 0;
1281  }
1282
1283  // In C++, the previous declaration we find might be a tag type
1284  // (class or enum). In this case, the new declaration will hide the
1285  // tag type.
1286  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1287    PrevDecl = 0;
1288
1289  QualType R = GetTypeForDeclarator(D, S);
1290  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1291
1292  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1293    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1294                                 InvalidDecl);
1295  } else if (R.getTypePtr()->isFunctionType()) {
1296    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1297                                  IsFunctionDefinition, InvalidDecl);
1298  } else {
1299    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1300                                  InvalidDecl);
1301  }
1302
1303  if (New == 0)
1304    return 0;
1305
1306  // Set the lexical context. If the declarator has a C++ scope specifier, the
1307  // lexical context will be different from the semantic context.
1308  New->setLexicalDeclContext(CurContext);
1309
1310  // If this has an identifier, add it to the scope stack.
1311  if (Name)
1312    PushOnScopeChains(New, S);
1313  // If any semantic error occurred, mark the decl as invalid.
1314  if (D.getInvalidType() || InvalidDecl)
1315    New->setInvalidDecl();
1316
1317  return New;
1318}
1319
1320NamedDecl*
1321Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1322                             QualType R, Decl* LastDeclarator,
1323                             Decl* PrevDecl, bool& InvalidDecl) {
1324  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1325  if (D.getCXXScopeSpec().isSet()) {
1326    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1327      << D.getCXXScopeSpec().getRange();
1328    InvalidDecl = true;
1329    // Pretend we didn't see the scope specifier.
1330    DC = 0;
1331  }
1332
1333  // Check that there are no default arguments (C++ only).
1334  if (getLangOptions().CPlusPlus)
1335    CheckExtraCXXDefaultArguments(D);
1336
1337  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1338  if (!NewTD) return 0;
1339
1340  // Handle attributes prior to checking for duplicates in MergeVarDecl
1341  ProcessDeclAttributes(NewTD, D);
1342  // Merge the decl with the existing one if appropriate. If the decl is
1343  // in an outer scope, it isn't the same thing.
1344  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1345    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1346    if (NewTD == 0) return 0;
1347  }
1348
1349  if (S->getFnParent() == 0) {
1350    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1351    // then it shall have block scope.
1352    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1353      if (NewTD->getUnderlyingType()->isVariableArrayType())
1354        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1355      else
1356        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1357
1358      InvalidDecl = true;
1359    }
1360  }
1361  return NewTD;
1362}
1363
1364NamedDecl*
1365Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1366                              QualType R, Decl* LastDeclarator,
1367                              Decl* PrevDecl, bool& InvalidDecl) {
1368  DeclarationName Name = GetNameForDeclarator(D);
1369
1370  // Check that there are no default arguments (C++ only).
1371  if (getLangOptions().CPlusPlus)
1372    CheckExtraCXXDefaultArguments(D);
1373
1374  if (R.getTypePtr()->isObjCInterfaceType()) {
1375    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1376      << D.getIdentifier();
1377    InvalidDecl = true;
1378  }
1379
1380  VarDecl *NewVD;
1381  VarDecl::StorageClass SC;
1382  switch (D.getDeclSpec().getStorageClassSpec()) {
1383  default: assert(0 && "Unknown storage class!");
1384  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1385  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1386  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1387  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1388  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1389  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1390  case DeclSpec::SCS_mutable:
1391    // mutable can only appear on non-static class members, so it's always
1392    // an error here
1393    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1394    InvalidDecl = true;
1395    SC = VarDecl::None;
1396    break;
1397  }
1398
1399  IdentifierInfo *II = Name.getAsIdentifierInfo();
1400  if (!II) {
1401    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1402      << Name.getAsString();
1403    return 0;
1404  }
1405
1406  if (DC->isRecord()) {
1407    // This is a static data member for a C++ class.
1408    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1409                                    D.getIdentifierLoc(), II,
1410                                    R);
1411  } else {
1412    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1413    if (S->getFnParent() == 0) {
1414      // C99 6.9p2: The storage-class specifiers auto and register shall not
1415      // appear in the declaration specifiers in an external declaration.
1416      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1417        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1418        InvalidDecl = true;
1419      }
1420    }
1421    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1422                            II, R, SC,
1423                            // FIXME: Move to DeclGroup...
1424                            D.getDeclSpec().getSourceRange().getBegin());
1425    NewVD->setThreadSpecified(ThreadSpecified);
1426  }
1427  NewVD->setNextDeclarator(LastDeclarator);
1428
1429  // Handle attributes prior to checking for duplicates in MergeVarDecl
1430  ProcessDeclAttributes(NewVD, D);
1431
1432  // Handle GNU asm-label extension (encoded as an attribute).
1433  if (Expr *E = (Expr*) D.getAsmLabel()) {
1434    // The parser guarantees this is a string.
1435    StringLiteral *SE = cast<StringLiteral>(E);
1436    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1437                                                SE->getByteLength())));
1438  }
1439
1440  // Emit an error if an address space was applied to decl with local storage.
1441  // This includes arrays of objects with address space qualifiers, but not
1442  // automatic variables that point to other address spaces.
1443  // ISO/IEC TR 18037 S5.1.2
1444  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1445    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1446    InvalidDecl = true;
1447  }
1448  // Merge the decl with the existing one if appropriate. If the decl is
1449  // in an outer scope, it isn't the same thing.
1450  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1451    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1452      // The user tried to define a non-static data member
1453      // out-of-line (C++ [dcl.meaning]p1).
1454      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1455        << D.getCXXScopeSpec().getRange();
1456      NewVD->Destroy(Context);
1457      return 0;
1458    }
1459
1460    NewVD = MergeVarDecl(NewVD, PrevDecl);
1461    if (NewVD == 0) return 0;
1462
1463    if (D.getCXXScopeSpec().isSet()) {
1464      // No previous declaration in the qualifying scope.
1465      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1466        << Name << D.getCXXScopeSpec().getRange();
1467      InvalidDecl = true;
1468    }
1469  }
1470  return NewVD;
1471}
1472
1473NamedDecl*
1474Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1475                              QualType R, Decl *LastDeclarator,
1476                              Decl* PrevDecl, bool IsFunctionDefinition,
1477                              bool& InvalidDecl) {
1478  assert(R.getTypePtr()->isFunctionType());
1479
1480  DeclarationName Name = GetNameForDeclarator(D);
1481  FunctionDecl::StorageClass SC = FunctionDecl::None;
1482  switch (D.getDeclSpec().getStorageClassSpec()) {
1483  default: assert(0 && "Unknown storage class!");
1484  case DeclSpec::SCS_auto:
1485  case DeclSpec::SCS_register:
1486  case DeclSpec::SCS_mutable:
1487    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1488    InvalidDecl = true;
1489    break;
1490  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1491  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1492  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1493  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1494  }
1495
1496  bool isInline = D.getDeclSpec().isInlineSpecified();
1497  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1498  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1499
1500  FunctionDecl *NewFD;
1501  if (D.getKind() == Declarator::DK_Constructor) {
1502    // This is a C++ constructor declaration.
1503    assert(DC->isRecord() &&
1504           "Constructors can only be declared in a member context");
1505
1506    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1507
1508    // Create the new declaration
1509    NewFD = CXXConstructorDecl::Create(Context,
1510                                       cast<CXXRecordDecl>(DC),
1511                                       D.getIdentifierLoc(), Name, R,
1512                                       isExplicit, isInline,
1513                                       /*isImplicitlyDeclared=*/false);
1514
1515    if (InvalidDecl)
1516      NewFD->setInvalidDecl();
1517  } else if (D.getKind() == Declarator::DK_Destructor) {
1518    // This is a C++ destructor declaration.
1519    if (DC->isRecord()) {
1520      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1521
1522      NewFD = CXXDestructorDecl::Create(Context,
1523                                        cast<CXXRecordDecl>(DC),
1524                                        D.getIdentifierLoc(), Name, R,
1525                                        isInline,
1526                                        /*isImplicitlyDeclared=*/false);
1527
1528      if (InvalidDecl)
1529        NewFD->setInvalidDecl();
1530    } else {
1531      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1532
1533      // Create a FunctionDecl to satisfy the function definition parsing
1534      // code path.
1535      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1536                                   Name, R, SC, isInline,
1537                                   // FIXME: Move to DeclGroup...
1538                                   D.getDeclSpec().getSourceRange().getBegin());
1539      InvalidDecl = true;
1540      NewFD->setInvalidDecl();
1541    }
1542  } else if (D.getKind() == Declarator::DK_Conversion) {
1543    if (!DC->isRecord()) {
1544      Diag(D.getIdentifierLoc(),
1545           diag::err_conv_function_not_member);
1546      return 0;
1547    } else {
1548      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1549
1550      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1551                                        D.getIdentifierLoc(), Name, R,
1552                                        isInline, isExplicit);
1553
1554      if (InvalidDecl)
1555        NewFD->setInvalidDecl();
1556    }
1557  } else if (DC->isRecord()) {
1558    // This is a C++ method declaration.
1559    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1560                                  D.getIdentifierLoc(), Name, R,
1561                                  (SC == FunctionDecl::Static), isInline);
1562  } else {
1563    NewFD = FunctionDecl::Create(Context, DC,
1564                                 D.getIdentifierLoc(),
1565                                 Name, R, SC, isInline,
1566                                 // FIXME: Move to DeclGroup...
1567                                 D.getDeclSpec().getSourceRange().getBegin());
1568  }
1569  NewFD->setNextDeclarator(LastDeclarator);
1570
1571  // Set the lexical context. If the declarator has a C++
1572  // scope specifier, the lexical context will be different
1573  // from the semantic context.
1574  NewFD->setLexicalDeclContext(CurContext);
1575
1576  // Handle GNU asm-label extension (encoded as an attribute).
1577  if (Expr *E = (Expr*) D.getAsmLabel()) {
1578    // The parser guarantees this is a string.
1579    StringLiteral *SE = cast<StringLiteral>(E);
1580    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1581                                                SE->getByteLength())));
1582  }
1583
1584  // Copy the parameter declarations from the declarator D to
1585  // the function declaration NewFD, if they are available.
1586  if (D.getNumTypeObjects() > 0) {
1587    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1588
1589    // Create Decl objects for each parameter, adding them to the
1590    // FunctionDecl.
1591    llvm::SmallVector<ParmVarDecl*, 16> Params;
1592
1593    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1594    // function that takes no arguments, not a function that takes a
1595    // single void argument.
1596    // We let through "const void" here because Sema::GetTypeForDeclarator
1597    // already checks for that case.
1598    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1599        FTI.ArgInfo[0].Param &&
1600        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1601      // empty arg list, don't push any params.
1602      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1603
1604      // In C++, the empty parameter-type-list must be spelled "void"; a
1605      // typedef of void is not permitted.
1606      if (getLangOptions().CPlusPlus &&
1607          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1608        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1609      }
1610    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1611      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1612        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1613    }
1614
1615    NewFD->setParams(Context, &Params[0], Params.size());
1616  } else if (R->getAsTypedefType()) {
1617    // When we're declaring a function with a typedef, as in the
1618    // following example, we'll need to synthesize (unnamed)
1619    // parameters for use in the declaration.
1620    //
1621    // @code
1622    // typedef void fn(int);
1623    // fn f;
1624    // @endcode
1625    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1626    if (!FT) {
1627      // This is a typedef of a function with no prototype, so we
1628      // don't need to do anything.
1629    } else if ((FT->getNumArgs() == 0) ||
1630               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1631                FT->getArgType(0)->isVoidType())) {
1632      // This is a zero-argument function. We don't need to do anything.
1633    } else {
1634      // Synthesize a parameter for each argument type.
1635      llvm::SmallVector<ParmVarDecl*, 16> Params;
1636      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1637           ArgType != FT->arg_type_end(); ++ArgType) {
1638        Params.push_back(ParmVarDecl::Create(Context, DC,
1639                                             SourceLocation(), 0,
1640                                             *ArgType, VarDecl::None,
1641                                             0));
1642      }
1643
1644      NewFD->setParams(Context, &Params[0], Params.size());
1645    }
1646  }
1647
1648  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1649    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1650  else if (isa<CXXDestructorDecl>(NewFD)) {
1651    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1652    Record->setUserDeclaredDestructor(true);
1653    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1654    // user-defined destructor.
1655    Record->setPOD(false);
1656  } else if (CXXConversionDecl *Conversion =
1657             dyn_cast<CXXConversionDecl>(NewFD))
1658    ActOnConversionDeclarator(Conversion);
1659
1660  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1661  if (NewFD->isOverloadedOperator() &&
1662      CheckOverloadedOperatorDeclaration(NewFD))
1663    NewFD->setInvalidDecl();
1664
1665  // Merge the decl with the existing one if appropriate. Since C functions
1666  // are in a flat namespace, make sure we consider decls in outer scopes.
1667  if (PrevDecl &&
1668      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1669    bool Redeclaration = false;
1670
1671    // If C++, determine whether NewFD is an overload of PrevDecl or
1672    // a declaration that requires merging. If it's an overload,
1673    // there's no more work to do here; we'll just add the new
1674    // function to the scope.
1675    OverloadedFunctionDecl::function_iterator MatchedDecl;
1676    if (!getLangOptions().CPlusPlus ||
1677        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1678      Decl *OldDecl = PrevDecl;
1679
1680      // If PrevDecl was an overloaded function, extract the
1681      // FunctionDecl that matched.
1682      if (isa<OverloadedFunctionDecl>(PrevDecl))
1683        OldDecl = *MatchedDecl;
1684
1685      // NewFD and PrevDecl represent declarations that need to be
1686      // merged.
1687      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1688
1689      if (NewFD == 0) return 0;
1690      if (Redeclaration) {
1691        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1692
1693        // An out-of-line member function declaration must also be a
1694        // definition (C++ [dcl.meaning]p1).
1695        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1696            !InvalidDecl) {
1697          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1698            << D.getCXXScopeSpec().getRange();
1699          NewFD->setInvalidDecl();
1700        }
1701      }
1702    }
1703
1704    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1705      // The user tried to provide an out-of-line definition for a
1706      // member function, but there was no such member function
1707      // declared (C++ [class.mfct]p2). For example:
1708      //
1709      // class X {
1710      //   void f() const;
1711      // };
1712      //
1713      // void X::f() { } // ill-formed
1714      //
1715      // Complain about this problem, and attempt to suggest close
1716      // matches (e.g., those that differ only in cv-qualifiers and
1717      // whether the parameter types are references).
1718      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1719        << cast<CXXRecordDecl>(DC)->getDeclName()
1720        << D.getCXXScopeSpec().getRange();
1721      InvalidDecl = true;
1722
1723      PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1724      if (!PrevDecl) {
1725        // Nothing to suggest.
1726      } else if (OverloadedFunctionDecl *Ovl
1727                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1728        for (OverloadedFunctionDecl::function_iterator
1729               Func = Ovl->function_begin(),
1730               FuncEnd = Ovl->function_end();
1731             Func != FuncEnd; ++Func) {
1732          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1733            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1734
1735        }
1736      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1737        // Suggest this no matter how mismatched it is; it's the only
1738        // thing we have.
1739        unsigned diag;
1740        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1741          diag = diag::note_member_def_close_match;
1742        else if (Method->getBody())
1743          diag = diag::note_previous_definition;
1744        else
1745          diag = diag::note_previous_declaration;
1746        Diag(Method->getLocation(), diag);
1747      }
1748
1749      PrevDecl = 0;
1750    }
1751  }
1752  // Handle attributes. We need to have merged decls when handling attributes
1753  // (for example to check for conflicts, etc).
1754  ProcessDeclAttributes(NewFD, D);
1755
1756  if (getLangOptions().CPlusPlus) {
1757    // In C++, check default arguments now that we have merged decls.
1758    CheckCXXDefaultArguments(NewFD);
1759
1760    // An out-of-line member function declaration must also be a
1761    // definition (C++ [dcl.meaning]p1).
1762    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1763      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1764        << D.getCXXScopeSpec().getRange();
1765      InvalidDecl = true;
1766    }
1767  }
1768  return NewFD;
1769}
1770
1771void Sema::InitializerElementNotConstant(const Expr *Init) {
1772  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1773    << Init->getSourceRange();
1774}
1775
1776bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1777  switch (Init->getStmtClass()) {
1778  default:
1779    InitializerElementNotConstant(Init);
1780    return true;
1781  case Expr::ParenExprClass: {
1782    const ParenExpr* PE = cast<ParenExpr>(Init);
1783    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1784  }
1785  case Expr::CompoundLiteralExprClass:
1786    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1787  case Expr::DeclRefExprClass:
1788  case Expr::QualifiedDeclRefExprClass: {
1789    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1790    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1791      if (VD->hasGlobalStorage())
1792        return false;
1793      InitializerElementNotConstant(Init);
1794      return true;
1795    }
1796    if (isa<FunctionDecl>(D))
1797      return false;
1798    InitializerElementNotConstant(Init);
1799    return true;
1800  }
1801  case Expr::MemberExprClass: {
1802    const MemberExpr *M = cast<MemberExpr>(Init);
1803    if (M->isArrow())
1804      return CheckAddressConstantExpression(M->getBase());
1805    return CheckAddressConstantExpressionLValue(M->getBase());
1806  }
1807  case Expr::ArraySubscriptExprClass: {
1808    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1809    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1810    return CheckAddressConstantExpression(ASE->getBase()) ||
1811           CheckArithmeticConstantExpression(ASE->getIdx());
1812  }
1813  case Expr::StringLiteralClass:
1814  case Expr::PredefinedExprClass:
1815    return false;
1816  case Expr::UnaryOperatorClass: {
1817    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1818
1819    // C99 6.6p9
1820    if (Exp->getOpcode() == UnaryOperator::Deref)
1821      return CheckAddressConstantExpression(Exp->getSubExpr());
1822
1823    InitializerElementNotConstant(Init);
1824    return true;
1825  }
1826  }
1827}
1828
1829bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1830  switch (Init->getStmtClass()) {
1831  default:
1832    InitializerElementNotConstant(Init);
1833    return true;
1834  case Expr::ParenExprClass:
1835    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1836  case Expr::StringLiteralClass:
1837  case Expr::ObjCStringLiteralClass:
1838    return false;
1839  case Expr::CallExprClass:
1840  case Expr::CXXOperatorCallExprClass:
1841    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1842    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1843           Builtin::BI__builtin___CFStringMakeConstantString)
1844      return false;
1845
1846    InitializerElementNotConstant(Init);
1847    return true;
1848
1849  case Expr::UnaryOperatorClass: {
1850    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1851
1852    // C99 6.6p9
1853    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1854      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1855
1856    if (Exp->getOpcode() == UnaryOperator::Extension)
1857      return CheckAddressConstantExpression(Exp->getSubExpr());
1858
1859    InitializerElementNotConstant(Init);
1860    return true;
1861  }
1862  case Expr::BinaryOperatorClass: {
1863    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1864    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1865
1866    Expr *PExp = Exp->getLHS();
1867    Expr *IExp = Exp->getRHS();
1868    if (IExp->getType()->isPointerType())
1869      std::swap(PExp, IExp);
1870
1871    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1872    return CheckAddressConstantExpression(PExp) ||
1873           CheckArithmeticConstantExpression(IExp);
1874  }
1875  case Expr::ImplicitCastExprClass:
1876  case Expr::CStyleCastExprClass: {
1877    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1878    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1879      // Check for implicit promotion
1880      if (SubExpr->getType()->isFunctionType() ||
1881          SubExpr->getType()->isArrayType())
1882        return CheckAddressConstantExpressionLValue(SubExpr);
1883    }
1884
1885    // Check for pointer->pointer cast
1886    if (SubExpr->getType()->isPointerType())
1887      return CheckAddressConstantExpression(SubExpr);
1888
1889    if (SubExpr->getType()->isIntegralType()) {
1890      // Check for the special-case of a pointer->int->pointer cast;
1891      // this isn't standard, but some code requires it. See
1892      // PR2720 for an example.
1893      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1894        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1895          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1896          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1897          if (IntWidth >= PointerWidth) {
1898            return CheckAddressConstantExpression(SubCast->getSubExpr());
1899          }
1900        }
1901      }
1902    }
1903    if (SubExpr->getType()->isArithmeticType()) {
1904      return CheckArithmeticConstantExpression(SubExpr);
1905    }
1906
1907    InitializerElementNotConstant(Init);
1908    return true;
1909  }
1910  case Expr::ConditionalOperatorClass: {
1911    // FIXME: Should we pedwarn here?
1912    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1913    if (!Exp->getCond()->getType()->isArithmeticType()) {
1914      InitializerElementNotConstant(Init);
1915      return true;
1916    }
1917    if (CheckArithmeticConstantExpression(Exp->getCond()))
1918      return true;
1919    if (Exp->getLHS() &&
1920        CheckAddressConstantExpression(Exp->getLHS()))
1921      return true;
1922    return CheckAddressConstantExpression(Exp->getRHS());
1923  }
1924  case Expr::AddrLabelExprClass:
1925    return false;
1926  }
1927}
1928
1929static const Expr* FindExpressionBaseAddress(const Expr* E);
1930
1931static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1932  switch (E->getStmtClass()) {
1933  default:
1934    return E;
1935  case Expr::ParenExprClass: {
1936    const ParenExpr* PE = cast<ParenExpr>(E);
1937    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1938  }
1939  case Expr::MemberExprClass: {
1940    const MemberExpr *M = cast<MemberExpr>(E);
1941    if (M->isArrow())
1942      return FindExpressionBaseAddress(M->getBase());
1943    return FindExpressionBaseAddressLValue(M->getBase());
1944  }
1945  case Expr::ArraySubscriptExprClass: {
1946    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1947    return FindExpressionBaseAddress(ASE->getBase());
1948  }
1949  case Expr::UnaryOperatorClass: {
1950    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1951
1952    if (Exp->getOpcode() == UnaryOperator::Deref)
1953      return FindExpressionBaseAddress(Exp->getSubExpr());
1954
1955    return E;
1956  }
1957  }
1958}
1959
1960static const Expr* FindExpressionBaseAddress(const Expr* E) {
1961  switch (E->getStmtClass()) {
1962  default:
1963    return E;
1964  case Expr::ParenExprClass: {
1965    const ParenExpr* PE = cast<ParenExpr>(E);
1966    return FindExpressionBaseAddress(PE->getSubExpr());
1967  }
1968  case Expr::UnaryOperatorClass: {
1969    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1970
1971    // C99 6.6p9
1972    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1973      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1974
1975    if (Exp->getOpcode() == UnaryOperator::Extension)
1976      return FindExpressionBaseAddress(Exp->getSubExpr());
1977
1978    return E;
1979  }
1980  case Expr::BinaryOperatorClass: {
1981    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1982
1983    Expr *PExp = Exp->getLHS();
1984    Expr *IExp = Exp->getRHS();
1985    if (IExp->getType()->isPointerType())
1986      std::swap(PExp, IExp);
1987
1988    return FindExpressionBaseAddress(PExp);
1989  }
1990  case Expr::ImplicitCastExprClass: {
1991    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1992
1993    // Check for implicit promotion
1994    if (SubExpr->getType()->isFunctionType() ||
1995        SubExpr->getType()->isArrayType())
1996      return FindExpressionBaseAddressLValue(SubExpr);
1997
1998    // Check for pointer->pointer cast
1999    if (SubExpr->getType()->isPointerType())
2000      return FindExpressionBaseAddress(SubExpr);
2001
2002    // We assume that we have an arithmetic expression here;
2003    // if we don't, we'll figure it out later
2004    return 0;
2005  }
2006  case Expr::CStyleCastExprClass: {
2007    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2008
2009    // Check for pointer->pointer cast
2010    if (SubExpr->getType()->isPointerType())
2011      return FindExpressionBaseAddress(SubExpr);
2012
2013    // We assume that we have an arithmetic expression here;
2014    // if we don't, we'll figure it out later
2015    return 0;
2016  }
2017  }
2018}
2019
2020bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2021  switch (Init->getStmtClass()) {
2022  default:
2023    InitializerElementNotConstant(Init);
2024    return true;
2025  case Expr::ParenExprClass: {
2026    const ParenExpr* PE = cast<ParenExpr>(Init);
2027    return CheckArithmeticConstantExpression(PE->getSubExpr());
2028  }
2029  case Expr::FloatingLiteralClass:
2030  case Expr::IntegerLiteralClass:
2031  case Expr::CharacterLiteralClass:
2032  case Expr::ImaginaryLiteralClass:
2033  case Expr::TypesCompatibleExprClass:
2034  case Expr::CXXBoolLiteralExprClass:
2035    return false;
2036  case Expr::CallExprClass:
2037  case Expr::CXXOperatorCallExprClass: {
2038    const CallExpr *CE = cast<CallExpr>(Init);
2039
2040    // Allow any constant foldable calls to builtins.
2041    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2042      return false;
2043
2044    InitializerElementNotConstant(Init);
2045    return true;
2046  }
2047  case Expr::DeclRefExprClass:
2048  case Expr::QualifiedDeclRefExprClass: {
2049    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2050    if (isa<EnumConstantDecl>(D))
2051      return false;
2052    InitializerElementNotConstant(Init);
2053    return true;
2054  }
2055  case Expr::CompoundLiteralExprClass:
2056    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2057    // but vectors are allowed to be magic.
2058    if (Init->getType()->isVectorType())
2059      return false;
2060    InitializerElementNotConstant(Init);
2061    return true;
2062  case Expr::UnaryOperatorClass: {
2063    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2064
2065    switch (Exp->getOpcode()) {
2066    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2067    // See C99 6.6p3.
2068    default:
2069      InitializerElementNotConstant(Init);
2070      return true;
2071    case UnaryOperator::OffsetOf:
2072      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2073        return false;
2074      InitializerElementNotConstant(Init);
2075      return true;
2076    case UnaryOperator::Extension:
2077    case UnaryOperator::LNot:
2078    case UnaryOperator::Plus:
2079    case UnaryOperator::Minus:
2080    case UnaryOperator::Not:
2081      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2082    }
2083  }
2084  case Expr::SizeOfAlignOfExprClass: {
2085    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2086    // Special check for void types, which are allowed as an extension
2087    if (Exp->getTypeOfArgument()->isVoidType())
2088      return false;
2089    // alignof always evaluates to a constant.
2090    // FIXME: is sizeof(int[3.0]) a constant expression?
2091    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2092      InitializerElementNotConstant(Init);
2093      return true;
2094    }
2095    return false;
2096  }
2097  case Expr::BinaryOperatorClass: {
2098    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2099
2100    if (Exp->getLHS()->getType()->isArithmeticType() &&
2101        Exp->getRHS()->getType()->isArithmeticType()) {
2102      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2103             CheckArithmeticConstantExpression(Exp->getRHS());
2104    }
2105
2106    if (Exp->getLHS()->getType()->isPointerType() &&
2107        Exp->getRHS()->getType()->isPointerType()) {
2108      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2109      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2110
2111      // Only allow a null (constant integer) base; we could
2112      // allow some additional cases if necessary, but this
2113      // is sufficient to cover offsetof-like constructs.
2114      if (!LHSBase && !RHSBase) {
2115        return CheckAddressConstantExpression(Exp->getLHS()) ||
2116               CheckAddressConstantExpression(Exp->getRHS());
2117      }
2118    }
2119
2120    InitializerElementNotConstant(Init);
2121    return true;
2122  }
2123  case Expr::ImplicitCastExprClass:
2124  case Expr::CStyleCastExprClass: {
2125    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2126    if (SubExpr->getType()->isArithmeticType())
2127      return CheckArithmeticConstantExpression(SubExpr);
2128
2129    if (SubExpr->getType()->isPointerType()) {
2130      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2131      // If the pointer has a null base, this is an offsetof-like construct
2132      if (!Base)
2133        return CheckAddressConstantExpression(SubExpr);
2134    }
2135
2136    InitializerElementNotConstant(Init);
2137    return true;
2138  }
2139  case Expr::ConditionalOperatorClass: {
2140    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2141
2142    // If GNU extensions are disabled, we require all operands to be arithmetic
2143    // constant expressions.
2144    if (getLangOptions().NoExtensions) {
2145      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2146          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2147             CheckArithmeticConstantExpression(Exp->getRHS());
2148    }
2149
2150    // Otherwise, we have to emulate some of the behavior of fold here.
2151    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2152    // because it can constant fold things away.  To retain compatibility with
2153    // GCC code, we see if we can fold the condition to a constant (which we
2154    // should always be able to do in theory).  If so, we only require the
2155    // specified arm of the conditional to be a constant.  This is a horrible
2156    // hack, but is require by real world code that uses __builtin_constant_p.
2157    Expr::EvalResult EvalResult;
2158    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2159        EvalResult.HasSideEffects) {
2160      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2161      // won't be able to either.  Use it to emit the diagnostic though.
2162      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2163      assert(Res && "Evaluate couldn't evaluate this constant?");
2164      return Res;
2165    }
2166
2167    // Verify that the side following the condition is also a constant.
2168    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2169    if (EvalResult.Val.getInt() == 0)
2170      std::swap(TrueSide, FalseSide);
2171
2172    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2173      return true;
2174
2175    // Okay, the evaluated side evaluates to a constant, so we accept this.
2176    // Check to see if the other side is obviously not a constant.  If so,
2177    // emit a warning that this is a GNU extension.
2178    if (FalseSide && !FalseSide->isEvaluatable(Context))
2179      Diag(Init->getExprLoc(),
2180           diag::ext_typecheck_expression_not_constant_but_accepted)
2181        << FalseSide->getSourceRange();
2182    return false;
2183  }
2184  }
2185}
2186
2187bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2188  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2189    Init = DIE->getInit();
2190
2191  Init = Init->IgnoreParens();
2192
2193  if (Init->isEvaluatable(Context))
2194    return false;
2195
2196  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2197  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2198    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2199
2200  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2201    return CheckForConstantInitializer(e->getInitializer(), DclT);
2202
2203  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2204    unsigned numInits = Exp->getNumInits();
2205    for (unsigned i = 0; i < numInits; i++) {
2206      // FIXME: Need to get the type of the declaration for C++,
2207      // because it could be a reference?
2208      if (CheckForConstantInitializer(Exp->getInit(i),
2209                                      Exp->getInit(i)->getType()))
2210        return true;
2211    }
2212    return false;
2213  }
2214
2215  // FIXME: We can probably remove some of this code below, now that
2216  // Expr::Evaluate is doing the heavy lifting for scalars.
2217
2218  if (Init->isNullPointerConstant(Context))
2219    return false;
2220  if (Init->getType()->isArithmeticType()) {
2221    QualType InitTy = Context.getCanonicalType(Init->getType())
2222                             .getUnqualifiedType();
2223    if (InitTy == Context.BoolTy) {
2224      // Special handling for pointers implicitly cast to bool;
2225      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2226      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2227        Expr* SubE = ICE->getSubExpr();
2228        if (SubE->getType()->isPointerType() ||
2229            SubE->getType()->isArrayType() ||
2230            SubE->getType()->isFunctionType()) {
2231          return CheckAddressConstantExpression(Init);
2232        }
2233      }
2234    } else if (InitTy->isIntegralType()) {
2235      Expr* SubE = 0;
2236      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2237        SubE = CE->getSubExpr();
2238      // Special check for pointer cast to int; we allow as an extension
2239      // an address constant cast to an integer if the integer
2240      // is of an appropriate width (this sort of code is apparently used
2241      // in some places).
2242      // FIXME: Add pedwarn?
2243      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2244      if (SubE && (SubE->getType()->isPointerType() ||
2245                   SubE->getType()->isArrayType() ||
2246                   SubE->getType()->isFunctionType())) {
2247        unsigned IntWidth = Context.getTypeSize(Init->getType());
2248        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2249        if (IntWidth >= PointerWidth)
2250          return CheckAddressConstantExpression(Init);
2251      }
2252    }
2253
2254    return CheckArithmeticConstantExpression(Init);
2255  }
2256
2257  if (Init->getType()->isPointerType())
2258    return CheckAddressConstantExpression(Init);
2259
2260  // An array type at the top level that isn't an init-list must
2261  // be a string literal
2262  if (Init->getType()->isArrayType())
2263    return false;
2264
2265  if (Init->getType()->isFunctionType())
2266    return false;
2267
2268  // Allow block exprs at top level.
2269  if (Init->getType()->isBlockPointerType())
2270    return false;
2271
2272  // GCC cast to union extension
2273  // note: the validity of the cast expr is checked by CheckCastTypes()
2274  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2275    QualType T = C->getType();
2276    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2277  }
2278
2279  InitializerElementNotConstant(Init);
2280  return true;
2281}
2282
2283void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2284  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2285}
2286
2287/// AddInitializerToDecl - Adds the initializer Init to the
2288/// declaration dcl. If DirectInit is true, this is C++ direct
2289/// initialization rather than copy initialization.
2290void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2291  Decl *RealDecl = static_cast<Decl *>(dcl);
2292  Expr *Init = static_cast<Expr *>(init.release());
2293  assert(Init && "missing initializer");
2294
2295  // If there is no declaration, there was an error parsing it.  Just ignore
2296  // the initializer.
2297  if (RealDecl == 0) {
2298    delete Init;
2299    return;
2300  }
2301
2302  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2303  if (!VDecl) {
2304    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2305    RealDecl->setInvalidDecl();
2306    return;
2307  }
2308  // Get the decls type and save a reference for later, since
2309  // CheckInitializerTypes may change it.
2310  QualType DclT = VDecl->getType(), SavT = DclT;
2311  if (VDecl->isBlockVarDecl()) {
2312    VarDecl::StorageClass SC = VDecl->getStorageClass();
2313    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2314      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2315      VDecl->setInvalidDecl();
2316    } else if (!VDecl->isInvalidDecl()) {
2317      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2318                                VDecl->getDeclName(), DirectInit))
2319        VDecl->setInvalidDecl();
2320
2321      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2322      if (!getLangOptions().CPlusPlus) {
2323        if (SC == VarDecl::Static) // C99 6.7.8p4.
2324          CheckForConstantInitializer(Init, DclT);
2325      }
2326    }
2327  } else if (VDecl->isFileVarDecl()) {
2328    if (VDecl->getStorageClass() == VarDecl::Extern)
2329      Diag(VDecl->getLocation(), diag::warn_extern_init);
2330    if (!VDecl->isInvalidDecl())
2331      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2332                                VDecl->getDeclName(), DirectInit))
2333        VDecl->setInvalidDecl();
2334
2335    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2336    if (!getLangOptions().CPlusPlus) {
2337      // C99 6.7.8p4. All file scoped initializers need to be constant.
2338      CheckForConstantInitializer(Init, DclT);
2339    }
2340  }
2341  // If the type changed, it means we had an incomplete type that was
2342  // completed by the initializer. For example:
2343  //   int ary[] = { 1, 3, 5 };
2344  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2345  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2346    VDecl->setType(DclT);
2347    Init->setType(DclT);
2348  }
2349
2350  // Attach the initializer to the decl.
2351  VDecl->setInit(Init);
2352  return;
2353}
2354
2355void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2356  Decl *RealDecl = static_cast<Decl *>(dcl);
2357
2358  // If there is no declaration, there was an error parsing it. Just ignore it.
2359  if (RealDecl == 0)
2360    return;
2361
2362  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2363    QualType Type = Var->getType();
2364    // C++ [dcl.init.ref]p3:
2365    //   The initializer can be omitted for a reference only in a
2366    //   parameter declaration (8.3.5), in the declaration of a
2367    //   function return type, in the declaration of a class member
2368    //   within its class declaration (9.2), and where the extern
2369    //   specifier is explicitly used.
2370    if (Type->isReferenceType() &&
2371        Var->getStorageClass() != VarDecl::Extern &&
2372        Var->getStorageClass() != VarDecl::PrivateExtern) {
2373      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2374        << Var->getDeclName()
2375        << SourceRange(Var->getLocation(), Var->getLocation());
2376      Var->setInvalidDecl();
2377      return;
2378    }
2379
2380    // C++ [dcl.init]p9:
2381    //
2382    //   If no initializer is specified for an object, and the object
2383    //   is of (possibly cv-qualified) non-POD class type (or array
2384    //   thereof), the object shall be default-initialized; if the
2385    //   object is of const-qualified type, the underlying class type
2386    //   shall have a user-declared default constructor.
2387    if (getLangOptions().CPlusPlus) {
2388      QualType InitType = Type;
2389      if (const ArrayType *Array = Context.getAsArrayType(Type))
2390        InitType = Array->getElementType();
2391      if (Var->getStorageClass() != VarDecl::Extern &&
2392          Var->getStorageClass() != VarDecl::PrivateExtern &&
2393          InitType->isRecordType()) {
2394        const CXXConstructorDecl *Constructor
2395          = PerformInitializationByConstructor(InitType, 0, 0,
2396                                               Var->getLocation(),
2397                                               SourceRange(Var->getLocation(),
2398                                                           Var->getLocation()),
2399                                               Var->getDeclName(),
2400                                               IK_Default);
2401        if (!Constructor)
2402          Var->setInvalidDecl();
2403      }
2404    }
2405
2406#if 0
2407    // FIXME: Temporarily disabled because we are not properly parsing
2408    // linkage specifications on declarations, e.g.,
2409    //
2410    //   extern "C" const CGPoint CGPointerZero;
2411    //
2412    // C++ [dcl.init]p9:
2413    //
2414    //     If no initializer is specified for an object, and the
2415    //     object is of (possibly cv-qualified) non-POD class type (or
2416    //     array thereof), the object shall be default-initialized; if
2417    //     the object is of const-qualified type, the underlying class
2418    //     type shall have a user-declared default
2419    //     constructor. Otherwise, if no initializer is specified for
2420    //     an object, the object and its subobjects, if any, have an
2421    //     indeterminate initial value; if the object or any of its
2422    //     subobjects are of const-qualified type, the program is
2423    //     ill-formed.
2424    //
2425    // This isn't technically an error in C, so we don't diagnose it.
2426    //
2427    // FIXME: Actually perform the POD/user-defined default
2428    // constructor check.
2429    if (getLangOptions().CPlusPlus &&
2430        Context.getCanonicalType(Type).isConstQualified() &&
2431        Var->getStorageClass() != VarDecl::Extern)
2432      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2433        << Var->getName()
2434        << SourceRange(Var->getLocation(), Var->getLocation());
2435#endif
2436  }
2437}
2438
2439/// The declarators are chained together backwards, reverse the list.
2440Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2441  // Often we have single declarators, handle them quickly.
2442  Decl *GroupDecl = static_cast<Decl*>(group);
2443  if (GroupDecl == 0)
2444    return 0;
2445
2446  Decl *Group = dyn_cast<Decl>(GroupDecl);
2447  Decl *NewGroup = 0;
2448  if (Group->getNextDeclarator() == 0)
2449    NewGroup = Group;
2450  else { // reverse the list.
2451    while (Group) {
2452      Decl *Next = Group->getNextDeclarator();
2453      Group->setNextDeclarator(NewGroup);
2454      NewGroup = Group;
2455      Group = Next;
2456    }
2457  }
2458  // Perform semantic analysis that depends on having fully processed both
2459  // the declarator and initializer.
2460  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2461    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2462    if (!IDecl)
2463      continue;
2464    QualType T = IDecl->getType();
2465
2466    if (T->isVariableArrayType()) {
2467      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2468
2469      // FIXME: This won't give the correct result for
2470      // int a[10][n];
2471      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2472      if (IDecl->isFileVarDecl()) {
2473        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2474          SizeRange;
2475
2476        IDecl->setInvalidDecl();
2477      } else {
2478        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2479        // static storage duration, it shall not have a variable length array.
2480        if (IDecl->getStorageClass() == VarDecl::Static) {
2481          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2482            << SizeRange;
2483          IDecl->setInvalidDecl();
2484        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2485          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2486            << SizeRange;
2487          IDecl->setInvalidDecl();
2488        }
2489      }
2490    } else if (T->isVariablyModifiedType()) {
2491      if (IDecl->isFileVarDecl()) {
2492        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2493        IDecl->setInvalidDecl();
2494      } else {
2495        if (IDecl->getStorageClass() == VarDecl::Extern) {
2496          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2497          IDecl->setInvalidDecl();
2498        }
2499      }
2500    }
2501
2502    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2503    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2504    if (IDecl->isBlockVarDecl() &&
2505        IDecl->getStorageClass() != VarDecl::Extern) {
2506      if (!IDecl->isInvalidDecl() &&
2507          DiagnoseIncompleteType(IDecl->getLocation(), T,
2508                                 diag::err_typecheck_decl_incomplete_type))
2509        IDecl->setInvalidDecl();
2510    }
2511    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2512    // object that has file scope without an initializer, and without a
2513    // storage-class specifier or with the storage-class specifier "static",
2514    // constitutes a tentative definition. Note: A tentative definition with
2515    // external linkage is valid (C99 6.2.2p5).
2516    if (isTentativeDefinition(IDecl)) {
2517      if (T->isIncompleteArrayType()) {
2518        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2519        // array to be completed. Don't issue a diagnostic.
2520      } else if (!IDecl->isInvalidDecl() &&
2521                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2522                                        diag::err_typecheck_decl_incomplete_type))
2523        // C99 6.9.2p3: If the declaration of an identifier for an object is
2524        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2525        // declared type shall not be an incomplete type.
2526        IDecl->setInvalidDecl();
2527    }
2528    if (IDecl->isFileVarDecl())
2529      CheckForFileScopedRedefinitions(S, IDecl);
2530  }
2531  return NewGroup;
2532}
2533
2534/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2535/// to introduce parameters into function prototype scope.
2536Sema::DeclTy *
2537Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2538  const DeclSpec &DS = D.getDeclSpec();
2539
2540  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2541  VarDecl::StorageClass StorageClass = VarDecl::None;
2542  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2543    StorageClass = VarDecl::Register;
2544  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2545    Diag(DS.getStorageClassSpecLoc(),
2546         diag::err_invalid_storage_class_in_func_decl);
2547    D.getMutableDeclSpec().ClearStorageClassSpecs();
2548  }
2549  if (DS.isThreadSpecified()) {
2550    Diag(DS.getThreadSpecLoc(),
2551         diag::err_invalid_storage_class_in_func_decl);
2552    D.getMutableDeclSpec().ClearStorageClassSpecs();
2553  }
2554
2555  // Check that there are no default arguments inside the type of this
2556  // parameter (C++ only).
2557  if (getLangOptions().CPlusPlus)
2558    CheckExtraCXXDefaultArguments(D);
2559
2560  // In this context, we *do not* check D.getInvalidType(). If the declarator
2561  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2562  // though it will not reflect the user specified type.
2563  QualType parmDeclType = GetTypeForDeclarator(D, S);
2564
2565  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2566
2567  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2568  // Can this happen for params?  We already checked that they don't conflict
2569  // among each other.  Here they can only shadow globals, which is ok.
2570  IdentifierInfo *II = D.getIdentifier();
2571  if (II) {
2572    if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2573      if (PrevDecl->isTemplateParameter()) {
2574        // Maybe we will complain about the shadowed template parameter.
2575        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2576        // Just pretend that we didn't see the previous declaration.
2577        PrevDecl = 0;
2578      } else if (S->isDeclScope(PrevDecl)) {
2579        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2580
2581        // Recover by removing the name
2582        II = 0;
2583        D.SetIdentifier(0, D.getIdentifierLoc());
2584      }
2585    }
2586  }
2587
2588  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2589  // Doing the promotion here has a win and a loss. The win is the type for
2590  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2591  // code generator). The loss is the orginal type isn't preserved. For example:
2592  //
2593  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2594  //    int blockvardecl[5];
2595  //    sizeof(parmvardecl);  // size == 4
2596  //    sizeof(blockvardecl); // size == 20
2597  // }
2598  //
2599  // For expressions, all implicit conversions are captured using the
2600  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2601  //
2602  // FIXME: If a source translation tool needs to see the original type, then
2603  // we need to consider storing both types (in ParmVarDecl)...
2604  //
2605  if (parmDeclType->isArrayType()) {
2606    // int x[restrict 4] ->  int *restrict
2607    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2608  } else if (parmDeclType->isFunctionType())
2609    parmDeclType = Context.getPointerType(parmDeclType);
2610
2611  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2612                                         D.getIdentifierLoc(), II,
2613                                         parmDeclType, StorageClass,
2614                                         0);
2615
2616  if (D.getInvalidType())
2617    New->setInvalidDecl();
2618
2619  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2620  if (D.getCXXScopeSpec().isSet()) {
2621    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2622      << D.getCXXScopeSpec().getRange();
2623    New->setInvalidDecl();
2624  }
2625
2626  // Add the parameter declaration into this scope.
2627  S->AddDecl(New);
2628  if (II)
2629    IdResolver.AddDecl(New);
2630
2631  ProcessDeclAttributes(New, D);
2632  return New;
2633
2634}
2635
2636void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2637  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2638         "Not a function declarator!");
2639  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2640
2641  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2642  // for a K&R function.
2643  if (!FTI.hasPrototype) {
2644    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2645      if (FTI.ArgInfo[i].Param == 0) {
2646        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2647          << FTI.ArgInfo[i].Ident;
2648        // Implicitly declare the argument as type 'int' for lack of a better
2649        // type.
2650        DeclSpec DS;
2651        const char* PrevSpec; // unused
2652        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2653                           PrevSpec);
2654        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2655        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2656        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2657      }
2658    }
2659  }
2660}
2661
2662Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2663  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2664  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2665         "Not a function declarator!");
2666  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2667
2668  if (FTI.hasPrototype) {
2669    // FIXME: Diagnose arguments without names in C.
2670  }
2671
2672  Scope *ParentScope = FnBodyScope->getParent();
2673
2674  return ActOnStartOfFunctionDef(FnBodyScope,
2675                                 ActOnDeclarator(ParentScope, D, 0,
2676                                                 /*IsFunctionDefinition=*/true));
2677}
2678
2679Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2680  Decl *decl = static_cast<Decl*>(D);
2681  FunctionDecl *FD = cast<FunctionDecl>(decl);
2682
2683  // See if this is a redefinition.
2684  const FunctionDecl *Definition;
2685  if (FD->getBody(Definition)) {
2686    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2687    Diag(Definition->getLocation(), diag::note_previous_definition);
2688  }
2689
2690  PushDeclContext(FnBodyScope, FD);
2691
2692  // Check the validity of our function parameters
2693  CheckParmsForFunctionDef(FD);
2694
2695  // Introduce our parameters into the function scope
2696  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2697    ParmVarDecl *Param = FD->getParamDecl(p);
2698    Param->setOwningFunction(FD);
2699
2700    // If this has an identifier, add it to the scope stack.
2701    if (Param->getIdentifier())
2702      PushOnScopeChains(Param, FnBodyScope);
2703  }
2704
2705  // Checking attributes of current function definition
2706  // dllimport attribute.
2707  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2708    // dllimport attribute cannot be applied to definition.
2709    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2710      Diag(FD->getLocation(),
2711           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2712        << "dllimport";
2713      FD->setInvalidDecl();
2714      return FD;
2715    } else {
2716      // If a symbol previously declared dllimport is later defined, the
2717      // attribute is ignored in subsequent references, and a warning is
2718      // emitted.
2719      Diag(FD->getLocation(),
2720           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2721        << FD->getNameAsCString() << "dllimport";
2722    }
2723  }
2724  return FD;
2725}
2726
2727Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2728  Decl *dcl = static_cast<Decl *>(D);
2729  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2730  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2731    FD->setBody(Body);
2732    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2733  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2734    MD->setBody((Stmt*)Body);
2735  } else
2736    return 0;
2737  PopDeclContext();
2738  // Verify and clean out per-function state.
2739
2740  // Check goto/label use.
2741  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2742       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2743    // Verify that we have no forward references left.  If so, there was a goto
2744    // or address of a label taken, but no definition of it.  Label fwd
2745    // definitions are indicated with a null substmt.
2746    if (I->second->getSubStmt() == 0) {
2747      LabelStmt *L = I->second;
2748      // Emit error.
2749      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2750
2751      // At this point, we have gotos that use the bogus label.  Stitch it into
2752      // the function body so that they aren't leaked and that the AST is well
2753      // formed.
2754      if (Body) {
2755        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2756        cast<CompoundStmt>(Body)->push_back(L);
2757      } else {
2758        // The whole function wasn't parsed correctly, just delete this.
2759        delete L;
2760      }
2761    }
2762  }
2763  LabelMap.clear();
2764
2765  return D;
2766}
2767
2768/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2769/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2770NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2771                                          IdentifierInfo &II, Scope *S) {
2772  // Extension in C99.  Legal in C90, but warn about it.
2773  if (getLangOptions().C99)
2774    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2775  else
2776    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2777
2778  // FIXME: handle stuff like:
2779  // void foo() { extern float X(); }
2780  // void bar() { X(); }  <-- implicit decl for X in another scope.
2781
2782  // Set a Declarator for the implicit definition: int foo();
2783  const char *Dummy;
2784  DeclSpec DS;
2785  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2786  Error = Error; // Silence warning.
2787  assert(!Error && "Error setting up implicit decl!");
2788  Declarator D(DS, Declarator::BlockContext);
2789  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2790  D.SetIdentifier(&II, Loc);
2791
2792  // Insert this function into translation-unit scope.
2793
2794  DeclContext *PrevDC = CurContext;
2795  CurContext = Context.getTranslationUnitDecl();
2796
2797  FunctionDecl *FD =
2798    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2799  FD->setImplicit();
2800
2801  CurContext = PrevDC;
2802
2803  return FD;
2804}
2805
2806
2807TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2808                                    Decl *LastDeclarator) {
2809  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2810  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2811
2812  // Scope manipulation handled by caller.
2813  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2814                                           D.getIdentifierLoc(),
2815                                           D.getIdentifier(),
2816                                           T);
2817  NewTD->setNextDeclarator(LastDeclarator);
2818  if (D.getInvalidType())
2819    NewTD->setInvalidDecl();
2820  return NewTD;
2821}
2822
2823/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2824/// former case, Name will be non-null.  In the later case, Name will be null.
2825/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2826/// reference/declaration/definition of a tag.
2827Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2828                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2829                             IdentifierInfo *Name, SourceLocation NameLoc,
2830                             AttributeList *Attr,
2831                             MultiTemplateParamsArg TemplateParameterLists) {
2832  // If this is not a definition, it must have a name.
2833  assert((Name != 0 || TK == TK_Definition) &&
2834         "Nameless record must be a definition!");
2835
2836  TagDecl::TagKind Kind;
2837  switch (TagSpec) {
2838  default: assert(0 && "Unknown tag type!");
2839  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2840  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2841  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2842  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2843  }
2844
2845  DeclContext *SearchDC = CurContext;
2846  DeclContext *DC = CurContext;
2847  DeclContext *LexicalContext = CurContext;
2848  Decl *PrevDecl = 0;
2849
2850  bool Invalid = false;
2851
2852  if (Name && SS.isNotEmpty()) {
2853    // We have a nested-name tag ('struct foo::bar').
2854
2855    // Check for invalid 'foo::'.
2856    if (SS.isInvalid()) {
2857      Name = 0;
2858      goto CreateNewDecl;
2859    }
2860
2861    DC = static_cast<DeclContext*>(SS.getScopeRep());
2862    // Look-up name inside 'foo::'.
2863    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC)
2864                                           .getAsDecl());
2865
2866    // A tag 'foo::bar' must already exist.
2867    if (PrevDecl == 0) {
2868      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2869      Name = 0;
2870      goto CreateNewDecl;
2871    }
2872  } else if (Name) {
2873    // If this is a named struct, check to see if there was a previous forward
2874    // declaration or definition.
2875    PrevDecl = dyn_cast_or_null<NamedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S)
2876                                           .getAsDecl());
2877
2878    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2879      // FIXME: This makes sure that we ignore the contexts associated
2880      // with C structs, unions, and enums when looking for a matching
2881      // tag declaration or definition. See the similar lookup tweak
2882      // in Sema::LookupDecl; is there a better way to deal with this?
2883      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2884        SearchDC = SearchDC->getParent();
2885    }
2886  }
2887
2888  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2889    // Maybe we will complain about the shadowed template parameter.
2890    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2891    // Just pretend that we didn't see the previous declaration.
2892    PrevDecl = 0;
2893  }
2894
2895  if (PrevDecl) {
2896    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2897            "unexpected Decl type");
2898    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2899      // If this is a use of a previous tag, or if the tag is already declared
2900      // in the same scope (so that the definition/declaration completes or
2901      // rementions the tag), reuse the decl.
2902      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2903        // Make sure that this wasn't declared as an enum and now used as a
2904        // struct or something similar.
2905        if (PrevTagDecl->getTagKind() != Kind) {
2906          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2907          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2908          // Recover by making this an anonymous redefinition.
2909          Name = 0;
2910          PrevDecl = 0;
2911          Invalid = true;
2912        } else {
2913          // If this is a use, just return the declaration we found.
2914
2915          // FIXME: In the future, return a variant or some other clue
2916          // for the consumer of this Decl to know it doesn't own it.
2917          // For our current ASTs this shouldn't be a problem, but will
2918          // need to be changed with DeclGroups.
2919          if (TK == TK_Reference)
2920            return PrevDecl;
2921
2922          // Diagnose attempts to redefine a tag.
2923          if (TK == TK_Definition) {
2924            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2925              Diag(NameLoc, diag::err_redefinition) << Name;
2926              Diag(Def->getLocation(), diag::note_previous_definition);
2927              // If this is a redefinition, recover by making this
2928              // struct be anonymous, which will make any later
2929              // references get the previous definition.
2930              Name = 0;
2931              PrevDecl = 0;
2932              Invalid = true;
2933            } else {
2934              // If the type is currently being defined, complain
2935              // about a nested redefinition.
2936              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2937              if (Tag->isBeingDefined()) {
2938                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2939                Diag(PrevTagDecl->getLocation(),
2940                     diag::note_previous_definition);
2941                Name = 0;
2942                PrevDecl = 0;
2943                Invalid = true;
2944              }
2945            }
2946
2947            // Okay, this is definition of a previously declared or referenced
2948            // tag PrevDecl. We're going to create a new Decl for it.
2949          }
2950        }
2951        // If we get here we have (another) forward declaration or we
2952        // have a definition.  Just create a new decl.
2953      } else {
2954        // If we get here, this is a definition of a new tag type in a nested
2955        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2956        // new decl/type.  We set PrevDecl to NULL so that the entities
2957        // have distinct types.
2958        PrevDecl = 0;
2959      }
2960      // If we get here, we're going to create a new Decl. If PrevDecl
2961      // is non-NULL, it's a definition of the tag declared by
2962      // PrevDecl. If it's NULL, we have a new definition.
2963    } else {
2964      // PrevDecl is a namespace.
2965      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2966        // The tag name clashes with a namespace name, issue an error and
2967        // recover by making this tag be anonymous.
2968        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2969        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2970        Name = 0;
2971        PrevDecl = 0;
2972        Invalid = true;
2973      } else {
2974        // The existing declaration isn't relevant to us; we're in a
2975        // new scope, so clear out the previous declaration.
2976        PrevDecl = 0;
2977      }
2978    }
2979  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2980             (Kind != TagDecl::TK_enum))  {
2981    // C++ [basic.scope.pdecl]p5:
2982    //   -- for an elaborated-type-specifier of the form
2983    //
2984    //          class-key identifier
2985    //
2986    //      if the elaborated-type-specifier is used in the
2987    //      decl-specifier-seq or parameter-declaration-clause of a
2988    //      function defined in namespace scope, the identifier is
2989    //      declared as a class-name in the namespace that contains
2990    //      the declaration; otherwise, except as a friend
2991    //      declaration, the identifier is declared in the smallest
2992    //      non-class, non-function-prototype scope that contains the
2993    //      declaration.
2994    //
2995    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2996    // C structs and unions.
2997
2998    // Find the context where we'll be declaring the tag.
2999    // FIXME: We would like to maintain the current DeclContext as the
3000    // lexical context,
3001    while (DC->isRecord())
3002      DC = DC->getParent();
3003    LexicalContext = DC;
3004
3005    // Find the scope where we'll be declaring the tag.
3006    while (S->isClassScope() ||
3007           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3008           ((S->getFlags() & Scope::DeclScope) == 0) ||
3009           (S->getEntity() &&
3010            ((DeclContext *)S->getEntity())->isTransparentContext()))
3011      S = S->getParent();
3012  }
3013
3014CreateNewDecl:
3015
3016  // If there is an identifier, use the location of the identifier as the
3017  // location of the decl, otherwise use the location of the struct/union
3018  // keyword.
3019  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3020
3021  // Otherwise, create a new declaration. If there is a previous
3022  // declaration of the same entity, the two will be linked via
3023  // PrevDecl.
3024  TagDecl *New;
3025
3026  if (Kind == TagDecl::TK_enum) {
3027    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3028    // enum X { A, B, C } D;    D should chain to X.
3029    New = EnumDecl::Create(Context, DC, Loc, Name,
3030                           cast_or_null<EnumDecl>(PrevDecl));
3031    // If this is an undefined enum, warn.
3032    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3033  } else {
3034    // struct/union/class
3035
3036    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3037    // struct X { int A; } D;    D should chain to X.
3038    if (getLangOptions().CPlusPlus)
3039      // FIXME: Look for a way to use RecordDecl for simple structs.
3040      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3041                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3042    else
3043      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3044                               cast_or_null<RecordDecl>(PrevDecl));
3045  }
3046
3047  if (Kind != TagDecl::TK_enum) {
3048    // Handle #pragma pack: if the #pragma pack stack has non-default
3049    // alignment, make up a packed attribute for this decl. These
3050    // attributes are checked when the ASTContext lays out the
3051    // structure.
3052    //
3053    // It is important for implementing the correct semantics that this
3054    // happen here (in act on tag decl). The #pragma pack stack is
3055    // maintained as a result of parser callbacks which can occur at
3056    // many points during the parsing of a struct declaration (because
3057    // the #pragma tokens are effectively skipped over during the
3058    // parsing of the struct).
3059    if (unsigned Alignment = PackContext.getAlignment())
3060      New->addAttr(new PackedAttr(Alignment * 8));
3061  }
3062
3063  if (Invalid)
3064    New->setInvalidDecl();
3065
3066  if (Attr)
3067    ProcessDeclAttributeList(New, Attr);
3068
3069  // If we're declaring or defining a tag in function prototype scope
3070  // in C, note that this type can only be used within the function.
3071  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3072    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3073
3074  // Set the lexical context. If the tag has a C++ scope specifier, the
3075  // lexical context will be different from the semantic context.
3076  New->setLexicalDeclContext(LexicalContext);
3077
3078  if (TK == TK_Definition)
3079    New->startDefinition();
3080
3081  // If this has an identifier, add it to the scope stack.
3082  if (Name) {
3083    S = getNonFieldDeclScope(S);
3084
3085    // Add it to the decl chain.
3086    if (LexicalContext != CurContext) {
3087      // FIXME: PushOnScopeChains should not rely on CurContext!
3088      DeclContext *OldContext = CurContext;
3089      CurContext = LexicalContext;
3090      PushOnScopeChains(New, S);
3091      CurContext = OldContext;
3092    } else
3093      PushOnScopeChains(New, S);
3094  } else {
3095    LexicalContext->addDecl(New);
3096  }
3097
3098  return New;
3099}
3100
3101void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3102  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3103
3104  // Enter the tag context.
3105  PushDeclContext(S, Tag);
3106
3107  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3108    FieldCollector->StartClass();
3109
3110    if (Record->getIdentifier()) {
3111      // C++ [class]p2:
3112      //   [...] The class-name is also inserted into the scope of the
3113      //   class itself; this is known as the injected-class-name. For
3114      //   purposes of access checking, the injected-class-name is treated
3115      //   as if it were a public member name.
3116      RecordDecl *InjectedClassName
3117        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3118                                CurContext, Record->getLocation(),
3119                                Record->getIdentifier(), Record);
3120      InjectedClassName->setImplicit();
3121      PushOnScopeChains(InjectedClassName, S);
3122    }
3123  }
3124}
3125
3126void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3127  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3128
3129  if (isa<CXXRecordDecl>(Tag))
3130    FieldCollector->FinishClass();
3131
3132  // Exit this scope of this tag's definition.
3133  PopDeclContext();
3134
3135  // Notify the consumer that we've defined a tag.
3136  Consumer.HandleTagDeclDefinition(Tag);
3137}
3138
3139/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3140/// types into constant array types in certain situations which would otherwise
3141/// be errors (for GCC compatibility).
3142static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3143                                                    ASTContext &Context) {
3144  // This method tries to turn a variable array into a constant
3145  // array even when the size isn't an ICE.  This is necessary
3146  // for compatibility with code that depends on gcc's buggy
3147  // constant expression folding, like struct {char x[(int)(char*)2];}
3148  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3149  if (!VLATy) return QualType();
3150
3151  Expr::EvalResult EvalResult;
3152  if (!VLATy->getSizeExpr() ||
3153      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3154    return QualType();
3155
3156  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3157  llvm::APSInt &Res = EvalResult.Val.getInt();
3158  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3159    return Context.getConstantArrayType(VLATy->getElementType(),
3160                                        Res, ArrayType::Normal, 0);
3161  return QualType();
3162}
3163
3164bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3165                          QualType FieldTy, const Expr *BitWidth) {
3166  // FIXME: 6.7.2.1p4 - verify the field type.
3167
3168  llvm::APSInt Value;
3169  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3170    return true;
3171
3172  // Zero-width bitfield is ok for anonymous field.
3173  if (Value == 0 && FieldName)
3174    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3175
3176  if (Value.isNegative())
3177    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3178
3179  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3180  // FIXME: We won't need the 0 size once we check that the field type is valid.
3181  if (TypeSize && Value.getZExtValue() > TypeSize)
3182    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3183       << FieldName << (unsigned)TypeSize;
3184
3185  return false;
3186}
3187
3188/// ActOnField - Each field of a struct/union/class is passed into this in order
3189/// to create a FieldDecl object for it.
3190Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3191                               SourceLocation DeclStart,
3192                               Declarator &D, ExprTy *BitfieldWidth) {
3193  IdentifierInfo *II = D.getIdentifier();
3194  Expr *BitWidth = (Expr*)BitfieldWidth;
3195  SourceLocation Loc = DeclStart;
3196  RecordDecl *Record = (RecordDecl *)TagD;
3197  if (II) Loc = D.getIdentifierLoc();
3198
3199  // FIXME: Unnamed fields can be handled in various different ways, for
3200  // example, unnamed unions inject all members into the struct namespace!
3201
3202  QualType T = GetTypeForDeclarator(D, S);
3203  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3204  bool InvalidDecl = false;
3205
3206  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3207  // than a variably modified type.
3208  if (T->isVariablyModifiedType()) {
3209    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3210    if (!FixedTy.isNull()) {
3211      Diag(Loc, diag::warn_illegal_constant_array_size);
3212      T = FixedTy;
3213    } else {
3214      Diag(Loc, diag::err_typecheck_field_variable_size);
3215      T = Context.IntTy;
3216      InvalidDecl = true;
3217    }
3218  }
3219
3220  if (BitWidth) {
3221    if (VerifyBitField(Loc, II, T, BitWidth))
3222      InvalidDecl = true;
3223  } else {
3224    // Not a bitfield.
3225
3226    // validate II.
3227
3228  }
3229
3230  // FIXME: Chain fielddecls together.
3231  FieldDecl *NewFD;
3232
3233  NewFD = FieldDecl::Create(Context, Record,
3234                            Loc, II, T, BitWidth,
3235                            D.getDeclSpec().getStorageClassSpec() ==
3236                              DeclSpec::SCS_mutable);
3237
3238  if (II) {
3239    Decl *PrevDecl
3240      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3241    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3242        && !isa<TagDecl>(PrevDecl)) {
3243      Diag(Loc, diag::err_duplicate_member) << II;
3244      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3245      NewFD->setInvalidDecl();
3246      Record->setInvalidDecl();
3247    }
3248  }
3249
3250  if (getLangOptions().CPlusPlus) {
3251    CheckExtraCXXDefaultArguments(D);
3252    if (!T->isPODType())
3253      cast<CXXRecordDecl>(Record)->setPOD(false);
3254  }
3255
3256  ProcessDeclAttributes(NewFD, D);
3257
3258  if (D.getInvalidType() || InvalidDecl)
3259    NewFD->setInvalidDecl();
3260
3261  if (II) {
3262    PushOnScopeChains(NewFD, S);
3263  } else
3264    Record->addDecl(NewFD);
3265
3266  return NewFD;
3267}
3268
3269/// TranslateIvarVisibility - Translate visibility from a token ID to an
3270///  AST enum value.
3271static ObjCIvarDecl::AccessControl
3272TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3273  switch (ivarVisibility) {
3274  default: assert(0 && "Unknown visitibility kind");
3275  case tok::objc_private: return ObjCIvarDecl::Private;
3276  case tok::objc_public: return ObjCIvarDecl::Public;
3277  case tok::objc_protected: return ObjCIvarDecl::Protected;
3278  case tok::objc_package: return ObjCIvarDecl::Package;
3279  }
3280}
3281
3282/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3283/// in order to create an IvarDecl object for it.
3284Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3285                              SourceLocation DeclStart,
3286                              Declarator &D, ExprTy *BitfieldWidth,
3287                              tok::ObjCKeywordKind Visibility) {
3288
3289  IdentifierInfo *II = D.getIdentifier();
3290  Expr *BitWidth = (Expr*)BitfieldWidth;
3291  SourceLocation Loc = DeclStart;
3292  if (II) Loc = D.getIdentifierLoc();
3293
3294  // FIXME: Unnamed fields can be handled in various different ways, for
3295  // example, unnamed unions inject all members into the struct namespace!
3296
3297  QualType T = GetTypeForDeclarator(D, S);
3298  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3299  bool InvalidDecl = false;
3300
3301  if (BitWidth) {
3302    // TODO: Validate.
3303    //printf("WARNING: BITFIELDS IGNORED!\n");
3304
3305    // 6.7.2.1p3
3306    // 6.7.2.1p4
3307
3308  } else {
3309    // Not a bitfield.
3310
3311    // validate II.
3312
3313  }
3314
3315  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3316  // than a variably modified type.
3317  if (T->isVariablyModifiedType()) {
3318    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3319    InvalidDecl = true;
3320  }
3321
3322  // Get the visibility (access control) for this ivar.
3323  ObjCIvarDecl::AccessControl ac =
3324    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3325                                        : ObjCIvarDecl::None;
3326
3327  // Construct the decl.
3328  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3329                                             (Expr *)BitfieldWidth);
3330
3331  if (II) {
3332    Decl *PrevDecl
3333      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3334    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3335        && !isa<TagDecl>(PrevDecl)) {
3336      Diag(Loc, diag::err_duplicate_member) << II;
3337      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3338      NewID->setInvalidDecl();
3339    }
3340  }
3341
3342  // Process attributes attached to the ivar.
3343  ProcessDeclAttributes(NewID, D);
3344
3345  if (D.getInvalidType() || InvalidDecl)
3346    NewID->setInvalidDecl();
3347
3348  if (II) {
3349    // FIXME: When interfaces are DeclContexts, we'll need to add
3350    // these to the interface.
3351    S->AddDecl(NewID);
3352    IdResolver.AddDecl(NewID);
3353  }
3354
3355  return NewID;
3356}
3357
3358void Sema::ActOnFields(Scope* S,
3359                       SourceLocation RecLoc, DeclTy *RecDecl,
3360                       DeclTy **Fields, unsigned NumFields,
3361                       SourceLocation LBrac, SourceLocation RBrac,
3362                       AttributeList *Attr) {
3363  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3364  assert(EnclosingDecl && "missing record or interface decl");
3365  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3366
3367  // Verify that all the fields are okay.
3368  unsigned NumNamedMembers = 0;
3369  llvm::SmallVector<FieldDecl*, 32> RecFields;
3370
3371  for (unsigned i = 0; i != NumFields; ++i) {
3372    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3373    assert(FD && "missing field decl");
3374
3375    // Get the type for the field.
3376    Type *FDTy = FD->getType().getTypePtr();
3377
3378    if (!FD->isAnonymousStructOrUnion()) {
3379      // Remember all fields written by the user.
3380      RecFields.push_back(FD);
3381    }
3382
3383    // C99 6.7.2.1p2 - A field may not be a function type.
3384    if (FDTy->isFunctionType()) {
3385      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3386        << FD->getDeclName();
3387      FD->setInvalidDecl();
3388      EnclosingDecl->setInvalidDecl();
3389      continue;
3390    }
3391    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3392    if (FDTy->isIncompleteType()) {
3393      if (!Record) {  // Incomplete ivar type is always an error.
3394        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3395                               diag::err_field_incomplete);
3396        FD->setInvalidDecl();
3397        EnclosingDecl->setInvalidDecl();
3398        continue;
3399      }
3400      if (i != NumFields-1 ||                   // ... that the last member ...
3401          !Record->isStruct() ||  // ... of a structure ...
3402          !FDTy->isArrayType()) {         //... may have incomplete array type.
3403        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3404                               diag::err_field_incomplete);
3405        FD->setInvalidDecl();
3406        EnclosingDecl->setInvalidDecl();
3407        continue;
3408      }
3409      if (NumNamedMembers < 1) {  //... must have more than named member ...
3410        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3411          << FD->getDeclName();
3412        FD->setInvalidDecl();
3413        EnclosingDecl->setInvalidDecl();
3414        continue;
3415      }
3416      // Okay, we have a legal flexible array member at the end of the struct.
3417      if (Record)
3418        Record->setHasFlexibleArrayMember(true);
3419    }
3420    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3421    /// field of another structure or the element of an array.
3422    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3423      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3424        // If this is a member of a union, then entire union becomes "flexible".
3425        if (Record && Record->isUnion()) {
3426          Record->setHasFlexibleArrayMember(true);
3427        } else {
3428          // If this is a struct/class and this is not the last element, reject
3429          // it.  Note that GCC supports variable sized arrays in the middle of
3430          // structures.
3431          if (i != NumFields-1) {
3432            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3433              << FD->getDeclName();
3434            FD->setInvalidDecl();
3435            EnclosingDecl->setInvalidDecl();
3436            continue;
3437          }
3438          // We support flexible arrays at the end of structs in other structs
3439          // as an extension.
3440          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3441            << FD->getDeclName();
3442          if (Record)
3443            Record->setHasFlexibleArrayMember(true);
3444        }
3445      }
3446    }
3447    /// A field cannot be an Objective-c object
3448    if (FDTy->isObjCInterfaceType()) {
3449      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3450        << FD->getDeclName();
3451      FD->setInvalidDecl();
3452      EnclosingDecl->setInvalidDecl();
3453      continue;
3454    }
3455    // Keep track of the number of named members.
3456    if (FD->getIdentifier())
3457      ++NumNamedMembers;
3458  }
3459
3460  // Okay, we successfully defined 'Record'.
3461  if (Record) {
3462    Record->completeDefinition(Context);
3463  } else {
3464    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3465    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3466      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3467      // Must enforce the rule that ivars in the base classes may not be
3468      // duplicates.
3469      if (ID->getSuperClass()) {
3470        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3471             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3472          ObjCIvarDecl* Ivar = (*IVI);
3473          IdentifierInfo *II = Ivar->getIdentifier();
3474          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3475          if (prevIvar) {
3476            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3477            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3478          }
3479        }
3480      }
3481    }
3482    else if (ObjCImplementationDecl *IMPDecl =
3483               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3484      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3485      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3486      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3487    }
3488  }
3489
3490  if (Attr)
3491    ProcessDeclAttributeList(Record, Attr);
3492}
3493
3494Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3495                                      DeclTy *lastEnumConst,
3496                                      SourceLocation IdLoc, IdentifierInfo *Id,
3497                                      SourceLocation EqualLoc, ExprTy *val) {
3498  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3499  EnumConstantDecl *LastEnumConst =
3500    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3501  Expr *Val = static_cast<Expr*>(val);
3502
3503  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3504  // we find one that is.
3505  S = getNonFieldDeclScope(S);
3506
3507  // Verify that there isn't already something declared with this name in this
3508  // scope.
3509  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3510  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3511    // Maybe we will complain about the shadowed template parameter.
3512    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3513    // Just pretend that we didn't see the previous declaration.
3514    PrevDecl = 0;
3515  }
3516
3517  if (PrevDecl) {
3518    // When in C++, we may get a TagDecl with the same name; in this case the
3519    // enum constant will 'hide' the tag.
3520    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3521           "Received TagDecl when not in C++!");
3522    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3523      if (isa<EnumConstantDecl>(PrevDecl))
3524        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3525      else
3526        Diag(IdLoc, diag::err_redefinition) << Id;
3527      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3528      delete Val;
3529      return 0;
3530    }
3531  }
3532
3533  llvm::APSInt EnumVal(32);
3534  QualType EltTy;
3535  if (Val) {
3536    // Make sure to promote the operand type to int.
3537    UsualUnaryConversions(Val);
3538
3539    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3540    SourceLocation ExpLoc;
3541    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3542      delete Val;
3543      Val = 0;  // Just forget about it.
3544    } else {
3545      EltTy = Val->getType();
3546    }
3547  }
3548
3549  if (!Val) {
3550    if (LastEnumConst) {
3551      // Assign the last value + 1.
3552      EnumVal = LastEnumConst->getInitVal();
3553      ++EnumVal;
3554
3555      // Check for overflow on increment.
3556      if (EnumVal < LastEnumConst->getInitVal())
3557        Diag(IdLoc, diag::warn_enum_value_overflow);
3558
3559      EltTy = LastEnumConst->getType();
3560    } else {
3561      // First value, set to zero.
3562      EltTy = Context.IntTy;
3563      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3564    }
3565  }
3566
3567  EnumConstantDecl *New =
3568    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3569                             Val, EnumVal);
3570
3571  // Register this decl in the current scope stack.
3572  PushOnScopeChains(New, S);
3573
3574  return New;
3575}
3576
3577// FIXME: For consistency with ActOnFields(), we should have the parser
3578// pass in the source location for the left/right braces.
3579void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3580                         DeclTy **Elements, unsigned NumElements) {
3581  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3582  QualType EnumType = Context.getTypeDeclType(Enum);
3583
3584  // TODO: If the result value doesn't fit in an int, it must be a long or long
3585  // long value.  ISO C does not support this, but GCC does as an extension,
3586  // emit a warning.
3587  unsigned IntWidth = Context.Target.getIntWidth();
3588
3589  // Verify that all the values are okay, compute the size of the values, and
3590  // reverse the list.
3591  unsigned NumNegativeBits = 0;
3592  unsigned NumPositiveBits = 0;
3593
3594  // Keep track of whether all elements have type int.
3595  bool AllElementsInt = true;
3596
3597  for (unsigned i = 0; i != NumElements; ++i) {
3598    EnumConstantDecl *ECD =
3599      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3600    if (!ECD) continue;  // Already issued a diagnostic.
3601
3602    // If the enum value doesn't fit in an int, emit an extension warning.
3603    const llvm::APSInt &InitVal = ECD->getInitVal();
3604    assert(InitVal.getBitWidth() >= IntWidth &&
3605           "Should have promoted value to int");
3606    if (InitVal.getBitWidth() > IntWidth) {
3607      llvm::APSInt V(InitVal);
3608      V.trunc(IntWidth);
3609      V.extend(InitVal.getBitWidth());
3610      if (V != InitVal)
3611        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3612          << InitVal.toString(10);
3613    }
3614
3615    // Keep track of the size of positive and negative values.
3616    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3617      NumPositiveBits = std::max(NumPositiveBits,
3618                                 (unsigned)InitVal.getActiveBits());
3619    else
3620      NumNegativeBits = std::max(NumNegativeBits,
3621                                 (unsigned)InitVal.getMinSignedBits());
3622
3623    // Keep track of whether every enum element has type int (very commmon).
3624    if (AllElementsInt)
3625      AllElementsInt = ECD->getType() == Context.IntTy;
3626  }
3627
3628  // Figure out the type that should be used for this enum.
3629  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3630  QualType BestType;
3631  unsigned BestWidth;
3632
3633  if (NumNegativeBits) {
3634    // If there is a negative value, figure out the smallest integer type (of
3635    // int/long/longlong) that fits.
3636    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3637      BestType = Context.IntTy;
3638      BestWidth = IntWidth;
3639    } else {
3640      BestWidth = Context.Target.getLongWidth();
3641
3642      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3643        BestType = Context.LongTy;
3644      else {
3645        BestWidth = Context.Target.getLongLongWidth();
3646
3647        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3648          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3649        BestType = Context.LongLongTy;
3650      }
3651    }
3652  } else {
3653    // If there is no negative value, figure out which of uint, ulong, ulonglong
3654    // fits.
3655    if (NumPositiveBits <= IntWidth) {
3656      BestType = Context.UnsignedIntTy;
3657      BestWidth = IntWidth;
3658    } else if (NumPositiveBits <=
3659               (BestWidth = Context.Target.getLongWidth())) {
3660      BestType = Context.UnsignedLongTy;
3661    } else {
3662      BestWidth = Context.Target.getLongLongWidth();
3663      assert(NumPositiveBits <= BestWidth &&
3664             "How could an initializer get larger than ULL?");
3665      BestType = Context.UnsignedLongLongTy;
3666    }
3667  }
3668
3669  // Loop over all of the enumerator constants, changing their types to match
3670  // the type of the enum if needed.
3671  for (unsigned i = 0; i != NumElements; ++i) {
3672    EnumConstantDecl *ECD =
3673      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3674    if (!ECD) continue;  // Already issued a diagnostic.
3675
3676    // Standard C says the enumerators have int type, but we allow, as an
3677    // extension, the enumerators to be larger than int size.  If each
3678    // enumerator value fits in an int, type it as an int, otherwise type it the
3679    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3680    // that X has type 'int', not 'unsigned'.
3681    if (ECD->getType() == Context.IntTy) {
3682      // Make sure the init value is signed.
3683      llvm::APSInt IV = ECD->getInitVal();
3684      IV.setIsSigned(true);
3685      ECD->setInitVal(IV);
3686
3687      if (getLangOptions().CPlusPlus)
3688        // C++ [dcl.enum]p4: Following the closing brace of an
3689        // enum-specifier, each enumerator has the type of its
3690        // enumeration.
3691        ECD->setType(EnumType);
3692      continue;  // Already int type.
3693    }
3694
3695    // Determine whether the value fits into an int.
3696    llvm::APSInt InitVal = ECD->getInitVal();
3697    bool FitsInInt;
3698    if (InitVal.isUnsigned() || !InitVal.isNegative())
3699      FitsInInt = InitVal.getActiveBits() < IntWidth;
3700    else
3701      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3702
3703    // If it fits into an integer type, force it.  Otherwise force it to match
3704    // the enum decl type.
3705    QualType NewTy;
3706    unsigned NewWidth;
3707    bool NewSign;
3708    if (FitsInInt) {
3709      NewTy = Context.IntTy;
3710      NewWidth = IntWidth;
3711      NewSign = true;
3712    } else if (ECD->getType() == BestType) {
3713      // Already the right type!
3714      if (getLangOptions().CPlusPlus)
3715        // C++ [dcl.enum]p4: Following the closing brace of an
3716        // enum-specifier, each enumerator has the type of its
3717        // enumeration.
3718        ECD->setType(EnumType);
3719      continue;
3720    } else {
3721      NewTy = BestType;
3722      NewWidth = BestWidth;
3723      NewSign = BestType->isSignedIntegerType();
3724    }
3725
3726    // Adjust the APSInt value.
3727    InitVal.extOrTrunc(NewWidth);
3728    InitVal.setIsSigned(NewSign);
3729    ECD->setInitVal(InitVal);
3730
3731    // Adjust the Expr initializer and type.
3732    if (ECD->getInitExpr())
3733      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3734                                            /*isLvalue=*/false));
3735    if (getLangOptions().CPlusPlus)
3736      // C++ [dcl.enum]p4: Following the closing brace of an
3737      // enum-specifier, each enumerator has the type of its
3738      // enumeration.
3739      ECD->setType(EnumType);
3740    else
3741      ECD->setType(NewTy);
3742  }
3743
3744  Enum->completeDefinition(Context, BestType);
3745}
3746
3747Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3748                                          ExprArg expr) {
3749  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3750
3751  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3752}
3753
3754
3755void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3756                           ExprTy *alignment, SourceLocation PragmaLoc,
3757                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3758  Expr *Alignment = static_cast<Expr *>(alignment);
3759
3760  // If specified then alignment must be a "small" power of two.
3761  unsigned AlignmentVal = 0;
3762  if (Alignment) {
3763    llvm::APSInt Val;
3764    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3765        !Val.isPowerOf2() ||
3766        Val.getZExtValue() > 16) {
3767      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3768      delete Alignment;
3769      return; // Ignore
3770    }
3771
3772    AlignmentVal = (unsigned) Val.getZExtValue();
3773  }
3774
3775  switch (Kind) {
3776  case Action::PPK_Default: // pack([n])
3777    PackContext.setAlignment(AlignmentVal);
3778    break;
3779
3780  case Action::PPK_Show: // pack(show)
3781    // Show the current alignment, making sure to show the right value
3782    // for the default.
3783    AlignmentVal = PackContext.getAlignment();
3784    // FIXME: This should come from the target.
3785    if (AlignmentVal == 0)
3786      AlignmentVal = 8;
3787    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3788    break;
3789
3790  case Action::PPK_Push: // pack(push [, id] [, [n])
3791    PackContext.push(Name);
3792    // Set the new alignment if specified.
3793    if (Alignment)
3794      PackContext.setAlignment(AlignmentVal);
3795    break;
3796
3797  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3798    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3799    // "#pragma pack(pop, identifier, n) is undefined"
3800    if (Alignment && Name)
3801      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3802
3803    // Do the pop.
3804    if (!PackContext.pop(Name)) {
3805      // If a name was specified then failure indicates the name
3806      // wasn't found. Otherwise failure indicates the stack was
3807      // empty.
3808      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3809        << (Name ? "no record matching name" : "stack empty");
3810
3811      // FIXME: Warn about popping named records as MSVC does.
3812    } else {
3813      // Pop succeeded, set the new alignment if specified.
3814      if (Alignment)
3815        PackContext.setAlignment(AlignmentVal);
3816    }
3817    break;
3818
3819  default:
3820    assert(0 && "Invalid #pragma pack kind.");
3821  }
3822}
3823
3824bool PragmaPackStack::pop(IdentifierInfo *Name) {
3825  if (Stack.empty())
3826    return false;
3827
3828  // If name is empty just pop top.
3829  if (!Name) {
3830    Alignment = Stack.back().first;
3831    Stack.pop_back();
3832    return true;
3833  }
3834
3835  // Otherwise, find the named record.
3836  for (unsigned i = Stack.size(); i != 0; ) {
3837    --i;
3838    if (Stack[i].second == Name) {
3839      // Found it, pop up to and including this record.
3840      Alignment = Stack[i].first;
3841      Stack.erase(Stack.begin() + i, Stack.end());
3842      return true;
3843    }
3844  }
3845
3846  return false;
3847}
3848