SemaDecl.cpp revision 4dd55f511d1fba732f2968f430ce999fc8293896
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// Used in MergeFunctionDecl to keep track of function parameters in
514/// C.
515struct GNUCompatibleParamWarning {
516  ParmVarDecl *OldParm;
517  ParmVarDecl *NewParm;
518  QualType PromotedType;
519};
520
521/// MergeFunctionDecl - We just parsed a function 'New' from
522/// declarator D which has the same name and scope as a previous
523/// declaration 'Old'.  Figure out how to resolve this situation,
524/// merging decls or emitting diagnostics as appropriate.
525///
526/// In C++, New and Old must be declarations that are not
527/// overloaded. Use IsOverload to determine whether New and Old are
528/// overloaded, and to select the Old declaration that New should be
529/// merged with.
530///
531/// Returns true if there was an error, false otherwise.
532bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
533  assert(!isa<OverloadedFunctionDecl>(OldD) &&
534         "Cannot merge with an overloaded function declaration");
535
536  // Verify the old decl was also a function.
537  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
538  if (!Old) {
539    Diag(New->getLocation(), diag::err_redefinition_different_kind)
540      << New->getDeclName();
541    Diag(OldD->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // Determine whether the previous declaration was a definition,
546  // implicit declaration, or a declaration.
547  diag::kind PrevDiag;
548  if (Old->isThisDeclarationADefinition())
549    PrevDiag = diag::note_previous_definition;
550  else if (Old->isImplicit())
551    PrevDiag = diag::note_previous_implicit_declaration;
552  else
553    PrevDiag = diag::note_previous_declaration;
554
555  QualType OldQType = Context.getCanonicalType(Old->getType());
556  QualType NewQType = Context.getCanonicalType(New->getType());
557
558  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
559      New->getStorageClass() == FunctionDecl::Static &&
560      Old->getStorageClass() != FunctionDecl::Static) {
561    Diag(New->getLocation(), diag::err_static_non_static)
562      << New;
563    Diag(Old->getLocation(), PrevDiag);
564    return true;
565  }
566
567  if (getLangOptions().CPlusPlus) {
568    // (C++98 13.1p2):
569    //   Certain function declarations cannot be overloaded:
570    //     -- Function declarations that differ only in the return type
571    //        cannot be overloaded.
572    QualType OldReturnType
573      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
574    QualType NewReturnType
575      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
576    if (OldReturnType != NewReturnType) {
577      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
578      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
579      return true;
580    }
581
582    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
583    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
584    if (OldMethod && NewMethod) {
585      //    -- Member function declarations with the same name and the
586      //       same parameter types cannot be overloaded if any of them
587      //       is a static member function declaration.
588      if (OldMethod->isStatic() || NewMethod->isStatic()) {
589        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
590        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
591        return true;
592      }
593
594      // C++ [class.mem]p1:
595      //   [...] A member shall not be declared twice in the
596      //   member-specification, except that a nested class or member
597      //   class template can be declared and then later defined.
598      if (OldMethod->getLexicalDeclContext() ==
599            NewMethod->getLexicalDeclContext()) {
600        unsigned NewDiag;
601        if (isa<CXXConstructorDecl>(OldMethod))
602          NewDiag = diag::err_constructor_redeclared;
603        else if (isa<CXXDestructorDecl>(NewMethod))
604          NewDiag = diag::err_destructor_redeclared;
605        else if (isa<CXXConversionDecl>(NewMethod))
606          NewDiag = diag::err_conv_function_redeclared;
607        else
608          NewDiag = diag::err_member_redeclared;
609
610        Diag(New->getLocation(), NewDiag);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612      }
613    }
614
615    // (C++98 8.3.5p3):
616    //   All declarations for a function shall agree exactly in both the
617    //   return type and the parameter-type-list.
618    if (OldQType == NewQType)
619      return MergeCompatibleFunctionDecls(New, Old);
620
621    // Fall through for conflicting redeclarations and redefinitions.
622  }
623
624  // C: Function types need to be compatible, not identical. This handles
625  // duplicate function decls like "void f(int); void f(enum X);" properly.
626  if (!getLangOptions().CPlusPlus &&
627      Context.typesAreCompatible(OldQType, NewQType)) {
628    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
629    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
630    const FunctionProtoType *OldProto = 0;
631    if (isa<FunctionNoProtoType>(NewFuncType) &&
632        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
633      // The old declaration provided a function prototype, but the
634      // new declaration does not. Merge in the prototype.
635      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
636                                                 OldProto->arg_type_end());
637      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
638                                         &ParamTypes[0], ParamTypes.size(),
639                                         OldProto->isVariadic(),
640                                         OldProto->getTypeQuals());
641      New->setType(NewQType);
642      New->setInheritedPrototype();
643
644      // Synthesize a parameter for each argument type.
645      llvm::SmallVector<ParmVarDecl*, 16> Params;
646      for (FunctionProtoType::arg_type_iterator
647             ParamType = OldProto->arg_type_begin(),
648             ParamEnd = OldProto->arg_type_end();
649           ParamType != ParamEnd; ++ParamType) {
650        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
651                                                 SourceLocation(), 0,
652                                                 *ParamType, VarDecl::None,
653                                                 0);
654        Param->setImplicit();
655        Params.push_back(Param);
656      }
657
658      New->setParams(Context, &Params[0], Params.size());
659    }
660
661    return MergeCompatibleFunctionDecls(New, Old);
662  }
663
664  // GNU C permits a K&R definition to follow a prototype declaration
665  // if the declared types of the parameters in the K&R definition
666  // match the types in the prototype declaration, even when the
667  // promoted types of the parameters from the K&R definition differ
668  // from the types in the prototype. GCC then keeps the types from
669  // the prototype.
670  if (!getLangOptions().CPlusPlus &&
671      !getLangOptions().NoExtensions &&
672      Old->hasPrototype() && !New->hasPrototype() &&
673      New->getType()->getAsFunctionProtoType() &&
674      Old->getNumParams() == New->getNumParams()) {
675    llvm::SmallVector<QualType, 16> ArgTypes;
676    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
677    const FunctionProtoType *OldProto
678      = Old->getType()->getAsFunctionProtoType();
679    const FunctionProtoType *NewProto
680      = New->getType()->getAsFunctionProtoType();
681
682    // Determine whether this is the GNU C extension.
683    bool GNUCompatible =
684      Context.typesAreCompatible(OldProto->getResultType(),
685                                 NewProto->getResultType()) &&
686      (OldProto->isVariadic() == NewProto->isVariadic());
687    for (unsigned Idx = 0, End = Old->getNumParams();
688         GNUCompatible && Idx != End; ++Idx) {
689      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
690      ParmVarDecl *NewParm = New->getParamDecl(Idx);
691      if (Context.typesAreCompatible(OldParm->getType(),
692                                     NewProto->getArgType(Idx))) {
693        ArgTypes.push_back(NewParm->getType());
694      } else if (Context.typesAreCompatible(OldParm->getType(),
695                                            NewParm->getType())) {
696        GNUCompatibleParamWarning Warn
697          = { OldParm, NewParm, NewProto->getArgType(Idx) };
698        Warnings.push_back(Warn);
699        ArgTypes.push_back(NewParm->getType());
700      } else
701        GNUCompatible = false;
702    }
703
704    if (GNUCompatible) {
705      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
706        Diag(Warnings[Warn].NewParm->getLocation(),
707             diag::ext_param_promoted_not_compatible_with_prototype)
708          << Warnings[Warn].PromotedType
709          << Warnings[Warn].OldParm->getType();
710        Diag(Warnings[Warn].OldParm->getLocation(),
711             diag::note_previous_declaration);
712      }
713
714      New->setType(Context.getFunctionType(NewProto->getResultType(),
715                                           &ArgTypes[0], ArgTypes.size(),
716                                           NewProto->isVariadic(),
717                                           NewProto->getTypeQuals()));
718      return MergeCompatibleFunctionDecls(New, Old);
719    }
720
721    // Fall through to diagnose conflicting types.
722  }
723
724  // A function that has already been declared has been redeclared or defined
725  // with a different type- show appropriate diagnostic
726  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
727    // The user has declared a builtin function with an incompatible
728    // signature.
729    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
730      // The function the user is redeclaring is a library-defined
731      // function like 'malloc' or 'printf'. Warn about the
732      // redeclaration, then ignore it.
733      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
734      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
735        << Old << Old->getType();
736      return true;
737    }
738
739    PrevDiag = diag::note_previous_builtin_declaration;
740  }
741
742  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
743  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
744  return true;
745}
746
747/// \brief Completes the merge of two function declarations that are
748/// known to be compatible.
749///
750/// This routine handles the merging of attributes and other
751/// properties of function declarations form the old declaration to
752/// the new declaration, once we know that New is in fact a
753/// redeclaration of Old.
754///
755/// \returns false
756bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
757  // Merge the attributes
758  MergeAttributes(New, Old, Context);
759
760  // Merge the storage class.
761  New->setStorageClass(Old->getStorageClass());
762
763  // FIXME: need to implement inline semantics
764
765  // Merge "pure" flag.
766  if (Old->isPure())
767    New->setPure();
768
769  // Merge the "deleted" flag.
770  if (Old->isDeleted())
771    New->setDeleted();
772
773  if (getLangOptions().CPlusPlus)
774    return MergeCXXFunctionDecl(New, Old);
775
776  return false;
777}
778
779/// MergeVarDecl - We just parsed a variable 'New' which has the same name
780/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
781/// situation, merging decls or emitting diagnostics as appropriate.
782///
783/// Tentative definition rules (C99 6.9.2p2) are checked by
784/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
785/// definitions here, since the initializer hasn't been attached.
786///
787bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
788  // Verify the old decl was also a variable.
789  VarDecl *Old = dyn_cast<VarDecl>(OldD);
790  if (!Old) {
791    Diag(New->getLocation(), diag::err_redefinition_different_kind)
792      << New->getDeclName();
793    Diag(OldD->getLocation(), diag::note_previous_definition);
794    return true;
795  }
796
797  MergeAttributes(New, Old, Context);
798
799  // Merge the types
800  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
801  if (MergedT.isNull()) {
802    Diag(New->getLocation(), diag::err_redefinition_different_type)
803      << New->getDeclName();
804    Diag(Old->getLocation(), diag::note_previous_definition);
805    return true;
806  }
807  New->setType(MergedT);
808  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
809  if (New->getStorageClass() == VarDecl::Static &&
810      (Old->getStorageClass() == VarDecl::None ||
811       Old->getStorageClass() == VarDecl::Extern)) {
812    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
813    Diag(Old->getLocation(), diag::note_previous_definition);
814    return true;
815  }
816  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
817  if (New->getStorageClass() != VarDecl::Static &&
818      Old->getStorageClass() == VarDecl::Static) {
819    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
820    Diag(Old->getLocation(), diag::note_previous_definition);
821    return true;
822  }
823  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
824  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
825    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
826    Diag(Old->getLocation(), diag::note_previous_definition);
827    return true;
828  }
829
830  // Keep a chain of previous declarations.
831  New->setPreviousDeclaration(Old);
832
833  return false;
834}
835
836/// CheckParmsForFunctionDef - Check that the parameters of the given
837/// function are appropriate for the definition of a function. This
838/// takes care of any checks that cannot be performed on the
839/// declaration itself, e.g., that the types of each of the function
840/// parameters are complete.
841bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
842  bool HasInvalidParm = false;
843  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
844    ParmVarDecl *Param = FD->getParamDecl(p);
845
846    // C99 6.7.5.3p4: the parameters in a parameter type list in a
847    // function declarator that is part of a function definition of
848    // that function shall not have incomplete type.
849    if (!Param->isInvalidDecl() &&
850        RequireCompleteType(Param->getLocation(), Param->getType(),
851                               diag::err_typecheck_decl_incomplete_type)) {
852      Param->setInvalidDecl();
853      HasInvalidParm = true;
854    }
855
856    // C99 6.9.1p5: If the declarator includes a parameter type list, the
857    // declaration of each parameter shall include an identifier.
858    if (Param->getIdentifier() == 0 &&
859        !Param->isImplicit() &&
860        !getLangOptions().CPlusPlus)
861      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
862  }
863
864  return HasInvalidParm;
865}
866
867/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
868/// no declarator (e.g. "struct foo;") is parsed.
869Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
870  TagDecl *Tag = 0;
871  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
872      DS.getTypeSpecType() == DeclSpec::TST_struct ||
873      DS.getTypeSpecType() == DeclSpec::TST_union ||
874      DS.getTypeSpecType() == DeclSpec::TST_enum)
875    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
876
877  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
878    if (!Record->getDeclName() && Record->isDefinition() &&
879        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
880      if (getLangOptions().CPlusPlus ||
881          Record->getDeclContext()->isRecord())
882        return BuildAnonymousStructOrUnion(S, DS, Record);
883
884      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
885        << DS.getSourceRange();
886    }
887
888    // Microsoft allows unnamed struct/union fields. Don't complain
889    // about them.
890    // FIXME: Should we support Microsoft's extensions in this area?
891    if (Record->getDeclName() && getLangOptions().Microsoft)
892      return Tag;
893  }
894
895  if (!DS.isMissingDeclaratorOk() &&
896      DS.getTypeSpecType() != DeclSpec::TST_error) {
897    // Warn about typedefs of enums without names, since this is an
898    // extension in both Microsoft an GNU.
899    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
900        Tag && isa<EnumDecl>(Tag)) {
901      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
902        << DS.getSourceRange();
903      return Tag;
904    }
905
906    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
907      << DS.getSourceRange();
908    return 0;
909  }
910
911  return Tag;
912}
913
914/// InjectAnonymousStructOrUnionMembers - Inject the members of the
915/// anonymous struct or union AnonRecord into the owning context Owner
916/// and scope S. This routine will be invoked just after we realize
917/// that an unnamed union or struct is actually an anonymous union or
918/// struct, e.g.,
919///
920/// @code
921/// union {
922///   int i;
923///   float f;
924/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
925///    // f into the surrounding scope.x
926/// @endcode
927///
928/// This routine is recursive, injecting the names of nested anonymous
929/// structs/unions into the owning context and scope as well.
930bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
931                                               RecordDecl *AnonRecord) {
932  bool Invalid = false;
933  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
934                               FEnd = AnonRecord->field_end();
935       F != FEnd; ++F) {
936    if ((*F)->getDeclName()) {
937      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
938                                                LookupOrdinaryName, true);
939      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
940        // C++ [class.union]p2:
941        //   The names of the members of an anonymous union shall be
942        //   distinct from the names of any other entity in the
943        //   scope in which the anonymous union is declared.
944        unsigned diagKind
945          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
946                                 : diag::err_anonymous_struct_member_redecl;
947        Diag((*F)->getLocation(), diagKind)
948          << (*F)->getDeclName();
949        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
950        Invalid = true;
951      } else {
952        // C++ [class.union]p2:
953        //   For the purpose of name lookup, after the anonymous union
954        //   definition, the members of the anonymous union are
955        //   considered to have been defined in the scope in which the
956        //   anonymous union is declared.
957        Owner->makeDeclVisibleInContext(*F);
958        S->AddDecl(*F);
959        IdResolver.AddDecl(*F);
960      }
961    } else if (const RecordType *InnerRecordType
962                 = (*F)->getType()->getAsRecordType()) {
963      RecordDecl *InnerRecord = InnerRecordType->getDecl();
964      if (InnerRecord->isAnonymousStructOrUnion())
965        Invalid = Invalid ||
966          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
967    }
968  }
969
970  return Invalid;
971}
972
973/// ActOnAnonymousStructOrUnion - Handle the declaration of an
974/// anonymous structure or union. Anonymous unions are a C++ feature
975/// (C++ [class.union]) and a GNU C extension; anonymous structures
976/// are a GNU C and GNU C++ extension.
977Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
978                                                RecordDecl *Record) {
979  DeclContext *Owner = Record->getDeclContext();
980
981  // Diagnose whether this anonymous struct/union is an extension.
982  if (Record->isUnion() && !getLangOptions().CPlusPlus)
983    Diag(Record->getLocation(), diag::ext_anonymous_union);
984  else if (!Record->isUnion())
985    Diag(Record->getLocation(), diag::ext_anonymous_struct);
986
987  // C and C++ require different kinds of checks for anonymous
988  // structs/unions.
989  bool Invalid = false;
990  if (getLangOptions().CPlusPlus) {
991    const char* PrevSpec = 0;
992    // C++ [class.union]p3:
993    //   Anonymous unions declared in a named namespace or in the
994    //   global namespace shall be declared static.
995    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
996        (isa<TranslationUnitDecl>(Owner) ||
997         (isa<NamespaceDecl>(Owner) &&
998          cast<NamespaceDecl>(Owner)->getDeclName()))) {
999      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1000      Invalid = true;
1001
1002      // Recover by adding 'static'.
1003      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1004    }
1005    // C++ [class.union]p3:
1006    //   A storage class is not allowed in a declaration of an
1007    //   anonymous union in a class scope.
1008    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1009             isa<RecordDecl>(Owner)) {
1010      Diag(DS.getStorageClassSpecLoc(),
1011           diag::err_anonymous_union_with_storage_spec);
1012      Invalid = true;
1013
1014      // Recover by removing the storage specifier.
1015      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1016                             PrevSpec);
1017    }
1018
1019    // C++ [class.union]p2:
1020    //   The member-specification of an anonymous union shall only
1021    //   define non-static data members. [Note: nested types and
1022    //   functions cannot be declared within an anonymous union. ]
1023    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1024                                 MemEnd = Record->decls_end();
1025         Mem != MemEnd; ++Mem) {
1026      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1027        // C++ [class.union]p3:
1028        //   An anonymous union shall not have private or protected
1029        //   members (clause 11).
1030        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1031          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1032            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1033          Invalid = true;
1034        }
1035      } else if ((*Mem)->isImplicit()) {
1036        // Any implicit members are fine.
1037      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1038        // This is a type that showed up in an
1039        // elaborated-type-specifier inside the anonymous struct or
1040        // union, but which actually declares a type outside of the
1041        // anonymous struct or union. It's okay.
1042      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1043        if (!MemRecord->isAnonymousStructOrUnion() &&
1044            MemRecord->getDeclName()) {
1045          // This is a nested type declaration.
1046          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1047            << (int)Record->isUnion();
1048          Invalid = true;
1049        }
1050      } else {
1051        // We have something that isn't a non-static data
1052        // member. Complain about it.
1053        unsigned DK = diag::err_anonymous_record_bad_member;
1054        if (isa<TypeDecl>(*Mem))
1055          DK = diag::err_anonymous_record_with_type;
1056        else if (isa<FunctionDecl>(*Mem))
1057          DK = diag::err_anonymous_record_with_function;
1058        else if (isa<VarDecl>(*Mem))
1059          DK = diag::err_anonymous_record_with_static;
1060        Diag((*Mem)->getLocation(), DK)
1061            << (int)Record->isUnion();
1062          Invalid = true;
1063      }
1064    }
1065  }
1066
1067  if (!Record->isUnion() && !Owner->isRecord()) {
1068    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1069      << (int)getLangOptions().CPlusPlus;
1070    Invalid = true;
1071  }
1072
1073  // Create a declaration for this anonymous struct/union.
1074  NamedDecl *Anon = 0;
1075  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1076    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1077                             /*IdentifierInfo=*/0,
1078                             Context.getTypeDeclType(Record),
1079                             /*BitWidth=*/0, /*Mutable=*/false);
1080    Anon->setAccess(AS_public);
1081    if (getLangOptions().CPlusPlus)
1082      FieldCollector->Add(cast<FieldDecl>(Anon));
1083  } else {
1084    VarDecl::StorageClass SC;
1085    switch (DS.getStorageClassSpec()) {
1086    default: assert(0 && "Unknown storage class!");
1087    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1088    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1089    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1090    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1091    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1092    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1093    case DeclSpec::SCS_mutable:
1094      // mutable can only appear on non-static class members, so it's always
1095      // an error here
1096      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1097      Invalid = true;
1098      SC = VarDecl::None;
1099      break;
1100    }
1101
1102    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1103                           /*IdentifierInfo=*/0,
1104                           Context.getTypeDeclType(Record),
1105                           SC, DS.getSourceRange().getBegin());
1106  }
1107  Anon->setImplicit();
1108
1109  // Add the anonymous struct/union object to the current
1110  // context. We'll be referencing this object when we refer to one of
1111  // its members.
1112  Owner->addDecl(Anon);
1113
1114  // Inject the members of the anonymous struct/union into the owning
1115  // context and into the identifier resolver chain for name lookup
1116  // purposes.
1117  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1118    Invalid = true;
1119
1120  // Mark this as an anonymous struct/union type. Note that we do not
1121  // do this until after we have already checked and injected the
1122  // members of this anonymous struct/union type, because otherwise
1123  // the members could be injected twice: once by DeclContext when it
1124  // builds its lookup table, and once by
1125  // InjectAnonymousStructOrUnionMembers.
1126  Record->setAnonymousStructOrUnion(true);
1127
1128  if (Invalid)
1129    Anon->setInvalidDecl();
1130
1131  return Anon;
1132}
1133
1134
1135/// GetNameForDeclarator - Determine the full declaration name for the
1136/// given Declarator.
1137DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1138  switch (D.getKind()) {
1139  case Declarator::DK_Abstract:
1140    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1141    return DeclarationName();
1142
1143  case Declarator::DK_Normal:
1144    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1145    return DeclarationName(D.getIdentifier());
1146
1147  case Declarator::DK_Constructor: {
1148    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1149    Ty = Context.getCanonicalType(Ty);
1150    return Context.DeclarationNames.getCXXConstructorName(Ty);
1151  }
1152
1153  case Declarator::DK_Destructor: {
1154    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1155    Ty = Context.getCanonicalType(Ty);
1156    return Context.DeclarationNames.getCXXDestructorName(Ty);
1157  }
1158
1159  case Declarator::DK_Conversion: {
1160    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1161    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1162    Ty = Context.getCanonicalType(Ty);
1163    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1164  }
1165
1166  case Declarator::DK_Operator:
1167    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1168    return Context.DeclarationNames.getCXXOperatorName(
1169                                                D.getOverloadedOperator());
1170  }
1171
1172  assert(false && "Unknown name kind");
1173  return DeclarationName();
1174}
1175
1176/// isNearlyMatchingFunction - Determine whether the C++ functions
1177/// Declaration and Definition are "nearly" matching. This heuristic
1178/// is used to improve diagnostics in the case where an out-of-line
1179/// function definition doesn't match any declaration within
1180/// the class or namespace.
1181static bool isNearlyMatchingFunction(ASTContext &Context,
1182                                     FunctionDecl *Declaration,
1183                                     FunctionDecl *Definition) {
1184  if (Declaration->param_size() != Definition->param_size())
1185    return false;
1186  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1187    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1188    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1189
1190    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1191    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1192    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1193      return false;
1194  }
1195
1196  return true;
1197}
1198
1199Sema::DeclTy *
1200Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1201                      bool IsFunctionDefinition) {
1202  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1203  DeclarationName Name = GetNameForDeclarator(D);
1204
1205  // All of these full declarators require an identifier.  If it doesn't have
1206  // one, the ParsedFreeStandingDeclSpec action should be used.
1207  if (!Name) {
1208    if (!D.getInvalidType())  // Reject this if we think it is valid.
1209      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1210           diag::err_declarator_need_ident)
1211        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1212    return 0;
1213  }
1214
1215  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1216  // we find one that is.
1217  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1218         (S->getFlags() & Scope::TemplateParamScope) != 0)
1219    S = S->getParent();
1220
1221  DeclContext *DC;
1222  NamedDecl *PrevDecl;
1223  NamedDecl *New;
1224  bool InvalidDecl = false;
1225
1226  QualType R = GetTypeForDeclarator(D, S);
1227  if (R.isNull()) {
1228    InvalidDecl = true;
1229    R = Context.IntTy;
1230  }
1231
1232  // See if this is a redefinition of a variable in the same scope.
1233  if (D.getCXXScopeSpec().isInvalid()) {
1234    DC = CurContext;
1235    PrevDecl = 0;
1236    InvalidDecl = true;
1237  } else if (!D.getCXXScopeSpec().isSet()) {
1238    LookupNameKind NameKind = LookupOrdinaryName;
1239
1240    // If the declaration we're planning to build will be a function
1241    // or object with linkage, then look for another declaration with
1242    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1243    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1244      /* Do nothing*/;
1245    else if (R->isFunctionType()) {
1246      if (CurContext->isFunctionOrMethod())
1247        NameKind = LookupRedeclarationWithLinkage;
1248    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1249      NameKind = LookupRedeclarationWithLinkage;
1250
1251    DC = CurContext;
1252    PrevDecl = LookupName(S, Name, NameKind, true,
1253                          D.getDeclSpec().getStorageClassSpec() !=
1254                            DeclSpec::SCS_static,
1255                          D.getIdentifierLoc());
1256  } else { // Something like "int foo::x;"
1257    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1258    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1259    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1260
1261    // C++ 7.3.1.2p2:
1262    // Members (including explicit specializations of templates) of a named
1263    // namespace can also be defined outside that namespace by explicit
1264    // qualification of the name being defined, provided that the entity being
1265    // defined was already declared in the namespace and the definition appears
1266    // after the point of declaration in a namespace that encloses the
1267    // declarations namespace.
1268    //
1269    // Note that we only check the context at this point. We don't yet
1270    // have enough information to make sure that PrevDecl is actually
1271    // the declaration we want to match. For example, given:
1272    //
1273    //   class X {
1274    //     void f();
1275    //     void f(float);
1276    //   };
1277    //
1278    //   void X::f(int) { } // ill-formed
1279    //
1280    // In this case, PrevDecl will point to the overload set
1281    // containing the two f's declared in X, but neither of them
1282    // matches.
1283
1284    // First check whether we named the global scope.
1285    if (isa<TranslationUnitDecl>(DC)) {
1286      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1287        << Name << D.getCXXScopeSpec().getRange();
1288    } else if (!CurContext->Encloses(DC)) {
1289      // The qualifying scope doesn't enclose the original declaration.
1290      // Emit diagnostic based on current scope.
1291      SourceLocation L = D.getIdentifierLoc();
1292      SourceRange R = D.getCXXScopeSpec().getRange();
1293      if (isa<FunctionDecl>(CurContext))
1294        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1295      else
1296        Diag(L, diag::err_invalid_declarator_scope)
1297          << Name << cast<NamedDecl>(DC) << R;
1298      InvalidDecl = true;
1299    }
1300  }
1301
1302  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1303    // Maybe we will complain about the shadowed template parameter.
1304    InvalidDecl = InvalidDecl
1305      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1306    // Just pretend that we didn't see the previous declaration.
1307    PrevDecl = 0;
1308  }
1309
1310  // In C++, the previous declaration we find might be a tag type
1311  // (class or enum). In this case, the new declaration will hide the
1312  // tag type. Note that this does does not apply if we're declaring a
1313  // typedef (C++ [dcl.typedef]p4).
1314  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1315      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1316    PrevDecl = 0;
1317
1318  bool Redeclaration = false;
1319  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1320    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1321                                 InvalidDecl, Redeclaration);
1322  } else if (R->isFunctionType()) {
1323    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1324                                  IsFunctionDefinition, InvalidDecl,
1325                                  Redeclaration);
1326  } else {
1327    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1328                                  InvalidDecl, Redeclaration);
1329  }
1330
1331  if (New == 0)
1332    return 0;
1333
1334  // Set the lexical context. If the declarator has a C++ scope specifier, the
1335  // lexical context will be different from the semantic context.
1336  New->setLexicalDeclContext(CurContext);
1337
1338  // If this has an identifier and is not an invalid redeclaration,
1339  // add it to the scope stack.
1340  if (Name && !(Redeclaration && InvalidDecl))
1341    PushOnScopeChains(New, S);
1342  // If any semantic error occurred, mark the decl as invalid.
1343  if (D.getInvalidType() || InvalidDecl)
1344    New->setInvalidDecl();
1345
1346  return New;
1347}
1348
1349/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1350/// types into constant array types in certain situations which would otherwise
1351/// be errors (for GCC compatibility).
1352static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1353                                                    ASTContext &Context,
1354                                                    bool &SizeIsNegative) {
1355  // This method tries to turn a variable array into a constant
1356  // array even when the size isn't an ICE.  This is necessary
1357  // for compatibility with code that depends on gcc's buggy
1358  // constant expression folding, like struct {char x[(int)(char*)2];}
1359  SizeIsNegative = false;
1360
1361  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1362    QualType Pointee = PTy->getPointeeType();
1363    QualType FixedType =
1364        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1365    if (FixedType.isNull()) return FixedType;
1366    FixedType = Context.getPointerType(FixedType);
1367    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1368    return FixedType;
1369  }
1370
1371  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1372  if (!VLATy)
1373    return QualType();
1374  // FIXME: We should probably handle this case
1375  if (VLATy->getElementType()->isVariablyModifiedType())
1376    return QualType();
1377
1378  Expr::EvalResult EvalResult;
1379  if (!VLATy->getSizeExpr() ||
1380      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1381      !EvalResult.Val.isInt())
1382    return QualType();
1383
1384  llvm::APSInt &Res = EvalResult.Val.getInt();
1385  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1386    return Context.getConstantArrayType(VLATy->getElementType(),
1387                                        Res, ArrayType::Normal, 0);
1388
1389  SizeIsNegative = true;
1390  return QualType();
1391}
1392
1393/// \brief Register the given locally-scoped external C declaration so
1394/// that it can be found later for redeclarations
1395void
1396Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1397                                       Scope *S) {
1398  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1399         "Decl is not a locally-scoped decl!");
1400  // Note that we have a locally-scoped external with this name.
1401  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1402
1403  if (!PrevDecl)
1404    return;
1405
1406  // If there was a previous declaration of this variable, it may be
1407  // in our identifier chain. Update the identifier chain with the new
1408  // declaration.
1409  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1410    // The previous declaration was found on the identifer resolver
1411    // chain, so remove it from its scope.
1412    while (S && !S->isDeclScope(PrevDecl))
1413      S = S->getParent();
1414
1415    if (S)
1416      S->RemoveDecl(PrevDecl);
1417  }
1418}
1419
1420NamedDecl*
1421Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1422                             QualType R, Decl* LastDeclarator,
1423                             Decl* PrevDecl, bool& InvalidDecl,
1424                             bool &Redeclaration) {
1425  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1426  if (D.getCXXScopeSpec().isSet()) {
1427    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1428      << D.getCXXScopeSpec().getRange();
1429    InvalidDecl = true;
1430    // Pretend we didn't see the scope specifier.
1431    DC = 0;
1432  }
1433
1434  // Check that there are no default arguments (C++ only).
1435  if (getLangOptions().CPlusPlus)
1436    CheckExtraCXXDefaultArguments(D);
1437
1438  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1439  if (!NewTD) return 0;
1440
1441  // Handle attributes prior to checking for duplicates in MergeVarDecl
1442  ProcessDeclAttributes(NewTD, D);
1443  // Merge the decl with the existing one if appropriate. If the decl is
1444  // in an outer scope, it isn't the same thing.
1445  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1446    Redeclaration = true;
1447    if (MergeTypeDefDecl(NewTD, PrevDecl))
1448      InvalidDecl = true;
1449  }
1450
1451  if (S->getFnParent() == 0) {
1452    QualType T = NewTD->getUnderlyingType();
1453    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1454    // then it shall have block scope.
1455    if (T->isVariablyModifiedType()) {
1456      bool SizeIsNegative;
1457      QualType FixedTy =
1458          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1459      if (!FixedTy.isNull()) {
1460        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1461        NewTD->setUnderlyingType(FixedTy);
1462      } else {
1463        if (SizeIsNegative)
1464          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1465        else if (T->isVariableArrayType())
1466          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1467        else
1468          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1469        InvalidDecl = true;
1470      }
1471    }
1472  }
1473  return NewTD;
1474}
1475
1476/// \brief Determines whether the given declaration is an out-of-scope
1477/// previous declaration.
1478///
1479/// This routine should be invoked when name lookup has found a
1480/// previous declaration (PrevDecl) that is not in the scope where a
1481/// new declaration by the same name is being introduced. If the new
1482/// declaration occurs in a local scope, previous declarations with
1483/// linkage may still be considered previous declarations (C99
1484/// 6.2.2p4-5, C++ [basic.link]p6).
1485///
1486/// \param PrevDecl the previous declaration found by name
1487/// lookup
1488///
1489/// \param DC the context in which the new declaration is being
1490/// declared.
1491///
1492/// \returns true if PrevDecl is an out-of-scope previous declaration
1493/// for a new delcaration with the same name.
1494static bool
1495isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1496                                ASTContext &Context) {
1497  if (!PrevDecl)
1498    return 0;
1499
1500  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1501  // case we need to check each of the overloaded functions.
1502  if (!PrevDecl->hasLinkage())
1503    return false;
1504
1505  if (Context.getLangOptions().CPlusPlus) {
1506    // C++ [basic.link]p6:
1507    //   If there is a visible declaration of an entity with linkage
1508    //   having the same name and type, ignoring entities declared
1509    //   outside the innermost enclosing namespace scope, the block
1510    //   scope declaration declares that same entity and receives the
1511    //   linkage of the previous declaration.
1512    DeclContext *OuterContext = DC->getLookupContext();
1513    if (!OuterContext->isFunctionOrMethod())
1514      // This rule only applies to block-scope declarations.
1515      return false;
1516    else {
1517      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1518      if (PrevOuterContext->isRecord())
1519        // We found a member function: ignore it.
1520        return false;
1521      else {
1522        // Find the innermost enclosing namespace for the new and
1523        // previous declarations.
1524        while (!OuterContext->isFileContext())
1525          OuterContext = OuterContext->getParent();
1526        while (!PrevOuterContext->isFileContext())
1527          PrevOuterContext = PrevOuterContext->getParent();
1528
1529        // The previous declaration is in a different namespace, so it
1530        // isn't the same function.
1531        if (OuterContext->getPrimaryContext() !=
1532            PrevOuterContext->getPrimaryContext())
1533          return false;
1534      }
1535    }
1536  }
1537
1538  return true;
1539}
1540
1541NamedDecl*
1542Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1543                              QualType R, Decl* LastDeclarator,
1544                              NamedDecl* PrevDecl, bool& InvalidDecl,
1545                              bool &Redeclaration) {
1546  DeclarationName Name = GetNameForDeclarator(D);
1547
1548  // Check that there are no default arguments (C++ only).
1549  if (getLangOptions().CPlusPlus)
1550    CheckExtraCXXDefaultArguments(D);
1551
1552  if (R.getTypePtr()->isObjCInterfaceType()) {
1553    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1554    InvalidDecl = true;
1555  }
1556
1557  VarDecl *NewVD;
1558  VarDecl::StorageClass SC;
1559  switch (D.getDeclSpec().getStorageClassSpec()) {
1560  default: assert(0 && "Unknown storage class!");
1561  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1562  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1563  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1564  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1565  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1566  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1567  case DeclSpec::SCS_mutable:
1568    // mutable can only appear on non-static class members, so it's always
1569    // an error here
1570    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1571    InvalidDecl = true;
1572    SC = VarDecl::None;
1573    break;
1574  }
1575
1576  IdentifierInfo *II = Name.getAsIdentifierInfo();
1577  if (!II) {
1578    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1579      << Name.getAsString();
1580    return 0;
1581  }
1582
1583  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1584  if (!DC->isRecord() && S->getFnParent() == 0) {
1585    // C99 6.9p2: The storage-class specifiers auto and register shall not
1586    // appear in the declaration specifiers in an external declaration.
1587    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1588      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1589      InvalidDecl = true;
1590    }
1591  }
1592  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1593                          II, R, SC,
1594                          // FIXME: Move to DeclGroup...
1595                          D.getDeclSpec().getSourceRange().getBegin());
1596  NewVD->setThreadSpecified(ThreadSpecified);
1597  NewVD->setNextDeclarator(LastDeclarator);
1598
1599  // Handle attributes prior to checking for duplicates in MergeVarDecl
1600  ProcessDeclAttributes(NewVD, D);
1601
1602  // Handle GNU asm-label extension (encoded as an attribute).
1603  if (Expr *E = (Expr*) D.getAsmLabel()) {
1604    // The parser guarantees this is a string.
1605    StringLiteral *SE = cast<StringLiteral>(E);
1606    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1607                                                        SE->getByteLength())));
1608  }
1609
1610  // Emit an error if an address space was applied to decl with local storage.
1611  // This includes arrays of objects with address space qualifiers, but not
1612  // automatic variables that point to other address spaces.
1613  // ISO/IEC TR 18037 S5.1.2
1614  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1615    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1616    InvalidDecl = true;
1617  }
1618
1619  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1620    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1621  }
1622
1623  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1624  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1625  if (isIllegalVLA || isIllegalVM) {
1626    bool SizeIsNegative;
1627    QualType FixedTy =
1628        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1629    if (!FixedTy.isNull()) {
1630      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1631      NewVD->setType(FixedTy);
1632    } else if (R->isVariableArrayType()) {
1633      NewVD->setInvalidDecl();
1634
1635      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1636      // FIXME: This won't give the correct result for
1637      // int a[10][n];
1638      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1639
1640      if (NewVD->isFileVarDecl())
1641        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1642          << SizeRange;
1643      else if (NewVD->getStorageClass() == VarDecl::Static)
1644        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1645          << SizeRange;
1646      else
1647        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1648            << SizeRange;
1649    } else {
1650      InvalidDecl = true;
1651
1652      if (NewVD->isFileVarDecl())
1653        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1654      else
1655        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1656    }
1657  }
1658
1659  // If name lookup finds a previous declaration that is not in the
1660  // same scope as the new declaration, this may still be an
1661  // acceptable redeclaration.
1662  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1663      !(NewVD->hasLinkage() &&
1664        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1665    PrevDecl = 0;
1666
1667  if (!PrevDecl && NewVD->isExternC(Context)) {
1668    // Since we did not find anything by this name and we're declaring
1669    // an extern "C" variable, look for a non-visible extern "C"
1670    // declaration with the same name.
1671    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1672      = LocallyScopedExternalDecls.find(Name);
1673    if (Pos != LocallyScopedExternalDecls.end())
1674      PrevDecl = Pos->second;
1675  }
1676
1677  // Merge the decl with the existing one if appropriate.
1678  if (PrevDecl) {
1679    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1680      // The user tried to define a non-static data member
1681      // out-of-line (C++ [dcl.meaning]p1).
1682      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1683        << D.getCXXScopeSpec().getRange();
1684      NewVD->Destroy(Context);
1685      return 0;
1686    }
1687
1688    Redeclaration = true;
1689    if (MergeVarDecl(NewVD, PrevDecl))
1690      InvalidDecl = true;
1691
1692    if (D.getCXXScopeSpec().isSet()) {
1693      // No previous declaration in the qualifying scope.
1694      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1695        << Name << D.getCXXScopeSpec().getRange();
1696      InvalidDecl = true;
1697    }
1698  }
1699
1700  if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
1701    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1702      << R;
1703    InvalidDecl = true;
1704  }
1705
1706
1707  // If this is a locally-scoped extern C variable, update the map of
1708  // such variables.
1709  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1710      !InvalidDecl)
1711    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1712
1713  return NewVD;
1714}
1715
1716NamedDecl*
1717Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1718                              QualType R, Decl *LastDeclarator,
1719                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1720                              bool& InvalidDecl, bool &Redeclaration) {
1721  assert(R.getTypePtr()->isFunctionType());
1722
1723  DeclarationName Name = GetNameForDeclarator(D);
1724  FunctionDecl::StorageClass SC = FunctionDecl::None;
1725  switch (D.getDeclSpec().getStorageClassSpec()) {
1726  default: assert(0 && "Unknown storage class!");
1727  case DeclSpec::SCS_auto:
1728  case DeclSpec::SCS_register:
1729  case DeclSpec::SCS_mutable:
1730    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1731         diag::err_typecheck_sclass_func);
1732    InvalidDecl = true;
1733    break;
1734  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1735  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1736  case DeclSpec::SCS_static: {
1737    if (DC->getLookupContext()->isFunctionOrMethod()) {
1738      // C99 6.7.1p5:
1739      //   The declaration of an identifier for a function that has
1740      //   block scope shall have no explicit storage-class specifier
1741      //   other than extern
1742      // See also (C++ [dcl.stc]p4).
1743      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1744           diag::err_static_block_func);
1745      SC = FunctionDecl::None;
1746    } else
1747      SC = FunctionDecl::Static;
1748    break;
1749  }
1750  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1751  }
1752
1753  bool isInline = D.getDeclSpec().isInlineSpecified();
1754  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1755  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1756
1757  FunctionDecl *NewFD;
1758  if (D.getKind() == Declarator::DK_Constructor) {
1759    // This is a C++ constructor declaration.
1760    assert(DC->isRecord() &&
1761           "Constructors can only be declared in a member context");
1762
1763    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1764
1765    // Create the new declaration
1766    NewFD = CXXConstructorDecl::Create(Context,
1767                                       cast<CXXRecordDecl>(DC),
1768                                       D.getIdentifierLoc(), Name, R,
1769                                       isExplicit, isInline,
1770                                       /*isImplicitlyDeclared=*/false);
1771
1772    if (InvalidDecl)
1773      NewFD->setInvalidDecl();
1774  } else if (D.getKind() == Declarator::DK_Destructor) {
1775    // This is a C++ destructor declaration.
1776    if (DC->isRecord()) {
1777      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1778
1779      NewFD = CXXDestructorDecl::Create(Context,
1780                                        cast<CXXRecordDecl>(DC),
1781                                        D.getIdentifierLoc(), Name, R,
1782                                        isInline,
1783                                        /*isImplicitlyDeclared=*/false);
1784
1785      if (InvalidDecl)
1786        NewFD->setInvalidDecl();
1787    } else {
1788      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1789
1790      // Create a FunctionDecl to satisfy the function definition parsing
1791      // code path.
1792      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1793                                   Name, R, SC, isInline,
1794                                   /*hasPrototype=*/true,
1795                                   // FIXME: Move to DeclGroup...
1796                                   D.getDeclSpec().getSourceRange().getBegin());
1797      InvalidDecl = true;
1798      NewFD->setInvalidDecl();
1799    }
1800  } else if (D.getKind() == Declarator::DK_Conversion) {
1801    if (!DC->isRecord()) {
1802      Diag(D.getIdentifierLoc(),
1803           diag::err_conv_function_not_member);
1804      return 0;
1805    } else {
1806      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1807
1808      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1809                                        D.getIdentifierLoc(), Name, R,
1810                                        isInline, isExplicit);
1811
1812      if (InvalidDecl)
1813        NewFD->setInvalidDecl();
1814    }
1815  } else if (DC->isRecord()) {
1816    // This is a C++ method declaration.
1817    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1818                                  D.getIdentifierLoc(), Name, R,
1819                                  (SC == FunctionDecl::Static), isInline);
1820  } else {
1821    NewFD = FunctionDecl::Create(Context, DC,
1822                                 D.getIdentifierLoc(),
1823                                 Name, R, SC, isInline,
1824                                 /*hasPrototype=*/
1825                                   (getLangOptions().CPlusPlus ||
1826                                    (D.getNumTypeObjects() &&
1827                                     D.getTypeObject(0).Fun.hasPrototype)),
1828                                 // FIXME: Move to DeclGroup...
1829                                 D.getDeclSpec().getSourceRange().getBegin());
1830  }
1831  NewFD->setNextDeclarator(LastDeclarator);
1832
1833  // Set the lexical context. If the declarator has a C++
1834  // scope specifier, the lexical context will be different
1835  // from the semantic context.
1836  NewFD->setLexicalDeclContext(CurContext);
1837
1838  // Handle GNU asm-label extension (encoded as an attribute).
1839  if (Expr *E = (Expr*) D.getAsmLabel()) {
1840    // The parser guarantees this is a string.
1841    StringLiteral *SE = cast<StringLiteral>(E);
1842    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1843                                                        SE->getByteLength())));
1844  }
1845
1846  // Copy the parameter declarations from the declarator D to
1847  // the function declaration NewFD, if they are available.
1848  if (D.getNumTypeObjects() > 0) {
1849    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1850
1851    // Create Decl objects for each parameter, adding them to the
1852    // FunctionDecl.
1853    llvm::SmallVector<ParmVarDecl*, 16> Params;
1854
1855    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1856    // function that takes no arguments, not a function that takes a
1857    // single void argument.
1858    // We let through "const void" here because Sema::GetTypeForDeclarator
1859    // already checks for that case.
1860    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1861        FTI.ArgInfo[0].Param &&
1862        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1863      // empty arg list, don't push any params.
1864      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1865
1866      // In C++, the empty parameter-type-list must be spelled "void"; a
1867      // typedef of void is not permitted.
1868      if (getLangOptions().CPlusPlus &&
1869          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1870        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1871      }
1872    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1873      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1874        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1875    }
1876
1877    NewFD->setParams(Context, &Params[0], Params.size());
1878  } else if (R->getAsTypedefType()) {
1879    // When we're declaring a function with a typedef, as in the
1880    // following example, we'll need to synthesize (unnamed)
1881    // parameters for use in the declaration.
1882    //
1883    // @code
1884    // typedef void fn(int);
1885    // fn f;
1886    // @endcode
1887    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1888    if (!FT) {
1889      // This is a typedef of a function with no prototype, so we
1890      // don't need to do anything.
1891    } else if ((FT->getNumArgs() == 0) ||
1892               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1893                FT->getArgType(0)->isVoidType())) {
1894      // This is a zero-argument function. We don't need to do anything.
1895    } else {
1896      // Synthesize a parameter for each argument type.
1897      llvm::SmallVector<ParmVarDecl*, 16> Params;
1898      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1899           ArgType != FT->arg_type_end(); ++ArgType) {
1900        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1901                                                 SourceLocation(), 0,
1902                                                 *ArgType, VarDecl::None,
1903                                                 0);
1904        Param->setImplicit();
1905        Params.push_back(Param);
1906      }
1907
1908      NewFD->setParams(Context, &Params[0], Params.size());
1909    }
1910  }
1911
1912  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1913    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1914  else if (isa<CXXDestructorDecl>(NewFD)) {
1915    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1916    Record->setUserDeclaredDestructor(true);
1917    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1918    // user-defined destructor.
1919    Record->setPOD(false);
1920  } else if (CXXConversionDecl *Conversion =
1921             dyn_cast<CXXConversionDecl>(NewFD))
1922    ActOnConversionDeclarator(Conversion);
1923
1924  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1925  if (NewFD->isOverloadedOperator() &&
1926      CheckOverloadedOperatorDeclaration(NewFD))
1927    NewFD->setInvalidDecl();
1928
1929  // If name lookup finds a previous declaration that is not in the
1930  // same scope as the new declaration, this may still be an
1931  // acceptable redeclaration.
1932  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1933      !(NewFD->hasLinkage() &&
1934        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1935    PrevDecl = 0;
1936
1937  if (!PrevDecl && NewFD->isExternC(Context)) {
1938    // Since we did not find anything by this name and we're declaring
1939    // an extern "C" function, look for a non-visible extern "C"
1940    // declaration with the same name.
1941    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1942      = LocallyScopedExternalDecls.find(Name);
1943    if (Pos != LocallyScopedExternalDecls.end())
1944      PrevDecl = Pos->second;
1945  }
1946
1947  // Merge or overload the declaration with an existing declaration of
1948  // the same name, if appropriate.
1949  bool OverloadableAttrRequired = false;
1950  if (PrevDecl) {
1951    // Determine whether NewFD is an overload of PrevDecl or
1952    // a declaration that requires merging. If it's an overload,
1953    // there's no more work to do here; we'll just add the new
1954    // function to the scope.
1955    OverloadedFunctionDecl::function_iterator MatchedDecl;
1956
1957    if (!getLangOptions().CPlusPlus &&
1958        AllowOverloadingOfFunction(PrevDecl, Context)) {
1959      OverloadableAttrRequired = true;
1960
1961      // Functions marked "overloadable" must have a prototype (that
1962      // we can't get through declaration merging).
1963      if (!R->getAsFunctionProtoType()) {
1964        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1965          << NewFD;
1966        InvalidDecl = true;
1967        Redeclaration = true;
1968
1969        // Turn this into a variadic function with no parameters.
1970        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1971                                    0, 0, true, 0);
1972        NewFD->setType(R);
1973      }
1974    }
1975
1976    if (PrevDecl &&
1977        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1978         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1979      Redeclaration = true;
1980      Decl *OldDecl = PrevDecl;
1981
1982      // If PrevDecl was an overloaded function, extract the
1983      // FunctionDecl that matched.
1984      if (isa<OverloadedFunctionDecl>(PrevDecl))
1985        OldDecl = *MatchedDecl;
1986
1987      // NewFD and PrevDecl represent declarations that need to be
1988      // merged.
1989      if (MergeFunctionDecl(NewFD, OldDecl))
1990        InvalidDecl = true;
1991
1992      if (!InvalidDecl) {
1993        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1994
1995        // An out-of-line member function declaration must also be a
1996        // definition (C++ [dcl.meaning]p1).
1997        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1998            !InvalidDecl) {
1999          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2000            << D.getCXXScopeSpec().getRange();
2001          NewFD->setInvalidDecl();
2002        }
2003      }
2004    }
2005  }
2006
2007  if (D.getCXXScopeSpec().isSet() &&
2008      (!PrevDecl || !Redeclaration)) {
2009    // The user tried to provide an out-of-line definition for a
2010    // function that is a member of a class or namespace, but there
2011    // was no such member function declared (C++ [class.mfct]p2,
2012    // C++ [namespace.memdef]p2). For example:
2013    //
2014    // class X {
2015    //   void f() const;
2016    // };
2017    //
2018    // void X::f() { } // ill-formed
2019    //
2020    // Complain about this problem, and attempt to suggest close
2021    // matches (e.g., those that differ only in cv-qualifiers and
2022    // whether the parameter types are references).
2023    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2024      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2025    InvalidDecl = true;
2026
2027    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2028                                            true);
2029    assert(!Prev.isAmbiguous() &&
2030           "Cannot have an ambiguity in previous-declaration lookup");
2031    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2032         Func != FuncEnd; ++Func) {
2033      if (isa<FunctionDecl>(*Func) &&
2034          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2035        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2036    }
2037
2038    PrevDecl = 0;
2039  }
2040
2041  // Handle attributes. We need to have merged decls when handling attributes
2042  // (for example to check for conflicts, etc).
2043  ProcessDeclAttributes(NewFD, D);
2044  AddKnownFunctionAttributes(NewFD);
2045
2046  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2047    // If a function name is overloadable in C, then every function
2048    // with that name must be marked "overloadable".
2049    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2050      << Redeclaration << NewFD;
2051    if (PrevDecl)
2052      Diag(PrevDecl->getLocation(),
2053           diag::note_attribute_overloadable_prev_overload);
2054    NewFD->addAttr(::new (Context) OverloadableAttr());
2055  }
2056
2057  if (getLangOptions().CPlusPlus) {
2058    // In C++, check default arguments now that we have merged decls. Unless
2059    // the lexical context is the class, because in this case this is done
2060    // during delayed parsing anyway.
2061    if (!CurContext->isRecord())
2062      CheckCXXDefaultArguments(NewFD);
2063
2064    // An out-of-line member function declaration must also be a
2065    // definition (C++ [dcl.meaning]p1).
2066    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2067      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2068        << D.getCXXScopeSpec().getRange();
2069      InvalidDecl = true;
2070    }
2071  }
2072
2073  // If this is a locally-scoped extern C function, update the
2074  // map of such names.
2075  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2076      && !InvalidDecl)
2077    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2078
2079  return NewFD;
2080}
2081
2082bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2083  // FIXME: Need strict checking.  In C89, we need to check for
2084  // any assignment, increment, decrement, function-calls, or
2085  // commas outside of a sizeof.  In C99, it's the same list,
2086  // except that the aforementioned are allowed in unevaluated
2087  // expressions.  Everything else falls under the
2088  // "may accept other forms of constant expressions" exception.
2089  // (We never end up here for C++, so the constant expression
2090  // rules there don't matter.)
2091  if (Init->isConstantInitializer(Context))
2092    return false;
2093  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2094    << Init->getSourceRange();
2095  return true;
2096}
2097
2098void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2099  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2100}
2101
2102/// AddInitializerToDecl - Adds the initializer Init to the
2103/// declaration dcl. If DirectInit is true, this is C++ direct
2104/// initialization rather than copy initialization.
2105void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2106  Decl *RealDecl = static_cast<Decl *>(dcl);
2107  // If there is no declaration, there was an error parsing it.  Just ignore
2108  // the initializer.
2109  if (RealDecl == 0)
2110    return;
2111
2112  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2113  if (!VDecl) {
2114    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2115    RealDecl->setInvalidDecl();
2116    return;
2117  }
2118
2119  const VarDecl *Def = 0;
2120  if (VDecl->getDefinition(Def)) {
2121    Diag(VDecl->getLocation(), diag::err_redefinition)
2122      << VDecl->getDeclName();
2123    Diag(Def->getLocation(), diag::note_previous_definition);
2124    VDecl->setInvalidDecl();
2125    return;
2126  }
2127
2128  // Take ownership of the expression, now that we're sure we have somewhere
2129  // to put it.
2130  Expr *Init = static_cast<Expr *>(init.release());
2131  assert(Init && "missing initializer");
2132
2133  // Get the decls type and save a reference for later, since
2134  // CheckInitializerTypes may change it.
2135  QualType DclT = VDecl->getType(), SavT = DclT;
2136  if (VDecl->isBlockVarDecl()) {
2137    VarDecl::StorageClass SC = VDecl->getStorageClass();
2138    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2139      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2140      VDecl->setInvalidDecl();
2141    } else if (!VDecl->isInvalidDecl()) {
2142      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2143                                VDecl->getDeclName(), DirectInit))
2144        VDecl->setInvalidDecl();
2145
2146      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2147      // Don't check invalid declarations to avoid emitting useless diagnostics.
2148      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2149        if (SC == VarDecl::Static) // C99 6.7.8p4.
2150          CheckForConstantInitializer(Init, DclT);
2151      }
2152    }
2153  } else if (VDecl->isFileVarDecl()) {
2154    if (VDecl->getStorageClass() == VarDecl::Extern)
2155      Diag(VDecl->getLocation(), diag::warn_extern_init);
2156    if (!VDecl->isInvalidDecl())
2157      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2158                                VDecl->getDeclName(), DirectInit))
2159        VDecl->setInvalidDecl();
2160
2161    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2162    // Don't check invalid declarations to avoid emitting useless diagnostics.
2163    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2164      // C99 6.7.8p4. All file scoped initializers need to be constant.
2165      CheckForConstantInitializer(Init, DclT);
2166    }
2167  }
2168  // If the type changed, it means we had an incomplete type that was
2169  // completed by the initializer. For example:
2170  //   int ary[] = { 1, 3, 5 };
2171  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2172  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2173    VDecl->setType(DclT);
2174    Init->setType(DclT);
2175  }
2176
2177  // Attach the initializer to the decl.
2178  VDecl->setInit(Init);
2179  return;
2180}
2181
2182void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2183  Decl *RealDecl = static_cast<Decl *>(dcl);
2184
2185  // If there is no declaration, there was an error parsing it. Just ignore it.
2186  if (RealDecl == 0)
2187    return;
2188
2189  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2190    QualType Type = Var->getType();
2191    // C++ [dcl.init.ref]p3:
2192    //   The initializer can be omitted for a reference only in a
2193    //   parameter declaration (8.3.5), in the declaration of a
2194    //   function return type, in the declaration of a class member
2195    //   within its class declaration (9.2), and where the extern
2196    //   specifier is explicitly used.
2197    if (Type->isReferenceType() &&
2198        Var->getStorageClass() != VarDecl::Extern &&
2199        Var->getStorageClass() != VarDecl::PrivateExtern) {
2200      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2201        << Var->getDeclName()
2202        << SourceRange(Var->getLocation(), Var->getLocation());
2203      Var->setInvalidDecl();
2204      return;
2205    }
2206
2207    // C++ [dcl.init]p9:
2208    //
2209    //   If no initializer is specified for an object, and the object
2210    //   is of (possibly cv-qualified) non-POD class type (or array
2211    //   thereof), the object shall be default-initialized; if the
2212    //   object is of const-qualified type, the underlying class type
2213    //   shall have a user-declared default constructor.
2214    if (getLangOptions().CPlusPlus) {
2215      QualType InitType = Type;
2216      if (const ArrayType *Array = Context.getAsArrayType(Type))
2217        InitType = Array->getElementType();
2218      if (Var->getStorageClass() != VarDecl::Extern &&
2219          Var->getStorageClass() != VarDecl::PrivateExtern &&
2220          InitType->isRecordType()) {
2221        const CXXConstructorDecl *Constructor = 0;
2222        if (!RequireCompleteType(Var->getLocation(), InitType,
2223                                    diag::err_invalid_incomplete_type_use))
2224          Constructor
2225            = PerformInitializationByConstructor(InitType, 0, 0,
2226                                                 Var->getLocation(),
2227                                               SourceRange(Var->getLocation(),
2228                                                           Var->getLocation()),
2229                                                 Var->getDeclName(),
2230                                                 IK_Default);
2231        if (!Constructor)
2232          Var->setInvalidDecl();
2233      }
2234    }
2235
2236#if 0
2237    // FIXME: Temporarily disabled because we are not properly parsing
2238    // linkage specifications on declarations, e.g.,
2239    //
2240    //   extern "C" const CGPoint CGPointerZero;
2241    //
2242    // C++ [dcl.init]p9:
2243    //
2244    //     If no initializer is specified for an object, and the
2245    //     object is of (possibly cv-qualified) non-POD class type (or
2246    //     array thereof), the object shall be default-initialized; if
2247    //     the object is of const-qualified type, the underlying class
2248    //     type shall have a user-declared default
2249    //     constructor. Otherwise, if no initializer is specified for
2250    //     an object, the object and its subobjects, if any, have an
2251    //     indeterminate initial value; if the object or any of its
2252    //     subobjects are of const-qualified type, the program is
2253    //     ill-formed.
2254    //
2255    // This isn't technically an error in C, so we don't diagnose it.
2256    //
2257    // FIXME: Actually perform the POD/user-defined default
2258    // constructor check.
2259    if (getLangOptions().CPlusPlus &&
2260        Context.getCanonicalType(Type).isConstQualified() &&
2261        Var->getStorageClass() != VarDecl::Extern)
2262      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2263        << Var->getName()
2264        << SourceRange(Var->getLocation(), Var->getLocation());
2265#endif
2266  }
2267}
2268
2269/// The declarators are chained together backwards, reverse the list.
2270Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2271  // Often we have single declarators, handle them quickly.
2272  Decl *Group = static_cast<Decl*>(group);
2273  if (Group == 0)
2274    return 0;
2275
2276  Decl *NewGroup = 0;
2277  if (Group->getNextDeclarator() == 0)
2278    NewGroup = Group;
2279  else { // reverse the list.
2280    while (Group) {
2281      Decl *Next = Group->getNextDeclarator();
2282      Group->setNextDeclarator(NewGroup);
2283      NewGroup = Group;
2284      Group = Next;
2285    }
2286  }
2287  // Perform semantic analysis that depends on having fully processed both
2288  // the declarator and initializer.
2289  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2290    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2291    if (!IDecl)
2292      continue;
2293    QualType T = IDecl->getType();
2294
2295    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2296    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2297    if (IDecl->isBlockVarDecl() &&
2298        IDecl->getStorageClass() != VarDecl::Extern) {
2299      if (!IDecl->isInvalidDecl() &&
2300          RequireCompleteType(IDecl->getLocation(), T,
2301                                 diag::err_typecheck_decl_incomplete_type))
2302        IDecl->setInvalidDecl();
2303    }
2304    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2305    // object that has file scope without an initializer, and without a
2306    // storage-class specifier or with the storage-class specifier "static",
2307    // constitutes a tentative definition. Note: A tentative definition with
2308    // external linkage is valid (C99 6.2.2p5).
2309    if (IDecl->isTentativeDefinition(Context)) {
2310      QualType CheckType = T;
2311      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2312
2313      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2314      if (ArrayT) {
2315        CheckType = ArrayT->getElementType();
2316        DiagID = diag::err_illegal_decl_array_incomplete_type;
2317      }
2318
2319      if (IDecl->isInvalidDecl()) {
2320        // Do nothing with invalid declarations
2321      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2322                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2323        // C99 6.9.2p3: If the declaration of an identifier for an object is
2324        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2325        // declared type shall not be an incomplete type.
2326        IDecl->setInvalidDecl();
2327      }
2328    }
2329  }
2330  return NewGroup;
2331}
2332
2333/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2334/// to introduce parameters into function prototype scope.
2335Sema::DeclTy *
2336Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2337  const DeclSpec &DS = D.getDeclSpec();
2338
2339  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2340  VarDecl::StorageClass StorageClass = VarDecl::None;
2341  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2342    StorageClass = VarDecl::Register;
2343  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2344    Diag(DS.getStorageClassSpecLoc(),
2345         diag::err_invalid_storage_class_in_func_decl);
2346    D.getMutableDeclSpec().ClearStorageClassSpecs();
2347  }
2348  if (DS.isThreadSpecified()) {
2349    Diag(DS.getThreadSpecLoc(),
2350         diag::err_invalid_storage_class_in_func_decl);
2351    D.getMutableDeclSpec().ClearStorageClassSpecs();
2352  }
2353
2354  // Check that there are no default arguments inside the type of this
2355  // parameter (C++ only).
2356  if (getLangOptions().CPlusPlus)
2357    CheckExtraCXXDefaultArguments(D);
2358
2359  // In this context, we *do not* check D.getInvalidType(). If the declarator
2360  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2361  // though it will not reflect the user specified type.
2362  QualType parmDeclType = GetTypeForDeclarator(D, S);
2363
2364  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2365
2366  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2367  // Can this happen for params?  We already checked that they don't conflict
2368  // among each other.  Here they can only shadow globals, which is ok.
2369  IdentifierInfo *II = D.getIdentifier();
2370  if (II) {
2371    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2372      if (PrevDecl->isTemplateParameter()) {
2373        // Maybe we will complain about the shadowed template parameter.
2374        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2375        // Just pretend that we didn't see the previous declaration.
2376        PrevDecl = 0;
2377      } else if (S->isDeclScope(PrevDecl)) {
2378        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2379
2380        // Recover by removing the name
2381        II = 0;
2382        D.SetIdentifier(0, D.getIdentifierLoc());
2383      }
2384    }
2385  }
2386
2387  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2388  // Doing the promotion here has a win and a loss. The win is the type for
2389  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2390  // code generator). The loss is the orginal type isn't preserved. For example:
2391  //
2392  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2393  //    int blockvardecl[5];
2394  //    sizeof(parmvardecl);  // size == 4
2395  //    sizeof(blockvardecl); // size == 20
2396  // }
2397  //
2398  // For expressions, all implicit conversions are captured using the
2399  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2400  //
2401  // FIXME: If a source translation tool needs to see the original type, then
2402  // we need to consider storing both types (in ParmVarDecl)...
2403  //
2404  if (parmDeclType->isArrayType()) {
2405    // int x[restrict 4] ->  int *restrict
2406    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2407  } else if (parmDeclType->isFunctionType())
2408    parmDeclType = Context.getPointerType(parmDeclType);
2409
2410  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2411                                         D.getIdentifierLoc(), II,
2412                                         parmDeclType, StorageClass,
2413                                         0);
2414
2415  if (D.getInvalidType())
2416    New->setInvalidDecl();
2417
2418  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2419  if (D.getCXXScopeSpec().isSet()) {
2420    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2421      << D.getCXXScopeSpec().getRange();
2422    New->setInvalidDecl();
2423  }
2424  // Parameter declarators cannot be interface types. All ObjC objects are
2425  // passed by reference.
2426  if (parmDeclType->isObjCInterfaceType()) {
2427    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2428         << "passed";
2429    New->setInvalidDecl();
2430  }
2431
2432  // Add the parameter declaration into this scope.
2433  S->AddDecl(New);
2434  if (II)
2435    IdResolver.AddDecl(New);
2436
2437  ProcessDeclAttributes(New, D);
2438  return New;
2439
2440}
2441
2442void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2443  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2444         "Not a function declarator!");
2445  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2446
2447  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2448  // for a K&R function.
2449  if (!FTI.hasPrototype) {
2450    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2451      if (FTI.ArgInfo[i].Param == 0) {
2452        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2453          << FTI.ArgInfo[i].Ident;
2454        // Implicitly declare the argument as type 'int' for lack of a better
2455        // type.
2456        DeclSpec DS;
2457        const char* PrevSpec; // unused
2458        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2459                           PrevSpec);
2460        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2461        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2462        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2463      }
2464    }
2465  }
2466}
2467
2468Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2469  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2470  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2471         "Not a function declarator!");
2472  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2473
2474  if (FTI.hasPrototype) {
2475    // FIXME: Diagnose arguments without names in C.
2476  }
2477
2478  Scope *ParentScope = FnBodyScope->getParent();
2479
2480  return ActOnStartOfFunctionDef(FnBodyScope,
2481                                 ActOnDeclarator(ParentScope, D, 0,
2482                                                 /*IsFunctionDefinition=*/true));
2483}
2484
2485Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2486  Decl *decl = static_cast<Decl*>(D);
2487  FunctionDecl *FD = cast<FunctionDecl>(decl);
2488
2489  ActiveScope = FnBodyScope;
2490
2491  // See if this is a redefinition.
2492  const FunctionDecl *Definition;
2493  if (FD->getBody(Definition)) {
2494    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2495    Diag(Definition->getLocation(), diag::note_previous_definition);
2496  }
2497
2498  // Builtin functions cannot be defined.
2499  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2500    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2501      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2502      FD->setInvalidDecl();
2503    }
2504  }
2505
2506  // The return type of a function definition must be complete
2507  // (C99 6.9.1p3)
2508  if (FD->getResultType()->isIncompleteType() &&
2509      !FD->getResultType()->isVoidType()) {
2510    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2511    FD->setInvalidDecl();
2512  }
2513
2514  PushDeclContext(FnBodyScope, FD);
2515
2516  // Check the validity of our function parameters
2517  CheckParmsForFunctionDef(FD);
2518
2519  // Introduce our parameters into the function scope
2520  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2521    ParmVarDecl *Param = FD->getParamDecl(p);
2522    Param->setOwningFunction(FD);
2523
2524    // If this has an identifier, add it to the scope stack.
2525    if (Param->getIdentifier())
2526      PushOnScopeChains(Param, FnBodyScope);
2527  }
2528
2529  // Checking attributes of current function definition
2530  // dllimport attribute.
2531  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2532    // dllimport attribute cannot be applied to definition.
2533    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2534      Diag(FD->getLocation(),
2535           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2536        << "dllimport";
2537      FD->setInvalidDecl();
2538      return FD;
2539    } else {
2540      // If a symbol previously declared dllimport is later defined, the
2541      // attribute is ignored in subsequent references, and a warning is
2542      // emitted.
2543      Diag(FD->getLocation(),
2544           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2545        << FD->getNameAsCString() << "dllimport";
2546    }
2547  }
2548  return FD;
2549}
2550
2551static bool StatementCreatesScope(Stmt* S) {
2552  bool result = false;
2553  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2554    for (DeclStmt::decl_iterator i = DS->decl_begin();
2555         i != DS->decl_end(); ++i) {
2556      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2557        result |= D->getType()->isVariablyModifiedType();
2558        result |= !!D->getAttr<CleanupAttr>();
2559      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2560        result |= D->getUnderlyingType()->isVariablyModifiedType();
2561      }
2562    }
2563  }
2564
2565  return result;
2566}
2567
2568void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2569                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2570                                    std::vector<void*>& ScopeStack,
2571                                    Stmt* CurStmt,
2572                                    Stmt* ParentCompoundStmt) {
2573  for (Stmt::child_iterator i = CurStmt->child_begin();
2574       i != CurStmt->child_end(); ++i) {
2575    if (!*i) continue;
2576    if (StatementCreatesScope(*i))  {
2577      ScopeStack.push_back(*i);
2578      PopScopeMap[*i] = ParentCompoundStmt;
2579    } else if (isa<LabelStmt>(CurStmt)) {
2580      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2581    }
2582    if (isa<DeclStmt>(*i)) continue;
2583    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2584    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2585                             *i, CurCompound);
2586  }
2587
2588  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2589    ScopeStack.pop_back();
2590  }
2591}
2592
2593void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2594                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2595                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2596                                   std::vector<void*>& ScopeStack,
2597                                   Stmt* CurStmt) {
2598  for (Stmt::child_iterator i = CurStmt->child_begin();
2599       i != CurStmt->child_end(); ++i) {
2600    if (!*i) continue;
2601    if (StatementCreatesScope(*i))  {
2602      ScopeStack.push_back(*i);
2603    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2604      void* LScope = LabelScopeMap[GS->getLabel()];
2605      if (LScope) {
2606        bool foundScopeInStack = false;
2607        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2608          if (LScope == ScopeStack[i-1]) {
2609            foundScopeInStack = true;
2610            break;
2611          }
2612        }
2613        if (!foundScopeInStack) {
2614          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2615        }
2616      }
2617    }
2618    if (isa<DeclStmt>(*i)) continue;
2619    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2620                            ScopeStack, *i);
2621  }
2622
2623  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2624    ScopeStack.pop_back();
2625  }
2626}
2627
2628Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2629  Decl *dcl = static_cast<Decl *>(D);
2630  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2631  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2632    FD->setBody(Body);
2633    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2634  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2635    assert(MD == getCurMethodDecl() && "Method parsing confused");
2636    MD->setBody((Stmt*)Body);
2637  } else {
2638    Body->Destroy(Context);
2639    return 0;
2640  }
2641  PopDeclContext();
2642
2643  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2644  // class C2 {
2645  //   void f() {
2646  //     class LC1 {
2647  //       int m() { return 1; }
2648  //     };
2649  //   }
2650  // };
2651  if (ActiveScope == 0)
2652    return D;
2653
2654  // Verify and clean out per-function state.
2655
2656  bool HaveLabels = !ActiveScope->LabelMap.empty();
2657  // Check goto/label use.
2658  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2659       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2660    // Verify that we have no forward references left.  If so, there was a goto
2661    // or address of a label taken, but no definition of it.  Label fwd
2662    // definitions are indicated with a null substmt.
2663    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2664    if (L->getSubStmt() == 0) {
2665      // Emit error.
2666      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2667
2668      // At this point, we have gotos that use the bogus label.  Stitch it into
2669      // the function body so that they aren't leaked and that the AST is well
2670      // formed.
2671      if (Body) {
2672#if 0
2673        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2674        // and the AST is malformed anyway.  We should just blow away 'L'.
2675        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2676        cast<CompoundStmt>(Body)->push_back(L);
2677#else
2678        L->Destroy(Context);
2679#endif
2680      } else {
2681        // The whole function wasn't parsed correctly, just delete this.
2682        L->Destroy(Context);
2683      }
2684    }
2685  }
2686  // This reset is for both functions and methods.
2687  ActiveScope = 0;
2688
2689  if (!Body) return D;
2690
2691  if (HaveLabels) {
2692    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2693    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2694    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2695    std::vector<void*> ScopeStack;
2696    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2697    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2698  }
2699
2700  return D;
2701}
2702
2703/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2704/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2705NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2706                                          IdentifierInfo &II, Scope *S) {
2707  // Before we produce a declaration for an implicitly defined
2708  // function, see whether there was a locally-scoped declaration of
2709  // this name as a function or variable. If so, use that
2710  // (non-visible) declaration, and complain about it.
2711  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2712    = LocallyScopedExternalDecls.find(&II);
2713  if (Pos != LocallyScopedExternalDecls.end()) {
2714    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2715    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2716    return Pos->second;
2717  }
2718
2719  // Extension in C99.  Legal in C90, but warn about it.
2720  if (getLangOptions().C99)
2721    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2722  else
2723    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2724
2725  // FIXME: handle stuff like:
2726  // void foo() { extern float X(); }
2727  // void bar() { X(); }  <-- implicit decl for X in another scope.
2728
2729  // Set a Declarator for the implicit definition: int foo();
2730  const char *Dummy;
2731  DeclSpec DS;
2732  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2733  Error = Error; // Silence warning.
2734  assert(!Error && "Error setting up implicit decl!");
2735  Declarator D(DS, Declarator::BlockContext);
2736  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2737                                             0, 0, 0, Loc, D),
2738                SourceLocation());
2739  D.SetIdentifier(&II, Loc);
2740
2741  // Insert this function into translation-unit scope.
2742
2743  DeclContext *PrevDC = CurContext;
2744  CurContext = Context.getTranslationUnitDecl();
2745
2746  FunctionDecl *FD =
2747    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2748  FD->setImplicit();
2749
2750  CurContext = PrevDC;
2751
2752  AddKnownFunctionAttributes(FD);
2753
2754  return FD;
2755}
2756
2757/// \brief Adds any function attributes that we know a priori based on
2758/// the declaration of this function.
2759///
2760/// These attributes can apply both to implicitly-declared builtins
2761/// (like __builtin___printf_chk) or to library-declared functions
2762/// like NSLog or printf.
2763void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2764  if (FD->isInvalidDecl())
2765    return;
2766
2767  // If this is a built-in function, map its builtin attributes to
2768  // actual attributes.
2769  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2770    // Handle printf-formatting attributes.
2771    unsigned FormatIdx;
2772    bool HasVAListArg;
2773    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2774      if (!FD->getAttr<FormatAttr>())
2775        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2776                                               FormatIdx + 2));
2777    }
2778
2779    // Mark const if we don't care about errno and that is the only
2780    // thing preventing the function from being const. This allows
2781    // IRgen to use LLVM intrinsics for such functions.
2782    if (!getLangOptions().MathErrno &&
2783        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2784      if (!FD->getAttr<ConstAttr>())
2785        FD->addAttr(::new (Context) ConstAttr());
2786    }
2787  }
2788
2789  IdentifierInfo *Name = FD->getIdentifier();
2790  if (!Name)
2791    return;
2792  if ((!getLangOptions().CPlusPlus &&
2793       FD->getDeclContext()->isTranslationUnit()) ||
2794      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2795       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2796       LinkageSpecDecl::lang_c)) {
2797    // Okay: this could be a libc/libm/Objective-C function we know
2798    // about.
2799  } else
2800    return;
2801
2802  unsigned KnownID;
2803  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2804    if (KnownFunctionIDs[KnownID] == Name)
2805      break;
2806
2807  switch (KnownID) {
2808  case id_NSLog:
2809  case id_NSLogv:
2810    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2811      // FIXME: We known better than our headers.
2812      const_cast<FormatAttr *>(Format)->setType("printf");
2813    } else
2814      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2815    break;
2816
2817  case id_asprintf:
2818  case id_vasprintf:
2819    if (!FD->getAttr<FormatAttr>())
2820      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2821    break;
2822
2823  default:
2824    // Unknown function or known function without any attributes to
2825    // add. Do nothing.
2826    break;
2827  }
2828}
2829
2830TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2831                                    Decl *LastDeclarator) {
2832  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2833  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2834
2835  // Scope manipulation handled by caller.
2836  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2837                                           D.getIdentifierLoc(),
2838                                           D.getIdentifier(),
2839                                           T);
2840
2841  if (TagType *TT = dyn_cast<TagType>(T)) {
2842    TagDecl *TD = TT->getDecl();
2843
2844    // If the TagDecl that the TypedefDecl points to is an anonymous decl
2845    // keep track of the TypedefDecl.
2846    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
2847      TD->setTypedefForAnonDecl(NewTD);
2848  }
2849
2850  NewTD->setNextDeclarator(LastDeclarator);
2851  if (D.getInvalidType())
2852    NewTD->setInvalidDecl();
2853  return NewTD;
2854}
2855
2856/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2857/// former case, Name will be non-null.  In the later case, Name will be null.
2858/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2859/// reference/declaration/definition of a tag.
2860Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2861                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2862                             IdentifierInfo *Name, SourceLocation NameLoc,
2863                             AttributeList *Attr) {
2864  // If this is not a definition, it must have a name.
2865  assert((Name != 0 || TK == TK_Definition) &&
2866         "Nameless record must be a definition!");
2867
2868  TagDecl::TagKind Kind;
2869  switch (TagSpec) {
2870  default: assert(0 && "Unknown tag type!");
2871  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2872  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2873  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2874  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2875  }
2876
2877  DeclContext *SearchDC = CurContext;
2878  DeclContext *DC = CurContext;
2879  NamedDecl *PrevDecl = 0;
2880
2881  bool Invalid = false;
2882
2883  if (Name && SS.isNotEmpty()) {
2884    // We have a nested-name tag ('struct foo::bar').
2885
2886    // Check for invalid 'foo::'.
2887    if (SS.isInvalid()) {
2888      Name = 0;
2889      goto CreateNewDecl;
2890    }
2891
2892    // FIXME: RequireCompleteDeclContext(SS)?
2893    DC = static_cast<DeclContext*>(SS.getScopeRep());
2894    SearchDC = DC;
2895    // Look-up name inside 'foo::'.
2896    PrevDecl = dyn_cast_or_null<TagDecl>(
2897                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2898
2899    // A tag 'foo::bar' must already exist.
2900    if (PrevDecl == 0) {
2901      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2902      Name = 0;
2903      goto CreateNewDecl;
2904    }
2905  } else if (Name) {
2906    // If this is a named struct, check to see if there was a previous forward
2907    // declaration or definition.
2908    // FIXME: We're looking into outer scopes here, even when we
2909    // shouldn't be. Doing so can result in ambiguities that we
2910    // shouldn't be diagnosing.
2911    LookupResult R = LookupName(S, Name, LookupTagName,
2912                                /*RedeclarationOnly=*/(TK != TK_Reference));
2913    if (R.isAmbiguous()) {
2914      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2915      // FIXME: This is not best way to recover from case like:
2916      //
2917      // struct S s;
2918      //
2919      // causes needless err_ovl_no_viable_function_in_init latter.
2920      Name = 0;
2921      PrevDecl = 0;
2922      Invalid = true;
2923    }
2924    else
2925      PrevDecl = R;
2926
2927    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2928      // FIXME: This makes sure that we ignore the contexts associated
2929      // with C structs, unions, and enums when looking for a matching
2930      // tag declaration or definition. See the similar lookup tweak
2931      // in Sema::LookupName; is there a better way to deal with this?
2932      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2933        SearchDC = SearchDC->getParent();
2934    }
2935  }
2936
2937  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2938    // Maybe we will complain about the shadowed template parameter.
2939    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2940    // Just pretend that we didn't see the previous declaration.
2941    PrevDecl = 0;
2942  }
2943
2944  if (PrevDecl) {
2945    // Check whether the previous declaration is usable.
2946    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2947
2948    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2949      // If this is a use of a previous tag, or if the tag is already declared
2950      // in the same scope (so that the definition/declaration completes or
2951      // rementions the tag), reuse the decl.
2952      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2953        // Make sure that this wasn't declared as an enum and now used as a
2954        // struct or something similar.
2955        if (PrevTagDecl->getTagKind() != Kind) {
2956          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2957          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2958          // Recover by making this an anonymous redefinition.
2959          Name = 0;
2960          PrevDecl = 0;
2961          Invalid = true;
2962        } else {
2963          // If this is a use, just return the declaration we found.
2964
2965          // FIXME: In the future, return a variant or some other clue
2966          // for the consumer of this Decl to know it doesn't own it.
2967          // For our current ASTs this shouldn't be a problem, but will
2968          // need to be changed with DeclGroups.
2969          if (TK == TK_Reference)
2970            return PrevDecl;
2971
2972          // Diagnose attempts to redefine a tag.
2973          if (TK == TK_Definition) {
2974            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2975              Diag(NameLoc, diag::err_redefinition) << Name;
2976              Diag(Def->getLocation(), diag::note_previous_definition);
2977              // If this is a redefinition, recover by making this
2978              // struct be anonymous, which will make any later
2979              // references get the previous definition.
2980              Name = 0;
2981              PrevDecl = 0;
2982              Invalid = true;
2983            } else {
2984              // If the type is currently being defined, complain
2985              // about a nested redefinition.
2986              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2987              if (Tag->isBeingDefined()) {
2988                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2989                Diag(PrevTagDecl->getLocation(),
2990                     diag::note_previous_definition);
2991                Name = 0;
2992                PrevDecl = 0;
2993                Invalid = true;
2994              }
2995            }
2996
2997            // Okay, this is definition of a previously declared or referenced
2998            // tag PrevDecl. We're going to create a new Decl for it.
2999          }
3000        }
3001        // If we get here we have (another) forward declaration or we
3002        // have a definition.  Just create a new decl.
3003      } else {
3004        // If we get here, this is a definition of a new tag type in a nested
3005        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3006        // new decl/type.  We set PrevDecl to NULL so that the entities
3007        // have distinct types.
3008        PrevDecl = 0;
3009      }
3010      // If we get here, we're going to create a new Decl. If PrevDecl
3011      // is non-NULL, it's a definition of the tag declared by
3012      // PrevDecl. If it's NULL, we have a new definition.
3013    } else {
3014      // PrevDecl is a namespace, template, or anything else
3015      // that lives in the IDNS_Tag identifier namespace.
3016      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3017        // The tag name clashes with a namespace name, issue an error and
3018        // recover by making this tag be anonymous.
3019        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3020        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3021        Name = 0;
3022        PrevDecl = 0;
3023        Invalid = true;
3024      } else {
3025        // The existing declaration isn't relevant to us; we're in a
3026        // new scope, so clear out the previous declaration.
3027        PrevDecl = 0;
3028      }
3029    }
3030  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3031             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3032    // C.scope.pdecl]p5:
3033    //   -- for an elaborated-type-specifier of the form
3034    //
3035    //          class-key identifier
3036    //
3037    //      if the elaborated-type-specifier is used in the
3038    //      decl-specifier-seq or parameter-declaration-clause of a
3039    //      function defined in namespace scope, the identifier is
3040    //      declared as a class-name in the namespace that contains
3041    //      the declaration; otherwise, except as a friend
3042    //      declaration, the identifier is declared in the smallest
3043    //      non-class, non-function-prototype scope that contains the
3044    //      declaration.
3045    //
3046    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3047    // C structs and unions.
3048    //
3049    // GNU C also supports this behavior as part of its incomplete
3050    // enum types extension, while GNU C++ does not.
3051    //
3052    // Find the context where we'll be declaring the tag.
3053    // FIXME: We would like to maintain the current DeclContext as the
3054    // lexical context,
3055    while (SearchDC->isRecord())
3056      SearchDC = SearchDC->getParent();
3057
3058    // Find the scope where we'll be declaring the tag.
3059    while (S->isClassScope() ||
3060           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3061           ((S->getFlags() & Scope::DeclScope) == 0) ||
3062           (S->getEntity() &&
3063            ((DeclContext *)S->getEntity())->isTransparentContext()))
3064      S = S->getParent();
3065  }
3066
3067CreateNewDecl:
3068
3069  // If there is an identifier, use the location of the identifier as the
3070  // location of the decl, otherwise use the location of the struct/union
3071  // keyword.
3072  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3073
3074  // Otherwise, create a new declaration. If there is a previous
3075  // declaration of the same entity, the two will be linked via
3076  // PrevDecl.
3077  TagDecl *New;
3078
3079  if (Kind == TagDecl::TK_enum) {
3080    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3081    // enum X { A, B, C } D;    D should chain to X.
3082    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3083                           cast_or_null<EnumDecl>(PrevDecl));
3084    // If this is an undefined enum, warn.
3085    if (TK != TK_Definition && !Invalid)  {
3086      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3087                                              : diag::ext_forward_ref_enum;
3088      Diag(Loc, DK);
3089    }
3090  } else {
3091    // struct/union/class
3092
3093    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3094    // struct X { int A; } D;    D should chain to X.
3095    if (getLangOptions().CPlusPlus)
3096      // FIXME: Look for a way to use RecordDecl for simple structs.
3097      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3098                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3099    else
3100      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3101                               cast_or_null<RecordDecl>(PrevDecl));
3102  }
3103
3104  if (Kind != TagDecl::TK_enum) {
3105    // Handle #pragma pack: if the #pragma pack stack has non-default
3106    // alignment, make up a packed attribute for this decl. These
3107    // attributes are checked when the ASTContext lays out the
3108    // structure.
3109    //
3110    // It is important for implementing the correct semantics that this
3111    // happen here (in act on tag decl). The #pragma pack stack is
3112    // maintained as a result of parser callbacks which can occur at
3113    // many points during the parsing of a struct declaration (because
3114    // the #pragma tokens are effectively skipped over during the
3115    // parsing of the struct).
3116    if (unsigned Alignment = getPragmaPackAlignment())
3117      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3118  }
3119
3120  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3121    // C++ [dcl.typedef]p3:
3122    //   [...] Similarly, in a given scope, a class or enumeration
3123    //   shall not be declared with the same name as a typedef-name
3124    //   that is declared in that scope and refers to a type other
3125    //   than the class or enumeration itself.
3126    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3127    TypedefDecl *PrevTypedef = 0;
3128    if (Lookup.getKind() == LookupResult::Found)
3129      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3130
3131    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3132        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3133          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3134      Diag(Loc, diag::err_tag_definition_of_typedef)
3135        << Context.getTypeDeclType(New)
3136        << PrevTypedef->getUnderlyingType();
3137      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3138      Invalid = true;
3139    }
3140  }
3141
3142  if (Invalid)
3143    New->setInvalidDecl();
3144
3145  if (Attr)
3146    ProcessDeclAttributeList(New, Attr);
3147
3148  // If we're declaring or defining a tag in function prototype scope
3149  // in C, note that this type can only be used within the function.
3150  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3151    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3152
3153  // Set the lexical context. If the tag has a C++ scope specifier, the
3154  // lexical context will be different from the semantic context.
3155  New->setLexicalDeclContext(CurContext);
3156
3157  if (TK == TK_Definition)
3158    New->startDefinition();
3159
3160  // If this has an identifier, add it to the scope stack.
3161  if (Name) {
3162    S = getNonFieldDeclScope(S);
3163    PushOnScopeChains(New, S);
3164  } else {
3165    CurContext->addDecl(New);
3166  }
3167
3168  return New;
3169}
3170
3171void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3172  AdjustDeclIfTemplate(TagD);
3173  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3174
3175  // Enter the tag context.
3176  PushDeclContext(S, Tag);
3177
3178  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3179    FieldCollector->StartClass();
3180
3181    if (Record->getIdentifier()) {
3182      // C++ [class]p2:
3183      //   [...] The class-name is also inserted into the scope of the
3184      //   class itself; this is known as the injected-class-name. For
3185      //   purposes of access checking, the injected-class-name is treated
3186      //   as if it were a public member name.
3187      RecordDecl *InjectedClassName
3188        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3189                                CurContext, Record->getLocation(),
3190                                Record->getIdentifier(), Record);
3191      InjectedClassName->setImplicit();
3192      PushOnScopeChains(InjectedClassName, S);
3193    }
3194  }
3195}
3196
3197void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3198  AdjustDeclIfTemplate(TagD);
3199  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3200
3201  if (isa<CXXRecordDecl>(Tag))
3202    FieldCollector->FinishClass();
3203
3204  // Exit this scope of this tag's definition.
3205  PopDeclContext();
3206
3207  // Notify the consumer that we've defined a tag.
3208  Consumer.HandleTagDeclDefinition(Tag);
3209}
3210
3211bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3212                          QualType FieldTy, const Expr *BitWidth) {
3213  // C99 6.7.2.1p4 - verify the field type.
3214  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3215  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3216    // Handle incomplete types with specific error.
3217    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3218      return true;
3219    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3220      << FieldName << FieldTy << BitWidth->getSourceRange();
3221  }
3222
3223  // If the bit-width is type- or value-dependent, don't try to check
3224  // it now.
3225  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3226    return false;
3227
3228  llvm::APSInt Value;
3229  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3230    return true;
3231
3232  // Zero-width bitfield is ok for anonymous field.
3233  if (Value == 0 && FieldName)
3234    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3235
3236  if (Value.isNegative())
3237    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3238
3239  if (!FieldTy->isDependentType()) {
3240    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3241    // FIXME: We won't need the 0 size once we check that the field type is valid.
3242    if (TypeSize && Value.getZExtValue() > TypeSize)
3243      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3244        << FieldName << (unsigned)TypeSize;
3245  }
3246
3247  return false;
3248}
3249
3250/// ActOnField - Each field of a struct/union/class is passed into this in order
3251/// to create a FieldDecl object for it.
3252Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3253                               SourceLocation DeclStart,
3254                               Declarator &D, ExprTy *BitfieldWidth) {
3255  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3256                     static_cast<Expr*>(BitfieldWidth),
3257                     AS_public);
3258}
3259
3260/// HandleField - Analyze a field of a C struct or a C++ data member.
3261///
3262FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3263                             SourceLocation DeclStart,
3264                             Declarator &D, Expr *BitWidth,
3265                             AccessSpecifier AS) {
3266  IdentifierInfo *II = D.getIdentifier();
3267  SourceLocation Loc = DeclStart;
3268  if (II) Loc = D.getIdentifierLoc();
3269
3270  QualType T = GetTypeForDeclarator(D, S);
3271
3272  if (getLangOptions().CPlusPlus)
3273    CheckExtraCXXDefaultArguments(D);
3274
3275  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3276  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3277    PrevDecl = 0;
3278
3279  FieldDecl *NewFD
3280    = CheckFieldDecl(II, T, Record, Loc,
3281               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3282                     BitWidth, AS, PrevDecl, &D);
3283  if (NewFD->isInvalidDecl() && PrevDecl) {
3284    // Don't introduce NewFD into scope; there's already something
3285    // with the same name in the same scope.
3286  } else if (II) {
3287    PushOnScopeChains(NewFD, S);
3288  } else
3289    Record->addDecl(NewFD);
3290
3291  return NewFD;
3292}
3293
3294/// \brief Build a new FieldDecl and check its well-formedness.
3295///
3296/// This routine builds a new FieldDecl given the fields name, type,
3297/// record, etc. \p PrevDecl should refer to any previous declaration
3298/// with the same name and in the same scope as the field to be
3299/// created.
3300///
3301/// \returns a new FieldDecl.
3302///
3303/// \todo The Declarator argument is a hack. It will be removed once
3304FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3305                                RecordDecl *Record, SourceLocation Loc,
3306                                bool Mutable, Expr *BitWidth,
3307                                AccessSpecifier AS, NamedDecl *PrevDecl,
3308                                Declarator *D) {
3309  IdentifierInfo *II = Name.getAsIdentifierInfo();
3310  bool InvalidDecl = false;
3311
3312  // If we receive a broken type, recover by assuming 'int' and
3313  // marking this declaration as invalid.
3314  if (T.isNull()) {
3315    InvalidDecl = true;
3316    T = Context.IntTy;
3317  }
3318
3319  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3320  // than a variably modified type.
3321  if (T->isVariablyModifiedType()) {
3322    bool SizeIsNegative;
3323    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3324                                                           SizeIsNegative);
3325    if (!FixedTy.isNull()) {
3326      Diag(Loc, diag::warn_illegal_constant_array_size);
3327      T = FixedTy;
3328    } else {
3329      if (SizeIsNegative)
3330        Diag(Loc, diag::err_typecheck_negative_array_size);
3331      else
3332        Diag(Loc, diag::err_typecheck_field_variable_size);
3333      T = Context.IntTy;
3334      InvalidDecl = true;
3335    }
3336  }
3337
3338  // If this is declared as a bit-field, check the bit-field.
3339  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3340    InvalidDecl = true;
3341    DeleteExpr(BitWidth);
3342    BitWidth = 0;
3343  }
3344
3345  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3346                                       Mutable);
3347
3348  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3349    Diag(Loc, diag::err_duplicate_member) << II;
3350    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3351    NewFD->setInvalidDecl();
3352    Record->setInvalidDecl();
3353  }
3354
3355  if (getLangOptions().CPlusPlus && !T->isPODType())
3356    cast<CXXRecordDecl>(Record)->setPOD(false);
3357
3358  // FIXME: We need to pass in the attributes given an AST
3359  // representation, not a parser representation.
3360  if (D)
3361    ProcessDeclAttributes(NewFD, *D);
3362
3363  if (T.isObjCGCWeak())
3364    Diag(Loc, diag::warn_attribute_weak_on_field);
3365
3366  if (InvalidDecl)
3367    NewFD->setInvalidDecl();
3368
3369  NewFD->setAccess(AS);
3370
3371  // C++ [dcl.init.aggr]p1:
3372  //   An aggregate is an array or a class (clause 9) with [...] no
3373  //   private or protected non-static data members (clause 11).
3374  // A POD must be an aggregate.
3375  if (getLangOptions().CPlusPlus &&
3376      (AS == AS_private || AS == AS_protected)) {
3377    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3378    CXXRecord->setAggregate(false);
3379    CXXRecord->setPOD(false);
3380  }
3381
3382  return NewFD;
3383}
3384
3385/// TranslateIvarVisibility - Translate visibility from a token ID to an
3386///  AST enum value.
3387static ObjCIvarDecl::AccessControl
3388TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3389  switch (ivarVisibility) {
3390  default: assert(0 && "Unknown visitibility kind");
3391  case tok::objc_private: return ObjCIvarDecl::Private;
3392  case tok::objc_public: return ObjCIvarDecl::Public;
3393  case tok::objc_protected: return ObjCIvarDecl::Protected;
3394  case tok::objc_package: return ObjCIvarDecl::Package;
3395  }
3396}
3397
3398/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3399/// in order to create an IvarDecl object for it.
3400Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3401                              SourceLocation DeclStart,
3402                              Declarator &D, ExprTy *BitfieldWidth,
3403                              tok::ObjCKeywordKind Visibility) {
3404
3405  IdentifierInfo *II = D.getIdentifier();
3406  Expr *BitWidth = (Expr*)BitfieldWidth;
3407  SourceLocation Loc = DeclStart;
3408  if (II) Loc = D.getIdentifierLoc();
3409
3410  // FIXME: Unnamed fields can be handled in various different ways, for
3411  // example, unnamed unions inject all members into the struct namespace!
3412
3413  QualType T = GetTypeForDeclarator(D, S);
3414  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3415  bool InvalidDecl = false;
3416
3417  if (BitWidth) {
3418    // 6.7.2.1p3, 6.7.2.1p4
3419    if (VerifyBitField(Loc, II, T, BitWidth)) {
3420      InvalidDecl = true;
3421      DeleteExpr(BitWidth);
3422      BitWidth = 0;
3423    }
3424  } else {
3425    // Not a bitfield.
3426
3427    // validate II.
3428
3429  }
3430
3431  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3432  // than a variably modified type.
3433  if (T->isVariablyModifiedType()) {
3434    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3435    InvalidDecl = true;
3436  }
3437
3438  // Get the visibility (access control) for this ivar.
3439  ObjCIvarDecl::AccessControl ac =
3440    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3441                                        : ObjCIvarDecl::None;
3442
3443  // Construct the decl.
3444  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3445                                             (Expr *)BitfieldWidth);
3446
3447  if (II) {
3448    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3449    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3450        && !isa<TagDecl>(PrevDecl)) {
3451      Diag(Loc, diag::err_duplicate_member) << II;
3452      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3453      NewID->setInvalidDecl();
3454    }
3455  }
3456
3457  // Process attributes attached to the ivar.
3458  ProcessDeclAttributes(NewID, D);
3459
3460  if (D.getInvalidType() || InvalidDecl)
3461    NewID->setInvalidDecl();
3462
3463  if (II) {
3464    // FIXME: When interfaces are DeclContexts, we'll need to add
3465    // these to the interface.
3466    S->AddDecl(NewID);
3467    IdResolver.AddDecl(NewID);
3468  }
3469
3470  return NewID;
3471}
3472
3473void Sema::ActOnFields(Scope* S,
3474                       SourceLocation RecLoc, DeclTy *RecDecl,
3475                       DeclTy **Fields, unsigned NumFields,
3476                       SourceLocation LBrac, SourceLocation RBrac,
3477                       AttributeList *Attr) {
3478  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3479  assert(EnclosingDecl && "missing record or interface decl");
3480
3481  // If the decl this is being inserted into is invalid, then it may be a
3482  // redeclaration or some other bogus case.  Don't try to add fields to it.
3483  if (EnclosingDecl->isInvalidDecl()) {
3484    // FIXME: Deallocate fields?
3485    return;
3486  }
3487
3488
3489  // Verify that all the fields are okay.
3490  unsigned NumNamedMembers = 0;
3491  llvm::SmallVector<FieldDecl*, 32> RecFields;
3492
3493  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3494  for (unsigned i = 0; i != NumFields; ++i) {
3495    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3496    assert(FD && "missing field decl");
3497
3498    // Get the type for the field.
3499    Type *FDTy = FD->getType().getTypePtr();
3500
3501    if (!FD->isAnonymousStructOrUnion()) {
3502      // Remember all fields written by the user.
3503      RecFields.push_back(FD);
3504    }
3505
3506    // If the field is already invalid for some reason, don't emit more
3507    // diagnostics about it.
3508    if (FD->isInvalidDecl())
3509      continue;
3510
3511    // C99 6.7.2.1p2 - A field may not be a function type.
3512    if (FDTy->isFunctionType()) {
3513      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3514        << FD->getDeclName();
3515      FD->setInvalidDecl();
3516      EnclosingDecl->setInvalidDecl();
3517      continue;
3518    }
3519    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3520    if (FDTy->isIncompleteType()) {
3521      if (!Record) {  // Incomplete ivar type is always an error.
3522        RequireCompleteType(FD->getLocation(), FD->getType(),
3523                               diag::err_field_incomplete);
3524        FD->setInvalidDecl();
3525        EnclosingDecl->setInvalidDecl();
3526        continue;
3527      }
3528      if (i != NumFields-1 ||                   // ... that the last member ...
3529          !Record->isStruct() ||  // ... of a structure ...
3530          !FDTy->isArrayType()) {         //... may have incomplete array type.
3531        RequireCompleteType(FD->getLocation(), FD->getType(),
3532                               diag::err_field_incomplete);
3533        FD->setInvalidDecl();
3534        EnclosingDecl->setInvalidDecl();
3535        continue;
3536      }
3537      if (NumNamedMembers < 1) {  //... must have more than named member ...
3538        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3539          << FD->getDeclName();
3540        FD->setInvalidDecl();
3541        EnclosingDecl->setInvalidDecl();
3542        continue;
3543      }
3544      // Okay, we have a legal flexible array member at the end of the struct.
3545      if (Record)
3546        Record->setHasFlexibleArrayMember(true);
3547    }
3548    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3549    /// field of another structure or the element of an array.
3550    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3551      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3552        // If this is a member of a union, then entire union becomes "flexible".
3553        if (Record && Record->isUnion()) {
3554          Record->setHasFlexibleArrayMember(true);
3555        } else {
3556          // If this is a struct/class and this is not the last element, reject
3557          // it.  Note that GCC supports variable sized arrays in the middle of
3558          // structures.
3559          if (i != NumFields-1)
3560            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3561              << FD->getDeclName();
3562          else {
3563            // We support flexible arrays at the end of structs in
3564            // other structs as an extension.
3565            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3566              << FD->getDeclName();
3567            if (Record)
3568              Record->setHasFlexibleArrayMember(true);
3569          }
3570        }
3571      }
3572    }
3573    /// A field cannot be an Objective-c object
3574    if (FDTy->isObjCInterfaceType()) {
3575      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3576      FD->setInvalidDecl();
3577      EnclosingDecl->setInvalidDecl();
3578      continue;
3579    }
3580    // Keep track of the number of named members.
3581    if (FD->getIdentifier())
3582      ++NumNamedMembers;
3583  }
3584
3585  // Okay, we successfully defined 'Record'.
3586  if (Record) {
3587    Record->completeDefinition(Context);
3588  } else {
3589    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3590    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3591      ID->setIVarList(ClsFields, RecFields.size(), Context);
3592      ID->setLocEnd(RBrac);
3593
3594      // Must enforce the rule that ivars in the base classes may not be
3595      // duplicates.
3596      if (ID->getSuperClass()) {
3597        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3598             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3599          ObjCIvarDecl* Ivar = (*IVI);
3600          IdentifierInfo *II = Ivar->getIdentifier();
3601          ObjCIvarDecl* prevIvar =
3602            ID->getSuperClass()->lookupInstanceVariable(II);
3603          if (prevIvar) {
3604            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3605            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3606          }
3607        }
3608      }
3609    } else if (ObjCImplementationDecl *IMPDecl =
3610                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3611      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3612      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3613      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3614    }
3615  }
3616
3617  if (Attr)
3618    ProcessDeclAttributeList(Record, Attr);
3619}
3620
3621Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3622                                      DeclTy *lastEnumConst,
3623                                      SourceLocation IdLoc, IdentifierInfo *Id,
3624                                      SourceLocation EqualLoc, ExprTy *val) {
3625  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3626  EnumConstantDecl *LastEnumConst =
3627    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3628  Expr *Val = static_cast<Expr*>(val);
3629
3630  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3631  // we find one that is.
3632  S = getNonFieldDeclScope(S);
3633
3634  // Verify that there isn't already something declared with this name in this
3635  // scope.
3636  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3637  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3638    // Maybe we will complain about the shadowed template parameter.
3639    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3640    // Just pretend that we didn't see the previous declaration.
3641    PrevDecl = 0;
3642  }
3643
3644  if (PrevDecl) {
3645    // When in C++, we may get a TagDecl with the same name; in this case the
3646    // enum constant will 'hide' the tag.
3647    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3648           "Received TagDecl when not in C++!");
3649    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3650      if (isa<EnumConstantDecl>(PrevDecl))
3651        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3652      else
3653        Diag(IdLoc, diag::err_redefinition) << Id;
3654      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3655      if (Val) Val->Destroy(Context);
3656      return 0;
3657    }
3658  }
3659
3660  llvm::APSInt EnumVal(32);
3661  QualType EltTy;
3662  if (Val) {
3663    // Make sure to promote the operand type to int.
3664    UsualUnaryConversions(Val);
3665
3666    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3667    SourceLocation ExpLoc;
3668    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3669      Val->Destroy(Context);
3670      Val = 0;  // Just forget about it.
3671    } else {
3672      EltTy = Val->getType();
3673    }
3674  }
3675
3676  if (!Val) {
3677    if (LastEnumConst) {
3678      // Assign the last value + 1.
3679      EnumVal = LastEnumConst->getInitVal();
3680      ++EnumVal;
3681
3682      // Check for overflow on increment.
3683      if (EnumVal < LastEnumConst->getInitVal())
3684        Diag(IdLoc, diag::warn_enum_value_overflow);
3685
3686      EltTy = LastEnumConst->getType();
3687    } else {
3688      // First value, set to zero.
3689      EltTy = Context.IntTy;
3690      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3691    }
3692  }
3693
3694  EnumConstantDecl *New =
3695    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3696                             Val, EnumVal);
3697
3698  // Register this decl in the current scope stack.
3699  PushOnScopeChains(New, S);
3700
3701  return New;
3702}
3703
3704// FIXME: For consistency with ActOnFields(), we should have the parser
3705// pass in the source location for the left/right braces.
3706void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3707                         DeclTy **Elements, unsigned NumElements) {
3708  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3709  QualType EnumType = Context.getTypeDeclType(Enum);
3710
3711  // TODO: If the result value doesn't fit in an int, it must be a long or long
3712  // long value.  ISO C does not support this, but GCC does as an extension,
3713  // emit a warning.
3714  unsigned IntWidth = Context.Target.getIntWidth();
3715
3716  // Verify that all the values are okay, compute the size of the values, and
3717  // reverse the list.
3718  unsigned NumNegativeBits = 0;
3719  unsigned NumPositiveBits = 0;
3720
3721  // Keep track of whether all elements have type int.
3722  bool AllElementsInt = true;
3723
3724  for (unsigned i = 0; i != NumElements; ++i) {
3725    EnumConstantDecl *ECD =
3726      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3727    if (!ECD) continue;  // Already issued a diagnostic.
3728
3729    // If the enum value doesn't fit in an int, emit an extension warning.
3730    const llvm::APSInt &InitVal = ECD->getInitVal();
3731    assert(InitVal.getBitWidth() >= IntWidth &&
3732           "Should have promoted value to int");
3733    if (InitVal.getBitWidth() > IntWidth) {
3734      llvm::APSInt V(InitVal);
3735      V.trunc(IntWidth);
3736      V.extend(InitVal.getBitWidth());
3737      if (V != InitVal)
3738        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3739          << InitVal.toString(10);
3740    }
3741
3742    // Keep track of the size of positive and negative values.
3743    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3744      NumPositiveBits = std::max(NumPositiveBits,
3745                                 (unsigned)InitVal.getActiveBits());
3746    else
3747      NumNegativeBits = std::max(NumNegativeBits,
3748                                 (unsigned)InitVal.getMinSignedBits());
3749
3750    // Keep track of whether every enum element has type int (very commmon).
3751    if (AllElementsInt)
3752      AllElementsInt = ECD->getType() == Context.IntTy;
3753  }
3754
3755  // Figure out the type that should be used for this enum.
3756  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3757  QualType BestType;
3758  unsigned BestWidth;
3759
3760  if (NumNegativeBits) {
3761    // If there is a negative value, figure out the smallest integer type (of
3762    // int/long/longlong) that fits.
3763    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3764      BestType = Context.IntTy;
3765      BestWidth = IntWidth;
3766    } else {
3767      BestWidth = Context.Target.getLongWidth();
3768
3769      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3770        BestType = Context.LongTy;
3771      else {
3772        BestWidth = Context.Target.getLongLongWidth();
3773
3774        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3775          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3776        BestType = Context.LongLongTy;
3777      }
3778    }
3779  } else {
3780    // If there is no negative value, figure out which of uint, ulong, ulonglong
3781    // fits.
3782    if (NumPositiveBits <= IntWidth) {
3783      BestType = Context.UnsignedIntTy;
3784      BestWidth = IntWidth;
3785    } else if (NumPositiveBits <=
3786               (BestWidth = Context.Target.getLongWidth())) {
3787      BestType = Context.UnsignedLongTy;
3788    } else {
3789      BestWidth = Context.Target.getLongLongWidth();
3790      assert(NumPositiveBits <= BestWidth &&
3791             "How could an initializer get larger than ULL?");
3792      BestType = Context.UnsignedLongLongTy;
3793    }
3794  }
3795
3796  // Loop over all of the enumerator constants, changing their types to match
3797  // the type of the enum if needed.
3798  for (unsigned i = 0; i != NumElements; ++i) {
3799    EnumConstantDecl *ECD =
3800      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3801    if (!ECD) continue;  // Already issued a diagnostic.
3802
3803    // Standard C says the enumerators have int type, but we allow, as an
3804    // extension, the enumerators to be larger than int size.  If each
3805    // enumerator value fits in an int, type it as an int, otherwise type it the
3806    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3807    // that X has type 'int', not 'unsigned'.
3808    if (ECD->getType() == Context.IntTy) {
3809      // Make sure the init value is signed.
3810      llvm::APSInt IV = ECD->getInitVal();
3811      IV.setIsSigned(true);
3812      ECD->setInitVal(IV);
3813
3814      if (getLangOptions().CPlusPlus)
3815        // C++ [dcl.enum]p4: Following the closing brace of an
3816        // enum-specifier, each enumerator has the type of its
3817        // enumeration.
3818        ECD->setType(EnumType);
3819      continue;  // Already int type.
3820    }
3821
3822    // Determine whether the value fits into an int.
3823    llvm::APSInt InitVal = ECD->getInitVal();
3824    bool FitsInInt;
3825    if (InitVal.isUnsigned() || !InitVal.isNegative())
3826      FitsInInt = InitVal.getActiveBits() < IntWidth;
3827    else
3828      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3829
3830    // If it fits into an integer type, force it.  Otherwise force it to match
3831    // the enum decl type.
3832    QualType NewTy;
3833    unsigned NewWidth;
3834    bool NewSign;
3835    if (FitsInInt) {
3836      NewTy = Context.IntTy;
3837      NewWidth = IntWidth;
3838      NewSign = true;
3839    } else if (ECD->getType() == BestType) {
3840      // Already the right type!
3841      if (getLangOptions().CPlusPlus)
3842        // C++ [dcl.enum]p4: Following the closing brace of an
3843        // enum-specifier, each enumerator has the type of its
3844        // enumeration.
3845        ECD->setType(EnumType);
3846      continue;
3847    } else {
3848      NewTy = BestType;
3849      NewWidth = BestWidth;
3850      NewSign = BestType->isSignedIntegerType();
3851    }
3852
3853    // Adjust the APSInt value.
3854    InitVal.extOrTrunc(NewWidth);
3855    InitVal.setIsSigned(NewSign);
3856    ECD->setInitVal(InitVal);
3857
3858    // Adjust the Expr initializer and type.
3859    if (ECD->getInitExpr())
3860      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3861                                                      /*isLvalue=*/false));
3862    if (getLangOptions().CPlusPlus)
3863      // C++ [dcl.enum]p4: Following the closing brace of an
3864      // enum-specifier, each enumerator has the type of its
3865      // enumeration.
3866      ECD->setType(EnumType);
3867    else
3868      ECD->setType(NewTy);
3869  }
3870
3871  Enum->completeDefinition(Context, BestType);
3872}
3873
3874Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3875                                          ExprArg expr) {
3876  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3877
3878  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3879}
3880
3881