SemaDecl.cpp revision 4cc83c2b0aed5ab06081ea3250426c3a7e58df93
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
354/// where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
438      else
439        llvm_unreachable("could not have corrected a typo here");
440
441      Diag(Result->getLocation(), diag::note_previous_decl)
442        << CorrectedQuotedStr;
443
444      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
445                                  false, false, ParsedType(),
446                                  /*IsCtorOrDtorName=*/false,
447                                  /*NonTrivialTypeSourceInfo=*/true);
448    }
449    return true;
450  }
451
452  if (getLangOpts().CPlusPlus) {
453    // See if II is a class template that the user forgot to pass arguments to.
454    UnqualifiedId Name;
455    Name.setIdentifier(II, IILoc);
456    CXXScopeSpec EmptySS;
457    TemplateTy TemplateResult;
458    bool MemberOfUnknownSpecialization;
459    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
460                       Name, ParsedType(), true, TemplateResult,
461                       MemberOfUnknownSpecialization) == TNK_Type_template) {
462      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
463      Diag(IILoc, diag::err_template_missing_args) << TplName;
464      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
465        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
466          << TplDecl->getTemplateParameters()->getSourceRange();
467      }
468      return true;
469    }
470  }
471
472  // FIXME: Should we move the logic that tries to recover from a missing tag
473  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
474
475  if (!SS || (!SS->isSet() && !SS->isInvalid()))
476    Diag(IILoc, diag::err_unknown_typename) << II;
477  else if (DeclContext *DC = computeDeclContext(*SS, false))
478    Diag(IILoc, diag::err_typename_nested_not_found)
479      << II << DC << SS->getRange();
480  else if (isDependentScopeSpecifier(*SS)) {
481    unsigned DiagID = diag::err_typename_missing;
482    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
483      DiagID = diag::warn_typename_missing;
484
485    Diag(SS->getRange().getBegin(), DiagID)
486      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
487      << SourceRange(SS->getRange().getBegin(), IILoc)
488      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
489    SuggestedType = ActOnTypenameType(S, SourceLocation(),
490                                      *SS, *II, IILoc).get();
491  } else {
492    assert(SS && SS->isInvalid() &&
493           "Invalid scope specifier has already been diagnosed");
494  }
495
496  return true;
497}
498
499/// \brief Determine whether the given result set contains either a type name
500/// or
501static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
502  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
503                       NextToken.is(tok::less);
504
505  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
506    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
507      return true;
508
509    if (CheckTemplate && isa<TemplateDecl>(*I))
510      return true;
511  }
512
513  return false;
514}
515
516static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
517                                    Scope *S, CXXScopeSpec &SS,
518                                    IdentifierInfo *&Name,
519                                    SourceLocation NameLoc) {
520  Result.clear(Sema::LookupTagName);
521  SemaRef.LookupParsedName(Result, S, &SS);
522  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
523    const char *TagName = 0;
524    const char *FixItTagName = 0;
525    switch (Tag->getTagKind()) {
526      case TTK_Class:
527        TagName = "class";
528        FixItTagName = "class ";
529        break;
530
531      case TTK_Enum:
532        TagName = "enum";
533        FixItTagName = "enum ";
534        break;
535
536      case TTK_Struct:
537        TagName = "struct";
538        FixItTagName = "struct ";
539        break;
540
541      case TTK_Union:
542        TagName = "union";
543        FixItTagName = "union ";
544        break;
545    }
546
547    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
548      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
549      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
550
551    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
552    if (SemaRef.LookupParsedName(R, S, &SS)) {
553      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
554           I != IEnd; ++I)
555        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
556          << Name << TagName;
557    }
558    return true;
559  }
560
561  Result.clear(Sema::LookupOrdinaryName);
562  return false;
563}
564
565Sema::NameClassification Sema::ClassifyName(Scope *S,
566                                            CXXScopeSpec &SS,
567                                            IdentifierInfo *&Name,
568                                            SourceLocation NameLoc,
569                                            const Token &NextToken) {
570  DeclarationNameInfo NameInfo(Name, NameLoc);
571  ObjCMethodDecl *CurMethod = getCurMethodDecl();
572
573  if (NextToken.is(tok::coloncolon)) {
574    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
575                                QualType(), false, SS, 0, false);
576
577  }
578
579  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
580  LookupParsedName(Result, S, &SS, !CurMethod);
581
582  // Perform lookup for Objective-C instance variables (including automatically
583  // synthesized instance variables), if we're in an Objective-C method.
584  // FIXME: This lookup really, really needs to be folded in to the normal
585  // unqualified lookup mechanism.
586  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
587    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
588    if (E.get() || E.isInvalid())
589      return E;
590  }
591
592  bool SecondTry = false;
593  bool IsFilteredTemplateName = false;
594
595Corrected:
596  switch (Result.getResultKind()) {
597  case LookupResult::NotFound:
598    // If an unqualified-id is followed by a '(', then we have a function
599    // call.
600    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
601      // In C++, this is an ADL-only call.
602      // FIXME: Reference?
603      if (getLangOpts().CPlusPlus)
604        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
605
606      // C90 6.3.2.2:
607      //   If the expression that precedes the parenthesized argument list in a
608      //   function call consists solely of an identifier, and if no
609      //   declaration is visible for this identifier, the identifier is
610      //   implicitly declared exactly as if, in the innermost block containing
611      //   the function call, the declaration
612      //
613      //     extern int identifier ();
614      //
615      //   appeared.
616      //
617      // We also allow this in C99 as an extension.
618      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
619        Result.addDecl(D);
620        Result.resolveKind();
621        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
622      }
623    }
624
625    // In C, we first see whether there is a tag type by the same name, in
626    // which case it's likely that the user just forget to write "enum",
627    // "struct", or "union".
628    if (!getLangOpts().CPlusPlus && !SecondTry &&
629        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
630      break;
631    }
632
633    // Perform typo correction to determine if there is another name that is
634    // close to this name.
635    if (!SecondTry) {
636      SecondTry = true;
637      CorrectionCandidateCallback DefaultValidator;
638      // Try to limit which sets of keywords should be included in typo
639      // correction based on what the next token is.
640      DefaultValidator.WantTypeSpecifiers =
641          NextToken.is(tok::l_paren) || NextToken.is(tok::less) ||
642          NextToken.is(tok::identifier) || NextToken.is(tok::star) ||
643          NextToken.is(tok::amp) || NextToken.is(tok::l_square);
644      DefaultValidator.WantExpressionKeywords =
645          NextToken.is(tok::l_paren) || NextToken.is(tok::identifier) ||
646          NextToken.is(tok::arrow) || NextToken.is(tok::period);
647      DefaultValidator.WantRemainingKeywords =
648          NextToken.is(tok::l_paren) || NextToken.is(tok::semi) ||
649          NextToken.is(tok::identifier) || NextToken.is(tok::l_brace);
650      DefaultValidator.WantCXXNamedCasts = false;
651      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
652                                                 Result.getLookupKind(), S,
653                                                 &SS, DefaultValidator)) {
654        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
655        unsigned QualifiedDiag = diag::err_no_member_suggest;
656        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
657        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
658
659        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
660        NamedDecl *UnderlyingFirstDecl
661          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
662        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
663            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
664          UnqualifiedDiag = diag::err_no_template_suggest;
665          QualifiedDiag = diag::err_no_member_template_suggest;
666        } else if (UnderlyingFirstDecl &&
667                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
668                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
669                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
670           UnqualifiedDiag = diag::err_unknown_typename_suggest;
671           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
672         }
673
674        if (SS.isEmpty())
675          Diag(NameLoc, UnqualifiedDiag)
676            << Name << CorrectedQuotedStr
677            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
678        else
679          Diag(NameLoc, QualifiedDiag)
680            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
681            << SS.getRange()
682            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
683
684        // Update the name, so that the caller has the new name.
685        Name = Corrected.getCorrectionAsIdentifierInfo();
686
687        // Typo correction corrected to a keyword.
688        if (Corrected.isKeyword())
689          return Corrected.getCorrectionAsIdentifierInfo();
690
691        // Also update the LookupResult...
692        // FIXME: This should probably go away at some point
693        Result.clear();
694        Result.setLookupName(Corrected.getCorrection());
695        if (FirstDecl) {
696          Result.addDecl(FirstDecl);
697          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
698            << CorrectedQuotedStr;
699        }
700
701        // If we found an Objective-C instance variable, let
702        // LookupInObjCMethod build the appropriate expression to
703        // reference the ivar.
704        // FIXME: This is a gross hack.
705        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
706          Result.clear();
707          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
708          return move(E);
709        }
710
711        goto Corrected;
712      }
713    }
714
715    // We failed to correct; just fall through and let the parser deal with it.
716    Result.suppressDiagnostics();
717    return NameClassification::Unknown();
718
719  case LookupResult::NotFoundInCurrentInstantiation: {
720    // We performed name lookup into the current instantiation, and there were
721    // dependent bases, so we treat this result the same way as any other
722    // dependent nested-name-specifier.
723
724    // C++ [temp.res]p2:
725    //   A name used in a template declaration or definition and that is
726    //   dependent on a template-parameter is assumed not to name a type
727    //   unless the applicable name lookup finds a type name or the name is
728    //   qualified by the keyword typename.
729    //
730    // FIXME: If the next token is '<', we might want to ask the parser to
731    // perform some heroics to see if we actually have a
732    // template-argument-list, which would indicate a missing 'template'
733    // keyword here.
734    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
735                                     NameInfo, /*TemplateArgs=*/0);
736  }
737
738  case LookupResult::Found:
739  case LookupResult::FoundOverloaded:
740  case LookupResult::FoundUnresolvedValue:
741    break;
742
743  case LookupResult::Ambiguous:
744    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
745        hasAnyAcceptableTemplateNames(Result)) {
746      // C++ [temp.local]p3:
747      //   A lookup that finds an injected-class-name (10.2) can result in an
748      //   ambiguity in certain cases (for example, if it is found in more than
749      //   one base class). If all of the injected-class-names that are found
750      //   refer to specializations of the same class template, and if the name
751      //   is followed by a template-argument-list, the reference refers to the
752      //   class template itself and not a specialization thereof, and is not
753      //   ambiguous.
754      //
755      // This filtering can make an ambiguous result into an unambiguous one,
756      // so try again after filtering out template names.
757      FilterAcceptableTemplateNames(Result);
758      if (!Result.isAmbiguous()) {
759        IsFilteredTemplateName = true;
760        break;
761      }
762    }
763
764    // Diagnose the ambiguity and return an error.
765    return NameClassification::Error();
766  }
767
768  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
769      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
770    // C++ [temp.names]p3:
771    //   After name lookup (3.4) finds that a name is a template-name or that
772    //   an operator-function-id or a literal- operator-id refers to a set of
773    //   overloaded functions any member of which is a function template if
774    //   this is followed by a <, the < is always taken as the delimiter of a
775    //   template-argument-list and never as the less-than operator.
776    if (!IsFilteredTemplateName)
777      FilterAcceptableTemplateNames(Result);
778
779    if (!Result.empty()) {
780      bool IsFunctionTemplate;
781      TemplateName Template;
782      if (Result.end() - Result.begin() > 1) {
783        IsFunctionTemplate = true;
784        Template = Context.getOverloadedTemplateName(Result.begin(),
785                                                     Result.end());
786      } else {
787        TemplateDecl *TD
788          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
789        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
790
791        if (SS.isSet() && !SS.isInvalid())
792          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
793                                                    /*TemplateKeyword=*/false,
794                                                      TD);
795        else
796          Template = TemplateName(TD);
797      }
798
799      if (IsFunctionTemplate) {
800        // Function templates always go through overload resolution, at which
801        // point we'll perform the various checks (e.g., accessibility) we need
802        // to based on which function we selected.
803        Result.suppressDiagnostics();
804
805        return NameClassification::FunctionTemplate(Template);
806      }
807
808      return NameClassification::TypeTemplate(Template);
809    }
810  }
811
812  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
813  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
814    DiagnoseUseOfDecl(Type, NameLoc);
815    QualType T = Context.getTypeDeclType(Type);
816    return ParsedType::make(T);
817  }
818
819  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
820  if (!Class) {
821    // FIXME: It's unfortunate that we don't have a Type node for handling this.
822    if (ObjCCompatibleAliasDecl *Alias
823                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
824      Class = Alias->getClassInterface();
825  }
826
827  if (Class) {
828    DiagnoseUseOfDecl(Class, NameLoc);
829
830    if (NextToken.is(tok::period)) {
831      // Interface. <something> is parsed as a property reference expression.
832      // Just return "unknown" as a fall-through for now.
833      Result.suppressDiagnostics();
834      return NameClassification::Unknown();
835    }
836
837    QualType T = Context.getObjCInterfaceType(Class);
838    return ParsedType::make(T);
839  }
840
841  // Check for a tag type hidden by a non-type decl in a few cases where it
842  // seems likely a type is wanted instead of the non-type that was found.
843  if (!getLangOpts().ObjC1 && FirstDecl && !isa<ClassTemplateDecl>(FirstDecl) &&
844      !isa<TypeAliasTemplateDecl>(FirstDecl)) {
845    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
846    if ((NextToken.is(tok::identifier) ||
847         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
848        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
849      FirstDecl = (*Result.begin())->getUnderlyingDecl();
850      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
851        DiagnoseUseOfDecl(Type, NameLoc);
852        QualType T = Context.getTypeDeclType(Type);
853        return ParsedType::make(T);
854      }
855    }
856  }
857
858  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
859    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
860
861  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
862  return BuildDeclarationNameExpr(SS, Result, ADL);
863}
864
865// Determines the context to return to after temporarily entering a
866// context.  This depends in an unnecessarily complicated way on the
867// exact ordering of callbacks from the parser.
868DeclContext *Sema::getContainingDC(DeclContext *DC) {
869
870  // Functions defined inline within classes aren't parsed until we've
871  // finished parsing the top-level class, so the top-level class is
872  // the context we'll need to return to.
873  if (isa<FunctionDecl>(DC)) {
874    DC = DC->getLexicalParent();
875
876    // A function not defined within a class will always return to its
877    // lexical context.
878    if (!isa<CXXRecordDecl>(DC))
879      return DC;
880
881    // A C++ inline method/friend is parsed *after* the topmost class
882    // it was declared in is fully parsed ("complete");  the topmost
883    // class is the context we need to return to.
884    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
885      DC = RD;
886
887    // Return the declaration context of the topmost class the inline method is
888    // declared in.
889    return DC;
890  }
891
892  return DC->getLexicalParent();
893}
894
895void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
896  assert(getContainingDC(DC) == CurContext &&
897      "The next DeclContext should be lexically contained in the current one.");
898  CurContext = DC;
899  S->setEntity(DC);
900}
901
902void Sema::PopDeclContext() {
903  assert(CurContext && "DeclContext imbalance!");
904
905  CurContext = getContainingDC(CurContext);
906  assert(CurContext && "Popped translation unit!");
907}
908
909/// EnterDeclaratorContext - Used when we must lookup names in the context
910/// of a declarator's nested name specifier.
911///
912void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
913  // C++0x [basic.lookup.unqual]p13:
914  //   A name used in the definition of a static data member of class
915  //   X (after the qualified-id of the static member) is looked up as
916  //   if the name was used in a member function of X.
917  // C++0x [basic.lookup.unqual]p14:
918  //   If a variable member of a namespace is defined outside of the
919  //   scope of its namespace then any name used in the definition of
920  //   the variable member (after the declarator-id) is looked up as
921  //   if the definition of the variable member occurred in its
922  //   namespace.
923  // Both of these imply that we should push a scope whose context
924  // is the semantic context of the declaration.  We can't use
925  // PushDeclContext here because that context is not necessarily
926  // lexically contained in the current context.  Fortunately,
927  // the containing scope should have the appropriate information.
928
929  assert(!S->getEntity() && "scope already has entity");
930
931#ifndef NDEBUG
932  Scope *Ancestor = S->getParent();
933  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
934  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
935#endif
936
937  CurContext = DC;
938  S->setEntity(DC);
939}
940
941void Sema::ExitDeclaratorContext(Scope *S) {
942  assert(S->getEntity() == CurContext && "Context imbalance!");
943
944  // Switch back to the lexical context.  The safety of this is
945  // enforced by an assert in EnterDeclaratorContext.
946  Scope *Ancestor = S->getParent();
947  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
948  CurContext = (DeclContext*) Ancestor->getEntity();
949
950  // We don't need to do anything with the scope, which is going to
951  // disappear.
952}
953
954
955void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
956  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
957  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
958    // We assume that the caller has already called
959    // ActOnReenterTemplateScope
960    FD = TFD->getTemplatedDecl();
961  }
962  if (!FD)
963    return;
964
965  // Same implementation as PushDeclContext, but enters the context
966  // from the lexical parent, rather than the top-level class.
967  assert(CurContext == FD->getLexicalParent() &&
968    "The next DeclContext should be lexically contained in the current one.");
969  CurContext = FD;
970  S->setEntity(CurContext);
971
972  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
973    ParmVarDecl *Param = FD->getParamDecl(P);
974    // If the parameter has an identifier, then add it to the scope
975    if (Param->getIdentifier()) {
976      S->AddDecl(Param);
977      IdResolver.AddDecl(Param);
978    }
979  }
980}
981
982
983void Sema::ActOnExitFunctionContext() {
984  // Same implementation as PopDeclContext, but returns to the lexical parent,
985  // rather than the top-level class.
986  assert(CurContext && "DeclContext imbalance!");
987  CurContext = CurContext->getLexicalParent();
988  assert(CurContext && "Popped translation unit!");
989}
990
991
992/// \brief Determine whether we allow overloading of the function
993/// PrevDecl with another declaration.
994///
995/// This routine determines whether overloading is possible, not
996/// whether some new function is actually an overload. It will return
997/// true in C++ (where we can always provide overloads) or, as an
998/// extension, in C when the previous function is already an
999/// overloaded function declaration or has the "overloadable"
1000/// attribute.
1001static bool AllowOverloadingOfFunction(LookupResult &Previous,
1002                                       ASTContext &Context) {
1003  if (Context.getLangOpts().CPlusPlus)
1004    return true;
1005
1006  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1007    return true;
1008
1009  return (Previous.getResultKind() == LookupResult::Found
1010          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1011}
1012
1013/// Add this decl to the scope shadowed decl chains.
1014void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1015  // Move up the scope chain until we find the nearest enclosing
1016  // non-transparent context. The declaration will be introduced into this
1017  // scope.
1018  while (S->getEntity() &&
1019         ((DeclContext *)S->getEntity())->isTransparentContext())
1020    S = S->getParent();
1021
1022  // Add scoped declarations into their context, so that they can be
1023  // found later. Declarations without a context won't be inserted
1024  // into any context.
1025  if (AddToContext)
1026    CurContext->addDecl(D);
1027
1028  // Out-of-line definitions shouldn't be pushed into scope in C++.
1029  // Out-of-line variable and function definitions shouldn't even in C.
1030  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1031      D->isOutOfLine() &&
1032      !D->getDeclContext()->getRedeclContext()->Equals(
1033        D->getLexicalDeclContext()->getRedeclContext()))
1034    return;
1035
1036  // Template instantiations should also not be pushed into scope.
1037  if (isa<FunctionDecl>(D) &&
1038      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1039    return;
1040
1041  // If this replaces anything in the current scope,
1042  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1043                               IEnd = IdResolver.end();
1044  for (; I != IEnd; ++I) {
1045    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1046      S->RemoveDecl(*I);
1047      IdResolver.RemoveDecl(*I);
1048
1049      // Should only need to replace one decl.
1050      break;
1051    }
1052  }
1053
1054  S->AddDecl(D);
1055
1056  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1057    // Implicitly-generated labels may end up getting generated in an order that
1058    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1059    // the label at the appropriate place in the identifier chain.
1060    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1061      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1062      if (IDC == CurContext) {
1063        if (!S->isDeclScope(*I))
1064          continue;
1065      } else if (IDC->Encloses(CurContext))
1066        break;
1067    }
1068
1069    IdResolver.InsertDeclAfter(I, D);
1070  } else {
1071    IdResolver.AddDecl(D);
1072  }
1073}
1074
1075void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1076  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1077    TUScope->AddDecl(D);
1078}
1079
1080bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1081                         bool ExplicitInstantiationOrSpecialization) {
1082  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1083                                  ExplicitInstantiationOrSpecialization);
1084}
1085
1086Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1087  DeclContext *TargetDC = DC->getPrimaryContext();
1088  do {
1089    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1090      if (ScopeDC->getPrimaryContext() == TargetDC)
1091        return S;
1092  } while ((S = S->getParent()));
1093
1094  return 0;
1095}
1096
1097static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1098                                            DeclContext*,
1099                                            ASTContext&);
1100
1101/// Filters out lookup results that don't fall within the given scope
1102/// as determined by isDeclInScope.
1103void Sema::FilterLookupForScope(LookupResult &R,
1104                                DeclContext *Ctx, Scope *S,
1105                                bool ConsiderLinkage,
1106                                bool ExplicitInstantiationOrSpecialization) {
1107  LookupResult::Filter F = R.makeFilter();
1108  while (F.hasNext()) {
1109    NamedDecl *D = F.next();
1110
1111    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1112      continue;
1113
1114    if (ConsiderLinkage &&
1115        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1116      continue;
1117
1118    F.erase();
1119  }
1120
1121  F.done();
1122}
1123
1124static bool isUsingDecl(NamedDecl *D) {
1125  return isa<UsingShadowDecl>(D) ||
1126         isa<UnresolvedUsingTypenameDecl>(D) ||
1127         isa<UnresolvedUsingValueDecl>(D);
1128}
1129
1130/// Removes using shadow declarations from the lookup results.
1131static void RemoveUsingDecls(LookupResult &R) {
1132  LookupResult::Filter F = R.makeFilter();
1133  while (F.hasNext())
1134    if (isUsingDecl(F.next()))
1135      F.erase();
1136
1137  F.done();
1138}
1139
1140/// \brief Check for this common pattern:
1141/// @code
1142/// class S {
1143///   S(const S&); // DO NOT IMPLEMENT
1144///   void operator=(const S&); // DO NOT IMPLEMENT
1145/// };
1146/// @endcode
1147static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1148  // FIXME: Should check for private access too but access is set after we get
1149  // the decl here.
1150  if (D->doesThisDeclarationHaveABody())
1151    return false;
1152
1153  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1154    return CD->isCopyConstructor();
1155  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1156    return Method->isCopyAssignmentOperator();
1157  return false;
1158}
1159
1160bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1161  assert(D);
1162
1163  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1164    return false;
1165
1166  // Ignore class templates.
1167  if (D->getDeclContext()->isDependentContext() ||
1168      D->getLexicalDeclContext()->isDependentContext())
1169    return false;
1170
1171  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1172    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1173      return false;
1174
1175    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1176      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1177        return false;
1178    } else {
1179      // 'static inline' functions are used in headers; don't warn.
1180      if (FD->getStorageClass() == SC_Static &&
1181          FD->isInlineSpecified())
1182        return false;
1183    }
1184
1185    if (FD->doesThisDeclarationHaveABody() &&
1186        Context.DeclMustBeEmitted(FD))
1187      return false;
1188  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1189    if (!VD->isFileVarDecl() ||
1190        VD->getType().isConstant(Context) ||
1191        Context.DeclMustBeEmitted(VD))
1192      return false;
1193
1194    if (VD->isStaticDataMember() &&
1195        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1196      return false;
1197
1198  } else {
1199    return false;
1200  }
1201
1202  // Only warn for unused decls internal to the translation unit.
1203  if (D->getLinkage() == ExternalLinkage)
1204    return false;
1205
1206  return true;
1207}
1208
1209void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1210  if (!D)
1211    return;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    const FunctionDecl *First = FD->getFirstDeclaration();
1215    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1216      return; // First should already be in the vector.
1217  }
1218
1219  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1220    const VarDecl *First = VD->getFirstDeclaration();
1221    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1222      return; // First should already be in the vector.
1223  }
1224
1225  if (ShouldWarnIfUnusedFileScopedDecl(D))
1226    UnusedFileScopedDecls.push_back(D);
1227}
1228
1229static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1230  if (D->isInvalidDecl())
1231    return false;
1232
1233  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1234    return false;
1235
1236  if (isa<LabelDecl>(D))
1237    return true;
1238
1239  // White-list anything that isn't a local variable.
1240  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1241      !D->getDeclContext()->isFunctionOrMethod())
1242    return false;
1243
1244  // Types of valid local variables should be complete, so this should succeed.
1245  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1246
1247    // White-list anything with an __attribute__((unused)) type.
1248    QualType Ty = VD->getType();
1249
1250    // Only look at the outermost level of typedef.
1251    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1252      if (TT->getDecl()->hasAttr<UnusedAttr>())
1253        return false;
1254    }
1255
1256    // If we failed to complete the type for some reason, or if the type is
1257    // dependent, don't diagnose the variable.
1258    if (Ty->isIncompleteType() || Ty->isDependentType())
1259      return false;
1260
1261    if (const TagType *TT = Ty->getAs<TagType>()) {
1262      const TagDecl *Tag = TT->getDecl();
1263      if (Tag->hasAttr<UnusedAttr>())
1264        return false;
1265
1266      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1267        if (!RD->hasTrivialDestructor())
1268          return false;
1269
1270        if (const Expr *Init = VD->getInit()) {
1271          const CXXConstructExpr *Construct =
1272            dyn_cast<CXXConstructExpr>(Init);
1273          if (Construct && !Construct->isElidable()) {
1274            CXXConstructorDecl *CD = Construct->getConstructor();
1275            if (!CD->isTrivial())
1276              return false;
1277          }
1278        }
1279      }
1280    }
1281
1282    // TODO: __attribute__((unused)) templates?
1283  }
1284
1285  return true;
1286}
1287
1288static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1289                                     FixItHint &Hint) {
1290  if (isa<LabelDecl>(D)) {
1291    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1292                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1293    if (AfterColon.isInvalid())
1294      return;
1295    Hint = FixItHint::CreateRemoval(CharSourceRange::
1296                                    getCharRange(D->getLocStart(), AfterColon));
1297  }
1298  return;
1299}
1300
1301/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1302/// unless they are marked attr(unused).
1303void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1304  FixItHint Hint;
1305  if (!ShouldDiagnoseUnusedDecl(D))
1306    return;
1307
1308  GenerateFixForUnusedDecl(D, Context, Hint);
1309
1310  unsigned DiagID;
1311  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1312    DiagID = diag::warn_unused_exception_param;
1313  else if (isa<LabelDecl>(D))
1314    DiagID = diag::warn_unused_label;
1315  else
1316    DiagID = diag::warn_unused_variable;
1317
1318  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1319}
1320
1321static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1322  // Verify that we have no forward references left.  If so, there was a goto
1323  // or address of a label taken, but no definition of it.  Label fwd
1324  // definitions are indicated with a null substmt.
1325  if (L->getStmt() == 0)
1326    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1327}
1328
1329void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1330  if (S->decl_empty()) return;
1331  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1332         "Scope shouldn't contain decls!");
1333
1334  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1335       I != E; ++I) {
1336    Decl *TmpD = (*I);
1337    assert(TmpD && "This decl didn't get pushed??");
1338
1339    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1340    NamedDecl *D = cast<NamedDecl>(TmpD);
1341
1342    if (!D->getDeclName()) continue;
1343
1344    // Diagnose unused variables in this scope.
1345    if (!S->hasErrorOccurred())
1346      DiagnoseUnusedDecl(D);
1347
1348    // If this was a forward reference to a label, verify it was defined.
1349    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1350      CheckPoppedLabel(LD, *this);
1351
1352    // Remove this name from our lexical scope.
1353    IdResolver.RemoveDecl(D);
1354  }
1355}
1356
1357void Sema::ActOnStartFunctionDeclarator() {
1358  ++InFunctionDeclarator;
1359}
1360
1361void Sema::ActOnEndFunctionDeclarator() {
1362  assert(InFunctionDeclarator);
1363  --InFunctionDeclarator;
1364}
1365
1366/// \brief Look for an Objective-C class in the translation unit.
1367///
1368/// \param Id The name of the Objective-C class we're looking for. If
1369/// typo-correction fixes this name, the Id will be updated
1370/// to the fixed name.
1371///
1372/// \param IdLoc The location of the name in the translation unit.
1373///
1374/// \param DoTypoCorrection If true, this routine will attempt typo correction
1375/// if there is no class with the given name.
1376///
1377/// \returns The declaration of the named Objective-C class, or NULL if the
1378/// class could not be found.
1379ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1380                                              SourceLocation IdLoc,
1381                                              bool DoTypoCorrection) {
1382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1383  // creation from this context.
1384  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1385
1386  if (!IDecl && DoTypoCorrection) {
1387    // Perform typo correction at the given location, but only if we
1388    // find an Objective-C class name.
1389    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1390    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1391                                       LookupOrdinaryName, TUScope, NULL,
1392                                       Validator)) {
1393      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1394      Diag(IdLoc, diag::err_undef_interface_suggest)
1395        << Id << IDecl->getDeclName()
1396        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1397      Diag(IDecl->getLocation(), diag::note_previous_decl)
1398        << IDecl->getDeclName();
1399
1400      Id = IDecl->getIdentifier();
1401    }
1402  }
1403  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1404  // This routine must always return a class definition, if any.
1405  if (Def && Def->getDefinition())
1406      Def = Def->getDefinition();
1407  return Def;
1408}
1409
1410/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1411/// from S, where a non-field would be declared. This routine copes
1412/// with the difference between C and C++ scoping rules in structs and
1413/// unions. For example, the following code is well-formed in C but
1414/// ill-formed in C++:
1415/// @code
1416/// struct S6 {
1417///   enum { BAR } e;
1418/// };
1419///
1420/// void test_S6() {
1421///   struct S6 a;
1422///   a.e = BAR;
1423/// }
1424/// @endcode
1425/// For the declaration of BAR, this routine will return a different
1426/// scope. The scope S will be the scope of the unnamed enumeration
1427/// within S6. In C++, this routine will return the scope associated
1428/// with S6, because the enumeration's scope is a transparent
1429/// context but structures can contain non-field names. In C, this
1430/// routine will return the translation unit scope, since the
1431/// enumeration's scope is a transparent context and structures cannot
1432/// contain non-field names.
1433Scope *Sema::getNonFieldDeclScope(Scope *S) {
1434  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1435         (S->getEntity() &&
1436          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1437         (S->isClassScope() && !getLangOpts().CPlusPlus))
1438    S = S->getParent();
1439  return S;
1440}
1441
1442/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1443/// file scope.  lazily create a decl for it. ForRedeclaration is true
1444/// if we're creating this built-in in anticipation of redeclaring the
1445/// built-in.
1446NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1447                                     Scope *S, bool ForRedeclaration,
1448                                     SourceLocation Loc) {
1449  Builtin::ID BID = (Builtin::ID)bid;
1450
1451  ASTContext::GetBuiltinTypeError Error;
1452  QualType R = Context.GetBuiltinType(BID, Error);
1453  switch (Error) {
1454  case ASTContext::GE_None:
1455    // Okay
1456    break;
1457
1458  case ASTContext::GE_Missing_stdio:
1459    if (ForRedeclaration)
1460      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1461        << Context.BuiltinInfo.GetName(BID);
1462    return 0;
1463
1464  case ASTContext::GE_Missing_setjmp:
1465    if (ForRedeclaration)
1466      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1467        << Context.BuiltinInfo.GetName(BID);
1468    return 0;
1469
1470  case ASTContext::GE_Missing_ucontext:
1471    if (ForRedeclaration)
1472      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1473        << Context.BuiltinInfo.GetName(BID);
1474    return 0;
1475  }
1476
1477  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1478    Diag(Loc, diag::ext_implicit_lib_function_decl)
1479      << Context.BuiltinInfo.GetName(BID)
1480      << R;
1481    if (Context.BuiltinInfo.getHeaderName(BID) &&
1482        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1483          != DiagnosticsEngine::Ignored)
1484      Diag(Loc, diag::note_please_include_header)
1485        << Context.BuiltinInfo.getHeaderName(BID)
1486        << Context.BuiltinInfo.GetName(BID);
1487  }
1488
1489  FunctionDecl *New = FunctionDecl::Create(Context,
1490                                           Context.getTranslationUnitDecl(),
1491                                           Loc, Loc, II, R, /*TInfo=*/0,
1492                                           SC_Extern,
1493                                           SC_None, false,
1494                                           /*hasPrototype=*/true);
1495  New->setImplicit();
1496
1497  // Create Decl objects for each parameter, adding them to the
1498  // FunctionDecl.
1499  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1500    SmallVector<ParmVarDecl*, 16> Params;
1501    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1502      ParmVarDecl *parm =
1503        ParmVarDecl::Create(Context, New, SourceLocation(),
1504                            SourceLocation(), 0,
1505                            FT->getArgType(i), /*TInfo=*/0,
1506                            SC_None, SC_None, 0);
1507      parm->setScopeInfo(0, i);
1508      Params.push_back(parm);
1509    }
1510    New->setParams(Params);
1511  }
1512
1513  AddKnownFunctionAttributes(New);
1514
1515  // TUScope is the translation-unit scope to insert this function into.
1516  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1517  // relate Scopes to DeclContexts, and probably eliminate CurContext
1518  // entirely, but we're not there yet.
1519  DeclContext *SavedContext = CurContext;
1520  CurContext = Context.getTranslationUnitDecl();
1521  PushOnScopeChains(New, TUScope);
1522  CurContext = SavedContext;
1523  return New;
1524}
1525
1526bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1527  QualType OldType;
1528  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1529    OldType = OldTypedef->getUnderlyingType();
1530  else
1531    OldType = Context.getTypeDeclType(Old);
1532  QualType NewType = New->getUnderlyingType();
1533
1534  if (NewType->isVariablyModifiedType()) {
1535    // Must not redefine a typedef with a variably-modified type.
1536    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1537    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1538      << Kind << NewType;
1539    if (Old->getLocation().isValid())
1540      Diag(Old->getLocation(), diag::note_previous_definition);
1541    New->setInvalidDecl();
1542    return true;
1543  }
1544
1545  if (OldType != NewType &&
1546      !OldType->isDependentType() &&
1547      !NewType->isDependentType() &&
1548      !Context.hasSameType(OldType, NewType)) {
1549    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1550    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1551      << Kind << NewType << OldType;
1552    if (Old->getLocation().isValid())
1553      Diag(Old->getLocation(), diag::note_previous_definition);
1554    New->setInvalidDecl();
1555    return true;
1556  }
1557  return false;
1558}
1559
1560/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1561/// same name and scope as a previous declaration 'Old'.  Figure out
1562/// how to resolve this situation, merging decls or emitting
1563/// diagnostics as appropriate. If there was an error, set New to be invalid.
1564///
1565void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1566  // If the new decl is known invalid already, don't bother doing any
1567  // merging checks.
1568  if (New->isInvalidDecl()) return;
1569
1570  // Allow multiple definitions for ObjC built-in typedefs.
1571  // FIXME: Verify the underlying types are equivalent!
1572  if (getLangOpts().ObjC1) {
1573    const IdentifierInfo *TypeID = New->getIdentifier();
1574    switch (TypeID->getLength()) {
1575    default: break;
1576    case 2:
1577      {
1578        if (!TypeID->isStr("id"))
1579          break;
1580        QualType T = New->getUnderlyingType();
1581        if (!T->isPointerType())
1582          break;
1583        if (!T->isVoidPointerType()) {
1584          QualType PT = T->getAs<PointerType>()->getPointeeType();
1585          if (!PT->isStructureType())
1586            break;
1587        }
1588        Context.setObjCIdRedefinitionType(T);
1589        // Install the built-in type for 'id', ignoring the current definition.
1590        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1591        return;
1592      }
1593    case 5:
1594      if (!TypeID->isStr("Class"))
1595        break;
1596      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1597      // Install the built-in type for 'Class', ignoring the current definition.
1598      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1599      return;
1600    case 3:
1601      if (!TypeID->isStr("SEL"))
1602        break;
1603      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1604      // Install the built-in type for 'SEL', ignoring the current definition.
1605      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1606      return;
1607    }
1608    // Fall through - the typedef name was not a builtin type.
1609  }
1610
1611  // Verify the old decl was also a type.
1612  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1613  if (!Old) {
1614    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1615      << New->getDeclName();
1616
1617    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1618    if (OldD->getLocation().isValid())
1619      Diag(OldD->getLocation(), diag::note_previous_definition);
1620
1621    return New->setInvalidDecl();
1622  }
1623
1624  // If the old declaration is invalid, just give up here.
1625  if (Old->isInvalidDecl())
1626    return New->setInvalidDecl();
1627
1628  // If the typedef types are not identical, reject them in all languages and
1629  // with any extensions enabled.
1630  if (isIncompatibleTypedef(Old, New))
1631    return;
1632
1633  // The types match.  Link up the redeclaration chain if the old
1634  // declaration was a typedef.
1635  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1636    New->setPreviousDeclaration(Typedef);
1637
1638  if (getLangOpts().MicrosoftExt)
1639    return;
1640
1641  if (getLangOpts().CPlusPlus) {
1642    // C++ [dcl.typedef]p2:
1643    //   In a given non-class scope, a typedef specifier can be used to
1644    //   redefine the name of any type declared in that scope to refer
1645    //   to the type to which it already refers.
1646    if (!isa<CXXRecordDecl>(CurContext))
1647      return;
1648
1649    // C++0x [dcl.typedef]p4:
1650    //   In a given class scope, a typedef specifier can be used to redefine
1651    //   any class-name declared in that scope that is not also a typedef-name
1652    //   to refer to the type to which it already refers.
1653    //
1654    // This wording came in via DR424, which was a correction to the
1655    // wording in DR56, which accidentally banned code like:
1656    //
1657    //   struct S {
1658    //     typedef struct A { } A;
1659    //   };
1660    //
1661    // in the C++03 standard. We implement the C++0x semantics, which
1662    // allow the above but disallow
1663    //
1664    //   struct S {
1665    //     typedef int I;
1666    //     typedef int I;
1667    //   };
1668    //
1669    // since that was the intent of DR56.
1670    if (!isa<TypedefNameDecl>(Old))
1671      return;
1672
1673    Diag(New->getLocation(), diag::err_redefinition)
1674      << New->getDeclName();
1675    Diag(Old->getLocation(), diag::note_previous_definition);
1676    return New->setInvalidDecl();
1677  }
1678
1679  // Modules always permit redefinition of typedefs, as does C11.
1680  if (getLangOpts().Modules || getLangOpts().C11)
1681    return;
1682
1683  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1684  // is normally mapped to an error, but can be controlled with
1685  // -Wtypedef-redefinition.  If either the original or the redefinition is
1686  // in a system header, don't emit this for compatibility with GCC.
1687  if (getDiagnostics().getSuppressSystemWarnings() &&
1688      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1689       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1690    return;
1691
1692  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1693    << New->getDeclName();
1694  Diag(Old->getLocation(), diag::note_previous_definition);
1695  return;
1696}
1697
1698/// DeclhasAttr - returns true if decl Declaration already has the target
1699/// attribute.
1700static bool
1701DeclHasAttr(const Decl *D, const Attr *A) {
1702  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1703  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1704  // responsible for making sure they are consistent.
1705  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1706  if (AA)
1707    return false;
1708
1709  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1710  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1711  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1712    if ((*i)->getKind() == A->getKind()) {
1713      if (Ann) {
1714        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1715          return true;
1716        continue;
1717      }
1718      // FIXME: Don't hardcode this check
1719      if (OA && isa<OwnershipAttr>(*i))
1720        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1721      return true;
1722    }
1723
1724  return false;
1725}
1726
1727bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1728  InheritableAttr *NewAttr = NULL;
1729  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1730    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1731                                    AA->getIntroduced(), AA->getDeprecated(),
1732                                    AA->getObsoleted(), AA->getUnavailable(),
1733                                    AA->getMessage());
1734  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1735    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1736  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1737    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1738  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1739    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1740  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1741    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1742                              FA->getFormatIdx(), FA->getFirstArg());
1743  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1744    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1745  else if (!DeclHasAttr(D, Attr))
1746    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1747
1748  if (NewAttr) {
1749    NewAttr->setInherited(true);
1750    D->addAttr(NewAttr);
1751    return true;
1752  }
1753
1754  return false;
1755}
1756
1757static const Decl *getDefinition(const Decl *D) {
1758  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1759    return TD->getDefinition();
1760  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1761    return VD->getDefinition();
1762  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1763    const FunctionDecl* Def;
1764    if (FD->hasBody(Def))
1765      return Def;
1766  }
1767  return NULL;
1768}
1769
1770static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1771  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1772       I != E; ++I) {
1773    Attr *Attribute = *I;
1774    if (Attribute->getKind() == Kind)
1775      return true;
1776  }
1777  return false;
1778}
1779
1780/// checkNewAttributesAfterDef - If we already have a definition, check that
1781/// there are no new attributes in this declaration.
1782static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1783  if (!New->hasAttrs())
1784    return;
1785
1786  const Decl *Def = getDefinition(Old);
1787  if (!Def || Def == New)
1788    return;
1789
1790  AttrVec &NewAttributes = New->getAttrs();
1791  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1792    const Attr *NewAttribute = NewAttributes[I];
1793    if (hasAttribute(Def, NewAttribute->getKind())) {
1794      ++I;
1795      continue; // regular attr merging will take care of validating this.
1796    }
1797    S.Diag(NewAttribute->getLocation(),
1798           diag::warn_attribute_precede_definition);
1799    S.Diag(Def->getLocation(), diag::note_previous_definition);
1800    NewAttributes.erase(NewAttributes.begin() + I);
1801    --E;
1802  }
1803}
1804
1805/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1806void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1807                               bool MergeDeprecation) {
1808  // attributes declared post-definition are currently ignored
1809  checkNewAttributesAfterDef(*this, New, Old);
1810
1811  if (!Old->hasAttrs())
1812    return;
1813
1814  bool foundAny = New->hasAttrs();
1815
1816  // Ensure that any moving of objects within the allocated map is done before
1817  // we process them.
1818  if (!foundAny) New->setAttrs(AttrVec());
1819
1820  for (specific_attr_iterator<InheritableAttr>
1821         i = Old->specific_attr_begin<InheritableAttr>(),
1822         e = Old->specific_attr_end<InheritableAttr>();
1823       i != e; ++i) {
1824    // Ignore deprecated/unavailable/availability attributes if requested.
1825    if (!MergeDeprecation &&
1826        (isa<DeprecatedAttr>(*i) ||
1827         isa<UnavailableAttr>(*i) ||
1828         isa<AvailabilityAttr>(*i)))
1829      continue;
1830
1831    if (mergeDeclAttribute(New, *i))
1832      foundAny = true;
1833  }
1834
1835  if (!foundAny) New->dropAttrs();
1836}
1837
1838/// mergeParamDeclAttributes - Copy attributes from the old parameter
1839/// to the new one.
1840static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1841                                     const ParmVarDecl *oldDecl,
1842                                     ASTContext &C) {
1843  if (!oldDecl->hasAttrs())
1844    return;
1845
1846  bool foundAny = newDecl->hasAttrs();
1847
1848  // Ensure that any moving of objects within the allocated map is
1849  // done before we process them.
1850  if (!foundAny) newDecl->setAttrs(AttrVec());
1851
1852  for (specific_attr_iterator<InheritableParamAttr>
1853       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1854       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1855    if (!DeclHasAttr(newDecl, *i)) {
1856      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1857      newAttr->setInherited(true);
1858      newDecl->addAttr(newAttr);
1859      foundAny = true;
1860    }
1861  }
1862
1863  if (!foundAny) newDecl->dropAttrs();
1864}
1865
1866namespace {
1867
1868/// Used in MergeFunctionDecl to keep track of function parameters in
1869/// C.
1870struct GNUCompatibleParamWarning {
1871  ParmVarDecl *OldParm;
1872  ParmVarDecl *NewParm;
1873  QualType PromotedType;
1874};
1875
1876}
1877
1878/// getSpecialMember - get the special member enum for a method.
1879Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1880  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1881    if (Ctor->isDefaultConstructor())
1882      return Sema::CXXDefaultConstructor;
1883
1884    if (Ctor->isCopyConstructor())
1885      return Sema::CXXCopyConstructor;
1886
1887    if (Ctor->isMoveConstructor())
1888      return Sema::CXXMoveConstructor;
1889  } else if (isa<CXXDestructorDecl>(MD)) {
1890    return Sema::CXXDestructor;
1891  } else if (MD->isCopyAssignmentOperator()) {
1892    return Sema::CXXCopyAssignment;
1893  } else if (MD->isMoveAssignmentOperator()) {
1894    return Sema::CXXMoveAssignment;
1895  }
1896
1897  return Sema::CXXInvalid;
1898}
1899
1900/// canRedefineFunction - checks if a function can be redefined. Currently,
1901/// only extern inline functions can be redefined, and even then only in
1902/// GNU89 mode.
1903static bool canRedefineFunction(const FunctionDecl *FD,
1904                                const LangOptions& LangOpts) {
1905  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1906          !LangOpts.CPlusPlus &&
1907          FD->isInlineSpecified() &&
1908          FD->getStorageClass() == SC_Extern);
1909}
1910
1911/// MergeFunctionDecl - We just parsed a function 'New' from
1912/// declarator D which has the same name and scope as a previous
1913/// declaration 'Old'.  Figure out how to resolve this situation,
1914/// merging decls or emitting diagnostics as appropriate.
1915///
1916/// In C++, New and Old must be declarations that are not
1917/// overloaded. Use IsOverload to determine whether New and Old are
1918/// overloaded, and to select the Old declaration that New should be
1919/// merged with.
1920///
1921/// Returns true if there was an error, false otherwise.
1922bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1923  // Verify the old decl was also a function.
1924  FunctionDecl *Old = 0;
1925  if (FunctionTemplateDecl *OldFunctionTemplate
1926        = dyn_cast<FunctionTemplateDecl>(OldD))
1927    Old = OldFunctionTemplate->getTemplatedDecl();
1928  else
1929    Old = dyn_cast<FunctionDecl>(OldD);
1930  if (!Old) {
1931    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1932      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1933      Diag(Shadow->getTargetDecl()->getLocation(),
1934           diag::note_using_decl_target);
1935      Diag(Shadow->getUsingDecl()->getLocation(),
1936           diag::note_using_decl) << 0;
1937      return true;
1938    }
1939
1940    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1941      << New->getDeclName();
1942    Diag(OldD->getLocation(), diag::note_previous_definition);
1943    return true;
1944  }
1945
1946  // Determine whether the previous declaration was a definition,
1947  // implicit declaration, or a declaration.
1948  diag::kind PrevDiag;
1949  if (Old->isThisDeclarationADefinition())
1950    PrevDiag = diag::note_previous_definition;
1951  else if (Old->isImplicit())
1952    PrevDiag = diag::note_previous_implicit_declaration;
1953  else
1954    PrevDiag = diag::note_previous_declaration;
1955
1956  QualType OldQType = Context.getCanonicalType(Old->getType());
1957  QualType NewQType = Context.getCanonicalType(New->getType());
1958
1959  // Don't complain about this if we're in GNU89 mode and the old function
1960  // is an extern inline function.
1961  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1962      New->getStorageClass() == SC_Static &&
1963      Old->getStorageClass() != SC_Static &&
1964      !canRedefineFunction(Old, getLangOpts())) {
1965    if (getLangOpts().MicrosoftExt) {
1966      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1967      Diag(Old->getLocation(), PrevDiag);
1968    } else {
1969      Diag(New->getLocation(), diag::err_static_non_static) << New;
1970      Diag(Old->getLocation(), PrevDiag);
1971      return true;
1972    }
1973  }
1974
1975  // If a function is first declared with a calling convention, but is
1976  // later declared or defined without one, the second decl assumes the
1977  // calling convention of the first.
1978  //
1979  // For the new decl, we have to look at the NON-canonical type to tell the
1980  // difference between a function that really doesn't have a calling
1981  // convention and one that is declared cdecl. That's because in
1982  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1983  // because it is the default calling convention.
1984  //
1985  // Note also that we DO NOT return at this point, because we still have
1986  // other tests to run.
1987  const FunctionType *OldType = cast<FunctionType>(OldQType);
1988  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1989  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1990  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1991  bool RequiresAdjustment = false;
1992  if (OldTypeInfo.getCC() != CC_Default &&
1993      NewTypeInfo.getCC() == CC_Default) {
1994    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1995    RequiresAdjustment = true;
1996  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1997                                     NewTypeInfo.getCC())) {
1998    // Calling conventions really aren't compatible, so complain.
1999    Diag(New->getLocation(), diag::err_cconv_change)
2000      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2001      << (OldTypeInfo.getCC() == CC_Default)
2002      << (OldTypeInfo.getCC() == CC_Default ? "" :
2003          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2004    Diag(Old->getLocation(), diag::note_previous_declaration);
2005    return true;
2006  }
2007
2008  // FIXME: diagnose the other way around?
2009  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2010    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2011    RequiresAdjustment = true;
2012  }
2013
2014  // Merge regparm attribute.
2015  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2016      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2017    if (NewTypeInfo.getHasRegParm()) {
2018      Diag(New->getLocation(), diag::err_regparm_mismatch)
2019        << NewType->getRegParmType()
2020        << OldType->getRegParmType();
2021      Diag(Old->getLocation(), diag::note_previous_declaration);
2022      return true;
2023    }
2024
2025    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2026    RequiresAdjustment = true;
2027  }
2028
2029  // Merge ns_returns_retained attribute.
2030  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2031    if (NewTypeInfo.getProducesResult()) {
2032      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2033      Diag(Old->getLocation(), diag::note_previous_declaration);
2034      return true;
2035    }
2036
2037    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2038    RequiresAdjustment = true;
2039  }
2040
2041  if (RequiresAdjustment) {
2042    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2043    New->setType(QualType(NewType, 0));
2044    NewQType = Context.getCanonicalType(New->getType());
2045  }
2046
2047  if (getLangOpts().CPlusPlus) {
2048    // (C++98 13.1p2):
2049    //   Certain function declarations cannot be overloaded:
2050    //     -- Function declarations that differ only in the return type
2051    //        cannot be overloaded.
2052    QualType OldReturnType = OldType->getResultType();
2053    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2054    QualType ResQT;
2055    if (OldReturnType != NewReturnType) {
2056      if (NewReturnType->isObjCObjectPointerType()
2057          && OldReturnType->isObjCObjectPointerType())
2058        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2059      if (ResQT.isNull()) {
2060        if (New->isCXXClassMember() && New->isOutOfLine())
2061          Diag(New->getLocation(),
2062               diag::err_member_def_does_not_match_ret_type) << New;
2063        else
2064          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2065        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2066        return true;
2067      }
2068      else
2069        NewQType = ResQT;
2070    }
2071
2072    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2073    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2074    if (OldMethod && NewMethod) {
2075      // Preserve triviality.
2076      NewMethod->setTrivial(OldMethod->isTrivial());
2077
2078      // MSVC allows explicit template specialization at class scope:
2079      // 2 CXMethodDecls referring to the same function will be injected.
2080      // We don't want a redeclartion error.
2081      bool IsClassScopeExplicitSpecialization =
2082                              OldMethod->isFunctionTemplateSpecialization() &&
2083                              NewMethod->isFunctionTemplateSpecialization();
2084      bool isFriend = NewMethod->getFriendObjectKind();
2085
2086      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2087          !IsClassScopeExplicitSpecialization) {
2088        //    -- Member function declarations with the same name and the
2089        //       same parameter types cannot be overloaded if any of them
2090        //       is a static member function declaration.
2091        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2092          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2093          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2094          return true;
2095        }
2096
2097        // C++ [class.mem]p1:
2098        //   [...] A member shall not be declared twice in the
2099        //   member-specification, except that a nested class or member
2100        //   class template can be declared and then later defined.
2101        if (ActiveTemplateInstantiations.empty()) {
2102          unsigned NewDiag;
2103          if (isa<CXXConstructorDecl>(OldMethod))
2104            NewDiag = diag::err_constructor_redeclared;
2105          else if (isa<CXXDestructorDecl>(NewMethod))
2106            NewDiag = diag::err_destructor_redeclared;
2107          else if (isa<CXXConversionDecl>(NewMethod))
2108            NewDiag = diag::err_conv_function_redeclared;
2109          else
2110            NewDiag = diag::err_member_redeclared;
2111
2112          Diag(New->getLocation(), NewDiag);
2113        } else {
2114          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2115            << New << New->getType();
2116        }
2117        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2118
2119      // Complain if this is an explicit declaration of a special
2120      // member that was initially declared implicitly.
2121      //
2122      // As an exception, it's okay to befriend such methods in order
2123      // to permit the implicit constructor/destructor/operator calls.
2124      } else if (OldMethod->isImplicit()) {
2125        if (isFriend) {
2126          NewMethod->setImplicit();
2127        } else {
2128          Diag(NewMethod->getLocation(),
2129               diag::err_definition_of_implicitly_declared_member)
2130            << New << getSpecialMember(OldMethod);
2131          return true;
2132        }
2133      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2134        Diag(NewMethod->getLocation(),
2135             diag::err_definition_of_explicitly_defaulted_member)
2136          << getSpecialMember(OldMethod);
2137        return true;
2138      }
2139    }
2140
2141    // (C++98 8.3.5p3):
2142    //   All declarations for a function shall agree exactly in both the
2143    //   return type and the parameter-type-list.
2144    // We also want to respect all the extended bits except noreturn.
2145
2146    // noreturn should now match unless the old type info didn't have it.
2147    QualType OldQTypeForComparison = OldQType;
2148    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2149      assert(OldQType == QualType(OldType, 0));
2150      const FunctionType *OldTypeForComparison
2151        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2152      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2153      assert(OldQTypeForComparison.isCanonical());
2154    }
2155
2156    if (OldQTypeForComparison == NewQType)
2157      return MergeCompatibleFunctionDecls(New, Old, S);
2158
2159    // Fall through for conflicting redeclarations and redefinitions.
2160  }
2161
2162  // C: Function types need to be compatible, not identical. This handles
2163  // duplicate function decls like "void f(int); void f(enum X);" properly.
2164  if (!getLangOpts().CPlusPlus &&
2165      Context.typesAreCompatible(OldQType, NewQType)) {
2166    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2167    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2168    const FunctionProtoType *OldProto = 0;
2169    if (isa<FunctionNoProtoType>(NewFuncType) &&
2170        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2171      // The old declaration provided a function prototype, but the
2172      // new declaration does not. Merge in the prototype.
2173      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2174      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2175                                                 OldProto->arg_type_end());
2176      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2177                                         ParamTypes.data(), ParamTypes.size(),
2178                                         OldProto->getExtProtoInfo());
2179      New->setType(NewQType);
2180      New->setHasInheritedPrototype();
2181
2182      // Synthesize a parameter for each argument type.
2183      SmallVector<ParmVarDecl*, 16> Params;
2184      for (FunctionProtoType::arg_type_iterator
2185             ParamType = OldProto->arg_type_begin(),
2186             ParamEnd = OldProto->arg_type_end();
2187           ParamType != ParamEnd; ++ParamType) {
2188        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2189                                                 SourceLocation(),
2190                                                 SourceLocation(), 0,
2191                                                 *ParamType, /*TInfo=*/0,
2192                                                 SC_None, SC_None,
2193                                                 0);
2194        Param->setScopeInfo(0, Params.size());
2195        Param->setImplicit();
2196        Params.push_back(Param);
2197      }
2198
2199      New->setParams(Params);
2200    }
2201
2202    return MergeCompatibleFunctionDecls(New, Old, S);
2203  }
2204
2205  // GNU C permits a K&R definition to follow a prototype declaration
2206  // if the declared types of the parameters in the K&R definition
2207  // match the types in the prototype declaration, even when the
2208  // promoted types of the parameters from the K&R definition differ
2209  // from the types in the prototype. GCC then keeps the types from
2210  // the prototype.
2211  //
2212  // If a variadic prototype is followed by a non-variadic K&R definition,
2213  // the K&R definition becomes variadic.  This is sort of an edge case, but
2214  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2215  // C99 6.9.1p8.
2216  if (!getLangOpts().CPlusPlus &&
2217      Old->hasPrototype() && !New->hasPrototype() &&
2218      New->getType()->getAs<FunctionProtoType>() &&
2219      Old->getNumParams() == New->getNumParams()) {
2220    SmallVector<QualType, 16> ArgTypes;
2221    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2222    const FunctionProtoType *OldProto
2223      = Old->getType()->getAs<FunctionProtoType>();
2224    const FunctionProtoType *NewProto
2225      = New->getType()->getAs<FunctionProtoType>();
2226
2227    // Determine whether this is the GNU C extension.
2228    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2229                                               NewProto->getResultType());
2230    bool LooseCompatible = !MergedReturn.isNull();
2231    for (unsigned Idx = 0, End = Old->getNumParams();
2232         LooseCompatible && Idx != End; ++Idx) {
2233      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2234      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2235      if (Context.typesAreCompatible(OldParm->getType(),
2236                                     NewProto->getArgType(Idx))) {
2237        ArgTypes.push_back(NewParm->getType());
2238      } else if (Context.typesAreCompatible(OldParm->getType(),
2239                                            NewParm->getType(),
2240                                            /*CompareUnqualified=*/true)) {
2241        GNUCompatibleParamWarning Warn
2242          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2243        Warnings.push_back(Warn);
2244        ArgTypes.push_back(NewParm->getType());
2245      } else
2246        LooseCompatible = false;
2247    }
2248
2249    if (LooseCompatible) {
2250      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2251        Diag(Warnings[Warn].NewParm->getLocation(),
2252             diag::ext_param_promoted_not_compatible_with_prototype)
2253          << Warnings[Warn].PromotedType
2254          << Warnings[Warn].OldParm->getType();
2255        if (Warnings[Warn].OldParm->getLocation().isValid())
2256          Diag(Warnings[Warn].OldParm->getLocation(),
2257               diag::note_previous_declaration);
2258      }
2259
2260      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2261                                           ArgTypes.size(),
2262                                           OldProto->getExtProtoInfo()));
2263      return MergeCompatibleFunctionDecls(New, Old, S);
2264    }
2265
2266    // Fall through to diagnose conflicting types.
2267  }
2268
2269  // A function that has already been declared has been redeclared or defined
2270  // with a different type- show appropriate diagnostic
2271  if (unsigned BuiltinID = Old->getBuiltinID()) {
2272    // The user has declared a builtin function with an incompatible
2273    // signature.
2274    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2275      // The function the user is redeclaring is a library-defined
2276      // function like 'malloc' or 'printf'. Warn about the
2277      // redeclaration, then pretend that we don't know about this
2278      // library built-in.
2279      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2280      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2281        << Old << Old->getType();
2282      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2283      Old->setInvalidDecl();
2284      return false;
2285    }
2286
2287    PrevDiag = diag::note_previous_builtin_declaration;
2288  }
2289
2290  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2291  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2292  return true;
2293}
2294
2295/// \brief Completes the merge of two function declarations that are
2296/// known to be compatible.
2297///
2298/// This routine handles the merging of attributes and other
2299/// properties of function declarations form the old declaration to
2300/// the new declaration, once we know that New is in fact a
2301/// redeclaration of Old.
2302///
2303/// \returns false
2304bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2305                                        Scope *S) {
2306  // Merge the attributes
2307  mergeDeclAttributes(New, Old);
2308
2309  // Merge the storage class.
2310  if (Old->getStorageClass() != SC_Extern &&
2311      Old->getStorageClass() != SC_None)
2312    New->setStorageClass(Old->getStorageClass());
2313
2314  // Merge "pure" flag.
2315  if (Old->isPure())
2316    New->setPure();
2317
2318  // Merge attributes from the parameters.  These can mismatch with K&R
2319  // declarations.
2320  if (New->getNumParams() == Old->getNumParams())
2321    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2322      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2323                               Context);
2324
2325  if (getLangOpts().CPlusPlus)
2326    return MergeCXXFunctionDecl(New, Old, S);
2327
2328  return false;
2329}
2330
2331
2332void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2333                                ObjCMethodDecl *oldMethod) {
2334
2335  // Merge the attributes, including deprecated/unavailable
2336  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2337
2338  // Merge attributes from the parameters.
2339  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2340                                       oe = oldMethod->param_end();
2341  for (ObjCMethodDecl::param_iterator
2342         ni = newMethod->param_begin(), ne = newMethod->param_end();
2343       ni != ne && oi != oe; ++ni, ++oi)
2344    mergeParamDeclAttributes(*ni, *oi, Context);
2345
2346  CheckObjCMethodOverride(newMethod, oldMethod, true);
2347}
2348
2349/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2350/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2351/// emitting diagnostics as appropriate.
2352///
2353/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2354/// to here in AddInitializerToDecl. We can't check them before the initializer
2355/// is attached.
2356void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2357  if (New->isInvalidDecl() || Old->isInvalidDecl())
2358    return;
2359
2360  QualType MergedT;
2361  if (getLangOpts().CPlusPlus) {
2362    AutoType *AT = New->getType()->getContainedAutoType();
2363    if (AT && !AT->isDeduced()) {
2364      // We don't know what the new type is until the initializer is attached.
2365      return;
2366    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2367      // These could still be something that needs exception specs checked.
2368      return MergeVarDeclExceptionSpecs(New, Old);
2369    }
2370    // C++ [basic.link]p10:
2371    //   [...] the types specified by all declarations referring to a given
2372    //   object or function shall be identical, except that declarations for an
2373    //   array object can specify array types that differ by the presence or
2374    //   absence of a major array bound (8.3.4).
2375    else if (Old->getType()->isIncompleteArrayType() &&
2376             New->getType()->isArrayType()) {
2377      CanQual<ArrayType> OldArray
2378        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2379      CanQual<ArrayType> NewArray
2380        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2381      if (OldArray->getElementType() == NewArray->getElementType())
2382        MergedT = New->getType();
2383    } else if (Old->getType()->isArrayType() &&
2384             New->getType()->isIncompleteArrayType()) {
2385      CanQual<ArrayType> OldArray
2386        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2387      CanQual<ArrayType> NewArray
2388        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2389      if (OldArray->getElementType() == NewArray->getElementType())
2390        MergedT = Old->getType();
2391    } else if (New->getType()->isObjCObjectPointerType()
2392               && Old->getType()->isObjCObjectPointerType()) {
2393        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2394                                                        Old->getType());
2395    }
2396  } else {
2397    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2398  }
2399  if (MergedT.isNull()) {
2400    Diag(New->getLocation(), diag::err_redefinition_different_type)
2401      << New->getDeclName();
2402    Diag(Old->getLocation(), diag::note_previous_definition);
2403    return New->setInvalidDecl();
2404  }
2405  New->setType(MergedT);
2406}
2407
2408/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2409/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2410/// situation, merging decls or emitting diagnostics as appropriate.
2411///
2412/// Tentative definition rules (C99 6.9.2p2) are checked by
2413/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2414/// definitions here, since the initializer hasn't been attached.
2415///
2416void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2417  // If the new decl is already invalid, don't do any other checking.
2418  if (New->isInvalidDecl())
2419    return;
2420
2421  // Verify the old decl was also a variable.
2422  VarDecl *Old = 0;
2423  if (!Previous.isSingleResult() ||
2424      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2425    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2426      << New->getDeclName();
2427    Diag(Previous.getRepresentativeDecl()->getLocation(),
2428         diag::note_previous_definition);
2429    return New->setInvalidDecl();
2430  }
2431
2432  // C++ [class.mem]p1:
2433  //   A member shall not be declared twice in the member-specification [...]
2434  //
2435  // Here, we need only consider static data members.
2436  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2437    Diag(New->getLocation(), diag::err_duplicate_member)
2438      << New->getIdentifier();
2439    Diag(Old->getLocation(), diag::note_previous_declaration);
2440    New->setInvalidDecl();
2441  }
2442
2443  mergeDeclAttributes(New, Old);
2444  // Warn if an already-declared variable is made a weak_import in a subsequent
2445  // declaration
2446  if (New->getAttr<WeakImportAttr>() &&
2447      Old->getStorageClass() == SC_None &&
2448      !Old->getAttr<WeakImportAttr>()) {
2449    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2450    Diag(Old->getLocation(), diag::note_previous_definition);
2451    // Remove weak_import attribute on new declaration.
2452    New->dropAttr<WeakImportAttr>();
2453  }
2454
2455  // Merge the types.
2456  MergeVarDeclTypes(New, Old);
2457  if (New->isInvalidDecl())
2458    return;
2459
2460  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2461  if (New->getStorageClass() == SC_Static &&
2462      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2463    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2464    Diag(Old->getLocation(), diag::note_previous_definition);
2465    return New->setInvalidDecl();
2466  }
2467  // C99 6.2.2p4:
2468  //   For an identifier declared with the storage-class specifier
2469  //   extern in a scope in which a prior declaration of that
2470  //   identifier is visible,23) if the prior declaration specifies
2471  //   internal or external linkage, the linkage of the identifier at
2472  //   the later declaration is the same as the linkage specified at
2473  //   the prior declaration. If no prior declaration is visible, or
2474  //   if the prior declaration specifies no linkage, then the
2475  //   identifier has external linkage.
2476  if (New->hasExternalStorage() && Old->hasLinkage())
2477    /* Okay */;
2478  else if (New->getStorageClass() != SC_Static &&
2479           Old->getStorageClass() == SC_Static) {
2480    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2481    Diag(Old->getLocation(), diag::note_previous_definition);
2482    return New->setInvalidDecl();
2483  }
2484
2485  // Check if extern is followed by non-extern and vice-versa.
2486  if (New->hasExternalStorage() &&
2487      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2488    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2489    Diag(Old->getLocation(), diag::note_previous_definition);
2490    return New->setInvalidDecl();
2491  }
2492  if (Old->hasExternalStorage() &&
2493      !New->hasLinkage() && New->isLocalVarDecl()) {
2494    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2495    Diag(Old->getLocation(), diag::note_previous_definition);
2496    return New->setInvalidDecl();
2497  }
2498
2499  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2500
2501  // FIXME: The test for external storage here seems wrong? We still
2502  // need to check for mismatches.
2503  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2504      // Don't complain about out-of-line definitions of static members.
2505      !(Old->getLexicalDeclContext()->isRecord() &&
2506        !New->getLexicalDeclContext()->isRecord())) {
2507    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2508    Diag(Old->getLocation(), diag::note_previous_definition);
2509    return New->setInvalidDecl();
2510  }
2511
2512  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2513    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2514    Diag(Old->getLocation(), diag::note_previous_definition);
2515  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2516    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2517    Diag(Old->getLocation(), diag::note_previous_definition);
2518  }
2519
2520  // C++ doesn't have tentative definitions, so go right ahead and check here.
2521  const VarDecl *Def;
2522  if (getLangOpts().CPlusPlus &&
2523      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2524      (Def = Old->getDefinition())) {
2525    Diag(New->getLocation(), diag::err_redefinition)
2526      << New->getDeclName();
2527    Diag(Def->getLocation(), diag::note_previous_definition);
2528    New->setInvalidDecl();
2529    return;
2530  }
2531  // c99 6.2.2 P4.
2532  // For an identifier declared with the storage-class specifier extern in a
2533  // scope in which a prior declaration of that identifier is visible, if
2534  // the prior declaration specifies internal or external linkage, the linkage
2535  // of the identifier at the later declaration is the same as the linkage
2536  // specified at the prior declaration.
2537  // FIXME. revisit this code.
2538  if (New->hasExternalStorage() &&
2539      Old->getLinkage() == InternalLinkage &&
2540      New->getDeclContext() == Old->getDeclContext())
2541    New->setStorageClass(Old->getStorageClass());
2542
2543  // Keep a chain of previous declarations.
2544  New->setPreviousDeclaration(Old);
2545
2546  // Inherit access appropriately.
2547  New->setAccess(Old->getAccess());
2548}
2549
2550/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2551/// no declarator (e.g. "struct foo;") is parsed.
2552Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2553                                       DeclSpec &DS) {
2554  return ParsedFreeStandingDeclSpec(S, AS, DS,
2555                                    MultiTemplateParamsArg(*this, 0, 0));
2556}
2557
2558/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2559/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2560/// parameters to cope with template friend declarations.
2561Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2562                                       DeclSpec &DS,
2563                                       MultiTemplateParamsArg TemplateParams) {
2564  Decl *TagD = 0;
2565  TagDecl *Tag = 0;
2566  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2567      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2568      DS.getTypeSpecType() == DeclSpec::TST_union ||
2569      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2570    TagD = DS.getRepAsDecl();
2571
2572    if (!TagD) // We probably had an error
2573      return 0;
2574
2575    // Note that the above type specs guarantee that the
2576    // type rep is a Decl, whereas in many of the others
2577    // it's a Type.
2578    if (isa<TagDecl>(TagD))
2579      Tag = cast<TagDecl>(TagD);
2580    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2581      Tag = CTD->getTemplatedDecl();
2582  }
2583
2584  if (Tag) {
2585    Tag->setFreeStanding();
2586    if (Tag->isInvalidDecl())
2587      return Tag;
2588  }
2589
2590  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2591    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2592    // or incomplete types shall not be restrict-qualified."
2593    if (TypeQuals & DeclSpec::TQ_restrict)
2594      Diag(DS.getRestrictSpecLoc(),
2595           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2596           << DS.getSourceRange();
2597  }
2598
2599  if (DS.isConstexprSpecified()) {
2600    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2601    // and definitions of functions and variables.
2602    if (Tag)
2603      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2604        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2605            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2606            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2607    else
2608      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2609    // Don't emit warnings after this error.
2610    return TagD;
2611  }
2612
2613  if (DS.isFriendSpecified()) {
2614    // If we're dealing with a decl but not a TagDecl, assume that
2615    // whatever routines created it handled the friendship aspect.
2616    if (TagD && !Tag)
2617      return 0;
2618    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2619  }
2620
2621  // Track whether we warned about the fact that there aren't any
2622  // declarators.
2623  bool emittedWarning = false;
2624
2625  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2626    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2627        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2628      if (getLangOpts().CPlusPlus ||
2629          Record->getDeclContext()->isRecord())
2630        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2631
2632      Diag(DS.getLocStart(), diag::ext_no_declarators)
2633        << DS.getSourceRange();
2634      emittedWarning = true;
2635    }
2636  }
2637
2638  // Check for Microsoft C extension: anonymous struct.
2639  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2640      CurContext->isRecord() &&
2641      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2642    // Handle 2 kinds of anonymous struct:
2643    //   struct STRUCT;
2644    // and
2645    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2646    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2647    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2648        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2649         DS.getRepAsType().get()->isStructureType())) {
2650      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2651        << DS.getSourceRange();
2652      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2653    }
2654  }
2655
2656  if (getLangOpts().CPlusPlus &&
2657      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2658    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2659      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2660          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2661        Diag(Enum->getLocation(), diag::ext_no_declarators)
2662          << DS.getSourceRange();
2663        emittedWarning = true;
2664      }
2665
2666  // Skip all the checks below if we have a type error.
2667  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2668
2669  if (!DS.isMissingDeclaratorOk()) {
2670    // Warn about typedefs of enums without names, since this is an
2671    // extension in both Microsoft and GNU.
2672    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2673        Tag && isa<EnumDecl>(Tag)) {
2674      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2675        << DS.getSourceRange();
2676      return Tag;
2677    }
2678
2679    Diag(DS.getLocStart(), diag::ext_no_declarators)
2680      << DS.getSourceRange();
2681    emittedWarning = true;
2682  }
2683
2684  // We're going to complain about a bunch of spurious specifiers;
2685  // only do this if we're declaring a tag, because otherwise we
2686  // should be getting diag::ext_no_declarators.
2687  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2688    return TagD;
2689
2690  // Note that a linkage-specification sets a storage class, but
2691  // 'extern "C" struct foo;' is actually valid and not theoretically
2692  // useless.
2693  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2694    if (!DS.isExternInLinkageSpec())
2695      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2696        << DeclSpec::getSpecifierName(scs);
2697
2698  if (DS.isThreadSpecified())
2699    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2700  if (DS.getTypeQualifiers()) {
2701    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2702      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2703    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2704      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2705    // Restrict is covered above.
2706  }
2707  if (DS.isInlineSpecified())
2708    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2709  if (DS.isVirtualSpecified())
2710    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2711  if (DS.isExplicitSpecified())
2712    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2713
2714  if (DS.isModulePrivateSpecified() &&
2715      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2716    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2717      << Tag->getTagKind()
2718      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2719
2720  // Warn about ignored type attributes, for example:
2721  // __attribute__((aligned)) struct A;
2722  // Attributes should be placed after tag to apply to type declaration.
2723  if (!DS.getAttributes().empty()) {
2724    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2725    if (TypeSpecType == DeclSpec::TST_class ||
2726        TypeSpecType == DeclSpec::TST_struct ||
2727        TypeSpecType == DeclSpec::TST_union ||
2728        TypeSpecType == DeclSpec::TST_enum) {
2729      AttributeList* attrs = DS.getAttributes().getList();
2730      while (attrs) {
2731        Diag(attrs->getScopeLoc(),
2732             diag::warn_declspec_attribute_ignored)
2733        << attrs->getName()
2734        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2735            TypeSpecType == DeclSpec::TST_struct ? 1 :
2736            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2737        attrs = attrs->getNext();
2738      }
2739    }
2740  }
2741
2742  ActOnDocumentableDecl(TagD);
2743
2744  return TagD;
2745}
2746
2747/// We are trying to inject an anonymous member into the given scope;
2748/// check if there's an existing declaration that can't be overloaded.
2749///
2750/// \return true if this is a forbidden redeclaration
2751static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2752                                         Scope *S,
2753                                         DeclContext *Owner,
2754                                         DeclarationName Name,
2755                                         SourceLocation NameLoc,
2756                                         unsigned diagnostic) {
2757  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2758                 Sema::ForRedeclaration);
2759  if (!SemaRef.LookupName(R, S)) return false;
2760
2761  if (R.getAsSingle<TagDecl>())
2762    return false;
2763
2764  // Pick a representative declaration.
2765  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2766  assert(PrevDecl && "Expected a non-null Decl");
2767
2768  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2769    return false;
2770
2771  SemaRef.Diag(NameLoc, diagnostic) << Name;
2772  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2773
2774  return true;
2775}
2776
2777/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2778/// anonymous struct or union AnonRecord into the owning context Owner
2779/// and scope S. This routine will be invoked just after we realize
2780/// that an unnamed union or struct is actually an anonymous union or
2781/// struct, e.g.,
2782///
2783/// @code
2784/// union {
2785///   int i;
2786///   float f;
2787/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2788///    // f into the surrounding scope.x
2789/// @endcode
2790///
2791/// This routine is recursive, injecting the names of nested anonymous
2792/// structs/unions into the owning context and scope as well.
2793static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2794                                                DeclContext *Owner,
2795                                                RecordDecl *AnonRecord,
2796                                                AccessSpecifier AS,
2797                              SmallVector<NamedDecl*, 2> &Chaining,
2798                                                      bool MSAnonStruct) {
2799  unsigned diagKind
2800    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2801                            : diag::err_anonymous_struct_member_redecl;
2802
2803  bool Invalid = false;
2804
2805  // Look every FieldDecl and IndirectFieldDecl with a name.
2806  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2807                               DEnd = AnonRecord->decls_end();
2808       D != DEnd; ++D) {
2809    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2810        cast<NamedDecl>(*D)->getDeclName()) {
2811      ValueDecl *VD = cast<ValueDecl>(*D);
2812      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2813                                       VD->getLocation(), diagKind)) {
2814        // C++ [class.union]p2:
2815        //   The names of the members of an anonymous union shall be
2816        //   distinct from the names of any other entity in the
2817        //   scope in which the anonymous union is declared.
2818        Invalid = true;
2819      } else {
2820        // C++ [class.union]p2:
2821        //   For the purpose of name lookup, after the anonymous union
2822        //   definition, the members of the anonymous union are
2823        //   considered to have been defined in the scope in which the
2824        //   anonymous union is declared.
2825        unsigned OldChainingSize = Chaining.size();
2826        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2827          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2828               PE = IF->chain_end(); PI != PE; ++PI)
2829            Chaining.push_back(*PI);
2830        else
2831          Chaining.push_back(VD);
2832
2833        assert(Chaining.size() >= 2);
2834        NamedDecl **NamedChain =
2835          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2836        for (unsigned i = 0; i < Chaining.size(); i++)
2837          NamedChain[i] = Chaining[i];
2838
2839        IndirectFieldDecl* IndirectField =
2840          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2841                                    VD->getIdentifier(), VD->getType(),
2842                                    NamedChain, Chaining.size());
2843
2844        IndirectField->setAccess(AS);
2845        IndirectField->setImplicit();
2846        SemaRef.PushOnScopeChains(IndirectField, S);
2847
2848        // That includes picking up the appropriate access specifier.
2849        if (AS != AS_none) IndirectField->setAccess(AS);
2850
2851        Chaining.resize(OldChainingSize);
2852      }
2853    }
2854  }
2855
2856  return Invalid;
2857}
2858
2859/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2860/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2861/// illegal input values are mapped to SC_None.
2862static StorageClass
2863StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2864  switch (StorageClassSpec) {
2865  case DeclSpec::SCS_unspecified:    return SC_None;
2866  case DeclSpec::SCS_extern:         return SC_Extern;
2867  case DeclSpec::SCS_static:         return SC_Static;
2868  case DeclSpec::SCS_auto:           return SC_Auto;
2869  case DeclSpec::SCS_register:       return SC_Register;
2870  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2871    // Illegal SCSs map to None: error reporting is up to the caller.
2872  case DeclSpec::SCS_mutable:        // Fall through.
2873  case DeclSpec::SCS_typedef:        return SC_None;
2874  }
2875  llvm_unreachable("unknown storage class specifier");
2876}
2877
2878/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2879/// a StorageClass. Any error reporting is up to the caller:
2880/// illegal input values are mapped to SC_None.
2881static StorageClass
2882StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2883  switch (StorageClassSpec) {
2884  case DeclSpec::SCS_unspecified:    return SC_None;
2885  case DeclSpec::SCS_extern:         return SC_Extern;
2886  case DeclSpec::SCS_static:         return SC_Static;
2887  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2888    // Illegal SCSs map to None: error reporting is up to the caller.
2889  case DeclSpec::SCS_auto:           // Fall through.
2890  case DeclSpec::SCS_mutable:        // Fall through.
2891  case DeclSpec::SCS_register:       // Fall through.
2892  case DeclSpec::SCS_typedef:        return SC_None;
2893  }
2894  llvm_unreachable("unknown storage class specifier");
2895}
2896
2897/// BuildAnonymousStructOrUnion - Handle the declaration of an
2898/// anonymous structure or union. Anonymous unions are a C++ feature
2899/// (C++ [class.union]) and a C11 feature; anonymous structures
2900/// are a C11 feature and GNU C++ extension.
2901Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2902                                             AccessSpecifier AS,
2903                                             RecordDecl *Record) {
2904  DeclContext *Owner = Record->getDeclContext();
2905
2906  // Diagnose whether this anonymous struct/union is an extension.
2907  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2908    Diag(Record->getLocation(), diag::ext_anonymous_union);
2909  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2910    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2911  else if (!Record->isUnion() && !getLangOpts().C11)
2912    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2913
2914  // C and C++ require different kinds of checks for anonymous
2915  // structs/unions.
2916  bool Invalid = false;
2917  if (getLangOpts().CPlusPlus) {
2918    const char* PrevSpec = 0;
2919    unsigned DiagID;
2920    if (Record->isUnion()) {
2921      // C++ [class.union]p6:
2922      //   Anonymous unions declared in a named namespace or in the
2923      //   global namespace shall be declared static.
2924      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2925          (isa<TranslationUnitDecl>(Owner) ||
2926           (isa<NamespaceDecl>(Owner) &&
2927            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2928        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2929          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2930
2931        // Recover by adding 'static'.
2932        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2933                               PrevSpec, DiagID);
2934      }
2935      // C++ [class.union]p6:
2936      //   A storage class is not allowed in a declaration of an
2937      //   anonymous union in a class scope.
2938      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2939               isa<RecordDecl>(Owner)) {
2940        Diag(DS.getStorageClassSpecLoc(),
2941             diag::err_anonymous_union_with_storage_spec)
2942          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2943
2944        // Recover by removing the storage specifier.
2945        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2946                               SourceLocation(),
2947                               PrevSpec, DiagID);
2948      }
2949    }
2950
2951    // Ignore const/volatile/restrict qualifiers.
2952    if (DS.getTypeQualifiers()) {
2953      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2954        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2955          << Record->isUnion() << 0
2956          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2957      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2958        Diag(DS.getVolatileSpecLoc(),
2959             diag::ext_anonymous_struct_union_qualified)
2960          << Record->isUnion() << 1
2961          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2962      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2963        Diag(DS.getRestrictSpecLoc(),
2964             diag::ext_anonymous_struct_union_qualified)
2965          << Record->isUnion() << 2
2966          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2967
2968      DS.ClearTypeQualifiers();
2969    }
2970
2971    // C++ [class.union]p2:
2972    //   The member-specification of an anonymous union shall only
2973    //   define non-static data members. [Note: nested types and
2974    //   functions cannot be declared within an anonymous union. ]
2975    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2976                                 MemEnd = Record->decls_end();
2977         Mem != MemEnd; ++Mem) {
2978      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2979        // C++ [class.union]p3:
2980        //   An anonymous union shall not have private or protected
2981        //   members (clause 11).
2982        assert(FD->getAccess() != AS_none);
2983        if (FD->getAccess() != AS_public) {
2984          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2985            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2986          Invalid = true;
2987        }
2988
2989        // C++ [class.union]p1
2990        //   An object of a class with a non-trivial constructor, a non-trivial
2991        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2992        //   assignment operator cannot be a member of a union, nor can an
2993        //   array of such objects.
2994        if (CheckNontrivialField(FD))
2995          Invalid = true;
2996      } else if ((*Mem)->isImplicit()) {
2997        // Any implicit members are fine.
2998      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2999        // This is a type that showed up in an
3000        // elaborated-type-specifier inside the anonymous struct or
3001        // union, but which actually declares a type outside of the
3002        // anonymous struct or union. It's okay.
3003      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3004        if (!MemRecord->isAnonymousStructOrUnion() &&
3005            MemRecord->getDeclName()) {
3006          // Visual C++ allows type definition in anonymous struct or union.
3007          if (getLangOpts().MicrosoftExt)
3008            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3009              << (int)Record->isUnion();
3010          else {
3011            // This is a nested type declaration.
3012            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3013              << (int)Record->isUnion();
3014            Invalid = true;
3015          }
3016        }
3017      } else if (isa<AccessSpecDecl>(*Mem)) {
3018        // Any access specifier is fine.
3019      } else {
3020        // We have something that isn't a non-static data
3021        // member. Complain about it.
3022        unsigned DK = diag::err_anonymous_record_bad_member;
3023        if (isa<TypeDecl>(*Mem))
3024          DK = diag::err_anonymous_record_with_type;
3025        else if (isa<FunctionDecl>(*Mem))
3026          DK = diag::err_anonymous_record_with_function;
3027        else if (isa<VarDecl>(*Mem))
3028          DK = diag::err_anonymous_record_with_static;
3029
3030        // Visual C++ allows type definition in anonymous struct or union.
3031        if (getLangOpts().MicrosoftExt &&
3032            DK == diag::err_anonymous_record_with_type)
3033          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3034            << (int)Record->isUnion();
3035        else {
3036          Diag((*Mem)->getLocation(), DK)
3037              << (int)Record->isUnion();
3038          Invalid = true;
3039        }
3040      }
3041    }
3042  }
3043
3044  if (!Record->isUnion() && !Owner->isRecord()) {
3045    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3046      << (int)getLangOpts().CPlusPlus;
3047    Invalid = true;
3048  }
3049
3050  // Mock up a declarator.
3051  Declarator Dc(DS, Declarator::MemberContext);
3052  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3053  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3054
3055  // Create a declaration for this anonymous struct/union.
3056  NamedDecl *Anon = 0;
3057  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3058    Anon = FieldDecl::Create(Context, OwningClass,
3059                             DS.getLocStart(),
3060                             Record->getLocation(),
3061                             /*IdentifierInfo=*/0,
3062                             Context.getTypeDeclType(Record),
3063                             TInfo,
3064                             /*BitWidth=*/0, /*Mutable=*/false,
3065                             /*InitStyle=*/ICIS_NoInit);
3066    Anon->setAccess(AS);
3067    if (getLangOpts().CPlusPlus)
3068      FieldCollector->Add(cast<FieldDecl>(Anon));
3069  } else {
3070    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3071    assert(SCSpec != DeclSpec::SCS_typedef &&
3072           "Parser allowed 'typedef' as storage class VarDecl.");
3073    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3074    if (SCSpec == DeclSpec::SCS_mutable) {
3075      // mutable can only appear on non-static class members, so it's always
3076      // an error here
3077      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3078      Invalid = true;
3079      SC = SC_None;
3080    }
3081    SCSpec = DS.getStorageClassSpecAsWritten();
3082    VarDecl::StorageClass SCAsWritten
3083      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3084
3085    Anon = VarDecl::Create(Context, Owner,
3086                           DS.getLocStart(),
3087                           Record->getLocation(), /*IdentifierInfo=*/0,
3088                           Context.getTypeDeclType(Record),
3089                           TInfo, SC, SCAsWritten);
3090
3091    // Default-initialize the implicit variable. This initialization will be
3092    // trivial in almost all cases, except if a union member has an in-class
3093    // initializer:
3094    //   union { int n = 0; };
3095    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3096  }
3097  Anon->setImplicit();
3098
3099  // Add the anonymous struct/union object to the current
3100  // context. We'll be referencing this object when we refer to one of
3101  // its members.
3102  Owner->addDecl(Anon);
3103
3104  // Inject the members of the anonymous struct/union into the owning
3105  // context and into the identifier resolver chain for name lookup
3106  // purposes.
3107  SmallVector<NamedDecl*, 2> Chain;
3108  Chain.push_back(Anon);
3109
3110  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3111                                          Chain, false))
3112    Invalid = true;
3113
3114  // Mark this as an anonymous struct/union type. Note that we do not
3115  // do this until after we have already checked and injected the
3116  // members of this anonymous struct/union type, because otherwise
3117  // the members could be injected twice: once by DeclContext when it
3118  // builds its lookup table, and once by
3119  // InjectAnonymousStructOrUnionMembers.
3120  Record->setAnonymousStructOrUnion(true);
3121
3122  if (Invalid)
3123    Anon->setInvalidDecl();
3124
3125  return Anon;
3126}
3127
3128/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3129/// Microsoft C anonymous structure.
3130/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3131/// Example:
3132///
3133/// struct A { int a; };
3134/// struct B { struct A; int b; };
3135///
3136/// void foo() {
3137///   B var;
3138///   var.a = 3;
3139/// }
3140///
3141Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3142                                           RecordDecl *Record) {
3143
3144  // If there is no Record, get the record via the typedef.
3145  if (!Record)
3146    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3147
3148  // Mock up a declarator.
3149  Declarator Dc(DS, Declarator::TypeNameContext);
3150  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3151  assert(TInfo && "couldn't build declarator info for anonymous struct");
3152
3153  // Create a declaration for this anonymous struct.
3154  NamedDecl* Anon = FieldDecl::Create(Context,
3155                             cast<RecordDecl>(CurContext),
3156                             DS.getLocStart(),
3157                             DS.getLocStart(),
3158                             /*IdentifierInfo=*/0,
3159                             Context.getTypeDeclType(Record),
3160                             TInfo,
3161                             /*BitWidth=*/0, /*Mutable=*/false,
3162                             /*InitStyle=*/ICIS_NoInit);
3163  Anon->setImplicit();
3164
3165  // Add the anonymous struct object to the current context.
3166  CurContext->addDecl(Anon);
3167
3168  // Inject the members of the anonymous struct into the current
3169  // context and into the identifier resolver chain for name lookup
3170  // purposes.
3171  SmallVector<NamedDecl*, 2> Chain;
3172  Chain.push_back(Anon);
3173
3174  RecordDecl *RecordDef = Record->getDefinition();
3175  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3176                                                        RecordDef, AS_none,
3177                                                        Chain, true))
3178    Anon->setInvalidDecl();
3179
3180  return Anon;
3181}
3182
3183/// GetNameForDeclarator - Determine the full declaration name for the
3184/// given Declarator.
3185DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3186  return GetNameFromUnqualifiedId(D.getName());
3187}
3188
3189/// \brief Retrieves the declaration name from a parsed unqualified-id.
3190DeclarationNameInfo
3191Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3192  DeclarationNameInfo NameInfo;
3193  NameInfo.setLoc(Name.StartLocation);
3194
3195  switch (Name.getKind()) {
3196
3197  case UnqualifiedId::IK_ImplicitSelfParam:
3198  case UnqualifiedId::IK_Identifier:
3199    NameInfo.setName(Name.Identifier);
3200    NameInfo.setLoc(Name.StartLocation);
3201    return NameInfo;
3202
3203  case UnqualifiedId::IK_OperatorFunctionId:
3204    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3205                                           Name.OperatorFunctionId.Operator));
3206    NameInfo.setLoc(Name.StartLocation);
3207    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3208      = Name.OperatorFunctionId.SymbolLocations[0];
3209    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3210      = Name.EndLocation.getRawEncoding();
3211    return NameInfo;
3212
3213  case UnqualifiedId::IK_LiteralOperatorId:
3214    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3215                                                           Name.Identifier));
3216    NameInfo.setLoc(Name.StartLocation);
3217    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3218    return NameInfo;
3219
3220  case UnqualifiedId::IK_ConversionFunctionId: {
3221    TypeSourceInfo *TInfo;
3222    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3223    if (Ty.isNull())
3224      return DeclarationNameInfo();
3225    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3226                                               Context.getCanonicalType(Ty)));
3227    NameInfo.setLoc(Name.StartLocation);
3228    NameInfo.setNamedTypeInfo(TInfo);
3229    return NameInfo;
3230  }
3231
3232  case UnqualifiedId::IK_ConstructorName: {
3233    TypeSourceInfo *TInfo;
3234    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3235    if (Ty.isNull())
3236      return DeclarationNameInfo();
3237    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3238                                              Context.getCanonicalType(Ty)));
3239    NameInfo.setLoc(Name.StartLocation);
3240    NameInfo.setNamedTypeInfo(TInfo);
3241    return NameInfo;
3242  }
3243
3244  case UnqualifiedId::IK_ConstructorTemplateId: {
3245    // In well-formed code, we can only have a constructor
3246    // template-id that refers to the current context, so go there
3247    // to find the actual type being constructed.
3248    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3249    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3250      return DeclarationNameInfo();
3251
3252    // Determine the type of the class being constructed.
3253    QualType CurClassType = Context.getTypeDeclType(CurClass);
3254
3255    // FIXME: Check two things: that the template-id names the same type as
3256    // CurClassType, and that the template-id does not occur when the name
3257    // was qualified.
3258
3259    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3260                                    Context.getCanonicalType(CurClassType)));
3261    NameInfo.setLoc(Name.StartLocation);
3262    // FIXME: should we retrieve TypeSourceInfo?
3263    NameInfo.setNamedTypeInfo(0);
3264    return NameInfo;
3265  }
3266
3267  case UnqualifiedId::IK_DestructorName: {
3268    TypeSourceInfo *TInfo;
3269    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3270    if (Ty.isNull())
3271      return DeclarationNameInfo();
3272    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3273                                              Context.getCanonicalType(Ty)));
3274    NameInfo.setLoc(Name.StartLocation);
3275    NameInfo.setNamedTypeInfo(TInfo);
3276    return NameInfo;
3277  }
3278
3279  case UnqualifiedId::IK_TemplateId: {
3280    TemplateName TName = Name.TemplateId->Template.get();
3281    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3282    return Context.getNameForTemplate(TName, TNameLoc);
3283  }
3284
3285  } // switch (Name.getKind())
3286
3287  llvm_unreachable("Unknown name kind");
3288}
3289
3290static QualType getCoreType(QualType Ty) {
3291  do {
3292    if (Ty->isPointerType() || Ty->isReferenceType())
3293      Ty = Ty->getPointeeType();
3294    else if (Ty->isArrayType())
3295      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3296    else
3297      return Ty.withoutLocalFastQualifiers();
3298  } while (true);
3299}
3300
3301/// hasSimilarParameters - Determine whether the C++ functions Declaration
3302/// and Definition have "nearly" matching parameters. This heuristic is
3303/// used to improve diagnostics in the case where an out-of-line function
3304/// definition doesn't match any declaration within the class or namespace.
3305/// Also sets Params to the list of indices to the parameters that differ
3306/// between the declaration and the definition. If hasSimilarParameters
3307/// returns true and Params is empty, then all of the parameters match.
3308static bool hasSimilarParameters(ASTContext &Context,
3309                                     FunctionDecl *Declaration,
3310                                     FunctionDecl *Definition,
3311                                     llvm::SmallVectorImpl<unsigned> &Params) {
3312  Params.clear();
3313  if (Declaration->param_size() != Definition->param_size())
3314    return false;
3315  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3316    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3317    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3318
3319    // The parameter types are identical
3320    if (Context.hasSameType(DefParamTy, DeclParamTy))
3321      continue;
3322
3323    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3324    QualType DefParamBaseTy = getCoreType(DefParamTy);
3325    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3326    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3327
3328    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3329        (DeclTyName && DeclTyName == DefTyName))
3330      Params.push_back(Idx);
3331    else  // The two parameters aren't even close
3332      return false;
3333  }
3334
3335  return true;
3336}
3337
3338/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3339/// declarator needs to be rebuilt in the current instantiation.
3340/// Any bits of declarator which appear before the name are valid for
3341/// consideration here.  That's specifically the type in the decl spec
3342/// and the base type in any member-pointer chunks.
3343static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3344                                                    DeclarationName Name) {
3345  // The types we specifically need to rebuild are:
3346  //   - typenames, typeofs, and decltypes
3347  //   - types which will become injected class names
3348  // Of course, we also need to rebuild any type referencing such a
3349  // type.  It's safest to just say "dependent", but we call out a
3350  // few cases here.
3351
3352  DeclSpec &DS = D.getMutableDeclSpec();
3353  switch (DS.getTypeSpecType()) {
3354  case DeclSpec::TST_typename:
3355  case DeclSpec::TST_typeofType:
3356  case DeclSpec::TST_decltype:
3357  case DeclSpec::TST_underlyingType:
3358  case DeclSpec::TST_atomic: {
3359    // Grab the type from the parser.
3360    TypeSourceInfo *TSI = 0;
3361    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3362    if (T.isNull() || !T->isDependentType()) break;
3363
3364    // Make sure there's a type source info.  This isn't really much
3365    // of a waste; most dependent types should have type source info
3366    // attached already.
3367    if (!TSI)
3368      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3369
3370    // Rebuild the type in the current instantiation.
3371    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3372    if (!TSI) return true;
3373
3374    // Store the new type back in the decl spec.
3375    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3376    DS.UpdateTypeRep(LocType);
3377    break;
3378  }
3379
3380  case DeclSpec::TST_typeofExpr: {
3381    Expr *E = DS.getRepAsExpr();
3382    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3383    if (Result.isInvalid()) return true;
3384    DS.UpdateExprRep(Result.get());
3385    break;
3386  }
3387
3388  default:
3389    // Nothing to do for these decl specs.
3390    break;
3391  }
3392
3393  // It doesn't matter what order we do this in.
3394  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3395    DeclaratorChunk &Chunk = D.getTypeObject(I);
3396
3397    // The only type information in the declarator which can come
3398    // before the declaration name is the base type of a member
3399    // pointer.
3400    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3401      continue;
3402
3403    // Rebuild the scope specifier in-place.
3404    CXXScopeSpec &SS = Chunk.Mem.Scope();
3405    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3406      return true;
3407  }
3408
3409  return false;
3410}
3411
3412Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3413  D.setFunctionDefinitionKind(FDK_Declaration);
3414  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3415
3416  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3417      Dcl && Dcl->getDeclContext()->isFileContext())
3418    Dcl->setTopLevelDeclInObjCContainer();
3419
3420  return Dcl;
3421}
3422
3423/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3424///   If T is the name of a class, then each of the following shall have a
3425///   name different from T:
3426///     - every static data member of class T;
3427///     - every member function of class T
3428///     - every member of class T that is itself a type;
3429/// \returns true if the declaration name violates these rules.
3430bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3431                                   DeclarationNameInfo NameInfo) {
3432  DeclarationName Name = NameInfo.getName();
3433
3434  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3435    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3436      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3437      return true;
3438    }
3439
3440  return false;
3441}
3442
3443/// \brief Diagnose a declaration whose declarator-id has the given
3444/// nested-name-specifier.
3445///
3446/// \param SS The nested-name-specifier of the declarator-id.
3447///
3448/// \param DC The declaration context to which the nested-name-specifier
3449/// resolves.
3450///
3451/// \param Name The name of the entity being declared.
3452///
3453/// \param Loc The location of the name of the entity being declared.
3454///
3455/// \returns true if we cannot safely recover from this error, false otherwise.
3456bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3457                                        DeclarationName Name,
3458                                      SourceLocation Loc) {
3459  DeclContext *Cur = CurContext;
3460  while (isa<LinkageSpecDecl>(Cur))
3461    Cur = Cur->getParent();
3462
3463  // C++ [dcl.meaning]p1:
3464  //   A declarator-id shall not be qualified except for the definition
3465  //   of a member function (9.3) or static data member (9.4) outside of
3466  //   its class, the definition or explicit instantiation of a function
3467  //   or variable member of a namespace outside of its namespace, or the
3468  //   definition of an explicit specialization outside of its namespace,
3469  //   or the declaration of a friend function that is a member of
3470  //   another class or namespace (11.3). [...]
3471
3472  // The user provided a superfluous scope specifier that refers back to the
3473  // class or namespaces in which the entity is already declared.
3474  //
3475  // class X {
3476  //   void X::f();
3477  // };
3478  if (Cur->Equals(DC)) {
3479    Diag(Loc, diag::warn_member_extra_qualification)
3480      << Name << FixItHint::CreateRemoval(SS.getRange());
3481    SS.clear();
3482    return false;
3483  }
3484
3485  // Check whether the qualifying scope encloses the scope of the original
3486  // declaration.
3487  if (!Cur->Encloses(DC)) {
3488    if (Cur->isRecord())
3489      Diag(Loc, diag::err_member_qualification)
3490        << Name << SS.getRange();
3491    else if (isa<TranslationUnitDecl>(DC))
3492      Diag(Loc, diag::err_invalid_declarator_global_scope)
3493        << Name << SS.getRange();
3494    else if (isa<FunctionDecl>(Cur))
3495      Diag(Loc, diag::err_invalid_declarator_in_function)
3496        << Name << SS.getRange();
3497    else
3498      Diag(Loc, diag::err_invalid_declarator_scope)
3499      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3500
3501    return true;
3502  }
3503
3504  if (Cur->isRecord()) {
3505    // Cannot qualify members within a class.
3506    Diag(Loc, diag::err_member_qualification)
3507      << Name << SS.getRange();
3508    SS.clear();
3509
3510    // C++ constructors and destructors with incorrect scopes can break
3511    // our AST invariants by having the wrong underlying types. If
3512    // that's the case, then drop this declaration entirely.
3513    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3514         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3515        !Context.hasSameType(Name.getCXXNameType(),
3516                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3517      return true;
3518
3519    return false;
3520  }
3521
3522  // C++11 [dcl.meaning]p1:
3523  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3524  //   not begin with a decltype-specifer"
3525  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3526  while (SpecLoc.getPrefix())
3527    SpecLoc = SpecLoc.getPrefix();
3528  if (dyn_cast_or_null<DecltypeType>(
3529        SpecLoc.getNestedNameSpecifier()->getAsType()))
3530    Diag(Loc, diag::err_decltype_in_declarator)
3531      << SpecLoc.getTypeLoc().getSourceRange();
3532
3533  return false;
3534}
3535
3536Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3537                             MultiTemplateParamsArg TemplateParamLists) {
3538  // TODO: consider using NameInfo for diagnostic.
3539  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3540  DeclarationName Name = NameInfo.getName();
3541
3542  // All of these full declarators require an identifier.  If it doesn't have
3543  // one, the ParsedFreeStandingDeclSpec action should be used.
3544  if (!Name) {
3545    if (!D.isInvalidType())  // Reject this if we think it is valid.
3546      Diag(D.getDeclSpec().getLocStart(),
3547           diag::err_declarator_need_ident)
3548        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3549    return 0;
3550  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3551    return 0;
3552
3553  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3554  // we find one that is.
3555  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3556         (S->getFlags() & Scope::TemplateParamScope) != 0)
3557    S = S->getParent();
3558
3559  DeclContext *DC = CurContext;
3560  if (D.getCXXScopeSpec().isInvalid())
3561    D.setInvalidType();
3562  else if (D.getCXXScopeSpec().isSet()) {
3563    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3564                                        UPPC_DeclarationQualifier))
3565      return 0;
3566
3567    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3568    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3569    if (!DC) {
3570      // If we could not compute the declaration context, it's because the
3571      // declaration context is dependent but does not refer to a class,
3572      // class template, or class template partial specialization. Complain
3573      // and return early, to avoid the coming semantic disaster.
3574      Diag(D.getIdentifierLoc(),
3575           diag::err_template_qualified_declarator_no_match)
3576        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3577        << D.getCXXScopeSpec().getRange();
3578      return 0;
3579    }
3580    bool IsDependentContext = DC->isDependentContext();
3581
3582    if (!IsDependentContext &&
3583        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3584      return 0;
3585
3586    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3587      Diag(D.getIdentifierLoc(),
3588           diag::err_member_def_undefined_record)
3589        << Name << DC << D.getCXXScopeSpec().getRange();
3590      D.setInvalidType();
3591    } else if (!D.getDeclSpec().isFriendSpecified()) {
3592      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3593                                      Name, D.getIdentifierLoc())) {
3594        if (DC->isRecord())
3595          return 0;
3596
3597        D.setInvalidType();
3598      }
3599    }
3600
3601    // Check whether we need to rebuild the type of the given
3602    // declaration in the current instantiation.
3603    if (EnteringContext && IsDependentContext &&
3604        TemplateParamLists.size() != 0) {
3605      ContextRAII SavedContext(*this, DC);
3606      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3607        D.setInvalidType();
3608    }
3609  }
3610
3611  if (DiagnoseClassNameShadow(DC, NameInfo))
3612    // If this is a typedef, we'll end up spewing multiple diagnostics.
3613    // Just return early; it's safer.
3614    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3615      return 0;
3616
3617  NamedDecl *New;
3618
3619  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3620  QualType R = TInfo->getType();
3621
3622  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3623                                      UPPC_DeclarationType))
3624    D.setInvalidType();
3625
3626  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3627                        ForRedeclaration);
3628
3629  // See if this is a redefinition of a variable in the same scope.
3630  if (!D.getCXXScopeSpec().isSet()) {
3631    bool IsLinkageLookup = false;
3632
3633    // If the declaration we're planning to build will be a function
3634    // or object with linkage, then look for another declaration with
3635    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3636    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3637      /* Do nothing*/;
3638    else if (R->isFunctionType()) {
3639      if (CurContext->isFunctionOrMethod() ||
3640          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3641        IsLinkageLookup = true;
3642    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3643      IsLinkageLookup = true;
3644    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3645             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3646      IsLinkageLookup = true;
3647
3648    if (IsLinkageLookup)
3649      Previous.clear(LookupRedeclarationWithLinkage);
3650
3651    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3652  } else { // Something like "int foo::x;"
3653    LookupQualifiedName(Previous, DC);
3654
3655    // C++ [dcl.meaning]p1:
3656    //   When the declarator-id is qualified, the declaration shall refer to a
3657    //  previously declared member of the class or namespace to which the
3658    //  qualifier refers (or, in the case of a namespace, of an element of the
3659    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3660    //  thereof; [...]
3661    //
3662    // Note that we already checked the context above, and that we do not have
3663    // enough information to make sure that Previous contains the declaration
3664    // we want to match. For example, given:
3665    //
3666    //   class X {
3667    //     void f();
3668    //     void f(float);
3669    //   };
3670    //
3671    //   void X::f(int) { } // ill-formed
3672    //
3673    // In this case, Previous will point to the overload set
3674    // containing the two f's declared in X, but neither of them
3675    // matches.
3676
3677    // C++ [dcl.meaning]p1:
3678    //   [...] the member shall not merely have been introduced by a
3679    //   using-declaration in the scope of the class or namespace nominated by
3680    //   the nested-name-specifier of the declarator-id.
3681    RemoveUsingDecls(Previous);
3682  }
3683
3684  if (Previous.isSingleResult() &&
3685      Previous.getFoundDecl()->isTemplateParameter()) {
3686    // Maybe we will complain about the shadowed template parameter.
3687    if (!D.isInvalidType())
3688      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3689                                      Previous.getFoundDecl());
3690
3691    // Just pretend that we didn't see the previous declaration.
3692    Previous.clear();
3693  }
3694
3695  // In C++, the previous declaration we find might be a tag type
3696  // (class or enum). In this case, the new declaration will hide the
3697  // tag type. Note that this does does not apply if we're declaring a
3698  // typedef (C++ [dcl.typedef]p4).
3699  if (Previous.isSingleTagDecl() &&
3700      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3701    Previous.clear();
3702
3703  bool AddToScope = true;
3704  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3705    if (TemplateParamLists.size()) {
3706      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3707      return 0;
3708    }
3709
3710    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3711  } else if (R->isFunctionType()) {
3712    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3713                                  move(TemplateParamLists),
3714                                  AddToScope);
3715  } else {
3716    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3717                                  move(TemplateParamLists));
3718  }
3719
3720  if (New == 0)
3721    return 0;
3722
3723  // If this has an identifier and is not an invalid redeclaration or
3724  // function template specialization, add it to the scope stack.
3725  if (New->getDeclName() && AddToScope &&
3726       !(D.isRedeclaration() && New->isInvalidDecl()))
3727    PushOnScopeChains(New, S);
3728
3729  return New;
3730}
3731
3732/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3733/// types into constant array types in certain situations which would otherwise
3734/// be errors (for GCC compatibility).
3735static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3736                                                    ASTContext &Context,
3737                                                    bool &SizeIsNegative,
3738                                                    llvm::APSInt &Oversized) {
3739  // This method tries to turn a variable array into a constant
3740  // array even when the size isn't an ICE.  This is necessary
3741  // for compatibility with code that depends on gcc's buggy
3742  // constant expression folding, like struct {char x[(int)(char*)2];}
3743  SizeIsNegative = false;
3744  Oversized = 0;
3745
3746  if (T->isDependentType())
3747    return QualType();
3748
3749  QualifierCollector Qs;
3750  const Type *Ty = Qs.strip(T);
3751
3752  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3753    QualType Pointee = PTy->getPointeeType();
3754    QualType FixedType =
3755        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3756                                            Oversized);
3757    if (FixedType.isNull()) return FixedType;
3758    FixedType = Context.getPointerType(FixedType);
3759    return Qs.apply(Context, FixedType);
3760  }
3761  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3762    QualType Inner = PTy->getInnerType();
3763    QualType FixedType =
3764        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3765                                            Oversized);
3766    if (FixedType.isNull()) return FixedType;
3767    FixedType = Context.getParenType(FixedType);
3768    return Qs.apply(Context, FixedType);
3769  }
3770
3771  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3772  if (!VLATy)
3773    return QualType();
3774  // FIXME: We should probably handle this case
3775  if (VLATy->getElementType()->isVariablyModifiedType())
3776    return QualType();
3777
3778  llvm::APSInt Res;
3779  if (!VLATy->getSizeExpr() ||
3780      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3781    return QualType();
3782
3783  // Check whether the array size is negative.
3784  if (Res.isSigned() && Res.isNegative()) {
3785    SizeIsNegative = true;
3786    return QualType();
3787  }
3788
3789  // Check whether the array is too large to be addressed.
3790  unsigned ActiveSizeBits
3791    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3792                                              Res);
3793  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3794    Oversized = Res;
3795    return QualType();
3796  }
3797
3798  return Context.getConstantArrayType(VLATy->getElementType(),
3799                                      Res, ArrayType::Normal, 0);
3800}
3801
3802/// \brief Register the given locally-scoped external C declaration so
3803/// that it can be found later for redeclarations
3804void
3805Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3806                                       const LookupResult &Previous,
3807                                       Scope *S) {
3808  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3809         "Decl is not a locally-scoped decl!");
3810  // Note that we have a locally-scoped external with this name.
3811  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3812
3813  if (!Previous.isSingleResult())
3814    return;
3815
3816  NamedDecl *PrevDecl = Previous.getFoundDecl();
3817
3818  // If there was a previous declaration of this variable, it may be
3819  // in our identifier chain. Update the identifier chain with the new
3820  // declaration.
3821  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3822    // The previous declaration was found on the identifer resolver
3823    // chain, so remove it from its scope.
3824
3825    if (S->isDeclScope(PrevDecl)) {
3826      // Special case for redeclarations in the SAME scope.
3827      // Because this declaration is going to be added to the identifier chain
3828      // later, we should temporarily take it OFF the chain.
3829      IdResolver.RemoveDecl(ND);
3830
3831    } else {
3832      // Find the scope for the original declaration.
3833      while (S && !S->isDeclScope(PrevDecl))
3834        S = S->getParent();
3835    }
3836
3837    if (S)
3838      S->RemoveDecl(PrevDecl);
3839  }
3840}
3841
3842llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3843Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3844  if (ExternalSource) {
3845    // Load locally-scoped external decls from the external source.
3846    SmallVector<NamedDecl *, 4> Decls;
3847    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3848    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3849      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3850        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3851      if (Pos == LocallyScopedExternalDecls.end())
3852        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3853    }
3854  }
3855
3856  return LocallyScopedExternalDecls.find(Name);
3857}
3858
3859/// \brief Diagnose function specifiers on a declaration of an identifier that
3860/// does not identify a function.
3861void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3862  // FIXME: We should probably indicate the identifier in question to avoid
3863  // confusion for constructs like "inline int a(), b;"
3864  if (D.getDeclSpec().isInlineSpecified())
3865    Diag(D.getDeclSpec().getInlineSpecLoc(),
3866         diag::err_inline_non_function);
3867
3868  if (D.getDeclSpec().isVirtualSpecified())
3869    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3870         diag::err_virtual_non_function);
3871
3872  if (D.getDeclSpec().isExplicitSpecified())
3873    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3874         diag::err_explicit_non_function);
3875}
3876
3877NamedDecl*
3878Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3879                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3880  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3881  if (D.getCXXScopeSpec().isSet()) {
3882    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3883      << D.getCXXScopeSpec().getRange();
3884    D.setInvalidType();
3885    // Pretend we didn't see the scope specifier.
3886    DC = CurContext;
3887    Previous.clear();
3888  }
3889
3890  if (getLangOpts().CPlusPlus) {
3891    // Check that there are no default arguments (C++ only).
3892    CheckExtraCXXDefaultArguments(D);
3893  }
3894
3895  DiagnoseFunctionSpecifiers(D);
3896
3897  if (D.getDeclSpec().isThreadSpecified())
3898    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3899  if (D.getDeclSpec().isConstexprSpecified())
3900    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3901      << 1;
3902
3903  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3904    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3905      << D.getName().getSourceRange();
3906    return 0;
3907  }
3908
3909  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3910  if (!NewTD) return 0;
3911
3912  // Handle attributes prior to checking for duplicates in MergeVarDecl
3913  ProcessDeclAttributes(S, NewTD, D);
3914
3915  CheckTypedefForVariablyModifiedType(S, NewTD);
3916
3917  bool Redeclaration = D.isRedeclaration();
3918  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3919  D.setRedeclaration(Redeclaration);
3920  return ND;
3921}
3922
3923void
3924Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3925  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3926  // then it shall have block scope.
3927  // Note that variably modified types must be fixed before merging the decl so
3928  // that redeclarations will match.
3929  QualType T = NewTD->getUnderlyingType();
3930  if (T->isVariablyModifiedType()) {
3931    getCurFunction()->setHasBranchProtectedScope();
3932
3933    if (S->getFnParent() == 0) {
3934      bool SizeIsNegative;
3935      llvm::APSInt Oversized;
3936      QualType FixedTy =
3937          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3938                                              Oversized);
3939      if (!FixedTy.isNull()) {
3940        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3941        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3942      } else {
3943        if (SizeIsNegative)
3944          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3945        else if (T->isVariableArrayType())
3946          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3947        else if (Oversized.getBoolValue())
3948          Diag(NewTD->getLocation(), diag::err_array_too_large)
3949            << Oversized.toString(10);
3950        else
3951          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3952        NewTD->setInvalidDecl();
3953      }
3954    }
3955  }
3956}
3957
3958
3959/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3960/// declares a typedef-name, either using the 'typedef' type specifier or via
3961/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3962NamedDecl*
3963Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3964                           LookupResult &Previous, bool &Redeclaration) {
3965  // Merge the decl with the existing one if appropriate. If the decl is
3966  // in an outer scope, it isn't the same thing.
3967  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3968                       /*ExplicitInstantiationOrSpecialization=*/false);
3969  if (!Previous.empty()) {
3970    Redeclaration = true;
3971    MergeTypedefNameDecl(NewTD, Previous);
3972  }
3973
3974  // If this is the C FILE type, notify the AST context.
3975  if (IdentifierInfo *II = NewTD->getIdentifier())
3976    if (!NewTD->isInvalidDecl() &&
3977        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3978      if (II->isStr("FILE"))
3979        Context.setFILEDecl(NewTD);
3980      else if (II->isStr("jmp_buf"))
3981        Context.setjmp_bufDecl(NewTD);
3982      else if (II->isStr("sigjmp_buf"))
3983        Context.setsigjmp_bufDecl(NewTD);
3984      else if (II->isStr("ucontext_t"))
3985        Context.setucontext_tDecl(NewTD);
3986    }
3987
3988  return NewTD;
3989}
3990
3991/// \brief Determines whether the given declaration is an out-of-scope
3992/// previous declaration.
3993///
3994/// This routine should be invoked when name lookup has found a
3995/// previous declaration (PrevDecl) that is not in the scope where a
3996/// new declaration by the same name is being introduced. If the new
3997/// declaration occurs in a local scope, previous declarations with
3998/// linkage may still be considered previous declarations (C99
3999/// 6.2.2p4-5, C++ [basic.link]p6).
4000///
4001/// \param PrevDecl the previous declaration found by name
4002/// lookup
4003///
4004/// \param DC the context in which the new declaration is being
4005/// declared.
4006///
4007/// \returns true if PrevDecl is an out-of-scope previous declaration
4008/// for a new delcaration with the same name.
4009static bool
4010isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4011                                ASTContext &Context) {
4012  if (!PrevDecl)
4013    return false;
4014
4015  if (!PrevDecl->hasLinkage())
4016    return false;
4017
4018  if (Context.getLangOpts().CPlusPlus) {
4019    // C++ [basic.link]p6:
4020    //   If there is a visible declaration of an entity with linkage
4021    //   having the same name and type, ignoring entities declared
4022    //   outside the innermost enclosing namespace scope, the block
4023    //   scope declaration declares that same entity and receives the
4024    //   linkage of the previous declaration.
4025    DeclContext *OuterContext = DC->getRedeclContext();
4026    if (!OuterContext->isFunctionOrMethod())
4027      // This rule only applies to block-scope declarations.
4028      return false;
4029
4030    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4031    if (PrevOuterContext->isRecord())
4032      // We found a member function: ignore it.
4033      return false;
4034
4035    // Find the innermost enclosing namespace for the new and
4036    // previous declarations.
4037    OuterContext = OuterContext->getEnclosingNamespaceContext();
4038    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4039
4040    // The previous declaration is in a different namespace, so it
4041    // isn't the same function.
4042    if (!OuterContext->Equals(PrevOuterContext))
4043      return false;
4044  }
4045
4046  return true;
4047}
4048
4049static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4050  CXXScopeSpec &SS = D.getCXXScopeSpec();
4051  if (!SS.isSet()) return;
4052  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4053}
4054
4055bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4056  QualType type = decl->getType();
4057  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4058  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4059    // Various kinds of declaration aren't allowed to be __autoreleasing.
4060    unsigned kind = -1U;
4061    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4062      if (var->hasAttr<BlocksAttr>())
4063        kind = 0; // __block
4064      else if (!var->hasLocalStorage())
4065        kind = 1; // global
4066    } else if (isa<ObjCIvarDecl>(decl)) {
4067      kind = 3; // ivar
4068    } else if (isa<FieldDecl>(decl)) {
4069      kind = 2; // field
4070    }
4071
4072    if (kind != -1U) {
4073      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4074        << kind;
4075    }
4076  } else if (lifetime == Qualifiers::OCL_None) {
4077    // Try to infer lifetime.
4078    if (!type->isObjCLifetimeType())
4079      return false;
4080
4081    lifetime = type->getObjCARCImplicitLifetime();
4082    type = Context.getLifetimeQualifiedType(type, lifetime);
4083    decl->setType(type);
4084  }
4085
4086  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4087    // Thread-local variables cannot have lifetime.
4088    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4089        var->isThreadSpecified()) {
4090      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4091        << var->getType();
4092      return true;
4093    }
4094  }
4095
4096  return false;
4097}
4098
4099NamedDecl*
4100Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4101                              TypeSourceInfo *TInfo, LookupResult &Previous,
4102                              MultiTemplateParamsArg TemplateParamLists) {
4103  QualType R = TInfo->getType();
4104  DeclarationName Name = GetNameForDeclarator(D).getName();
4105
4106  // Check that there are no default arguments (C++ only).
4107  if (getLangOpts().CPlusPlus)
4108    CheckExtraCXXDefaultArguments(D);
4109
4110  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4111  assert(SCSpec != DeclSpec::SCS_typedef &&
4112         "Parser allowed 'typedef' as storage class VarDecl.");
4113  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4114  if (SCSpec == DeclSpec::SCS_mutable) {
4115    // mutable can only appear on non-static class members, so it's always
4116    // an error here
4117    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4118    D.setInvalidType();
4119    SC = SC_None;
4120  }
4121  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4122  VarDecl::StorageClass SCAsWritten
4123    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4124
4125  IdentifierInfo *II = Name.getAsIdentifierInfo();
4126  if (!II) {
4127    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4128      << Name;
4129    return 0;
4130  }
4131
4132  DiagnoseFunctionSpecifiers(D);
4133
4134  if (!DC->isRecord() && S->getFnParent() == 0) {
4135    // C99 6.9p2: The storage-class specifiers auto and register shall not
4136    // appear in the declaration specifiers in an external declaration.
4137    if (SC == SC_Auto || SC == SC_Register) {
4138
4139      // If this is a register variable with an asm label specified, then this
4140      // is a GNU extension.
4141      if (SC == SC_Register && D.getAsmLabel())
4142        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4143      else
4144        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4145      D.setInvalidType();
4146    }
4147  }
4148
4149  if (getLangOpts().OpenCL) {
4150    // Set up the special work-group-local storage class for variables in the
4151    // OpenCL __local address space.
4152    if (R.getAddressSpace() == LangAS::opencl_local)
4153      SC = SC_OpenCLWorkGroupLocal;
4154  }
4155
4156  bool isExplicitSpecialization = false;
4157  VarDecl *NewVD;
4158  if (!getLangOpts().CPlusPlus) {
4159    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4160                            D.getIdentifierLoc(), II,
4161                            R, TInfo, SC, SCAsWritten);
4162
4163    if (D.isInvalidType())
4164      NewVD->setInvalidDecl();
4165  } else {
4166    if (DC->isRecord() && !CurContext->isRecord()) {
4167      // This is an out-of-line definition of a static data member.
4168      if (SC == SC_Static) {
4169        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4170             diag::err_static_out_of_line)
4171          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4172      } else if (SC == SC_None)
4173        SC = SC_Static;
4174    }
4175    if (SC == SC_Static && CurContext->isRecord()) {
4176      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4177        if (RD->isLocalClass())
4178          Diag(D.getIdentifierLoc(),
4179               diag::err_static_data_member_not_allowed_in_local_class)
4180            << Name << RD->getDeclName();
4181
4182        // C++98 [class.union]p1: If a union contains a static data member,
4183        // the program is ill-formed. C++11 drops this restriction.
4184        if (RD->isUnion())
4185          Diag(D.getIdentifierLoc(),
4186               getLangOpts().CPlusPlus0x
4187                 ? diag::warn_cxx98_compat_static_data_member_in_union
4188                 : diag::ext_static_data_member_in_union) << Name;
4189        // We conservatively disallow static data members in anonymous structs.
4190        else if (!RD->getDeclName())
4191          Diag(D.getIdentifierLoc(),
4192               diag::err_static_data_member_not_allowed_in_anon_struct)
4193            << Name << RD->isUnion();
4194      }
4195    }
4196
4197    // Match up the template parameter lists with the scope specifier, then
4198    // determine whether we have a template or a template specialization.
4199    isExplicitSpecialization = false;
4200    bool Invalid = false;
4201    if (TemplateParameterList *TemplateParams
4202        = MatchTemplateParametersToScopeSpecifier(
4203                                  D.getDeclSpec().getLocStart(),
4204                                                  D.getIdentifierLoc(),
4205                                                  D.getCXXScopeSpec(),
4206                                                  TemplateParamLists.get(),
4207                                                  TemplateParamLists.size(),
4208                                                  /*never a friend*/ false,
4209                                                  isExplicitSpecialization,
4210                                                  Invalid)) {
4211      if (TemplateParams->size() > 0) {
4212        // There is no such thing as a variable template.
4213        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4214          << II
4215          << SourceRange(TemplateParams->getTemplateLoc(),
4216                         TemplateParams->getRAngleLoc());
4217        return 0;
4218      } else {
4219        // There is an extraneous 'template<>' for this variable. Complain
4220        // about it, but allow the declaration of the variable.
4221        Diag(TemplateParams->getTemplateLoc(),
4222             diag::err_template_variable_noparams)
4223          << II
4224          << SourceRange(TemplateParams->getTemplateLoc(),
4225                         TemplateParams->getRAngleLoc());
4226      }
4227    }
4228
4229    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4230                            D.getIdentifierLoc(), II,
4231                            R, TInfo, SC, SCAsWritten);
4232
4233    // If this decl has an auto type in need of deduction, make a note of the
4234    // Decl so we can diagnose uses of it in its own initializer.
4235    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4236        R->getContainedAutoType())
4237      ParsingInitForAutoVars.insert(NewVD);
4238
4239    if (D.isInvalidType() || Invalid)
4240      NewVD->setInvalidDecl();
4241
4242    SetNestedNameSpecifier(NewVD, D);
4243
4244    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4245      NewVD->setTemplateParameterListsInfo(Context,
4246                                           TemplateParamLists.size(),
4247                                           TemplateParamLists.release());
4248    }
4249
4250    if (D.getDeclSpec().isConstexprSpecified())
4251      NewVD->setConstexpr(true);
4252  }
4253
4254  // Set the lexical context. If the declarator has a C++ scope specifier, the
4255  // lexical context will be different from the semantic context.
4256  NewVD->setLexicalDeclContext(CurContext);
4257
4258  if (D.getDeclSpec().isThreadSpecified()) {
4259    if (NewVD->hasLocalStorage())
4260      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4261    else if (!Context.getTargetInfo().isTLSSupported())
4262      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4263    else
4264      NewVD->setThreadSpecified(true);
4265  }
4266
4267  if (D.getDeclSpec().isModulePrivateSpecified()) {
4268    if (isExplicitSpecialization)
4269      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4270        << 2
4271        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4272    else if (NewVD->hasLocalStorage())
4273      Diag(NewVD->getLocation(), diag::err_module_private_local)
4274        << 0 << NewVD->getDeclName()
4275        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4276        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4277    else
4278      NewVD->setModulePrivate();
4279  }
4280
4281  // Handle attributes prior to checking for duplicates in MergeVarDecl
4282  ProcessDeclAttributes(S, NewVD, D);
4283
4284  // In auto-retain/release, infer strong retension for variables of
4285  // retainable type.
4286  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4287    NewVD->setInvalidDecl();
4288
4289  // Handle GNU asm-label extension (encoded as an attribute).
4290  if (Expr *E = (Expr*)D.getAsmLabel()) {
4291    // The parser guarantees this is a string.
4292    StringLiteral *SE = cast<StringLiteral>(E);
4293    StringRef Label = SE->getString();
4294    if (S->getFnParent() != 0) {
4295      switch (SC) {
4296      case SC_None:
4297      case SC_Auto:
4298        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4299        break;
4300      case SC_Register:
4301        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4302          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4303        break;
4304      case SC_Static:
4305      case SC_Extern:
4306      case SC_PrivateExtern:
4307      case SC_OpenCLWorkGroupLocal:
4308        break;
4309      }
4310    }
4311
4312    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4313                                                Context, Label));
4314  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4315    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4316      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4317    if (I != ExtnameUndeclaredIdentifiers.end()) {
4318      NewVD->addAttr(I->second);
4319      ExtnameUndeclaredIdentifiers.erase(I);
4320    }
4321  }
4322
4323  // Diagnose shadowed variables before filtering for scope.
4324  if (!D.getCXXScopeSpec().isSet())
4325    CheckShadow(S, NewVD, Previous);
4326
4327  // Don't consider existing declarations that are in a different
4328  // scope and are out-of-semantic-context declarations (if the new
4329  // declaration has linkage).
4330  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4331                       isExplicitSpecialization);
4332
4333  if (!getLangOpts().CPlusPlus) {
4334    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4335  } else {
4336    // Merge the decl with the existing one if appropriate.
4337    if (!Previous.empty()) {
4338      if (Previous.isSingleResult() &&
4339          isa<FieldDecl>(Previous.getFoundDecl()) &&
4340          D.getCXXScopeSpec().isSet()) {
4341        // The user tried to define a non-static data member
4342        // out-of-line (C++ [dcl.meaning]p1).
4343        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4344          << D.getCXXScopeSpec().getRange();
4345        Previous.clear();
4346        NewVD->setInvalidDecl();
4347      }
4348    } else if (D.getCXXScopeSpec().isSet()) {
4349      // No previous declaration in the qualifying scope.
4350      Diag(D.getIdentifierLoc(), diag::err_no_member)
4351        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4352        << D.getCXXScopeSpec().getRange();
4353      NewVD->setInvalidDecl();
4354    }
4355
4356    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4357
4358    // This is an explicit specialization of a static data member. Check it.
4359    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4360        CheckMemberSpecialization(NewVD, Previous))
4361      NewVD->setInvalidDecl();
4362  }
4363
4364  // If this is a locally-scoped extern C variable, update the map of
4365  // such variables.
4366  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4367      !NewVD->isInvalidDecl())
4368    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4369
4370  // If there's a #pragma GCC visibility in scope, and this isn't a class
4371  // member, set the visibility of this variable.
4372  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4373    AddPushedVisibilityAttribute(NewVD);
4374
4375  MarkUnusedFileScopedDecl(NewVD);
4376
4377  return NewVD;
4378}
4379
4380/// \brief Diagnose variable or built-in function shadowing.  Implements
4381/// -Wshadow.
4382///
4383/// This method is called whenever a VarDecl is added to a "useful"
4384/// scope.
4385///
4386/// \param S the scope in which the shadowing name is being declared
4387/// \param R the lookup of the name
4388///
4389void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4390  // Return if warning is ignored.
4391  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4392        DiagnosticsEngine::Ignored)
4393    return;
4394
4395  // Don't diagnose declarations at file scope.
4396  if (D->hasGlobalStorage())
4397    return;
4398
4399  DeclContext *NewDC = D->getDeclContext();
4400
4401  // Only diagnose if we're shadowing an unambiguous field or variable.
4402  if (R.getResultKind() != LookupResult::Found)
4403    return;
4404
4405  NamedDecl* ShadowedDecl = R.getFoundDecl();
4406  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4407    return;
4408
4409  // Fields are not shadowed by variables in C++ static methods.
4410  if (isa<FieldDecl>(ShadowedDecl))
4411    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4412      if (MD->isStatic())
4413        return;
4414
4415  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4416    if (shadowedVar->isExternC()) {
4417      // For shadowing external vars, make sure that we point to the global
4418      // declaration, not a locally scoped extern declaration.
4419      for (VarDecl::redecl_iterator
4420             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4421           I != E; ++I)
4422        if (I->isFileVarDecl()) {
4423          ShadowedDecl = *I;
4424          break;
4425        }
4426    }
4427
4428  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4429
4430  // Only warn about certain kinds of shadowing for class members.
4431  if (NewDC && NewDC->isRecord()) {
4432    // In particular, don't warn about shadowing non-class members.
4433    if (!OldDC->isRecord())
4434      return;
4435
4436    // TODO: should we warn about static data members shadowing
4437    // static data members from base classes?
4438
4439    // TODO: don't diagnose for inaccessible shadowed members.
4440    // This is hard to do perfectly because we might friend the
4441    // shadowing context, but that's just a false negative.
4442  }
4443
4444  // Determine what kind of declaration we're shadowing.
4445  unsigned Kind;
4446  if (isa<RecordDecl>(OldDC)) {
4447    if (isa<FieldDecl>(ShadowedDecl))
4448      Kind = 3; // field
4449    else
4450      Kind = 2; // static data member
4451  } else if (OldDC->isFileContext())
4452    Kind = 1; // global
4453  else
4454    Kind = 0; // local
4455
4456  DeclarationName Name = R.getLookupName();
4457
4458  // Emit warning and note.
4459  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4460  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4461}
4462
4463/// \brief Check -Wshadow without the advantage of a previous lookup.
4464void Sema::CheckShadow(Scope *S, VarDecl *D) {
4465  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4466        DiagnosticsEngine::Ignored)
4467    return;
4468
4469  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4470                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4471  LookupName(R, S);
4472  CheckShadow(S, D, R);
4473}
4474
4475/// \brief Perform semantic checking on a newly-created variable
4476/// declaration.
4477///
4478/// This routine performs all of the type-checking required for a
4479/// variable declaration once it has been built. It is used both to
4480/// check variables after they have been parsed and their declarators
4481/// have been translated into a declaration, and to check variables
4482/// that have been instantiated from a template.
4483///
4484/// Sets NewVD->isInvalidDecl() if an error was encountered.
4485///
4486/// Returns true if the variable declaration is a redeclaration.
4487bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4488                                    LookupResult &Previous) {
4489  // If the decl is already known invalid, don't check it.
4490  if (NewVD->isInvalidDecl())
4491    return false;
4492
4493  QualType T = NewVD->getType();
4494
4495  if (T->isObjCObjectType()) {
4496    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4497      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4498    T = Context.getObjCObjectPointerType(T);
4499    NewVD->setType(T);
4500  }
4501
4502  // Emit an error if an address space was applied to decl with local storage.
4503  // This includes arrays of objects with address space qualifiers, but not
4504  // automatic variables that point to other address spaces.
4505  // ISO/IEC TR 18037 S5.1.2
4506  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4507    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4508    NewVD->setInvalidDecl();
4509    return false;
4510  }
4511
4512  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4513  // scope.
4514  if ((getLangOpts().OpenCLVersion >= 120)
4515      && NewVD->isStaticLocal()) {
4516    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4517    NewVD->setInvalidDecl();
4518    return false;
4519  }
4520
4521  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4522      && !NewVD->hasAttr<BlocksAttr>()) {
4523    if (getLangOpts().getGC() != LangOptions::NonGC)
4524      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4525    else
4526      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4527  }
4528
4529  bool isVM = T->isVariablyModifiedType();
4530  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4531      NewVD->hasAttr<BlocksAttr>())
4532    getCurFunction()->setHasBranchProtectedScope();
4533
4534  if ((isVM && NewVD->hasLinkage()) ||
4535      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4536    bool SizeIsNegative;
4537    llvm::APSInt Oversized;
4538    QualType FixedTy =
4539        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4540                                            Oversized);
4541
4542    if (FixedTy.isNull() && T->isVariableArrayType()) {
4543      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4544      // FIXME: This won't give the correct result for
4545      // int a[10][n];
4546      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4547
4548      if (NewVD->isFileVarDecl())
4549        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4550        << SizeRange;
4551      else if (NewVD->getStorageClass() == SC_Static)
4552        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4553        << SizeRange;
4554      else
4555        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4556        << SizeRange;
4557      NewVD->setInvalidDecl();
4558      return false;
4559    }
4560
4561    if (FixedTy.isNull()) {
4562      if (NewVD->isFileVarDecl())
4563        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4564      else
4565        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4566      NewVD->setInvalidDecl();
4567      return false;
4568    }
4569
4570    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4571    NewVD->setType(FixedTy);
4572  }
4573
4574  if (Previous.empty() && NewVD->isExternC()) {
4575    // Since we did not find anything by this name and we're declaring
4576    // an extern "C" variable, look for a non-visible extern "C"
4577    // declaration with the same name.
4578    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4579      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4580    if (Pos != LocallyScopedExternalDecls.end())
4581      Previous.addDecl(Pos->second);
4582  }
4583
4584  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4585    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4586      << T;
4587    NewVD->setInvalidDecl();
4588    return false;
4589  }
4590
4591  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4592    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4593    NewVD->setInvalidDecl();
4594    return false;
4595  }
4596
4597  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4598    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4599    NewVD->setInvalidDecl();
4600    return false;
4601  }
4602
4603  if (NewVD->isConstexpr() && !T->isDependentType() &&
4604      RequireLiteralType(NewVD->getLocation(), T,
4605                         diag::err_constexpr_var_non_literal)) {
4606    NewVD->setInvalidDecl();
4607    return false;
4608  }
4609
4610  if (!Previous.empty()) {
4611    MergeVarDecl(NewVD, Previous);
4612    return true;
4613  }
4614  return false;
4615}
4616
4617/// \brief Data used with FindOverriddenMethod
4618struct FindOverriddenMethodData {
4619  Sema *S;
4620  CXXMethodDecl *Method;
4621};
4622
4623/// \brief Member lookup function that determines whether a given C++
4624/// method overrides a method in a base class, to be used with
4625/// CXXRecordDecl::lookupInBases().
4626static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4627                                 CXXBasePath &Path,
4628                                 void *UserData) {
4629  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4630
4631  FindOverriddenMethodData *Data
4632    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4633
4634  DeclarationName Name = Data->Method->getDeclName();
4635
4636  // FIXME: Do we care about other names here too?
4637  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4638    // We really want to find the base class destructor here.
4639    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4640    CanQualType CT = Data->S->Context.getCanonicalType(T);
4641
4642    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4643  }
4644
4645  for (Path.Decls = BaseRecord->lookup(Name);
4646       Path.Decls.first != Path.Decls.second;
4647       ++Path.Decls.first) {
4648    NamedDecl *D = *Path.Decls.first;
4649    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4650      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4651        return true;
4652    }
4653  }
4654
4655  return false;
4656}
4657
4658/// AddOverriddenMethods - See if a method overrides any in the base classes,
4659/// and if so, check that it's a valid override and remember it.
4660bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4661  // Look for virtual methods in base classes that this method might override.
4662  CXXBasePaths Paths;
4663  FindOverriddenMethodData Data;
4664  Data.Method = MD;
4665  Data.S = this;
4666  bool AddedAny = false;
4667  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4668    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4669         E = Paths.found_decls_end(); I != E; ++I) {
4670      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4671        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4672        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4673            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4674            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4675          AddedAny = true;
4676        }
4677      }
4678    }
4679  }
4680
4681  return AddedAny;
4682}
4683
4684namespace {
4685  // Struct for holding all of the extra arguments needed by
4686  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4687  struct ActOnFDArgs {
4688    Scope *S;
4689    Declarator &D;
4690    MultiTemplateParamsArg TemplateParamLists;
4691    bool AddToScope;
4692  };
4693}
4694
4695namespace {
4696
4697// Callback to only accept typo corrections that have a non-zero edit distance.
4698// Also only accept corrections that have the same parent decl.
4699class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4700 public:
4701  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4702                            CXXRecordDecl *Parent)
4703      : Context(Context), OriginalFD(TypoFD),
4704        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4705
4706  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4707    if (candidate.getEditDistance() == 0)
4708      return false;
4709
4710    llvm::SmallVector<unsigned, 1> MismatchedParams;
4711    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4712                                          CDeclEnd = candidate.end();
4713         CDecl != CDeclEnd; ++CDecl) {
4714      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4715
4716      if (FD && !FD->hasBody() &&
4717          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4718        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4719          CXXRecordDecl *Parent = MD->getParent();
4720          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4721            return true;
4722        } else if (!ExpectedParent) {
4723          return true;
4724        }
4725      }
4726    }
4727
4728    return false;
4729  }
4730
4731 private:
4732  ASTContext &Context;
4733  FunctionDecl *OriginalFD;
4734  CXXRecordDecl *ExpectedParent;
4735};
4736
4737}
4738
4739/// \brief Generate diagnostics for an invalid function redeclaration.
4740///
4741/// This routine handles generating the diagnostic messages for an invalid
4742/// function redeclaration, including finding possible similar declarations
4743/// or performing typo correction if there are no previous declarations with
4744/// the same name.
4745///
4746/// Returns a NamedDecl iff typo correction was performed and substituting in
4747/// the new declaration name does not cause new errors.
4748static NamedDecl* DiagnoseInvalidRedeclaration(
4749    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4750    ActOnFDArgs &ExtraArgs) {
4751  NamedDecl *Result = NULL;
4752  DeclarationName Name = NewFD->getDeclName();
4753  DeclContext *NewDC = NewFD->getDeclContext();
4754  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4755                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4756  llvm::SmallVector<unsigned, 1> MismatchedParams;
4757  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4758  TypoCorrection Correction;
4759  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4760                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4761  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4762                                  : diag::err_member_def_does_not_match;
4763
4764  NewFD->setInvalidDecl();
4765  SemaRef.LookupQualifiedName(Prev, NewDC);
4766  assert(!Prev.isAmbiguous() &&
4767         "Cannot have an ambiguity in previous-declaration lookup");
4768  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4769  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4770                                      MD ? MD->getParent() : 0);
4771  if (!Prev.empty()) {
4772    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4773         Func != FuncEnd; ++Func) {
4774      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4775      if (FD &&
4776          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4777        // Add 1 to the index so that 0 can mean the mismatch didn't
4778        // involve a parameter
4779        unsigned ParamNum =
4780            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4781        NearMatches.push_back(std::make_pair(FD, ParamNum));
4782      }
4783    }
4784  // If the qualified name lookup yielded nothing, try typo correction
4785  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4786                                         Prev.getLookupKind(), 0, 0,
4787                                         Validator, NewDC))) {
4788    // Trap errors.
4789    Sema::SFINAETrap Trap(SemaRef);
4790
4791    // Set up everything for the call to ActOnFunctionDeclarator
4792    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4793                              ExtraArgs.D.getIdentifierLoc());
4794    Previous.clear();
4795    Previous.setLookupName(Correction.getCorrection());
4796    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4797                                    CDeclEnd = Correction.end();
4798         CDecl != CDeclEnd; ++CDecl) {
4799      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4800      if (FD && !FD->hasBody() &&
4801          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4802        Previous.addDecl(FD);
4803      }
4804    }
4805    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4806    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4807    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4808    // eliminate the need for the parameter pack ExtraArgs.
4809    Result = SemaRef.ActOnFunctionDeclarator(
4810        ExtraArgs.S, ExtraArgs.D,
4811        Correction.getCorrectionDecl()->getDeclContext(),
4812        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4813        ExtraArgs.AddToScope);
4814    if (Trap.hasErrorOccurred()) {
4815      // Pretend the typo correction never occurred
4816      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4817                                ExtraArgs.D.getIdentifierLoc());
4818      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4819      Previous.clear();
4820      Previous.setLookupName(Name);
4821      Result = NULL;
4822    } else {
4823      for (LookupResult::iterator Func = Previous.begin(),
4824                               FuncEnd = Previous.end();
4825           Func != FuncEnd; ++Func) {
4826        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4827          NearMatches.push_back(std::make_pair(FD, 0));
4828      }
4829    }
4830    if (NearMatches.empty()) {
4831      // Ignore the correction if it didn't yield any close FunctionDecl matches
4832      Correction = TypoCorrection();
4833    } else {
4834      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4835                             : diag::err_member_def_does_not_match_suggest;
4836    }
4837  }
4838
4839  if (Correction) {
4840    SourceRange FixItLoc(NewFD->getLocation());
4841    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4842    if (Correction.getCorrectionSpecifier() && SS.isValid())
4843      FixItLoc.setBegin(SS.getBeginLoc());
4844    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4845        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4846        << FixItHint::CreateReplacement(
4847            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4848  } else {
4849    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4850        << Name << NewDC << NewFD->getLocation();
4851  }
4852
4853  bool NewFDisConst = false;
4854  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4855    NewFDisConst = NewMD->isConst();
4856
4857  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4858       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4859       NearMatch != NearMatchEnd; ++NearMatch) {
4860    FunctionDecl *FD = NearMatch->first;
4861    bool FDisConst = false;
4862    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4863      FDisConst = MD->isConst();
4864
4865    if (unsigned Idx = NearMatch->second) {
4866      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4867      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4868      if (Loc.isInvalid()) Loc = FD->getLocation();
4869      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4870          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4871    } else if (Correction) {
4872      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4873          << Correction.getQuoted(SemaRef.getLangOpts());
4874    } else if (FDisConst != NewFDisConst) {
4875      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4876          << NewFDisConst << FD->getSourceRange().getEnd();
4877    } else
4878      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4879  }
4880  return Result;
4881}
4882
4883static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4884                                                          Declarator &D) {
4885  switch (D.getDeclSpec().getStorageClassSpec()) {
4886  default: llvm_unreachable("Unknown storage class!");
4887  case DeclSpec::SCS_auto:
4888  case DeclSpec::SCS_register:
4889  case DeclSpec::SCS_mutable:
4890    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4891                 diag::err_typecheck_sclass_func);
4892    D.setInvalidType();
4893    break;
4894  case DeclSpec::SCS_unspecified: break;
4895  case DeclSpec::SCS_extern: return SC_Extern;
4896  case DeclSpec::SCS_static: {
4897    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4898      // C99 6.7.1p5:
4899      //   The declaration of an identifier for a function that has
4900      //   block scope shall have no explicit storage-class specifier
4901      //   other than extern
4902      // See also (C++ [dcl.stc]p4).
4903      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4904                   diag::err_static_block_func);
4905      break;
4906    } else
4907      return SC_Static;
4908  }
4909  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4910  }
4911
4912  // No explicit storage class has already been returned
4913  return SC_None;
4914}
4915
4916static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4917                                           DeclContext *DC, QualType &R,
4918                                           TypeSourceInfo *TInfo,
4919                                           FunctionDecl::StorageClass SC,
4920                                           bool &IsVirtualOkay) {
4921  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4922  DeclarationName Name = NameInfo.getName();
4923
4924  FunctionDecl *NewFD = 0;
4925  bool isInline = D.getDeclSpec().isInlineSpecified();
4926  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4927  FunctionDecl::StorageClass SCAsWritten
4928    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4929
4930  if (!SemaRef.getLangOpts().CPlusPlus) {
4931    // Determine whether the function was written with a
4932    // prototype. This true when:
4933    //   - there is a prototype in the declarator, or
4934    //   - the type R of the function is some kind of typedef or other reference
4935    //     to a type name (which eventually refers to a function type).
4936    bool HasPrototype =
4937      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4938      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4939
4940    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4941                                 D.getLocStart(), NameInfo, R,
4942                                 TInfo, SC, SCAsWritten, isInline,
4943                                 HasPrototype);
4944    if (D.isInvalidType())
4945      NewFD->setInvalidDecl();
4946
4947    // Set the lexical context.
4948    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4949
4950    return NewFD;
4951  }
4952
4953  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4954  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4955
4956  // Check that the return type is not an abstract class type.
4957  // For record types, this is done by the AbstractClassUsageDiagnoser once
4958  // the class has been completely parsed.
4959  if (!DC->isRecord() &&
4960      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4961                                     R->getAs<FunctionType>()->getResultType(),
4962                                     diag::err_abstract_type_in_decl,
4963                                     SemaRef.AbstractReturnType))
4964    D.setInvalidType();
4965
4966  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4967    // This is a C++ constructor declaration.
4968    assert(DC->isRecord() &&
4969           "Constructors can only be declared in a member context");
4970
4971    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4972    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4973                                      D.getLocStart(), NameInfo,
4974                                      R, TInfo, isExplicit, isInline,
4975                                      /*isImplicitlyDeclared=*/false,
4976                                      isConstexpr);
4977
4978  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4979    // This is a C++ destructor declaration.
4980    if (DC->isRecord()) {
4981      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4982      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4983      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4984                                        SemaRef.Context, Record,
4985                                        D.getLocStart(),
4986                                        NameInfo, R, TInfo, isInline,
4987                                        /*isImplicitlyDeclared=*/false);
4988
4989      // If the class is complete, then we now create the implicit exception
4990      // specification. If the class is incomplete or dependent, we can't do
4991      // it yet.
4992      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4993          Record->getDefinition() && !Record->isBeingDefined() &&
4994          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4995        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4996      }
4997
4998      IsVirtualOkay = true;
4999      return NewDD;
5000
5001    } else {
5002      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5003      D.setInvalidType();
5004
5005      // Create a FunctionDecl to satisfy the function definition parsing
5006      // code path.
5007      return FunctionDecl::Create(SemaRef.Context, DC,
5008                                  D.getLocStart(),
5009                                  D.getIdentifierLoc(), Name, R, TInfo,
5010                                  SC, SCAsWritten, isInline,
5011                                  /*hasPrototype=*/true, isConstexpr);
5012    }
5013
5014  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5015    if (!DC->isRecord()) {
5016      SemaRef.Diag(D.getIdentifierLoc(),
5017           diag::err_conv_function_not_member);
5018      return 0;
5019    }
5020
5021    SemaRef.CheckConversionDeclarator(D, R, SC);
5022    IsVirtualOkay = true;
5023    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5024                                     D.getLocStart(), NameInfo,
5025                                     R, TInfo, isInline, isExplicit,
5026                                     isConstexpr, SourceLocation());
5027
5028  } else if (DC->isRecord()) {
5029    // If the name of the function is the same as the name of the record,
5030    // then this must be an invalid constructor that has a return type.
5031    // (The parser checks for a return type and makes the declarator a
5032    // constructor if it has no return type).
5033    if (Name.getAsIdentifierInfo() &&
5034        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5035      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5036        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5037        << SourceRange(D.getIdentifierLoc());
5038      return 0;
5039    }
5040
5041    bool isStatic = SC == SC_Static;
5042
5043    // [class.free]p1:
5044    // Any allocation function for a class T is a static member
5045    // (even if not explicitly declared static).
5046    if (Name.getCXXOverloadedOperator() == OO_New ||
5047        Name.getCXXOverloadedOperator() == OO_Array_New)
5048      isStatic = true;
5049
5050    // [class.free]p6 Any deallocation function for a class X is a static member
5051    // (even if not explicitly declared static).
5052    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5053        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5054      isStatic = true;
5055
5056    IsVirtualOkay = !isStatic;
5057
5058    // This is a C++ method declaration.
5059    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5060                                 D.getLocStart(), NameInfo, R,
5061                                 TInfo, isStatic, SCAsWritten, isInline,
5062                                 isConstexpr, SourceLocation());
5063
5064  } else {
5065    // Determine whether the function was written with a
5066    // prototype. This true when:
5067    //   - we're in C++ (where every function has a prototype),
5068    return FunctionDecl::Create(SemaRef.Context, DC,
5069                                D.getLocStart(),
5070                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5071                                true/*HasPrototype*/, isConstexpr);
5072  }
5073}
5074
5075NamedDecl*
5076Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5077                              TypeSourceInfo *TInfo, LookupResult &Previous,
5078                              MultiTemplateParamsArg TemplateParamLists,
5079                              bool &AddToScope) {
5080  QualType R = TInfo->getType();
5081
5082  assert(R.getTypePtr()->isFunctionType());
5083
5084  // TODO: consider using NameInfo for diagnostic.
5085  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5086  DeclarationName Name = NameInfo.getName();
5087  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5088
5089  if (D.getDeclSpec().isThreadSpecified())
5090    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5091
5092  // Do not allow returning a objc interface by-value.
5093  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5094    Diag(D.getIdentifierLoc(),
5095         diag::err_object_cannot_be_passed_returned_by_value) << 0
5096    << R->getAs<FunctionType>()->getResultType()
5097    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5098
5099    QualType T = R->getAs<FunctionType>()->getResultType();
5100    T = Context.getObjCObjectPointerType(T);
5101    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5102      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5103      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5104                                  FPT->getNumArgs(), EPI);
5105    }
5106    else if (isa<FunctionNoProtoType>(R))
5107      R = Context.getFunctionNoProtoType(T);
5108  }
5109
5110  bool isFriend = false;
5111  FunctionTemplateDecl *FunctionTemplate = 0;
5112  bool isExplicitSpecialization = false;
5113  bool isFunctionTemplateSpecialization = false;
5114
5115  bool isDependentClassScopeExplicitSpecialization = false;
5116  bool HasExplicitTemplateArgs = false;
5117  TemplateArgumentListInfo TemplateArgs;
5118
5119  bool isVirtualOkay = false;
5120
5121  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5122                                              isVirtualOkay);
5123  if (!NewFD) return 0;
5124
5125  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5126    NewFD->setTopLevelDeclInObjCContainer();
5127
5128  if (getLangOpts().CPlusPlus) {
5129    bool isInline = D.getDeclSpec().isInlineSpecified();
5130    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5131    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5132    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5133    isFriend = D.getDeclSpec().isFriendSpecified();
5134    if (isFriend && !isInline && D.isFunctionDefinition()) {
5135      // C++ [class.friend]p5
5136      //   A function can be defined in a friend declaration of a
5137      //   class . . . . Such a function is implicitly inline.
5138      NewFD->setImplicitlyInline();
5139    }
5140
5141    SetNestedNameSpecifier(NewFD, D);
5142    isExplicitSpecialization = false;
5143    isFunctionTemplateSpecialization = false;
5144    if (D.isInvalidType())
5145      NewFD->setInvalidDecl();
5146
5147    // Set the lexical context. If the declarator has a C++
5148    // scope specifier, or is the object of a friend declaration, the
5149    // lexical context will be different from the semantic context.
5150    NewFD->setLexicalDeclContext(CurContext);
5151
5152    // Match up the template parameter lists with the scope specifier, then
5153    // determine whether we have a template or a template specialization.
5154    bool Invalid = false;
5155    if (TemplateParameterList *TemplateParams
5156          = MatchTemplateParametersToScopeSpecifier(
5157                                  D.getDeclSpec().getLocStart(),
5158                                  D.getIdentifierLoc(),
5159                                  D.getCXXScopeSpec(),
5160                                  TemplateParamLists.get(),
5161                                  TemplateParamLists.size(),
5162                                  isFriend,
5163                                  isExplicitSpecialization,
5164                                  Invalid)) {
5165      if (TemplateParams->size() > 0) {
5166        // This is a function template
5167
5168        // Check that we can declare a template here.
5169        if (CheckTemplateDeclScope(S, TemplateParams))
5170          return 0;
5171
5172        // A destructor cannot be a template.
5173        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5174          Diag(NewFD->getLocation(), diag::err_destructor_template);
5175          return 0;
5176        }
5177
5178        // If we're adding a template to a dependent context, we may need to
5179        // rebuilding some of the types used within the template parameter list,
5180        // now that we know what the current instantiation is.
5181        if (DC->isDependentContext()) {
5182          ContextRAII SavedContext(*this, DC);
5183          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5184            Invalid = true;
5185        }
5186
5187
5188        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5189                                                        NewFD->getLocation(),
5190                                                        Name, TemplateParams,
5191                                                        NewFD);
5192        FunctionTemplate->setLexicalDeclContext(CurContext);
5193        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5194
5195        // For source fidelity, store the other template param lists.
5196        if (TemplateParamLists.size() > 1) {
5197          NewFD->setTemplateParameterListsInfo(Context,
5198                                               TemplateParamLists.size() - 1,
5199                                               TemplateParamLists.release());
5200        }
5201      } else {
5202        // This is a function template specialization.
5203        isFunctionTemplateSpecialization = true;
5204        // For source fidelity, store all the template param lists.
5205        NewFD->setTemplateParameterListsInfo(Context,
5206                                             TemplateParamLists.size(),
5207                                             TemplateParamLists.release());
5208
5209        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5210        if (isFriend) {
5211          // We want to remove the "template<>", found here.
5212          SourceRange RemoveRange = TemplateParams->getSourceRange();
5213
5214          // If we remove the template<> and the name is not a
5215          // template-id, we're actually silently creating a problem:
5216          // the friend declaration will refer to an untemplated decl,
5217          // and clearly the user wants a template specialization.  So
5218          // we need to insert '<>' after the name.
5219          SourceLocation InsertLoc;
5220          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5221            InsertLoc = D.getName().getSourceRange().getEnd();
5222            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5223          }
5224
5225          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5226            << Name << RemoveRange
5227            << FixItHint::CreateRemoval(RemoveRange)
5228            << FixItHint::CreateInsertion(InsertLoc, "<>");
5229        }
5230      }
5231    }
5232    else {
5233      // All template param lists were matched against the scope specifier:
5234      // this is NOT (an explicit specialization of) a template.
5235      if (TemplateParamLists.size() > 0)
5236        // For source fidelity, store all the template param lists.
5237        NewFD->setTemplateParameterListsInfo(Context,
5238                                             TemplateParamLists.size(),
5239                                             TemplateParamLists.release());
5240    }
5241
5242    if (Invalid) {
5243      NewFD->setInvalidDecl();
5244      if (FunctionTemplate)
5245        FunctionTemplate->setInvalidDecl();
5246    }
5247
5248    // C++ [dcl.fct.spec]p5:
5249    //   The virtual specifier shall only be used in declarations of
5250    //   nonstatic class member functions that appear within a
5251    //   member-specification of a class declaration; see 10.3.
5252    //
5253    if (isVirtual && !NewFD->isInvalidDecl()) {
5254      if (!isVirtualOkay) {
5255        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5256             diag::err_virtual_non_function);
5257      } else if (!CurContext->isRecord()) {
5258        // 'virtual' was specified outside of the class.
5259        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5260             diag::err_virtual_out_of_class)
5261          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5262      } else if (NewFD->getDescribedFunctionTemplate()) {
5263        // C++ [temp.mem]p3:
5264        //  A member function template shall not be virtual.
5265        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5266             diag::err_virtual_member_function_template)
5267          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5268      } else {
5269        // Okay: Add virtual to the method.
5270        NewFD->setVirtualAsWritten(true);
5271      }
5272    }
5273
5274    // C++ [dcl.fct.spec]p3:
5275    //  The inline specifier shall not appear on a block scope function
5276    //  declaration.
5277    if (isInline && !NewFD->isInvalidDecl()) {
5278      if (CurContext->isFunctionOrMethod()) {
5279        // 'inline' is not allowed on block scope function declaration.
5280        Diag(D.getDeclSpec().getInlineSpecLoc(),
5281             diag::err_inline_declaration_block_scope) << Name
5282          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5283      }
5284    }
5285
5286    // C++ [dcl.fct.spec]p6:
5287    //  The explicit specifier shall be used only in the declaration of a
5288    //  constructor or conversion function within its class definition;
5289    //  see 12.3.1 and 12.3.2.
5290    if (isExplicit && !NewFD->isInvalidDecl()) {
5291      if (!CurContext->isRecord()) {
5292        // 'explicit' was specified outside of the class.
5293        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5294             diag::err_explicit_out_of_class)
5295          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5296      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5297                 !isa<CXXConversionDecl>(NewFD)) {
5298        // 'explicit' was specified on a function that wasn't a constructor
5299        // or conversion function.
5300        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5301             diag::err_explicit_non_ctor_or_conv_function)
5302          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5303      }
5304    }
5305
5306    if (isConstexpr) {
5307      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5308      // are implicitly inline.
5309      NewFD->setImplicitlyInline();
5310
5311      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5312      // be either constructors or to return a literal type. Therefore,
5313      // destructors cannot be declared constexpr.
5314      if (isa<CXXDestructorDecl>(NewFD))
5315        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5316    }
5317
5318    // If __module_private__ was specified, mark the function accordingly.
5319    if (D.getDeclSpec().isModulePrivateSpecified()) {
5320      if (isFunctionTemplateSpecialization) {
5321        SourceLocation ModulePrivateLoc
5322          = D.getDeclSpec().getModulePrivateSpecLoc();
5323        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5324          << 0
5325          << FixItHint::CreateRemoval(ModulePrivateLoc);
5326      } else {
5327        NewFD->setModulePrivate();
5328        if (FunctionTemplate)
5329          FunctionTemplate->setModulePrivate();
5330      }
5331    }
5332
5333    if (isFriend) {
5334      // For now, claim that the objects have no previous declaration.
5335      if (FunctionTemplate) {
5336        FunctionTemplate->setObjectOfFriendDecl(false);
5337        FunctionTemplate->setAccess(AS_public);
5338      }
5339      NewFD->setObjectOfFriendDecl(false);
5340      NewFD->setAccess(AS_public);
5341    }
5342
5343    // If a function is defined as defaulted or deleted, mark it as such now.
5344    switch (D.getFunctionDefinitionKind()) {
5345      case FDK_Declaration:
5346      case FDK_Definition:
5347        break;
5348
5349      case FDK_Defaulted:
5350        NewFD->setDefaulted();
5351        break;
5352
5353      case FDK_Deleted:
5354        NewFD->setDeletedAsWritten();
5355        break;
5356    }
5357
5358    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5359        D.isFunctionDefinition()) {
5360      // C++ [class.mfct]p2:
5361      //   A member function may be defined (8.4) in its class definition, in
5362      //   which case it is an inline member function (7.1.2)
5363      NewFD->setImplicitlyInline();
5364    }
5365
5366    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5367        !CurContext->isRecord()) {
5368      // C++ [class.static]p1:
5369      //   A data or function member of a class may be declared static
5370      //   in a class definition, in which case it is a static member of
5371      //   the class.
5372
5373      // Complain about the 'static' specifier if it's on an out-of-line
5374      // member function definition.
5375      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5376           diag::err_static_out_of_line)
5377        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5378    }
5379  }
5380
5381  // Filter out previous declarations that don't match the scope.
5382  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5383                       isExplicitSpecialization ||
5384                       isFunctionTemplateSpecialization);
5385
5386  // Handle GNU asm-label extension (encoded as an attribute).
5387  if (Expr *E = (Expr*) D.getAsmLabel()) {
5388    // The parser guarantees this is a string.
5389    StringLiteral *SE = cast<StringLiteral>(E);
5390    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5391                                                SE->getString()));
5392  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5393    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5394      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5395    if (I != ExtnameUndeclaredIdentifiers.end()) {
5396      NewFD->addAttr(I->second);
5397      ExtnameUndeclaredIdentifiers.erase(I);
5398    }
5399  }
5400
5401  // Copy the parameter declarations from the declarator D to the function
5402  // declaration NewFD, if they are available.  First scavenge them into Params.
5403  SmallVector<ParmVarDecl*, 16> Params;
5404  if (D.isFunctionDeclarator()) {
5405    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5406
5407    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5408    // function that takes no arguments, not a function that takes a
5409    // single void argument.
5410    // We let through "const void" here because Sema::GetTypeForDeclarator
5411    // already checks for that case.
5412    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5413        FTI.ArgInfo[0].Param &&
5414        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5415      // Empty arg list, don't push any params.
5416      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5417
5418      // In C++, the empty parameter-type-list must be spelled "void"; a
5419      // typedef of void is not permitted.
5420      if (getLangOpts().CPlusPlus &&
5421          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5422        bool IsTypeAlias = false;
5423        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5424          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5425        else if (const TemplateSpecializationType *TST =
5426                   Param->getType()->getAs<TemplateSpecializationType>())
5427          IsTypeAlias = TST->isTypeAlias();
5428        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5429          << IsTypeAlias;
5430      }
5431    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5432      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5433        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5434        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5435        Param->setDeclContext(NewFD);
5436        Params.push_back(Param);
5437
5438        if (Param->isInvalidDecl())
5439          NewFD->setInvalidDecl();
5440      }
5441    }
5442
5443  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5444    // When we're declaring a function with a typedef, typeof, etc as in the
5445    // following example, we'll need to synthesize (unnamed)
5446    // parameters for use in the declaration.
5447    //
5448    // @code
5449    // typedef void fn(int);
5450    // fn f;
5451    // @endcode
5452
5453    // Synthesize a parameter for each argument type.
5454    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5455         AE = FT->arg_type_end(); AI != AE; ++AI) {
5456      ParmVarDecl *Param =
5457        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5458      Param->setScopeInfo(0, Params.size());
5459      Params.push_back(Param);
5460    }
5461  } else {
5462    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5463           "Should not need args for typedef of non-prototype fn");
5464  }
5465
5466  // Finally, we know we have the right number of parameters, install them.
5467  NewFD->setParams(Params);
5468
5469  // Find all anonymous symbols defined during the declaration of this function
5470  // and add to NewFD. This lets us track decls such 'enum Y' in:
5471  //
5472  //   void f(enum Y {AA} x) {}
5473  //
5474  // which would otherwise incorrectly end up in the translation unit scope.
5475  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5476  DeclsInPrototypeScope.clear();
5477
5478  // Process the non-inheritable attributes on this declaration.
5479  ProcessDeclAttributes(S, NewFD, D,
5480                        /*NonInheritable=*/true, /*Inheritable=*/false);
5481
5482  // Functions returning a variably modified type violate C99 6.7.5.2p2
5483  // because all functions have linkage.
5484  if (!NewFD->isInvalidDecl() &&
5485      NewFD->getResultType()->isVariablyModifiedType()) {
5486    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5487    NewFD->setInvalidDecl();
5488  }
5489
5490  // Handle attributes.
5491  ProcessDeclAttributes(S, NewFD, D,
5492                        /*NonInheritable=*/false, /*Inheritable=*/true);
5493
5494  if (!getLangOpts().CPlusPlus) {
5495    // Perform semantic checking on the function declaration.
5496    bool isExplicitSpecialization=false;
5497    if (!NewFD->isInvalidDecl()) {
5498      if (NewFD->isMain())
5499        CheckMain(NewFD, D.getDeclSpec());
5500      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5501                                                  isExplicitSpecialization));
5502    }
5503    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5504            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5505           "previous declaration set still overloaded");
5506  } else {
5507    // If the declarator is a template-id, translate the parser's template
5508    // argument list into our AST format.
5509    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5510      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5511      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5512      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5513      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5514                                         TemplateId->getTemplateArgs(),
5515                                         TemplateId->NumArgs);
5516      translateTemplateArguments(TemplateArgsPtr,
5517                                 TemplateArgs);
5518      TemplateArgsPtr.release();
5519
5520      HasExplicitTemplateArgs = true;
5521
5522      if (NewFD->isInvalidDecl()) {
5523        HasExplicitTemplateArgs = false;
5524      } else if (FunctionTemplate) {
5525        // Function template with explicit template arguments.
5526        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5527          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5528
5529        HasExplicitTemplateArgs = false;
5530      } else if (!isFunctionTemplateSpecialization &&
5531                 !D.getDeclSpec().isFriendSpecified()) {
5532        // We have encountered something that the user meant to be a
5533        // specialization (because it has explicitly-specified template
5534        // arguments) but that was not introduced with a "template<>" (or had
5535        // too few of them).
5536        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5537          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5538          << FixItHint::CreateInsertion(
5539                                    D.getDeclSpec().getLocStart(),
5540                                        "template<> ");
5541        isFunctionTemplateSpecialization = true;
5542      } else {
5543        // "friend void foo<>(int);" is an implicit specialization decl.
5544        isFunctionTemplateSpecialization = true;
5545      }
5546    } else if (isFriend && isFunctionTemplateSpecialization) {
5547      // This combination is only possible in a recovery case;  the user
5548      // wrote something like:
5549      //   template <> friend void foo(int);
5550      // which we're recovering from as if the user had written:
5551      //   friend void foo<>(int);
5552      // Go ahead and fake up a template id.
5553      HasExplicitTemplateArgs = true;
5554        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5555      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5556    }
5557
5558    // If it's a friend (and only if it's a friend), it's possible
5559    // that either the specialized function type or the specialized
5560    // template is dependent, and therefore matching will fail.  In
5561    // this case, don't check the specialization yet.
5562    bool InstantiationDependent = false;
5563    if (isFunctionTemplateSpecialization && isFriend &&
5564        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5565         TemplateSpecializationType::anyDependentTemplateArguments(
5566            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5567            InstantiationDependent))) {
5568      assert(HasExplicitTemplateArgs &&
5569             "friend function specialization without template args");
5570      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5571                                                       Previous))
5572        NewFD->setInvalidDecl();
5573    } else if (isFunctionTemplateSpecialization) {
5574      if (CurContext->isDependentContext() && CurContext->isRecord()
5575          && !isFriend) {
5576        isDependentClassScopeExplicitSpecialization = true;
5577        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5578          diag::ext_function_specialization_in_class :
5579          diag::err_function_specialization_in_class)
5580          << NewFD->getDeclName();
5581      } else if (CheckFunctionTemplateSpecialization(NewFD,
5582                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5583                                                     Previous))
5584        NewFD->setInvalidDecl();
5585
5586      // C++ [dcl.stc]p1:
5587      //   A storage-class-specifier shall not be specified in an explicit
5588      //   specialization (14.7.3)
5589      if (SC != SC_None) {
5590        if (SC != NewFD->getStorageClass())
5591          Diag(NewFD->getLocation(),
5592               diag::err_explicit_specialization_inconsistent_storage_class)
5593            << SC
5594            << FixItHint::CreateRemoval(
5595                                      D.getDeclSpec().getStorageClassSpecLoc());
5596
5597        else
5598          Diag(NewFD->getLocation(),
5599               diag::ext_explicit_specialization_storage_class)
5600            << FixItHint::CreateRemoval(
5601                                      D.getDeclSpec().getStorageClassSpecLoc());
5602      }
5603
5604    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5605      if (CheckMemberSpecialization(NewFD, Previous))
5606          NewFD->setInvalidDecl();
5607    }
5608
5609    // Perform semantic checking on the function declaration.
5610    if (!isDependentClassScopeExplicitSpecialization) {
5611      if (NewFD->isInvalidDecl()) {
5612        // If this is a class member, mark the class invalid immediately.
5613        // This avoids some consistency errors later.
5614        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5615          methodDecl->getParent()->setInvalidDecl();
5616      } else {
5617        if (NewFD->isMain())
5618          CheckMain(NewFD, D.getDeclSpec());
5619        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5620                                                    isExplicitSpecialization));
5621      }
5622    }
5623
5624    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5625            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5626           "previous declaration set still overloaded");
5627
5628    NamedDecl *PrincipalDecl = (FunctionTemplate
5629                                ? cast<NamedDecl>(FunctionTemplate)
5630                                : NewFD);
5631
5632    if (isFriend && D.isRedeclaration()) {
5633      AccessSpecifier Access = AS_public;
5634      if (!NewFD->isInvalidDecl())
5635        Access = NewFD->getPreviousDecl()->getAccess();
5636
5637      NewFD->setAccess(Access);
5638      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5639
5640      PrincipalDecl->setObjectOfFriendDecl(true);
5641    }
5642
5643    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5644        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5645      PrincipalDecl->setNonMemberOperator();
5646
5647    // If we have a function template, check the template parameter
5648    // list. This will check and merge default template arguments.
5649    if (FunctionTemplate) {
5650      FunctionTemplateDecl *PrevTemplate =
5651                                     FunctionTemplate->getPreviousDecl();
5652      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5653                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5654                            D.getDeclSpec().isFriendSpecified()
5655                              ? (D.isFunctionDefinition()
5656                                   ? TPC_FriendFunctionTemplateDefinition
5657                                   : TPC_FriendFunctionTemplate)
5658                              : (D.getCXXScopeSpec().isSet() &&
5659                                 DC && DC->isRecord() &&
5660                                 DC->isDependentContext())
5661                                  ? TPC_ClassTemplateMember
5662                                  : TPC_FunctionTemplate);
5663    }
5664
5665    if (NewFD->isInvalidDecl()) {
5666      // Ignore all the rest of this.
5667    } else if (!D.isRedeclaration()) {
5668      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5669                                       AddToScope };
5670      // Fake up an access specifier if it's supposed to be a class member.
5671      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5672        NewFD->setAccess(AS_public);
5673
5674      // Qualified decls generally require a previous declaration.
5675      if (D.getCXXScopeSpec().isSet()) {
5676        // ...with the major exception of templated-scope or
5677        // dependent-scope friend declarations.
5678
5679        // TODO: we currently also suppress this check in dependent
5680        // contexts because (1) the parameter depth will be off when
5681        // matching friend templates and (2) we might actually be
5682        // selecting a friend based on a dependent factor.  But there
5683        // are situations where these conditions don't apply and we
5684        // can actually do this check immediately.
5685        if (isFriend &&
5686            (TemplateParamLists.size() ||
5687             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5688             CurContext->isDependentContext())) {
5689          // ignore these
5690        } else {
5691          // The user tried to provide an out-of-line definition for a
5692          // function that is a member of a class or namespace, but there
5693          // was no such member function declared (C++ [class.mfct]p2,
5694          // C++ [namespace.memdef]p2). For example:
5695          //
5696          // class X {
5697          //   void f() const;
5698          // };
5699          //
5700          // void X::f() { } // ill-formed
5701          //
5702          // Complain about this problem, and attempt to suggest close
5703          // matches (e.g., those that differ only in cv-qualifiers and
5704          // whether the parameter types are references).
5705
5706          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5707                                                               NewFD,
5708                                                               ExtraArgs)) {
5709            AddToScope = ExtraArgs.AddToScope;
5710            return Result;
5711          }
5712        }
5713
5714        // Unqualified local friend declarations are required to resolve
5715        // to something.
5716      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5717        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5718                                                             NewFD,
5719                                                             ExtraArgs)) {
5720          AddToScope = ExtraArgs.AddToScope;
5721          return Result;
5722        }
5723      }
5724
5725    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5726               !isFriend && !isFunctionTemplateSpecialization &&
5727               !isExplicitSpecialization) {
5728      // An out-of-line member function declaration must also be a
5729      // definition (C++ [dcl.meaning]p1).
5730      // Note that this is not the case for explicit specializations of
5731      // function templates or member functions of class templates, per
5732      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5733      // extension for compatibility with old SWIG code which likes to
5734      // generate them.
5735      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5736        << D.getCXXScopeSpec().getRange();
5737    }
5738  }
5739
5740  AddKnownFunctionAttributes(NewFD);
5741
5742  if (NewFD->hasAttr<OverloadableAttr>() &&
5743      !NewFD->getType()->getAs<FunctionProtoType>()) {
5744    Diag(NewFD->getLocation(),
5745         diag::err_attribute_overloadable_no_prototype)
5746      << NewFD;
5747
5748    // Turn this into a variadic function with no parameters.
5749    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5750    FunctionProtoType::ExtProtoInfo EPI;
5751    EPI.Variadic = true;
5752    EPI.ExtInfo = FT->getExtInfo();
5753
5754    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5755    NewFD->setType(R);
5756  }
5757
5758  // If there's a #pragma GCC visibility in scope, and this isn't a class
5759  // member, set the visibility of this function.
5760  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5761    AddPushedVisibilityAttribute(NewFD);
5762
5763  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5764  // marking the function.
5765  AddCFAuditedAttribute(NewFD);
5766
5767  // If this is a locally-scoped extern C function, update the
5768  // map of such names.
5769  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5770      && !NewFD->isInvalidDecl())
5771    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5772
5773  // Set this FunctionDecl's range up to the right paren.
5774  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5775
5776  if (getLangOpts().CPlusPlus) {
5777    if (FunctionTemplate) {
5778      if (NewFD->isInvalidDecl())
5779        FunctionTemplate->setInvalidDecl();
5780      return FunctionTemplate;
5781    }
5782  }
5783
5784  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5785  if ((getLangOpts().OpenCLVersion >= 120)
5786      && NewFD->hasAttr<OpenCLKernelAttr>()
5787      && (SC == SC_Static)) {
5788    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5789    D.setInvalidType();
5790  }
5791
5792  MarkUnusedFileScopedDecl(NewFD);
5793
5794  if (getLangOpts().CUDA)
5795    if (IdentifierInfo *II = NewFD->getIdentifier())
5796      if (!NewFD->isInvalidDecl() &&
5797          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5798        if (II->isStr("cudaConfigureCall")) {
5799          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5800            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5801
5802          Context.setcudaConfigureCallDecl(NewFD);
5803        }
5804      }
5805
5806  // Here we have an function template explicit specialization at class scope.
5807  // The actually specialization will be postponed to template instatiation
5808  // time via the ClassScopeFunctionSpecializationDecl node.
5809  if (isDependentClassScopeExplicitSpecialization) {
5810    ClassScopeFunctionSpecializationDecl *NewSpec =
5811                         ClassScopeFunctionSpecializationDecl::Create(
5812                                Context, CurContext, SourceLocation(),
5813                                cast<CXXMethodDecl>(NewFD),
5814                                HasExplicitTemplateArgs, TemplateArgs);
5815    CurContext->addDecl(NewSpec);
5816    AddToScope = false;
5817  }
5818
5819  return NewFD;
5820}
5821
5822/// \brief Perform semantic checking of a new function declaration.
5823///
5824/// Performs semantic analysis of the new function declaration
5825/// NewFD. This routine performs all semantic checking that does not
5826/// require the actual declarator involved in the declaration, and is
5827/// used both for the declaration of functions as they are parsed
5828/// (called via ActOnDeclarator) and for the declaration of functions
5829/// that have been instantiated via C++ template instantiation (called
5830/// via InstantiateDecl).
5831///
5832/// \param IsExplicitSpecialization whether this new function declaration is
5833/// an explicit specialization of the previous declaration.
5834///
5835/// This sets NewFD->isInvalidDecl() to true if there was an error.
5836///
5837/// \returns true if the function declaration is a redeclaration.
5838bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5839                                    LookupResult &Previous,
5840                                    bool IsExplicitSpecialization) {
5841  assert(!NewFD->getResultType()->isVariablyModifiedType()
5842         && "Variably modified return types are not handled here");
5843
5844  // Check for a previous declaration of this name.
5845  if (Previous.empty() && NewFD->isExternC()) {
5846    // Since we did not find anything by this name and we're declaring
5847    // an extern "C" function, look for a non-visible extern "C"
5848    // declaration with the same name.
5849    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5850      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5851    if (Pos != LocallyScopedExternalDecls.end())
5852      Previous.addDecl(Pos->second);
5853  }
5854
5855  bool Redeclaration = false;
5856
5857  // Merge or overload the declaration with an existing declaration of
5858  // the same name, if appropriate.
5859  if (!Previous.empty()) {
5860    // Determine whether NewFD is an overload of PrevDecl or
5861    // a declaration that requires merging. If it's an overload,
5862    // there's no more work to do here; we'll just add the new
5863    // function to the scope.
5864
5865    NamedDecl *OldDecl = 0;
5866    if (!AllowOverloadingOfFunction(Previous, Context)) {
5867      Redeclaration = true;
5868      OldDecl = Previous.getFoundDecl();
5869    } else {
5870      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5871                            /*NewIsUsingDecl*/ false)) {
5872      case Ovl_Match:
5873        Redeclaration = true;
5874        break;
5875
5876      case Ovl_NonFunction:
5877        Redeclaration = true;
5878        break;
5879
5880      case Ovl_Overload:
5881        Redeclaration = false;
5882        break;
5883      }
5884
5885      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5886        // If a function name is overloadable in C, then every function
5887        // with that name must be marked "overloadable".
5888        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5889          << Redeclaration << NewFD;
5890        NamedDecl *OverloadedDecl = 0;
5891        if (Redeclaration)
5892          OverloadedDecl = OldDecl;
5893        else if (!Previous.empty())
5894          OverloadedDecl = Previous.getRepresentativeDecl();
5895        if (OverloadedDecl)
5896          Diag(OverloadedDecl->getLocation(),
5897               diag::note_attribute_overloadable_prev_overload);
5898        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5899                                                        Context));
5900      }
5901    }
5902
5903    if (Redeclaration) {
5904      // NewFD and OldDecl represent declarations that need to be
5905      // merged.
5906      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5907        NewFD->setInvalidDecl();
5908        return Redeclaration;
5909      }
5910
5911      Previous.clear();
5912      Previous.addDecl(OldDecl);
5913
5914      if (FunctionTemplateDecl *OldTemplateDecl
5915                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5916        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5917        FunctionTemplateDecl *NewTemplateDecl
5918          = NewFD->getDescribedFunctionTemplate();
5919        assert(NewTemplateDecl && "Template/non-template mismatch");
5920        if (CXXMethodDecl *Method
5921              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5922          Method->setAccess(OldTemplateDecl->getAccess());
5923          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5924        }
5925
5926        // If this is an explicit specialization of a member that is a function
5927        // template, mark it as a member specialization.
5928        if (IsExplicitSpecialization &&
5929            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5930          NewTemplateDecl->setMemberSpecialization();
5931          assert(OldTemplateDecl->isMemberSpecialization());
5932        }
5933
5934      } else {
5935        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5936          NewFD->setAccess(OldDecl->getAccess());
5937        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5938      }
5939    }
5940  }
5941
5942  // Semantic checking for this function declaration (in isolation).
5943  if (getLangOpts().CPlusPlus) {
5944    // C++-specific checks.
5945    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5946      CheckConstructor(Constructor);
5947    } else if (CXXDestructorDecl *Destructor =
5948                dyn_cast<CXXDestructorDecl>(NewFD)) {
5949      CXXRecordDecl *Record = Destructor->getParent();
5950      QualType ClassType = Context.getTypeDeclType(Record);
5951
5952      // FIXME: Shouldn't we be able to perform this check even when the class
5953      // type is dependent? Both gcc and edg can handle that.
5954      if (!ClassType->isDependentType()) {
5955        DeclarationName Name
5956          = Context.DeclarationNames.getCXXDestructorName(
5957                                        Context.getCanonicalType(ClassType));
5958        if (NewFD->getDeclName() != Name) {
5959          Diag(NewFD->getLocation(), diag::err_destructor_name);
5960          NewFD->setInvalidDecl();
5961          return Redeclaration;
5962        }
5963      }
5964    } else if (CXXConversionDecl *Conversion
5965               = dyn_cast<CXXConversionDecl>(NewFD)) {
5966      ActOnConversionDeclarator(Conversion);
5967    }
5968
5969    // Find any virtual functions that this function overrides.
5970    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5971      if (!Method->isFunctionTemplateSpecialization() &&
5972          !Method->getDescribedFunctionTemplate()) {
5973        if (AddOverriddenMethods(Method->getParent(), Method)) {
5974          // If the function was marked as "static", we have a problem.
5975          if (NewFD->getStorageClass() == SC_Static) {
5976            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5977              << NewFD->getDeclName();
5978            for (CXXMethodDecl::method_iterator
5979                      Overridden = Method->begin_overridden_methods(),
5980                   OverriddenEnd = Method->end_overridden_methods();
5981                 Overridden != OverriddenEnd;
5982                 ++Overridden) {
5983              Diag((*Overridden)->getLocation(),
5984                   diag::note_overridden_virtual_function);
5985            }
5986          }
5987        }
5988      }
5989
5990      if (Method->isStatic())
5991        checkThisInStaticMemberFunctionType(Method);
5992    }
5993
5994    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5995    if (NewFD->isOverloadedOperator() &&
5996        CheckOverloadedOperatorDeclaration(NewFD)) {
5997      NewFD->setInvalidDecl();
5998      return Redeclaration;
5999    }
6000
6001    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6002    if (NewFD->getLiteralIdentifier() &&
6003        CheckLiteralOperatorDeclaration(NewFD)) {
6004      NewFD->setInvalidDecl();
6005      return Redeclaration;
6006    }
6007
6008    // In C++, check default arguments now that we have merged decls. Unless
6009    // the lexical context is the class, because in this case this is done
6010    // during delayed parsing anyway.
6011    if (!CurContext->isRecord())
6012      CheckCXXDefaultArguments(NewFD);
6013
6014    // If this function declares a builtin function, check the type of this
6015    // declaration against the expected type for the builtin.
6016    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6017      ASTContext::GetBuiltinTypeError Error;
6018      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6019      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6020        // The type of this function differs from the type of the builtin,
6021        // so forget about the builtin entirely.
6022        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6023      }
6024    }
6025
6026    // If this function is declared as being extern "C", then check to see if
6027    // the function returns a UDT (class, struct, or union type) that is not C
6028    // compatible, and if it does, warn the user.
6029    if (NewFD->isExternC()) {
6030      QualType R = NewFD->getResultType();
6031      if (R->isIncompleteType() && !R->isVoidType())
6032        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6033            << NewFD << R;
6034      else if (!R.isPODType(Context) && !R->isVoidType() &&
6035               !R->isObjCObjectPointerType())
6036        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6037    }
6038  }
6039  return Redeclaration;
6040}
6041
6042void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6043  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6044  //   static or constexpr is ill-formed.
6045  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6046  //   shall not appear in a declaration of main.
6047  // static main is not an error under C99, but we should warn about it.
6048  if (FD->getStorageClass() == SC_Static)
6049    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6050         ? diag::err_static_main : diag::warn_static_main)
6051      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6052  if (FD->isInlineSpecified())
6053    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6054      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6055  if (FD->isConstexpr()) {
6056    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6057      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6058    FD->setConstexpr(false);
6059  }
6060
6061  QualType T = FD->getType();
6062  assert(T->isFunctionType() && "function decl is not of function type");
6063  const FunctionType* FT = T->castAs<FunctionType>();
6064
6065  // All the standards say that main() should should return 'int'.
6066  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6067    // In C and C++, main magically returns 0 if you fall off the end;
6068    // set the flag which tells us that.
6069    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6070    FD->setHasImplicitReturnZero(true);
6071
6072  // In C with GNU extensions we allow main() to have non-integer return
6073  // type, but we should warn about the extension, and we disable the
6074  // implicit-return-zero rule.
6075  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6076    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6077
6078  // Otherwise, this is just a flat-out error.
6079  } else {
6080    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6081    FD->setInvalidDecl(true);
6082  }
6083
6084  // Treat protoless main() as nullary.
6085  if (isa<FunctionNoProtoType>(FT)) return;
6086
6087  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6088  unsigned nparams = FTP->getNumArgs();
6089  assert(FD->getNumParams() == nparams);
6090
6091  bool HasExtraParameters = (nparams > 3);
6092
6093  // Darwin passes an undocumented fourth argument of type char**.  If
6094  // other platforms start sprouting these, the logic below will start
6095  // getting shifty.
6096  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6097    HasExtraParameters = false;
6098
6099  if (HasExtraParameters) {
6100    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6101    FD->setInvalidDecl(true);
6102    nparams = 3;
6103  }
6104
6105  // FIXME: a lot of the following diagnostics would be improved
6106  // if we had some location information about types.
6107
6108  QualType CharPP =
6109    Context.getPointerType(Context.getPointerType(Context.CharTy));
6110  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6111
6112  for (unsigned i = 0; i < nparams; ++i) {
6113    QualType AT = FTP->getArgType(i);
6114
6115    bool mismatch = true;
6116
6117    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6118      mismatch = false;
6119    else if (Expected[i] == CharPP) {
6120      // As an extension, the following forms are okay:
6121      //   char const **
6122      //   char const * const *
6123      //   char * const *
6124
6125      QualifierCollector qs;
6126      const PointerType* PT;
6127      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6128          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6129          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6130        qs.removeConst();
6131        mismatch = !qs.empty();
6132      }
6133    }
6134
6135    if (mismatch) {
6136      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6137      // TODO: suggest replacing given type with expected type
6138      FD->setInvalidDecl(true);
6139    }
6140  }
6141
6142  if (nparams == 1 && !FD->isInvalidDecl()) {
6143    Diag(FD->getLocation(), diag::warn_main_one_arg);
6144  }
6145
6146  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6147    Diag(FD->getLocation(), diag::err_main_template_decl);
6148    FD->setInvalidDecl();
6149  }
6150}
6151
6152bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6153  // FIXME: Need strict checking.  In C89, we need to check for
6154  // any assignment, increment, decrement, function-calls, or
6155  // commas outside of a sizeof.  In C99, it's the same list,
6156  // except that the aforementioned are allowed in unevaluated
6157  // expressions.  Everything else falls under the
6158  // "may accept other forms of constant expressions" exception.
6159  // (We never end up here for C++, so the constant expression
6160  // rules there don't matter.)
6161  if (Init->isConstantInitializer(Context, false))
6162    return false;
6163  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6164    << Init->getSourceRange();
6165  return true;
6166}
6167
6168namespace {
6169  // Visits an initialization expression to see if OrigDecl is evaluated in
6170  // its own initialization and throws a warning if it does.
6171  class SelfReferenceChecker
6172      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6173    Sema &S;
6174    Decl *OrigDecl;
6175    bool isRecordType;
6176    bool isPODType;
6177
6178  public:
6179    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6180
6181    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6182                                                    S(S), OrigDecl(OrigDecl) {
6183      isPODType = false;
6184      isRecordType = false;
6185      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6186        isPODType = VD->getType().isPODType(S.Context);
6187        isRecordType = VD->getType()->isRecordType();
6188      }
6189    }
6190
6191    // Sometimes, the expression passed in lacks the casts that are used
6192    // to determine which DeclRefExpr's to check.  Assume that the casts
6193    // are present and continue visiting the expression.
6194    void HandleExpr(Expr *E) {
6195      // Skip checking T a = a where T is not a record type.  Doing so is a
6196      // way to silence uninitialized warnings.
6197      if (isRecordType)
6198        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6199          HandleDeclRefExpr(DRE);
6200
6201      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6202        HandleValue(CO->getTrueExpr());
6203        HandleValue(CO->getFalseExpr());
6204      }
6205
6206      Visit(E);
6207    }
6208
6209    // For most expressions, the cast is directly above the DeclRefExpr.
6210    // For conditional operators, the cast can be outside the conditional
6211    // operator if both expressions are DeclRefExpr's.
6212    void HandleValue(Expr *E) {
6213      E = E->IgnoreParenImpCasts();
6214      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6215        HandleDeclRefExpr(DRE);
6216        return;
6217      }
6218
6219      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6220        HandleValue(CO->getTrueExpr());
6221        HandleValue(CO->getFalseExpr());
6222      }
6223    }
6224
6225    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6226      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6227          (isRecordType && E->getCastKind() == CK_NoOp))
6228        HandleValue(E->getSubExpr());
6229
6230      Inherited::VisitImplicitCastExpr(E);
6231    }
6232
6233    void VisitMemberExpr(MemberExpr *E) {
6234      // Don't warn on arrays since they can be treated as pointers.
6235      if (E->getType()->canDecayToPointerType()) return;
6236
6237      ValueDecl *VD = E->getMemberDecl();
6238      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6239      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6240        if (DeclRefExpr *DRE
6241              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6242          HandleDeclRefExpr(DRE);
6243          return;
6244        }
6245
6246      Inherited::VisitMemberExpr(E);
6247    }
6248
6249    void VisitUnaryOperator(UnaryOperator *E) {
6250      // For POD record types, addresses of its own members are well-defined.
6251      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6252          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6253      Inherited::VisitUnaryOperator(E);
6254    }
6255
6256    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6257
6258    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6259      Decl* ReferenceDecl = DRE->getDecl();
6260      if (OrigDecl != ReferenceDecl) return;
6261      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6262                          Sema::NotForRedeclaration);
6263      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6264                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6265                              << Result.getLookupName()
6266                              << OrigDecl->getLocation()
6267                              << DRE->getSourceRange());
6268    }
6269  };
6270}
6271
6272/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6273void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6274  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6275}
6276
6277/// AddInitializerToDecl - Adds the initializer Init to the
6278/// declaration dcl. If DirectInit is true, this is C++ direct
6279/// initialization rather than copy initialization.
6280void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6281                                bool DirectInit, bool TypeMayContainAuto) {
6282  // If there is no declaration, there was an error parsing it.  Just ignore
6283  // the initializer.
6284  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6285    return;
6286
6287  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6288    // With declarators parsed the way they are, the parser cannot
6289    // distinguish between a normal initializer and a pure-specifier.
6290    // Thus this grotesque test.
6291    IntegerLiteral *IL;
6292    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6293        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6294      CheckPureMethod(Method, Init->getSourceRange());
6295    else {
6296      Diag(Method->getLocation(), diag::err_member_function_initialization)
6297        << Method->getDeclName() << Init->getSourceRange();
6298      Method->setInvalidDecl();
6299    }
6300    return;
6301  }
6302
6303  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6304  if (!VDecl) {
6305    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6306    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6307    RealDecl->setInvalidDecl();
6308    return;
6309  }
6310
6311  // Check for self-references within variable initializers.
6312  // Variables declared within a function/method body are handled
6313  // by a dataflow analysis.
6314  // Record types initialized by initializer list are handled here.
6315  // Initialization by constructors are handled in TryConstructorInitialization.
6316  if (!VDecl->hasLocalStorage() &&
6317      (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6318    CheckSelfReference(RealDecl, Init);
6319
6320  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6321
6322  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6323  AutoType *Auto = 0;
6324  if (TypeMayContainAuto &&
6325      (Auto = VDecl->getType()->getContainedAutoType()) &&
6326      !Auto->isDeduced()) {
6327    Expr *DeduceInit = Init;
6328    // Initializer could be a C++ direct-initializer. Deduction only works if it
6329    // contains exactly one expression.
6330    if (CXXDirectInit) {
6331      if (CXXDirectInit->getNumExprs() == 0) {
6332        // It isn't possible to write this directly, but it is possible to
6333        // end up in this situation with "auto x(some_pack...);"
6334        Diag(CXXDirectInit->getLocStart(),
6335             diag::err_auto_var_init_no_expression)
6336          << VDecl->getDeclName() << VDecl->getType()
6337          << VDecl->getSourceRange();
6338        RealDecl->setInvalidDecl();
6339        return;
6340      } else if (CXXDirectInit->getNumExprs() > 1) {
6341        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6342             diag::err_auto_var_init_multiple_expressions)
6343          << VDecl->getDeclName() << VDecl->getType()
6344          << VDecl->getSourceRange();
6345        RealDecl->setInvalidDecl();
6346        return;
6347      } else {
6348        DeduceInit = CXXDirectInit->getExpr(0);
6349      }
6350    }
6351    TypeSourceInfo *DeducedType = 0;
6352    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6353            DAR_Failed)
6354      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6355    if (!DeducedType) {
6356      RealDecl->setInvalidDecl();
6357      return;
6358    }
6359    VDecl->setTypeSourceInfo(DeducedType);
6360    VDecl->setType(DeducedType->getType());
6361    VDecl->ClearLinkageCache();
6362
6363    // In ARC, infer lifetime.
6364    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6365      VDecl->setInvalidDecl();
6366
6367    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6368    // 'id' instead of a specific object type prevents most of our usual checks.
6369    // We only want to warn outside of template instantiations, though:
6370    // inside a template, the 'id' could have come from a parameter.
6371    if (ActiveTemplateInstantiations.empty() &&
6372        DeducedType->getType()->isObjCIdType()) {
6373      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6374      Diag(Loc, diag::warn_auto_var_is_id)
6375        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6376    }
6377
6378    // If this is a redeclaration, check that the type we just deduced matches
6379    // the previously declared type.
6380    if (VarDecl *Old = VDecl->getPreviousDecl())
6381      MergeVarDeclTypes(VDecl, Old);
6382  }
6383
6384  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6385    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6386    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6387    VDecl->setInvalidDecl();
6388    return;
6389  }
6390
6391  if (!VDecl->getType()->isDependentType()) {
6392    // A definition must end up with a complete type, which means it must be
6393    // complete with the restriction that an array type might be completed by
6394    // the initializer; note that later code assumes this restriction.
6395    QualType BaseDeclType = VDecl->getType();
6396    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6397      BaseDeclType = Array->getElementType();
6398    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6399                            diag::err_typecheck_decl_incomplete_type)) {
6400      RealDecl->setInvalidDecl();
6401      return;
6402    }
6403
6404    // The variable can not have an abstract class type.
6405    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6406                               diag::err_abstract_type_in_decl,
6407                               AbstractVariableType))
6408      VDecl->setInvalidDecl();
6409  }
6410
6411  const VarDecl *Def;
6412  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6413    Diag(VDecl->getLocation(), diag::err_redefinition)
6414      << VDecl->getDeclName();
6415    Diag(Def->getLocation(), diag::note_previous_definition);
6416    VDecl->setInvalidDecl();
6417    return;
6418  }
6419
6420  const VarDecl* PrevInit = 0;
6421  if (getLangOpts().CPlusPlus) {
6422    // C++ [class.static.data]p4
6423    //   If a static data member is of const integral or const
6424    //   enumeration type, its declaration in the class definition can
6425    //   specify a constant-initializer which shall be an integral
6426    //   constant expression (5.19). In that case, the member can appear
6427    //   in integral constant expressions. The member shall still be
6428    //   defined in a namespace scope if it is used in the program and the
6429    //   namespace scope definition shall not contain an initializer.
6430    //
6431    // We already performed a redefinition check above, but for static
6432    // data members we also need to check whether there was an in-class
6433    // declaration with an initializer.
6434    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6435      Diag(VDecl->getLocation(), diag::err_redefinition)
6436        << VDecl->getDeclName();
6437      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6438      return;
6439    }
6440
6441    if (VDecl->hasLocalStorage())
6442      getCurFunction()->setHasBranchProtectedScope();
6443
6444    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6445      VDecl->setInvalidDecl();
6446      return;
6447    }
6448  }
6449
6450  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6451  // a kernel function cannot be initialized."
6452  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6453    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6454    VDecl->setInvalidDecl();
6455    return;
6456  }
6457
6458  // Get the decls type and save a reference for later, since
6459  // CheckInitializerTypes may change it.
6460  QualType DclT = VDecl->getType(), SavT = DclT;
6461
6462  // Top-level message sends default to 'id' when we're in a debugger
6463  // and we are assigning it to a variable of 'id' type.
6464  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6465    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6466      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6467      if (Result.isInvalid()) {
6468        VDecl->setInvalidDecl();
6469        return;
6470      }
6471      Init = Result.take();
6472    }
6473
6474  // Perform the initialization.
6475  if (!VDecl->isInvalidDecl()) {
6476    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6477    InitializationKind Kind
6478      = DirectInit ?
6479          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6480                                                           Init->getLocStart(),
6481                                                           Init->getLocEnd())
6482                        : InitializationKind::CreateDirectList(
6483                                                          VDecl->getLocation())
6484                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6485                                                    Init->getLocStart());
6486
6487    Expr **Args = &Init;
6488    unsigned NumArgs = 1;
6489    if (CXXDirectInit) {
6490      Args = CXXDirectInit->getExprs();
6491      NumArgs = CXXDirectInit->getNumExprs();
6492    }
6493    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6494    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6495                                              MultiExprArg(*this, Args,NumArgs),
6496                                              &DclT);
6497    if (Result.isInvalid()) {
6498      VDecl->setInvalidDecl();
6499      return;
6500    }
6501
6502    Init = Result.takeAs<Expr>();
6503  }
6504
6505  // If the type changed, it means we had an incomplete type that was
6506  // completed by the initializer. For example:
6507  //   int ary[] = { 1, 3, 5 };
6508  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6509  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6510    VDecl->setType(DclT);
6511
6512  // Check any implicit conversions within the expression.
6513  CheckImplicitConversions(Init, VDecl->getLocation());
6514
6515  if (!VDecl->isInvalidDecl())
6516    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6517
6518  Init = MaybeCreateExprWithCleanups(Init);
6519  // Attach the initializer to the decl.
6520  VDecl->setInit(Init);
6521
6522  if (VDecl->isLocalVarDecl()) {
6523    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6524    // static storage duration shall be constant expressions or string literals.
6525    // C++ does not have this restriction.
6526    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6527        VDecl->getStorageClass() == SC_Static)
6528      CheckForConstantInitializer(Init, DclT);
6529  } else if (VDecl->isStaticDataMember() &&
6530             VDecl->getLexicalDeclContext()->isRecord()) {
6531    // This is an in-class initialization for a static data member, e.g.,
6532    //
6533    // struct S {
6534    //   static const int value = 17;
6535    // };
6536
6537    // C++ [class.mem]p4:
6538    //   A member-declarator can contain a constant-initializer only
6539    //   if it declares a static member (9.4) of const integral or
6540    //   const enumeration type, see 9.4.2.
6541    //
6542    // C++11 [class.static.data]p3:
6543    //   If a non-volatile const static data member is of integral or
6544    //   enumeration type, its declaration in the class definition can
6545    //   specify a brace-or-equal-initializer in which every initalizer-clause
6546    //   that is an assignment-expression is a constant expression. A static
6547    //   data member of literal type can be declared in the class definition
6548    //   with the constexpr specifier; if so, its declaration shall specify a
6549    //   brace-or-equal-initializer in which every initializer-clause that is
6550    //   an assignment-expression is a constant expression.
6551
6552    // Do nothing on dependent types.
6553    if (DclT->isDependentType()) {
6554
6555    // Allow any 'static constexpr' members, whether or not they are of literal
6556    // type. We separately check that every constexpr variable is of literal
6557    // type.
6558    } else if (VDecl->isConstexpr()) {
6559
6560    // Require constness.
6561    } else if (!DclT.isConstQualified()) {
6562      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6563        << Init->getSourceRange();
6564      VDecl->setInvalidDecl();
6565
6566    // We allow integer constant expressions in all cases.
6567    } else if (DclT->isIntegralOrEnumerationType()) {
6568      // Check whether the expression is a constant expression.
6569      SourceLocation Loc;
6570      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6571        // In C++11, a non-constexpr const static data member with an
6572        // in-class initializer cannot be volatile.
6573        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6574      else if (Init->isValueDependent())
6575        ; // Nothing to check.
6576      else if (Init->isIntegerConstantExpr(Context, &Loc))
6577        ; // Ok, it's an ICE!
6578      else if (Init->isEvaluatable(Context)) {
6579        // If we can constant fold the initializer through heroics, accept it,
6580        // but report this as a use of an extension for -pedantic.
6581        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6582          << Init->getSourceRange();
6583      } else {
6584        // Otherwise, this is some crazy unknown case.  Report the issue at the
6585        // location provided by the isIntegerConstantExpr failed check.
6586        Diag(Loc, diag::err_in_class_initializer_non_constant)
6587          << Init->getSourceRange();
6588        VDecl->setInvalidDecl();
6589      }
6590
6591    // We allow foldable floating-point constants as an extension.
6592    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6593      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6594        << DclT << Init->getSourceRange();
6595      if (getLangOpts().CPlusPlus0x)
6596        Diag(VDecl->getLocation(),
6597             diag::note_in_class_initializer_float_type_constexpr)
6598          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6599
6600      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6601        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6602          << Init->getSourceRange();
6603        VDecl->setInvalidDecl();
6604      }
6605
6606    // Suggest adding 'constexpr' in C++11 for literal types.
6607    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6608      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6609        << DclT << Init->getSourceRange()
6610        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6611      VDecl->setConstexpr(true);
6612
6613    } else {
6614      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6615        << DclT << Init->getSourceRange();
6616      VDecl->setInvalidDecl();
6617    }
6618  } else if (VDecl->isFileVarDecl()) {
6619    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6620        (!getLangOpts().CPlusPlus ||
6621         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6622      Diag(VDecl->getLocation(), diag::warn_extern_init);
6623
6624    // C99 6.7.8p4. All file scoped initializers need to be constant.
6625    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6626      CheckForConstantInitializer(Init, DclT);
6627  }
6628
6629  // We will represent direct-initialization similarly to copy-initialization:
6630  //    int x(1);  -as-> int x = 1;
6631  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6632  //
6633  // Clients that want to distinguish between the two forms, can check for
6634  // direct initializer using VarDecl::getInitStyle().
6635  // A major benefit is that clients that don't particularly care about which
6636  // exactly form was it (like the CodeGen) can handle both cases without
6637  // special case code.
6638
6639  // C++ 8.5p11:
6640  // The form of initialization (using parentheses or '=') is generally
6641  // insignificant, but does matter when the entity being initialized has a
6642  // class type.
6643  if (CXXDirectInit) {
6644    assert(DirectInit && "Call-style initializer must be direct init.");
6645    VDecl->setInitStyle(VarDecl::CallInit);
6646  } else if (DirectInit) {
6647    // This must be list-initialization. No other way is direct-initialization.
6648    VDecl->setInitStyle(VarDecl::ListInit);
6649  }
6650
6651  CheckCompleteVariableDeclaration(VDecl);
6652}
6653
6654/// ActOnInitializerError - Given that there was an error parsing an
6655/// initializer for the given declaration, try to return to some form
6656/// of sanity.
6657void Sema::ActOnInitializerError(Decl *D) {
6658  // Our main concern here is re-establishing invariants like "a
6659  // variable's type is either dependent or complete".
6660  if (!D || D->isInvalidDecl()) return;
6661
6662  VarDecl *VD = dyn_cast<VarDecl>(D);
6663  if (!VD) return;
6664
6665  // Auto types are meaningless if we can't make sense of the initializer.
6666  if (ParsingInitForAutoVars.count(D)) {
6667    D->setInvalidDecl();
6668    return;
6669  }
6670
6671  QualType Ty = VD->getType();
6672  if (Ty->isDependentType()) return;
6673
6674  // Require a complete type.
6675  if (RequireCompleteType(VD->getLocation(),
6676                          Context.getBaseElementType(Ty),
6677                          diag::err_typecheck_decl_incomplete_type)) {
6678    VD->setInvalidDecl();
6679    return;
6680  }
6681
6682  // Require an abstract type.
6683  if (RequireNonAbstractType(VD->getLocation(), Ty,
6684                             diag::err_abstract_type_in_decl,
6685                             AbstractVariableType)) {
6686    VD->setInvalidDecl();
6687    return;
6688  }
6689
6690  // Don't bother complaining about constructors or destructors,
6691  // though.
6692}
6693
6694void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6695                                  bool TypeMayContainAuto) {
6696  // If there is no declaration, there was an error parsing it. Just ignore it.
6697  if (RealDecl == 0)
6698    return;
6699
6700  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6701    QualType Type = Var->getType();
6702
6703    // C++11 [dcl.spec.auto]p3
6704    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6705      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6706        << Var->getDeclName() << Type;
6707      Var->setInvalidDecl();
6708      return;
6709    }
6710
6711    // C++11 [class.static.data]p3: A static data member can be declared with
6712    // the constexpr specifier; if so, its declaration shall specify
6713    // a brace-or-equal-initializer.
6714    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6715    // the definition of a variable [...] or the declaration of a static data
6716    // member.
6717    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6718      if (Var->isStaticDataMember())
6719        Diag(Var->getLocation(),
6720             diag::err_constexpr_static_mem_var_requires_init)
6721          << Var->getDeclName();
6722      else
6723        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6724      Var->setInvalidDecl();
6725      return;
6726    }
6727
6728    switch (Var->isThisDeclarationADefinition()) {
6729    case VarDecl::Definition:
6730      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6731        break;
6732
6733      // We have an out-of-line definition of a static data member
6734      // that has an in-class initializer, so we type-check this like
6735      // a declaration.
6736      //
6737      // Fall through
6738
6739    case VarDecl::DeclarationOnly:
6740      // It's only a declaration.
6741
6742      // Block scope. C99 6.7p7: If an identifier for an object is
6743      // declared with no linkage (C99 6.2.2p6), the type for the
6744      // object shall be complete.
6745      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6746          !Var->getLinkage() && !Var->isInvalidDecl() &&
6747          RequireCompleteType(Var->getLocation(), Type,
6748                              diag::err_typecheck_decl_incomplete_type))
6749        Var->setInvalidDecl();
6750
6751      // Make sure that the type is not abstract.
6752      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6753          RequireNonAbstractType(Var->getLocation(), Type,
6754                                 diag::err_abstract_type_in_decl,
6755                                 AbstractVariableType))
6756        Var->setInvalidDecl();
6757      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6758          Var->getStorageClass() == SC_PrivateExtern)
6759        Diag(Var->getLocation(), diag::warn_private_extern);
6760
6761      return;
6762
6763    case VarDecl::TentativeDefinition:
6764      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6765      // object that has file scope without an initializer, and without a
6766      // storage-class specifier or with the storage-class specifier "static",
6767      // constitutes a tentative definition. Note: A tentative definition with
6768      // external linkage is valid (C99 6.2.2p5).
6769      if (!Var->isInvalidDecl()) {
6770        if (const IncompleteArrayType *ArrayT
6771                                    = Context.getAsIncompleteArrayType(Type)) {
6772          if (RequireCompleteType(Var->getLocation(),
6773                                  ArrayT->getElementType(),
6774                                  diag::err_illegal_decl_array_incomplete_type))
6775            Var->setInvalidDecl();
6776        } else if (Var->getStorageClass() == SC_Static) {
6777          // C99 6.9.2p3: If the declaration of an identifier for an object is
6778          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6779          // declared type shall not be an incomplete type.
6780          // NOTE: code such as the following
6781          //     static struct s;
6782          //     struct s { int a; };
6783          // is accepted by gcc. Hence here we issue a warning instead of
6784          // an error and we do not invalidate the static declaration.
6785          // NOTE: to avoid multiple warnings, only check the first declaration.
6786          if (Var->getPreviousDecl() == 0)
6787            RequireCompleteType(Var->getLocation(), Type,
6788                                diag::ext_typecheck_decl_incomplete_type);
6789        }
6790      }
6791
6792      // Record the tentative definition; we're done.
6793      if (!Var->isInvalidDecl())
6794        TentativeDefinitions.push_back(Var);
6795      return;
6796    }
6797
6798    // Provide a specific diagnostic for uninitialized variable
6799    // definitions with incomplete array type.
6800    if (Type->isIncompleteArrayType()) {
6801      Diag(Var->getLocation(),
6802           diag::err_typecheck_incomplete_array_needs_initializer);
6803      Var->setInvalidDecl();
6804      return;
6805    }
6806
6807    // Provide a specific diagnostic for uninitialized variable
6808    // definitions with reference type.
6809    if (Type->isReferenceType()) {
6810      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6811        << Var->getDeclName()
6812        << SourceRange(Var->getLocation(), Var->getLocation());
6813      Var->setInvalidDecl();
6814      return;
6815    }
6816
6817    // Do not attempt to type-check the default initializer for a
6818    // variable with dependent type.
6819    if (Type->isDependentType())
6820      return;
6821
6822    if (Var->isInvalidDecl())
6823      return;
6824
6825    if (RequireCompleteType(Var->getLocation(),
6826                            Context.getBaseElementType(Type),
6827                            diag::err_typecheck_decl_incomplete_type)) {
6828      Var->setInvalidDecl();
6829      return;
6830    }
6831
6832    // The variable can not have an abstract class type.
6833    if (RequireNonAbstractType(Var->getLocation(), Type,
6834                               diag::err_abstract_type_in_decl,
6835                               AbstractVariableType)) {
6836      Var->setInvalidDecl();
6837      return;
6838    }
6839
6840    // Check for jumps past the implicit initializer.  C++0x
6841    // clarifies that this applies to a "variable with automatic
6842    // storage duration", not a "local variable".
6843    // C++11 [stmt.dcl]p3
6844    //   A program that jumps from a point where a variable with automatic
6845    //   storage duration is not in scope to a point where it is in scope is
6846    //   ill-formed unless the variable has scalar type, class type with a
6847    //   trivial default constructor and a trivial destructor, a cv-qualified
6848    //   version of one of these types, or an array of one of the preceding
6849    //   types and is declared without an initializer.
6850    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6851      if (const RecordType *Record
6852            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6853        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6854        // Mark the function for further checking even if the looser rules of
6855        // C++11 do not require such checks, so that we can diagnose
6856        // incompatibilities with C++98.
6857        if (!CXXRecord->isPOD())
6858          getCurFunction()->setHasBranchProtectedScope();
6859      }
6860    }
6861
6862    // C++03 [dcl.init]p9:
6863    //   If no initializer is specified for an object, and the
6864    //   object is of (possibly cv-qualified) non-POD class type (or
6865    //   array thereof), the object shall be default-initialized; if
6866    //   the object is of const-qualified type, the underlying class
6867    //   type shall have a user-declared default
6868    //   constructor. Otherwise, if no initializer is specified for
6869    //   a non- static object, the object and its subobjects, if
6870    //   any, have an indeterminate initial value); if the object
6871    //   or any of its subobjects are of const-qualified type, the
6872    //   program is ill-formed.
6873    // C++0x [dcl.init]p11:
6874    //   If no initializer is specified for an object, the object is
6875    //   default-initialized; [...].
6876    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6877    InitializationKind Kind
6878      = InitializationKind::CreateDefault(Var->getLocation());
6879
6880    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6881    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6882                                      MultiExprArg(*this, 0, 0));
6883    if (Init.isInvalid())
6884      Var->setInvalidDecl();
6885    else if (Init.get()) {
6886      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6887      // This is important for template substitution.
6888      Var->setInitStyle(VarDecl::CallInit);
6889    }
6890
6891    CheckCompleteVariableDeclaration(Var);
6892  }
6893}
6894
6895void Sema::ActOnCXXForRangeDecl(Decl *D) {
6896  VarDecl *VD = dyn_cast<VarDecl>(D);
6897  if (!VD) {
6898    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6899    D->setInvalidDecl();
6900    return;
6901  }
6902
6903  VD->setCXXForRangeDecl(true);
6904
6905  // for-range-declaration cannot be given a storage class specifier.
6906  int Error = -1;
6907  switch (VD->getStorageClassAsWritten()) {
6908  case SC_None:
6909    break;
6910  case SC_Extern:
6911    Error = 0;
6912    break;
6913  case SC_Static:
6914    Error = 1;
6915    break;
6916  case SC_PrivateExtern:
6917    Error = 2;
6918    break;
6919  case SC_Auto:
6920    Error = 3;
6921    break;
6922  case SC_Register:
6923    Error = 4;
6924    break;
6925  case SC_OpenCLWorkGroupLocal:
6926    llvm_unreachable("Unexpected storage class");
6927  }
6928  if (VD->isConstexpr())
6929    Error = 5;
6930  if (Error != -1) {
6931    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6932      << VD->getDeclName() << Error;
6933    D->setInvalidDecl();
6934  }
6935}
6936
6937void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6938  if (var->isInvalidDecl()) return;
6939
6940  // In ARC, don't allow jumps past the implicit initialization of a
6941  // local retaining variable.
6942  if (getLangOpts().ObjCAutoRefCount &&
6943      var->hasLocalStorage()) {
6944    switch (var->getType().getObjCLifetime()) {
6945    case Qualifiers::OCL_None:
6946    case Qualifiers::OCL_ExplicitNone:
6947    case Qualifiers::OCL_Autoreleasing:
6948      break;
6949
6950    case Qualifiers::OCL_Weak:
6951    case Qualifiers::OCL_Strong:
6952      getCurFunction()->setHasBranchProtectedScope();
6953      break;
6954    }
6955  }
6956
6957  // All the following checks are C++ only.
6958  if (!getLangOpts().CPlusPlus) return;
6959
6960  QualType baseType = Context.getBaseElementType(var->getType());
6961  if (baseType->isDependentType()) return;
6962
6963  // __block variables might require us to capture a copy-initializer.
6964  if (var->hasAttr<BlocksAttr>()) {
6965    // It's currently invalid to ever have a __block variable with an
6966    // array type; should we diagnose that here?
6967
6968    // Regardless, we don't want to ignore array nesting when
6969    // constructing this copy.
6970    QualType type = var->getType();
6971
6972    if (type->isStructureOrClassType()) {
6973      SourceLocation poi = var->getLocation();
6974      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6975      ExprResult result =
6976        PerformCopyInitialization(
6977                        InitializedEntity::InitializeBlock(poi, type, false),
6978                                  poi, Owned(varRef));
6979      if (!result.isInvalid()) {
6980        result = MaybeCreateExprWithCleanups(result);
6981        Expr *init = result.takeAs<Expr>();
6982        Context.setBlockVarCopyInits(var, init);
6983      }
6984    }
6985  }
6986
6987  Expr *Init = var->getInit();
6988  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6989
6990  if (!var->getDeclContext()->isDependentContext() && Init) {
6991    if (IsGlobal && !var->isConstexpr() &&
6992        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6993                                            var->getLocation())
6994          != DiagnosticsEngine::Ignored &&
6995        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6996      Diag(var->getLocation(), diag::warn_global_constructor)
6997        << Init->getSourceRange();
6998
6999    if (var->isConstexpr()) {
7000      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7001      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7002        SourceLocation DiagLoc = var->getLocation();
7003        // If the note doesn't add any useful information other than a source
7004        // location, fold it into the primary diagnostic.
7005        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7006              diag::note_invalid_subexpr_in_const_expr) {
7007          DiagLoc = Notes[0].first;
7008          Notes.clear();
7009        }
7010        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7011          << var << Init->getSourceRange();
7012        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7013          Diag(Notes[I].first, Notes[I].second);
7014      }
7015    } else if (var->isUsableInConstantExpressions(Context)) {
7016      // Check whether the initializer of a const variable of integral or
7017      // enumeration type is an ICE now, since we can't tell whether it was
7018      // initialized by a constant expression if we check later.
7019      var->checkInitIsICE();
7020    }
7021  }
7022
7023  // Require the destructor.
7024  if (const RecordType *recordType = baseType->getAs<RecordType>())
7025    FinalizeVarWithDestructor(var, recordType);
7026}
7027
7028/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7029/// any semantic actions necessary after any initializer has been attached.
7030void
7031Sema::FinalizeDeclaration(Decl *ThisDecl) {
7032  // Note that we are no longer parsing the initializer for this declaration.
7033  ParsingInitForAutoVars.erase(ThisDecl);
7034}
7035
7036Sema::DeclGroupPtrTy
7037Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7038                              Decl **Group, unsigned NumDecls) {
7039  SmallVector<Decl*, 8> Decls;
7040
7041  if (DS.isTypeSpecOwned())
7042    Decls.push_back(DS.getRepAsDecl());
7043
7044  for (unsigned i = 0; i != NumDecls; ++i)
7045    if (Decl *D = Group[i])
7046      Decls.push_back(D);
7047
7048  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7049                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7050}
7051
7052/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7053/// group, performing any necessary semantic checking.
7054Sema::DeclGroupPtrTy
7055Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7056                           bool TypeMayContainAuto) {
7057  // C++0x [dcl.spec.auto]p7:
7058  //   If the type deduced for the template parameter U is not the same in each
7059  //   deduction, the program is ill-formed.
7060  // FIXME: When initializer-list support is added, a distinction is needed
7061  // between the deduced type U and the deduced type which 'auto' stands for.
7062  //   auto a = 0, b = { 1, 2, 3 };
7063  // is legal because the deduced type U is 'int' in both cases.
7064  if (TypeMayContainAuto && NumDecls > 1) {
7065    QualType Deduced;
7066    CanQualType DeducedCanon;
7067    VarDecl *DeducedDecl = 0;
7068    for (unsigned i = 0; i != NumDecls; ++i) {
7069      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7070        AutoType *AT = D->getType()->getContainedAutoType();
7071        // Don't reissue diagnostics when instantiating a template.
7072        if (AT && D->isInvalidDecl())
7073          break;
7074        if (AT && AT->isDeduced()) {
7075          QualType U = AT->getDeducedType();
7076          CanQualType UCanon = Context.getCanonicalType(U);
7077          if (Deduced.isNull()) {
7078            Deduced = U;
7079            DeducedCanon = UCanon;
7080            DeducedDecl = D;
7081          } else if (DeducedCanon != UCanon) {
7082            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7083                 diag::err_auto_different_deductions)
7084              << Deduced << DeducedDecl->getDeclName()
7085              << U << D->getDeclName()
7086              << DeducedDecl->getInit()->getSourceRange()
7087              << D->getInit()->getSourceRange();
7088            D->setInvalidDecl();
7089            break;
7090          }
7091        }
7092      }
7093    }
7094  }
7095
7096  ActOnDocumentableDecls(Group, NumDecls);
7097
7098  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7099}
7100
7101void Sema::ActOnDocumentableDecl(Decl *D) {
7102  ActOnDocumentableDecls(&D, 1);
7103}
7104
7105void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7106  // Don't parse the comment if Doxygen diagnostics are ignored.
7107  if (NumDecls == 0 || !Group[0])
7108   return;
7109
7110  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7111                               Group[0]->getLocation())
7112        == DiagnosticsEngine::Ignored)
7113    return;
7114
7115  if (NumDecls >= 2) {
7116    // This is a decl group.  Normally it will contain only declarations
7117    // procuded from declarator list.  But in case we have any definitions or
7118    // additional declaration references:
7119    //   'typedef struct S {} S;'
7120    //   'typedef struct S *S;'
7121    //   'struct S *pS;'
7122    // FinalizeDeclaratorGroup adds these as separate declarations.
7123    Decl *MaybeTagDecl = Group[0];
7124    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7125      Group++;
7126      NumDecls--;
7127    }
7128  }
7129
7130  // See if there are any new comments that are not attached to a decl.
7131  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7132  if (!Comments.empty() &&
7133      !Comments.back()->isAttached()) {
7134    // There is at least one comment that not attached to a decl.
7135    // Maybe it should be attached to one of these decls?
7136    //
7137    // Note that this way we pick up not only comments that precede the
7138    // declaration, but also comments that *follow* the declaration -- thanks to
7139    // the lookahead in the lexer: we've consumed the semicolon and looked
7140    // ahead through comments.
7141    for (unsigned i = 0; i != NumDecls; ++i)
7142      Context.getCommentForDecl(Group[i]);
7143  }
7144}
7145
7146/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7147/// to introduce parameters into function prototype scope.
7148Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7149  const DeclSpec &DS = D.getDeclSpec();
7150
7151  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7152  // C++03 [dcl.stc]p2 also permits 'auto'.
7153  VarDecl::StorageClass StorageClass = SC_None;
7154  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7155  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7156    StorageClass = SC_Register;
7157    StorageClassAsWritten = SC_Register;
7158  } else if (getLangOpts().CPlusPlus &&
7159             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7160    StorageClass = SC_Auto;
7161    StorageClassAsWritten = SC_Auto;
7162  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7163    Diag(DS.getStorageClassSpecLoc(),
7164         diag::err_invalid_storage_class_in_func_decl);
7165    D.getMutableDeclSpec().ClearStorageClassSpecs();
7166  }
7167
7168  if (D.getDeclSpec().isThreadSpecified())
7169    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7170  if (D.getDeclSpec().isConstexprSpecified())
7171    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7172      << 0;
7173
7174  DiagnoseFunctionSpecifiers(D);
7175
7176  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7177  QualType parmDeclType = TInfo->getType();
7178
7179  if (getLangOpts().CPlusPlus) {
7180    // Check that there are no default arguments inside the type of this
7181    // parameter.
7182    CheckExtraCXXDefaultArguments(D);
7183
7184    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7185    if (D.getCXXScopeSpec().isSet()) {
7186      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7187        << D.getCXXScopeSpec().getRange();
7188      D.getCXXScopeSpec().clear();
7189    }
7190  }
7191
7192  // Ensure we have a valid name
7193  IdentifierInfo *II = 0;
7194  if (D.hasName()) {
7195    II = D.getIdentifier();
7196    if (!II) {
7197      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7198        << GetNameForDeclarator(D).getName().getAsString();
7199      D.setInvalidType(true);
7200    }
7201  }
7202
7203  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7204  if (II) {
7205    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7206                   ForRedeclaration);
7207    LookupName(R, S);
7208    if (R.isSingleResult()) {
7209      NamedDecl *PrevDecl = R.getFoundDecl();
7210      if (PrevDecl->isTemplateParameter()) {
7211        // Maybe we will complain about the shadowed template parameter.
7212        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7213        // Just pretend that we didn't see the previous declaration.
7214        PrevDecl = 0;
7215      } else if (S->isDeclScope(PrevDecl)) {
7216        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7217        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7218
7219        // Recover by removing the name
7220        II = 0;
7221        D.SetIdentifier(0, D.getIdentifierLoc());
7222        D.setInvalidType(true);
7223      }
7224    }
7225  }
7226
7227  // Temporarily put parameter variables in the translation unit, not
7228  // the enclosing context.  This prevents them from accidentally
7229  // looking like class members in C++.
7230  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7231                                    D.getLocStart(),
7232                                    D.getIdentifierLoc(), II,
7233                                    parmDeclType, TInfo,
7234                                    StorageClass, StorageClassAsWritten);
7235
7236  if (D.isInvalidType())
7237    New->setInvalidDecl();
7238
7239  assert(S->isFunctionPrototypeScope());
7240  assert(S->getFunctionPrototypeDepth() >= 1);
7241  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7242                    S->getNextFunctionPrototypeIndex());
7243
7244  // Add the parameter declaration into this scope.
7245  S->AddDecl(New);
7246  if (II)
7247    IdResolver.AddDecl(New);
7248
7249  ProcessDeclAttributes(S, New, D);
7250
7251  if (D.getDeclSpec().isModulePrivateSpecified())
7252    Diag(New->getLocation(), diag::err_module_private_local)
7253      << 1 << New->getDeclName()
7254      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7255      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7256
7257  if (New->hasAttr<BlocksAttr>()) {
7258    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7259  }
7260  return New;
7261}
7262
7263/// \brief Synthesizes a variable for a parameter arising from a
7264/// typedef.
7265ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7266                                              SourceLocation Loc,
7267                                              QualType T) {
7268  /* FIXME: setting StartLoc == Loc.
7269     Would it be worth to modify callers so as to provide proper source
7270     location for the unnamed parameters, embedding the parameter's type? */
7271  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7272                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7273                                           SC_None, SC_None, 0);
7274  Param->setImplicit();
7275  return Param;
7276}
7277
7278void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7279                                    ParmVarDecl * const *ParamEnd) {
7280  // Don't diagnose unused-parameter errors in template instantiations; we
7281  // will already have done so in the template itself.
7282  if (!ActiveTemplateInstantiations.empty())
7283    return;
7284
7285  for (; Param != ParamEnd; ++Param) {
7286    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7287        !(*Param)->hasAttr<UnusedAttr>()) {
7288      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7289        << (*Param)->getDeclName();
7290    }
7291  }
7292}
7293
7294void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7295                                                  ParmVarDecl * const *ParamEnd,
7296                                                  QualType ReturnTy,
7297                                                  NamedDecl *D) {
7298  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7299    return;
7300
7301  // Warn if the return value is pass-by-value and larger than the specified
7302  // threshold.
7303  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7304    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7305    if (Size > LangOpts.NumLargeByValueCopy)
7306      Diag(D->getLocation(), diag::warn_return_value_size)
7307          << D->getDeclName() << Size;
7308  }
7309
7310  // Warn if any parameter is pass-by-value and larger than the specified
7311  // threshold.
7312  for (; Param != ParamEnd; ++Param) {
7313    QualType T = (*Param)->getType();
7314    if (T->isDependentType() || !T.isPODType(Context))
7315      continue;
7316    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7317    if (Size > LangOpts.NumLargeByValueCopy)
7318      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7319          << (*Param)->getDeclName() << Size;
7320  }
7321}
7322
7323ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7324                                  SourceLocation NameLoc, IdentifierInfo *Name,
7325                                  QualType T, TypeSourceInfo *TSInfo,
7326                                  VarDecl::StorageClass StorageClass,
7327                                  VarDecl::StorageClass StorageClassAsWritten) {
7328  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7329  if (getLangOpts().ObjCAutoRefCount &&
7330      T.getObjCLifetime() == Qualifiers::OCL_None &&
7331      T->isObjCLifetimeType()) {
7332
7333    Qualifiers::ObjCLifetime lifetime;
7334
7335    // Special cases for arrays:
7336    //   - if it's const, use __unsafe_unretained
7337    //   - otherwise, it's an error
7338    if (T->isArrayType()) {
7339      if (!T.isConstQualified()) {
7340        DelayedDiagnostics.add(
7341            sema::DelayedDiagnostic::makeForbiddenType(
7342            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7343      }
7344      lifetime = Qualifiers::OCL_ExplicitNone;
7345    } else {
7346      lifetime = T->getObjCARCImplicitLifetime();
7347    }
7348    T = Context.getLifetimeQualifiedType(T, lifetime);
7349  }
7350
7351  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7352                                         Context.getAdjustedParameterType(T),
7353                                         TSInfo,
7354                                         StorageClass, StorageClassAsWritten,
7355                                         0);
7356
7357  // Parameters can not be abstract class types.
7358  // For record types, this is done by the AbstractClassUsageDiagnoser once
7359  // the class has been completely parsed.
7360  if (!CurContext->isRecord() &&
7361      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7362                             AbstractParamType))
7363    New->setInvalidDecl();
7364
7365  // Parameter declarators cannot be interface types. All ObjC objects are
7366  // passed by reference.
7367  if (T->isObjCObjectType()) {
7368    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7369    Diag(NameLoc,
7370         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7371      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7372    T = Context.getObjCObjectPointerType(T);
7373    New->setType(T);
7374  }
7375
7376  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7377  // duration shall not be qualified by an address-space qualifier."
7378  // Since all parameters have automatic store duration, they can not have
7379  // an address space.
7380  if (T.getAddressSpace() != 0) {
7381    Diag(NameLoc, diag::err_arg_with_address_space);
7382    New->setInvalidDecl();
7383  }
7384
7385  return New;
7386}
7387
7388void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7389                                           SourceLocation LocAfterDecls) {
7390  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7391
7392  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7393  // for a K&R function.
7394  if (!FTI.hasPrototype) {
7395    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7396      --i;
7397      if (FTI.ArgInfo[i].Param == 0) {
7398        SmallString<256> Code;
7399        llvm::raw_svector_ostream(Code) << "  int "
7400                                        << FTI.ArgInfo[i].Ident->getName()
7401                                        << ";\n";
7402        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7403          << FTI.ArgInfo[i].Ident
7404          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7405
7406        // Implicitly declare the argument as type 'int' for lack of a better
7407        // type.
7408        AttributeFactory attrs;
7409        DeclSpec DS(attrs);
7410        const char* PrevSpec; // unused
7411        unsigned DiagID; // unused
7412        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7413                           PrevSpec, DiagID);
7414        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7415        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7416        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7417      }
7418    }
7419  }
7420}
7421
7422Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7423  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7424  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7425  Scope *ParentScope = FnBodyScope->getParent();
7426
7427  D.setFunctionDefinitionKind(FDK_Definition);
7428  Decl *DP = HandleDeclarator(ParentScope, D,
7429                              MultiTemplateParamsArg(*this));
7430  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7431}
7432
7433static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7434  // Don't warn about invalid declarations.
7435  if (FD->isInvalidDecl())
7436    return false;
7437
7438  // Or declarations that aren't global.
7439  if (!FD->isGlobal())
7440    return false;
7441
7442  // Don't warn about C++ member functions.
7443  if (isa<CXXMethodDecl>(FD))
7444    return false;
7445
7446  // Don't warn about 'main'.
7447  if (FD->isMain())
7448    return false;
7449
7450  // Don't warn about inline functions.
7451  if (FD->isInlined())
7452    return false;
7453
7454  // Don't warn about function templates.
7455  if (FD->getDescribedFunctionTemplate())
7456    return false;
7457
7458  // Don't warn about function template specializations.
7459  if (FD->isFunctionTemplateSpecialization())
7460    return false;
7461
7462  // Don't warn for OpenCL kernels.
7463  if (FD->hasAttr<OpenCLKernelAttr>())
7464    return false;
7465
7466  bool MissingPrototype = true;
7467  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7468       Prev; Prev = Prev->getPreviousDecl()) {
7469    // Ignore any declarations that occur in function or method
7470    // scope, because they aren't visible from the header.
7471    if (Prev->getDeclContext()->isFunctionOrMethod())
7472      continue;
7473
7474    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7475    break;
7476  }
7477
7478  return MissingPrototype;
7479}
7480
7481void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7482  // Don't complain if we're in GNU89 mode and the previous definition
7483  // was an extern inline function.
7484  const FunctionDecl *Definition;
7485  if (FD->isDefined(Definition) &&
7486      !canRedefineFunction(Definition, getLangOpts())) {
7487    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7488        Definition->getStorageClass() == SC_Extern)
7489      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7490        << FD->getDeclName() << getLangOpts().CPlusPlus;
7491    else
7492      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7493    Diag(Definition->getLocation(), diag::note_previous_definition);
7494    FD->setInvalidDecl();
7495  }
7496}
7497
7498Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7499  // Clear the last template instantiation error context.
7500  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7501
7502  if (!D)
7503    return D;
7504  FunctionDecl *FD = 0;
7505
7506  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7507    FD = FunTmpl->getTemplatedDecl();
7508  else
7509    FD = cast<FunctionDecl>(D);
7510
7511  // Enter a new function scope
7512  PushFunctionScope();
7513
7514  // See if this is a redefinition.
7515  if (!FD->isLateTemplateParsed())
7516    CheckForFunctionRedefinition(FD);
7517
7518  // Builtin functions cannot be defined.
7519  if (unsigned BuiltinID = FD->getBuiltinID()) {
7520    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7521      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7522      FD->setInvalidDecl();
7523    }
7524  }
7525
7526  // The return type of a function definition must be complete
7527  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7528  QualType ResultType = FD->getResultType();
7529  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7530      !FD->isInvalidDecl() &&
7531      RequireCompleteType(FD->getLocation(), ResultType,
7532                          diag::err_func_def_incomplete_result))
7533    FD->setInvalidDecl();
7534
7535  // GNU warning -Wmissing-prototypes:
7536  //   Warn if a global function is defined without a previous
7537  //   prototype declaration. This warning is issued even if the
7538  //   definition itself provides a prototype. The aim is to detect
7539  //   global functions that fail to be declared in header files.
7540  if (ShouldWarnAboutMissingPrototype(FD))
7541    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7542
7543  if (FnBodyScope)
7544    PushDeclContext(FnBodyScope, FD);
7545
7546  // Check the validity of our function parameters
7547  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7548                           /*CheckParameterNames=*/true);
7549
7550  // Introduce our parameters into the function scope
7551  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7552    ParmVarDecl *Param = FD->getParamDecl(p);
7553    Param->setOwningFunction(FD);
7554
7555    // If this has an identifier, add it to the scope stack.
7556    if (Param->getIdentifier() && FnBodyScope) {
7557      CheckShadow(FnBodyScope, Param);
7558
7559      PushOnScopeChains(Param, FnBodyScope);
7560    }
7561  }
7562
7563  // If we had any tags defined in the function prototype,
7564  // introduce them into the function scope.
7565  if (FnBodyScope) {
7566    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7567           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7568      NamedDecl *D = *I;
7569
7570      // Some of these decls (like enums) may have been pinned to the translation unit
7571      // for lack of a real context earlier. If so, remove from the translation unit
7572      // and reattach to the current context.
7573      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7574        // Is the decl actually in the context?
7575        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7576               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7577          if (*DI == D) {
7578            Context.getTranslationUnitDecl()->removeDecl(D);
7579            break;
7580          }
7581        }
7582        // Either way, reassign the lexical decl context to our FunctionDecl.
7583        D->setLexicalDeclContext(CurContext);
7584      }
7585
7586      // If the decl has a non-null name, make accessible in the current scope.
7587      if (!D->getName().empty())
7588        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7589
7590      // Similarly, dive into enums and fish their constants out, making them
7591      // accessible in this scope.
7592      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7593        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7594               EE = ED->enumerator_end(); EI != EE; ++EI)
7595          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7596      }
7597    }
7598  }
7599
7600  // Ensure that the function's exception specification is instantiated.
7601  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7602    ResolveExceptionSpec(D->getLocation(), FPT);
7603
7604  // Checking attributes of current function definition
7605  // dllimport attribute.
7606  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7607  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7608    // dllimport attribute cannot be directly applied to definition.
7609    // Microsoft accepts dllimport for functions defined within class scope.
7610    if (!DA->isInherited() &&
7611        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7612      Diag(FD->getLocation(),
7613           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7614        << "dllimport";
7615      FD->setInvalidDecl();
7616      return FD;
7617    }
7618
7619    // Visual C++ appears to not think this is an issue, so only issue
7620    // a warning when Microsoft extensions are disabled.
7621    if (!LangOpts.MicrosoftExt) {
7622      // If a symbol previously declared dllimport is later defined, the
7623      // attribute is ignored in subsequent references, and a warning is
7624      // emitted.
7625      Diag(FD->getLocation(),
7626           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7627        << FD->getName() << "dllimport";
7628    }
7629  }
7630  // We want to attach documentation to original Decl (which might be
7631  // a function template).
7632  ActOnDocumentableDecl(D);
7633  return FD;
7634}
7635
7636/// \brief Given the set of return statements within a function body,
7637/// compute the variables that are subject to the named return value
7638/// optimization.
7639///
7640/// Each of the variables that is subject to the named return value
7641/// optimization will be marked as NRVO variables in the AST, and any
7642/// return statement that has a marked NRVO variable as its NRVO candidate can
7643/// use the named return value optimization.
7644///
7645/// This function applies a very simplistic algorithm for NRVO: if every return
7646/// statement in the function has the same NRVO candidate, that candidate is
7647/// the NRVO variable.
7648///
7649/// FIXME: Employ a smarter algorithm that accounts for multiple return
7650/// statements and the lifetimes of the NRVO candidates. We should be able to
7651/// find a maximal set of NRVO variables.
7652void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7653  ReturnStmt **Returns = Scope->Returns.data();
7654
7655  const VarDecl *NRVOCandidate = 0;
7656  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7657    if (!Returns[I]->getNRVOCandidate())
7658      return;
7659
7660    if (!NRVOCandidate)
7661      NRVOCandidate = Returns[I]->getNRVOCandidate();
7662    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7663      return;
7664  }
7665
7666  if (NRVOCandidate)
7667    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7668}
7669
7670Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7671  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7672}
7673
7674Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7675                                    bool IsInstantiation) {
7676  FunctionDecl *FD = 0;
7677  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7678  if (FunTmpl)
7679    FD = FunTmpl->getTemplatedDecl();
7680  else
7681    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7682
7683  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7684  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7685
7686  if (FD) {
7687    FD->setBody(Body);
7688
7689    // If the function implicitly returns zero (like 'main') or is naked,
7690    // don't complain about missing return statements.
7691    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7692      WP.disableCheckFallThrough();
7693
7694    // MSVC permits the use of pure specifier (=0) on function definition,
7695    // defined at class scope, warn about this non standard construct.
7696    if (getLangOpts().MicrosoftExt && FD->isPure())
7697      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7698
7699    if (!FD->isInvalidDecl()) {
7700      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7701      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7702                                             FD->getResultType(), FD);
7703
7704      // If this is a constructor, we need a vtable.
7705      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7706        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7707
7708      // Try to apply the named return value optimization. We have to check
7709      // if we can do this here because lambdas keep return statements around
7710      // to deduce an implicit return type.
7711      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7712          !FD->isDependentContext())
7713        computeNRVO(Body, getCurFunction());
7714    }
7715
7716    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7717           "Function parsing confused");
7718  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7719    assert(MD == getCurMethodDecl() && "Method parsing confused");
7720    MD->setBody(Body);
7721    if (!MD->isInvalidDecl()) {
7722      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7723      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7724                                             MD->getResultType(), MD);
7725
7726      if (Body)
7727        computeNRVO(Body, getCurFunction());
7728    }
7729    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7730      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7731      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7732    }
7733    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7734      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7735      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7736    }
7737  } else {
7738    return 0;
7739  }
7740
7741  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7742         "This should only be set for ObjC methods, which should have been "
7743         "handled in the block above.");
7744  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7745         "This should only be set for ObjC methods, which should have been "
7746         "handled in the block above.");
7747
7748  // Verify and clean out per-function state.
7749  if (Body) {
7750    // C++ constructors that have function-try-blocks can't have return
7751    // statements in the handlers of that block. (C++ [except.handle]p14)
7752    // Verify this.
7753    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7754      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7755
7756    // Verify that gotos and switch cases don't jump into scopes illegally.
7757    if (getCurFunction()->NeedsScopeChecking() &&
7758        !dcl->isInvalidDecl() &&
7759        !hasAnyUnrecoverableErrorsInThisFunction())
7760      DiagnoseInvalidJumps(Body);
7761
7762    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7763      if (!Destructor->getParent()->isDependentType())
7764        CheckDestructor(Destructor);
7765
7766      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7767                                             Destructor->getParent());
7768    }
7769
7770    // If any errors have occurred, clear out any temporaries that may have
7771    // been leftover. This ensures that these temporaries won't be picked up for
7772    // deletion in some later function.
7773    if (PP.getDiagnostics().hasErrorOccurred() ||
7774        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7775      DiscardCleanupsInEvaluationContext();
7776    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7777      // Since the body is valid, issue any analysis-based warnings that are
7778      // enabled.
7779      ActivePolicy = &WP;
7780    }
7781
7782    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7783        (!CheckConstexprFunctionDecl(FD) ||
7784         !CheckConstexprFunctionBody(FD, Body)))
7785      FD->setInvalidDecl();
7786
7787    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7788    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7789    assert(MaybeODRUseExprs.empty() &&
7790           "Leftover expressions for odr-use checking");
7791  }
7792
7793  if (!IsInstantiation)
7794    PopDeclContext();
7795
7796  PopFunctionScopeInfo(ActivePolicy, dcl);
7797
7798  // If any errors have occurred, clear out any temporaries that may have
7799  // been leftover. This ensures that these temporaries won't be picked up for
7800  // deletion in some later function.
7801  if (getDiagnostics().hasErrorOccurred()) {
7802    DiscardCleanupsInEvaluationContext();
7803  }
7804
7805  return dcl;
7806}
7807
7808
7809/// When we finish delayed parsing of an attribute, we must attach it to the
7810/// relevant Decl.
7811void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7812                                       ParsedAttributes &Attrs) {
7813  // Always attach attributes to the underlying decl.
7814  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7815    D = TD->getTemplatedDecl();
7816  ProcessDeclAttributeList(S, D, Attrs.getList());
7817
7818  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7819    if (Method->isStatic())
7820      checkThisInStaticMemberFunctionAttributes(Method);
7821}
7822
7823
7824/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7825/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7826NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7827                                          IdentifierInfo &II, Scope *S) {
7828  // Before we produce a declaration for an implicitly defined
7829  // function, see whether there was a locally-scoped declaration of
7830  // this name as a function or variable. If so, use that
7831  // (non-visible) declaration, and complain about it.
7832  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7833    = findLocallyScopedExternalDecl(&II);
7834  if (Pos != LocallyScopedExternalDecls.end()) {
7835    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7836    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7837    return Pos->second;
7838  }
7839
7840  // Extension in C99.  Legal in C90, but warn about it.
7841  unsigned diag_id;
7842  if (II.getName().startswith("__builtin_"))
7843    diag_id = diag::warn_builtin_unknown;
7844  else if (getLangOpts().C99)
7845    diag_id = diag::ext_implicit_function_decl;
7846  else
7847    diag_id = diag::warn_implicit_function_decl;
7848  Diag(Loc, diag_id) << &II;
7849
7850  // Because typo correction is expensive, only do it if the implicit
7851  // function declaration is going to be treated as an error.
7852  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7853    TypoCorrection Corrected;
7854    DeclFilterCCC<FunctionDecl> Validator;
7855    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7856                                      LookupOrdinaryName, S, 0, Validator))) {
7857      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7858      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7859      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7860
7861      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7862          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7863
7864      if (Func->getLocation().isValid()
7865          && !II.getName().startswith("__builtin_"))
7866        Diag(Func->getLocation(), diag::note_previous_decl)
7867            << CorrectedQuotedStr;
7868    }
7869  }
7870
7871  // Set a Declarator for the implicit definition: int foo();
7872  const char *Dummy;
7873  AttributeFactory attrFactory;
7874  DeclSpec DS(attrFactory);
7875  unsigned DiagID;
7876  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7877  (void)Error; // Silence warning.
7878  assert(!Error && "Error setting up implicit decl!");
7879  Declarator D(DS, Declarator::BlockContext);
7880  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7881                                             SourceLocation(), 0, 0, 0, true,
7882                                             SourceLocation(), SourceLocation(),
7883                                             SourceLocation(), SourceLocation(),
7884                                             EST_None, SourceLocation(),
7885                                             0, 0, 0, 0, Loc, Loc, D),
7886                DS.getAttributes(),
7887                SourceLocation());
7888  D.SetIdentifier(&II, Loc);
7889
7890  // Insert this function into translation-unit scope.
7891
7892  DeclContext *PrevDC = CurContext;
7893  CurContext = Context.getTranslationUnitDecl();
7894
7895  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7896  FD->setImplicit();
7897
7898  CurContext = PrevDC;
7899
7900  AddKnownFunctionAttributes(FD);
7901
7902  return FD;
7903}
7904
7905/// \brief Adds any function attributes that we know a priori based on
7906/// the declaration of this function.
7907///
7908/// These attributes can apply both to implicitly-declared builtins
7909/// (like __builtin___printf_chk) or to library-declared functions
7910/// like NSLog or printf.
7911///
7912/// We need to check for duplicate attributes both here and where user-written
7913/// attributes are applied to declarations.
7914void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7915  if (FD->isInvalidDecl())
7916    return;
7917
7918  // If this is a built-in function, map its builtin attributes to
7919  // actual attributes.
7920  if (unsigned BuiltinID = FD->getBuiltinID()) {
7921    // Handle printf-formatting attributes.
7922    unsigned FormatIdx;
7923    bool HasVAListArg;
7924    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7925      if (!FD->getAttr<FormatAttr>()) {
7926        const char *fmt = "printf";
7927        unsigned int NumParams = FD->getNumParams();
7928        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7929            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7930          fmt = "NSString";
7931        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7932                                               fmt, FormatIdx+1,
7933                                               HasVAListArg ? 0 : FormatIdx+2));
7934      }
7935    }
7936    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7937                                             HasVAListArg)) {
7938     if (!FD->getAttr<FormatAttr>())
7939       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7940                                              "scanf", FormatIdx+1,
7941                                              HasVAListArg ? 0 : FormatIdx+2));
7942    }
7943
7944    // Mark const if we don't care about errno and that is the only
7945    // thing preventing the function from being const. This allows
7946    // IRgen to use LLVM intrinsics for such functions.
7947    if (!getLangOpts().MathErrno &&
7948        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7949      if (!FD->getAttr<ConstAttr>())
7950        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7951    }
7952
7953    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7954        !FD->getAttr<ReturnsTwiceAttr>())
7955      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7956    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7957      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7958    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7959      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7960  }
7961
7962  IdentifierInfo *Name = FD->getIdentifier();
7963  if (!Name)
7964    return;
7965  if ((!getLangOpts().CPlusPlus &&
7966       FD->getDeclContext()->isTranslationUnit()) ||
7967      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7968       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7969       LinkageSpecDecl::lang_c)) {
7970    // Okay: this could be a libc/libm/Objective-C function we know
7971    // about.
7972  } else
7973    return;
7974
7975  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7976    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7977    // target-specific builtins, perhaps?
7978    if (!FD->getAttr<FormatAttr>())
7979      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7980                                             "printf", 2,
7981                                             Name->isStr("vasprintf") ? 0 : 3));
7982  }
7983
7984  if (Name->isStr("__CFStringMakeConstantString")) {
7985    // We already have a __builtin___CFStringMakeConstantString,
7986    // but builds that use -fno-constant-cfstrings don't go through that.
7987    if (!FD->getAttr<FormatArgAttr>())
7988      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
7989  }
7990}
7991
7992TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7993                                    TypeSourceInfo *TInfo) {
7994  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7995  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7996
7997  if (!TInfo) {
7998    assert(D.isInvalidType() && "no declarator info for valid type");
7999    TInfo = Context.getTrivialTypeSourceInfo(T);
8000  }
8001
8002  // Scope manipulation handled by caller.
8003  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8004                                           D.getLocStart(),
8005                                           D.getIdentifierLoc(),
8006                                           D.getIdentifier(),
8007                                           TInfo);
8008
8009  // Bail out immediately if we have an invalid declaration.
8010  if (D.isInvalidType()) {
8011    NewTD->setInvalidDecl();
8012    return NewTD;
8013  }
8014
8015  if (D.getDeclSpec().isModulePrivateSpecified()) {
8016    if (CurContext->isFunctionOrMethod())
8017      Diag(NewTD->getLocation(), diag::err_module_private_local)
8018        << 2 << NewTD->getDeclName()
8019        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8020        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8021    else
8022      NewTD->setModulePrivate();
8023  }
8024
8025  // C++ [dcl.typedef]p8:
8026  //   If the typedef declaration defines an unnamed class (or
8027  //   enum), the first typedef-name declared by the declaration
8028  //   to be that class type (or enum type) is used to denote the
8029  //   class type (or enum type) for linkage purposes only.
8030  // We need to check whether the type was declared in the declaration.
8031  switch (D.getDeclSpec().getTypeSpecType()) {
8032  case TST_enum:
8033  case TST_struct:
8034  case TST_union:
8035  case TST_class: {
8036    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8037
8038    // Do nothing if the tag is not anonymous or already has an
8039    // associated typedef (from an earlier typedef in this decl group).
8040    if (tagFromDeclSpec->getIdentifier()) break;
8041    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8042
8043    // A well-formed anonymous tag must always be a TUK_Definition.
8044    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8045
8046    // The type must match the tag exactly;  no qualifiers allowed.
8047    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8048      break;
8049
8050    // Otherwise, set this is the anon-decl typedef for the tag.
8051    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8052    break;
8053  }
8054
8055  default:
8056    break;
8057  }
8058
8059  return NewTD;
8060}
8061
8062
8063/// \brief Check that this is a valid underlying type for an enum declaration.
8064bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8065  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8066  QualType T = TI->getType();
8067
8068  if (T->isDependentType() || T->isIntegralType(Context))
8069    return false;
8070
8071  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8072  return true;
8073}
8074
8075/// Check whether this is a valid redeclaration of a previous enumeration.
8076/// \return true if the redeclaration was invalid.
8077bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8078                                  QualType EnumUnderlyingTy,
8079                                  const EnumDecl *Prev) {
8080  bool IsFixed = !EnumUnderlyingTy.isNull();
8081
8082  if (IsScoped != Prev->isScoped()) {
8083    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8084      << Prev->isScoped();
8085    Diag(Prev->getLocation(), diag::note_previous_use);
8086    return true;
8087  }
8088
8089  if (IsFixed && Prev->isFixed()) {
8090    if (!EnumUnderlyingTy->isDependentType() &&
8091        !Prev->getIntegerType()->isDependentType() &&
8092        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8093                                        Prev->getIntegerType())) {
8094      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8095        << EnumUnderlyingTy << Prev->getIntegerType();
8096      Diag(Prev->getLocation(), diag::note_previous_use);
8097      return true;
8098    }
8099  } else if (IsFixed != Prev->isFixed()) {
8100    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8101      << Prev->isFixed();
8102    Diag(Prev->getLocation(), diag::note_previous_use);
8103    return true;
8104  }
8105
8106  return false;
8107}
8108
8109/// \brief Determine whether a tag with a given kind is acceptable
8110/// as a redeclaration of the given tag declaration.
8111///
8112/// \returns true if the new tag kind is acceptable, false otherwise.
8113bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8114                                        TagTypeKind NewTag, bool isDefinition,
8115                                        SourceLocation NewTagLoc,
8116                                        const IdentifierInfo &Name) {
8117  // C++ [dcl.type.elab]p3:
8118  //   The class-key or enum keyword present in the
8119  //   elaborated-type-specifier shall agree in kind with the
8120  //   declaration to which the name in the elaborated-type-specifier
8121  //   refers. This rule also applies to the form of
8122  //   elaborated-type-specifier that declares a class-name or
8123  //   friend class since it can be construed as referring to the
8124  //   definition of the class. Thus, in any
8125  //   elaborated-type-specifier, the enum keyword shall be used to
8126  //   refer to an enumeration (7.2), the union class-key shall be
8127  //   used to refer to a union (clause 9), and either the class or
8128  //   struct class-key shall be used to refer to a class (clause 9)
8129  //   declared using the class or struct class-key.
8130  TagTypeKind OldTag = Previous->getTagKind();
8131  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
8132    if (OldTag == NewTag)
8133      return true;
8134
8135  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
8136      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
8137    // Warn about the struct/class tag mismatch.
8138    bool isTemplate = false;
8139    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8140      isTemplate = Record->getDescribedClassTemplate();
8141
8142    if (!ActiveTemplateInstantiations.empty()) {
8143      // In a template instantiation, do not offer fix-its for tag mismatches
8144      // since they usually mess up the template instead of fixing the problem.
8145      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8146        << (NewTag == TTK_Class) << isTemplate << &Name;
8147      return true;
8148    }
8149
8150    if (isDefinition) {
8151      // On definitions, check previous tags and issue a fix-it for each
8152      // one that doesn't match the current tag.
8153      if (Previous->getDefinition()) {
8154        // Don't suggest fix-its for redefinitions.
8155        return true;
8156      }
8157
8158      bool previousMismatch = false;
8159      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8160           E(Previous->redecls_end()); I != E; ++I) {
8161        if (I->getTagKind() != NewTag) {
8162          if (!previousMismatch) {
8163            previousMismatch = true;
8164            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8165              << (NewTag == TTK_Class) << isTemplate << &Name;
8166          }
8167          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8168            << (NewTag == TTK_Class)
8169            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8170                                            NewTag == TTK_Class?
8171                                            "class" : "struct");
8172        }
8173      }
8174      return true;
8175    }
8176
8177    // Check for a previous definition.  If current tag and definition
8178    // are same type, do nothing.  If no definition, but disagree with
8179    // with previous tag type, give a warning, but no fix-it.
8180    const TagDecl *Redecl = Previous->getDefinition() ?
8181                            Previous->getDefinition() : Previous;
8182    if (Redecl->getTagKind() == NewTag) {
8183      return true;
8184    }
8185
8186    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8187      << (NewTag == TTK_Class)
8188      << isTemplate << &Name;
8189    Diag(Redecl->getLocation(), diag::note_previous_use);
8190
8191    // If there is a previous defintion, suggest a fix-it.
8192    if (Previous->getDefinition()) {
8193        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8194          << (Redecl->getTagKind() == TTK_Class)
8195          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8196                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8197    }
8198
8199    return true;
8200  }
8201  return false;
8202}
8203
8204/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8205/// former case, Name will be non-null.  In the later case, Name will be null.
8206/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8207/// reference/declaration/definition of a tag.
8208Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8209                     SourceLocation KWLoc, CXXScopeSpec &SS,
8210                     IdentifierInfo *Name, SourceLocation NameLoc,
8211                     AttributeList *Attr, AccessSpecifier AS,
8212                     SourceLocation ModulePrivateLoc,
8213                     MultiTemplateParamsArg TemplateParameterLists,
8214                     bool &OwnedDecl, bool &IsDependent,
8215                     SourceLocation ScopedEnumKWLoc,
8216                     bool ScopedEnumUsesClassTag,
8217                     TypeResult UnderlyingType) {
8218  // If this is not a definition, it must have a name.
8219  IdentifierInfo *OrigName = Name;
8220  assert((Name != 0 || TUK == TUK_Definition) &&
8221         "Nameless record must be a definition!");
8222  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8223
8224  OwnedDecl = false;
8225  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8226  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8227
8228  // FIXME: Check explicit specializations more carefully.
8229  bool isExplicitSpecialization = false;
8230  bool Invalid = false;
8231
8232  // We only need to do this matching if we have template parameters
8233  // or a scope specifier, which also conveniently avoids this work
8234  // for non-C++ cases.
8235  if (TemplateParameterLists.size() > 0 ||
8236      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8237    if (TemplateParameterList *TemplateParams
8238          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8239                                                TemplateParameterLists.get(),
8240                                                TemplateParameterLists.size(),
8241                                                    TUK == TUK_Friend,
8242                                                    isExplicitSpecialization,
8243                                                    Invalid)) {
8244      if (TemplateParams->size() > 0) {
8245        // This is a declaration or definition of a class template (which may
8246        // be a member of another template).
8247
8248        if (Invalid)
8249          return 0;
8250
8251        OwnedDecl = false;
8252        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8253                                               SS, Name, NameLoc, Attr,
8254                                               TemplateParams, AS,
8255                                               ModulePrivateLoc,
8256                                           TemplateParameterLists.size() - 1,
8257                 (TemplateParameterList**) TemplateParameterLists.release());
8258        return Result.get();
8259      } else {
8260        // The "template<>" header is extraneous.
8261        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8262          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8263        isExplicitSpecialization = true;
8264      }
8265    }
8266  }
8267
8268  // Figure out the underlying type if this a enum declaration. We need to do
8269  // this early, because it's needed to detect if this is an incompatible
8270  // redeclaration.
8271  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8272
8273  if (Kind == TTK_Enum) {
8274    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8275      // No underlying type explicitly specified, or we failed to parse the
8276      // type, default to int.
8277      EnumUnderlying = Context.IntTy.getTypePtr();
8278    else if (UnderlyingType.get()) {
8279      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8280      // integral type; any cv-qualification is ignored.
8281      TypeSourceInfo *TI = 0;
8282      GetTypeFromParser(UnderlyingType.get(), &TI);
8283      EnumUnderlying = TI;
8284
8285      if (CheckEnumUnderlyingType(TI))
8286        // Recover by falling back to int.
8287        EnumUnderlying = Context.IntTy.getTypePtr();
8288
8289      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8290                                          UPPC_FixedUnderlyingType))
8291        EnumUnderlying = Context.IntTy.getTypePtr();
8292
8293    } else if (getLangOpts().MicrosoftMode)
8294      // Microsoft enums are always of int type.
8295      EnumUnderlying = Context.IntTy.getTypePtr();
8296  }
8297
8298  DeclContext *SearchDC = CurContext;
8299  DeclContext *DC = CurContext;
8300  bool isStdBadAlloc = false;
8301
8302  RedeclarationKind Redecl = ForRedeclaration;
8303  if (TUK == TUK_Friend || TUK == TUK_Reference)
8304    Redecl = NotForRedeclaration;
8305
8306  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8307
8308  if (Name && SS.isNotEmpty()) {
8309    // We have a nested-name tag ('struct foo::bar').
8310
8311    // Check for invalid 'foo::'.
8312    if (SS.isInvalid()) {
8313      Name = 0;
8314      goto CreateNewDecl;
8315    }
8316
8317    // If this is a friend or a reference to a class in a dependent
8318    // context, don't try to make a decl for it.
8319    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8320      DC = computeDeclContext(SS, false);
8321      if (!DC) {
8322        IsDependent = true;
8323        return 0;
8324      }
8325    } else {
8326      DC = computeDeclContext(SS, true);
8327      if (!DC) {
8328        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8329          << SS.getRange();
8330        return 0;
8331      }
8332    }
8333
8334    if (RequireCompleteDeclContext(SS, DC))
8335      return 0;
8336
8337    SearchDC = DC;
8338    // Look-up name inside 'foo::'.
8339    LookupQualifiedName(Previous, DC);
8340
8341    if (Previous.isAmbiguous())
8342      return 0;
8343
8344    if (Previous.empty()) {
8345      // Name lookup did not find anything. However, if the
8346      // nested-name-specifier refers to the current instantiation,
8347      // and that current instantiation has any dependent base
8348      // classes, we might find something at instantiation time: treat
8349      // this as a dependent elaborated-type-specifier.
8350      // But this only makes any sense for reference-like lookups.
8351      if (Previous.wasNotFoundInCurrentInstantiation() &&
8352          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8353        IsDependent = true;
8354        return 0;
8355      }
8356
8357      // A tag 'foo::bar' must already exist.
8358      Diag(NameLoc, diag::err_not_tag_in_scope)
8359        << Kind << Name << DC << SS.getRange();
8360      Name = 0;
8361      Invalid = true;
8362      goto CreateNewDecl;
8363    }
8364  } else if (Name) {
8365    // If this is a named struct, check to see if there was a previous forward
8366    // declaration or definition.
8367    // FIXME: We're looking into outer scopes here, even when we
8368    // shouldn't be. Doing so can result in ambiguities that we
8369    // shouldn't be diagnosing.
8370    LookupName(Previous, S);
8371
8372    if (Previous.isAmbiguous() &&
8373        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8374      LookupResult::Filter F = Previous.makeFilter();
8375      while (F.hasNext()) {
8376        NamedDecl *ND = F.next();
8377        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8378          F.erase();
8379      }
8380      F.done();
8381    }
8382
8383    // Note:  there used to be some attempt at recovery here.
8384    if (Previous.isAmbiguous())
8385      return 0;
8386
8387    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8388      // FIXME: This makes sure that we ignore the contexts associated
8389      // with C structs, unions, and enums when looking for a matching
8390      // tag declaration or definition. See the similar lookup tweak
8391      // in Sema::LookupName; is there a better way to deal with this?
8392      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8393        SearchDC = SearchDC->getParent();
8394    }
8395  } else if (S->isFunctionPrototypeScope()) {
8396    // If this is an enum declaration in function prototype scope, set its
8397    // initial context to the translation unit.
8398    // FIXME: [citation needed]
8399    SearchDC = Context.getTranslationUnitDecl();
8400  }
8401
8402  if (Previous.isSingleResult() &&
8403      Previous.getFoundDecl()->isTemplateParameter()) {
8404    // Maybe we will complain about the shadowed template parameter.
8405    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8406    // Just pretend that we didn't see the previous declaration.
8407    Previous.clear();
8408  }
8409
8410  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8411      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8412    // This is a declaration of or a reference to "std::bad_alloc".
8413    isStdBadAlloc = true;
8414
8415    if (Previous.empty() && StdBadAlloc) {
8416      // std::bad_alloc has been implicitly declared (but made invisible to
8417      // name lookup). Fill in this implicit declaration as the previous
8418      // declaration, so that the declarations get chained appropriately.
8419      Previous.addDecl(getStdBadAlloc());
8420    }
8421  }
8422
8423  // If we didn't find a previous declaration, and this is a reference
8424  // (or friend reference), move to the correct scope.  In C++, we
8425  // also need to do a redeclaration lookup there, just in case
8426  // there's a shadow friend decl.
8427  if (Name && Previous.empty() &&
8428      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8429    if (Invalid) goto CreateNewDecl;
8430    assert(SS.isEmpty());
8431
8432    if (TUK == TUK_Reference) {
8433      // C++ [basic.scope.pdecl]p5:
8434      //   -- for an elaborated-type-specifier of the form
8435      //
8436      //          class-key identifier
8437      //
8438      //      if the elaborated-type-specifier is used in the
8439      //      decl-specifier-seq or parameter-declaration-clause of a
8440      //      function defined in namespace scope, the identifier is
8441      //      declared as a class-name in the namespace that contains
8442      //      the declaration; otherwise, except as a friend
8443      //      declaration, the identifier is declared in the smallest
8444      //      non-class, non-function-prototype scope that contains the
8445      //      declaration.
8446      //
8447      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8448      // C structs and unions.
8449      //
8450      // It is an error in C++ to declare (rather than define) an enum
8451      // type, including via an elaborated type specifier.  We'll
8452      // diagnose that later; for now, declare the enum in the same
8453      // scope as we would have picked for any other tag type.
8454      //
8455      // GNU C also supports this behavior as part of its incomplete
8456      // enum types extension, while GNU C++ does not.
8457      //
8458      // Find the context where we'll be declaring the tag.
8459      // FIXME: We would like to maintain the current DeclContext as the
8460      // lexical context,
8461      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8462        SearchDC = SearchDC->getParent();
8463
8464      // Find the scope where we'll be declaring the tag.
8465      while (S->isClassScope() ||
8466             (getLangOpts().CPlusPlus &&
8467              S->isFunctionPrototypeScope()) ||
8468             ((S->getFlags() & Scope::DeclScope) == 0) ||
8469             (S->getEntity() &&
8470              ((DeclContext *)S->getEntity())->isTransparentContext()))
8471        S = S->getParent();
8472    } else {
8473      assert(TUK == TUK_Friend);
8474      // C++ [namespace.memdef]p3:
8475      //   If a friend declaration in a non-local class first declares a
8476      //   class or function, the friend class or function is a member of
8477      //   the innermost enclosing namespace.
8478      SearchDC = SearchDC->getEnclosingNamespaceContext();
8479    }
8480
8481    // In C++, we need to do a redeclaration lookup to properly
8482    // diagnose some problems.
8483    if (getLangOpts().CPlusPlus) {
8484      Previous.setRedeclarationKind(ForRedeclaration);
8485      LookupQualifiedName(Previous, SearchDC);
8486    }
8487  }
8488
8489  if (!Previous.empty()) {
8490    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8491
8492    // It's okay to have a tag decl in the same scope as a typedef
8493    // which hides a tag decl in the same scope.  Finding this
8494    // insanity with a redeclaration lookup can only actually happen
8495    // in C++.
8496    //
8497    // This is also okay for elaborated-type-specifiers, which is
8498    // technically forbidden by the current standard but which is
8499    // okay according to the likely resolution of an open issue;
8500    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8501    if (getLangOpts().CPlusPlus) {
8502      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8503        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8504          TagDecl *Tag = TT->getDecl();
8505          if (Tag->getDeclName() == Name &&
8506              Tag->getDeclContext()->getRedeclContext()
8507                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8508            PrevDecl = Tag;
8509            Previous.clear();
8510            Previous.addDecl(Tag);
8511            Previous.resolveKind();
8512          }
8513        }
8514      }
8515    }
8516
8517    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8518      // If this is a use of a previous tag, or if the tag is already declared
8519      // in the same scope (so that the definition/declaration completes or
8520      // rementions the tag), reuse the decl.
8521      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8522          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8523        // Make sure that this wasn't declared as an enum and now used as a
8524        // struct or something similar.
8525        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8526                                          TUK == TUK_Definition, KWLoc,
8527                                          *Name)) {
8528          bool SafeToContinue
8529            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8530               Kind != TTK_Enum);
8531          if (SafeToContinue)
8532            Diag(KWLoc, diag::err_use_with_wrong_tag)
8533              << Name
8534              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8535                                              PrevTagDecl->getKindName());
8536          else
8537            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8538          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8539
8540          if (SafeToContinue)
8541            Kind = PrevTagDecl->getTagKind();
8542          else {
8543            // Recover by making this an anonymous redefinition.
8544            Name = 0;
8545            Previous.clear();
8546            Invalid = true;
8547          }
8548        }
8549
8550        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8551          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8552
8553          // If this is an elaborated-type-specifier for a scoped enumeration,
8554          // the 'class' keyword is not necessary and not permitted.
8555          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8556            if (ScopedEnum)
8557              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8558                << PrevEnum->isScoped()
8559                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8560            return PrevTagDecl;
8561          }
8562
8563          QualType EnumUnderlyingTy;
8564          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8565            EnumUnderlyingTy = TI->getType();
8566          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8567            EnumUnderlyingTy = QualType(T, 0);
8568
8569          // All conflicts with previous declarations are recovered by
8570          // returning the previous declaration, unless this is a definition,
8571          // in which case we want the caller to bail out.
8572          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8573                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8574            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8575        }
8576
8577        if (!Invalid) {
8578          // If this is a use, just return the declaration we found.
8579
8580          // FIXME: In the future, return a variant or some other clue
8581          // for the consumer of this Decl to know it doesn't own it.
8582          // For our current ASTs this shouldn't be a problem, but will
8583          // need to be changed with DeclGroups.
8584          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8585               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8586            return PrevTagDecl;
8587
8588          // Diagnose attempts to redefine a tag.
8589          if (TUK == TUK_Definition) {
8590            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8591              // If we're defining a specialization and the previous definition
8592              // is from an implicit instantiation, don't emit an error
8593              // here; we'll catch this in the general case below.
8594              bool IsExplicitSpecializationAfterInstantiation = false;
8595              if (isExplicitSpecialization) {
8596                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8597                  IsExplicitSpecializationAfterInstantiation =
8598                    RD->getTemplateSpecializationKind() !=
8599                    TSK_ExplicitSpecialization;
8600                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8601                  IsExplicitSpecializationAfterInstantiation =
8602                    ED->getTemplateSpecializationKind() !=
8603                    TSK_ExplicitSpecialization;
8604              }
8605
8606              if (!IsExplicitSpecializationAfterInstantiation) {
8607                // A redeclaration in function prototype scope in C isn't
8608                // visible elsewhere, so merely issue a warning.
8609                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8610                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8611                else
8612                  Diag(NameLoc, diag::err_redefinition) << Name;
8613                Diag(Def->getLocation(), diag::note_previous_definition);
8614                // If this is a redefinition, recover by making this
8615                // struct be anonymous, which will make any later
8616                // references get the previous definition.
8617                Name = 0;
8618                Previous.clear();
8619                Invalid = true;
8620              }
8621            } else {
8622              // If the type is currently being defined, complain
8623              // about a nested redefinition.
8624              const TagType *Tag
8625                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8626              if (Tag->isBeingDefined()) {
8627                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8628                Diag(PrevTagDecl->getLocation(),
8629                     diag::note_previous_definition);
8630                Name = 0;
8631                Previous.clear();
8632                Invalid = true;
8633              }
8634            }
8635
8636            // Okay, this is definition of a previously declared or referenced
8637            // tag PrevDecl. We're going to create a new Decl for it.
8638          }
8639        }
8640        // If we get here we have (another) forward declaration or we
8641        // have a definition.  Just create a new decl.
8642
8643      } else {
8644        // If we get here, this is a definition of a new tag type in a nested
8645        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8646        // new decl/type.  We set PrevDecl to NULL so that the entities
8647        // have distinct types.
8648        Previous.clear();
8649      }
8650      // If we get here, we're going to create a new Decl. If PrevDecl
8651      // is non-NULL, it's a definition of the tag declared by
8652      // PrevDecl. If it's NULL, we have a new definition.
8653
8654
8655    // Otherwise, PrevDecl is not a tag, but was found with tag
8656    // lookup.  This is only actually possible in C++, where a few
8657    // things like templates still live in the tag namespace.
8658    } else {
8659      // Use a better diagnostic if an elaborated-type-specifier
8660      // found the wrong kind of type on the first
8661      // (non-redeclaration) lookup.
8662      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8663          !Previous.isForRedeclaration()) {
8664        unsigned Kind = 0;
8665        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8666        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8667        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8668        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8669        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8670        Invalid = true;
8671
8672      // Otherwise, only diagnose if the declaration is in scope.
8673      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8674                                isExplicitSpecialization)) {
8675        // do nothing
8676
8677      // Diagnose implicit declarations introduced by elaborated types.
8678      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8679        unsigned Kind = 0;
8680        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8681        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8682        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8683        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8684        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8685        Invalid = true;
8686
8687      // Otherwise it's a declaration.  Call out a particularly common
8688      // case here.
8689      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8690        unsigned Kind = 0;
8691        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8692        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8693          << Name << Kind << TND->getUnderlyingType();
8694        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8695        Invalid = true;
8696
8697      // Otherwise, diagnose.
8698      } else {
8699        // The tag name clashes with something else in the target scope,
8700        // issue an error and recover by making this tag be anonymous.
8701        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8702        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8703        Name = 0;
8704        Invalid = true;
8705      }
8706
8707      // The existing declaration isn't relevant to us; we're in a
8708      // new scope, so clear out the previous declaration.
8709      Previous.clear();
8710    }
8711  }
8712
8713CreateNewDecl:
8714
8715  TagDecl *PrevDecl = 0;
8716  if (Previous.isSingleResult())
8717    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8718
8719  // If there is an identifier, use the location of the identifier as the
8720  // location of the decl, otherwise use the location of the struct/union
8721  // keyword.
8722  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8723
8724  // Otherwise, create a new declaration. If there is a previous
8725  // declaration of the same entity, the two will be linked via
8726  // PrevDecl.
8727  TagDecl *New;
8728
8729  bool IsForwardReference = false;
8730  if (Kind == TTK_Enum) {
8731    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8732    // enum X { A, B, C } D;    D should chain to X.
8733    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8734                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8735                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8736    // If this is an undefined enum, warn.
8737    if (TUK != TUK_Definition && !Invalid) {
8738      TagDecl *Def;
8739      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8740        // C++0x: 7.2p2: opaque-enum-declaration.
8741        // Conflicts are diagnosed above. Do nothing.
8742      }
8743      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8744        Diag(Loc, diag::ext_forward_ref_enum_def)
8745          << New;
8746        Diag(Def->getLocation(), diag::note_previous_definition);
8747      } else {
8748        unsigned DiagID = diag::ext_forward_ref_enum;
8749        if (getLangOpts().MicrosoftMode)
8750          DiagID = diag::ext_ms_forward_ref_enum;
8751        else if (getLangOpts().CPlusPlus)
8752          DiagID = diag::err_forward_ref_enum;
8753        Diag(Loc, DiagID);
8754
8755        // If this is a forward-declared reference to an enumeration, make a
8756        // note of it; we won't actually be introducing the declaration into
8757        // the declaration context.
8758        if (TUK == TUK_Reference)
8759          IsForwardReference = true;
8760      }
8761    }
8762
8763    if (EnumUnderlying) {
8764      EnumDecl *ED = cast<EnumDecl>(New);
8765      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8766        ED->setIntegerTypeSourceInfo(TI);
8767      else
8768        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8769      ED->setPromotionType(ED->getIntegerType());
8770    }
8771
8772  } else {
8773    // struct/union/class
8774
8775    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8776    // struct X { int A; } D;    D should chain to X.
8777    if (getLangOpts().CPlusPlus) {
8778      // FIXME: Look for a way to use RecordDecl for simple structs.
8779      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8780                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8781
8782      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8783        StdBadAlloc = cast<CXXRecordDecl>(New);
8784    } else
8785      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8786                               cast_or_null<RecordDecl>(PrevDecl));
8787  }
8788
8789  // Maybe add qualifier info.
8790  if (SS.isNotEmpty()) {
8791    if (SS.isSet()) {
8792      // If this is either a declaration or a definition, check the
8793      // nested-name-specifier against the current context. We don't do this
8794      // for explicit specializations, because they have similar checking
8795      // (with more specific diagnostics) in the call to
8796      // CheckMemberSpecialization, below.
8797      if (!isExplicitSpecialization &&
8798          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8799          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8800        Invalid = true;
8801
8802      New->setQualifierInfo(SS.getWithLocInContext(Context));
8803      if (TemplateParameterLists.size() > 0) {
8804        New->setTemplateParameterListsInfo(Context,
8805                                           TemplateParameterLists.size(),
8806                    (TemplateParameterList**) TemplateParameterLists.release());
8807      }
8808    }
8809    else
8810      Invalid = true;
8811  }
8812
8813  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8814    // Add alignment attributes if necessary; these attributes are checked when
8815    // the ASTContext lays out the structure.
8816    //
8817    // It is important for implementing the correct semantics that this
8818    // happen here (in act on tag decl). The #pragma pack stack is
8819    // maintained as a result of parser callbacks which can occur at
8820    // many points during the parsing of a struct declaration (because
8821    // the #pragma tokens are effectively skipped over during the
8822    // parsing of the struct).
8823    if (TUK == TUK_Definition) {
8824      AddAlignmentAttributesForRecord(RD);
8825      AddMsStructLayoutForRecord(RD);
8826    }
8827  }
8828
8829  if (ModulePrivateLoc.isValid()) {
8830    if (isExplicitSpecialization)
8831      Diag(New->getLocation(), diag::err_module_private_specialization)
8832        << 2
8833        << FixItHint::CreateRemoval(ModulePrivateLoc);
8834    // __module_private__ does not apply to local classes. However, we only
8835    // diagnose this as an error when the declaration specifiers are
8836    // freestanding. Here, we just ignore the __module_private__.
8837    else if (!SearchDC->isFunctionOrMethod())
8838      New->setModulePrivate();
8839  }
8840
8841  // If this is a specialization of a member class (of a class template),
8842  // check the specialization.
8843  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8844    Invalid = true;
8845
8846  if (Invalid)
8847    New->setInvalidDecl();
8848
8849  if (Attr)
8850    ProcessDeclAttributeList(S, New, Attr);
8851
8852  // If we're declaring or defining a tag in function prototype scope
8853  // in C, note that this type can only be used within the function.
8854  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8855    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8856
8857  // Set the lexical context. If the tag has a C++ scope specifier, the
8858  // lexical context will be different from the semantic context.
8859  New->setLexicalDeclContext(CurContext);
8860
8861  // Mark this as a friend decl if applicable.
8862  // In Microsoft mode, a friend declaration also acts as a forward
8863  // declaration so we always pass true to setObjectOfFriendDecl to make
8864  // the tag name visible.
8865  if (TUK == TUK_Friend)
8866    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8867                               getLangOpts().MicrosoftExt);
8868
8869  // Set the access specifier.
8870  if (!Invalid && SearchDC->isRecord())
8871    SetMemberAccessSpecifier(New, PrevDecl, AS);
8872
8873  if (TUK == TUK_Definition)
8874    New->startDefinition();
8875
8876  // If this has an identifier, add it to the scope stack.
8877  if (TUK == TUK_Friend) {
8878    // We might be replacing an existing declaration in the lookup tables;
8879    // if so, borrow its access specifier.
8880    if (PrevDecl)
8881      New->setAccess(PrevDecl->getAccess());
8882
8883    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8884    DC->makeDeclVisibleInContext(New);
8885    if (Name) // can be null along some error paths
8886      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8887        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8888  } else if (Name) {
8889    S = getNonFieldDeclScope(S);
8890    PushOnScopeChains(New, S, !IsForwardReference);
8891    if (IsForwardReference)
8892      SearchDC->makeDeclVisibleInContext(New);
8893
8894  } else {
8895    CurContext->addDecl(New);
8896  }
8897
8898  // If this is the C FILE type, notify the AST context.
8899  if (IdentifierInfo *II = New->getIdentifier())
8900    if (!New->isInvalidDecl() &&
8901        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8902        II->isStr("FILE"))
8903      Context.setFILEDecl(New);
8904
8905  // If we were in function prototype scope (and not in C++ mode), add this
8906  // tag to the list of decls to inject into the function definition scope.
8907  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8908      InFunctionDeclarator && Name)
8909    DeclsInPrototypeScope.push_back(New);
8910
8911  if (PrevDecl)
8912    mergeDeclAttributes(New, PrevDecl);
8913
8914  // If there's a #pragma GCC visibility in scope, set the visibility of this
8915  // record.
8916  AddPushedVisibilityAttribute(New);
8917
8918  OwnedDecl = true;
8919  return New;
8920}
8921
8922void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8923  AdjustDeclIfTemplate(TagD);
8924  TagDecl *Tag = cast<TagDecl>(TagD);
8925
8926  // Enter the tag context.
8927  PushDeclContext(S, Tag);
8928
8929  ActOnDocumentableDecl(TagD);
8930
8931  // If there's a #pragma GCC visibility in scope, set the visibility of this
8932  // record.
8933  AddPushedVisibilityAttribute(Tag);
8934}
8935
8936Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8937  assert(isa<ObjCContainerDecl>(IDecl) &&
8938         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8939  DeclContext *OCD = cast<DeclContext>(IDecl);
8940  assert(getContainingDC(OCD) == CurContext &&
8941      "The next DeclContext should be lexically contained in the current one.");
8942  CurContext = OCD;
8943  return IDecl;
8944}
8945
8946void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8947                                           SourceLocation FinalLoc,
8948                                           SourceLocation LBraceLoc) {
8949  AdjustDeclIfTemplate(TagD);
8950  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8951
8952  FieldCollector->StartClass();
8953
8954  if (!Record->getIdentifier())
8955    return;
8956
8957  if (FinalLoc.isValid())
8958    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8959
8960  // C++ [class]p2:
8961  //   [...] The class-name is also inserted into the scope of the
8962  //   class itself; this is known as the injected-class-name. For
8963  //   purposes of access checking, the injected-class-name is treated
8964  //   as if it were a public member name.
8965  CXXRecordDecl *InjectedClassName
8966    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8967                            Record->getLocStart(), Record->getLocation(),
8968                            Record->getIdentifier(),
8969                            /*PrevDecl=*/0,
8970                            /*DelayTypeCreation=*/true);
8971  Context.getTypeDeclType(InjectedClassName, Record);
8972  InjectedClassName->setImplicit();
8973  InjectedClassName->setAccess(AS_public);
8974  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8975      InjectedClassName->setDescribedClassTemplate(Template);
8976  PushOnScopeChains(InjectedClassName, S);
8977  assert(InjectedClassName->isInjectedClassName() &&
8978         "Broken injected-class-name");
8979}
8980
8981void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8982                                    SourceLocation RBraceLoc) {
8983  AdjustDeclIfTemplate(TagD);
8984  TagDecl *Tag = cast<TagDecl>(TagD);
8985  Tag->setRBraceLoc(RBraceLoc);
8986
8987  // Make sure we "complete" the definition even it is invalid.
8988  if (Tag->isBeingDefined()) {
8989    assert(Tag->isInvalidDecl() && "We should already have completed it");
8990    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8991      RD->completeDefinition();
8992  }
8993
8994  if (isa<CXXRecordDecl>(Tag))
8995    FieldCollector->FinishClass();
8996
8997  // Exit this scope of this tag's definition.
8998  PopDeclContext();
8999
9000  // Notify the consumer that we've defined a tag.
9001  Consumer.HandleTagDeclDefinition(Tag);
9002}
9003
9004void Sema::ActOnObjCContainerFinishDefinition() {
9005  // Exit this scope of this interface definition.
9006  PopDeclContext();
9007}
9008
9009void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9010  assert(DC == CurContext && "Mismatch of container contexts");
9011  OriginalLexicalContext = DC;
9012  ActOnObjCContainerFinishDefinition();
9013}
9014
9015void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9016  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9017  OriginalLexicalContext = 0;
9018}
9019
9020void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9021  AdjustDeclIfTemplate(TagD);
9022  TagDecl *Tag = cast<TagDecl>(TagD);
9023  Tag->setInvalidDecl();
9024
9025  // Make sure we "complete" the definition even it is invalid.
9026  if (Tag->isBeingDefined()) {
9027    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9028      RD->completeDefinition();
9029  }
9030
9031  // We're undoing ActOnTagStartDefinition here, not
9032  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9033  // the FieldCollector.
9034
9035  PopDeclContext();
9036}
9037
9038// Note that FieldName may be null for anonymous bitfields.
9039ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9040                                IdentifierInfo *FieldName,
9041                                QualType FieldTy, Expr *BitWidth,
9042                                bool *ZeroWidth) {
9043  // Default to true; that shouldn't confuse checks for emptiness
9044  if (ZeroWidth)
9045    *ZeroWidth = true;
9046
9047  // C99 6.7.2.1p4 - verify the field type.
9048  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9049  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9050    // Handle incomplete types with specific error.
9051    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9052      return ExprError();
9053    if (FieldName)
9054      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9055        << FieldName << FieldTy << BitWidth->getSourceRange();
9056    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9057      << FieldTy << BitWidth->getSourceRange();
9058  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9059                                             UPPC_BitFieldWidth))
9060    return ExprError();
9061
9062  // If the bit-width is type- or value-dependent, don't try to check
9063  // it now.
9064  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9065    return Owned(BitWidth);
9066
9067  llvm::APSInt Value;
9068  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9069  if (ICE.isInvalid())
9070    return ICE;
9071  BitWidth = ICE.take();
9072
9073  if (Value != 0 && ZeroWidth)
9074    *ZeroWidth = false;
9075
9076  // Zero-width bitfield is ok for anonymous field.
9077  if (Value == 0 && FieldName)
9078    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9079
9080  if (Value.isSigned() && Value.isNegative()) {
9081    if (FieldName)
9082      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9083               << FieldName << Value.toString(10);
9084    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9085      << Value.toString(10);
9086  }
9087
9088  if (!FieldTy->isDependentType()) {
9089    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9090    if (Value.getZExtValue() > TypeSize) {
9091      if (!getLangOpts().CPlusPlus) {
9092        if (FieldName)
9093          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9094            << FieldName << (unsigned)Value.getZExtValue()
9095            << (unsigned)TypeSize;
9096
9097        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9098          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9099      }
9100
9101      if (FieldName)
9102        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9103          << FieldName << (unsigned)Value.getZExtValue()
9104          << (unsigned)TypeSize;
9105      else
9106        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9107          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9108    }
9109  }
9110
9111  return Owned(BitWidth);
9112}
9113
9114/// ActOnField - Each field of a C struct/union is passed into this in order
9115/// to create a FieldDecl object for it.
9116Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9117                       Declarator &D, Expr *BitfieldWidth) {
9118  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9119                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9120                               /*InitStyle=*/ICIS_NoInit, AS_public);
9121  return Res;
9122}
9123
9124/// HandleField - Analyze a field of a C struct or a C++ data member.
9125///
9126FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9127                             SourceLocation DeclStart,
9128                             Declarator &D, Expr *BitWidth,
9129                             InClassInitStyle InitStyle,
9130                             AccessSpecifier AS) {
9131  IdentifierInfo *II = D.getIdentifier();
9132  SourceLocation Loc = DeclStart;
9133  if (II) Loc = D.getIdentifierLoc();
9134
9135  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9136  QualType T = TInfo->getType();
9137  if (getLangOpts().CPlusPlus) {
9138    CheckExtraCXXDefaultArguments(D);
9139
9140    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9141                                        UPPC_DataMemberType)) {
9142      D.setInvalidType();
9143      T = Context.IntTy;
9144      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9145    }
9146  }
9147
9148  DiagnoseFunctionSpecifiers(D);
9149
9150  if (D.getDeclSpec().isThreadSpecified())
9151    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9152  if (D.getDeclSpec().isConstexprSpecified())
9153    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9154      << 2;
9155
9156  // Check to see if this name was declared as a member previously
9157  NamedDecl *PrevDecl = 0;
9158  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9159  LookupName(Previous, S);
9160  switch (Previous.getResultKind()) {
9161    case LookupResult::Found:
9162    case LookupResult::FoundUnresolvedValue:
9163      PrevDecl = Previous.getAsSingle<NamedDecl>();
9164      break;
9165
9166    case LookupResult::FoundOverloaded:
9167      PrevDecl = Previous.getRepresentativeDecl();
9168      break;
9169
9170    case LookupResult::NotFound:
9171    case LookupResult::NotFoundInCurrentInstantiation:
9172    case LookupResult::Ambiguous:
9173      break;
9174  }
9175  Previous.suppressDiagnostics();
9176
9177  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9178    // Maybe we will complain about the shadowed template parameter.
9179    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9180    // Just pretend that we didn't see the previous declaration.
9181    PrevDecl = 0;
9182  }
9183
9184  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9185    PrevDecl = 0;
9186
9187  bool Mutable
9188    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9189  SourceLocation TSSL = D.getLocStart();
9190  FieldDecl *NewFD
9191    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9192                     TSSL, AS, PrevDecl, &D);
9193
9194  if (NewFD->isInvalidDecl())
9195    Record->setInvalidDecl();
9196
9197  if (D.getDeclSpec().isModulePrivateSpecified())
9198    NewFD->setModulePrivate();
9199
9200  if (NewFD->isInvalidDecl() && PrevDecl) {
9201    // Don't introduce NewFD into scope; there's already something
9202    // with the same name in the same scope.
9203  } else if (II) {
9204    PushOnScopeChains(NewFD, S);
9205  } else
9206    Record->addDecl(NewFD);
9207
9208  return NewFD;
9209}
9210
9211/// \brief Build a new FieldDecl and check its well-formedness.
9212///
9213/// This routine builds a new FieldDecl given the fields name, type,
9214/// record, etc. \p PrevDecl should refer to any previous declaration
9215/// with the same name and in the same scope as the field to be
9216/// created.
9217///
9218/// \returns a new FieldDecl.
9219///
9220/// \todo The Declarator argument is a hack. It will be removed once
9221FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9222                                TypeSourceInfo *TInfo,
9223                                RecordDecl *Record, SourceLocation Loc,
9224                                bool Mutable, Expr *BitWidth,
9225                                InClassInitStyle InitStyle,
9226                                SourceLocation TSSL,
9227                                AccessSpecifier AS, NamedDecl *PrevDecl,
9228                                Declarator *D) {
9229  IdentifierInfo *II = Name.getAsIdentifierInfo();
9230  bool InvalidDecl = false;
9231  if (D) InvalidDecl = D->isInvalidType();
9232
9233  // If we receive a broken type, recover by assuming 'int' and
9234  // marking this declaration as invalid.
9235  if (T.isNull()) {
9236    InvalidDecl = true;
9237    T = Context.IntTy;
9238  }
9239
9240  QualType EltTy = Context.getBaseElementType(T);
9241  if (!EltTy->isDependentType()) {
9242    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9243      // Fields of incomplete type force their record to be invalid.
9244      Record->setInvalidDecl();
9245      InvalidDecl = true;
9246    } else {
9247      NamedDecl *Def;
9248      EltTy->isIncompleteType(&Def);
9249      if (Def && Def->isInvalidDecl()) {
9250        Record->setInvalidDecl();
9251        InvalidDecl = true;
9252      }
9253    }
9254  }
9255
9256  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9257  // than a variably modified type.
9258  if (!InvalidDecl && T->isVariablyModifiedType()) {
9259    bool SizeIsNegative;
9260    llvm::APSInt Oversized;
9261    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9262                                                           SizeIsNegative,
9263                                                           Oversized);
9264    if (!FixedTy.isNull()) {
9265      Diag(Loc, diag::warn_illegal_constant_array_size);
9266      T = FixedTy;
9267    } else {
9268      if (SizeIsNegative)
9269        Diag(Loc, diag::err_typecheck_negative_array_size);
9270      else if (Oversized.getBoolValue())
9271        Diag(Loc, diag::err_array_too_large)
9272          << Oversized.toString(10);
9273      else
9274        Diag(Loc, diag::err_typecheck_field_variable_size);
9275      InvalidDecl = true;
9276    }
9277  }
9278
9279  // Fields can not have abstract class types
9280  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9281                                             diag::err_abstract_type_in_decl,
9282                                             AbstractFieldType))
9283    InvalidDecl = true;
9284
9285  bool ZeroWidth = false;
9286  // If this is declared as a bit-field, check the bit-field.
9287  if (!InvalidDecl && BitWidth) {
9288    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9289    if (!BitWidth) {
9290      InvalidDecl = true;
9291      BitWidth = 0;
9292      ZeroWidth = false;
9293    }
9294  }
9295
9296  // Check that 'mutable' is consistent with the type of the declaration.
9297  if (!InvalidDecl && Mutable) {
9298    unsigned DiagID = 0;
9299    if (T->isReferenceType())
9300      DiagID = diag::err_mutable_reference;
9301    else if (T.isConstQualified())
9302      DiagID = diag::err_mutable_const;
9303
9304    if (DiagID) {
9305      SourceLocation ErrLoc = Loc;
9306      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9307        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9308      Diag(ErrLoc, DiagID);
9309      Mutable = false;
9310      InvalidDecl = true;
9311    }
9312  }
9313
9314  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9315                                       BitWidth, Mutable, InitStyle);
9316  if (InvalidDecl)
9317    NewFD->setInvalidDecl();
9318
9319  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9320    Diag(Loc, diag::err_duplicate_member) << II;
9321    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9322    NewFD->setInvalidDecl();
9323  }
9324
9325  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9326    if (Record->isUnion()) {
9327      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9328        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9329        if (RDecl->getDefinition()) {
9330          // C++ [class.union]p1: An object of a class with a non-trivial
9331          // constructor, a non-trivial copy constructor, a non-trivial
9332          // destructor, or a non-trivial copy assignment operator
9333          // cannot be a member of a union, nor can an array of such
9334          // objects.
9335          if (CheckNontrivialField(NewFD))
9336            NewFD->setInvalidDecl();
9337        }
9338      }
9339
9340      // C++ [class.union]p1: If a union contains a member of reference type,
9341      // the program is ill-formed.
9342      if (EltTy->isReferenceType()) {
9343        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9344          << NewFD->getDeclName() << EltTy;
9345        NewFD->setInvalidDecl();
9346      }
9347    }
9348  }
9349
9350  // FIXME: We need to pass in the attributes given an AST
9351  // representation, not a parser representation.
9352  if (D)
9353    // FIXME: What to pass instead of TUScope?
9354    ProcessDeclAttributes(TUScope, NewFD, *D);
9355
9356  // In auto-retain/release, infer strong retension for fields of
9357  // retainable type.
9358  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9359    NewFD->setInvalidDecl();
9360
9361  if (T.isObjCGCWeak())
9362    Diag(Loc, diag::warn_attribute_weak_on_field);
9363
9364  NewFD->setAccess(AS);
9365  return NewFD;
9366}
9367
9368bool Sema::CheckNontrivialField(FieldDecl *FD) {
9369  assert(FD);
9370  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9371
9372  if (FD->isInvalidDecl())
9373    return true;
9374
9375  QualType EltTy = Context.getBaseElementType(FD->getType());
9376  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9377    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9378    if (RDecl->getDefinition()) {
9379      // We check for copy constructors before constructors
9380      // because otherwise we'll never get complaints about
9381      // copy constructors.
9382
9383      CXXSpecialMember member = CXXInvalid;
9384      if (!RDecl->hasTrivialCopyConstructor())
9385        member = CXXCopyConstructor;
9386      else if (!RDecl->hasTrivialDefaultConstructor())
9387        member = CXXDefaultConstructor;
9388      else if (!RDecl->hasTrivialCopyAssignment())
9389        member = CXXCopyAssignment;
9390      else if (!RDecl->hasTrivialDestructor())
9391        member = CXXDestructor;
9392
9393      if (member != CXXInvalid) {
9394        if (!getLangOpts().CPlusPlus0x &&
9395            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9396          // Objective-C++ ARC: it is an error to have a non-trivial field of
9397          // a union. However, system headers in Objective-C programs
9398          // occasionally have Objective-C lifetime objects within unions,
9399          // and rather than cause the program to fail, we make those
9400          // members unavailable.
9401          SourceLocation Loc = FD->getLocation();
9402          if (getSourceManager().isInSystemHeader(Loc)) {
9403            if (!FD->hasAttr<UnavailableAttr>())
9404              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9405                                  "this system field has retaining ownership"));
9406            return false;
9407          }
9408        }
9409
9410        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9411               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9412               diag::err_illegal_union_or_anon_struct_member)
9413          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9414        DiagnoseNontrivial(RT, member);
9415        return !getLangOpts().CPlusPlus0x;
9416      }
9417    }
9418  }
9419
9420  return false;
9421}
9422
9423/// If the given constructor is user-provided, produce a diagnostic explaining
9424/// that it makes the class non-trivial.
9425static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9426                                               CXXConstructorDecl *CD,
9427                                               Sema::CXXSpecialMember CSM) {
9428  if (!CD->isUserProvided())
9429    return false;
9430
9431  SourceLocation CtorLoc = CD->getLocation();
9432  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9433  return true;
9434}
9435
9436/// DiagnoseNontrivial - Given that a class has a non-trivial
9437/// special member, figure out why.
9438void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9439  QualType QT(T, 0U);
9440  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9441
9442  // Check whether the member was user-declared.
9443  switch (member) {
9444  case CXXInvalid:
9445    break;
9446
9447  case CXXDefaultConstructor:
9448    if (RD->hasUserDeclaredConstructor()) {
9449      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9450      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9451        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9452          return;
9453
9454      // No user-provided constructors; look for constructor templates.
9455      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9456          tmpl_iter;
9457      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9458           TI != TE; ++TI) {
9459        CXXConstructorDecl *CD =
9460            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9461        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9462          return;
9463      }
9464    }
9465    break;
9466
9467  case CXXCopyConstructor:
9468    if (RD->hasUserDeclaredCopyConstructor()) {
9469      SourceLocation CtorLoc =
9470        RD->getCopyConstructor(0)->getLocation();
9471      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9472      return;
9473    }
9474    break;
9475
9476  case CXXMoveConstructor:
9477    if (RD->hasUserDeclaredMoveConstructor()) {
9478      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9479      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9480      return;
9481    }
9482    break;
9483
9484  case CXXCopyAssignment:
9485    if (RD->hasUserDeclaredCopyAssignment()) {
9486      SourceLocation AssignLoc =
9487        RD->getCopyAssignmentOperator(0)->getLocation();
9488      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9489      return;
9490    }
9491    break;
9492
9493  case CXXMoveAssignment:
9494    if (RD->hasUserDeclaredMoveAssignment()) {
9495      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9496      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9497      return;
9498    }
9499    break;
9500
9501  case CXXDestructor:
9502    if (RD->hasUserDeclaredDestructor()) {
9503      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9504      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9505      return;
9506    }
9507    break;
9508  }
9509
9510  typedef CXXRecordDecl::base_class_iterator base_iter;
9511
9512  // Virtual bases and members inhibit trivial copying/construction,
9513  // but not trivial destruction.
9514  if (member != CXXDestructor) {
9515    // Check for virtual bases.  vbases includes indirect virtual bases,
9516    // so we just iterate through the direct bases.
9517    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9518      if (bi->isVirtual()) {
9519        SourceLocation BaseLoc = bi->getLocStart();
9520        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9521        return;
9522      }
9523
9524    // Check for virtual methods.
9525    typedef CXXRecordDecl::method_iterator meth_iter;
9526    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9527         ++mi) {
9528      if (mi->isVirtual()) {
9529        SourceLocation MLoc = mi->getLocStart();
9530        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9531        return;
9532      }
9533    }
9534  }
9535
9536  bool (CXXRecordDecl::*hasTrivial)() const;
9537  switch (member) {
9538  case CXXDefaultConstructor:
9539    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9540  case CXXCopyConstructor:
9541    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9542  case CXXCopyAssignment:
9543    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9544  case CXXDestructor:
9545    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9546  default:
9547    llvm_unreachable("unexpected special member");
9548  }
9549
9550  // Check for nontrivial bases (and recurse).
9551  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9552    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9553    assert(BaseRT && "Don't know how to handle dependent bases");
9554    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9555    if (!(BaseRecTy->*hasTrivial)()) {
9556      SourceLocation BaseLoc = bi->getLocStart();
9557      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9558      DiagnoseNontrivial(BaseRT, member);
9559      return;
9560    }
9561  }
9562
9563  // Check for nontrivial members (and recurse).
9564  typedef RecordDecl::field_iterator field_iter;
9565  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9566       ++fi) {
9567    QualType EltTy = Context.getBaseElementType(fi->getType());
9568    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9569      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9570
9571      if (!(EltRD->*hasTrivial)()) {
9572        SourceLocation FLoc = fi->getLocation();
9573        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9574        DiagnoseNontrivial(EltRT, member);
9575        return;
9576      }
9577    }
9578
9579    if (EltTy->isObjCLifetimeType()) {
9580      switch (EltTy.getObjCLifetime()) {
9581      case Qualifiers::OCL_None:
9582      case Qualifiers::OCL_ExplicitNone:
9583        break;
9584
9585      case Qualifiers::OCL_Autoreleasing:
9586      case Qualifiers::OCL_Weak:
9587      case Qualifiers::OCL_Strong:
9588        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9589          << QT << EltTy.getObjCLifetime();
9590        return;
9591      }
9592    }
9593  }
9594
9595  llvm_unreachable("found no explanation for non-trivial member");
9596}
9597
9598/// TranslateIvarVisibility - Translate visibility from a token ID to an
9599///  AST enum value.
9600static ObjCIvarDecl::AccessControl
9601TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9602  switch (ivarVisibility) {
9603  default: llvm_unreachable("Unknown visitibility kind");
9604  case tok::objc_private: return ObjCIvarDecl::Private;
9605  case tok::objc_public: return ObjCIvarDecl::Public;
9606  case tok::objc_protected: return ObjCIvarDecl::Protected;
9607  case tok::objc_package: return ObjCIvarDecl::Package;
9608  }
9609}
9610
9611/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9612/// in order to create an IvarDecl object for it.
9613Decl *Sema::ActOnIvar(Scope *S,
9614                                SourceLocation DeclStart,
9615                                Declarator &D, Expr *BitfieldWidth,
9616                                tok::ObjCKeywordKind Visibility) {
9617
9618  IdentifierInfo *II = D.getIdentifier();
9619  Expr *BitWidth = (Expr*)BitfieldWidth;
9620  SourceLocation Loc = DeclStart;
9621  if (II) Loc = D.getIdentifierLoc();
9622
9623  // FIXME: Unnamed fields can be handled in various different ways, for
9624  // example, unnamed unions inject all members into the struct namespace!
9625
9626  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9627  QualType T = TInfo->getType();
9628
9629  if (BitWidth) {
9630    // 6.7.2.1p3, 6.7.2.1p4
9631    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9632    if (!BitWidth)
9633      D.setInvalidType();
9634  } else {
9635    // Not a bitfield.
9636
9637    // validate II.
9638
9639  }
9640  if (T->isReferenceType()) {
9641    Diag(Loc, diag::err_ivar_reference_type);
9642    D.setInvalidType();
9643  }
9644  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9645  // than a variably modified type.
9646  else if (T->isVariablyModifiedType()) {
9647    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9648    D.setInvalidType();
9649  }
9650
9651  // Get the visibility (access control) for this ivar.
9652  ObjCIvarDecl::AccessControl ac =
9653    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9654                                        : ObjCIvarDecl::None;
9655  // Must set ivar's DeclContext to its enclosing interface.
9656  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9657  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9658    return 0;
9659  ObjCContainerDecl *EnclosingContext;
9660  if (ObjCImplementationDecl *IMPDecl =
9661      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9662    if (LangOpts.ObjCRuntime.isFragile()) {
9663    // Case of ivar declared in an implementation. Context is that of its class.
9664      EnclosingContext = IMPDecl->getClassInterface();
9665      assert(EnclosingContext && "Implementation has no class interface!");
9666    }
9667    else
9668      EnclosingContext = EnclosingDecl;
9669  } else {
9670    if (ObjCCategoryDecl *CDecl =
9671        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9672      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9673        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9674        return 0;
9675      }
9676    }
9677    EnclosingContext = EnclosingDecl;
9678  }
9679
9680  // Construct the decl.
9681  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9682                                             DeclStart, Loc, II, T,
9683                                             TInfo, ac, (Expr *)BitfieldWidth);
9684
9685  if (II) {
9686    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9687                                           ForRedeclaration);
9688    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9689        && !isa<TagDecl>(PrevDecl)) {
9690      Diag(Loc, diag::err_duplicate_member) << II;
9691      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9692      NewID->setInvalidDecl();
9693    }
9694  }
9695
9696  // Process attributes attached to the ivar.
9697  ProcessDeclAttributes(S, NewID, D);
9698
9699  if (D.isInvalidType())
9700    NewID->setInvalidDecl();
9701
9702  // In ARC, infer 'retaining' for ivars of retainable type.
9703  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9704    NewID->setInvalidDecl();
9705
9706  if (D.getDeclSpec().isModulePrivateSpecified())
9707    NewID->setModulePrivate();
9708
9709  if (II) {
9710    // FIXME: When interfaces are DeclContexts, we'll need to add
9711    // these to the interface.
9712    S->AddDecl(NewID);
9713    IdResolver.AddDecl(NewID);
9714  }
9715
9716  if (LangOpts.ObjCRuntime.isNonFragile() &&
9717      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9718    Diag(Loc, diag::warn_ivars_in_interface);
9719
9720  return NewID;
9721}
9722
9723/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9724/// class and class extensions. For every class @interface and class
9725/// extension @interface, if the last ivar is a bitfield of any type,
9726/// then add an implicit `char :0` ivar to the end of that interface.
9727void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9728                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9729  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9730    return;
9731
9732  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9733  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9734
9735  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9736    return;
9737  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9738  if (!ID) {
9739    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9740      if (!CD->IsClassExtension())
9741        return;
9742    }
9743    // No need to add this to end of @implementation.
9744    else
9745      return;
9746  }
9747  // All conditions are met. Add a new bitfield to the tail end of ivars.
9748  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9749  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9750
9751  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9752                              DeclLoc, DeclLoc, 0,
9753                              Context.CharTy,
9754                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9755                                                               DeclLoc),
9756                              ObjCIvarDecl::Private, BW,
9757                              true);
9758  AllIvarDecls.push_back(Ivar);
9759}
9760
9761void Sema::ActOnFields(Scope* S,
9762                       SourceLocation RecLoc, Decl *EnclosingDecl,
9763                       llvm::ArrayRef<Decl *> Fields,
9764                       SourceLocation LBrac, SourceLocation RBrac,
9765                       AttributeList *Attr) {
9766  assert(EnclosingDecl && "missing record or interface decl");
9767
9768  // If this is an Objective-C @implementation or category and we have
9769  // new fields here we should reset the layout of the interface since
9770  // it will now change.
9771  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9772    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9773    switch (DC->getKind()) {
9774    default: break;
9775    case Decl::ObjCCategory:
9776      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9777      break;
9778    case Decl::ObjCImplementation:
9779      Context.
9780        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9781      break;
9782    }
9783  }
9784
9785  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9786
9787  // Start counting up the number of named members; make sure to include
9788  // members of anonymous structs and unions in the total.
9789  unsigned NumNamedMembers = 0;
9790  if (Record) {
9791    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9792                                   e = Record->decls_end(); i != e; i++) {
9793      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9794        if (IFD->getDeclName())
9795          ++NumNamedMembers;
9796    }
9797  }
9798
9799  // Verify that all the fields are okay.
9800  SmallVector<FieldDecl*, 32> RecFields;
9801
9802  bool ARCErrReported = false;
9803  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9804       i != end; ++i) {
9805    FieldDecl *FD = cast<FieldDecl>(*i);
9806
9807    // Get the type for the field.
9808    const Type *FDTy = FD->getType().getTypePtr();
9809
9810    if (!FD->isAnonymousStructOrUnion()) {
9811      // Remember all fields written by the user.
9812      RecFields.push_back(FD);
9813    }
9814
9815    // If the field is already invalid for some reason, don't emit more
9816    // diagnostics about it.
9817    if (FD->isInvalidDecl()) {
9818      EnclosingDecl->setInvalidDecl();
9819      continue;
9820    }
9821
9822    // C99 6.7.2.1p2:
9823    //   A structure or union shall not contain a member with
9824    //   incomplete or function type (hence, a structure shall not
9825    //   contain an instance of itself, but may contain a pointer to
9826    //   an instance of itself), except that the last member of a
9827    //   structure with more than one named member may have incomplete
9828    //   array type; such a structure (and any union containing,
9829    //   possibly recursively, a member that is such a structure)
9830    //   shall not be a member of a structure or an element of an
9831    //   array.
9832    if (FDTy->isFunctionType()) {
9833      // Field declared as a function.
9834      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9835        << FD->getDeclName();
9836      FD->setInvalidDecl();
9837      EnclosingDecl->setInvalidDecl();
9838      continue;
9839    } else if (FDTy->isIncompleteArrayType() && Record &&
9840               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9841                ((getLangOpts().MicrosoftExt ||
9842                  getLangOpts().CPlusPlus) &&
9843                 (i + 1 == Fields.end() || Record->isUnion())))) {
9844      // Flexible array member.
9845      // Microsoft and g++ is more permissive regarding flexible array.
9846      // It will accept flexible array in union and also
9847      // as the sole element of a struct/class.
9848      if (getLangOpts().MicrosoftExt) {
9849        if (Record->isUnion())
9850          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9851            << FD->getDeclName();
9852        else if (Fields.size() == 1)
9853          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9854            << FD->getDeclName() << Record->getTagKind();
9855      } else if (getLangOpts().CPlusPlus) {
9856        if (Record->isUnion())
9857          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9858            << FD->getDeclName();
9859        else if (Fields.size() == 1)
9860          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9861            << FD->getDeclName() << Record->getTagKind();
9862      } else if (!getLangOpts().C99) {
9863      if (Record->isUnion())
9864        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9865          << FD->getDeclName();
9866      else
9867        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9868          << FD->getDeclName() << Record->getTagKind();
9869      } else if (NumNamedMembers < 1) {
9870        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9871          << FD->getDeclName();
9872        FD->setInvalidDecl();
9873        EnclosingDecl->setInvalidDecl();
9874        continue;
9875      }
9876      if (!FD->getType()->isDependentType() &&
9877          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9878        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9879          << FD->getDeclName() << FD->getType();
9880        FD->setInvalidDecl();
9881        EnclosingDecl->setInvalidDecl();
9882        continue;
9883      }
9884      // Okay, we have a legal flexible array member at the end of the struct.
9885      if (Record)
9886        Record->setHasFlexibleArrayMember(true);
9887    } else if (!FDTy->isDependentType() &&
9888               RequireCompleteType(FD->getLocation(), FD->getType(),
9889                                   diag::err_field_incomplete)) {
9890      // Incomplete type
9891      FD->setInvalidDecl();
9892      EnclosingDecl->setInvalidDecl();
9893      continue;
9894    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9895      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9896        // If this is a member of a union, then entire union becomes "flexible".
9897        if (Record && Record->isUnion()) {
9898          Record->setHasFlexibleArrayMember(true);
9899        } else {
9900          // If this is a struct/class and this is not the last element, reject
9901          // it.  Note that GCC supports variable sized arrays in the middle of
9902          // structures.
9903          if (i + 1 != Fields.end())
9904            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9905              << FD->getDeclName() << FD->getType();
9906          else {
9907            // We support flexible arrays at the end of structs in
9908            // other structs as an extension.
9909            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9910              << FD->getDeclName();
9911            if (Record)
9912              Record->setHasFlexibleArrayMember(true);
9913          }
9914        }
9915      }
9916      if (Record && FDTTy->getDecl()->hasObjectMember())
9917        Record->setHasObjectMember(true);
9918    } else if (FDTy->isObjCObjectType()) {
9919      /// A field cannot be an Objective-c object
9920      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9921        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9922      QualType T = Context.getObjCObjectPointerType(FD->getType());
9923      FD->setType(T);
9924    }
9925    else if (!getLangOpts().CPlusPlus) {
9926      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9927        // It's an error in ARC if a field has lifetime.
9928        // We don't want to report this in a system header, though,
9929        // so we just make the field unavailable.
9930        // FIXME: that's really not sufficient; we need to make the type
9931        // itself invalid to, say, initialize or copy.
9932        QualType T = FD->getType();
9933        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9934        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9935          SourceLocation loc = FD->getLocation();
9936          if (getSourceManager().isInSystemHeader(loc)) {
9937            if (!FD->hasAttr<UnavailableAttr>()) {
9938              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9939                                "this system field has retaining ownership"));
9940            }
9941          } else {
9942            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9943              << T->isBlockPointerType();
9944          }
9945          ARCErrReported = true;
9946        }
9947      }
9948      else if (getLangOpts().ObjC1 &&
9949               getLangOpts().getGC() != LangOptions::NonGC &&
9950               Record && !Record->hasObjectMember()) {
9951        if (FD->getType()->isObjCObjectPointerType() ||
9952            FD->getType().isObjCGCStrong())
9953          Record->setHasObjectMember(true);
9954        else if (Context.getAsArrayType(FD->getType())) {
9955          QualType BaseType = Context.getBaseElementType(FD->getType());
9956          if (BaseType->isRecordType() &&
9957              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9958            Record->setHasObjectMember(true);
9959          else if (BaseType->isObjCObjectPointerType() ||
9960                   BaseType.isObjCGCStrong())
9961                 Record->setHasObjectMember(true);
9962        }
9963      }
9964    }
9965    // Keep track of the number of named members.
9966    if (FD->getIdentifier())
9967      ++NumNamedMembers;
9968  }
9969
9970  // Okay, we successfully defined 'Record'.
9971  if (Record) {
9972    bool Completed = false;
9973    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9974      if (!CXXRecord->isInvalidDecl()) {
9975        // Set access bits correctly on the directly-declared conversions.
9976        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9977        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9978             I != E; ++I)
9979          Convs->setAccess(I, (*I)->getAccess());
9980
9981        if (!CXXRecord->isDependentType()) {
9982          // Objective-C Automatic Reference Counting:
9983          //   If a class has a non-static data member of Objective-C pointer
9984          //   type (or array thereof), it is a non-POD type and its
9985          //   default constructor (if any), copy constructor, copy assignment
9986          //   operator, and destructor are non-trivial.
9987          //
9988          // This rule is also handled by CXXRecordDecl::completeDefinition().
9989          // However, here we check whether this particular class is only
9990          // non-POD because of the presence of an Objective-C pointer member.
9991          // If so, objects of this type cannot be shared between code compiled
9992          // with ARC and code compiled with manual retain/release.
9993          if (getLangOpts().ObjCAutoRefCount &&
9994              CXXRecord->hasObjectMember() &&
9995              CXXRecord->getLinkage() == ExternalLinkage) {
9996            if (CXXRecord->isPOD()) {
9997              Diag(CXXRecord->getLocation(),
9998                   diag::warn_arc_non_pod_class_with_object_member)
9999               << CXXRecord;
10000            } else {
10001              // FIXME: Fix-Its would be nice here, but finding a good location
10002              // for them is going to be tricky.
10003              if (CXXRecord->hasTrivialCopyConstructor())
10004                Diag(CXXRecord->getLocation(),
10005                     diag::warn_arc_trivial_member_function_with_object_member)
10006                  << CXXRecord << 0;
10007              if (CXXRecord->hasTrivialCopyAssignment())
10008                Diag(CXXRecord->getLocation(),
10009                     diag::warn_arc_trivial_member_function_with_object_member)
10010                << CXXRecord << 1;
10011              if (CXXRecord->hasTrivialDestructor())
10012                Diag(CXXRecord->getLocation(),
10013                     diag::warn_arc_trivial_member_function_with_object_member)
10014                << CXXRecord << 2;
10015            }
10016          }
10017
10018          // Adjust user-defined destructor exception spec.
10019          if (getLangOpts().CPlusPlus0x &&
10020              CXXRecord->hasUserDeclaredDestructor())
10021            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10022
10023          // Add any implicitly-declared members to this class.
10024          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10025
10026          // If we have virtual base classes, we may end up finding multiple
10027          // final overriders for a given virtual function. Check for this
10028          // problem now.
10029          if (CXXRecord->getNumVBases()) {
10030            CXXFinalOverriderMap FinalOverriders;
10031            CXXRecord->getFinalOverriders(FinalOverriders);
10032
10033            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10034                                             MEnd = FinalOverriders.end();
10035                 M != MEnd; ++M) {
10036              for (OverridingMethods::iterator SO = M->second.begin(),
10037                                            SOEnd = M->second.end();
10038                   SO != SOEnd; ++SO) {
10039                assert(SO->second.size() > 0 &&
10040                       "Virtual function without overridding functions?");
10041                if (SO->second.size() == 1)
10042                  continue;
10043
10044                // C++ [class.virtual]p2:
10045                //   In a derived class, if a virtual member function of a base
10046                //   class subobject has more than one final overrider the
10047                //   program is ill-formed.
10048                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10049                  << (NamedDecl *)M->first << Record;
10050                Diag(M->first->getLocation(),
10051                     diag::note_overridden_virtual_function);
10052                for (OverridingMethods::overriding_iterator
10053                          OM = SO->second.begin(),
10054                       OMEnd = SO->second.end();
10055                     OM != OMEnd; ++OM)
10056                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10057                    << (NamedDecl *)M->first << OM->Method->getParent();
10058
10059                Record->setInvalidDecl();
10060              }
10061            }
10062            CXXRecord->completeDefinition(&FinalOverriders);
10063            Completed = true;
10064          }
10065        }
10066      }
10067    }
10068
10069    if (!Completed)
10070      Record->completeDefinition();
10071
10072  } else {
10073    ObjCIvarDecl **ClsFields =
10074      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10075    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10076      ID->setEndOfDefinitionLoc(RBrac);
10077      // Add ivar's to class's DeclContext.
10078      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10079        ClsFields[i]->setLexicalDeclContext(ID);
10080        ID->addDecl(ClsFields[i]);
10081      }
10082      // Must enforce the rule that ivars in the base classes may not be
10083      // duplicates.
10084      if (ID->getSuperClass())
10085        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10086    } else if (ObjCImplementationDecl *IMPDecl =
10087                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10088      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10089      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10090        // Ivar declared in @implementation never belongs to the implementation.
10091        // Only it is in implementation's lexical context.
10092        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10093      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10094      IMPDecl->setIvarLBraceLoc(LBrac);
10095      IMPDecl->setIvarRBraceLoc(RBrac);
10096    } else if (ObjCCategoryDecl *CDecl =
10097                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10098      // case of ivars in class extension; all other cases have been
10099      // reported as errors elsewhere.
10100      // FIXME. Class extension does not have a LocEnd field.
10101      // CDecl->setLocEnd(RBrac);
10102      // Add ivar's to class extension's DeclContext.
10103      // Diagnose redeclaration of private ivars.
10104      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10105      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10106        if (IDecl) {
10107          if (const ObjCIvarDecl *ClsIvar =
10108              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10109            Diag(ClsFields[i]->getLocation(),
10110                 diag::err_duplicate_ivar_declaration);
10111            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10112            continue;
10113          }
10114          for (const ObjCCategoryDecl *ClsExtDecl =
10115                IDecl->getFirstClassExtension();
10116               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10117            if (const ObjCIvarDecl *ClsExtIvar =
10118                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10119              Diag(ClsFields[i]->getLocation(),
10120                   diag::err_duplicate_ivar_declaration);
10121              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10122              continue;
10123            }
10124          }
10125        }
10126        ClsFields[i]->setLexicalDeclContext(CDecl);
10127        CDecl->addDecl(ClsFields[i]);
10128      }
10129      CDecl->setIvarLBraceLoc(LBrac);
10130      CDecl->setIvarRBraceLoc(RBrac);
10131    }
10132  }
10133
10134  if (Attr)
10135    ProcessDeclAttributeList(S, Record, Attr);
10136}
10137
10138/// \brief Determine whether the given integral value is representable within
10139/// the given type T.
10140static bool isRepresentableIntegerValue(ASTContext &Context,
10141                                        llvm::APSInt &Value,
10142                                        QualType T) {
10143  assert(T->isIntegralType(Context) && "Integral type required!");
10144  unsigned BitWidth = Context.getIntWidth(T);
10145
10146  if (Value.isUnsigned() || Value.isNonNegative()) {
10147    if (T->isSignedIntegerOrEnumerationType())
10148      --BitWidth;
10149    return Value.getActiveBits() <= BitWidth;
10150  }
10151  return Value.getMinSignedBits() <= BitWidth;
10152}
10153
10154// \brief Given an integral type, return the next larger integral type
10155// (or a NULL type of no such type exists).
10156static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10157  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10158  // enum checking below.
10159  assert(T->isIntegralType(Context) && "Integral type required!");
10160  const unsigned NumTypes = 4;
10161  QualType SignedIntegralTypes[NumTypes] = {
10162    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10163  };
10164  QualType UnsignedIntegralTypes[NumTypes] = {
10165    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10166    Context.UnsignedLongLongTy
10167  };
10168
10169  unsigned BitWidth = Context.getTypeSize(T);
10170  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10171                                                        : UnsignedIntegralTypes;
10172  for (unsigned I = 0; I != NumTypes; ++I)
10173    if (Context.getTypeSize(Types[I]) > BitWidth)
10174      return Types[I];
10175
10176  return QualType();
10177}
10178
10179EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10180                                          EnumConstantDecl *LastEnumConst,
10181                                          SourceLocation IdLoc,
10182                                          IdentifierInfo *Id,
10183                                          Expr *Val) {
10184  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10185  llvm::APSInt EnumVal(IntWidth);
10186  QualType EltTy;
10187
10188  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10189    Val = 0;
10190
10191  if (Val)
10192    Val = DefaultLvalueConversion(Val).take();
10193
10194  if (Val) {
10195    if (Enum->isDependentType() || Val->isTypeDependent())
10196      EltTy = Context.DependentTy;
10197    else {
10198      SourceLocation ExpLoc;
10199      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10200          !getLangOpts().MicrosoftMode) {
10201        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10202        // constant-expression in the enumerator-definition shall be a converted
10203        // constant expression of the underlying type.
10204        EltTy = Enum->getIntegerType();
10205        ExprResult Converted =
10206          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10207                                           CCEK_Enumerator);
10208        if (Converted.isInvalid())
10209          Val = 0;
10210        else
10211          Val = Converted.take();
10212      } else if (!Val->isValueDependent() &&
10213                 !(Val = VerifyIntegerConstantExpression(Val,
10214                                                         &EnumVal).take())) {
10215        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10216      } else {
10217        if (Enum->isFixed()) {
10218          EltTy = Enum->getIntegerType();
10219
10220          // In Obj-C and Microsoft mode, require the enumeration value to be
10221          // representable in the underlying type of the enumeration. In C++11,
10222          // we perform a non-narrowing conversion as part of converted constant
10223          // expression checking.
10224          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10225            if (getLangOpts().MicrosoftMode) {
10226              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10227              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10228            } else
10229              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10230          } else
10231            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10232        } else if (getLangOpts().CPlusPlus) {
10233          // C++11 [dcl.enum]p5:
10234          //   If the underlying type is not fixed, the type of each enumerator
10235          //   is the type of its initializing value:
10236          //     - If an initializer is specified for an enumerator, the
10237          //       initializing value has the same type as the expression.
10238          EltTy = Val->getType();
10239        } else {
10240          // C99 6.7.2.2p2:
10241          //   The expression that defines the value of an enumeration constant
10242          //   shall be an integer constant expression that has a value
10243          //   representable as an int.
10244
10245          // Complain if the value is not representable in an int.
10246          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10247            Diag(IdLoc, diag::ext_enum_value_not_int)
10248              << EnumVal.toString(10) << Val->getSourceRange()
10249              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10250          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10251            // Force the type of the expression to 'int'.
10252            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10253          }
10254          EltTy = Val->getType();
10255        }
10256      }
10257    }
10258  }
10259
10260  if (!Val) {
10261    if (Enum->isDependentType())
10262      EltTy = Context.DependentTy;
10263    else if (!LastEnumConst) {
10264      // C++0x [dcl.enum]p5:
10265      //   If the underlying type is not fixed, the type of each enumerator
10266      //   is the type of its initializing value:
10267      //     - If no initializer is specified for the first enumerator, the
10268      //       initializing value has an unspecified integral type.
10269      //
10270      // GCC uses 'int' for its unspecified integral type, as does
10271      // C99 6.7.2.2p3.
10272      if (Enum->isFixed()) {
10273        EltTy = Enum->getIntegerType();
10274      }
10275      else {
10276        EltTy = Context.IntTy;
10277      }
10278    } else {
10279      // Assign the last value + 1.
10280      EnumVal = LastEnumConst->getInitVal();
10281      ++EnumVal;
10282      EltTy = LastEnumConst->getType();
10283
10284      // Check for overflow on increment.
10285      if (EnumVal < LastEnumConst->getInitVal()) {
10286        // C++0x [dcl.enum]p5:
10287        //   If the underlying type is not fixed, the type of each enumerator
10288        //   is the type of its initializing value:
10289        //
10290        //     - Otherwise the type of the initializing value is the same as
10291        //       the type of the initializing value of the preceding enumerator
10292        //       unless the incremented value is not representable in that type,
10293        //       in which case the type is an unspecified integral type
10294        //       sufficient to contain the incremented value. If no such type
10295        //       exists, the program is ill-formed.
10296        QualType T = getNextLargerIntegralType(Context, EltTy);
10297        if (T.isNull() || Enum->isFixed()) {
10298          // There is no integral type larger enough to represent this
10299          // value. Complain, then allow the value to wrap around.
10300          EnumVal = LastEnumConst->getInitVal();
10301          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10302          ++EnumVal;
10303          if (Enum->isFixed())
10304            // When the underlying type is fixed, this is ill-formed.
10305            Diag(IdLoc, diag::err_enumerator_wrapped)
10306              << EnumVal.toString(10)
10307              << EltTy;
10308          else
10309            Diag(IdLoc, diag::warn_enumerator_too_large)
10310              << EnumVal.toString(10);
10311        } else {
10312          EltTy = T;
10313        }
10314
10315        // Retrieve the last enumerator's value, extent that type to the
10316        // type that is supposed to be large enough to represent the incremented
10317        // value, then increment.
10318        EnumVal = LastEnumConst->getInitVal();
10319        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10320        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10321        ++EnumVal;
10322
10323        // If we're not in C++, diagnose the overflow of enumerator values,
10324        // which in C99 means that the enumerator value is not representable in
10325        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10326        // permits enumerator values that are representable in some larger
10327        // integral type.
10328        if (!getLangOpts().CPlusPlus && !T.isNull())
10329          Diag(IdLoc, diag::warn_enum_value_overflow);
10330      } else if (!getLangOpts().CPlusPlus &&
10331                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10332        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10333        Diag(IdLoc, diag::ext_enum_value_not_int)
10334          << EnumVal.toString(10) << 1;
10335      }
10336    }
10337  }
10338
10339  if (!EltTy->isDependentType()) {
10340    // Make the enumerator value match the signedness and size of the
10341    // enumerator's type.
10342    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10343    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10344  }
10345
10346  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10347                                  Val, EnumVal);
10348}
10349
10350
10351Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10352                              SourceLocation IdLoc, IdentifierInfo *Id,
10353                              AttributeList *Attr,
10354                              SourceLocation EqualLoc, Expr *Val) {
10355  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10356  EnumConstantDecl *LastEnumConst =
10357    cast_or_null<EnumConstantDecl>(lastEnumConst);
10358
10359  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10360  // we find one that is.
10361  S = getNonFieldDeclScope(S);
10362
10363  // Verify that there isn't already something declared with this name in this
10364  // scope.
10365  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10366                                         ForRedeclaration);
10367  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10368    // Maybe we will complain about the shadowed template parameter.
10369    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10370    // Just pretend that we didn't see the previous declaration.
10371    PrevDecl = 0;
10372  }
10373
10374  if (PrevDecl) {
10375    // When in C++, we may get a TagDecl with the same name; in this case the
10376    // enum constant will 'hide' the tag.
10377    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10378           "Received TagDecl when not in C++!");
10379    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10380      if (isa<EnumConstantDecl>(PrevDecl))
10381        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10382      else
10383        Diag(IdLoc, diag::err_redefinition) << Id;
10384      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10385      return 0;
10386    }
10387  }
10388
10389  // C++ [class.mem]p15:
10390  // If T is the name of a class, then each of the following shall have a name
10391  // different from T:
10392  // - every enumerator of every member of class T that is an unscoped
10393  // enumerated type
10394  if (CXXRecordDecl *Record
10395                      = dyn_cast<CXXRecordDecl>(
10396                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10397    if (!TheEnumDecl->isScoped() &&
10398        Record->getIdentifier() && Record->getIdentifier() == Id)
10399      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10400
10401  EnumConstantDecl *New =
10402    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10403
10404  if (New) {
10405    // Process attributes.
10406    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10407
10408    // Register this decl in the current scope stack.
10409    New->setAccess(TheEnumDecl->getAccess());
10410    PushOnScopeChains(New, S);
10411  }
10412
10413  ActOnDocumentableDecl(New);
10414
10415  return New;
10416}
10417
10418// Emits a warning if every element in the enum is the same value and if
10419// every element is initialized with a integer or boolean literal.
10420static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10421                                     unsigned NumElements, EnumDecl *Enum,
10422                                     QualType EnumType) {
10423  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10424                                 Enum->getLocation()) ==
10425      DiagnosticsEngine::Ignored)
10426    return;
10427
10428  if (NumElements < 2)
10429    return;
10430
10431  if (!Enum->getIdentifier())
10432    return;
10433
10434  llvm::APSInt FirstVal;
10435
10436  for (unsigned i = 0; i != NumElements; ++i) {
10437    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10438    if (!ECD)
10439      return;
10440
10441    Expr *InitExpr = ECD->getInitExpr();
10442    if (!InitExpr)
10443      return;
10444    InitExpr = InitExpr->IgnoreImpCasts();
10445    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10446      return;
10447
10448    if (i == 0) {
10449      FirstVal = ECD->getInitVal();
10450      continue;
10451    }
10452
10453    if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10454      return;
10455  }
10456
10457  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10458      << EnumType << FirstVal.toString(10)
10459      << Enum->getSourceRange();
10460
10461  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10462                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10463
10464  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10465    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10466                                    Next->getName());
10467}
10468
10469void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10470                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10471                         Decl **Elements, unsigned NumElements,
10472                         Scope *S, AttributeList *Attr) {
10473  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10474  QualType EnumType = Context.getTypeDeclType(Enum);
10475
10476  if (Attr)
10477    ProcessDeclAttributeList(S, Enum, Attr);
10478
10479  if (Enum->isDependentType()) {
10480    for (unsigned i = 0; i != NumElements; ++i) {
10481      EnumConstantDecl *ECD =
10482        cast_or_null<EnumConstantDecl>(Elements[i]);
10483      if (!ECD) continue;
10484
10485      ECD->setType(EnumType);
10486    }
10487
10488    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10489    return;
10490  }
10491
10492  // TODO: If the result value doesn't fit in an int, it must be a long or long
10493  // long value.  ISO C does not support this, but GCC does as an extension,
10494  // emit a warning.
10495  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10496  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10497  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10498
10499  // Verify that all the values are okay, compute the size of the values, and
10500  // reverse the list.
10501  unsigned NumNegativeBits = 0;
10502  unsigned NumPositiveBits = 0;
10503
10504  // Keep track of whether all elements have type int.
10505  bool AllElementsInt = true;
10506
10507  for (unsigned i = 0; i != NumElements; ++i) {
10508    EnumConstantDecl *ECD =
10509      cast_or_null<EnumConstantDecl>(Elements[i]);
10510    if (!ECD) continue;  // Already issued a diagnostic.
10511
10512    const llvm::APSInt &InitVal = ECD->getInitVal();
10513
10514    // Keep track of the size of positive and negative values.
10515    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10516      NumPositiveBits = std::max(NumPositiveBits,
10517                                 (unsigned)InitVal.getActiveBits());
10518    else
10519      NumNegativeBits = std::max(NumNegativeBits,
10520                                 (unsigned)InitVal.getMinSignedBits());
10521
10522    // Keep track of whether every enum element has type int (very commmon).
10523    if (AllElementsInt)
10524      AllElementsInt = ECD->getType() == Context.IntTy;
10525  }
10526
10527  // Figure out the type that should be used for this enum.
10528  QualType BestType;
10529  unsigned BestWidth;
10530
10531  // C++0x N3000 [conv.prom]p3:
10532  //   An rvalue of an unscoped enumeration type whose underlying
10533  //   type is not fixed can be converted to an rvalue of the first
10534  //   of the following types that can represent all the values of
10535  //   the enumeration: int, unsigned int, long int, unsigned long
10536  //   int, long long int, or unsigned long long int.
10537  // C99 6.4.4.3p2:
10538  //   An identifier declared as an enumeration constant has type int.
10539  // The C99 rule is modified by a gcc extension
10540  QualType BestPromotionType;
10541
10542  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10543  // -fshort-enums is the equivalent to specifying the packed attribute on all
10544  // enum definitions.
10545  if (LangOpts.ShortEnums)
10546    Packed = true;
10547
10548  if (Enum->isFixed()) {
10549    BestType = Enum->getIntegerType();
10550    if (BestType->isPromotableIntegerType())
10551      BestPromotionType = Context.getPromotedIntegerType(BestType);
10552    else
10553      BestPromotionType = BestType;
10554    // We don't need to set BestWidth, because BestType is going to be the type
10555    // of the enumerators, but we do anyway because otherwise some compilers
10556    // warn that it might be used uninitialized.
10557    BestWidth = CharWidth;
10558  }
10559  else if (NumNegativeBits) {
10560    // If there is a negative value, figure out the smallest integer type (of
10561    // int/long/longlong) that fits.
10562    // If it's packed, check also if it fits a char or a short.
10563    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10564      BestType = Context.SignedCharTy;
10565      BestWidth = CharWidth;
10566    } else if (Packed && NumNegativeBits <= ShortWidth &&
10567               NumPositiveBits < ShortWidth) {
10568      BestType = Context.ShortTy;
10569      BestWidth = ShortWidth;
10570    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10571      BestType = Context.IntTy;
10572      BestWidth = IntWidth;
10573    } else {
10574      BestWidth = Context.getTargetInfo().getLongWidth();
10575
10576      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10577        BestType = Context.LongTy;
10578      } else {
10579        BestWidth = Context.getTargetInfo().getLongLongWidth();
10580
10581        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10582          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10583        BestType = Context.LongLongTy;
10584      }
10585    }
10586    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10587  } else {
10588    // If there is no negative value, figure out the smallest type that fits
10589    // all of the enumerator values.
10590    // If it's packed, check also if it fits a char or a short.
10591    if (Packed && NumPositiveBits <= CharWidth) {
10592      BestType = Context.UnsignedCharTy;
10593      BestPromotionType = Context.IntTy;
10594      BestWidth = CharWidth;
10595    } else if (Packed && NumPositiveBits <= ShortWidth) {
10596      BestType = Context.UnsignedShortTy;
10597      BestPromotionType = Context.IntTy;
10598      BestWidth = ShortWidth;
10599    } else if (NumPositiveBits <= IntWidth) {
10600      BestType = Context.UnsignedIntTy;
10601      BestWidth = IntWidth;
10602      BestPromotionType
10603        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10604                           ? Context.UnsignedIntTy : Context.IntTy;
10605    } else if (NumPositiveBits <=
10606               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10607      BestType = Context.UnsignedLongTy;
10608      BestPromotionType
10609        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10610                           ? Context.UnsignedLongTy : Context.LongTy;
10611    } else {
10612      BestWidth = Context.getTargetInfo().getLongLongWidth();
10613      assert(NumPositiveBits <= BestWidth &&
10614             "How could an initializer get larger than ULL?");
10615      BestType = Context.UnsignedLongLongTy;
10616      BestPromotionType
10617        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10618                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10619    }
10620  }
10621
10622  // Loop over all of the enumerator constants, changing their types to match
10623  // the type of the enum if needed.
10624  for (unsigned i = 0; i != NumElements; ++i) {
10625    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10626    if (!ECD) continue;  // Already issued a diagnostic.
10627
10628    // Standard C says the enumerators have int type, but we allow, as an
10629    // extension, the enumerators to be larger than int size.  If each
10630    // enumerator value fits in an int, type it as an int, otherwise type it the
10631    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10632    // that X has type 'int', not 'unsigned'.
10633
10634    // Determine whether the value fits into an int.
10635    llvm::APSInt InitVal = ECD->getInitVal();
10636
10637    // If it fits into an integer type, force it.  Otherwise force it to match
10638    // the enum decl type.
10639    QualType NewTy;
10640    unsigned NewWidth;
10641    bool NewSign;
10642    if (!getLangOpts().CPlusPlus &&
10643        !Enum->isFixed() &&
10644        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10645      NewTy = Context.IntTy;
10646      NewWidth = IntWidth;
10647      NewSign = true;
10648    } else if (ECD->getType() == BestType) {
10649      // Already the right type!
10650      if (getLangOpts().CPlusPlus)
10651        // C++ [dcl.enum]p4: Following the closing brace of an
10652        // enum-specifier, each enumerator has the type of its
10653        // enumeration.
10654        ECD->setType(EnumType);
10655      continue;
10656    } else {
10657      NewTy = BestType;
10658      NewWidth = BestWidth;
10659      NewSign = BestType->isSignedIntegerOrEnumerationType();
10660    }
10661
10662    // Adjust the APSInt value.
10663    InitVal = InitVal.extOrTrunc(NewWidth);
10664    InitVal.setIsSigned(NewSign);
10665    ECD->setInitVal(InitVal);
10666
10667    // Adjust the Expr initializer and type.
10668    if (ECD->getInitExpr() &&
10669        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10670      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10671                                                CK_IntegralCast,
10672                                                ECD->getInitExpr(),
10673                                                /*base paths*/ 0,
10674                                                VK_RValue));
10675    if (getLangOpts().CPlusPlus)
10676      // C++ [dcl.enum]p4: Following the closing brace of an
10677      // enum-specifier, each enumerator has the type of its
10678      // enumeration.
10679      ECD->setType(EnumType);
10680    else
10681      ECD->setType(NewTy);
10682  }
10683
10684  Enum->completeDefinition(BestType, BestPromotionType,
10685                           NumPositiveBits, NumNegativeBits);
10686
10687  // If we're declaring a function, ensure this decl isn't forgotten about -
10688  // it needs to go into the function scope.
10689  if (InFunctionDeclarator)
10690    DeclsInPrototypeScope.push_back(Enum);
10691
10692  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
10693}
10694
10695Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10696                                  SourceLocation StartLoc,
10697                                  SourceLocation EndLoc) {
10698  StringLiteral *AsmString = cast<StringLiteral>(expr);
10699
10700  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10701                                                   AsmString, StartLoc,
10702                                                   EndLoc);
10703  CurContext->addDecl(New);
10704  return New;
10705}
10706
10707DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10708                                   SourceLocation ImportLoc,
10709                                   ModuleIdPath Path) {
10710  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10711                                                Module::AllVisible,
10712                                                /*IsIncludeDirective=*/false);
10713  if (!Mod)
10714    return true;
10715
10716  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10717  Module *ModCheck = Mod;
10718  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10719    // If we've run out of module parents, just drop the remaining identifiers.
10720    // We need the length to be consistent.
10721    if (!ModCheck)
10722      break;
10723    ModCheck = ModCheck->Parent;
10724
10725    IdentifierLocs.push_back(Path[I].second);
10726  }
10727
10728  ImportDecl *Import = ImportDecl::Create(Context,
10729                                          Context.getTranslationUnitDecl(),
10730                                          AtLoc.isValid()? AtLoc : ImportLoc,
10731                                          Mod, IdentifierLocs);
10732  Context.getTranslationUnitDecl()->addDecl(Import);
10733  return Import;
10734}
10735
10736void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10737                                      IdentifierInfo* AliasName,
10738                                      SourceLocation PragmaLoc,
10739                                      SourceLocation NameLoc,
10740                                      SourceLocation AliasNameLoc) {
10741  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10742                                    LookupOrdinaryName);
10743  AsmLabelAttr *Attr =
10744     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10745
10746  if (PrevDecl)
10747    PrevDecl->addAttr(Attr);
10748  else
10749    (void)ExtnameUndeclaredIdentifiers.insert(
10750      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10751}
10752
10753void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10754                             SourceLocation PragmaLoc,
10755                             SourceLocation NameLoc) {
10756  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10757
10758  if (PrevDecl) {
10759    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10760  } else {
10761    (void)WeakUndeclaredIdentifiers.insert(
10762      std::pair<IdentifierInfo*,WeakInfo>
10763        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10764  }
10765}
10766
10767void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10768                                IdentifierInfo* AliasName,
10769                                SourceLocation PragmaLoc,
10770                                SourceLocation NameLoc,
10771                                SourceLocation AliasNameLoc) {
10772  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10773                                    LookupOrdinaryName);
10774  WeakInfo W = WeakInfo(Name, NameLoc);
10775
10776  if (PrevDecl) {
10777    if (!PrevDecl->hasAttr<AliasAttr>())
10778      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10779        DeclApplyPragmaWeak(TUScope, ND, W);
10780  } else {
10781    (void)WeakUndeclaredIdentifiers.insert(
10782      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10783  }
10784}
10785
10786Decl *Sema::getObjCDeclContext() const {
10787  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10788}
10789
10790AvailabilityResult Sema::getCurContextAvailability() const {
10791  const Decl *D = cast<Decl>(getCurLexicalContext());
10792  // A category implicitly has the availability of the interface.
10793  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10794    D = CatD->getClassInterface();
10795
10796  return D->getAvailability();
10797}
10798