SemaDecl.cpp revision 4b662a5684d41ea4ff6b52711929e00fefb00db1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363}
364
365/// EnterDeclaratorContext - Used when we must lookup names in the context
366/// of a declarator's nested name specifier.
367///
368void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
369  // C++0x [basic.lookup.unqual]p13:
370  //   A name used in the definition of a static data member of class
371  //   X (after the qualified-id of the static member) is looked up as
372  //   if the name was used in a member function of X.
373  // C++0x [basic.lookup.unqual]p14:
374  //   If a variable member of a namespace is defined outside of the
375  //   scope of its namespace then any name used in the definition of
376  //   the variable member (after the declarator-id) is looked up as
377  //   if the definition of the variable member occurred in its
378  //   namespace.
379  // Both of these imply that we should push a scope whose context
380  // is the semantic context of the declaration.  We can't use
381  // PushDeclContext here because that context is not necessarily
382  // lexically contained in the current context.  Fortunately,
383  // the containing scope should have the appropriate information.
384
385  assert(!S->getEntity() && "scope already has entity");
386
387#ifndef NDEBUG
388  Scope *Ancestor = S->getParent();
389  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
390  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
391#endif
392
393  CurContext = DC;
394  S->setEntity(DC);
395}
396
397void Sema::ExitDeclaratorContext(Scope *S) {
398  assert(S->getEntity() == CurContext && "Context imbalance!");
399
400  // Switch back to the lexical context.  The safety of this is
401  // enforced by an assert in EnterDeclaratorContext.
402  Scope *Ancestor = S->getParent();
403  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
404  CurContext = (DeclContext*) Ancestor->getEntity();
405
406  // We don't need to do anything with the scope, which is going to
407  // disappear.
408}
409
410/// \brief Determine whether we allow overloading of the function
411/// PrevDecl with another declaration.
412///
413/// This routine determines whether overloading is possible, not
414/// whether some new function is actually an overload. It will return
415/// true in C++ (where we can always provide overloads) or, as an
416/// extension, in C when the previous function is already an
417/// overloaded function declaration or has the "overloadable"
418/// attribute.
419static bool AllowOverloadingOfFunction(LookupResult &Previous,
420                                       ASTContext &Context) {
421  if (Context.getLangOptions().CPlusPlus)
422    return true;
423
424  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
425    return true;
426
427  return (Previous.getResultKind() == LookupResult::Found
428          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
429}
430
431/// Add this decl to the scope shadowed decl chains.
432void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
433  // Move up the scope chain until we find the nearest enclosing
434  // non-transparent context. The declaration will be introduced into this
435  // scope.
436  while (S->getEntity() &&
437         ((DeclContext *)S->getEntity())->isTransparentContext())
438    S = S->getParent();
439
440  // Add scoped declarations into their context, so that they can be
441  // found later. Declarations without a context won't be inserted
442  // into any context.
443  if (AddToContext)
444    CurContext->addDecl(D);
445
446  // Out-of-line definitions shouldn't be pushed into scope in C++.
447  // Out-of-line variable and function definitions shouldn't even in C.
448  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
449      D->isOutOfLine())
450    return;
451
452  // Template instantiations should also not be pushed into scope.
453  if (isa<FunctionDecl>(D) &&
454      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
455    return;
456
457  // If this replaces anything in the current scope,
458  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
459                               IEnd = IdResolver.end();
460  for (; I != IEnd; ++I) {
461    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
462      S->RemoveDecl(DeclPtrTy::make(*I));
463      IdResolver.RemoveDecl(*I);
464
465      // Should only need to replace one decl.
466      break;
467    }
468  }
469
470  S->AddDecl(DeclPtrTy::make(D));
471  IdResolver.AddDecl(D);
472}
473
474bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
475  return IdResolver.isDeclInScope(D, Ctx, Context, S);
476}
477
478static bool isOutOfScopePreviousDeclaration(NamedDecl *,
479                                            DeclContext*,
480                                            ASTContext&);
481
482/// Filters out lookup results that don't fall within the given scope
483/// as determined by isDeclInScope.
484static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
485                                 DeclContext *Ctx, Scope *S,
486                                 bool ConsiderLinkage) {
487  LookupResult::Filter F = R.makeFilter();
488  while (F.hasNext()) {
489    NamedDecl *D = F.next();
490
491    if (SemaRef.isDeclInScope(D, Ctx, S))
492      continue;
493
494    if (ConsiderLinkage &&
495        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
496      continue;
497
498    F.erase();
499  }
500
501  F.done();
502}
503
504static bool isUsingDecl(NamedDecl *D) {
505  return isa<UsingShadowDecl>(D) ||
506         isa<UnresolvedUsingTypenameDecl>(D) ||
507         isa<UnresolvedUsingValueDecl>(D);
508}
509
510/// Removes using shadow declarations from the lookup results.
511static void RemoveUsingDecls(LookupResult &R) {
512  LookupResult::Filter F = R.makeFilter();
513  while (F.hasNext())
514    if (isUsingDecl(F.next()))
515      F.erase();
516
517  F.done();
518}
519
520static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
521  if (D->isInvalidDecl())
522    return false;
523
524  if (D->isUsed() || D->hasAttr<UnusedAttr>())
525    return false;
526
527  // White-list anything that isn't a local variable.
528  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
529      !D->getDeclContext()->isFunctionOrMethod())
530    return false;
531
532  // Types of valid local variables should be complete, so this should succeed.
533  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
534
535    // White-list anything with an __attribute__((unused)) type.
536    QualType Ty = VD->getType();
537
538    // Only look at the outermost level of typedef.
539    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
540      if (TT->getDecl()->hasAttr<UnusedAttr>())
541        return false;
542    }
543
544    // If we failed to complete the type for some reason, or if the type is
545    // dependent, don't diagnose the variable.
546    if (Ty->isIncompleteType() || Ty->isDependentType())
547      return false;
548
549    if (const TagType *TT = Ty->getAs<TagType>()) {
550      const TagDecl *Tag = TT->getDecl();
551      if (Tag->hasAttr<UnusedAttr>())
552        return false;
553
554      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
555        // FIXME: Checking for the presence of a user-declared constructor
556        // isn't completely accurate; we'd prefer to check that the initializer
557        // has no side effects.
558        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
559          return false;
560      }
561    }
562
563    // TODO: __attribute__((unused)) templates?
564  }
565
566  return true;
567}
568
569void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
570  if (!ShouldDiagnoseUnusedDecl(D))
571    return;
572
573  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
574    Diag(D->getLocation(), diag::warn_unused_exception_param)
575    << D->getDeclName();
576  else
577    Diag(D->getLocation(), diag::warn_unused_variable)
578    << D->getDeclName();
579}
580
581void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
582  if (S->decl_empty()) return;
583  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
584         "Scope shouldn't contain decls!");
585
586  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
587       I != E; ++I) {
588    Decl *TmpD = (*I).getAs<Decl>();
589    assert(TmpD && "This decl didn't get pushed??");
590
591    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
592    NamedDecl *D = cast<NamedDecl>(TmpD);
593
594    if (!D->getDeclName()) continue;
595
596    // Diagnose unused variables in this scope.
597    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
598      DiagnoseUnusedDecl(D);
599
600    // Remove this name from our lexical scope.
601    IdResolver.RemoveDecl(D);
602  }
603}
604
605/// \brief Look for an Objective-C class in the translation unit.
606///
607/// \param Id The name of the Objective-C class we're looking for. If
608/// typo-correction fixes this name, the Id will be updated
609/// to the fixed name.
610///
611/// \param IdLoc The location of the name in the translation unit.
612///
613/// \param TypoCorrection If true, this routine will attempt typo correction
614/// if there is no class with the given name.
615///
616/// \returns The declaration of the named Objective-C class, or NULL if the
617/// class could not be found.
618ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
619                                              SourceLocation IdLoc,
620                                              bool TypoCorrection) {
621  // The third "scope" argument is 0 since we aren't enabling lazy built-in
622  // creation from this context.
623  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
624
625  if (!IDecl && TypoCorrection) {
626    // Perform typo correction at the given location, but only if we
627    // find an Objective-C class name.
628    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
629    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
630        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
631      Diag(IdLoc, diag::err_undef_interface_suggest)
632        << Id << IDecl->getDeclName()
633        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
634      Diag(IDecl->getLocation(), diag::note_previous_decl)
635        << IDecl->getDeclName();
636
637      Id = IDecl->getIdentifier();
638    }
639  }
640
641  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
642}
643
644/// getNonFieldDeclScope - Retrieves the innermost scope, starting
645/// from S, where a non-field would be declared. This routine copes
646/// with the difference between C and C++ scoping rules in structs and
647/// unions. For example, the following code is well-formed in C but
648/// ill-formed in C++:
649/// @code
650/// struct S6 {
651///   enum { BAR } e;
652/// };
653///
654/// void test_S6() {
655///   struct S6 a;
656///   a.e = BAR;
657/// }
658/// @endcode
659/// For the declaration of BAR, this routine will return a different
660/// scope. The scope S will be the scope of the unnamed enumeration
661/// within S6. In C++, this routine will return the scope associated
662/// with S6, because the enumeration's scope is a transparent
663/// context but structures can contain non-field names. In C, this
664/// routine will return the translation unit scope, since the
665/// enumeration's scope is a transparent context and structures cannot
666/// contain non-field names.
667Scope *Sema::getNonFieldDeclScope(Scope *S) {
668  while (((S->getFlags() & Scope::DeclScope) == 0) ||
669         (S->getEntity() &&
670          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
671         (S->isClassScope() && !getLangOptions().CPlusPlus))
672    S = S->getParent();
673  return S;
674}
675
676void Sema::InitBuiltinVaListType() {
677  if (!Context.getBuiltinVaListType().isNull())
678    return;
679
680  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
681  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
682                                       LookupOrdinaryName, ForRedeclaration);
683  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
684  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
685}
686
687/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
688/// file scope.  lazily create a decl for it. ForRedeclaration is true
689/// if we're creating this built-in in anticipation of redeclaring the
690/// built-in.
691NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
692                                     Scope *S, bool ForRedeclaration,
693                                     SourceLocation Loc) {
694  Builtin::ID BID = (Builtin::ID)bid;
695
696  if (Context.BuiltinInfo.hasVAListUse(BID))
697    InitBuiltinVaListType();
698
699  ASTContext::GetBuiltinTypeError Error;
700  QualType R = Context.GetBuiltinType(BID, Error);
701  switch (Error) {
702  case ASTContext::GE_None:
703    // Okay
704    break;
705
706  case ASTContext::GE_Missing_stdio:
707    if (ForRedeclaration)
708      Diag(Loc, diag::err_implicit_decl_requires_stdio)
709        << Context.BuiltinInfo.GetName(BID);
710    return 0;
711
712  case ASTContext::GE_Missing_setjmp:
713    if (ForRedeclaration)
714      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
715        << Context.BuiltinInfo.GetName(BID);
716    return 0;
717  }
718
719  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
720    Diag(Loc, diag::ext_implicit_lib_function_decl)
721      << Context.BuiltinInfo.GetName(BID)
722      << R;
723    if (Context.BuiltinInfo.getHeaderName(BID) &&
724        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
725          != Diagnostic::Ignored)
726      Diag(Loc, diag::note_please_include_header)
727        << Context.BuiltinInfo.getHeaderName(BID)
728        << Context.BuiltinInfo.GetName(BID);
729  }
730
731  FunctionDecl *New = FunctionDecl::Create(Context,
732                                           Context.getTranslationUnitDecl(),
733                                           Loc, II, R, /*TInfo=*/0,
734                                           FunctionDecl::Extern,
735                                           FunctionDecl::None, false,
736                                           /*hasPrototype=*/true);
737  New->setImplicit();
738
739  // Create Decl objects for each parameter, adding them to the
740  // FunctionDecl.
741  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
742    llvm::SmallVector<ParmVarDecl*, 16> Params;
743    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
744      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
745                                           FT->getArgType(i), /*TInfo=*/0,
746                                           VarDecl::None, VarDecl::None, 0));
747    New->setParams(Params.data(), Params.size());
748  }
749
750  AddKnownFunctionAttributes(New);
751
752  // TUScope is the translation-unit scope to insert this function into.
753  // FIXME: This is hideous. We need to teach PushOnScopeChains to
754  // relate Scopes to DeclContexts, and probably eliminate CurContext
755  // entirely, but we're not there yet.
756  DeclContext *SavedContext = CurContext;
757  CurContext = Context.getTranslationUnitDecl();
758  PushOnScopeChains(New, TUScope);
759  CurContext = SavedContext;
760  return New;
761}
762
763/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
764/// same name and scope as a previous declaration 'Old'.  Figure out
765/// how to resolve this situation, merging decls or emitting
766/// diagnostics as appropriate. If there was an error, set New to be invalid.
767///
768void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
769  // If the new decl is known invalid already, don't bother doing any
770  // merging checks.
771  if (New->isInvalidDecl()) return;
772
773  // Allow multiple definitions for ObjC built-in typedefs.
774  // FIXME: Verify the underlying types are equivalent!
775  if (getLangOptions().ObjC1) {
776    const IdentifierInfo *TypeID = New->getIdentifier();
777    switch (TypeID->getLength()) {
778    default: break;
779    case 2:
780      if (!TypeID->isStr("id"))
781        break;
782      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
783      // Install the built-in type for 'id', ignoring the current definition.
784      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
785      return;
786    case 5:
787      if (!TypeID->isStr("Class"))
788        break;
789      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
790      // Install the built-in type for 'Class', ignoring the current definition.
791      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
792      return;
793    case 3:
794      if (!TypeID->isStr("SEL"))
795        break;
796      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
797      // Install the built-in type for 'SEL', ignoring the current definition.
798      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
799      return;
800    case 8:
801      if (!TypeID->isStr("Protocol"))
802        break;
803      Context.setObjCProtoType(New->getUnderlyingType());
804      return;
805    }
806    // Fall through - the typedef name was not a builtin type.
807  }
808
809  // Verify the old decl was also a type.
810  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
811  if (!Old) {
812    Diag(New->getLocation(), diag::err_redefinition_different_kind)
813      << New->getDeclName();
814
815    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
816    if (OldD->getLocation().isValid())
817      Diag(OldD->getLocation(), diag::note_previous_definition);
818
819    return New->setInvalidDecl();
820  }
821
822  // If the old declaration is invalid, just give up here.
823  if (Old->isInvalidDecl())
824    return New->setInvalidDecl();
825
826  // Determine the "old" type we'll use for checking and diagnostics.
827  QualType OldType;
828  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
829    OldType = OldTypedef->getUnderlyingType();
830  else
831    OldType = Context.getTypeDeclType(Old);
832
833  // If the typedef types are not identical, reject them in all languages and
834  // with any extensions enabled.
835
836  if (OldType != New->getUnderlyingType() &&
837      Context.getCanonicalType(OldType) !=
838      Context.getCanonicalType(New->getUnderlyingType())) {
839    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
840      << New->getUnderlyingType() << OldType;
841    if (Old->getLocation().isValid())
842      Diag(Old->getLocation(), diag::note_previous_definition);
843    return New->setInvalidDecl();
844  }
845
846  // The types match.  Link up the redeclaration chain if the old
847  // declaration was a typedef.
848  // FIXME: this is a potential source of wierdness if the type
849  // spellings don't match exactly.
850  if (isa<TypedefDecl>(Old))
851    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
852
853  if (getLangOptions().Microsoft)
854    return;
855
856  if (getLangOptions().CPlusPlus) {
857    // C++ [dcl.typedef]p2:
858    //   In a given non-class scope, a typedef specifier can be used to
859    //   redefine the name of any type declared in that scope to refer
860    //   to the type to which it already refers.
861    if (!isa<CXXRecordDecl>(CurContext))
862      return;
863
864    // C++0x [dcl.typedef]p4:
865    //   In a given class scope, a typedef specifier can be used to redefine
866    //   any class-name declared in that scope that is not also a typedef-name
867    //   to refer to the type to which it already refers.
868    //
869    // This wording came in via DR424, which was a correction to the
870    // wording in DR56, which accidentally banned code like:
871    //
872    //   struct S {
873    //     typedef struct A { } A;
874    //   };
875    //
876    // in the C++03 standard. We implement the C++0x semantics, which
877    // allow the above but disallow
878    //
879    //   struct S {
880    //     typedef int I;
881    //     typedef int I;
882    //   };
883    //
884    // since that was the intent of DR56.
885    if (!isa<TypedefDecl >(Old))
886      return;
887
888    Diag(New->getLocation(), diag::err_redefinition)
889      << New->getDeclName();
890    Diag(Old->getLocation(), diag::note_previous_definition);
891    return New->setInvalidDecl();
892  }
893
894  // If we have a redefinition of a typedef in C, emit a warning.  This warning
895  // is normally mapped to an error, but can be controlled with
896  // -Wtypedef-redefinition.  If either the original or the redefinition is
897  // in a system header, don't emit this for compatibility with GCC.
898  if (getDiagnostics().getSuppressSystemWarnings() &&
899      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
900       Context.getSourceManager().isInSystemHeader(New->getLocation())))
901    return;
902
903  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
904    << New->getDeclName();
905  Diag(Old->getLocation(), diag::note_previous_definition);
906  return;
907}
908
909/// DeclhasAttr - returns true if decl Declaration already has the target
910/// attribute.
911static bool
912DeclHasAttr(const Decl *decl, const Attr *target) {
913  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
914    if (attr->getKind() == target->getKind())
915      return true;
916
917  return false;
918}
919
920/// MergeAttributes - append attributes from the Old decl to the New one.
921static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
922  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
923    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
924      Attr *NewAttr = attr->clone(C);
925      NewAttr->setInherited(true);
926      New->addAttr(NewAttr);
927    }
928  }
929}
930
931/// Used in MergeFunctionDecl to keep track of function parameters in
932/// C.
933struct GNUCompatibleParamWarning {
934  ParmVarDecl *OldParm;
935  ParmVarDecl *NewParm;
936  QualType PromotedType;
937};
938
939
940/// getSpecialMember - get the special member enum for a method.
941Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
942  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
943    if (Ctor->isCopyConstructor())
944      return Sema::CXXCopyConstructor;
945
946    return Sema::CXXConstructor;
947  }
948
949  if (isa<CXXDestructorDecl>(MD))
950    return Sema::CXXDestructor;
951
952  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
953  return Sema::CXXCopyAssignment;
954}
955
956/// canRedefineFunction - checks if a function can be redefined. Currently,
957/// only extern inline functions can be redefined, and even then only in
958/// GNU89 mode.
959static bool canRedefineFunction(const FunctionDecl *FD,
960                                const LangOptions& LangOpts) {
961  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
962          FD->isInlineSpecified() &&
963          FD->getStorageClass() == FunctionDecl::Extern);
964}
965
966/// MergeFunctionDecl - We just parsed a function 'New' from
967/// declarator D which has the same name and scope as a previous
968/// declaration 'Old'.  Figure out how to resolve this situation,
969/// merging decls or emitting diagnostics as appropriate.
970///
971/// In C++, New and Old must be declarations that are not
972/// overloaded. Use IsOverload to determine whether New and Old are
973/// overloaded, and to select the Old declaration that New should be
974/// merged with.
975///
976/// Returns true if there was an error, false otherwise.
977bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
978  // Verify the old decl was also a function.
979  FunctionDecl *Old = 0;
980  if (FunctionTemplateDecl *OldFunctionTemplate
981        = dyn_cast<FunctionTemplateDecl>(OldD))
982    Old = OldFunctionTemplate->getTemplatedDecl();
983  else
984    Old = dyn_cast<FunctionDecl>(OldD);
985  if (!Old) {
986    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
987      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
988      Diag(Shadow->getTargetDecl()->getLocation(),
989           diag::note_using_decl_target);
990      Diag(Shadow->getUsingDecl()->getLocation(),
991           diag::note_using_decl) << 0;
992      return true;
993    }
994
995    Diag(New->getLocation(), diag::err_redefinition_different_kind)
996      << New->getDeclName();
997    Diag(OldD->getLocation(), diag::note_previous_definition);
998    return true;
999  }
1000
1001  // Determine whether the previous declaration was a definition,
1002  // implicit declaration, or a declaration.
1003  diag::kind PrevDiag;
1004  if (Old->isThisDeclarationADefinition())
1005    PrevDiag = diag::note_previous_definition;
1006  else if (Old->isImplicit())
1007    PrevDiag = diag::note_previous_implicit_declaration;
1008  else
1009    PrevDiag = diag::note_previous_declaration;
1010
1011  QualType OldQType = Context.getCanonicalType(Old->getType());
1012  QualType NewQType = Context.getCanonicalType(New->getType());
1013
1014  // Don't complain about this if we're in GNU89 mode and the old function
1015  // is an extern inline function.
1016  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1017      New->getStorageClass() == FunctionDecl::Static &&
1018      Old->getStorageClass() != FunctionDecl::Static &&
1019      !canRedefineFunction(Old, getLangOptions())) {
1020    Diag(New->getLocation(), diag::err_static_non_static)
1021      << New;
1022    Diag(Old->getLocation(), PrevDiag);
1023    return true;
1024  }
1025
1026  // If a function is first declared with a calling convention, but is
1027  // later declared or defined without one, the second decl assumes the
1028  // calling convention of the first.
1029  //
1030  // For the new decl, we have to look at the NON-canonical type to tell the
1031  // difference between a function that really doesn't have a calling
1032  // convention and one that is declared cdecl. That's because in
1033  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1034  // because it is the default calling convention.
1035  //
1036  // Note also that we DO NOT return at this point, because we still have
1037  // other tests to run.
1038  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1039  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1040  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1041  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1042  if (OldTypeInfo.getCC() != CC_Default &&
1043      NewTypeInfo.getCC() == CC_Default) {
1044    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1045    New->setType(NewQType);
1046    NewQType = Context.getCanonicalType(NewQType);
1047  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1048                                     NewTypeInfo.getCC())) {
1049    // Calling conventions really aren't compatible, so complain.
1050    Diag(New->getLocation(), diag::err_cconv_change)
1051      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1052      << (OldTypeInfo.getCC() == CC_Default)
1053      << (OldTypeInfo.getCC() == CC_Default ? "" :
1054          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1055    Diag(Old->getLocation(), diag::note_previous_declaration);
1056    return true;
1057  }
1058
1059  // FIXME: diagnose the other way around?
1060  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1061    NewQType = Context.getNoReturnType(NewQType);
1062    New->setType(NewQType);
1063    assert(NewQType.isCanonical());
1064  }
1065
1066  // Merge regparm attribute.
1067  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1068    if (NewType->getRegParmType()) {
1069      Diag(New->getLocation(), diag::err_regparm_mismatch)
1070        << NewType->getRegParmType()
1071        << OldType->getRegParmType();
1072      Diag(Old->getLocation(), diag::note_previous_declaration);
1073      return true;
1074    }
1075
1076    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1077    New->setType(NewQType);
1078    assert(NewQType.isCanonical());
1079  }
1080
1081  if (getLangOptions().CPlusPlus) {
1082    // (C++98 13.1p2):
1083    //   Certain function declarations cannot be overloaded:
1084    //     -- Function declarations that differ only in the return type
1085    //        cannot be overloaded.
1086    QualType OldReturnType
1087      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1088    QualType NewReturnType
1089      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1090    QualType ResQT;
1091    if (OldReturnType != NewReturnType) {
1092      if (NewReturnType->isObjCObjectPointerType()
1093          && OldReturnType->isObjCObjectPointerType())
1094        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1095      if (ResQT.isNull()) {
1096        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1097        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1098        return true;
1099      }
1100      else
1101        NewQType = ResQT;
1102    }
1103
1104    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1105    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1106    if (OldMethod && NewMethod) {
1107      // Preserve triviality.
1108      NewMethod->setTrivial(OldMethod->isTrivial());
1109
1110      bool isFriend = NewMethod->getFriendObjectKind();
1111
1112      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1113        //    -- Member function declarations with the same name and the
1114        //       same parameter types cannot be overloaded if any of them
1115        //       is a static member function declaration.
1116        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1117          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1118          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1119          return true;
1120        }
1121
1122        // C++ [class.mem]p1:
1123        //   [...] A member shall not be declared twice in the
1124        //   member-specification, except that a nested class or member
1125        //   class template can be declared and then later defined.
1126        unsigned NewDiag;
1127        if (isa<CXXConstructorDecl>(OldMethod))
1128          NewDiag = diag::err_constructor_redeclared;
1129        else if (isa<CXXDestructorDecl>(NewMethod))
1130          NewDiag = diag::err_destructor_redeclared;
1131        else if (isa<CXXConversionDecl>(NewMethod))
1132          NewDiag = diag::err_conv_function_redeclared;
1133        else
1134          NewDiag = diag::err_member_redeclared;
1135
1136        Diag(New->getLocation(), NewDiag);
1137        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1138
1139      // Complain if this is an explicit declaration of a special
1140      // member that was initially declared implicitly.
1141      //
1142      // As an exception, it's okay to befriend such methods in order
1143      // to permit the implicit constructor/destructor/operator calls.
1144      } else if (OldMethod->isImplicit()) {
1145        if (isFriend) {
1146          NewMethod->setImplicit();
1147        } else {
1148          Diag(NewMethod->getLocation(),
1149               diag::err_definition_of_implicitly_declared_member)
1150            << New << getSpecialMember(OldMethod);
1151          return true;
1152        }
1153      }
1154    }
1155
1156    // (C++98 8.3.5p3):
1157    //   All declarations for a function shall agree exactly in both the
1158    //   return type and the parameter-type-list.
1159    // attributes should be ignored when comparing.
1160    if (Context.getNoReturnType(OldQType, false) ==
1161        Context.getNoReturnType(NewQType, false))
1162      return MergeCompatibleFunctionDecls(New, Old);
1163
1164    // Fall through for conflicting redeclarations and redefinitions.
1165  }
1166
1167  // C: Function types need to be compatible, not identical. This handles
1168  // duplicate function decls like "void f(int); void f(enum X);" properly.
1169  if (!getLangOptions().CPlusPlus &&
1170      Context.typesAreCompatible(OldQType, NewQType)) {
1171    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1172    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1173    const FunctionProtoType *OldProto = 0;
1174    if (isa<FunctionNoProtoType>(NewFuncType) &&
1175        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1176      // The old declaration provided a function prototype, but the
1177      // new declaration does not. Merge in the prototype.
1178      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1179      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1180                                                 OldProto->arg_type_end());
1181      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1182                                         ParamTypes.data(), ParamTypes.size(),
1183                                         OldProto->isVariadic(),
1184                                         OldProto->getTypeQuals(),
1185                                         false, false, 0, 0,
1186                                         OldProto->getExtInfo());
1187      New->setType(NewQType);
1188      New->setHasInheritedPrototype();
1189
1190      // Synthesize a parameter for each argument type.
1191      llvm::SmallVector<ParmVarDecl*, 16> Params;
1192      for (FunctionProtoType::arg_type_iterator
1193             ParamType = OldProto->arg_type_begin(),
1194             ParamEnd = OldProto->arg_type_end();
1195           ParamType != ParamEnd; ++ParamType) {
1196        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1197                                                 SourceLocation(), 0,
1198                                                 *ParamType, /*TInfo=*/0,
1199                                                 VarDecl::None, VarDecl::None,
1200                                                 0);
1201        Param->setImplicit();
1202        Params.push_back(Param);
1203      }
1204
1205      New->setParams(Params.data(), Params.size());
1206    }
1207
1208    return MergeCompatibleFunctionDecls(New, Old);
1209  }
1210
1211  // GNU C permits a K&R definition to follow a prototype declaration
1212  // if the declared types of the parameters in the K&R definition
1213  // match the types in the prototype declaration, even when the
1214  // promoted types of the parameters from the K&R definition differ
1215  // from the types in the prototype. GCC then keeps the types from
1216  // the prototype.
1217  //
1218  // If a variadic prototype is followed by a non-variadic K&R definition,
1219  // the K&R definition becomes variadic.  This is sort of an edge case, but
1220  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1221  // C99 6.9.1p8.
1222  if (!getLangOptions().CPlusPlus &&
1223      Old->hasPrototype() && !New->hasPrototype() &&
1224      New->getType()->getAs<FunctionProtoType>() &&
1225      Old->getNumParams() == New->getNumParams()) {
1226    llvm::SmallVector<QualType, 16> ArgTypes;
1227    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1228    const FunctionProtoType *OldProto
1229      = Old->getType()->getAs<FunctionProtoType>();
1230    const FunctionProtoType *NewProto
1231      = New->getType()->getAs<FunctionProtoType>();
1232
1233    // Determine whether this is the GNU C extension.
1234    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1235                                               NewProto->getResultType());
1236    bool LooseCompatible = !MergedReturn.isNull();
1237    for (unsigned Idx = 0, End = Old->getNumParams();
1238         LooseCompatible && Idx != End; ++Idx) {
1239      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1240      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1241      if (Context.typesAreCompatible(OldParm->getType(),
1242                                     NewProto->getArgType(Idx))) {
1243        ArgTypes.push_back(NewParm->getType());
1244      } else if (Context.typesAreCompatible(OldParm->getType(),
1245                                            NewParm->getType())) {
1246        GNUCompatibleParamWarning Warn
1247          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1248        Warnings.push_back(Warn);
1249        ArgTypes.push_back(NewParm->getType());
1250      } else
1251        LooseCompatible = false;
1252    }
1253
1254    if (LooseCompatible) {
1255      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1256        Diag(Warnings[Warn].NewParm->getLocation(),
1257             diag::ext_param_promoted_not_compatible_with_prototype)
1258          << Warnings[Warn].PromotedType
1259          << Warnings[Warn].OldParm->getType();
1260        Diag(Warnings[Warn].OldParm->getLocation(),
1261             diag::note_previous_declaration);
1262      }
1263
1264      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1265                                           ArgTypes.size(),
1266                                           OldProto->isVariadic(), 0,
1267                                           false, false, 0, 0,
1268                                           OldProto->getExtInfo()));
1269      return MergeCompatibleFunctionDecls(New, Old);
1270    }
1271
1272    // Fall through to diagnose conflicting types.
1273  }
1274
1275  // A function that has already been declared has been redeclared or defined
1276  // with a different type- show appropriate diagnostic
1277  if (unsigned BuiltinID = Old->getBuiltinID()) {
1278    // The user has declared a builtin function with an incompatible
1279    // signature.
1280    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1281      // The function the user is redeclaring is a library-defined
1282      // function like 'malloc' or 'printf'. Warn about the
1283      // redeclaration, then pretend that we don't know about this
1284      // library built-in.
1285      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1286      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1287        << Old << Old->getType();
1288      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1289      Old->setInvalidDecl();
1290      return false;
1291    }
1292
1293    PrevDiag = diag::note_previous_builtin_declaration;
1294  }
1295
1296  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1297  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1298  return true;
1299}
1300
1301/// \brief Completes the merge of two function declarations that are
1302/// known to be compatible.
1303///
1304/// This routine handles the merging of attributes and other
1305/// properties of function declarations form the old declaration to
1306/// the new declaration, once we know that New is in fact a
1307/// redeclaration of Old.
1308///
1309/// \returns false
1310bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1311  // Merge the attributes
1312  MergeAttributes(New, Old, Context);
1313
1314  // Merge the storage class.
1315  if (Old->getStorageClass() != FunctionDecl::Extern &&
1316      Old->getStorageClass() != FunctionDecl::None)
1317    New->setStorageClass(Old->getStorageClass());
1318
1319  // Merge "pure" flag.
1320  if (Old->isPure())
1321    New->setPure();
1322
1323  // Merge the "deleted" flag.
1324  if (Old->isDeleted())
1325    New->setDeleted();
1326
1327  if (getLangOptions().CPlusPlus)
1328    return MergeCXXFunctionDecl(New, Old);
1329
1330  return false;
1331}
1332
1333/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1334/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1335/// situation, merging decls or emitting diagnostics as appropriate.
1336///
1337/// Tentative definition rules (C99 6.9.2p2) are checked by
1338/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1339/// definitions here, since the initializer hasn't been attached.
1340///
1341void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1342  // If the new decl is already invalid, don't do any other checking.
1343  if (New->isInvalidDecl())
1344    return;
1345
1346  // Verify the old decl was also a variable.
1347  VarDecl *Old = 0;
1348  if (!Previous.isSingleResult() ||
1349      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1350    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1351      << New->getDeclName();
1352    Diag(Previous.getRepresentativeDecl()->getLocation(),
1353         diag::note_previous_definition);
1354    return New->setInvalidDecl();
1355  }
1356
1357  MergeAttributes(New, Old, Context);
1358
1359  // Merge the types
1360  QualType MergedT;
1361  if (getLangOptions().CPlusPlus) {
1362    if (Context.hasSameType(New->getType(), Old->getType()))
1363      MergedT = New->getType();
1364    // C++ [basic.link]p10:
1365    //   [...] the types specified by all declarations referring to a given
1366    //   object or function shall be identical, except that declarations for an
1367    //   array object can specify array types that differ by the presence or
1368    //   absence of a major array bound (8.3.4).
1369    else if (Old->getType()->isIncompleteArrayType() &&
1370             New->getType()->isArrayType()) {
1371      CanQual<ArrayType> OldArray
1372        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1373      CanQual<ArrayType> NewArray
1374        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1375      if (OldArray->getElementType() == NewArray->getElementType())
1376        MergedT = New->getType();
1377    } else if (Old->getType()->isArrayType() &&
1378             New->getType()->isIncompleteArrayType()) {
1379      CanQual<ArrayType> OldArray
1380        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1381      CanQual<ArrayType> NewArray
1382        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1383      if (OldArray->getElementType() == NewArray->getElementType())
1384        MergedT = Old->getType();
1385    } else if (New->getType()->isObjCObjectPointerType()
1386               && Old->getType()->isObjCObjectPointerType()) {
1387        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1388    }
1389  } else {
1390    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1391  }
1392  if (MergedT.isNull()) {
1393    Diag(New->getLocation(), diag::err_redefinition_different_type)
1394      << New->getDeclName();
1395    Diag(Old->getLocation(), diag::note_previous_definition);
1396    return New->setInvalidDecl();
1397  }
1398  New->setType(MergedT);
1399
1400  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1401  if (New->getStorageClass() == VarDecl::Static &&
1402      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1403    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407  // C99 6.2.2p4:
1408  //   For an identifier declared with the storage-class specifier
1409  //   extern in a scope in which a prior declaration of that
1410  //   identifier is visible,23) if the prior declaration specifies
1411  //   internal or external linkage, the linkage of the identifier at
1412  //   the later declaration is the same as the linkage specified at
1413  //   the prior declaration. If no prior declaration is visible, or
1414  //   if the prior declaration specifies no linkage, then the
1415  //   identifier has external linkage.
1416  if (New->hasExternalStorage() && Old->hasLinkage())
1417    /* Okay */;
1418  else if (New->getStorageClass() != VarDecl::Static &&
1419           Old->getStorageClass() == VarDecl::Static) {
1420    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1421    Diag(Old->getLocation(), diag::note_previous_definition);
1422    return New->setInvalidDecl();
1423  }
1424
1425  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1426
1427  // FIXME: The test for external storage here seems wrong? We still
1428  // need to check for mismatches.
1429  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1430      // Don't complain about out-of-line definitions of static members.
1431      !(Old->getLexicalDeclContext()->isRecord() &&
1432        !New->getLexicalDeclContext()->isRecord())) {
1433    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1434    Diag(Old->getLocation(), diag::note_previous_definition);
1435    return New->setInvalidDecl();
1436  }
1437
1438  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1439    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1442    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444  }
1445
1446  // C++ doesn't have tentative definitions, so go right ahead and check here.
1447  const VarDecl *Def;
1448  if (getLangOptions().CPlusPlus &&
1449      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1450      (Def = Old->getDefinition())) {
1451    Diag(New->getLocation(), diag::err_redefinition)
1452      << New->getDeclName();
1453    Diag(Def->getLocation(), diag::note_previous_definition);
1454    New->setInvalidDecl();
1455    return;
1456  }
1457  // c99 6.2.2 P4.
1458  // For an identifier declared with the storage-class specifier extern in a
1459  // scope in which a prior declaration of that identifier is visible, if
1460  // the prior declaration specifies internal or external linkage, the linkage
1461  // of the identifier at the later declaration is the same as the linkage
1462  // specified at the prior declaration.
1463  // FIXME. revisit this code.
1464  if (New->hasExternalStorage() &&
1465      Old->getLinkage() == InternalLinkage &&
1466      New->getDeclContext() == Old->getDeclContext())
1467    New->setStorageClass(Old->getStorageClass());
1468
1469  // Keep a chain of previous declarations.
1470  New->setPreviousDeclaration(Old);
1471
1472  // Inherit access appropriately.
1473  New->setAccess(Old->getAccess());
1474}
1475
1476/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1477/// no declarator (e.g. "struct foo;") is parsed.
1478Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1479                                                 DeclSpec &DS) {
1480  // FIXME: Error on auto/register at file scope
1481  // FIXME: Error on inline/virtual/explicit
1482  // FIXME: Warn on useless __thread
1483  // FIXME: Warn on useless const/volatile
1484  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1485  // FIXME: Warn on useless attributes
1486  Decl *TagD = 0;
1487  TagDecl *Tag = 0;
1488  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1489      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1490      DS.getTypeSpecType() == DeclSpec::TST_union ||
1491      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1492    TagD = static_cast<Decl *>(DS.getTypeRep());
1493
1494    if (!TagD) // We probably had an error
1495      return DeclPtrTy();
1496
1497    // Note that the above type specs guarantee that the
1498    // type rep is a Decl, whereas in many of the others
1499    // it's a Type.
1500    Tag = dyn_cast<TagDecl>(TagD);
1501  }
1502
1503  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1504    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1505    // or incomplete types shall not be restrict-qualified."
1506    if (TypeQuals & DeclSpec::TQ_restrict)
1507      Diag(DS.getRestrictSpecLoc(),
1508           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1509           << DS.getSourceRange();
1510  }
1511
1512  if (DS.isFriendSpecified()) {
1513    // If we're dealing with a class template decl, assume that the
1514    // template routines are handling it.
1515    if (TagD && isa<ClassTemplateDecl>(TagD))
1516      return DeclPtrTy();
1517    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1518  }
1519
1520  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1521    // If there are attributes in the DeclSpec, apply them to the record.
1522    if (const AttributeList *AL = DS.getAttributes())
1523      ProcessDeclAttributeList(S, Record, AL);
1524
1525    if (!Record->getDeclName() && Record->isDefinition() &&
1526        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1527      if (getLangOptions().CPlusPlus ||
1528          Record->getDeclContext()->isRecord())
1529        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1530
1531      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1532        << DS.getSourceRange();
1533    }
1534
1535    // Microsoft allows unnamed struct/union fields. Don't complain
1536    // about them.
1537    // FIXME: Should we support Microsoft's extensions in this area?
1538    if (Record->getDeclName() && getLangOptions().Microsoft)
1539      return DeclPtrTy::make(Tag);
1540  }
1541
1542  if (!DS.isMissingDeclaratorOk() &&
1543      DS.getTypeSpecType() != DeclSpec::TST_error) {
1544    // Warn about typedefs of enums without names, since this is an
1545    // extension in both Microsoft an GNU.
1546    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1547        Tag && isa<EnumDecl>(Tag)) {
1548      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1549        << DS.getSourceRange();
1550      return DeclPtrTy::make(Tag);
1551    }
1552
1553    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1554      << DS.getSourceRange();
1555  }
1556
1557  return DeclPtrTy::make(Tag);
1558}
1559
1560/// We are trying to inject an anonymous member into the given scope;
1561/// check if there's an existing declaration that can't be overloaded.
1562///
1563/// \return true if this is a forbidden redeclaration
1564static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1565                                         Scope *S,
1566                                         DeclContext *Owner,
1567                                         DeclarationName Name,
1568                                         SourceLocation NameLoc,
1569                                         unsigned diagnostic) {
1570  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1571                 Sema::ForRedeclaration);
1572  if (!SemaRef.LookupName(R, S)) return false;
1573
1574  if (R.getAsSingle<TagDecl>())
1575    return false;
1576
1577  // Pick a representative declaration.
1578  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1579  if (PrevDecl && Owner->isRecord()) {
1580    RecordDecl *Record = cast<RecordDecl>(Owner);
1581    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1582      return false;
1583  }
1584
1585  SemaRef.Diag(NameLoc, diagnostic) << Name;
1586  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1587
1588  return true;
1589}
1590
1591/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1592/// anonymous struct or union AnonRecord into the owning context Owner
1593/// and scope S. This routine will be invoked just after we realize
1594/// that an unnamed union or struct is actually an anonymous union or
1595/// struct, e.g.,
1596///
1597/// @code
1598/// union {
1599///   int i;
1600///   float f;
1601/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1602///    // f into the surrounding scope.x
1603/// @endcode
1604///
1605/// This routine is recursive, injecting the names of nested anonymous
1606/// structs/unions into the owning context and scope as well.
1607static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1608                                                DeclContext *Owner,
1609                                                RecordDecl *AnonRecord,
1610                                                AccessSpecifier AS) {
1611  unsigned diagKind
1612    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1613                            : diag::err_anonymous_struct_member_redecl;
1614
1615  bool Invalid = false;
1616  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1617                               FEnd = AnonRecord->field_end();
1618       F != FEnd; ++F) {
1619    if ((*F)->getDeclName()) {
1620      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1621                                       (*F)->getLocation(), diagKind)) {
1622        // C++ [class.union]p2:
1623        //   The names of the members of an anonymous union shall be
1624        //   distinct from the names of any other entity in the
1625        //   scope in which the anonymous union is declared.
1626        Invalid = true;
1627      } else {
1628        // C++ [class.union]p2:
1629        //   For the purpose of name lookup, after the anonymous union
1630        //   definition, the members of the anonymous union are
1631        //   considered to have been defined in the scope in which the
1632        //   anonymous union is declared.
1633        Owner->makeDeclVisibleInContext(*F);
1634        S->AddDecl(Sema::DeclPtrTy::make(*F));
1635        SemaRef.IdResolver.AddDecl(*F);
1636
1637        // That includes picking up the appropriate access specifier.
1638        if (AS != AS_none) (*F)->setAccess(AS);
1639      }
1640    } else if (const RecordType *InnerRecordType
1641                 = (*F)->getType()->getAs<RecordType>()) {
1642      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1643      if (InnerRecord->isAnonymousStructOrUnion())
1644        Invalid = Invalid ||
1645          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1646                                              InnerRecord, AS);
1647    }
1648  }
1649
1650  return Invalid;
1651}
1652
1653/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1654/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1655/// illegal input values are mapped to VarDecl::None.
1656/// If the input declaration context is a linkage specification
1657/// with no braces, then Extern is mapped to None.
1658static VarDecl::StorageClass
1659StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1660                                      DeclContext *DC) {
1661  switch (StorageClassSpec) {
1662  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1663  case DeclSpec::SCS_extern:
1664    // If the current context is a C++ linkage specification
1665    // having no braces, then the keyword "extern" is properly part
1666    // of the linkage specification itself, rather than being
1667    // the written storage class specifier.
1668    return (DC && isa<LinkageSpecDecl>(DC) &&
1669            !cast<LinkageSpecDecl>(DC)->hasBraces())
1670      ? VarDecl::None : VarDecl::Extern;
1671  case DeclSpec::SCS_static:         return VarDecl::Static;
1672  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1673  case DeclSpec::SCS_register:       return VarDecl::Register;
1674  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1675    // Illegal SCSs map to None: error reporting is up to the caller.
1676  case DeclSpec::SCS_mutable:        // Fall through.
1677  case DeclSpec::SCS_typedef:        return VarDecl::None;
1678  }
1679  llvm_unreachable("unknown storage class specifier");
1680}
1681
1682/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1683/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1684/// illegal input values are mapped to FunctionDecl::None.
1685/// If the input declaration context is a linkage specification
1686/// with no braces, then Extern is mapped to None.
1687static FunctionDecl::StorageClass
1688StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1689                                           DeclContext *DC) {
1690  switch (StorageClassSpec) {
1691  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1692  case DeclSpec::SCS_extern:
1693    // If the current context is a C++ linkage specification
1694    // having no braces, then the keyword "extern" is properly part
1695    // of the linkage specification itself, rather than being
1696    // the written storage class specifier.
1697    return (DC && isa<LinkageSpecDecl>(DC) &&
1698            !cast<LinkageSpecDecl>(DC)->hasBraces())
1699      ? FunctionDecl::None : FunctionDecl::Extern;
1700  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1701  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1702    // Illegal SCSs map to None: error reporting is up to the caller.
1703  case DeclSpec::SCS_auto:           // Fall through.
1704  case DeclSpec::SCS_mutable:        // Fall through.
1705  case DeclSpec::SCS_register:       // Fall through.
1706  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1707  }
1708  llvm_unreachable("unknown storage class specifier");
1709}
1710
1711/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1712/// anonymous structure or union. Anonymous unions are a C++ feature
1713/// (C++ [class.union]) and a GNU C extension; anonymous structures
1714/// are a GNU C and GNU C++ extension.
1715Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1716                                                  AccessSpecifier AS,
1717                                                  RecordDecl *Record) {
1718  DeclContext *Owner = Record->getDeclContext();
1719
1720  // Diagnose whether this anonymous struct/union is an extension.
1721  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1722    Diag(Record->getLocation(), diag::ext_anonymous_union);
1723  else if (!Record->isUnion())
1724    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1725
1726  // C and C++ require different kinds of checks for anonymous
1727  // structs/unions.
1728  bool Invalid = false;
1729  if (getLangOptions().CPlusPlus) {
1730    const char* PrevSpec = 0;
1731    unsigned DiagID;
1732    // C++ [class.union]p3:
1733    //   Anonymous unions declared in a named namespace or in the
1734    //   global namespace shall be declared static.
1735    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1736        (isa<TranslationUnitDecl>(Owner) ||
1737         (isa<NamespaceDecl>(Owner) &&
1738          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1739      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1740      Invalid = true;
1741
1742      // Recover by adding 'static'.
1743      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1744                             PrevSpec, DiagID);
1745    }
1746    // C++ [class.union]p3:
1747    //   A storage class is not allowed in a declaration of an
1748    //   anonymous union in a class scope.
1749    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1750             isa<RecordDecl>(Owner)) {
1751      Diag(DS.getStorageClassSpecLoc(),
1752           diag::err_anonymous_union_with_storage_spec);
1753      Invalid = true;
1754
1755      // Recover by removing the storage specifier.
1756      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1757                             PrevSpec, DiagID);
1758    }
1759
1760    // C++ [class.union]p2:
1761    //   The member-specification of an anonymous union shall only
1762    //   define non-static data members. [Note: nested types and
1763    //   functions cannot be declared within an anonymous union. ]
1764    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1765                                 MemEnd = Record->decls_end();
1766         Mem != MemEnd; ++Mem) {
1767      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1768        // C++ [class.union]p3:
1769        //   An anonymous union shall not have private or protected
1770        //   members (clause 11).
1771        assert(FD->getAccess() != AS_none);
1772        if (FD->getAccess() != AS_public) {
1773          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1774            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1775          Invalid = true;
1776        }
1777      } else if ((*Mem)->isImplicit()) {
1778        // Any implicit members are fine.
1779      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1780        // This is a type that showed up in an
1781        // elaborated-type-specifier inside the anonymous struct or
1782        // union, but which actually declares a type outside of the
1783        // anonymous struct or union. It's okay.
1784      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1785        if (!MemRecord->isAnonymousStructOrUnion() &&
1786            MemRecord->getDeclName()) {
1787          // This is a nested type declaration.
1788          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1789            << (int)Record->isUnion();
1790          Invalid = true;
1791        }
1792      } else if (isa<AccessSpecDecl>(*Mem)) {
1793        // Any access specifier is fine.
1794      } else {
1795        // We have something that isn't a non-static data
1796        // member. Complain about it.
1797        unsigned DK = diag::err_anonymous_record_bad_member;
1798        if (isa<TypeDecl>(*Mem))
1799          DK = diag::err_anonymous_record_with_type;
1800        else if (isa<FunctionDecl>(*Mem))
1801          DK = diag::err_anonymous_record_with_function;
1802        else if (isa<VarDecl>(*Mem))
1803          DK = diag::err_anonymous_record_with_static;
1804        Diag((*Mem)->getLocation(), DK)
1805            << (int)Record->isUnion();
1806          Invalid = true;
1807      }
1808    }
1809  }
1810
1811  if (!Record->isUnion() && !Owner->isRecord()) {
1812    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1813      << (int)getLangOptions().CPlusPlus;
1814    Invalid = true;
1815  }
1816
1817  // Mock up a declarator.
1818  Declarator Dc(DS, Declarator::TypeNameContext);
1819  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1820  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1821
1822  // Create a declaration for this anonymous struct/union.
1823  NamedDecl *Anon = 0;
1824  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1825    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1826                             /*IdentifierInfo=*/0,
1827                             Context.getTypeDeclType(Record),
1828                             TInfo,
1829                             /*BitWidth=*/0, /*Mutable=*/false);
1830    Anon->setAccess(AS);
1831    if (getLangOptions().CPlusPlus) {
1832      FieldCollector->Add(cast<FieldDecl>(Anon));
1833      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1834        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1835    }
1836  } else {
1837    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1838    assert(SCSpec != DeclSpec::SCS_typedef &&
1839           "Parser allowed 'typedef' as storage class VarDecl.");
1840    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1841    if (SCSpec == DeclSpec::SCS_mutable) {
1842      // mutable can only appear on non-static class members, so it's always
1843      // an error here
1844      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1845      Invalid = true;
1846      SC = VarDecl::None;
1847    }
1848    SCSpec = DS.getStorageClassSpecAsWritten();
1849    VarDecl::StorageClass SCAsWritten
1850      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1851
1852    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1853                           /*IdentifierInfo=*/0,
1854                           Context.getTypeDeclType(Record),
1855                           TInfo, SC, SCAsWritten);
1856  }
1857  Anon->setImplicit();
1858
1859  // Add the anonymous struct/union object to the current
1860  // context. We'll be referencing this object when we refer to one of
1861  // its members.
1862  Owner->addDecl(Anon);
1863
1864  // Inject the members of the anonymous struct/union into the owning
1865  // context and into the identifier resolver chain for name lookup
1866  // purposes.
1867  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1868    Invalid = true;
1869
1870  // Mark this as an anonymous struct/union type. Note that we do not
1871  // do this until after we have already checked and injected the
1872  // members of this anonymous struct/union type, because otherwise
1873  // the members could be injected twice: once by DeclContext when it
1874  // builds its lookup table, and once by
1875  // InjectAnonymousStructOrUnionMembers.
1876  Record->setAnonymousStructOrUnion(true);
1877
1878  if (Invalid)
1879    Anon->setInvalidDecl();
1880
1881  return DeclPtrTy::make(Anon);
1882}
1883
1884
1885/// GetNameForDeclarator - Determine the full declaration name for the
1886/// given Declarator.
1887DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1888  return GetNameFromUnqualifiedId(D.getName());
1889}
1890
1891/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1892DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1893  switch (Name.getKind()) {
1894    case UnqualifiedId::IK_Identifier:
1895      return DeclarationName(Name.Identifier);
1896
1897    case UnqualifiedId::IK_OperatorFunctionId:
1898      return Context.DeclarationNames.getCXXOperatorName(
1899                                              Name.OperatorFunctionId.Operator);
1900
1901    case UnqualifiedId::IK_LiteralOperatorId:
1902      return Context.DeclarationNames.getCXXLiteralOperatorName(
1903                                                               Name.Identifier);
1904
1905    case UnqualifiedId::IK_ConversionFunctionId: {
1906      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1907      if (Ty.isNull())
1908        return DeclarationName();
1909
1910      return Context.DeclarationNames.getCXXConversionFunctionName(
1911                                                  Context.getCanonicalType(Ty));
1912    }
1913
1914    case UnqualifiedId::IK_ConstructorName: {
1915      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1916      if (Ty.isNull())
1917        return DeclarationName();
1918
1919      return Context.DeclarationNames.getCXXConstructorName(
1920                                                  Context.getCanonicalType(Ty));
1921    }
1922
1923    case UnqualifiedId::IK_ConstructorTemplateId: {
1924      // In well-formed code, we can only have a constructor
1925      // template-id that refers to the current context, so go there
1926      // to find the actual type being constructed.
1927      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1928      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1929        return DeclarationName();
1930
1931      // Determine the type of the class being constructed.
1932      QualType CurClassType = Context.getTypeDeclType(CurClass);
1933
1934      // FIXME: Check two things: that the template-id names the same type as
1935      // CurClassType, and that the template-id does not occur when the name
1936      // was qualified.
1937
1938      return Context.DeclarationNames.getCXXConstructorName(
1939                                       Context.getCanonicalType(CurClassType));
1940    }
1941
1942    case UnqualifiedId::IK_DestructorName: {
1943      QualType Ty = GetTypeFromParser(Name.DestructorName);
1944      if (Ty.isNull())
1945        return DeclarationName();
1946
1947      return Context.DeclarationNames.getCXXDestructorName(
1948                                                           Context.getCanonicalType(Ty));
1949    }
1950
1951    case UnqualifiedId::IK_TemplateId: {
1952      TemplateName TName
1953        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1954      return Context.getNameForTemplate(TName);
1955    }
1956  }
1957
1958  assert(false && "Unknown name kind");
1959  return DeclarationName();
1960}
1961
1962/// isNearlyMatchingFunction - Determine whether the C++ functions
1963/// Declaration and Definition are "nearly" matching. This heuristic
1964/// is used to improve diagnostics in the case where an out-of-line
1965/// function definition doesn't match any declaration within
1966/// the class or namespace.
1967static bool isNearlyMatchingFunction(ASTContext &Context,
1968                                     FunctionDecl *Declaration,
1969                                     FunctionDecl *Definition) {
1970  if (Declaration->param_size() != Definition->param_size())
1971    return false;
1972  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1973    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1974    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1975
1976    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1977                                        DefParamTy.getNonReferenceType()))
1978      return false;
1979  }
1980
1981  return true;
1982}
1983
1984/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1985/// declarator needs to be rebuilt in the current instantiation.
1986/// Any bits of declarator which appear before the name are valid for
1987/// consideration here.  That's specifically the type in the decl spec
1988/// and the base type in any member-pointer chunks.
1989static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1990                                                    DeclarationName Name) {
1991  // The types we specifically need to rebuild are:
1992  //   - typenames, typeofs, and decltypes
1993  //   - types which will become injected class names
1994  // Of course, we also need to rebuild any type referencing such a
1995  // type.  It's safest to just say "dependent", but we call out a
1996  // few cases here.
1997
1998  DeclSpec &DS = D.getMutableDeclSpec();
1999  switch (DS.getTypeSpecType()) {
2000  case DeclSpec::TST_typename:
2001  case DeclSpec::TST_typeofType:
2002  case DeclSpec::TST_typeofExpr:
2003  case DeclSpec::TST_decltype: {
2004    // Grab the type from the parser.
2005    TypeSourceInfo *TSI = 0;
2006    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2007    if (T.isNull() || !T->isDependentType()) break;
2008
2009    // Make sure there's a type source info.  This isn't really much
2010    // of a waste; most dependent types should have type source info
2011    // attached already.
2012    if (!TSI)
2013      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2014
2015    // Rebuild the type in the current instantiation.
2016    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2017    if (!TSI) return true;
2018
2019    // Store the new type back in the decl spec.
2020    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2021    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2022    break;
2023  }
2024
2025  default:
2026    // Nothing to do for these decl specs.
2027    break;
2028  }
2029
2030  // It doesn't matter what order we do this in.
2031  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2032    DeclaratorChunk &Chunk = D.getTypeObject(I);
2033
2034    // The only type information in the declarator which can come
2035    // before the declaration name is the base type of a member
2036    // pointer.
2037    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2038      continue;
2039
2040    // Rebuild the scope specifier in-place.
2041    CXXScopeSpec &SS = Chunk.Mem.Scope();
2042    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2043      return true;
2044  }
2045
2046  return false;
2047}
2048
2049Sema::DeclPtrTy
2050Sema::HandleDeclarator(Scope *S, Declarator &D,
2051                       MultiTemplateParamsArg TemplateParamLists,
2052                       bool IsFunctionDefinition) {
2053  DeclarationName Name = GetNameForDeclarator(D);
2054
2055  // All of these full declarators require an identifier.  If it doesn't have
2056  // one, the ParsedFreeStandingDeclSpec action should be used.
2057  if (!Name) {
2058    if (!D.isInvalidType())  // Reject this if we think it is valid.
2059      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2060           diag::err_declarator_need_ident)
2061        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2062    return DeclPtrTy();
2063  }
2064
2065  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2066  // we find one that is.
2067  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2068         (S->getFlags() & Scope::TemplateParamScope) != 0)
2069    S = S->getParent();
2070
2071  DeclContext *DC = CurContext;
2072  if (D.getCXXScopeSpec().isInvalid())
2073    D.setInvalidType();
2074  else if (D.getCXXScopeSpec().isSet()) {
2075    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2076    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2077    if (!DC) {
2078      // If we could not compute the declaration context, it's because the
2079      // declaration context is dependent but does not refer to a class,
2080      // class template, or class template partial specialization. Complain
2081      // and return early, to avoid the coming semantic disaster.
2082      Diag(D.getIdentifierLoc(),
2083           diag::err_template_qualified_declarator_no_match)
2084        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2085        << D.getCXXScopeSpec().getRange();
2086      return DeclPtrTy();
2087    }
2088
2089    bool IsDependentContext = DC->isDependentContext();
2090
2091    if (!IsDependentContext &&
2092        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2093      return DeclPtrTy();
2094
2095    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2096      Diag(D.getIdentifierLoc(),
2097           diag::err_member_def_undefined_record)
2098        << Name << DC << D.getCXXScopeSpec().getRange();
2099      D.setInvalidType();
2100    }
2101
2102    // Check whether we need to rebuild the type of the given
2103    // declaration in the current instantiation.
2104    if (EnteringContext && IsDependentContext &&
2105        TemplateParamLists.size() != 0) {
2106      ContextRAII SavedContext(*this, DC);
2107      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2108        D.setInvalidType();
2109    }
2110  }
2111
2112  NamedDecl *New;
2113
2114  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2115  QualType R = TInfo->getType();
2116
2117  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2118                        ForRedeclaration);
2119
2120  // See if this is a redefinition of a variable in the same scope.
2121  if (!D.getCXXScopeSpec().isSet()) {
2122    bool IsLinkageLookup = false;
2123
2124    // If the declaration we're planning to build will be a function
2125    // or object with linkage, then look for another declaration with
2126    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2127    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2128      /* Do nothing*/;
2129    else if (R->isFunctionType()) {
2130      if (CurContext->isFunctionOrMethod() ||
2131          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2132        IsLinkageLookup = true;
2133    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2134      IsLinkageLookup = true;
2135    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2136             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2137      IsLinkageLookup = true;
2138
2139    if (IsLinkageLookup)
2140      Previous.clear(LookupRedeclarationWithLinkage);
2141
2142    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2143  } else { // Something like "int foo::x;"
2144    LookupQualifiedName(Previous, DC);
2145
2146    // Don't consider using declarations as previous declarations for
2147    // out-of-line members.
2148    RemoveUsingDecls(Previous);
2149
2150    // C++ 7.3.1.2p2:
2151    // Members (including explicit specializations of templates) of a named
2152    // namespace can also be defined outside that namespace by explicit
2153    // qualification of the name being defined, provided that the entity being
2154    // defined was already declared in the namespace and the definition appears
2155    // after the point of declaration in a namespace that encloses the
2156    // declarations namespace.
2157    //
2158    // Note that we only check the context at this point. We don't yet
2159    // have enough information to make sure that PrevDecl is actually
2160    // the declaration we want to match. For example, given:
2161    //
2162    //   class X {
2163    //     void f();
2164    //     void f(float);
2165    //   };
2166    //
2167    //   void X::f(int) { } // ill-formed
2168    //
2169    // In this case, PrevDecl will point to the overload set
2170    // containing the two f's declared in X, but neither of them
2171    // matches.
2172
2173    // First check whether we named the global scope.
2174    if (isa<TranslationUnitDecl>(DC)) {
2175      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2176        << Name << D.getCXXScopeSpec().getRange();
2177    } else {
2178      DeclContext *Cur = CurContext;
2179      while (isa<LinkageSpecDecl>(Cur))
2180        Cur = Cur->getParent();
2181      if (!Cur->Encloses(DC)) {
2182        // The qualifying scope doesn't enclose the original declaration.
2183        // Emit diagnostic based on current scope.
2184        SourceLocation L = D.getIdentifierLoc();
2185        SourceRange R = D.getCXXScopeSpec().getRange();
2186        if (isa<FunctionDecl>(Cur))
2187          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2188        else
2189          Diag(L, diag::err_invalid_declarator_scope)
2190            << Name << cast<NamedDecl>(DC) << R;
2191        D.setInvalidType();
2192      }
2193    }
2194  }
2195
2196  if (Previous.isSingleResult() &&
2197      Previous.getFoundDecl()->isTemplateParameter()) {
2198    // Maybe we will complain about the shadowed template parameter.
2199    if (!D.isInvalidType())
2200      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2201                                          Previous.getFoundDecl()))
2202        D.setInvalidType();
2203
2204    // Just pretend that we didn't see the previous declaration.
2205    Previous.clear();
2206  }
2207
2208  // In C++, the previous declaration we find might be a tag type
2209  // (class or enum). In this case, the new declaration will hide the
2210  // tag type. Note that this does does not apply if we're declaring a
2211  // typedef (C++ [dcl.typedef]p4).
2212  if (Previous.isSingleTagDecl() &&
2213      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2214    Previous.clear();
2215
2216  bool Redeclaration = false;
2217  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2218    if (TemplateParamLists.size()) {
2219      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2220      return DeclPtrTy();
2221    }
2222
2223    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2224  } else if (R->isFunctionType()) {
2225    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2226                                  move(TemplateParamLists),
2227                                  IsFunctionDefinition, Redeclaration);
2228  } else {
2229    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2230                                  move(TemplateParamLists),
2231                                  Redeclaration);
2232  }
2233
2234  if (New == 0)
2235    return DeclPtrTy();
2236
2237  // If this has an identifier and is not an invalid redeclaration or
2238  // function template specialization, add it to the scope stack.
2239  if (Name && !(Redeclaration && New->isInvalidDecl()))
2240    PushOnScopeChains(New, S);
2241
2242  return DeclPtrTy::make(New);
2243}
2244
2245/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2246/// types into constant array types in certain situations which would otherwise
2247/// be errors (for GCC compatibility).
2248static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2249                                                    ASTContext &Context,
2250                                                    bool &SizeIsNegative) {
2251  // This method tries to turn a variable array into a constant
2252  // array even when the size isn't an ICE.  This is necessary
2253  // for compatibility with code that depends on gcc's buggy
2254  // constant expression folding, like struct {char x[(int)(char*)2];}
2255  SizeIsNegative = false;
2256
2257  QualifierCollector Qs;
2258  const Type *Ty = Qs.strip(T);
2259
2260  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2261    QualType Pointee = PTy->getPointeeType();
2262    QualType FixedType =
2263        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2264    if (FixedType.isNull()) return FixedType;
2265    FixedType = Context.getPointerType(FixedType);
2266    return Qs.apply(FixedType);
2267  }
2268
2269  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2270  if (!VLATy)
2271    return QualType();
2272  // FIXME: We should probably handle this case
2273  if (VLATy->getElementType()->isVariablyModifiedType())
2274    return QualType();
2275
2276  Expr::EvalResult EvalResult;
2277  if (!VLATy->getSizeExpr() ||
2278      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2279      !EvalResult.Val.isInt())
2280    return QualType();
2281
2282  llvm::APSInt &Res = EvalResult.Val.getInt();
2283  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2284    // TODO: preserve the size expression in declarator info
2285    return Context.getConstantArrayType(VLATy->getElementType(),
2286                                        Res, ArrayType::Normal, 0);
2287  }
2288
2289  SizeIsNegative = true;
2290  return QualType();
2291}
2292
2293/// \brief Register the given locally-scoped external C declaration so
2294/// that it can be found later for redeclarations
2295void
2296Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2297                                       const LookupResult &Previous,
2298                                       Scope *S) {
2299  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2300         "Decl is not a locally-scoped decl!");
2301  // Note that we have a locally-scoped external with this name.
2302  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2303
2304  if (!Previous.isSingleResult())
2305    return;
2306
2307  NamedDecl *PrevDecl = Previous.getFoundDecl();
2308
2309  // If there was a previous declaration of this variable, it may be
2310  // in our identifier chain. Update the identifier chain with the new
2311  // declaration.
2312  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2313    // The previous declaration was found on the identifer resolver
2314    // chain, so remove it from its scope.
2315    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2316      S = S->getParent();
2317
2318    if (S)
2319      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2320  }
2321}
2322
2323/// \brief Diagnose function specifiers on a declaration of an identifier that
2324/// does not identify a function.
2325void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2326  // FIXME: We should probably indicate the identifier in question to avoid
2327  // confusion for constructs like "inline int a(), b;"
2328  if (D.getDeclSpec().isInlineSpecified())
2329    Diag(D.getDeclSpec().getInlineSpecLoc(),
2330         diag::err_inline_non_function);
2331
2332  if (D.getDeclSpec().isVirtualSpecified())
2333    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2334         diag::err_virtual_non_function);
2335
2336  if (D.getDeclSpec().isExplicitSpecified())
2337    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2338         diag::err_explicit_non_function);
2339}
2340
2341NamedDecl*
2342Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2343                             QualType R,  TypeSourceInfo *TInfo,
2344                             LookupResult &Previous, bool &Redeclaration) {
2345  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2346  if (D.getCXXScopeSpec().isSet()) {
2347    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2348      << D.getCXXScopeSpec().getRange();
2349    D.setInvalidType();
2350    // Pretend we didn't see the scope specifier.
2351    DC = CurContext;
2352    Previous.clear();
2353  }
2354
2355  if (getLangOptions().CPlusPlus) {
2356    // Check that there are no default arguments (C++ only).
2357    CheckExtraCXXDefaultArguments(D);
2358  }
2359
2360  DiagnoseFunctionSpecifiers(D);
2361
2362  if (D.getDeclSpec().isThreadSpecified())
2363    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2364
2365  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2366  if (!NewTD) return 0;
2367
2368  // Handle attributes prior to checking for duplicates in MergeVarDecl
2369  ProcessDeclAttributes(S, NewTD, D);
2370
2371  // Merge the decl with the existing one if appropriate. If the decl is
2372  // in an outer scope, it isn't the same thing.
2373  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2374  if (!Previous.empty()) {
2375    Redeclaration = true;
2376    MergeTypeDefDecl(NewTD, Previous);
2377  }
2378
2379  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2380  // then it shall have block scope.
2381  QualType T = NewTD->getUnderlyingType();
2382  if (T->isVariablyModifiedType()) {
2383    FunctionNeedsScopeChecking() = true;
2384
2385    if (S->getFnParent() == 0) {
2386      bool SizeIsNegative;
2387      QualType FixedTy =
2388          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2389      if (!FixedTy.isNull()) {
2390        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2391        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2392      } else {
2393        if (SizeIsNegative)
2394          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2395        else if (T->isVariableArrayType())
2396          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2397        else
2398          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2399        NewTD->setInvalidDecl();
2400      }
2401    }
2402  }
2403
2404  // If this is the C FILE type, notify the AST context.
2405  if (IdentifierInfo *II = NewTD->getIdentifier())
2406    if (!NewTD->isInvalidDecl() &&
2407        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2408      if (II->isStr("FILE"))
2409        Context.setFILEDecl(NewTD);
2410      else if (II->isStr("jmp_buf"))
2411        Context.setjmp_bufDecl(NewTD);
2412      else if (II->isStr("sigjmp_buf"))
2413        Context.setsigjmp_bufDecl(NewTD);
2414    }
2415
2416  return NewTD;
2417}
2418
2419/// \brief Determines whether the given declaration is an out-of-scope
2420/// previous declaration.
2421///
2422/// This routine should be invoked when name lookup has found a
2423/// previous declaration (PrevDecl) that is not in the scope where a
2424/// new declaration by the same name is being introduced. If the new
2425/// declaration occurs in a local scope, previous declarations with
2426/// linkage may still be considered previous declarations (C99
2427/// 6.2.2p4-5, C++ [basic.link]p6).
2428///
2429/// \param PrevDecl the previous declaration found by name
2430/// lookup
2431///
2432/// \param DC the context in which the new declaration is being
2433/// declared.
2434///
2435/// \returns true if PrevDecl is an out-of-scope previous declaration
2436/// for a new delcaration with the same name.
2437static bool
2438isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2439                                ASTContext &Context) {
2440  if (!PrevDecl)
2441    return 0;
2442
2443  if (!PrevDecl->hasLinkage())
2444    return false;
2445
2446  if (Context.getLangOptions().CPlusPlus) {
2447    // C++ [basic.link]p6:
2448    //   If there is a visible declaration of an entity with linkage
2449    //   having the same name and type, ignoring entities declared
2450    //   outside the innermost enclosing namespace scope, the block
2451    //   scope declaration declares that same entity and receives the
2452    //   linkage of the previous declaration.
2453    DeclContext *OuterContext = DC->getLookupContext();
2454    if (!OuterContext->isFunctionOrMethod())
2455      // This rule only applies to block-scope declarations.
2456      return false;
2457    else {
2458      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2459      if (PrevOuterContext->isRecord())
2460        // We found a member function: ignore it.
2461        return false;
2462      else {
2463        // Find the innermost enclosing namespace for the new and
2464        // previous declarations.
2465        while (!OuterContext->isFileContext())
2466          OuterContext = OuterContext->getParent();
2467        while (!PrevOuterContext->isFileContext())
2468          PrevOuterContext = PrevOuterContext->getParent();
2469
2470        // The previous declaration is in a different namespace, so it
2471        // isn't the same function.
2472        if (OuterContext->getPrimaryContext() !=
2473            PrevOuterContext->getPrimaryContext())
2474          return false;
2475      }
2476    }
2477  }
2478
2479  return true;
2480}
2481
2482static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2483  CXXScopeSpec &SS = D.getCXXScopeSpec();
2484  if (!SS.isSet()) return;
2485  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2486                       SS.getRange());
2487}
2488
2489NamedDecl*
2490Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2491                              QualType R, TypeSourceInfo *TInfo,
2492                              LookupResult &Previous,
2493                              MultiTemplateParamsArg TemplateParamLists,
2494                              bool &Redeclaration) {
2495  DeclarationName Name = GetNameForDeclarator(D);
2496
2497  // Check that there are no default arguments (C++ only).
2498  if (getLangOptions().CPlusPlus)
2499    CheckExtraCXXDefaultArguments(D);
2500
2501  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2502  assert(SCSpec != DeclSpec::SCS_typedef &&
2503         "Parser allowed 'typedef' as storage class VarDecl.");
2504  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2505  if (SCSpec == DeclSpec::SCS_mutable) {
2506    // mutable can only appear on non-static class members, so it's always
2507    // an error here
2508    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2509    D.setInvalidType();
2510    SC = VarDecl::None;
2511  }
2512  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2513  VarDecl::StorageClass SCAsWritten
2514    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2515
2516  IdentifierInfo *II = Name.getAsIdentifierInfo();
2517  if (!II) {
2518    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2519      << Name.getAsString();
2520    return 0;
2521  }
2522
2523  DiagnoseFunctionSpecifiers(D);
2524
2525  if (!DC->isRecord() && S->getFnParent() == 0) {
2526    // C99 6.9p2: The storage-class specifiers auto and register shall not
2527    // appear in the declaration specifiers in an external declaration.
2528    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2529
2530      // If this is a register variable with an asm label specified, then this
2531      // is a GNU extension.
2532      if (SC == VarDecl::Register && D.getAsmLabel())
2533        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2534      else
2535        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2536      D.setInvalidType();
2537    }
2538  }
2539  if (DC->isRecord() && !CurContext->isRecord()) {
2540    // This is an out-of-line definition of a static data member.
2541    if (SC == VarDecl::Static) {
2542      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2543           diag::err_static_out_of_line)
2544        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2545    } else if (SC == VarDecl::None)
2546      SC = VarDecl::Static;
2547  }
2548  if (SC == VarDecl::Static) {
2549    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2550      if (RD->isLocalClass())
2551        Diag(D.getIdentifierLoc(),
2552             diag::err_static_data_member_not_allowed_in_local_class)
2553          << Name << RD->getDeclName();
2554    }
2555  }
2556
2557  // Match up the template parameter lists with the scope specifier, then
2558  // determine whether we have a template or a template specialization.
2559  bool isExplicitSpecialization = false;
2560  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2561  if (TemplateParameterList *TemplateParams
2562        = MatchTemplateParametersToScopeSpecifier(
2563                                  D.getDeclSpec().getSourceRange().getBegin(),
2564                                                  D.getCXXScopeSpec(),
2565                        (TemplateParameterList**)TemplateParamLists.get(),
2566                                                   TemplateParamLists.size(),
2567                                                  /*never a friend*/ false,
2568                                                  isExplicitSpecialization)) {
2569    // All but one template parameter lists have been matching.
2570    --NumMatchedTemplateParamLists;
2571
2572    if (TemplateParams->size() > 0) {
2573      // There is no such thing as a variable template.
2574      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2575        << II
2576        << SourceRange(TemplateParams->getTemplateLoc(),
2577                       TemplateParams->getRAngleLoc());
2578      return 0;
2579    } else {
2580      // There is an extraneous 'template<>' for this variable. Complain
2581      // about it, but allow the declaration of the variable.
2582      Diag(TemplateParams->getTemplateLoc(),
2583           diag::err_template_variable_noparams)
2584        << II
2585        << SourceRange(TemplateParams->getTemplateLoc(),
2586                       TemplateParams->getRAngleLoc());
2587
2588      isExplicitSpecialization = true;
2589    }
2590  }
2591
2592  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2593                                   II, R, TInfo, SC, SCAsWritten);
2594
2595  if (D.isInvalidType())
2596    NewVD->setInvalidDecl();
2597
2598  SetNestedNameSpecifier(NewVD, D);
2599
2600  if (NumMatchedTemplateParamLists > 0) {
2601    NewVD->setTemplateParameterListsInfo(Context,
2602                                         NumMatchedTemplateParamLists,
2603                        (TemplateParameterList**)TemplateParamLists.release());
2604  }
2605
2606  if (D.getDeclSpec().isThreadSpecified()) {
2607    if (NewVD->hasLocalStorage())
2608      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2609    else if (!Context.Target.isTLSSupported())
2610      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2611    else
2612      NewVD->setThreadSpecified(true);
2613  }
2614
2615  // Set the lexical context. If the declarator has a C++ scope specifier, the
2616  // lexical context will be different from the semantic context.
2617  NewVD->setLexicalDeclContext(CurContext);
2618
2619  // Handle attributes prior to checking for duplicates in MergeVarDecl
2620  ProcessDeclAttributes(S, NewVD, D);
2621
2622  // Handle GNU asm-label extension (encoded as an attribute).
2623  if (Expr *E = (Expr*) D.getAsmLabel()) {
2624    // The parser guarantees this is a string.
2625    StringLiteral *SE = cast<StringLiteral>(E);
2626    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2627  }
2628
2629  // Diagnose shadowed variables before filtering for scope.
2630  if (!D.getCXXScopeSpec().isSet())
2631    CheckShadow(S, NewVD, Previous);
2632
2633  // Don't consider existing declarations that are in a different
2634  // scope and are out-of-semantic-context declarations (if the new
2635  // declaration has linkage).
2636  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2637
2638  // Merge the decl with the existing one if appropriate.
2639  if (!Previous.empty()) {
2640    if (Previous.isSingleResult() &&
2641        isa<FieldDecl>(Previous.getFoundDecl()) &&
2642        D.getCXXScopeSpec().isSet()) {
2643      // The user tried to define a non-static data member
2644      // out-of-line (C++ [dcl.meaning]p1).
2645      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2646        << D.getCXXScopeSpec().getRange();
2647      Previous.clear();
2648      NewVD->setInvalidDecl();
2649    }
2650  } else if (D.getCXXScopeSpec().isSet()) {
2651    // No previous declaration in the qualifying scope.
2652    Diag(D.getIdentifierLoc(), diag::err_no_member)
2653      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2654      << D.getCXXScopeSpec().getRange();
2655    NewVD->setInvalidDecl();
2656  }
2657
2658  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2659
2660  // This is an explicit specialization of a static data member. Check it.
2661  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2662      CheckMemberSpecialization(NewVD, Previous))
2663    NewVD->setInvalidDecl();
2664
2665  // attributes declared post-definition are currently ignored
2666  if (Previous.isSingleResult()) {
2667    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2668    if (Def && (Def = Def->getDefinition()) &&
2669        Def != NewVD && D.hasAttributes()) {
2670      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2671      Diag(Def->getLocation(), diag::note_previous_definition);
2672    }
2673  }
2674
2675  // If this is a locally-scoped extern C variable, update the map of
2676  // such variables.
2677  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2678      !NewVD->isInvalidDecl())
2679    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2680
2681  return NewVD;
2682}
2683
2684/// \brief Diagnose variable or built-in function shadowing.  Implements
2685/// -Wshadow.
2686///
2687/// This method is called whenever a VarDecl is added to a "useful"
2688/// scope.
2689///
2690/// \param S the scope in which the shadowing name is being declared
2691/// \param R the lookup of the name
2692///
2693void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2694  // Return if warning is ignored.
2695  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2696    return;
2697
2698  // Don't diagnose declarations at file scope.  The scope might not
2699  // have a DeclContext if (e.g.) we're parsing a function prototype.
2700  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2701  if (NewDC && NewDC->isFileContext())
2702    return;
2703
2704  // Only diagnose if we're shadowing an unambiguous field or variable.
2705  if (R.getResultKind() != LookupResult::Found)
2706    return;
2707
2708  NamedDecl* ShadowedDecl = R.getFoundDecl();
2709  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2710    return;
2711
2712  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2713
2714  // Only warn about certain kinds of shadowing for class members.
2715  if (NewDC && NewDC->isRecord()) {
2716    // In particular, don't warn about shadowing non-class members.
2717    if (!OldDC->isRecord())
2718      return;
2719
2720    // TODO: should we warn about static data members shadowing
2721    // static data members from base classes?
2722
2723    // TODO: don't diagnose for inaccessible shadowed members.
2724    // This is hard to do perfectly because we might friend the
2725    // shadowing context, but that's just a false negative.
2726  }
2727
2728  // Determine what kind of declaration we're shadowing.
2729  unsigned Kind;
2730  if (isa<RecordDecl>(OldDC)) {
2731    if (isa<FieldDecl>(ShadowedDecl))
2732      Kind = 3; // field
2733    else
2734      Kind = 2; // static data member
2735  } else if (OldDC->isFileContext())
2736    Kind = 1; // global
2737  else
2738    Kind = 0; // local
2739
2740  DeclarationName Name = R.getLookupName();
2741
2742  // Emit warning and note.
2743  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2744  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2745}
2746
2747/// \brief Check -Wshadow without the advantage of a previous lookup.
2748void Sema::CheckShadow(Scope *S, VarDecl *D) {
2749  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2750                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2751  LookupName(R, S);
2752  CheckShadow(S, D, R);
2753}
2754
2755/// \brief Perform semantic checking on a newly-created variable
2756/// declaration.
2757///
2758/// This routine performs all of the type-checking required for a
2759/// variable declaration once it has been built. It is used both to
2760/// check variables after they have been parsed and their declarators
2761/// have been translated into a declaration, and to check variables
2762/// that have been instantiated from a template.
2763///
2764/// Sets NewVD->isInvalidDecl() if an error was encountered.
2765void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2766                                    LookupResult &Previous,
2767                                    bool &Redeclaration) {
2768  // If the decl is already known invalid, don't check it.
2769  if (NewVD->isInvalidDecl())
2770    return;
2771
2772  QualType T = NewVD->getType();
2773
2774  if (T->isObjCObjectType()) {
2775    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2776    return NewVD->setInvalidDecl();
2777  }
2778
2779  // Emit an error if an address space was applied to decl with local storage.
2780  // This includes arrays of objects with address space qualifiers, but not
2781  // automatic variables that point to other address spaces.
2782  // ISO/IEC TR 18037 S5.1.2
2783  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2784    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2785    return NewVD->setInvalidDecl();
2786  }
2787
2788  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2789      && !NewVD->hasAttr<BlocksAttr>())
2790    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2791
2792  bool isVM = T->isVariablyModifiedType();
2793  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2794      NewVD->hasAttr<BlocksAttr>() ||
2795      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2796      // However, this turns on the scope checker for everything with a variable
2797      // which may impact compile time.  See if we can find a better solution
2798      // to this, perhaps only checking functions that contain gotos in C++?
2799      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2800    FunctionNeedsScopeChecking() = true;
2801
2802  if ((isVM && NewVD->hasLinkage()) ||
2803      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2804    bool SizeIsNegative;
2805    QualType FixedTy =
2806        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2807
2808    if (FixedTy.isNull() && T->isVariableArrayType()) {
2809      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2810      // FIXME: This won't give the correct result for
2811      // int a[10][n];
2812      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2813
2814      if (NewVD->isFileVarDecl())
2815        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2816        << SizeRange;
2817      else if (NewVD->getStorageClass() == VarDecl::Static)
2818        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2819        << SizeRange;
2820      else
2821        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2822        << SizeRange;
2823      return NewVD->setInvalidDecl();
2824    }
2825
2826    if (FixedTy.isNull()) {
2827      if (NewVD->isFileVarDecl())
2828        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2829      else
2830        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2831      return NewVD->setInvalidDecl();
2832    }
2833
2834    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2835    NewVD->setType(FixedTy);
2836  }
2837
2838  if (Previous.empty() && NewVD->isExternC()) {
2839    // Since we did not find anything by this name and we're declaring
2840    // an extern "C" variable, look for a non-visible extern "C"
2841    // declaration with the same name.
2842    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2843      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2844    if (Pos != LocallyScopedExternalDecls.end())
2845      Previous.addDecl(Pos->second);
2846  }
2847
2848  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2849    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2850      << T;
2851    return NewVD->setInvalidDecl();
2852  }
2853
2854  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2855    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2856    return NewVD->setInvalidDecl();
2857  }
2858
2859  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2860    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2861    return NewVD->setInvalidDecl();
2862  }
2863
2864  if (!Previous.empty()) {
2865    Redeclaration = true;
2866    MergeVarDecl(NewVD, Previous);
2867  }
2868}
2869
2870/// \brief Data used with FindOverriddenMethod
2871struct FindOverriddenMethodData {
2872  Sema *S;
2873  CXXMethodDecl *Method;
2874};
2875
2876/// \brief Member lookup function that determines whether a given C++
2877/// method overrides a method in a base class, to be used with
2878/// CXXRecordDecl::lookupInBases().
2879static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2880                                 CXXBasePath &Path,
2881                                 void *UserData) {
2882  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2883
2884  FindOverriddenMethodData *Data
2885    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2886
2887  DeclarationName Name = Data->Method->getDeclName();
2888
2889  // FIXME: Do we care about other names here too?
2890  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2891    // We really want to find the base class destructor here.
2892    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2893    CanQualType CT = Data->S->Context.getCanonicalType(T);
2894
2895    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2896  }
2897
2898  for (Path.Decls = BaseRecord->lookup(Name);
2899       Path.Decls.first != Path.Decls.second;
2900       ++Path.Decls.first) {
2901    NamedDecl *D = *Path.Decls.first;
2902    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2903      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2904        return true;
2905    }
2906  }
2907
2908  return false;
2909}
2910
2911/// AddOverriddenMethods - See if a method overrides any in the base classes,
2912/// and if so, check that it's a valid override and remember it.
2913void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2914  // Look for virtual methods in base classes that this method might override.
2915  CXXBasePaths Paths;
2916  FindOverriddenMethodData Data;
2917  Data.Method = MD;
2918  Data.S = this;
2919  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2920    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2921         E = Paths.found_decls_end(); I != E; ++I) {
2922      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2923        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2924            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2925            !CheckOverridingFunctionAttributes(MD, OldMD))
2926          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2927      }
2928    }
2929  }
2930}
2931
2932NamedDecl*
2933Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2934                              QualType R, TypeSourceInfo *TInfo,
2935                              LookupResult &Previous,
2936                              MultiTemplateParamsArg TemplateParamLists,
2937                              bool IsFunctionDefinition, bool &Redeclaration) {
2938  assert(R.getTypePtr()->isFunctionType());
2939
2940  DeclarationName Name = GetNameForDeclarator(D);
2941  FunctionDecl::StorageClass SC = FunctionDecl::None;
2942  switch (D.getDeclSpec().getStorageClassSpec()) {
2943  default: assert(0 && "Unknown storage class!");
2944  case DeclSpec::SCS_auto:
2945  case DeclSpec::SCS_register:
2946  case DeclSpec::SCS_mutable:
2947    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2948         diag::err_typecheck_sclass_func);
2949    D.setInvalidType();
2950    break;
2951  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2952  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2953  case DeclSpec::SCS_static: {
2954    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2955      // C99 6.7.1p5:
2956      //   The declaration of an identifier for a function that has
2957      //   block scope shall have no explicit storage-class specifier
2958      //   other than extern
2959      // See also (C++ [dcl.stc]p4).
2960      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2961           diag::err_static_block_func);
2962      SC = FunctionDecl::None;
2963    } else
2964      SC = FunctionDecl::Static;
2965    break;
2966  }
2967  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2968  }
2969
2970  if (D.getDeclSpec().isThreadSpecified())
2971    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2972
2973  bool isFriend = D.getDeclSpec().isFriendSpecified();
2974  bool isInline = D.getDeclSpec().isInlineSpecified();
2975  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2976  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2977
2978  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2979  FunctionDecl::StorageClass SCAsWritten
2980    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2981
2982  // Check that the return type is not an abstract class type.
2983  // For record types, this is done by the AbstractClassUsageDiagnoser once
2984  // the class has been completely parsed.
2985  if (!DC->isRecord() &&
2986      RequireNonAbstractType(D.getIdentifierLoc(),
2987                             R->getAs<FunctionType>()->getResultType(),
2988                             diag::err_abstract_type_in_decl,
2989                             AbstractReturnType))
2990    D.setInvalidType();
2991
2992  // Do not allow returning a objc interface by-value.
2993  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
2994    Diag(D.getIdentifierLoc(),
2995         diag::err_object_cannot_be_passed_returned_by_value) << 0
2996      << R->getAs<FunctionType>()->getResultType();
2997    D.setInvalidType();
2998  }
2999
3000  bool isVirtualOkay = false;
3001  FunctionDecl *NewFD;
3002
3003  if (isFriend) {
3004    // C++ [class.friend]p5
3005    //   A function can be defined in a friend declaration of a
3006    //   class . . . . Such a function is implicitly inline.
3007    isInline |= IsFunctionDefinition;
3008  }
3009
3010  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3011    // This is a C++ constructor declaration.
3012    assert(DC->isRecord() &&
3013           "Constructors can only be declared in a member context");
3014
3015    R = CheckConstructorDeclarator(D, R, SC);
3016
3017    // Create the new declaration
3018    NewFD = CXXConstructorDecl::Create(Context,
3019                                       cast<CXXRecordDecl>(DC),
3020                                       D.getIdentifierLoc(), Name, R, TInfo,
3021                                       isExplicit, isInline,
3022                                       /*isImplicitlyDeclared=*/false);
3023  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3024    // This is a C++ destructor declaration.
3025    if (DC->isRecord()) {
3026      R = CheckDestructorDeclarator(D, SC);
3027
3028      NewFD = CXXDestructorDecl::Create(Context,
3029                                        cast<CXXRecordDecl>(DC),
3030                                        D.getIdentifierLoc(), Name, R,
3031                                        isInline,
3032                                        /*isImplicitlyDeclared=*/false);
3033      NewFD->setTypeSourceInfo(TInfo);
3034
3035      isVirtualOkay = true;
3036    } else {
3037      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3038
3039      // Create a FunctionDecl to satisfy the function definition parsing
3040      // code path.
3041      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3042                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3043                                   /*hasPrototype=*/true);
3044      D.setInvalidType();
3045    }
3046  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3047    if (!DC->isRecord()) {
3048      Diag(D.getIdentifierLoc(),
3049           diag::err_conv_function_not_member);
3050      return 0;
3051    }
3052
3053    CheckConversionDeclarator(D, R, SC);
3054    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3055                                      D.getIdentifierLoc(), Name, R, TInfo,
3056                                      isInline, isExplicit);
3057
3058    isVirtualOkay = true;
3059  } else if (DC->isRecord()) {
3060    // If the of the function is the same as the name of the record, then this
3061    // must be an invalid constructor that has a return type.
3062    // (The parser checks for a return type and makes the declarator a
3063    // constructor if it has no return type).
3064    // must have an invalid constructor that has a return type
3065    if (Name.getAsIdentifierInfo() &&
3066        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3067      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3068        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3069        << SourceRange(D.getIdentifierLoc());
3070      return 0;
3071    }
3072
3073    bool isStatic = SC == FunctionDecl::Static;
3074
3075    // [class.free]p1:
3076    // Any allocation function for a class T is a static member
3077    // (even if not explicitly declared static).
3078    if (Name.getCXXOverloadedOperator() == OO_New ||
3079        Name.getCXXOverloadedOperator() == OO_Array_New)
3080      isStatic = true;
3081
3082    // [class.free]p6 Any deallocation function for a class X is a static member
3083    // (even if not explicitly declared static).
3084    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3085        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3086      isStatic = true;
3087
3088    // This is a C++ method declaration.
3089    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3090                                  D.getIdentifierLoc(), Name, R, TInfo,
3091                                  isStatic, SCAsWritten, isInline);
3092
3093    isVirtualOkay = !isStatic;
3094  } else {
3095    // Determine whether the function was written with a
3096    // prototype. This true when:
3097    //   - we're in C++ (where every function has a prototype),
3098    //   - there is a prototype in the declarator, or
3099    //   - the type R of the function is some kind of typedef or other reference
3100    //     to a type name (which eventually refers to a function type).
3101    bool HasPrototype =
3102       getLangOptions().CPlusPlus ||
3103       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3104       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3105
3106    NewFD = FunctionDecl::Create(Context, DC,
3107                                 D.getIdentifierLoc(),
3108                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3109                                 HasPrototype);
3110  }
3111
3112  if (D.isInvalidType())
3113    NewFD->setInvalidDecl();
3114
3115  SetNestedNameSpecifier(NewFD, D);
3116
3117  // Set the lexical context. If the declarator has a C++
3118  // scope specifier, or is the object of a friend declaration, the
3119  // lexical context will be different from the semantic context.
3120  NewFD->setLexicalDeclContext(CurContext);
3121
3122  // Match up the template parameter lists with the scope specifier, then
3123  // determine whether we have a template or a template specialization.
3124  FunctionTemplateDecl *FunctionTemplate = 0;
3125  bool isExplicitSpecialization = false;
3126  bool isFunctionTemplateSpecialization = false;
3127  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3128  if (TemplateParameterList *TemplateParams
3129        = MatchTemplateParametersToScopeSpecifier(
3130                                  D.getDeclSpec().getSourceRange().getBegin(),
3131                                  D.getCXXScopeSpec(),
3132                           (TemplateParameterList**)TemplateParamLists.get(),
3133                                                  TemplateParamLists.size(),
3134                                                  isFriend,
3135                                                  isExplicitSpecialization)) {
3136    // All but one template parameter lists have been matching.
3137    --NumMatchedTemplateParamLists;
3138
3139    if (TemplateParams->size() > 0) {
3140      // This is a function template
3141
3142      // Check that we can declare a template here.
3143      if (CheckTemplateDeclScope(S, TemplateParams))
3144        return 0;
3145
3146      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3147                                                      NewFD->getLocation(),
3148                                                      Name, TemplateParams,
3149                                                      NewFD);
3150      FunctionTemplate->setLexicalDeclContext(CurContext);
3151      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3152    } else {
3153      // This is a function template specialization.
3154      isFunctionTemplateSpecialization = true;
3155
3156      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3157      if (isFriend && isFunctionTemplateSpecialization) {
3158        // We want to remove the "template<>", found here.
3159        SourceRange RemoveRange = TemplateParams->getSourceRange();
3160
3161        // If we remove the template<> and the name is not a
3162        // template-id, we're actually silently creating a problem:
3163        // the friend declaration will refer to an untemplated decl,
3164        // and clearly the user wants a template specialization.  So
3165        // we need to insert '<>' after the name.
3166        SourceLocation InsertLoc;
3167        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3168          InsertLoc = D.getName().getSourceRange().getEnd();
3169          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3170        }
3171
3172        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3173          << Name << RemoveRange
3174          << FixItHint::CreateRemoval(RemoveRange)
3175          << FixItHint::CreateInsertion(InsertLoc, "<>");
3176      }
3177    }
3178  }
3179
3180  if (NumMatchedTemplateParamLists > 0) {
3181    NewFD->setTemplateParameterListsInfo(Context,
3182                                         NumMatchedTemplateParamLists,
3183                        (TemplateParameterList**)TemplateParamLists.release());
3184  }
3185
3186  // C++ [dcl.fct.spec]p5:
3187  //   The virtual specifier shall only be used in declarations of
3188  //   nonstatic class member functions that appear within a
3189  //   member-specification of a class declaration; see 10.3.
3190  //
3191  if (isVirtual && !NewFD->isInvalidDecl()) {
3192    if (!isVirtualOkay) {
3193       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3194           diag::err_virtual_non_function);
3195    } else if (!CurContext->isRecord()) {
3196      // 'virtual' was specified outside of the class.
3197      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3198        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3199    } else {
3200      // Okay: Add virtual to the method.
3201      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3202      CurClass->setMethodAsVirtual(NewFD);
3203    }
3204  }
3205
3206  // C++ [dcl.fct.spec]p6:
3207  //  The explicit specifier shall be used only in the declaration of a
3208  //  constructor or conversion function within its class definition; see 12.3.1
3209  //  and 12.3.2.
3210  if (isExplicit && !NewFD->isInvalidDecl()) {
3211    if (!CurContext->isRecord()) {
3212      // 'explicit' was specified outside of the class.
3213      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3214           diag::err_explicit_out_of_class)
3215        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3216    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3217               !isa<CXXConversionDecl>(NewFD)) {
3218      // 'explicit' was specified on a function that wasn't a constructor
3219      // or conversion function.
3220      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3221           diag::err_explicit_non_ctor_or_conv_function)
3222        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3223    }
3224  }
3225
3226  // Filter out previous declarations that don't match the scope.
3227  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3228
3229  if (isFriend) {
3230    // DC is the namespace in which the function is being declared.
3231    assert((DC->isFileContext() || !Previous.empty()) &&
3232           "previously-undeclared friend function being created "
3233           "in a non-namespace context");
3234
3235    // For now, claim that the objects have no previous declaration.
3236    if (FunctionTemplate) {
3237      FunctionTemplate->setObjectOfFriendDecl(false);
3238      FunctionTemplate->setAccess(AS_public);
3239    }
3240    NewFD->setObjectOfFriendDecl(false);
3241    NewFD->setAccess(AS_public);
3242  }
3243
3244  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3245      !CurContext->isRecord()) {
3246    // C++ [class.static]p1:
3247    //   A data or function member of a class may be declared static
3248    //   in a class definition, in which case it is a static member of
3249    //   the class.
3250
3251    // Complain about the 'static' specifier if it's on an out-of-line
3252    // member function definition.
3253    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3254         diag::err_static_out_of_line)
3255      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3256  }
3257
3258  // Handle GNU asm-label extension (encoded as an attribute).
3259  if (Expr *E = (Expr*) D.getAsmLabel()) {
3260    // The parser guarantees this is a string.
3261    StringLiteral *SE = cast<StringLiteral>(E);
3262    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3263  }
3264
3265  // Copy the parameter declarations from the declarator D to the function
3266  // declaration NewFD, if they are available.  First scavenge them into Params.
3267  llvm::SmallVector<ParmVarDecl*, 16> Params;
3268  if (D.getNumTypeObjects() > 0) {
3269    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3270
3271    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3272    // function that takes no arguments, not a function that takes a
3273    // single void argument.
3274    // We let through "const void" here because Sema::GetTypeForDeclarator
3275    // already checks for that case.
3276    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3277        FTI.ArgInfo[0].Param &&
3278        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3279      // Empty arg list, don't push any params.
3280      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3281
3282      // In C++, the empty parameter-type-list must be spelled "void"; a
3283      // typedef of void is not permitted.
3284      if (getLangOptions().CPlusPlus &&
3285          Param->getType().getUnqualifiedType() != Context.VoidTy)
3286        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3287      // FIXME: Leaks decl?
3288    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3289      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3290        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3291        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3292        Param->setDeclContext(NewFD);
3293        Params.push_back(Param);
3294
3295        if (Param->isInvalidDecl())
3296          NewFD->setInvalidDecl();
3297      }
3298    }
3299
3300  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3301    // When we're declaring a function with a typedef, typeof, etc as in the
3302    // following example, we'll need to synthesize (unnamed)
3303    // parameters for use in the declaration.
3304    //
3305    // @code
3306    // typedef void fn(int);
3307    // fn f;
3308    // @endcode
3309
3310    // Synthesize a parameter for each argument type.
3311    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3312         AE = FT->arg_type_end(); AI != AE; ++AI) {
3313      ParmVarDecl *Param =
3314        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3315      Params.push_back(Param);
3316    }
3317  } else {
3318    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3319           "Should not need args for typedef of non-prototype fn");
3320  }
3321  // Finally, we know we have the right number of parameters, install them.
3322  NewFD->setParams(Params.data(), Params.size());
3323
3324  // If the declarator is a template-id, translate the parser's template
3325  // argument list into our AST format.
3326  bool HasExplicitTemplateArgs = false;
3327  TemplateArgumentListInfo TemplateArgs;
3328  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3329    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3330    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3331    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3332    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3333                                       TemplateId->getTemplateArgs(),
3334                                       TemplateId->NumArgs);
3335    translateTemplateArguments(TemplateArgsPtr,
3336                               TemplateArgs);
3337    TemplateArgsPtr.release();
3338
3339    HasExplicitTemplateArgs = true;
3340
3341    if (FunctionTemplate) {
3342      // FIXME: Diagnose function template with explicit template
3343      // arguments.
3344      HasExplicitTemplateArgs = false;
3345    } else if (!isFunctionTemplateSpecialization &&
3346               !D.getDeclSpec().isFriendSpecified()) {
3347      // We have encountered something that the user meant to be a
3348      // specialization (because it has explicitly-specified template
3349      // arguments) but that was not introduced with a "template<>" (or had
3350      // too few of them).
3351      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3352        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3353        << FixItHint::CreateInsertion(
3354                                   D.getDeclSpec().getSourceRange().getBegin(),
3355                                                 "template<> ");
3356      isFunctionTemplateSpecialization = true;
3357    } else {
3358      // "friend void foo<>(int);" is an implicit specialization decl.
3359      isFunctionTemplateSpecialization = true;
3360    }
3361  } else if (isFriend && isFunctionTemplateSpecialization) {
3362    // This combination is only possible in a recovery case;  the user
3363    // wrote something like:
3364    //   template <> friend void foo(int);
3365    // which we're recovering from as if the user had written:
3366    //   friend void foo<>(int);
3367    // Go ahead and fake up a template id.
3368    HasExplicitTemplateArgs = true;
3369    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3370    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3371  }
3372
3373  // If it's a friend (and only if it's a friend), it's possible
3374  // that either the specialized function type or the specialized
3375  // template is dependent, and therefore matching will fail.  In
3376  // this case, don't check the specialization yet.
3377  if (isFunctionTemplateSpecialization && isFriend &&
3378      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3379    assert(HasExplicitTemplateArgs &&
3380           "friend function specialization without template args");
3381    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3382                                                     Previous))
3383      NewFD->setInvalidDecl();
3384  } else if (isFunctionTemplateSpecialization) {
3385    if (CheckFunctionTemplateSpecialization(NewFD,
3386                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3387                                            Previous))
3388      NewFD->setInvalidDecl();
3389  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3390    if (CheckMemberSpecialization(NewFD, Previous))
3391      NewFD->setInvalidDecl();
3392  }
3393
3394  // Perform semantic checking on the function declaration.
3395  bool OverloadableAttrRequired = false; // FIXME: HACK!
3396  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3397                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3398
3399  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3400          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3401         "previous declaration set still overloaded");
3402
3403  NamedDecl *PrincipalDecl = (FunctionTemplate
3404                              ? cast<NamedDecl>(FunctionTemplate)
3405                              : NewFD);
3406
3407  if (isFriend && Redeclaration) {
3408    AccessSpecifier Access = AS_public;
3409    if (!NewFD->isInvalidDecl())
3410      Access = NewFD->getPreviousDeclaration()->getAccess();
3411
3412    NewFD->setAccess(Access);
3413    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3414
3415    PrincipalDecl->setObjectOfFriendDecl(true);
3416  }
3417
3418  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3419      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3420    PrincipalDecl->setNonMemberOperator();
3421
3422  // If we have a function template, check the template parameter
3423  // list. This will check and merge default template arguments.
3424  if (FunctionTemplate) {
3425    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3426    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3427                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3428             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3429                                                : TPC_FunctionTemplate);
3430  }
3431
3432  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3433    // Fake up an access specifier if it's supposed to be a class member.
3434    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3435      NewFD->setAccess(AS_public);
3436
3437    // An out-of-line member function declaration must also be a
3438    // definition (C++ [dcl.meaning]p1).
3439    // Note that this is not the case for explicit specializations of
3440    // function templates or member functions of class templates, per
3441    // C++ [temp.expl.spec]p2.
3442    if (!IsFunctionDefinition && !isFriend &&
3443        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3444      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3445        << D.getCXXScopeSpec().getRange();
3446      NewFD->setInvalidDecl();
3447    } else if (!Redeclaration &&
3448               !(isFriend && CurContext->isDependentContext())) {
3449      // The user tried to provide an out-of-line definition for a
3450      // function that is a member of a class or namespace, but there
3451      // was no such member function declared (C++ [class.mfct]p2,
3452      // C++ [namespace.memdef]p2). For example:
3453      //
3454      // class X {
3455      //   void f() const;
3456      // };
3457      //
3458      // void X::f() { } // ill-formed
3459      //
3460      // Complain about this problem, and attempt to suggest close
3461      // matches (e.g., those that differ only in cv-qualifiers and
3462      // whether the parameter types are references).
3463      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3464        << Name << DC << D.getCXXScopeSpec().getRange();
3465      NewFD->setInvalidDecl();
3466
3467      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3468                        ForRedeclaration);
3469      LookupQualifiedName(Prev, DC);
3470      assert(!Prev.isAmbiguous() &&
3471             "Cannot have an ambiguity in previous-declaration lookup");
3472      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3473           Func != FuncEnd; ++Func) {
3474        if (isa<FunctionDecl>(*Func) &&
3475            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3476          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3477      }
3478    }
3479  }
3480
3481  // Handle attributes. We need to have merged decls when handling attributes
3482  // (for example to check for conflicts, etc).
3483  // FIXME: This needs to happen before we merge declarations. Then,
3484  // let attribute merging cope with attribute conflicts.
3485  ProcessDeclAttributes(S, NewFD, D);
3486
3487  // attributes declared post-definition are currently ignored
3488  if (Redeclaration && Previous.isSingleResult()) {
3489    const FunctionDecl *Def;
3490    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3491    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3492      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3493      Diag(Def->getLocation(), diag::note_previous_definition);
3494    }
3495  }
3496
3497  AddKnownFunctionAttributes(NewFD);
3498
3499  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3500    // If a function name is overloadable in C, then every function
3501    // with that name must be marked "overloadable".
3502    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3503      << Redeclaration << NewFD;
3504    if (!Previous.empty())
3505      Diag(Previous.getRepresentativeDecl()->getLocation(),
3506           diag::note_attribute_overloadable_prev_overload);
3507    NewFD->addAttr(::new (Context) OverloadableAttr());
3508  }
3509
3510  // If this is a locally-scoped extern C function, update the
3511  // map of such names.
3512  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3513      && !NewFD->isInvalidDecl())
3514    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3515
3516  // Set this FunctionDecl's range up to the right paren.
3517  NewFD->setLocEnd(D.getSourceRange().getEnd());
3518
3519  if (FunctionTemplate && NewFD->isInvalidDecl())
3520    FunctionTemplate->setInvalidDecl();
3521
3522  if (FunctionTemplate)
3523    return FunctionTemplate;
3524
3525
3526  // Keep track of static, non-inlined function definitions that
3527  // have not been used. We will warn later.
3528  // FIXME: Also include static functions declared but not defined.
3529  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3530      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3531      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3532      && !NewFD->hasAttr<ConstructorAttr>()
3533      && !NewFD->hasAttr<DestructorAttr>())
3534    UnusedStaticFuncs.push_back(NewFD);
3535
3536  return NewFD;
3537}
3538
3539/// \brief Perform semantic checking of a new function declaration.
3540///
3541/// Performs semantic analysis of the new function declaration
3542/// NewFD. This routine performs all semantic checking that does not
3543/// require the actual declarator involved in the declaration, and is
3544/// used both for the declaration of functions as they are parsed
3545/// (called via ActOnDeclarator) and for the declaration of functions
3546/// that have been instantiated via C++ template instantiation (called
3547/// via InstantiateDecl).
3548///
3549/// \param IsExplicitSpecialiation whether this new function declaration is
3550/// an explicit specialization of the previous declaration.
3551///
3552/// This sets NewFD->isInvalidDecl() to true if there was an error.
3553void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3554                                    LookupResult &Previous,
3555                                    bool IsExplicitSpecialization,
3556                                    bool &Redeclaration,
3557                                    bool &OverloadableAttrRequired) {
3558  // If NewFD is already known erroneous, don't do any of this checking.
3559  if (NewFD->isInvalidDecl())
3560    return;
3561
3562  if (NewFD->getResultType()->isVariablyModifiedType()) {
3563    // Functions returning a variably modified type violate C99 6.7.5.2p2
3564    // because all functions have linkage.
3565    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3566    return NewFD->setInvalidDecl();
3567  }
3568
3569  if (NewFD->isMain())
3570    CheckMain(NewFD);
3571
3572  // Check for a previous declaration of this name.
3573  if (Previous.empty() && NewFD->isExternC()) {
3574    // Since we did not find anything by this name and we're declaring
3575    // an extern "C" function, look for a non-visible extern "C"
3576    // declaration with the same name.
3577    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3578      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3579    if (Pos != LocallyScopedExternalDecls.end())
3580      Previous.addDecl(Pos->second);
3581  }
3582
3583  // Merge or overload the declaration with an existing declaration of
3584  // the same name, if appropriate.
3585  if (!Previous.empty()) {
3586    // Determine whether NewFD is an overload of PrevDecl or
3587    // a declaration that requires merging. If it's an overload,
3588    // there's no more work to do here; we'll just add the new
3589    // function to the scope.
3590
3591    NamedDecl *OldDecl = 0;
3592    if (!AllowOverloadingOfFunction(Previous, Context)) {
3593      Redeclaration = true;
3594      OldDecl = Previous.getFoundDecl();
3595    } else {
3596      if (!getLangOptions().CPlusPlus) {
3597        OverloadableAttrRequired = true;
3598
3599        // Functions marked "overloadable" must have a prototype (that
3600        // we can't get through declaration merging).
3601        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3602          Diag(NewFD->getLocation(),
3603               diag::err_attribute_overloadable_no_prototype)
3604            << NewFD;
3605          Redeclaration = true;
3606
3607          // Turn this into a variadic function with no parameters.
3608          QualType R = Context.getFunctionType(
3609                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3610                     0, 0, true, 0, false, false, 0, 0,
3611                     FunctionType::ExtInfo());
3612          NewFD->setType(R);
3613          return NewFD->setInvalidDecl();
3614        }
3615      }
3616
3617      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3618                            /*NewIsUsingDecl*/ false)) {
3619      case Ovl_Match:
3620        Redeclaration = true;
3621        break;
3622
3623      case Ovl_NonFunction:
3624        Redeclaration = true;
3625        break;
3626
3627      case Ovl_Overload:
3628        Redeclaration = false;
3629        break;
3630      }
3631    }
3632
3633    if (Redeclaration) {
3634      // NewFD and OldDecl represent declarations that need to be
3635      // merged.
3636      if (MergeFunctionDecl(NewFD, OldDecl))
3637        return NewFD->setInvalidDecl();
3638
3639      Previous.clear();
3640      Previous.addDecl(OldDecl);
3641
3642      if (FunctionTemplateDecl *OldTemplateDecl
3643                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3644        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3645        FunctionTemplateDecl *NewTemplateDecl
3646          = NewFD->getDescribedFunctionTemplate();
3647        assert(NewTemplateDecl && "Template/non-template mismatch");
3648        if (CXXMethodDecl *Method
3649              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3650          Method->setAccess(OldTemplateDecl->getAccess());
3651          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3652        }
3653
3654        // If this is an explicit specialization of a member that is a function
3655        // template, mark it as a member specialization.
3656        if (IsExplicitSpecialization &&
3657            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3658          NewTemplateDecl->setMemberSpecialization();
3659          assert(OldTemplateDecl->isMemberSpecialization());
3660        }
3661      } else {
3662        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3663          NewFD->setAccess(OldDecl->getAccess());
3664        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3665      }
3666    }
3667  }
3668
3669  // Semantic checking for this function declaration (in isolation).
3670  if (getLangOptions().CPlusPlus) {
3671    // C++-specific checks.
3672    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3673      CheckConstructor(Constructor);
3674    } else if (CXXDestructorDecl *Destructor =
3675                dyn_cast<CXXDestructorDecl>(NewFD)) {
3676      CXXRecordDecl *Record = Destructor->getParent();
3677      QualType ClassType = Context.getTypeDeclType(Record);
3678
3679      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3680      // type is dependent? Both gcc and edg can handle that.
3681      if (!ClassType->isDependentType()) {
3682        DeclarationName Name
3683          = Context.DeclarationNames.getCXXDestructorName(
3684                                        Context.getCanonicalType(ClassType));
3685        if (NewFD->getDeclName() != Name) {
3686          Diag(NewFD->getLocation(), diag::err_destructor_name);
3687          return NewFD->setInvalidDecl();
3688        }
3689      }
3690
3691      Record->setUserDeclaredDestructor(true);
3692      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3693      // user-defined destructor.
3694      Record->setPOD(false);
3695
3696      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3697      // declared destructor.
3698      // FIXME: C++0x: don't do this for "= default" destructors
3699      Record->setHasTrivialDestructor(false);
3700    } else if (CXXConversionDecl *Conversion
3701               = dyn_cast<CXXConversionDecl>(NewFD)) {
3702      ActOnConversionDeclarator(Conversion);
3703    }
3704
3705    // Find any virtual functions that this function overrides.
3706    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3707      if (!Method->isFunctionTemplateSpecialization() &&
3708          !Method->getDescribedFunctionTemplate())
3709        AddOverriddenMethods(Method->getParent(), Method);
3710    }
3711
3712    // Additional checks for the destructor; make sure we do this after we
3713    // figure out whether the destructor is virtual.
3714    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3715      if (!Destructor->getParent()->isDependentType())
3716        CheckDestructor(Destructor);
3717
3718    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3719    if (NewFD->isOverloadedOperator() &&
3720        CheckOverloadedOperatorDeclaration(NewFD))
3721      return NewFD->setInvalidDecl();
3722
3723    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3724    if (NewFD->getLiteralIdentifier() &&
3725        CheckLiteralOperatorDeclaration(NewFD))
3726      return NewFD->setInvalidDecl();
3727
3728    // In C++, check default arguments now that we have merged decls. Unless
3729    // the lexical context is the class, because in this case this is done
3730    // during delayed parsing anyway.
3731    if (!CurContext->isRecord())
3732      CheckCXXDefaultArguments(NewFD);
3733  }
3734}
3735
3736void Sema::CheckMain(FunctionDecl* FD) {
3737  // C++ [basic.start.main]p3:  A program that declares main to be inline
3738  //   or static is ill-formed.
3739  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3740  //   shall not appear in a declaration of main.
3741  // static main is not an error under C99, but we should warn about it.
3742  bool isInline = FD->isInlineSpecified();
3743  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3744  if (isInline || isStatic) {
3745    unsigned diagID = diag::warn_unusual_main_decl;
3746    if (isInline || getLangOptions().CPlusPlus)
3747      diagID = diag::err_unusual_main_decl;
3748
3749    int which = isStatic + (isInline << 1) - 1;
3750    Diag(FD->getLocation(), diagID) << which;
3751  }
3752
3753  QualType T = FD->getType();
3754  assert(T->isFunctionType() && "function decl is not of function type");
3755  const FunctionType* FT = T->getAs<FunctionType>();
3756
3757  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3758    // TODO: add a replacement fixit to turn the return type into 'int'.
3759    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3760    FD->setInvalidDecl(true);
3761  }
3762
3763  // Treat protoless main() as nullary.
3764  if (isa<FunctionNoProtoType>(FT)) return;
3765
3766  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3767  unsigned nparams = FTP->getNumArgs();
3768  assert(FD->getNumParams() == nparams);
3769
3770  bool HasExtraParameters = (nparams > 3);
3771
3772  // Darwin passes an undocumented fourth argument of type char**.  If
3773  // other platforms start sprouting these, the logic below will start
3774  // getting shifty.
3775  if (nparams == 4 &&
3776      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3777    HasExtraParameters = false;
3778
3779  if (HasExtraParameters) {
3780    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3781    FD->setInvalidDecl(true);
3782    nparams = 3;
3783  }
3784
3785  // FIXME: a lot of the following diagnostics would be improved
3786  // if we had some location information about types.
3787
3788  QualType CharPP =
3789    Context.getPointerType(Context.getPointerType(Context.CharTy));
3790  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3791
3792  for (unsigned i = 0; i < nparams; ++i) {
3793    QualType AT = FTP->getArgType(i);
3794
3795    bool mismatch = true;
3796
3797    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3798      mismatch = false;
3799    else if (Expected[i] == CharPP) {
3800      // As an extension, the following forms are okay:
3801      //   char const **
3802      //   char const * const *
3803      //   char * const *
3804
3805      QualifierCollector qs;
3806      const PointerType* PT;
3807      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3808          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3809          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3810        qs.removeConst();
3811        mismatch = !qs.empty();
3812      }
3813    }
3814
3815    if (mismatch) {
3816      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3817      // TODO: suggest replacing given type with expected type
3818      FD->setInvalidDecl(true);
3819    }
3820  }
3821
3822  if (nparams == 1 && !FD->isInvalidDecl()) {
3823    Diag(FD->getLocation(), diag::warn_main_one_arg);
3824  }
3825}
3826
3827bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3828  // FIXME: Need strict checking.  In C89, we need to check for
3829  // any assignment, increment, decrement, function-calls, or
3830  // commas outside of a sizeof.  In C99, it's the same list,
3831  // except that the aforementioned are allowed in unevaluated
3832  // expressions.  Everything else falls under the
3833  // "may accept other forms of constant expressions" exception.
3834  // (We never end up here for C++, so the constant expression
3835  // rules there don't matter.)
3836  if (Init->isConstantInitializer(Context))
3837    return false;
3838  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3839    << Init->getSourceRange();
3840  return true;
3841}
3842
3843void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3844  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3845}
3846
3847/// AddInitializerToDecl - Adds the initializer Init to the
3848/// declaration dcl. If DirectInit is true, this is C++ direct
3849/// initialization rather than copy initialization.
3850void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3851  Decl *RealDecl = dcl.getAs<Decl>();
3852  // If there is no declaration, there was an error parsing it.  Just ignore
3853  // the initializer.
3854  if (RealDecl == 0)
3855    return;
3856
3857  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3858    // With declarators parsed the way they are, the parser cannot
3859    // distinguish between a normal initializer and a pure-specifier.
3860    // Thus this grotesque test.
3861    IntegerLiteral *IL;
3862    Expr *Init = static_cast<Expr *>(init.get());
3863    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3864        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3865      CheckPureMethod(Method, Init->getSourceRange());
3866    else {
3867      Diag(Method->getLocation(), diag::err_member_function_initialization)
3868        << Method->getDeclName() << Init->getSourceRange();
3869      Method->setInvalidDecl();
3870    }
3871    return;
3872  }
3873
3874  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3875  if (!VDecl) {
3876    if (getLangOptions().CPlusPlus &&
3877        RealDecl->getLexicalDeclContext()->isRecord() &&
3878        isa<NamedDecl>(RealDecl))
3879      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3880        << cast<NamedDecl>(RealDecl)->getDeclName();
3881    else
3882      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3883    RealDecl->setInvalidDecl();
3884    return;
3885  }
3886
3887  // A definition must end up with a complete type, which means it must be
3888  // complete with the restriction that an array type might be completed by the
3889  // initializer; note that later code assumes this restriction.
3890  QualType BaseDeclType = VDecl->getType();
3891  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3892    BaseDeclType = Array->getElementType();
3893  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3894                          diag::err_typecheck_decl_incomplete_type)) {
3895    RealDecl->setInvalidDecl();
3896    return;
3897  }
3898
3899  // The variable can not have an abstract class type.
3900  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3901                             diag::err_abstract_type_in_decl,
3902                             AbstractVariableType))
3903    VDecl->setInvalidDecl();
3904
3905  const VarDecl *Def;
3906  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3907    Diag(VDecl->getLocation(), diag::err_redefinition)
3908      << VDecl->getDeclName();
3909    Diag(Def->getLocation(), diag::note_previous_definition);
3910    VDecl->setInvalidDecl();
3911    return;
3912  }
3913
3914  // Take ownership of the expression, now that we're sure we have somewhere
3915  // to put it.
3916  Expr *Init = init.takeAs<Expr>();
3917  assert(Init && "missing initializer");
3918
3919  // Capture the variable that is being initialized and the style of
3920  // initialization.
3921  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3922
3923  // FIXME: Poor source location information.
3924  InitializationKind Kind
3925    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3926                                                   Init->getLocStart(),
3927                                                   Init->getLocEnd())
3928                : InitializationKind::CreateCopy(VDecl->getLocation(),
3929                                                 Init->getLocStart());
3930
3931  // Get the decls type and save a reference for later, since
3932  // CheckInitializerTypes may change it.
3933  QualType DclT = VDecl->getType(), SavT = DclT;
3934  if (VDecl->isBlockVarDecl()) {
3935    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3936      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3937      VDecl->setInvalidDecl();
3938    } else if (!VDecl->isInvalidDecl()) {
3939      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3940      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3941                                          MultiExprArg(*this, (void**)&Init, 1),
3942                                                &DclT);
3943      if (Result.isInvalid()) {
3944        VDecl->setInvalidDecl();
3945        return;
3946      }
3947
3948      Init = Result.takeAs<Expr>();
3949
3950      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3951      // Don't check invalid declarations to avoid emitting useless diagnostics.
3952      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3953        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3954          CheckForConstantInitializer(Init, DclT);
3955      }
3956    }
3957  } else if (VDecl->isStaticDataMember() &&
3958             VDecl->getLexicalDeclContext()->isRecord()) {
3959    // This is an in-class initialization for a static data member, e.g.,
3960    //
3961    // struct S {
3962    //   static const int value = 17;
3963    // };
3964
3965    // Attach the initializer
3966    VDecl->setInit(Init);
3967
3968    // C++ [class.mem]p4:
3969    //   A member-declarator can contain a constant-initializer only
3970    //   if it declares a static member (9.4) of const integral or
3971    //   const enumeration type, see 9.4.2.
3972    QualType T = VDecl->getType();
3973    if (!T->isDependentType() &&
3974        (!Context.getCanonicalType(T).isConstQualified() ||
3975         !T->isIntegralOrEnumerationType())) {
3976      Diag(VDecl->getLocation(), diag::err_member_initialization)
3977        << VDecl->getDeclName() << Init->getSourceRange();
3978      VDecl->setInvalidDecl();
3979    } else {
3980      // C++ [class.static.data]p4:
3981      //   If a static data member is of const integral or const
3982      //   enumeration type, its declaration in the class definition
3983      //   can specify a constant-initializer which shall be an
3984      //   integral constant expression (5.19).
3985      if (!Init->isTypeDependent() &&
3986          !Init->getType()->isIntegralOrEnumerationType()) {
3987        // We have a non-dependent, non-integral or enumeration type.
3988        Diag(Init->getSourceRange().getBegin(),
3989             diag::err_in_class_initializer_non_integral_type)
3990          << Init->getType() << Init->getSourceRange();
3991        VDecl->setInvalidDecl();
3992      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3993        // Check whether the expression is a constant expression.
3994        llvm::APSInt Value;
3995        SourceLocation Loc;
3996        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3997          Diag(Loc, diag::err_in_class_initializer_non_constant)
3998            << Init->getSourceRange();
3999          VDecl->setInvalidDecl();
4000        } else if (!VDecl->getType()->isDependentType())
4001          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4002      }
4003    }
4004  } else if (VDecl->isFileVarDecl()) {
4005    if (VDecl->getStorageClass() == VarDecl::Extern &&
4006        (!getLangOptions().CPlusPlus ||
4007         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4008      Diag(VDecl->getLocation(), diag::warn_extern_init);
4009    if (!VDecl->isInvalidDecl()) {
4010      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4011      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4012                                          MultiExprArg(*this, (void**)&Init, 1),
4013                                                &DclT);
4014      if (Result.isInvalid()) {
4015        VDecl->setInvalidDecl();
4016        return;
4017      }
4018
4019      Init = Result.takeAs<Expr>();
4020    }
4021
4022    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4023    // Don't check invalid declarations to avoid emitting useless diagnostics.
4024    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4025      // C99 6.7.8p4. All file scoped initializers need to be constant.
4026      CheckForConstantInitializer(Init, DclT);
4027    }
4028  }
4029  // If the type changed, it means we had an incomplete type that was
4030  // completed by the initializer. For example:
4031  //   int ary[] = { 1, 3, 5 };
4032  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4033  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4034    VDecl->setType(DclT);
4035    Init->setType(DclT);
4036  }
4037
4038  Init = MaybeCreateCXXExprWithTemporaries(Init);
4039  // Attach the initializer to the decl.
4040  VDecl->setInit(Init);
4041
4042  if (getLangOptions().CPlusPlus) {
4043    // Make sure we mark the destructor as used if necessary.
4044    QualType InitType = VDecl->getType();
4045    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4046      InitType = Context.getBaseElementType(Array);
4047    if (const RecordType *Record = InitType->getAs<RecordType>())
4048      FinalizeVarWithDestructor(VDecl, Record);
4049  }
4050
4051  return;
4052}
4053
4054/// ActOnInitializerError - Given that there was an error parsing an
4055/// initializer for the given declaration, try to return to some form
4056/// of sanity.
4057void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4058  // Our main concern here is re-establishing invariants like "a
4059  // variable's type is either dependent or complete".
4060  Decl *D = dcl.getAs<Decl>();
4061  if (!D || D->isInvalidDecl()) return;
4062
4063  VarDecl *VD = dyn_cast<VarDecl>(D);
4064  if (!VD) return;
4065
4066  QualType Ty = VD->getType();
4067  if (Ty->isDependentType()) return;
4068
4069  // Require a complete type.
4070  if (RequireCompleteType(VD->getLocation(),
4071                          Context.getBaseElementType(Ty),
4072                          diag::err_typecheck_decl_incomplete_type)) {
4073    VD->setInvalidDecl();
4074    return;
4075  }
4076
4077  // Require an abstract type.
4078  if (RequireNonAbstractType(VD->getLocation(), Ty,
4079                             diag::err_abstract_type_in_decl,
4080                             AbstractVariableType)) {
4081    VD->setInvalidDecl();
4082    return;
4083  }
4084
4085  // Don't bother complaining about constructors or destructors,
4086  // though.
4087}
4088
4089void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4090                                  bool TypeContainsUndeducedAuto) {
4091  Decl *RealDecl = dcl.getAs<Decl>();
4092
4093  // If there is no declaration, there was an error parsing it. Just ignore it.
4094  if (RealDecl == 0)
4095    return;
4096
4097  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4098    QualType Type = Var->getType();
4099
4100    // C++0x [dcl.spec.auto]p3
4101    if (TypeContainsUndeducedAuto) {
4102      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4103        << Var->getDeclName() << Type;
4104      Var->setInvalidDecl();
4105      return;
4106    }
4107
4108    switch (Var->isThisDeclarationADefinition()) {
4109    case VarDecl::Definition:
4110      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4111        break;
4112
4113      // We have an out-of-line definition of a static data member
4114      // that has an in-class initializer, so we type-check this like
4115      // a declaration.
4116      //
4117      // Fall through
4118
4119    case VarDecl::DeclarationOnly:
4120      // It's only a declaration.
4121
4122      // Block scope. C99 6.7p7: If an identifier for an object is
4123      // declared with no linkage (C99 6.2.2p6), the type for the
4124      // object shall be complete.
4125      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4126          !Var->getLinkage() && !Var->isInvalidDecl() &&
4127          RequireCompleteType(Var->getLocation(), Type,
4128                              diag::err_typecheck_decl_incomplete_type))
4129        Var->setInvalidDecl();
4130
4131      // Make sure that the type is not abstract.
4132      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4133          RequireNonAbstractType(Var->getLocation(), Type,
4134                                 diag::err_abstract_type_in_decl,
4135                                 AbstractVariableType))
4136        Var->setInvalidDecl();
4137      return;
4138
4139    case VarDecl::TentativeDefinition:
4140      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4141      // object that has file scope without an initializer, and without a
4142      // storage-class specifier or with the storage-class specifier "static",
4143      // constitutes a tentative definition. Note: A tentative definition with
4144      // external linkage is valid (C99 6.2.2p5).
4145      if (!Var->isInvalidDecl()) {
4146        if (const IncompleteArrayType *ArrayT
4147                                    = Context.getAsIncompleteArrayType(Type)) {
4148          if (RequireCompleteType(Var->getLocation(),
4149                                  ArrayT->getElementType(),
4150                                  diag::err_illegal_decl_array_incomplete_type))
4151            Var->setInvalidDecl();
4152        } else if (Var->getStorageClass() == VarDecl::Static) {
4153          // C99 6.9.2p3: If the declaration of an identifier for an object is
4154          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4155          // declared type shall not be an incomplete type.
4156          // NOTE: code such as the following
4157          //     static struct s;
4158          //     struct s { int a; };
4159          // is accepted by gcc. Hence here we issue a warning instead of
4160          // an error and we do not invalidate the static declaration.
4161          // NOTE: to avoid multiple warnings, only check the first declaration.
4162          if (Var->getPreviousDeclaration() == 0)
4163            RequireCompleteType(Var->getLocation(), Type,
4164                                diag::ext_typecheck_decl_incomplete_type);
4165        }
4166      }
4167
4168      // Record the tentative definition; we're done.
4169      if (!Var->isInvalidDecl())
4170        TentativeDefinitions.push_back(Var);
4171      return;
4172    }
4173
4174    // Provide a specific diagnostic for uninitialized variable
4175    // definitions with incomplete array type.
4176    if (Type->isIncompleteArrayType()) {
4177      Diag(Var->getLocation(),
4178           diag::err_typecheck_incomplete_array_needs_initializer);
4179      Var->setInvalidDecl();
4180      return;
4181    }
4182
4183   // Provide a specific diagnostic for uninitialized variable
4184   // definitions with reference type.
4185   if (Type->isReferenceType()) {
4186     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4187       << Var->getDeclName()
4188       << SourceRange(Var->getLocation(), Var->getLocation());
4189     Var->setInvalidDecl();
4190     return;
4191   }
4192
4193    // Do not attempt to type-check the default initializer for a
4194    // variable with dependent type.
4195    if (Type->isDependentType())
4196      return;
4197
4198    if (Var->isInvalidDecl())
4199      return;
4200
4201    if (RequireCompleteType(Var->getLocation(),
4202                            Context.getBaseElementType(Type),
4203                            diag::err_typecheck_decl_incomplete_type)) {
4204      Var->setInvalidDecl();
4205      return;
4206    }
4207
4208    // The variable can not have an abstract class type.
4209    if (RequireNonAbstractType(Var->getLocation(), Type,
4210                               diag::err_abstract_type_in_decl,
4211                               AbstractVariableType)) {
4212      Var->setInvalidDecl();
4213      return;
4214    }
4215
4216    const RecordType *Record
4217      = Context.getBaseElementType(Type)->getAs<RecordType>();
4218    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4219        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4220      // C++03 [dcl.init]p9:
4221      //   If no initializer is specified for an object, and the
4222      //   object is of (possibly cv-qualified) non-POD class type (or
4223      //   array thereof), the object shall be default-initialized; if
4224      //   the object is of const-qualified type, the underlying class
4225      //   type shall have a user-declared default
4226      //   constructor. Otherwise, if no initializer is specified for
4227      //   a non- static object, the object and its subobjects, if
4228      //   any, have an indeterminate initial value); if the object
4229      //   or any of its subobjects are of const-qualified type, the
4230      //   program is ill-formed.
4231      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4232    } else {
4233      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4234      InitializationKind Kind
4235        = InitializationKind::CreateDefault(Var->getLocation());
4236
4237      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4238      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4239                                              MultiExprArg(*this, 0, 0));
4240      if (Init.isInvalid())
4241        Var->setInvalidDecl();
4242      else if (Init.get())
4243        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4244    }
4245
4246    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4247      FinalizeVarWithDestructor(Var, Record);
4248  }
4249}
4250
4251Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4252                                                   DeclPtrTy *Group,
4253                                                   unsigned NumDecls) {
4254  llvm::SmallVector<Decl*, 8> Decls;
4255
4256  if (DS.isTypeSpecOwned())
4257    Decls.push_back((Decl*)DS.getTypeRep());
4258
4259  for (unsigned i = 0; i != NumDecls; ++i)
4260    if (Decl *D = Group[i].getAs<Decl>())
4261      Decls.push_back(D);
4262
4263  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4264                                                   Decls.data(), Decls.size()));
4265}
4266
4267
4268/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4269/// to introduce parameters into function prototype scope.
4270Sema::DeclPtrTy
4271Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4272  const DeclSpec &DS = D.getDeclSpec();
4273
4274  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4275  VarDecl::StorageClass StorageClass = VarDecl::None;
4276  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4277  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4278    StorageClass = VarDecl::Register;
4279    StorageClassAsWritten = VarDecl::Register;
4280  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4281    Diag(DS.getStorageClassSpecLoc(),
4282         diag::err_invalid_storage_class_in_func_decl);
4283    D.getMutableDeclSpec().ClearStorageClassSpecs();
4284  }
4285
4286  if (D.getDeclSpec().isThreadSpecified())
4287    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4288
4289  DiagnoseFunctionSpecifiers(D);
4290
4291  // Check that there are no default arguments inside the type of this
4292  // parameter (C++ only).
4293  if (getLangOptions().CPlusPlus)
4294    CheckExtraCXXDefaultArguments(D);
4295
4296  TagDecl *OwnedDecl = 0;
4297  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4298  QualType parmDeclType = TInfo->getType();
4299
4300  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4301    // C++ [dcl.fct]p6:
4302    //   Types shall not be defined in return or parameter types.
4303    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4304      << Context.getTypeDeclType(OwnedDecl);
4305  }
4306
4307  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4308  IdentifierInfo *II = D.getIdentifier();
4309  if (II) {
4310    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4311                   ForRedeclaration);
4312    LookupName(R, S);
4313    if (R.isSingleResult()) {
4314      NamedDecl *PrevDecl = R.getFoundDecl();
4315      if (PrevDecl->isTemplateParameter()) {
4316        // Maybe we will complain about the shadowed template parameter.
4317        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4318        // Just pretend that we didn't see the previous declaration.
4319        PrevDecl = 0;
4320      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4321        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4322        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4323
4324        // Recover by removing the name
4325        II = 0;
4326        D.SetIdentifier(0, D.getIdentifierLoc());
4327        D.setInvalidType(true);
4328      }
4329    }
4330  }
4331
4332  // Temporarily put parameter variables in the translation unit, not
4333  // the enclosing context.  This prevents them from accidentally
4334  // looking like class members in C++.
4335  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4336                                    TInfo, parmDeclType, II,
4337                                    D.getIdentifierLoc(),
4338                                    StorageClass, StorageClassAsWritten);
4339
4340  if (D.isInvalidType())
4341    New->setInvalidDecl();
4342
4343  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4344  if (D.getCXXScopeSpec().isSet()) {
4345    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4346      << D.getCXXScopeSpec().getRange();
4347    New->setInvalidDecl();
4348  }
4349
4350  // Add the parameter declaration into this scope.
4351  S->AddDecl(DeclPtrTy::make(New));
4352  if (II)
4353    IdResolver.AddDecl(New);
4354
4355  ProcessDeclAttributes(S, New, D);
4356
4357  if (New->hasAttr<BlocksAttr>()) {
4358    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4359  }
4360  return DeclPtrTy::make(New);
4361}
4362
4363/// \brief Synthesizes a variable for a parameter arising from a
4364/// typedef.
4365ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4366                                              SourceLocation Loc,
4367                                              QualType T) {
4368  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4369                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4370                                           VarDecl::None, VarDecl::None, 0);
4371  Param->setImplicit();
4372  return Param;
4373}
4374
4375ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4376                                  TypeSourceInfo *TSInfo, QualType T,
4377                                  IdentifierInfo *Name,
4378                                  SourceLocation NameLoc,
4379                                  VarDecl::StorageClass StorageClass,
4380                                  VarDecl::StorageClass StorageClassAsWritten) {
4381  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4382                                         adjustParameterType(T), TSInfo,
4383                                         StorageClass, StorageClassAsWritten,
4384                                         0);
4385
4386  // Parameters can not be abstract class types.
4387  // For record types, this is done by the AbstractClassUsageDiagnoser once
4388  // the class has been completely parsed.
4389  if (!CurContext->isRecord() &&
4390      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4391                             AbstractParamType))
4392    New->setInvalidDecl();
4393
4394  // Parameter declarators cannot be interface types. All ObjC objects are
4395  // passed by reference.
4396  if (T->isObjCObjectType()) {
4397    Diag(NameLoc,
4398         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4399    New->setInvalidDecl();
4400  }
4401
4402  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4403  // duration shall not be qualified by an address-space qualifier."
4404  // Since all parameters have automatic store duration, they can not have
4405  // an address space.
4406  if (T.getAddressSpace() != 0) {
4407    Diag(NameLoc, diag::err_arg_with_address_space);
4408    New->setInvalidDecl();
4409  }
4410
4411  return New;
4412}
4413
4414void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4415                                           SourceLocation LocAfterDecls) {
4416  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4417         "Not a function declarator!");
4418  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4419
4420  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4421  // for a K&R function.
4422  if (!FTI.hasPrototype) {
4423    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4424      --i;
4425      if (FTI.ArgInfo[i].Param == 0) {
4426        llvm::SmallString<256> Code;
4427        llvm::raw_svector_ostream(Code) << "  int "
4428                                        << FTI.ArgInfo[i].Ident->getName()
4429                                        << ";\n";
4430        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4431          << FTI.ArgInfo[i].Ident
4432          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4433
4434        // Implicitly declare the argument as type 'int' for lack of a better
4435        // type.
4436        DeclSpec DS;
4437        const char* PrevSpec; // unused
4438        unsigned DiagID; // unused
4439        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4440                           PrevSpec, DiagID);
4441        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4442        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4443        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4444      }
4445    }
4446  }
4447}
4448
4449Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4450                                              Declarator &D) {
4451  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4452  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4453         "Not a function declarator!");
4454  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4455
4456  if (FTI.hasPrototype) {
4457    // FIXME: Diagnose arguments without names in C.
4458  }
4459
4460  Scope *ParentScope = FnBodyScope->getParent();
4461
4462  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4463                                  MultiTemplateParamsArg(*this),
4464                                  /*IsFunctionDefinition=*/true);
4465  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4466}
4467
4468static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4469  // Don't warn about invalid declarations.
4470  if (FD->isInvalidDecl())
4471    return false;
4472
4473  // Or declarations that aren't global.
4474  if (!FD->isGlobal())
4475    return false;
4476
4477  // Don't warn about C++ member functions.
4478  if (isa<CXXMethodDecl>(FD))
4479    return false;
4480
4481  // Don't warn about 'main'.
4482  if (FD->isMain())
4483    return false;
4484
4485  // Don't warn about inline functions.
4486  if (FD->isInlineSpecified())
4487    return false;
4488
4489  // Don't warn about function templates.
4490  if (FD->getDescribedFunctionTemplate())
4491    return false;
4492
4493  // Don't warn about function template specializations.
4494  if (FD->isFunctionTemplateSpecialization())
4495    return false;
4496
4497  bool MissingPrototype = true;
4498  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4499       Prev; Prev = Prev->getPreviousDeclaration()) {
4500    // Ignore any declarations that occur in function or method
4501    // scope, because they aren't visible from the header.
4502    if (Prev->getDeclContext()->isFunctionOrMethod())
4503      continue;
4504
4505    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4506    break;
4507  }
4508
4509  return MissingPrototype;
4510}
4511
4512Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4513  // Clear the last template instantiation error context.
4514  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4515
4516  if (!D)
4517    return D;
4518  FunctionDecl *FD = 0;
4519
4520  if (FunctionTemplateDecl *FunTmpl
4521        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4522    FD = FunTmpl->getTemplatedDecl();
4523  else
4524    FD = cast<FunctionDecl>(D.getAs<Decl>());
4525
4526  // Enter a new function scope
4527  PushFunctionScope();
4528
4529  // See if this is a redefinition.
4530  // But don't complain if we're in GNU89 mode and the previous definition
4531  // was an extern inline function.
4532  const FunctionDecl *Definition;
4533  if (FD->getBody(Definition) &&
4534      !canRedefineFunction(Definition, getLangOptions())) {
4535    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4536    Diag(Definition->getLocation(), diag::note_previous_definition);
4537  }
4538
4539  // Builtin functions cannot be defined.
4540  if (unsigned BuiltinID = FD->getBuiltinID()) {
4541    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4542      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4543      FD->setInvalidDecl();
4544    }
4545  }
4546
4547  // The return type of a function definition must be complete
4548  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4549  QualType ResultType = FD->getResultType();
4550  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4551      !FD->isInvalidDecl() &&
4552      RequireCompleteType(FD->getLocation(), ResultType,
4553                          diag::err_func_def_incomplete_result))
4554    FD->setInvalidDecl();
4555
4556  // GNU warning -Wmissing-prototypes:
4557  //   Warn if a global function is defined without a previous
4558  //   prototype declaration. This warning is issued even if the
4559  //   definition itself provides a prototype. The aim is to detect
4560  //   global functions that fail to be declared in header files.
4561  if (ShouldWarnAboutMissingPrototype(FD))
4562    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4563
4564  if (FnBodyScope)
4565    PushDeclContext(FnBodyScope, FD);
4566
4567  // Check the validity of our function parameters
4568  CheckParmsForFunctionDef(FD);
4569
4570  bool ShouldCheckShadow =
4571    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4572
4573  // Introduce our parameters into the function scope
4574  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4575    ParmVarDecl *Param = FD->getParamDecl(p);
4576    Param->setOwningFunction(FD);
4577
4578    // If this has an identifier, add it to the scope stack.
4579    if (Param->getIdentifier() && FnBodyScope) {
4580      if (ShouldCheckShadow)
4581        CheckShadow(FnBodyScope, Param);
4582
4583      PushOnScopeChains(Param, FnBodyScope);
4584    }
4585  }
4586
4587  // Checking attributes of current function definition
4588  // dllimport attribute.
4589  if (FD->getAttr<DLLImportAttr>() &&
4590      (!FD->getAttr<DLLExportAttr>())) {
4591    // dllimport attribute cannot be applied to definition.
4592    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4593      Diag(FD->getLocation(),
4594           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4595        << "dllimport";
4596      FD->setInvalidDecl();
4597      return DeclPtrTy::make(FD);
4598    }
4599
4600    // Visual C++ appears to not think this is an issue, so only issue
4601    // a warning when Microsoft extensions are disabled.
4602    if (!LangOpts.Microsoft) {
4603      // If a symbol previously declared dllimport is later defined, the
4604      // attribute is ignored in subsequent references, and a warning is
4605      // emitted.
4606      Diag(FD->getLocation(),
4607           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4608        << FD->getNameAsCString() << "dllimport";
4609    }
4610  }
4611  return DeclPtrTy::make(FD);
4612}
4613
4614/// \brief Given the set of return statements within a function body,
4615/// compute the variables that are subject to the named return value
4616/// optimization.
4617///
4618/// Each of the variables that is subject to the named return value
4619/// optimization will be marked as NRVO variables in the AST, and any
4620/// return statement that has a marked NRVO variable as its NRVO candidate can
4621/// use the named return value optimization.
4622///
4623/// This function applies a very simplistic algorithm for NRVO: if every return
4624/// statement in the function has the same NRVO candidate, that candidate is
4625/// the NRVO variable.
4626///
4627/// FIXME: Employ a smarter algorithm that accounts for multiple return
4628/// statements and the lifetimes of the NRVO candidates. We should be able to
4629/// find a maximal set of NRVO variables.
4630static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4631  const VarDecl *NRVOCandidate = 0;
4632  for (unsigned I = 0; I != NumReturns; ++I) {
4633    if (!Returns[I]->getNRVOCandidate())
4634      return;
4635
4636    if (!NRVOCandidate)
4637      NRVOCandidate = Returns[I]->getNRVOCandidate();
4638    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4639      return;
4640  }
4641
4642  if (NRVOCandidate)
4643    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4644}
4645
4646Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4647  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4648}
4649
4650Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4651                                              bool IsInstantiation) {
4652  Decl *dcl = D.getAs<Decl>();
4653  Stmt *Body = BodyArg.takeAs<Stmt>();
4654
4655  FunctionDecl *FD = 0;
4656  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4657  if (FunTmpl)
4658    FD = FunTmpl->getTemplatedDecl();
4659  else
4660    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4661
4662  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4663
4664  if (FD) {
4665    FD->setBody(Body);
4666    if (FD->isMain()) {
4667      // C and C++ allow for main to automagically return 0.
4668      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4669      FD->setHasImplicitReturnZero(true);
4670      WP.disableCheckFallThrough();
4671    }
4672
4673    if (!FD->isInvalidDecl()) {
4674      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4675
4676      // If this is a constructor, we need a vtable.
4677      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4678        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4679
4680      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4681                  FunctionScopes.back()->Returns.size());
4682    }
4683
4684    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4685  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4686    assert(MD == getCurMethodDecl() && "Method parsing confused");
4687    MD->setBody(Body);
4688    MD->setEndLoc(Body->getLocEnd());
4689    if (!MD->isInvalidDecl())
4690      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4691  } else {
4692    Body->Destroy(Context);
4693    return DeclPtrTy();
4694  }
4695
4696  // Verify and clean out per-function state.
4697
4698  // Check goto/label use.
4699  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4700       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4701    LabelStmt *L = I->second;
4702
4703    // Verify that we have no forward references left.  If so, there was a goto
4704    // or address of a label taken, but no definition of it.  Label fwd
4705    // definitions are indicated with a null substmt.
4706    if (L->getSubStmt() != 0)
4707      continue;
4708
4709    // Emit error.
4710    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4711
4712    // At this point, we have gotos that use the bogus label.  Stitch it into
4713    // the function body so that they aren't leaked and that the AST is well
4714    // formed.
4715    if (Body == 0) {
4716      // The whole function wasn't parsed correctly, just delete this.
4717      L->Destroy(Context);
4718      continue;
4719    }
4720
4721    // Otherwise, the body is valid: we want to stitch the label decl into the
4722    // function somewhere so that it is properly owned and so that the goto
4723    // has a valid target.  Do this by creating a new compound stmt with the
4724    // label in it.
4725
4726    // Give the label a sub-statement.
4727    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4728
4729    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4730                               cast<CXXTryStmt>(Body)->getTryBlock() :
4731                               cast<CompoundStmt>(Body);
4732    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4733                                          Compound->body_end());
4734    Elements.push_back(L);
4735    Compound->setStmts(Context, Elements.data(), Elements.size());
4736  }
4737
4738  if (Body) {
4739    // C++ constructors that have function-try-blocks can't have return
4740    // statements in the handlers of that block. (C++ [except.handle]p14)
4741    // Verify this.
4742    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4743      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4744
4745    // Verify that that gotos and switch cases don't jump into scopes illegally.
4746    // Verify that that gotos and switch cases don't jump into scopes illegally.
4747    if (FunctionNeedsScopeChecking() &&
4748        !dcl->isInvalidDecl() &&
4749        !hasAnyErrorsInThisFunction())
4750      DiagnoseInvalidJumps(Body);
4751
4752    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4753      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4754                                             Destructor->getParent());
4755
4756    // If any errors have occurred, clear out any temporaries that may have
4757    // been leftover. This ensures that these temporaries won't be picked up for
4758    // deletion in some later function.
4759    if (PP.getDiagnostics().hasErrorOccurred())
4760      ExprTemporaries.clear();
4761    else if (!isa<FunctionTemplateDecl>(dcl)) {
4762      // Since the body is valid, issue any analysis-based warnings that are
4763      // enabled.
4764      QualType ResultType;
4765      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4766        ResultType = FD->getResultType();
4767      }
4768      else {
4769        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4770        ResultType = MD->getResultType();
4771      }
4772      AnalysisWarnings.IssueWarnings(WP, dcl);
4773    }
4774
4775    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4776  }
4777
4778  if (!IsInstantiation)
4779    PopDeclContext();
4780
4781  PopFunctionOrBlockScope();
4782
4783  // If any errors have occurred, clear out any temporaries that may have
4784  // been leftover. This ensures that these temporaries won't be picked up for
4785  // deletion in some later function.
4786  if (getDiagnostics().hasErrorOccurred())
4787    ExprTemporaries.clear();
4788
4789  return D;
4790}
4791
4792/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4793/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4794NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4795                                          IdentifierInfo &II, Scope *S) {
4796  // Before we produce a declaration for an implicitly defined
4797  // function, see whether there was a locally-scoped declaration of
4798  // this name as a function or variable. If so, use that
4799  // (non-visible) declaration, and complain about it.
4800  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4801    = LocallyScopedExternalDecls.find(&II);
4802  if (Pos != LocallyScopedExternalDecls.end()) {
4803    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4804    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4805    return Pos->second;
4806  }
4807
4808  // Extension in C99.  Legal in C90, but warn about it.
4809  if (II.getName().startswith("__builtin_"))
4810    Diag(Loc, diag::warn_builtin_unknown) << &II;
4811  else if (getLangOptions().C99)
4812    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4813  else
4814    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4815
4816  // Set a Declarator for the implicit definition: int foo();
4817  const char *Dummy;
4818  DeclSpec DS;
4819  unsigned DiagID;
4820  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4821  Error = Error; // Silence warning.
4822  assert(!Error && "Error setting up implicit decl!");
4823  Declarator D(DS, Declarator::BlockContext);
4824  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4825                                             0, 0, false, SourceLocation(),
4826                                             false, 0,0,0, Loc, Loc, D),
4827                SourceLocation());
4828  D.SetIdentifier(&II, Loc);
4829
4830  // Insert this function into translation-unit scope.
4831
4832  DeclContext *PrevDC = CurContext;
4833  CurContext = Context.getTranslationUnitDecl();
4834
4835  FunctionDecl *FD =
4836 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4837  FD->setImplicit();
4838
4839  CurContext = PrevDC;
4840
4841  AddKnownFunctionAttributes(FD);
4842
4843  return FD;
4844}
4845
4846/// \brief Adds any function attributes that we know a priori based on
4847/// the declaration of this function.
4848///
4849/// These attributes can apply both to implicitly-declared builtins
4850/// (like __builtin___printf_chk) or to library-declared functions
4851/// like NSLog or printf.
4852void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4853  if (FD->isInvalidDecl())
4854    return;
4855
4856  // If this is a built-in function, map its builtin attributes to
4857  // actual attributes.
4858  if (unsigned BuiltinID = FD->getBuiltinID()) {
4859    // Handle printf-formatting attributes.
4860    unsigned FormatIdx;
4861    bool HasVAListArg;
4862    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4863      if (!FD->getAttr<FormatAttr>())
4864        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4865                                               HasVAListArg ? 0 : FormatIdx+2));
4866    }
4867
4868    // Mark const if we don't care about errno and that is the only
4869    // thing preventing the function from being const. This allows
4870    // IRgen to use LLVM intrinsics for such functions.
4871    if (!getLangOptions().MathErrno &&
4872        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4873      if (!FD->getAttr<ConstAttr>())
4874        FD->addAttr(::new (Context) ConstAttr());
4875    }
4876
4877    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4878      FD->setType(Context.getNoReturnType(FD->getType()));
4879    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4880      FD->addAttr(::new (Context) NoThrowAttr());
4881    if (Context.BuiltinInfo.isConst(BuiltinID))
4882      FD->addAttr(::new (Context) ConstAttr());
4883  }
4884
4885  IdentifierInfo *Name = FD->getIdentifier();
4886  if (!Name)
4887    return;
4888  if ((!getLangOptions().CPlusPlus &&
4889       FD->getDeclContext()->isTranslationUnit()) ||
4890      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4891       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4892       LinkageSpecDecl::lang_c)) {
4893    // Okay: this could be a libc/libm/Objective-C function we know
4894    // about.
4895  } else
4896    return;
4897
4898  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4899    // FIXME: NSLog and NSLogv should be target specific
4900    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4901      // FIXME: We known better than our headers.
4902      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4903    } else
4904      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4905                                             Name->isStr("NSLogv") ? 0 : 2));
4906  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4907    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4908    // target-specific builtins, perhaps?
4909    if (!FD->getAttr<FormatAttr>())
4910      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4911                                             Name->isStr("vasprintf") ? 0 : 3));
4912  }
4913}
4914
4915TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4916                                    TypeSourceInfo *TInfo) {
4917  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4918  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4919
4920  if (!TInfo) {
4921    assert(D.isInvalidType() && "no declarator info for valid type");
4922    TInfo = Context.getTrivialTypeSourceInfo(T);
4923  }
4924
4925  // Scope manipulation handled by caller.
4926  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4927                                           D.getIdentifierLoc(),
4928                                           D.getIdentifier(),
4929                                           TInfo);
4930
4931  if (const TagType *TT = T->getAs<TagType>()) {
4932    TagDecl *TD = TT->getDecl();
4933
4934    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4935    // keep track of the TypedefDecl.
4936    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4937      TD->setTypedefForAnonDecl(NewTD);
4938  }
4939
4940  if (D.isInvalidType())
4941    NewTD->setInvalidDecl();
4942  return NewTD;
4943}
4944
4945
4946/// \brief Determine whether a tag with a given kind is acceptable
4947/// as a redeclaration of the given tag declaration.
4948///
4949/// \returns true if the new tag kind is acceptable, false otherwise.
4950bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4951                                        TagTypeKind NewTag,
4952                                        SourceLocation NewTagLoc,
4953                                        const IdentifierInfo &Name) {
4954  // C++ [dcl.type.elab]p3:
4955  //   The class-key or enum keyword present in the
4956  //   elaborated-type-specifier shall agree in kind with the
4957  //   declaration to which the name in the elaborated-type-specifier
4958  //   refers. This rule also applies to the form of
4959  //   elaborated-type-specifier that declares a class-name or
4960  //   friend class since it can be construed as referring to the
4961  //   definition of the class. Thus, in any
4962  //   elaborated-type-specifier, the enum keyword shall be used to
4963  //   refer to an enumeration (7.2), the union class-key shall be
4964  //   used to refer to a union (clause 9), and either the class or
4965  //   struct class-key shall be used to refer to a class (clause 9)
4966  //   declared using the class or struct class-key.
4967  TagTypeKind OldTag = Previous->getTagKind();
4968  if (OldTag == NewTag)
4969    return true;
4970
4971  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
4972      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
4973    // Warn about the struct/class tag mismatch.
4974    bool isTemplate = false;
4975    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4976      isTemplate = Record->getDescribedClassTemplate();
4977
4978    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4979      << (NewTag == TTK_Class)
4980      << isTemplate << &Name
4981      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4982                              OldTag == TTK_Class? "class" : "struct");
4983    Diag(Previous->getLocation(), diag::note_previous_use);
4984    return true;
4985  }
4986  return false;
4987}
4988
4989/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4990/// former case, Name will be non-null.  In the later case, Name will be null.
4991/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4992/// reference/declaration/definition of a tag.
4993Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4994                               SourceLocation KWLoc, CXXScopeSpec &SS,
4995                               IdentifierInfo *Name, SourceLocation NameLoc,
4996                               AttributeList *Attr, AccessSpecifier AS,
4997                               MultiTemplateParamsArg TemplateParameterLists,
4998                               bool &OwnedDecl, bool &IsDependent) {
4999  // If this is not a definition, it must have a name.
5000  assert((Name != 0 || TUK == TUK_Definition) &&
5001         "Nameless record must be a definition!");
5002
5003  OwnedDecl = false;
5004  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5005
5006  // FIXME: Check explicit specializations more carefully.
5007  bool isExplicitSpecialization = false;
5008  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5009  if (TUK != TUK_Reference) {
5010    if (TemplateParameterList *TemplateParams
5011          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5012                        (TemplateParameterList**)TemplateParameterLists.get(),
5013                                              TemplateParameterLists.size(),
5014                                                    TUK == TUK_Friend,
5015                                                    isExplicitSpecialization)) {
5016      // All but one template parameter lists have been matching.
5017      --NumMatchedTemplateParamLists;
5018
5019      if (TemplateParams->size() > 0) {
5020        // This is a declaration or definition of a class template (which may
5021        // be a member of another template).
5022        OwnedDecl = false;
5023        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5024                                               SS, Name, NameLoc, Attr,
5025                                               TemplateParams,
5026                                               AS);
5027        TemplateParameterLists.release();
5028        return Result.get();
5029      } else {
5030        // The "template<>" header is extraneous.
5031        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5032          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5033        isExplicitSpecialization = true;
5034      }
5035    }
5036  }
5037
5038  DeclContext *SearchDC = CurContext;
5039  DeclContext *DC = CurContext;
5040  bool isStdBadAlloc = false;
5041  bool Invalid = false;
5042
5043  RedeclarationKind Redecl = ForRedeclaration;
5044  if (TUK == TUK_Friend || TUK == TUK_Reference)
5045    Redecl = NotForRedeclaration;
5046
5047  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5048
5049  if (Name && SS.isNotEmpty()) {
5050    // We have a nested-name tag ('struct foo::bar').
5051
5052    // Check for invalid 'foo::'.
5053    if (SS.isInvalid()) {
5054      Name = 0;
5055      goto CreateNewDecl;
5056    }
5057
5058    // If this is a friend or a reference to a class in a dependent
5059    // context, don't try to make a decl for it.
5060    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5061      DC = computeDeclContext(SS, false);
5062      if (!DC) {
5063        IsDependent = true;
5064        return DeclPtrTy();
5065      }
5066    } else {
5067      DC = computeDeclContext(SS, true);
5068      if (!DC) {
5069        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5070          << SS.getRange();
5071        return DeclPtrTy();
5072      }
5073    }
5074
5075    if (RequireCompleteDeclContext(SS, DC))
5076      return DeclPtrTy::make((Decl *)0);
5077
5078    SearchDC = DC;
5079    // Look-up name inside 'foo::'.
5080    LookupQualifiedName(Previous, DC);
5081
5082    if (Previous.isAmbiguous())
5083      return DeclPtrTy();
5084
5085    if (Previous.empty()) {
5086      // Name lookup did not find anything. However, if the
5087      // nested-name-specifier refers to the current instantiation,
5088      // and that current instantiation has any dependent base
5089      // classes, we might find something at instantiation time: treat
5090      // this as a dependent elaborated-type-specifier.
5091      if (Previous.wasNotFoundInCurrentInstantiation()) {
5092        IsDependent = true;
5093        return DeclPtrTy();
5094      }
5095
5096      // A tag 'foo::bar' must already exist.
5097      Diag(NameLoc, diag::err_not_tag_in_scope)
5098        << Kind << Name << DC << SS.getRange();
5099      Name = 0;
5100      Invalid = true;
5101      goto CreateNewDecl;
5102    }
5103  } else if (Name) {
5104    // If this is a named struct, check to see if there was a previous forward
5105    // declaration or definition.
5106    // FIXME: We're looking into outer scopes here, even when we
5107    // shouldn't be. Doing so can result in ambiguities that we
5108    // shouldn't be diagnosing.
5109    LookupName(Previous, S);
5110
5111    // Note:  there used to be some attempt at recovery here.
5112    if (Previous.isAmbiguous())
5113      return DeclPtrTy();
5114
5115    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5116      // FIXME: This makes sure that we ignore the contexts associated
5117      // with C structs, unions, and enums when looking for a matching
5118      // tag declaration or definition. See the similar lookup tweak
5119      // in Sema::LookupName; is there a better way to deal with this?
5120      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5121        SearchDC = SearchDC->getParent();
5122    }
5123  }
5124
5125  if (Previous.isSingleResult() &&
5126      Previous.getFoundDecl()->isTemplateParameter()) {
5127    // Maybe we will complain about the shadowed template parameter.
5128    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5129    // Just pretend that we didn't see the previous declaration.
5130    Previous.clear();
5131  }
5132
5133  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5134      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5135    // This is a declaration of or a reference to "std::bad_alloc".
5136    isStdBadAlloc = true;
5137
5138    if (Previous.empty() && StdBadAlloc) {
5139      // std::bad_alloc has been implicitly declared (but made invisible to
5140      // name lookup). Fill in this implicit declaration as the previous
5141      // declaration, so that the declarations get chained appropriately.
5142      Previous.addDecl(StdBadAlloc);
5143    }
5144  }
5145
5146  // If we didn't find a previous declaration, and this is a reference
5147  // (or friend reference), move to the correct scope.  In C++, we
5148  // also need to do a redeclaration lookup there, just in case
5149  // there's a shadow friend decl.
5150  if (Name && Previous.empty() &&
5151      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5152    if (Invalid) goto CreateNewDecl;
5153    assert(SS.isEmpty());
5154
5155    if (TUK == TUK_Reference) {
5156      // C++ [basic.scope.pdecl]p5:
5157      //   -- for an elaborated-type-specifier of the form
5158      //
5159      //          class-key identifier
5160      //
5161      //      if the elaborated-type-specifier is used in the
5162      //      decl-specifier-seq or parameter-declaration-clause of a
5163      //      function defined in namespace scope, the identifier is
5164      //      declared as a class-name in the namespace that contains
5165      //      the declaration; otherwise, except as a friend
5166      //      declaration, the identifier is declared in the smallest
5167      //      non-class, non-function-prototype scope that contains the
5168      //      declaration.
5169      //
5170      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5171      // C structs and unions.
5172      //
5173      // It is an error in C++ to declare (rather than define) an enum
5174      // type, including via an elaborated type specifier.  We'll
5175      // diagnose that later; for now, declare the enum in the same
5176      // scope as we would have picked for any other tag type.
5177      //
5178      // GNU C also supports this behavior as part of its incomplete
5179      // enum types extension, while GNU C++ does not.
5180      //
5181      // Find the context where we'll be declaring the tag.
5182      // FIXME: We would like to maintain the current DeclContext as the
5183      // lexical context,
5184      while (SearchDC->isRecord())
5185        SearchDC = SearchDC->getParent();
5186
5187      // Find the scope where we'll be declaring the tag.
5188      while (S->isClassScope() ||
5189             (getLangOptions().CPlusPlus &&
5190              S->isFunctionPrototypeScope()) ||
5191             ((S->getFlags() & Scope::DeclScope) == 0) ||
5192             (S->getEntity() &&
5193              ((DeclContext *)S->getEntity())->isTransparentContext()))
5194        S = S->getParent();
5195    } else {
5196      assert(TUK == TUK_Friend);
5197      // C++ [namespace.memdef]p3:
5198      //   If a friend declaration in a non-local class first declares a
5199      //   class or function, the friend class or function is a member of
5200      //   the innermost enclosing namespace.
5201      SearchDC = SearchDC->getEnclosingNamespaceContext();
5202    }
5203
5204    // In C++, we need to do a redeclaration lookup to properly
5205    // diagnose some problems.
5206    if (getLangOptions().CPlusPlus) {
5207      Previous.setRedeclarationKind(ForRedeclaration);
5208      LookupQualifiedName(Previous, SearchDC);
5209    }
5210  }
5211
5212  if (!Previous.empty()) {
5213    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5214
5215    // It's okay to have a tag decl in the same scope as a typedef
5216    // which hides a tag decl in the same scope.  Finding this
5217    // insanity with a redeclaration lookup can only actually happen
5218    // in C++.
5219    //
5220    // This is also okay for elaborated-type-specifiers, which is
5221    // technically forbidden by the current standard but which is
5222    // okay according to the likely resolution of an open issue;
5223    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5224    if (getLangOptions().CPlusPlus) {
5225      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5226        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5227          TagDecl *Tag = TT->getDecl();
5228          if (Tag->getDeclName() == Name &&
5229              Tag->getDeclContext()->getLookupContext()
5230                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5231            PrevDecl = Tag;
5232            Previous.clear();
5233            Previous.addDecl(Tag);
5234          }
5235        }
5236      }
5237    }
5238
5239    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5240      // If this is a use of a previous tag, or if the tag is already declared
5241      // in the same scope (so that the definition/declaration completes or
5242      // rementions the tag), reuse the decl.
5243      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5244          isDeclInScope(PrevDecl, SearchDC, S)) {
5245        // Make sure that this wasn't declared as an enum and now used as a
5246        // struct or something similar.
5247        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5248          bool SafeToContinue
5249            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5250               Kind != TTK_Enum);
5251          if (SafeToContinue)
5252            Diag(KWLoc, diag::err_use_with_wrong_tag)
5253              << Name
5254              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5255                                              PrevTagDecl->getKindName());
5256          else
5257            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5258          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5259
5260          if (SafeToContinue)
5261            Kind = PrevTagDecl->getTagKind();
5262          else {
5263            // Recover by making this an anonymous redefinition.
5264            Name = 0;
5265            Previous.clear();
5266            Invalid = true;
5267          }
5268        }
5269
5270        if (!Invalid) {
5271          // If this is a use, just return the declaration we found.
5272
5273          // FIXME: In the future, return a variant or some other clue
5274          // for the consumer of this Decl to know it doesn't own it.
5275          // For our current ASTs this shouldn't be a problem, but will
5276          // need to be changed with DeclGroups.
5277          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5278              TUK == TUK_Friend)
5279            return DeclPtrTy::make(PrevTagDecl);
5280
5281          // Diagnose attempts to redefine a tag.
5282          if (TUK == TUK_Definition) {
5283            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5284              // If we're defining a specialization and the previous definition
5285              // is from an implicit instantiation, don't emit an error
5286              // here; we'll catch this in the general case below.
5287              if (!isExplicitSpecialization ||
5288                  !isa<CXXRecordDecl>(Def) ||
5289                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5290                                               == TSK_ExplicitSpecialization) {
5291                Diag(NameLoc, diag::err_redefinition) << Name;
5292                Diag(Def->getLocation(), diag::note_previous_definition);
5293                // If this is a redefinition, recover by making this
5294                // struct be anonymous, which will make any later
5295                // references get the previous definition.
5296                Name = 0;
5297                Previous.clear();
5298                Invalid = true;
5299              }
5300            } else {
5301              // If the type is currently being defined, complain
5302              // about a nested redefinition.
5303              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5304              if (Tag->isBeingDefined()) {
5305                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5306                Diag(PrevTagDecl->getLocation(),
5307                     diag::note_previous_definition);
5308                Name = 0;
5309                Previous.clear();
5310                Invalid = true;
5311              }
5312            }
5313
5314            // Okay, this is definition of a previously declared or referenced
5315            // tag PrevDecl. We're going to create a new Decl for it.
5316          }
5317        }
5318        // If we get here we have (another) forward declaration or we
5319        // have a definition.  Just create a new decl.
5320
5321      } else {
5322        // If we get here, this is a definition of a new tag type in a nested
5323        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5324        // new decl/type.  We set PrevDecl to NULL so that the entities
5325        // have distinct types.
5326        Previous.clear();
5327      }
5328      // If we get here, we're going to create a new Decl. If PrevDecl
5329      // is non-NULL, it's a definition of the tag declared by
5330      // PrevDecl. If it's NULL, we have a new definition.
5331
5332
5333    // Otherwise, PrevDecl is not a tag, but was found with tag
5334    // lookup.  This is only actually possible in C++, where a few
5335    // things like templates still live in the tag namespace.
5336    } else {
5337      assert(getLangOptions().CPlusPlus);
5338
5339      // Use a better diagnostic if an elaborated-type-specifier
5340      // found the wrong kind of type on the first
5341      // (non-redeclaration) lookup.
5342      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5343          !Previous.isForRedeclaration()) {
5344        unsigned Kind = 0;
5345        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5346        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5347        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5348        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5349        Invalid = true;
5350
5351      // Otherwise, only diagnose if the declaration is in scope.
5352      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5353        // do nothing
5354
5355      // Diagnose implicit declarations introduced by elaborated types.
5356      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5357        unsigned Kind = 0;
5358        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5359        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5360        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5361        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5362        Invalid = true;
5363
5364      // Otherwise it's a declaration.  Call out a particularly common
5365      // case here.
5366      } else if (isa<TypedefDecl>(PrevDecl)) {
5367        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5368          << Name
5369          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5370        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5371        Invalid = true;
5372
5373      // Otherwise, diagnose.
5374      } else {
5375        // The tag name clashes with something else in the target scope,
5376        // issue an error and recover by making this tag be anonymous.
5377        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5378        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5379        Name = 0;
5380        Invalid = true;
5381      }
5382
5383      // The existing declaration isn't relevant to us; we're in a
5384      // new scope, so clear out the previous declaration.
5385      Previous.clear();
5386    }
5387  }
5388
5389CreateNewDecl:
5390
5391  TagDecl *PrevDecl = 0;
5392  if (Previous.isSingleResult())
5393    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5394
5395  // If there is an identifier, use the location of the identifier as the
5396  // location of the decl, otherwise use the location of the struct/union
5397  // keyword.
5398  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5399
5400  // Otherwise, create a new declaration. If there is a previous
5401  // declaration of the same entity, the two will be linked via
5402  // PrevDecl.
5403  TagDecl *New;
5404
5405  if (Kind == TTK_Enum) {
5406    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5407    // enum X { A, B, C } D;    D should chain to X.
5408    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5409                           cast_or_null<EnumDecl>(PrevDecl));
5410    // If this is an undefined enum, warn.
5411    if (TUK != TUK_Definition && !Invalid) {
5412      TagDecl *Def;
5413      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5414        Diag(Loc, diag::ext_forward_ref_enum_def)
5415          << New;
5416        Diag(Def->getLocation(), diag::note_previous_definition);
5417      } else {
5418        Diag(Loc,
5419             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5420                                       : diag::ext_forward_ref_enum);
5421      }
5422    }
5423  } else {
5424    // struct/union/class
5425
5426    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5427    // struct X { int A; } D;    D should chain to X.
5428    if (getLangOptions().CPlusPlus) {
5429      // FIXME: Look for a way to use RecordDecl for simple structs.
5430      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5431                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5432
5433      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5434        StdBadAlloc = cast<CXXRecordDecl>(New);
5435    } else
5436      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5437                               cast_or_null<RecordDecl>(PrevDecl));
5438  }
5439
5440  // Maybe add qualifier info.
5441  if (SS.isNotEmpty()) {
5442    if (SS.isSet()) {
5443      NestedNameSpecifier *NNS
5444        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5445      New->setQualifierInfo(NNS, SS.getRange());
5446      if (NumMatchedTemplateParamLists > 0) {
5447        New->setTemplateParameterListsInfo(Context,
5448                                           NumMatchedTemplateParamLists,
5449                    (TemplateParameterList**) TemplateParameterLists.release());
5450      }
5451    }
5452    else
5453      Invalid = true;
5454  }
5455
5456  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5457    // Add alignment attributes if necessary; these attributes are checked when
5458    // the ASTContext lays out the structure.
5459    //
5460    // It is important for implementing the correct semantics that this
5461    // happen here (in act on tag decl). The #pragma pack stack is
5462    // maintained as a result of parser callbacks which can occur at
5463    // many points during the parsing of a struct declaration (because
5464    // the #pragma tokens are effectively skipped over during the
5465    // parsing of the struct).
5466    AddAlignmentAttributesForRecord(RD);
5467  }
5468
5469  // If this is a specialization of a member class (of a class template),
5470  // check the specialization.
5471  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5472    Invalid = true;
5473
5474  if (Invalid)
5475    New->setInvalidDecl();
5476
5477  if (Attr)
5478    ProcessDeclAttributeList(S, New, Attr);
5479
5480  // If we're declaring or defining a tag in function prototype scope
5481  // in C, note that this type can only be used within the function.
5482  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5483    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5484
5485  // Set the lexical context. If the tag has a C++ scope specifier, the
5486  // lexical context will be different from the semantic context.
5487  New->setLexicalDeclContext(CurContext);
5488
5489  // Mark this as a friend decl if applicable.
5490  if (TUK == TUK_Friend)
5491    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5492
5493  // Set the access specifier.
5494  if (!Invalid && SearchDC->isRecord())
5495    SetMemberAccessSpecifier(New, PrevDecl, AS);
5496
5497  if (TUK == TUK_Definition)
5498    New->startDefinition();
5499
5500  // If this has an identifier, add it to the scope stack.
5501  if (TUK == TUK_Friend) {
5502    // We might be replacing an existing declaration in the lookup tables;
5503    // if so, borrow its access specifier.
5504    if (PrevDecl)
5505      New->setAccess(PrevDecl->getAccess());
5506
5507    DeclContext *DC = New->getDeclContext()->getLookupContext();
5508    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5509    if (Name) // can be null along some error paths
5510      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5511        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5512  } else if (Name) {
5513    S = getNonFieldDeclScope(S);
5514    PushOnScopeChains(New, S);
5515  } else {
5516    CurContext->addDecl(New);
5517  }
5518
5519  // If this is the C FILE type, notify the AST context.
5520  if (IdentifierInfo *II = New->getIdentifier())
5521    if (!New->isInvalidDecl() &&
5522        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5523        II->isStr("FILE"))
5524      Context.setFILEDecl(New);
5525
5526  OwnedDecl = true;
5527  return DeclPtrTy::make(New);
5528}
5529
5530void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5531  AdjustDeclIfTemplate(TagD);
5532  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5533
5534  // Enter the tag context.
5535  PushDeclContext(S, Tag);
5536}
5537
5538void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5539                                           SourceLocation LBraceLoc) {
5540  AdjustDeclIfTemplate(TagD);
5541  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5542
5543  FieldCollector->StartClass();
5544
5545  if (!Record->getIdentifier())
5546    return;
5547
5548  // C++ [class]p2:
5549  //   [...] The class-name is also inserted into the scope of the
5550  //   class itself; this is known as the injected-class-name. For
5551  //   purposes of access checking, the injected-class-name is treated
5552  //   as if it were a public member name.
5553  CXXRecordDecl *InjectedClassName
5554    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5555                            CurContext, Record->getLocation(),
5556                            Record->getIdentifier(),
5557                            Record->getTagKeywordLoc(),
5558                            Record);
5559  InjectedClassName->setImplicit();
5560  InjectedClassName->setAccess(AS_public);
5561  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5562      InjectedClassName->setDescribedClassTemplate(Template);
5563  PushOnScopeChains(InjectedClassName, S);
5564  assert(InjectedClassName->isInjectedClassName() &&
5565         "Broken injected-class-name");
5566}
5567
5568void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5569                                    SourceLocation RBraceLoc) {
5570  AdjustDeclIfTemplate(TagD);
5571  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5572  Tag->setRBraceLoc(RBraceLoc);
5573
5574  if (isa<CXXRecordDecl>(Tag))
5575    FieldCollector->FinishClass();
5576
5577  // Exit this scope of this tag's definition.
5578  PopDeclContext();
5579
5580  // Notify the consumer that we've defined a tag.
5581  Consumer.HandleTagDeclDefinition(Tag);
5582}
5583
5584void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5585  AdjustDeclIfTemplate(TagD);
5586  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5587  Tag->setInvalidDecl();
5588
5589  // We're undoing ActOnTagStartDefinition here, not
5590  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5591  // the FieldCollector.
5592
5593  PopDeclContext();
5594}
5595
5596// Note that FieldName may be null for anonymous bitfields.
5597bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5598                          QualType FieldTy, const Expr *BitWidth,
5599                          bool *ZeroWidth) {
5600  // Default to true; that shouldn't confuse checks for emptiness
5601  if (ZeroWidth)
5602    *ZeroWidth = true;
5603
5604  // C99 6.7.2.1p4 - verify the field type.
5605  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5606  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5607    // Handle incomplete types with specific error.
5608    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5609      return true;
5610    if (FieldName)
5611      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5612        << FieldName << FieldTy << BitWidth->getSourceRange();
5613    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5614      << FieldTy << BitWidth->getSourceRange();
5615  }
5616
5617  // If the bit-width is type- or value-dependent, don't try to check
5618  // it now.
5619  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5620    return false;
5621
5622  llvm::APSInt Value;
5623  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5624    return true;
5625
5626  if (Value != 0 && ZeroWidth)
5627    *ZeroWidth = false;
5628
5629  // Zero-width bitfield is ok for anonymous field.
5630  if (Value == 0 && FieldName)
5631    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5632
5633  if (Value.isSigned() && Value.isNegative()) {
5634    if (FieldName)
5635      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5636               << FieldName << Value.toString(10);
5637    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5638      << Value.toString(10);
5639  }
5640
5641  if (!FieldTy->isDependentType()) {
5642    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5643    if (Value.getZExtValue() > TypeSize) {
5644      if (!getLangOptions().CPlusPlus) {
5645        if (FieldName)
5646          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5647            << FieldName << (unsigned)Value.getZExtValue()
5648            << (unsigned)TypeSize;
5649
5650        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5651          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5652      }
5653
5654      if (FieldName)
5655        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5656          << FieldName << (unsigned)Value.getZExtValue()
5657          << (unsigned)TypeSize;
5658      else
5659        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5660          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5661    }
5662  }
5663
5664  return false;
5665}
5666
5667/// ActOnField - Each field of a struct/union/class is passed into this in order
5668/// to create a FieldDecl object for it.
5669Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5670                                 SourceLocation DeclStart,
5671                                 Declarator &D, ExprTy *BitfieldWidth) {
5672  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5673                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5674                               AS_public);
5675  return DeclPtrTy::make(Res);
5676}
5677
5678/// HandleField - Analyze a field of a C struct or a C++ data member.
5679///
5680FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5681                             SourceLocation DeclStart,
5682                             Declarator &D, Expr *BitWidth,
5683                             AccessSpecifier AS) {
5684  IdentifierInfo *II = D.getIdentifier();
5685  SourceLocation Loc = DeclStart;
5686  if (II) Loc = D.getIdentifierLoc();
5687
5688  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5689  QualType T = TInfo->getType();
5690  if (getLangOptions().CPlusPlus)
5691    CheckExtraCXXDefaultArguments(D);
5692
5693  DiagnoseFunctionSpecifiers(D);
5694
5695  if (D.getDeclSpec().isThreadSpecified())
5696    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5697
5698  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5699                                         ForRedeclaration);
5700
5701  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5702    // Maybe we will complain about the shadowed template parameter.
5703    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5704    // Just pretend that we didn't see the previous declaration.
5705    PrevDecl = 0;
5706  }
5707
5708  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5709    PrevDecl = 0;
5710
5711  bool Mutable
5712    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5713  SourceLocation TSSL = D.getSourceRange().getBegin();
5714  FieldDecl *NewFD
5715    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5716                     AS, PrevDecl, &D);
5717
5718  if (NewFD->isInvalidDecl())
5719    Record->setInvalidDecl();
5720
5721  if (NewFD->isInvalidDecl() && PrevDecl) {
5722    // Don't introduce NewFD into scope; there's already something
5723    // with the same name in the same scope.
5724  } else if (II) {
5725    PushOnScopeChains(NewFD, S);
5726  } else
5727    Record->addDecl(NewFD);
5728
5729  return NewFD;
5730}
5731
5732/// \brief Build a new FieldDecl and check its well-formedness.
5733///
5734/// This routine builds a new FieldDecl given the fields name, type,
5735/// record, etc. \p PrevDecl should refer to any previous declaration
5736/// with the same name and in the same scope as the field to be
5737/// created.
5738///
5739/// \returns a new FieldDecl.
5740///
5741/// \todo The Declarator argument is a hack. It will be removed once
5742FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5743                                TypeSourceInfo *TInfo,
5744                                RecordDecl *Record, SourceLocation Loc,
5745                                bool Mutable, Expr *BitWidth,
5746                                SourceLocation TSSL,
5747                                AccessSpecifier AS, NamedDecl *PrevDecl,
5748                                Declarator *D) {
5749  IdentifierInfo *II = Name.getAsIdentifierInfo();
5750  bool InvalidDecl = false;
5751  if (D) InvalidDecl = D->isInvalidType();
5752
5753  // If we receive a broken type, recover by assuming 'int' and
5754  // marking this declaration as invalid.
5755  if (T.isNull()) {
5756    InvalidDecl = true;
5757    T = Context.IntTy;
5758  }
5759
5760  QualType EltTy = Context.getBaseElementType(T);
5761  if (!EltTy->isDependentType() &&
5762      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5763    InvalidDecl = true;
5764
5765  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5766  // than a variably modified type.
5767  if (!InvalidDecl && T->isVariablyModifiedType()) {
5768    bool SizeIsNegative;
5769    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5770                                                           SizeIsNegative);
5771    if (!FixedTy.isNull()) {
5772      Diag(Loc, diag::warn_illegal_constant_array_size);
5773      T = FixedTy;
5774    } else {
5775      if (SizeIsNegative)
5776        Diag(Loc, diag::err_typecheck_negative_array_size);
5777      else
5778        Diag(Loc, diag::err_typecheck_field_variable_size);
5779      InvalidDecl = true;
5780    }
5781  }
5782
5783  // Fields can not have abstract class types
5784  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5785                                             diag::err_abstract_type_in_decl,
5786                                             AbstractFieldType))
5787    InvalidDecl = true;
5788
5789  bool ZeroWidth = false;
5790  // If this is declared as a bit-field, check the bit-field.
5791  if (!InvalidDecl && BitWidth &&
5792      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5793    InvalidDecl = true;
5794    DeleteExpr(BitWidth);
5795    BitWidth = 0;
5796    ZeroWidth = false;
5797  }
5798
5799  // Check that 'mutable' is consistent with the type of the declaration.
5800  if (!InvalidDecl && Mutable) {
5801    unsigned DiagID = 0;
5802    if (T->isReferenceType())
5803      DiagID = diag::err_mutable_reference;
5804    else if (T.isConstQualified())
5805      DiagID = diag::err_mutable_const;
5806
5807    if (DiagID) {
5808      SourceLocation ErrLoc = Loc;
5809      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5810        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5811      Diag(ErrLoc, DiagID);
5812      Mutable = false;
5813      InvalidDecl = true;
5814    }
5815  }
5816
5817  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5818                                       BitWidth, Mutable);
5819  if (InvalidDecl)
5820    NewFD->setInvalidDecl();
5821
5822  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5823    Diag(Loc, diag::err_duplicate_member) << II;
5824    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5825    NewFD->setInvalidDecl();
5826  }
5827
5828  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5829    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5830
5831    if (!T->isPODType())
5832      CXXRecord->setPOD(false);
5833    if (!ZeroWidth)
5834      CXXRecord->setEmpty(false);
5835
5836    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5837      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5838      if (RDecl->getDefinition()) {
5839        if (!RDecl->hasTrivialConstructor())
5840          CXXRecord->setHasTrivialConstructor(false);
5841        if (!RDecl->hasTrivialCopyConstructor())
5842          CXXRecord->setHasTrivialCopyConstructor(false);
5843        if (!RDecl->hasTrivialCopyAssignment())
5844          CXXRecord->setHasTrivialCopyAssignment(false);
5845        if (!RDecl->hasTrivialDestructor())
5846          CXXRecord->setHasTrivialDestructor(false);
5847
5848        // C++ 9.5p1: An object of a class with a non-trivial
5849        // constructor, a non-trivial copy constructor, a non-trivial
5850        // destructor, or a non-trivial copy assignment operator
5851        // cannot be a member of a union, nor can an array of such
5852        // objects.
5853        // TODO: C++0x alters this restriction significantly.
5854        if (Record->isUnion()) {
5855          // We check for copy constructors before constructors
5856          // because otherwise we'll never get complaints about
5857          // copy constructors.
5858
5859          CXXSpecialMember member = CXXInvalid;
5860          if (!RDecl->hasTrivialCopyConstructor())
5861            member = CXXCopyConstructor;
5862          else if (!RDecl->hasTrivialConstructor())
5863            member = CXXConstructor;
5864          else if (!RDecl->hasTrivialCopyAssignment())
5865            member = CXXCopyAssignment;
5866          else if (!RDecl->hasTrivialDestructor())
5867            member = CXXDestructor;
5868
5869          if (member != CXXInvalid) {
5870            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5871            DiagnoseNontrivial(RT, member);
5872            NewFD->setInvalidDecl();
5873          }
5874        }
5875      }
5876    }
5877  }
5878
5879  // FIXME: We need to pass in the attributes given an AST
5880  // representation, not a parser representation.
5881  if (D)
5882    // FIXME: What to pass instead of TUScope?
5883    ProcessDeclAttributes(TUScope, NewFD, *D);
5884
5885  if (T.isObjCGCWeak())
5886    Diag(Loc, diag::warn_attribute_weak_on_field);
5887
5888  NewFD->setAccess(AS);
5889
5890  // C++ [dcl.init.aggr]p1:
5891  //   An aggregate is an array or a class (clause 9) with [...] no
5892  //   private or protected non-static data members (clause 11).
5893  // A POD must be an aggregate.
5894  if (getLangOptions().CPlusPlus &&
5895      (AS == AS_private || AS == AS_protected)) {
5896    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5897    CXXRecord->setAggregate(false);
5898    CXXRecord->setPOD(false);
5899  }
5900
5901  return NewFD;
5902}
5903
5904/// DiagnoseNontrivial - Given that a class has a non-trivial
5905/// special member, figure out why.
5906void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5907  QualType QT(T, 0U);
5908  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5909
5910  // Check whether the member was user-declared.
5911  switch (member) {
5912  case CXXInvalid:
5913    break;
5914
5915  case CXXConstructor:
5916    if (RD->hasUserDeclaredConstructor()) {
5917      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5918      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5919        const FunctionDecl *body = 0;
5920        ci->getBody(body);
5921        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5922          SourceLocation CtorLoc = ci->getLocation();
5923          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5924          return;
5925        }
5926      }
5927
5928      assert(0 && "found no user-declared constructors");
5929      return;
5930    }
5931    break;
5932
5933  case CXXCopyConstructor:
5934    if (RD->hasUserDeclaredCopyConstructor()) {
5935      SourceLocation CtorLoc =
5936        RD->getCopyConstructor(Context, 0)->getLocation();
5937      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5938      return;
5939    }
5940    break;
5941
5942  case CXXCopyAssignment:
5943    if (RD->hasUserDeclaredCopyAssignment()) {
5944      // FIXME: this should use the location of the copy
5945      // assignment, not the type.
5946      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5947      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5948      return;
5949    }
5950    break;
5951
5952  case CXXDestructor:
5953    if (RD->hasUserDeclaredDestructor()) {
5954      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5955      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5956      return;
5957    }
5958    break;
5959  }
5960
5961  typedef CXXRecordDecl::base_class_iterator base_iter;
5962
5963  // Virtual bases and members inhibit trivial copying/construction,
5964  // but not trivial destruction.
5965  if (member != CXXDestructor) {
5966    // Check for virtual bases.  vbases includes indirect virtual bases,
5967    // so we just iterate through the direct bases.
5968    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5969      if (bi->isVirtual()) {
5970        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5971        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5972        return;
5973      }
5974
5975    // Check for virtual methods.
5976    typedef CXXRecordDecl::method_iterator meth_iter;
5977    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5978         ++mi) {
5979      if (mi->isVirtual()) {
5980        SourceLocation MLoc = mi->getSourceRange().getBegin();
5981        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5982        return;
5983      }
5984    }
5985  }
5986
5987  bool (CXXRecordDecl::*hasTrivial)() const;
5988  switch (member) {
5989  case CXXConstructor:
5990    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5991  case CXXCopyConstructor:
5992    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5993  case CXXCopyAssignment:
5994    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5995  case CXXDestructor:
5996    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5997  default:
5998    assert(0 && "unexpected special member"); return;
5999  }
6000
6001  // Check for nontrivial bases (and recurse).
6002  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6003    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6004    assert(BaseRT && "Don't know how to handle dependent bases");
6005    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6006    if (!(BaseRecTy->*hasTrivial)()) {
6007      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6008      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6009      DiagnoseNontrivial(BaseRT, member);
6010      return;
6011    }
6012  }
6013
6014  // Check for nontrivial members (and recurse).
6015  typedef RecordDecl::field_iterator field_iter;
6016  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6017       ++fi) {
6018    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6019    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6020      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6021
6022      if (!(EltRD->*hasTrivial)()) {
6023        SourceLocation FLoc = (*fi)->getLocation();
6024        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6025        DiagnoseNontrivial(EltRT, member);
6026        return;
6027      }
6028    }
6029  }
6030
6031  assert(0 && "found no explanation for non-trivial member");
6032}
6033
6034/// TranslateIvarVisibility - Translate visibility from a token ID to an
6035///  AST enum value.
6036static ObjCIvarDecl::AccessControl
6037TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6038  switch (ivarVisibility) {
6039  default: assert(0 && "Unknown visitibility kind");
6040  case tok::objc_private: return ObjCIvarDecl::Private;
6041  case tok::objc_public: return ObjCIvarDecl::Public;
6042  case tok::objc_protected: return ObjCIvarDecl::Protected;
6043  case tok::objc_package: return ObjCIvarDecl::Package;
6044  }
6045}
6046
6047/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6048/// in order to create an IvarDecl object for it.
6049Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6050                                SourceLocation DeclStart,
6051                                DeclPtrTy IntfDecl,
6052                                Declarator &D, ExprTy *BitfieldWidth,
6053                                tok::ObjCKeywordKind Visibility) {
6054
6055  IdentifierInfo *II = D.getIdentifier();
6056  Expr *BitWidth = (Expr*)BitfieldWidth;
6057  SourceLocation Loc = DeclStart;
6058  if (II) Loc = D.getIdentifierLoc();
6059
6060  // FIXME: Unnamed fields can be handled in various different ways, for
6061  // example, unnamed unions inject all members into the struct namespace!
6062
6063  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6064  QualType T = TInfo->getType();
6065
6066  if (BitWidth) {
6067    // 6.7.2.1p3, 6.7.2.1p4
6068    if (VerifyBitField(Loc, II, T, BitWidth)) {
6069      D.setInvalidType();
6070      DeleteExpr(BitWidth);
6071      BitWidth = 0;
6072    }
6073  } else {
6074    // Not a bitfield.
6075
6076    // validate II.
6077
6078  }
6079  if (T->isReferenceType()) {
6080    Diag(Loc, diag::err_ivar_reference_type);
6081    D.setInvalidType();
6082  }
6083  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6084  // than a variably modified type.
6085  else if (T->isVariablyModifiedType()) {
6086    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6087    D.setInvalidType();
6088  }
6089
6090  // Get the visibility (access control) for this ivar.
6091  ObjCIvarDecl::AccessControl ac =
6092    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6093                                        : ObjCIvarDecl::None;
6094  // Must set ivar's DeclContext to its enclosing interface.
6095  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6096  ObjCContainerDecl *EnclosingContext;
6097  if (ObjCImplementationDecl *IMPDecl =
6098      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6099    // Case of ivar declared in an implementation. Context is that of its class.
6100    EnclosingContext = IMPDecl->getClassInterface();
6101    assert(EnclosingContext && "Implementation has no class interface!");
6102  } else {
6103    if (ObjCCategoryDecl *CDecl =
6104        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6105      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6106        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6107        return DeclPtrTy();
6108      }
6109    }
6110    EnclosingContext = EnclosingDecl;
6111  }
6112
6113  // Construct the decl.
6114  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6115                                             EnclosingContext, Loc, II, T,
6116                                             TInfo, ac, (Expr *)BitfieldWidth);
6117
6118  if (II) {
6119    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6120                                           ForRedeclaration);
6121    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6122        && !isa<TagDecl>(PrevDecl)) {
6123      Diag(Loc, diag::err_duplicate_member) << II;
6124      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6125      NewID->setInvalidDecl();
6126    }
6127  }
6128
6129  // Process attributes attached to the ivar.
6130  ProcessDeclAttributes(S, NewID, D);
6131
6132  if (D.isInvalidType())
6133    NewID->setInvalidDecl();
6134
6135  if (II) {
6136    // FIXME: When interfaces are DeclContexts, we'll need to add
6137    // these to the interface.
6138    S->AddDecl(DeclPtrTy::make(NewID));
6139    IdResolver.AddDecl(NewID);
6140  }
6141
6142  return DeclPtrTy::make(NewID);
6143}
6144
6145void Sema::ActOnFields(Scope* S,
6146                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6147                       DeclPtrTy *Fields, unsigned NumFields,
6148                       SourceLocation LBrac, SourceLocation RBrac,
6149                       AttributeList *Attr) {
6150  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6151  assert(EnclosingDecl && "missing record or interface decl");
6152
6153  // If the decl this is being inserted into is invalid, then it may be a
6154  // redeclaration or some other bogus case.  Don't try to add fields to it.
6155  if (EnclosingDecl->isInvalidDecl()) {
6156    // FIXME: Deallocate fields?
6157    return;
6158  }
6159
6160
6161  // Verify that all the fields are okay.
6162  unsigned NumNamedMembers = 0;
6163  llvm::SmallVector<FieldDecl*, 32> RecFields;
6164
6165  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6166  for (unsigned i = 0; i != NumFields; ++i) {
6167    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6168
6169    // Get the type for the field.
6170    Type *FDTy = FD->getType().getTypePtr();
6171
6172    if (!FD->isAnonymousStructOrUnion()) {
6173      // Remember all fields written by the user.
6174      RecFields.push_back(FD);
6175    }
6176
6177    // If the field is already invalid for some reason, don't emit more
6178    // diagnostics about it.
6179    if (FD->isInvalidDecl()) {
6180      EnclosingDecl->setInvalidDecl();
6181      continue;
6182    }
6183
6184    // C99 6.7.2.1p2:
6185    //   A structure or union shall not contain a member with
6186    //   incomplete or function type (hence, a structure shall not
6187    //   contain an instance of itself, but may contain a pointer to
6188    //   an instance of itself), except that the last member of a
6189    //   structure with more than one named member may have incomplete
6190    //   array type; such a structure (and any union containing,
6191    //   possibly recursively, a member that is such a structure)
6192    //   shall not be a member of a structure or an element of an
6193    //   array.
6194    if (FDTy->isFunctionType()) {
6195      // Field declared as a function.
6196      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6197        << FD->getDeclName();
6198      FD->setInvalidDecl();
6199      EnclosingDecl->setInvalidDecl();
6200      continue;
6201    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6202               Record && Record->isStruct()) {
6203      // Flexible array member.
6204      if (NumNamedMembers < 1) {
6205        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6206          << FD->getDeclName();
6207        FD->setInvalidDecl();
6208        EnclosingDecl->setInvalidDecl();
6209        continue;
6210      }
6211      if (!FD->getType()->isDependentType() &&
6212          !Context.getBaseElementType(FD->getType())->isPODType()) {
6213        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6214          << FD->getDeclName() << FD->getType();
6215        FD->setInvalidDecl();
6216        EnclosingDecl->setInvalidDecl();
6217        continue;
6218      }
6219
6220      // Okay, we have a legal flexible array member at the end of the struct.
6221      if (Record)
6222        Record->setHasFlexibleArrayMember(true);
6223    } else if (!FDTy->isDependentType() &&
6224               RequireCompleteType(FD->getLocation(), FD->getType(),
6225                                   diag::err_field_incomplete)) {
6226      // Incomplete type
6227      FD->setInvalidDecl();
6228      EnclosingDecl->setInvalidDecl();
6229      continue;
6230    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6231      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6232        // If this is a member of a union, then entire union becomes "flexible".
6233        if (Record && Record->isUnion()) {
6234          Record->setHasFlexibleArrayMember(true);
6235        } else {
6236          // If this is a struct/class and this is not the last element, reject
6237          // it.  Note that GCC supports variable sized arrays in the middle of
6238          // structures.
6239          if (i != NumFields-1)
6240            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6241              << FD->getDeclName() << FD->getType();
6242          else {
6243            // We support flexible arrays at the end of structs in
6244            // other structs as an extension.
6245            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6246              << FD->getDeclName();
6247            if (Record)
6248              Record->setHasFlexibleArrayMember(true);
6249          }
6250        }
6251      }
6252      if (Record && FDTTy->getDecl()->hasObjectMember())
6253        Record->setHasObjectMember(true);
6254    } else if (FDTy->isObjCObjectType()) {
6255      /// A field cannot be an Objective-c object
6256      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6257      FD->setInvalidDecl();
6258      EnclosingDecl->setInvalidDecl();
6259      continue;
6260    } else if (getLangOptions().ObjC1 &&
6261               getLangOptions().getGCMode() != LangOptions::NonGC &&
6262               Record &&
6263               (FD->getType()->isObjCObjectPointerType() ||
6264                FD->getType().isObjCGCStrong()))
6265      Record->setHasObjectMember(true);
6266    else if (Context.getAsArrayType(FD->getType())) {
6267      QualType BaseType = Context.getBaseElementType(FD->getType());
6268      if (Record && BaseType->isRecordType() &&
6269          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6270        Record->setHasObjectMember(true);
6271    }
6272    // Keep track of the number of named members.
6273    if (FD->getIdentifier())
6274      ++NumNamedMembers;
6275  }
6276
6277  // Okay, we successfully defined 'Record'.
6278  if (Record) {
6279    Record->completeDefinition();
6280  } else {
6281    ObjCIvarDecl **ClsFields =
6282      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6283    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6284      ID->setLocEnd(RBrac);
6285      // Add ivar's to class's DeclContext.
6286      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6287        ClsFields[i]->setLexicalDeclContext(ID);
6288        ID->addDecl(ClsFields[i]);
6289      }
6290      // Must enforce the rule that ivars in the base classes may not be
6291      // duplicates.
6292      if (ID->getSuperClass())
6293        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6294    } else if (ObjCImplementationDecl *IMPDecl =
6295                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6296      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6297      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6298        // Ivar declared in @implementation never belongs to the implementation.
6299        // Only it is in implementation's lexical context.
6300        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6301      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6302    } else if (ObjCCategoryDecl *CDecl =
6303                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6304      // case of ivars in class extension; all other cases have been
6305      // reported as errors elsewhere.
6306      // FIXME. Class extension does not have a LocEnd field.
6307      // CDecl->setLocEnd(RBrac);
6308      // Add ivar's to class extension's DeclContext.
6309      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6310        ClsFields[i]->setLexicalDeclContext(CDecl);
6311        CDecl->addDecl(ClsFields[i]);
6312      }
6313    }
6314  }
6315
6316  if (Attr)
6317    ProcessDeclAttributeList(S, Record, Attr);
6318}
6319
6320/// \brief Determine whether the given integral value is representable within
6321/// the given type T.
6322static bool isRepresentableIntegerValue(ASTContext &Context,
6323                                        llvm::APSInt &Value,
6324                                        QualType T) {
6325  assert(T->isIntegralType(Context) && "Integral type required!");
6326  unsigned BitWidth = Context.getIntWidth(T);
6327
6328  if (Value.isUnsigned() || Value.isNonNegative())
6329    return Value.getActiveBits() < BitWidth;
6330
6331  return Value.getMinSignedBits() <= BitWidth;
6332}
6333
6334// \brief Given an integral type, return the next larger integral type
6335// (or a NULL type of no such type exists).
6336static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6337  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6338  // enum checking below.
6339  assert(T->isIntegralType(Context) && "Integral type required!");
6340  const unsigned NumTypes = 4;
6341  QualType SignedIntegralTypes[NumTypes] = {
6342    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6343  };
6344  QualType UnsignedIntegralTypes[NumTypes] = {
6345    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6346    Context.UnsignedLongLongTy
6347  };
6348
6349  unsigned BitWidth = Context.getTypeSize(T);
6350  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6351                                            : UnsignedIntegralTypes;
6352  for (unsigned I = 0; I != NumTypes; ++I)
6353    if (Context.getTypeSize(Types[I]) > BitWidth)
6354      return Types[I];
6355
6356  return QualType();
6357}
6358
6359EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6360                                          EnumConstantDecl *LastEnumConst,
6361                                          SourceLocation IdLoc,
6362                                          IdentifierInfo *Id,
6363                                          ExprArg val) {
6364  Expr *Val = (Expr *)val.get();
6365
6366  unsigned IntWidth = Context.Target.getIntWidth();
6367  llvm::APSInt EnumVal(IntWidth);
6368  QualType EltTy;
6369  if (Val) {
6370    if (Enum->isDependentType() || Val->isTypeDependent())
6371      EltTy = Context.DependentTy;
6372    else {
6373      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6374      SourceLocation ExpLoc;
6375      if (!Val->isValueDependent() &&
6376          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6377        Val = 0;
6378      } else {
6379        if (!getLangOptions().CPlusPlus) {
6380          // C99 6.7.2.2p2:
6381          //   The expression that defines the value of an enumeration constant
6382          //   shall be an integer constant expression that has a value
6383          //   representable as an int.
6384
6385          // Complain if the value is not representable in an int.
6386          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6387            Diag(IdLoc, diag::ext_enum_value_not_int)
6388              << EnumVal.toString(10) << Val->getSourceRange()
6389              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6390          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6391            // Force the type of the expression to 'int'.
6392            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6393
6394            if (Val != val.get()) {
6395              val.release();
6396              val = Val;
6397            }
6398          }
6399        }
6400
6401        // C++0x [dcl.enum]p5:
6402        //   If the underlying type is not fixed, the type of each enumerator
6403        //   is the type of its initializing value:
6404        //     - If an initializer is specified for an enumerator, the
6405        //       initializing value has the same type as the expression.
6406        EltTy = Val->getType();
6407      }
6408    }
6409  }
6410
6411  if (!Val) {
6412    if (Enum->isDependentType())
6413      EltTy = Context.DependentTy;
6414    else if (!LastEnumConst) {
6415      // C++0x [dcl.enum]p5:
6416      //   If the underlying type is not fixed, the type of each enumerator
6417      //   is the type of its initializing value:
6418      //     - If no initializer is specified for the first enumerator, the
6419      //       initializing value has an unspecified integral type.
6420      //
6421      // GCC uses 'int' for its unspecified integral type, as does
6422      // C99 6.7.2.2p3.
6423      EltTy = Context.IntTy;
6424    } else {
6425      // Assign the last value + 1.
6426      EnumVal = LastEnumConst->getInitVal();
6427      ++EnumVal;
6428      EltTy = LastEnumConst->getType();
6429
6430      // Check for overflow on increment.
6431      if (EnumVal < LastEnumConst->getInitVal()) {
6432        // C++0x [dcl.enum]p5:
6433        //   If the underlying type is not fixed, the type of each enumerator
6434        //   is the type of its initializing value:
6435        //
6436        //     - Otherwise the type of the initializing value is the same as
6437        //       the type of the initializing value of the preceding enumerator
6438        //       unless the incremented value is not representable in that type,
6439        //       in which case the type is an unspecified integral type
6440        //       sufficient to contain the incremented value. If no such type
6441        //       exists, the program is ill-formed.
6442        QualType T = getNextLargerIntegralType(Context, EltTy);
6443        if (T.isNull()) {
6444          // There is no integral type larger enough to represent this
6445          // value. Complain, then allow the value to wrap around.
6446          EnumVal = LastEnumConst->getInitVal();
6447          EnumVal.zext(EnumVal.getBitWidth() * 2);
6448          Diag(IdLoc, diag::warn_enumerator_too_large)
6449            << EnumVal.toString(10);
6450        } else {
6451          EltTy = T;
6452        }
6453
6454        // Retrieve the last enumerator's value, extent that type to the
6455        // type that is supposed to be large enough to represent the incremented
6456        // value, then increment.
6457        EnumVal = LastEnumConst->getInitVal();
6458        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6459        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6460        ++EnumVal;
6461
6462        // If we're not in C++, diagnose the overflow of enumerator values,
6463        // which in C99 means that the enumerator value is not representable in
6464        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6465        // permits enumerator values that are representable in some larger
6466        // integral type.
6467        if (!getLangOptions().CPlusPlus && !T.isNull())
6468          Diag(IdLoc, diag::warn_enum_value_overflow);
6469      } else if (!getLangOptions().CPlusPlus &&
6470                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6471        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6472        Diag(IdLoc, diag::ext_enum_value_not_int)
6473          << EnumVal.toString(10) << 1;
6474      }
6475    }
6476  }
6477
6478  if (!EltTy->isDependentType()) {
6479    // Make the enumerator value match the signedness and size of the
6480    // enumerator's type.
6481    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6482    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6483  }
6484
6485  val.release();
6486  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6487                                  Val, EnumVal);
6488}
6489
6490
6491Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6492                                        DeclPtrTy lastEnumConst,
6493                                        SourceLocation IdLoc,
6494                                        IdentifierInfo *Id,
6495                                        SourceLocation EqualLoc, ExprTy *val) {
6496  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6497  EnumConstantDecl *LastEnumConst =
6498    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6499  Expr *Val = static_cast<Expr*>(val);
6500
6501  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6502  // we find one that is.
6503  S = getNonFieldDeclScope(S);
6504
6505  // Verify that there isn't already something declared with this name in this
6506  // scope.
6507  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6508                                         ForRedeclaration);
6509  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6510    // Maybe we will complain about the shadowed template parameter.
6511    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6512    // Just pretend that we didn't see the previous declaration.
6513    PrevDecl = 0;
6514  }
6515
6516  if (PrevDecl) {
6517    // When in C++, we may get a TagDecl with the same name; in this case the
6518    // enum constant will 'hide' the tag.
6519    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6520           "Received TagDecl when not in C++!");
6521    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6522      if (isa<EnumConstantDecl>(PrevDecl))
6523        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6524      else
6525        Diag(IdLoc, diag::err_redefinition) << Id;
6526      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6527      if (Val) Val->Destroy(Context);
6528      return DeclPtrTy();
6529    }
6530  }
6531
6532  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6533                                            IdLoc, Id, Owned(Val));
6534
6535  // Register this decl in the current scope stack.
6536  if (New) {
6537    New->setAccess(TheEnumDecl->getAccess());
6538    PushOnScopeChains(New, S);
6539  }
6540
6541  return DeclPtrTy::make(New);
6542}
6543
6544void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6545                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6546                         DeclPtrTy *Elements, unsigned NumElements,
6547                         Scope *S, AttributeList *Attr) {
6548  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6549  QualType EnumType = Context.getTypeDeclType(Enum);
6550
6551  if (Attr)
6552    ProcessDeclAttributeList(S, Enum, Attr);
6553
6554  if (Enum->isDependentType()) {
6555    for (unsigned i = 0; i != NumElements; ++i) {
6556      EnumConstantDecl *ECD =
6557        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6558      if (!ECD) continue;
6559
6560      ECD->setType(EnumType);
6561    }
6562
6563    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6564    return;
6565  }
6566
6567  // TODO: If the result value doesn't fit in an int, it must be a long or long
6568  // long value.  ISO C does not support this, but GCC does as an extension,
6569  // emit a warning.
6570  unsigned IntWidth = Context.Target.getIntWidth();
6571  unsigned CharWidth = Context.Target.getCharWidth();
6572  unsigned ShortWidth = Context.Target.getShortWidth();
6573
6574  // Verify that all the values are okay, compute the size of the values, and
6575  // reverse the list.
6576  unsigned NumNegativeBits = 0;
6577  unsigned NumPositiveBits = 0;
6578
6579  // Keep track of whether all elements have type int.
6580  bool AllElementsInt = true;
6581
6582  for (unsigned i = 0; i != NumElements; ++i) {
6583    EnumConstantDecl *ECD =
6584      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6585    if (!ECD) continue;  // Already issued a diagnostic.
6586
6587    const llvm::APSInt &InitVal = ECD->getInitVal();
6588
6589    // Keep track of the size of positive and negative values.
6590    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6591      NumPositiveBits = std::max(NumPositiveBits,
6592                                 (unsigned)InitVal.getActiveBits());
6593    else
6594      NumNegativeBits = std::max(NumNegativeBits,
6595                                 (unsigned)InitVal.getMinSignedBits());
6596
6597    // Keep track of whether every enum element has type int (very commmon).
6598    if (AllElementsInt)
6599      AllElementsInt = ECD->getType() == Context.IntTy;
6600  }
6601
6602  // Figure out the type that should be used for this enum.
6603  // FIXME: Support -fshort-enums.
6604  QualType BestType;
6605  unsigned BestWidth;
6606
6607  // C++0x N3000 [conv.prom]p3:
6608  //   An rvalue of an unscoped enumeration type whose underlying
6609  //   type is not fixed can be converted to an rvalue of the first
6610  //   of the following types that can represent all the values of
6611  //   the enumeration: int, unsigned int, long int, unsigned long
6612  //   int, long long int, or unsigned long long int.
6613  // C99 6.4.4.3p2:
6614  //   An identifier declared as an enumeration constant has type int.
6615  // The C99 rule is modified by a gcc extension
6616  QualType BestPromotionType;
6617
6618  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6619
6620  if (NumNegativeBits) {
6621    // If there is a negative value, figure out the smallest integer type (of
6622    // int/long/longlong) that fits.
6623    // If it's packed, check also if it fits a char or a short.
6624    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6625      BestType = Context.SignedCharTy;
6626      BestWidth = CharWidth;
6627    } else if (Packed && NumNegativeBits <= ShortWidth &&
6628               NumPositiveBits < ShortWidth) {
6629      BestType = Context.ShortTy;
6630      BestWidth = ShortWidth;
6631    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6632      BestType = Context.IntTy;
6633      BestWidth = IntWidth;
6634    } else {
6635      BestWidth = Context.Target.getLongWidth();
6636
6637      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6638        BestType = Context.LongTy;
6639      } else {
6640        BestWidth = Context.Target.getLongLongWidth();
6641
6642        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6643          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6644        BestType = Context.LongLongTy;
6645      }
6646    }
6647    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6648  } else {
6649    // If there is no negative value, figure out the smallest type that fits
6650    // all of the enumerator values.
6651    // If it's packed, check also if it fits a char or a short.
6652    if (Packed && NumPositiveBits <= CharWidth) {
6653      BestType = Context.UnsignedCharTy;
6654      BestPromotionType = Context.IntTy;
6655      BestWidth = CharWidth;
6656    } else if (Packed && NumPositiveBits <= ShortWidth) {
6657      BestType = Context.UnsignedShortTy;
6658      BestPromotionType = Context.IntTy;
6659      BestWidth = ShortWidth;
6660    } else if (NumPositiveBits <= IntWidth) {
6661      BestType = Context.UnsignedIntTy;
6662      BestWidth = IntWidth;
6663      BestPromotionType
6664        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6665                           ? Context.UnsignedIntTy : Context.IntTy;
6666    } else if (NumPositiveBits <=
6667               (BestWidth = Context.Target.getLongWidth())) {
6668      BestType = Context.UnsignedLongTy;
6669      BestPromotionType
6670        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6671                           ? Context.UnsignedLongTy : Context.LongTy;
6672    } else {
6673      BestWidth = Context.Target.getLongLongWidth();
6674      assert(NumPositiveBits <= BestWidth &&
6675             "How could an initializer get larger than ULL?");
6676      BestType = Context.UnsignedLongLongTy;
6677      BestPromotionType
6678        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6679                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6680    }
6681  }
6682
6683  // Loop over all of the enumerator constants, changing their types to match
6684  // the type of the enum if needed.
6685  for (unsigned i = 0; i != NumElements; ++i) {
6686    EnumConstantDecl *ECD =
6687      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6688    if (!ECD) continue;  // Already issued a diagnostic.
6689
6690    // Standard C says the enumerators have int type, but we allow, as an
6691    // extension, the enumerators to be larger than int size.  If each
6692    // enumerator value fits in an int, type it as an int, otherwise type it the
6693    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6694    // that X has type 'int', not 'unsigned'.
6695
6696    // Determine whether the value fits into an int.
6697    llvm::APSInt InitVal = ECD->getInitVal();
6698
6699    // If it fits into an integer type, force it.  Otherwise force it to match
6700    // the enum decl type.
6701    QualType NewTy;
6702    unsigned NewWidth;
6703    bool NewSign;
6704    if (!getLangOptions().CPlusPlus &&
6705        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6706      NewTy = Context.IntTy;
6707      NewWidth = IntWidth;
6708      NewSign = true;
6709    } else if (ECD->getType() == BestType) {
6710      // Already the right type!
6711      if (getLangOptions().CPlusPlus)
6712        // C++ [dcl.enum]p4: Following the closing brace of an
6713        // enum-specifier, each enumerator has the type of its
6714        // enumeration.
6715        ECD->setType(EnumType);
6716      continue;
6717    } else {
6718      NewTy = BestType;
6719      NewWidth = BestWidth;
6720      NewSign = BestType->isSignedIntegerType();
6721    }
6722
6723    // Adjust the APSInt value.
6724    InitVal.extOrTrunc(NewWidth);
6725    InitVal.setIsSigned(NewSign);
6726    ECD->setInitVal(InitVal);
6727
6728    // Adjust the Expr initializer and type.
6729    if (ECD->getInitExpr())
6730      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6731                                                      CastExpr::CK_IntegralCast,
6732                                                      ECD->getInitExpr(),
6733                                                      CXXBaseSpecifierArray(),
6734                                                      /*isLvalue=*/false));
6735    if (getLangOptions().CPlusPlus)
6736      // C++ [dcl.enum]p4: Following the closing brace of an
6737      // enum-specifier, each enumerator has the type of its
6738      // enumeration.
6739      ECD->setType(EnumType);
6740    else
6741      ECD->setType(NewTy);
6742  }
6743
6744  Enum->completeDefinition(BestType, BestPromotionType,
6745                           NumPositiveBits, NumNegativeBits);
6746}
6747
6748Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6749                                            ExprArg expr) {
6750  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6751
6752  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6753                                                   Loc, AsmString);
6754  CurContext->addDecl(New);
6755  return DeclPtrTy::make(New);
6756}
6757
6758void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6759                             SourceLocation PragmaLoc,
6760                             SourceLocation NameLoc) {
6761  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6762
6763  if (PrevDecl) {
6764    PrevDecl->addAttr(::new (Context) WeakAttr());
6765  } else {
6766    (void)WeakUndeclaredIdentifiers.insert(
6767      std::pair<IdentifierInfo*,WeakInfo>
6768        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6769  }
6770}
6771
6772void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6773                                IdentifierInfo* AliasName,
6774                                SourceLocation PragmaLoc,
6775                                SourceLocation NameLoc,
6776                                SourceLocation AliasNameLoc) {
6777  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6778                                    LookupOrdinaryName);
6779  WeakInfo W = WeakInfo(Name, NameLoc);
6780
6781  if (PrevDecl) {
6782    if (!PrevDecl->hasAttr<AliasAttr>())
6783      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6784        DeclApplyPragmaWeak(TUScope, ND, W);
6785  } else {
6786    (void)WeakUndeclaredIdentifiers.insert(
6787      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6788  }
6789}
6790