SemaDecl.cpp revision 4fdf1faedbca40787fd277a6fbd5061fd69b2708
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// Used in MergeFunctionDecl to keep track of function parameters in
514/// C.
515struct GNUCompatibleParamWarning {
516  ParmVarDecl *OldParm;
517  ParmVarDecl *NewParm;
518  QualType PromotedType;
519};
520
521/// MergeFunctionDecl - We just parsed a function 'New' from
522/// declarator D which has the same name and scope as a previous
523/// declaration 'Old'.  Figure out how to resolve this situation,
524/// merging decls or emitting diagnostics as appropriate.
525///
526/// In C++, New and Old must be declarations that are not
527/// overloaded. Use IsOverload to determine whether New and Old are
528/// overloaded, and to select the Old declaration that New should be
529/// merged with.
530///
531/// Returns true if there was an error, false otherwise.
532bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
533  assert(!isa<OverloadedFunctionDecl>(OldD) &&
534         "Cannot merge with an overloaded function declaration");
535
536  // Verify the old decl was also a function.
537  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
538  if (!Old) {
539    Diag(New->getLocation(), diag::err_redefinition_different_kind)
540      << New->getDeclName();
541    Diag(OldD->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // Determine whether the previous declaration was a definition,
546  // implicit declaration, or a declaration.
547  diag::kind PrevDiag;
548  if (Old->isThisDeclarationADefinition())
549    PrevDiag = diag::note_previous_definition;
550  else if (Old->isImplicit())
551    PrevDiag = diag::note_previous_implicit_declaration;
552  else
553    PrevDiag = diag::note_previous_declaration;
554
555  QualType OldQType = Context.getCanonicalType(Old->getType());
556  QualType NewQType = Context.getCanonicalType(New->getType());
557
558  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
559      New->getStorageClass() == FunctionDecl::Static &&
560      Old->getStorageClass() != FunctionDecl::Static) {
561    Diag(New->getLocation(), diag::err_static_non_static)
562      << New;
563    Diag(Old->getLocation(), PrevDiag);
564    return true;
565  }
566
567  if (getLangOptions().CPlusPlus) {
568    // (C++98 13.1p2):
569    //   Certain function declarations cannot be overloaded:
570    //     -- Function declarations that differ only in the return type
571    //        cannot be overloaded.
572    QualType OldReturnType
573      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
574    QualType NewReturnType
575      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
576    if (OldReturnType != NewReturnType) {
577      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
578      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
579      return true;
580    }
581
582    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
583    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
584    if (OldMethod && NewMethod) {
585      //    -- Member function declarations with the same name and the
586      //       same parameter types cannot be overloaded if any of them
587      //       is a static member function declaration.
588      if (OldMethod->isStatic() || NewMethod->isStatic()) {
589        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
590        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
591        return true;
592      }
593
594      // C++ [class.mem]p1:
595      //   [...] A member shall not be declared twice in the
596      //   member-specification, except that a nested class or member
597      //   class template can be declared and then later defined.
598      if (OldMethod->getLexicalDeclContext() ==
599            NewMethod->getLexicalDeclContext()) {
600        unsigned NewDiag;
601        if (isa<CXXConstructorDecl>(OldMethod))
602          NewDiag = diag::err_constructor_redeclared;
603        else if (isa<CXXDestructorDecl>(NewMethod))
604          NewDiag = diag::err_destructor_redeclared;
605        else if (isa<CXXConversionDecl>(NewMethod))
606          NewDiag = diag::err_conv_function_redeclared;
607        else
608          NewDiag = diag::err_member_redeclared;
609
610        Diag(New->getLocation(), NewDiag);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612      }
613    }
614
615    // (C++98 8.3.5p3):
616    //   All declarations for a function shall agree exactly in both the
617    //   return type and the parameter-type-list.
618    if (OldQType == NewQType)
619      return MergeCompatibleFunctionDecls(New, Old);
620
621    // Fall through for conflicting redeclarations and redefinitions.
622  }
623
624  // C: Function types need to be compatible, not identical. This handles
625  // duplicate function decls like "void f(int); void f(enum X);" properly.
626  if (!getLangOptions().CPlusPlus &&
627      Context.typesAreCompatible(OldQType, NewQType)) {
628    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
629    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
630    const FunctionProtoType *OldProto = 0;
631    if (isa<FunctionNoProtoType>(NewFuncType) &&
632        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
633      // The old declaration provided a function prototype, but the
634      // new declaration does not. Merge in the prototype.
635      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
636                                                 OldProto->arg_type_end());
637      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
638                                         &ParamTypes[0], ParamTypes.size(),
639                                         OldProto->isVariadic(),
640                                         OldProto->getTypeQuals());
641      New->setType(NewQType);
642      New->setInheritedPrototype();
643
644      // Synthesize a parameter for each argument type.
645      llvm::SmallVector<ParmVarDecl*, 16> Params;
646      for (FunctionProtoType::arg_type_iterator
647             ParamType = OldProto->arg_type_begin(),
648             ParamEnd = OldProto->arg_type_end();
649           ParamType != ParamEnd; ++ParamType) {
650        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
651                                                 SourceLocation(), 0,
652                                                 *ParamType, VarDecl::None,
653                                                 0);
654        Param->setImplicit();
655        Params.push_back(Param);
656      }
657
658      New->setParams(Context, &Params[0], Params.size());
659    }
660
661    return MergeCompatibleFunctionDecls(New, Old);
662  }
663
664  // GNU C permits a K&R definition to follow a prototype declaration
665  // if the declared types of the parameters in the K&R definition
666  // match the types in the prototype declaration, even when the
667  // promoted types of the parameters from the K&R definition differ
668  // from the types in the prototype. GCC then keeps the types from
669  // the prototype.
670  if (!getLangOptions().CPlusPlus &&
671      !getLangOptions().NoExtensions &&
672      Old->hasPrototype() && !New->hasPrototype() &&
673      New->getType()->getAsFunctionProtoType() &&
674      Old->getNumParams() == New->getNumParams()) {
675    llvm::SmallVector<QualType, 16> ArgTypes;
676    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
677    const FunctionProtoType *OldProto
678      = Old->getType()->getAsFunctionProtoType();
679    const FunctionProtoType *NewProto
680      = New->getType()->getAsFunctionProtoType();
681
682    // Determine whether this is the GNU C extension.
683    bool GNUCompatible =
684      Context.typesAreCompatible(OldProto->getResultType(),
685                                 NewProto->getResultType()) &&
686      (OldProto->isVariadic() == NewProto->isVariadic());
687    for (unsigned Idx = 0, End = Old->getNumParams();
688         GNUCompatible && Idx != End; ++Idx) {
689      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
690      ParmVarDecl *NewParm = New->getParamDecl(Idx);
691      if (Context.typesAreCompatible(OldParm->getType(),
692                                     NewProto->getArgType(Idx))) {
693        ArgTypes.push_back(NewParm->getType());
694      } else if (Context.typesAreCompatible(OldParm->getType(),
695                                            NewParm->getType())) {
696        GNUCompatibleParamWarning Warn
697          = { OldParm, NewParm, NewProto->getArgType(Idx) };
698        Warnings.push_back(Warn);
699        ArgTypes.push_back(NewParm->getType());
700      } else
701        GNUCompatible = false;
702    }
703
704    if (GNUCompatible) {
705      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
706        Diag(Warnings[Warn].NewParm->getLocation(),
707             diag::ext_param_promoted_not_compatible_with_prototype)
708          << Warnings[Warn].PromotedType
709          << Warnings[Warn].OldParm->getType();
710        Diag(Warnings[Warn].OldParm->getLocation(),
711             diag::note_previous_declaration);
712      }
713
714      New->setType(Context.getFunctionType(NewProto->getResultType(),
715                                           &ArgTypes[0], ArgTypes.size(),
716                                           NewProto->isVariadic(),
717                                           NewProto->getTypeQuals()));
718      return MergeCompatibleFunctionDecls(New, Old);
719    }
720
721    // Fall through to diagnose conflicting types.
722  }
723
724  // A function that has already been declared has been redeclared or defined
725  // with a different type- show appropriate diagnostic
726  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
727    // The user has declared a builtin function with an incompatible
728    // signature.
729    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
730      // The function the user is redeclaring is a library-defined
731      // function like 'malloc' or 'printf'. Warn about the
732      // redeclaration, then ignore it.
733      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
734      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
735        << Old << Old->getType();
736      return true;
737    }
738
739    PrevDiag = diag::note_previous_builtin_declaration;
740  }
741
742  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
743  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
744  return true;
745}
746
747/// \brief Completes the merge of two function declarations that are
748/// known to be compatible.
749///
750/// This routine handles the merging of attributes and other
751/// properties of function declarations form the old declaration to
752/// the new declaration, once we know that New is in fact a
753/// redeclaration of Old.
754///
755/// \returns false
756bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
757  // Merge the attributes
758  MergeAttributes(New, Old, Context);
759
760  // Merge the storage class.
761  New->setStorageClass(Old->getStorageClass());
762
763  // FIXME: need to implement inline semantics
764
765  // Merge "pure" flag.
766  if (Old->isPure())
767    New->setPure();
768
769  // Merge the "deleted" flag.
770  if (Old->isDeleted())
771    New->setDeleted();
772
773  if (getLangOptions().CPlusPlus)
774    return MergeCXXFunctionDecl(New, Old);
775
776  return false;
777}
778
779/// MergeVarDecl - We just parsed a variable 'New' which has the same name
780/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
781/// situation, merging decls or emitting diagnostics as appropriate.
782///
783/// Tentative definition rules (C99 6.9.2p2) are checked by
784/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
785/// definitions here, since the initializer hasn't been attached.
786///
787bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
788  // Verify the old decl was also a variable.
789  VarDecl *Old = dyn_cast<VarDecl>(OldD);
790  if (!Old) {
791    Diag(New->getLocation(), diag::err_redefinition_different_kind)
792      << New->getDeclName();
793    Diag(OldD->getLocation(), diag::note_previous_definition);
794    return true;
795  }
796
797  MergeAttributes(New, Old, Context);
798
799  // Merge the types
800  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
801  if (MergedT.isNull()) {
802    Diag(New->getLocation(), diag::err_redefinition_different_type)
803      << New->getDeclName();
804    Diag(Old->getLocation(), diag::note_previous_definition);
805    return true;
806  }
807  New->setType(MergedT);
808  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
809  if (New->getStorageClass() == VarDecl::Static &&
810      (Old->getStorageClass() == VarDecl::None ||
811       Old->getStorageClass() == VarDecl::Extern)) {
812    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
813    Diag(Old->getLocation(), diag::note_previous_definition);
814    return true;
815  }
816  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
817  if (New->getStorageClass() != VarDecl::Static &&
818      Old->getStorageClass() == VarDecl::Static) {
819    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
820    Diag(Old->getLocation(), diag::note_previous_definition);
821    return true;
822  }
823  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
824  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
825    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
826    Diag(Old->getLocation(), diag::note_previous_definition);
827    return true;
828  }
829
830  // Keep a chain of previous declarations.
831  New->setPreviousDeclaration(Old);
832
833  return false;
834}
835
836/// CheckParmsForFunctionDef - Check that the parameters of the given
837/// function are appropriate for the definition of a function. This
838/// takes care of any checks that cannot be performed on the
839/// declaration itself, e.g., that the types of each of the function
840/// parameters are complete.
841bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
842  bool HasInvalidParm = false;
843  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
844    ParmVarDecl *Param = FD->getParamDecl(p);
845
846    // C99 6.7.5.3p4: the parameters in a parameter type list in a
847    // function declarator that is part of a function definition of
848    // that function shall not have incomplete type.
849    if (!Param->isInvalidDecl() &&
850        RequireCompleteType(Param->getLocation(), Param->getType(),
851                               diag::err_typecheck_decl_incomplete_type)) {
852      Param->setInvalidDecl();
853      HasInvalidParm = true;
854    }
855
856    // C99 6.9.1p5: If the declarator includes a parameter type list, the
857    // declaration of each parameter shall include an identifier.
858    if (Param->getIdentifier() == 0 &&
859        !Param->isImplicit() &&
860        !getLangOptions().CPlusPlus)
861      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
862  }
863
864  return HasInvalidParm;
865}
866
867/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
868/// no declarator (e.g. "struct foo;") is parsed.
869Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
870  TagDecl *Tag = 0;
871  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
872      DS.getTypeSpecType() == DeclSpec::TST_struct ||
873      DS.getTypeSpecType() == DeclSpec::TST_union ||
874      DS.getTypeSpecType() == DeclSpec::TST_enum)
875    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
876
877  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
878    if (!Record->getDeclName() && Record->isDefinition() &&
879        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
880      if (getLangOptions().CPlusPlus ||
881          Record->getDeclContext()->isRecord())
882        return BuildAnonymousStructOrUnion(S, DS, Record);
883
884      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
885        << DS.getSourceRange();
886    }
887
888    // Microsoft allows unnamed struct/union fields. Don't complain
889    // about them.
890    // FIXME: Should we support Microsoft's extensions in this area?
891    if (Record->getDeclName() && getLangOptions().Microsoft)
892      return Tag;
893  }
894
895  if (!DS.isMissingDeclaratorOk() &&
896      DS.getTypeSpecType() != DeclSpec::TST_error) {
897    // Warn about typedefs of enums without names, since this is an
898    // extension in both Microsoft an GNU.
899    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
900        Tag && isa<EnumDecl>(Tag)) {
901      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
902        << DS.getSourceRange();
903      return Tag;
904    }
905
906    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
907      << DS.getSourceRange();
908    return 0;
909  }
910
911  return Tag;
912}
913
914/// InjectAnonymousStructOrUnionMembers - Inject the members of the
915/// anonymous struct or union AnonRecord into the owning context Owner
916/// and scope S. This routine will be invoked just after we realize
917/// that an unnamed union or struct is actually an anonymous union or
918/// struct, e.g.,
919///
920/// @code
921/// union {
922///   int i;
923///   float f;
924/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
925///    // f into the surrounding scope.x
926/// @endcode
927///
928/// This routine is recursive, injecting the names of nested anonymous
929/// structs/unions into the owning context and scope as well.
930bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
931                                               RecordDecl *AnonRecord) {
932  bool Invalid = false;
933  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
934                               FEnd = AnonRecord->field_end();
935       F != FEnd; ++F) {
936    if ((*F)->getDeclName()) {
937      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
938                                                LookupOrdinaryName, true);
939      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
940        // C++ [class.union]p2:
941        //   The names of the members of an anonymous union shall be
942        //   distinct from the names of any other entity in the
943        //   scope in which the anonymous union is declared.
944        unsigned diagKind
945          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
946                                 : diag::err_anonymous_struct_member_redecl;
947        Diag((*F)->getLocation(), diagKind)
948          << (*F)->getDeclName();
949        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
950        Invalid = true;
951      } else {
952        // C++ [class.union]p2:
953        //   For the purpose of name lookup, after the anonymous union
954        //   definition, the members of the anonymous union are
955        //   considered to have been defined in the scope in which the
956        //   anonymous union is declared.
957        Owner->makeDeclVisibleInContext(*F);
958        S->AddDecl(*F);
959        IdResolver.AddDecl(*F);
960      }
961    } else if (const RecordType *InnerRecordType
962                 = (*F)->getType()->getAsRecordType()) {
963      RecordDecl *InnerRecord = InnerRecordType->getDecl();
964      if (InnerRecord->isAnonymousStructOrUnion())
965        Invalid = Invalid ||
966          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
967    }
968  }
969
970  return Invalid;
971}
972
973/// ActOnAnonymousStructOrUnion - Handle the declaration of an
974/// anonymous structure or union. Anonymous unions are a C++ feature
975/// (C++ [class.union]) and a GNU C extension; anonymous structures
976/// are a GNU C and GNU C++ extension.
977Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
978                                                RecordDecl *Record) {
979  DeclContext *Owner = Record->getDeclContext();
980
981  // Diagnose whether this anonymous struct/union is an extension.
982  if (Record->isUnion() && !getLangOptions().CPlusPlus)
983    Diag(Record->getLocation(), diag::ext_anonymous_union);
984  else if (!Record->isUnion())
985    Diag(Record->getLocation(), diag::ext_anonymous_struct);
986
987  // C and C++ require different kinds of checks for anonymous
988  // structs/unions.
989  bool Invalid = false;
990  if (getLangOptions().CPlusPlus) {
991    const char* PrevSpec = 0;
992    // C++ [class.union]p3:
993    //   Anonymous unions declared in a named namespace or in the
994    //   global namespace shall be declared static.
995    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
996        (isa<TranslationUnitDecl>(Owner) ||
997         (isa<NamespaceDecl>(Owner) &&
998          cast<NamespaceDecl>(Owner)->getDeclName()))) {
999      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1000      Invalid = true;
1001
1002      // Recover by adding 'static'.
1003      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1004    }
1005    // C++ [class.union]p3:
1006    //   A storage class is not allowed in a declaration of an
1007    //   anonymous union in a class scope.
1008    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1009             isa<RecordDecl>(Owner)) {
1010      Diag(DS.getStorageClassSpecLoc(),
1011           diag::err_anonymous_union_with_storage_spec);
1012      Invalid = true;
1013
1014      // Recover by removing the storage specifier.
1015      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1016                             PrevSpec);
1017    }
1018
1019    // C++ [class.union]p2:
1020    //   The member-specification of an anonymous union shall only
1021    //   define non-static data members. [Note: nested types and
1022    //   functions cannot be declared within an anonymous union. ]
1023    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1024                                 MemEnd = Record->decls_end();
1025         Mem != MemEnd; ++Mem) {
1026      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1027        // C++ [class.union]p3:
1028        //   An anonymous union shall not have private or protected
1029        //   members (clause 11).
1030        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1031          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1032            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1033          Invalid = true;
1034        }
1035      } else if ((*Mem)->isImplicit()) {
1036        // Any implicit members are fine.
1037      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1038        // This is a type that showed up in an
1039        // elaborated-type-specifier inside the anonymous struct or
1040        // union, but which actually declares a type outside of the
1041        // anonymous struct or union. It's okay.
1042      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1043        if (!MemRecord->isAnonymousStructOrUnion() &&
1044            MemRecord->getDeclName()) {
1045          // This is a nested type declaration.
1046          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1047            << (int)Record->isUnion();
1048          Invalid = true;
1049        }
1050      } else {
1051        // We have something that isn't a non-static data
1052        // member. Complain about it.
1053        unsigned DK = diag::err_anonymous_record_bad_member;
1054        if (isa<TypeDecl>(*Mem))
1055          DK = diag::err_anonymous_record_with_type;
1056        else if (isa<FunctionDecl>(*Mem))
1057          DK = diag::err_anonymous_record_with_function;
1058        else if (isa<VarDecl>(*Mem))
1059          DK = diag::err_anonymous_record_with_static;
1060        Diag((*Mem)->getLocation(), DK)
1061            << (int)Record->isUnion();
1062          Invalid = true;
1063      }
1064    }
1065  }
1066
1067  if (!Record->isUnion() && !Owner->isRecord()) {
1068    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1069      << (int)getLangOptions().CPlusPlus;
1070    Invalid = true;
1071  }
1072
1073  // Create a declaration for this anonymous struct/union.
1074  NamedDecl *Anon = 0;
1075  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1076    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1077                             /*IdentifierInfo=*/0,
1078                             Context.getTypeDeclType(Record),
1079                             /*BitWidth=*/0, /*Mutable=*/false);
1080    Anon->setAccess(AS_public);
1081    if (getLangOptions().CPlusPlus)
1082      FieldCollector->Add(cast<FieldDecl>(Anon));
1083  } else {
1084    VarDecl::StorageClass SC;
1085    switch (DS.getStorageClassSpec()) {
1086    default: assert(0 && "Unknown storage class!");
1087    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1088    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1089    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1090    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1091    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1092    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1093    case DeclSpec::SCS_mutable:
1094      // mutable can only appear on non-static class members, so it's always
1095      // an error here
1096      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1097      Invalid = true;
1098      SC = VarDecl::None;
1099      break;
1100    }
1101
1102    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1103                           /*IdentifierInfo=*/0,
1104                           Context.getTypeDeclType(Record),
1105                           SC, DS.getSourceRange().getBegin());
1106  }
1107  Anon->setImplicit();
1108
1109  // Add the anonymous struct/union object to the current
1110  // context. We'll be referencing this object when we refer to one of
1111  // its members.
1112  Owner->addDecl(Anon);
1113
1114  // Inject the members of the anonymous struct/union into the owning
1115  // context and into the identifier resolver chain for name lookup
1116  // purposes.
1117  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1118    Invalid = true;
1119
1120  // Mark this as an anonymous struct/union type. Note that we do not
1121  // do this until after we have already checked and injected the
1122  // members of this anonymous struct/union type, because otherwise
1123  // the members could be injected twice: once by DeclContext when it
1124  // builds its lookup table, and once by
1125  // InjectAnonymousStructOrUnionMembers.
1126  Record->setAnonymousStructOrUnion(true);
1127
1128  if (Invalid)
1129    Anon->setInvalidDecl();
1130
1131  return Anon;
1132}
1133
1134
1135/// GetNameForDeclarator - Determine the full declaration name for the
1136/// given Declarator.
1137DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1138  switch (D.getKind()) {
1139  case Declarator::DK_Abstract:
1140    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1141    return DeclarationName();
1142
1143  case Declarator::DK_Normal:
1144    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1145    return DeclarationName(D.getIdentifier());
1146
1147  case Declarator::DK_Constructor: {
1148    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1149    Ty = Context.getCanonicalType(Ty);
1150    return Context.DeclarationNames.getCXXConstructorName(Ty);
1151  }
1152
1153  case Declarator::DK_Destructor: {
1154    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1155    Ty = Context.getCanonicalType(Ty);
1156    return Context.DeclarationNames.getCXXDestructorName(Ty);
1157  }
1158
1159  case Declarator::DK_Conversion: {
1160    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1161    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1162    Ty = Context.getCanonicalType(Ty);
1163    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1164  }
1165
1166  case Declarator::DK_Operator:
1167    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1168    return Context.DeclarationNames.getCXXOperatorName(
1169                                                D.getOverloadedOperator());
1170  }
1171
1172  assert(false && "Unknown name kind");
1173  return DeclarationName();
1174}
1175
1176/// isNearlyMatchingFunction - Determine whether the C++ functions
1177/// Declaration and Definition are "nearly" matching. This heuristic
1178/// is used to improve diagnostics in the case where an out-of-line
1179/// function definition doesn't match any declaration within
1180/// the class or namespace.
1181static bool isNearlyMatchingFunction(ASTContext &Context,
1182                                     FunctionDecl *Declaration,
1183                                     FunctionDecl *Definition) {
1184  if (Declaration->param_size() != Definition->param_size())
1185    return false;
1186  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1187    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1188    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1189
1190    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1191    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1192    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1193      return false;
1194  }
1195
1196  return true;
1197}
1198
1199Sema::DeclTy *
1200Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1201                      bool IsFunctionDefinition) {
1202  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1203  DeclarationName Name = GetNameForDeclarator(D);
1204
1205  // All of these full declarators require an identifier.  If it doesn't have
1206  // one, the ParsedFreeStandingDeclSpec action should be used.
1207  if (!Name) {
1208    if (!D.getInvalidType())  // Reject this if we think it is valid.
1209      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1210           diag::err_declarator_need_ident)
1211        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1212    return 0;
1213  }
1214
1215  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1216  // we find one that is.
1217  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1218         (S->getFlags() & Scope::TemplateParamScope) != 0)
1219    S = S->getParent();
1220
1221  DeclContext *DC;
1222  NamedDecl *PrevDecl;
1223  NamedDecl *New;
1224  bool InvalidDecl = false;
1225
1226  QualType R = GetTypeForDeclarator(D, S);
1227  if (R.isNull()) {
1228    InvalidDecl = true;
1229    R = Context.IntTy;
1230  }
1231
1232  // See if this is a redefinition of a variable in the same scope.
1233  if (D.getCXXScopeSpec().isInvalid()) {
1234    DC = CurContext;
1235    PrevDecl = 0;
1236    InvalidDecl = true;
1237  } else if (!D.getCXXScopeSpec().isSet()) {
1238    LookupNameKind NameKind = LookupOrdinaryName;
1239
1240    // If the declaration we're planning to build will be a function
1241    // or object with linkage, then look for another declaration with
1242    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1243    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1244      /* Do nothing*/;
1245    else if (R->isFunctionType()) {
1246      if (CurContext->isFunctionOrMethod())
1247        NameKind = LookupRedeclarationWithLinkage;
1248    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1249      NameKind = LookupRedeclarationWithLinkage;
1250
1251    DC = CurContext;
1252    PrevDecl = LookupName(S, Name, NameKind, true,
1253                          D.getDeclSpec().getStorageClassSpec() !=
1254                            DeclSpec::SCS_static,
1255                          D.getIdentifierLoc());
1256  } else { // Something like "int foo::x;"
1257    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1258    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1259    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1260
1261    // C++ 7.3.1.2p2:
1262    // Members (including explicit specializations of templates) of a named
1263    // namespace can also be defined outside that namespace by explicit
1264    // qualification of the name being defined, provided that the entity being
1265    // defined was already declared in the namespace and the definition appears
1266    // after the point of declaration in a namespace that encloses the
1267    // declarations namespace.
1268    //
1269    // Note that we only check the context at this point. We don't yet
1270    // have enough information to make sure that PrevDecl is actually
1271    // the declaration we want to match. For example, given:
1272    //
1273    //   class X {
1274    //     void f();
1275    //     void f(float);
1276    //   };
1277    //
1278    //   void X::f(int) { } // ill-formed
1279    //
1280    // In this case, PrevDecl will point to the overload set
1281    // containing the two f's declared in X, but neither of them
1282    // matches.
1283
1284    // First check whether we named the global scope.
1285    if (isa<TranslationUnitDecl>(DC)) {
1286      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1287        << Name << D.getCXXScopeSpec().getRange();
1288    } else if (!CurContext->Encloses(DC)) {
1289      // The qualifying scope doesn't enclose the original declaration.
1290      // Emit diagnostic based on current scope.
1291      SourceLocation L = D.getIdentifierLoc();
1292      SourceRange R = D.getCXXScopeSpec().getRange();
1293      if (isa<FunctionDecl>(CurContext))
1294        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1295      else
1296        Diag(L, diag::err_invalid_declarator_scope)
1297          << Name << cast<NamedDecl>(DC) << R;
1298      InvalidDecl = true;
1299    }
1300  }
1301
1302  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1303    // Maybe we will complain about the shadowed template parameter.
1304    InvalidDecl = InvalidDecl
1305      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1306    // Just pretend that we didn't see the previous declaration.
1307    PrevDecl = 0;
1308  }
1309
1310  // In C++, the previous declaration we find might be a tag type
1311  // (class or enum). In this case, the new declaration will hide the
1312  // tag type. Note that this does does not apply if we're declaring a
1313  // typedef (C++ [dcl.typedef]p4).
1314  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1315      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1316    PrevDecl = 0;
1317
1318  bool Redeclaration = false;
1319  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1320    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1321                                 InvalidDecl, Redeclaration);
1322  } else if (R->isFunctionType()) {
1323    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1324                                  IsFunctionDefinition, InvalidDecl,
1325                                  Redeclaration);
1326  } else {
1327    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1328                                  InvalidDecl, Redeclaration);
1329  }
1330
1331  if (New == 0)
1332    return 0;
1333
1334  // Set the lexical context. If the declarator has a C++ scope specifier, the
1335  // lexical context will be different from the semantic context.
1336  New->setLexicalDeclContext(CurContext);
1337
1338  // If this has an identifier and is not an invalid redeclaration,
1339  // add it to the scope stack.
1340  if (Name && !(Redeclaration && InvalidDecl))
1341    PushOnScopeChains(New, S);
1342  // If any semantic error occurred, mark the decl as invalid.
1343  if (D.getInvalidType() || InvalidDecl)
1344    New->setInvalidDecl();
1345
1346  return New;
1347}
1348
1349/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1350/// types into constant array types in certain situations which would otherwise
1351/// be errors (for GCC compatibility).
1352static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1353                                                    ASTContext &Context,
1354                                                    bool &SizeIsNegative) {
1355  // This method tries to turn a variable array into a constant
1356  // array even when the size isn't an ICE.  This is necessary
1357  // for compatibility with code that depends on gcc's buggy
1358  // constant expression folding, like struct {char x[(int)(char*)2];}
1359  SizeIsNegative = false;
1360
1361  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1362    QualType Pointee = PTy->getPointeeType();
1363    QualType FixedType =
1364        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1365    if (FixedType.isNull()) return FixedType;
1366    FixedType = Context.getPointerType(FixedType);
1367    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1368    return FixedType;
1369  }
1370
1371  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1372  if (!VLATy)
1373    return QualType();
1374  // FIXME: We should probably handle this case
1375  if (VLATy->getElementType()->isVariablyModifiedType())
1376    return QualType();
1377
1378  Expr::EvalResult EvalResult;
1379  if (!VLATy->getSizeExpr() ||
1380      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1381      !EvalResult.Val.isInt())
1382    return QualType();
1383
1384  llvm::APSInt &Res = EvalResult.Val.getInt();
1385  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1386    return Context.getConstantArrayType(VLATy->getElementType(),
1387                                        Res, ArrayType::Normal, 0);
1388
1389  SizeIsNegative = true;
1390  return QualType();
1391}
1392
1393/// \brief Register the given locally-scoped external C declaration so
1394/// that it can be found later for redeclarations
1395void
1396Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1397                                       Scope *S) {
1398  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1399         "Decl is not a locally-scoped decl!");
1400  // Note that we have a locally-scoped external with this name.
1401  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1402
1403  if (!PrevDecl)
1404    return;
1405
1406  // If there was a previous declaration of this variable, it may be
1407  // in our identifier chain. Update the identifier chain with the new
1408  // declaration.
1409  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1410    // The previous declaration was found on the identifer resolver
1411    // chain, so remove it from its scope.
1412    while (S && !S->isDeclScope(PrevDecl))
1413      S = S->getParent();
1414
1415    if (S)
1416      S->RemoveDecl(PrevDecl);
1417  }
1418}
1419
1420NamedDecl*
1421Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1422                             QualType R, Decl* LastDeclarator,
1423                             Decl* PrevDecl, bool& InvalidDecl,
1424                             bool &Redeclaration) {
1425  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1426  if (D.getCXXScopeSpec().isSet()) {
1427    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1428      << D.getCXXScopeSpec().getRange();
1429    InvalidDecl = true;
1430    // Pretend we didn't see the scope specifier.
1431    DC = 0;
1432  }
1433
1434  // Check that there are no default arguments (C++ only).
1435  if (getLangOptions().CPlusPlus)
1436    CheckExtraCXXDefaultArguments(D);
1437
1438  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1439  if (!NewTD) return 0;
1440
1441  // Handle attributes prior to checking for duplicates in MergeVarDecl
1442  ProcessDeclAttributes(NewTD, D);
1443  // Merge the decl with the existing one if appropriate. If the decl is
1444  // in an outer scope, it isn't the same thing.
1445  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1446    Redeclaration = true;
1447    if (MergeTypeDefDecl(NewTD, PrevDecl))
1448      InvalidDecl = true;
1449  }
1450
1451  if (S->getFnParent() == 0) {
1452    QualType T = NewTD->getUnderlyingType();
1453    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1454    // then it shall have block scope.
1455    if (T->isVariablyModifiedType()) {
1456      bool SizeIsNegative;
1457      QualType FixedTy =
1458          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1459      if (!FixedTy.isNull()) {
1460        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1461        NewTD->setUnderlyingType(FixedTy);
1462      } else {
1463        if (SizeIsNegative)
1464          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1465        else if (T->isVariableArrayType())
1466          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1467        else
1468          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1469        InvalidDecl = true;
1470      }
1471    }
1472  }
1473  return NewTD;
1474}
1475
1476/// \brief Determines whether the given declaration is an out-of-scope
1477/// previous declaration.
1478///
1479/// This routine should be invoked when name lookup has found a
1480/// previous declaration (PrevDecl) that is not in the scope where a
1481/// new declaration by the same name is being introduced. If the new
1482/// declaration occurs in a local scope, previous declarations with
1483/// linkage may still be considered previous declarations (C99
1484/// 6.2.2p4-5, C++ [basic.link]p6).
1485///
1486/// \param PrevDecl the previous declaration found by name
1487/// lookup
1488///
1489/// \param DC the context in which the new declaration is being
1490/// declared.
1491///
1492/// \returns true if PrevDecl is an out-of-scope previous declaration
1493/// for a new delcaration with the same name.
1494static bool
1495isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1496                                ASTContext &Context) {
1497  if (!PrevDecl)
1498    return 0;
1499
1500  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1501  // case we need to check each of the overloaded functions.
1502  if (!PrevDecl->hasLinkage())
1503    return false;
1504
1505  if (Context.getLangOptions().CPlusPlus) {
1506    // C++ [basic.link]p6:
1507    //   If there is a visible declaration of an entity with linkage
1508    //   having the same name and type, ignoring entities declared
1509    //   outside the innermost enclosing namespace scope, the block
1510    //   scope declaration declares that same entity and receives the
1511    //   linkage of the previous declaration.
1512    DeclContext *OuterContext = DC->getLookupContext();
1513    if (!OuterContext->isFunctionOrMethod())
1514      // This rule only applies to block-scope declarations.
1515      return false;
1516    else {
1517      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1518      if (PrevOuterContext->isRecord())
1519        // We found a member function: ignore it.
1520        return false;
1521      else {
1522        // Find the innermost enclosing namespace for the new and
1523        // previous declarations.
1524        while (!OuterContext->isFileContext())
1525          OuterContext = OuterContext->getParent();
1526        while (!PrevOuterContext->isFileContext())
1527          PrevOuterContext = PrevOuterContext->getParent();
1528
1529        // The previous declaration is in a different namespace, so it
1530        // isn't the same function.
1531        if (OuterContext->getPrimaryContext() !=
1532            PrevOuterContext->getPrimaryContext())
1533          return false;
1534      }
1535    }
1536  }
1537
1538  return true;
1539}
1540
1541NamedDecl*
1542Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1543                              QualType R, Decl* LastDeclarator,
1544                              NamedDecl* PrevDecl, bool& InvalidDecl,
1545                              bool &Redeclaration) {
1546  DeclarationName Name = GetNameForDeclarator(D);
1547
1548  // Check that there are no default arguments (C++ only).
1549  if (getLangOptions().CPlusPlus)
1550    CheckExtraCXXDefaultArguments(D);
1551
1552  if (R.getTypePtr()->isObjCInterfaceType()) {
1553    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1554    InvalidDecl = true;
1555  }
1556
1557  VarDecl *NewVD;
1558  VarDecl::StorageClass SC;
1559  switch (D.getDeclSpec().getStorageClassSpec()) {
1560  default: assert(0 && "Unknown storage class!");
1561  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1562  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1563  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1564  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1565  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1566  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1567  case DeclSpec::SCS_mutable:
1568    // mutable can only appear on non-static class members, so it's always
1569    // an error here
1570    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1571    InvalidDecl = true;
1572    SC = VarDecl::None;
1573    break;
1574  }
1575
1576  IdentifierInfo *II = Name.getAsIdentifierInfo();
1577  if (!II) {
1578    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1579      << Name.getAsString();
1580    return 0;
1581  }
1582
1583  if (DC->isRecord()) {
1584    // This is a static data member for a C++ class.
1585    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1586                                    D.getIdentifierLoc(), II,
1587                                    R);
1588  } else {
1589    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1590    if (S->getFnParent() == 0) {
1591      // C99 6.9p2: The storage-class specifiers auto and register shall not
1592      // appear in the declaration specifiers in an external declaration.
1593      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1594        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1595        InvalidDecl = true;
1596      }
1597    }
1598    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1599                            II, R, SC,
1600                            // FIXME: Move to DeclGroup...
1601                            D.getDeclSpec().getSourceRange().getBegin());
1602    NewVD->setThreadSpecified(ThreadSpecified);
1603  }
1604  NewVD->setNextDeclarator(LastDeclarator);
1605
1606  // Handle attributes prior to checking for duplicates in MergeVarDecl
1607  ProcessDeclAttributes(NewVD, D);
1608
1609  // Handle GNU asm-label extension (encoded as an attribute).
1610  if (Expr *E = (Expr*) D.getAsmLabel()) {
1611    // The parser guarantees this is a string.
1612    StringLiteral *SE = cast<StringLiteral>(E);
1613    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1614                                                        SE->getByteLength())));
1615  }
1616
1617  // Emit an error if an address space was applied to decl with local storage.
1618  // This includes arrays of objects with address space qualifiers, but not
1619  // automatic variables that point to other address spaces.
1620  // ISO/IEC TR 18037 S5.1.2
1621  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1622    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1623    InvalidDecl = true;
1624  }
1625
1626  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1627    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1628  }
1629
1630  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1631  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1632  if (isIllegalVLA || isIllegalVM) {
1633    bool SizeIsNegative;
1634    QualType FixedTy =
1635        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1636    if (!FixedTy.isNull()) {
1637      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1638      NewVD->setType(FixedTy);
1639    } else if (R->isVariableArrayType()) {
1640      NewVD->setInvalidDecl();
1641
1642      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1643      // FIXME: This won't give the correct result for
1644      // int a[10][n];
1645      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1646
1647      if (NewVD->isFileVarDecl())
1648        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1649          << SizeRange;
1650      else if (NewVD->getStorageClass() == VarDecl::Static)
1651        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1652          << SizeRange;
1653      else
1654        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1655            << SizeRange;
1656    } else {
1657      InvalidDecl = true;
1658
1659      if (NewVD->isFileVarDecl())
1660        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1661      else
1662        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1663    }
1664  }
1665
1666  // If name lookup finds a previous declaration that is not in the
1667  // same scope as the new declaration, this may still be an
1668  // acceptable redeclaration.
1669  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1670      !(NewVD->hasLinkage() &&
1671        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1672    PrevDecl = 0;
1673
1674  if (!PrevDecl && NewVD->isExternC(Context)) {
1675    // Since we did not find anything by this name and we're declaring
1676    // an extern "C" variable, look for a non-visible extern "C"
1677    // declaration with the same name.
1678    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1679      = LocallyScopedExternalDecls.find(Name);
1680    if (Pos != LocallyScopedExternalDecls.end())
1681      PrevDecl = Pos->second;
1682  }
1683
1684  // Merge the decl with the existing one if appropriate.
1685  if (PrevDecl) {
1686    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1687      // The user tried to define a non-static data member
1688      // out-of-line (C++ [dcl.meaning]p1).
1689      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1690        << D.getCXXScopeSpec().getRange();
1691      NewVD->Destroy(Context);
1692      return 0;
1693    }
1694
1695    Redeclaration = true;
1696    if (MergeVarDecl(NewVD, PrevDecl))
1697      InvalidDecl = true;
1698
1699    if (D.getCXXScopeSpec().isSet()) {
1700      // No previous declaration in the qualifying scope.
1701      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1702        << Name << D.getCXXScopeSpec().getRange();
1703      InvalidDecl = true;
1704    }
1705  }
1706
1707  if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
1708    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1709      << R;
1710    InvalidDecl = true;
1711  }
1712
1713
1714  // If this is a locally-scoped extern C variable, update the map of
1715  // such variables.
1716  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1717      !InvalidDecl)
1718    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1719
1720  return NewVD;
1721}
1722
1723NamedDecl*
1724Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1725                              QualType R, Decl *LastDeclarator,
1726                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1727                              bool& InvalidDecl, bool &Redeclaration) {
1728  assert(R.getTypePtr()->isFunctionType());
1729
1730  DeclarationName Name = GetNameForDeclarator(D);
1731  FunctionDecl::StorageClass SC = FunctionDecl::None;
1732  switch (D.getDeclSpec().getStorageClassSpec()) {
1733  default: assert(0 && "Unknown storage class!");
1734  case DeclSpec::SCS_auto:
1735  case DeclSpec::SCS_register:
1736  case DeclSpec::SCS_mutable:
1737    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1738         diag::err_typecheck_sclass_func);
1739    InvalidDecl = true;
1740    break;
1741  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1742  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1743  case DeclSpec::SCS_static: {
1744    if (DC->getLookupContext()->isFunctionOrMethod()) {
1745      // C99 6.7.1p5:
1746      //   The declaration of an identifier for a function that has
1747      //   block scope shall have no explicit storage-class specifier
1748      //   other than extern
1749      // See also (C++ [dcl.stc]p4).
1750      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1751           diag::err_static_block_func);
1752      SC = FunctionDecl::None;
1753    } else
1754      SC = FunctionDecl::Static;
1755    break;
1756  }
1757  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1758  }
1759
1760  bool isInline = D.getDeclSpec().isInlineSpecified();
1761  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1762  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1763
1764  FunctionDecl *NewFD;
1765  if (D.getKind() == Declarator::DK_Constructor) {
1766    // This is a C++ constructor declaration.
1767    assert(DC->isRecord() &&
1768           "Constructors can only be declared in a member context");
1769
1770    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1771
1772    // Create the new declaration
1773    NewFD = CXXConstructorDecl::Create(Context,
1774                                       cast<CXXRecordDecl>(DC),
1775                                       D.getIdentifierLoc(), Name, R,
1776                                       isExplicit, isInline,
1777                                       /*isImplicitlyDeclared=*/false);
1778
1779    if (InvalidDecl)
1780      NewFD->setInvalidDecl();
1781  } else if (D.getKind() == Declarator::DK_Destructor) {
1782    // This is a C++ destructor declaration.
1783    if (DC->isRecord()) {
1784      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1785
1786      NewFD = CXXDestructorDecl::Create(Context,
1787                                        cast<CXXRecordDecl>(DC),
1788                                        D.getIdentifierLoc(), Name, R,
1789                                        isInline,
1790                                        /*isImplicitlyDeclared=*/false);
1791
1792      if (InvalidDecl)
1793        NewFD->setInvalidDecl();
1794    } else {
1795      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1796
1797      // Create a FunctionDecl to satisfy the function definition parsing
1798      // code path.
1799      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1800                                   Name, R, SC, isInline,
1801                                   /*hasPrototype=*/true,
1802                                   // FIXME: Move to DeclGroup...
1803                                   D.getDeclSpec().getSourceRange().getBegin());
1804      InvalidDecl = true;
1805      NewFD->setInvalidDecl();
1806    }
1807  } else if (D.getKind() == Declarator::DK_Conversion) {
1808    if (!DC->isRecord()) {
1809      Diag(D.getIdentifierLoc(),
1810           diag::err_conv_function_not_member);
1811      return 0;
1812    } else {
1813      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1814
1815      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1816                                        D.getIdentifierLoc(), Name, R,
1817                                        isInline, isExplicit);
1818
1819      if (InvalidDecl)
1820        NewFD->setInvalidDecl();
1821    }
1822  } else if (DC->isRecord()) {
1823    // This is a C++ method declaration.
1824    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1825                                  D.getIdentifierLoc(), Name, R,
1826                                  (SC == FunctionDecl::Static), isInline);
1827  } else {
1828    NewFD = FunctionDecl::Create(Context, DC,
1829                                 D.getIdentifierLoc(),
1830                                 Name, R, SC, isInline,
1831                                 /*hasPrototype=*/
1832                                   (getLangOptions().CPlusPlus ||
1833                                    (D.getNumTypeObjects() &&
1834                                     D.getTypeObject(0).Fun.hasPrototype)),
1835                                 // FIXME: Move to DeclGroup...
1836                                 D.getDeclSpec().getSourceRange().getBegin());
1837  }
1838  NewFD->setNextDeclarator(LastDeclarator);
1839
1840  // Set the lexical context. If the declarator has a C++
1841  // scope specifier, the lexical context will be different
1842  // from the semantic context.
1843  NewFD->setLexicalDeclContext(CurContext);
1844
1845  // Handle GNU asm-label extension (encoded as an attribute).
1846  if (Expr *E = (Expr*) D.getAsmLabel()) {
1847    // The parser guarantees this is a string.
1848    StringLiteral *SE = cast<StringLiteral>(E);
1849    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1850                                                        SE->getByteLength())));
1851  }
1852
1853  // Copy the parameter declarations from the declarator D to
1854  // the function declaration NewFD, if they are available.
1855  if (D.getNumTypeObjects() > 0) {
1856    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1857
1858    // Create Decl objects for each parameter, adding them to the
1859    // FunctionDecl.
1860    llvm::SmallVector<ParmVarDecl*, 16> Params;
1861
1862    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1863    // function that takes no arguments, not a function that takes a
1864    // single void argument.
1865    // We let through "const void" here because Sema::GetTypeForDeclarator
1866    // already checks for that case.
1867    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1868        FTI.ArgInfo[0].Param &&
1869        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1870      // empty arg list, don't push any params.
1871      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1872
1873      // In C++, the empty parameter-type-list must be spelled "void"; a
1874      // typedef of void is not permitted.
1875      if (getLangOptions().CPlusPlus &&
1876          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1877        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1878      }
1879    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1880      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1881        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1882    }
1883
1884    NewFD->setParams(Context, &Params[0], Params.size());
1885  } else if (R->getAsTypedefType()) {
1886    // When we're declaring a function with a typedef, as in the
1887    // following example, we'll need to synthesize (unnamed)
1888    // parameters for use in the declaration.
1889    //
1890    // @code
1891    // typedef void fn(int);
1892    // fn f;
1893    // @endcode
1894    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1895    if (!FT) {
1896      // This is a typedef of a function with no prototype, so we
1897      // don't need to do anything.
1898    } else if ((FT->getNumArgs() == 0) ||
1899               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1900                FT->getArgType(0)->isVoidType())) {
1901      // This is a zero-argument function. We don't need to do anything.
1902    } else {
1903      // Synthesize a parameter for each argument type.
1904      llvm::SmallVector<ParmVarDecl*, 16> Params;
1905      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1906           ArgType != FT->arg_type_end(); ++ArgType) {
1907        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1908                                                 SourceLocation(), 0,
1909                                                 *ArgType, VarDecl::None,
1910                                                 0);
1911        Param->setImplicit();
1912        Params.push_back(Param);
1913      }
1914
1915      NewFD->setParams(Context, &Params[0], Params.size());
1916    }
1917  }
1918
1919  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1920    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1921  else if (isa<CXXDestructorDecl>(NewFD)) {
1922    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1923    Record->setUserDeclaredDestructor(true);
1924    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1925    // user-defined destructor.
1926    Record->setPOD(false);
1927  } else if (CXXConversionDecl *Conversion =
1928             dyn_cast<CXXConversionDecl>(NewFD))
1929    ActOnConversionDeclarator(Conversion);
1930
1931  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1932  if (NewFD->isOverloadedOperator() &&
1933      CheckOverloadedOperatorDeclaration(NewFD))
1934    NewFD->setInvalidDecl();
1935
1936  // If name lookup finds a previous declaration that is not in the
1937  // same scope as the new declaration, this may still be an
1938  // acceptable redeclaration.
1939  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1940      !(NewFD->hasLinkage() &&
1941        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1942    PrevDecl = 0;
1943
1944  if (!PrevDecl && NewFD->isExternC(Context)) {
1945    // Since we did not find anything by this name and we're declaring
1946    // an extern "C" function, look for a non-visible extern "C"
1947    // declaration with the same name.
1948    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1949      = LocallyScopedExternalDecls.find(Name);
1950    if (Pos != LocallyScopedExternalDecls.end())
1951      PrevDecl = Pos->second;
1952  }
1953
1954  // Merge or overload the declaration with an existing declaration of
1955  // the same name, if appropriate.
1956  bool OverloadableAttrRequired = false;
1957  if (PrevDecl) {
1958    // Determine whether NewFD is an overload of PrevDecl or
1959    // a declaration that requires merging. If it's an overload,
1960    // there's no more work to do here; we'll just add the new
1961    // function to the scope.
1962    OverloadedFunctionDecl::function_iterator MatchedDecl;
1963
1964    if (!getLangOptions().CPlusPlus &&
1965        AllowOverloadingOfFunction(PrevDecl, Context)) {
1966      OverloadableAttrRequired = true;
1967
1968      // Functions marked "overloadable" must have a prototype (that
1969      // we can't get through declaration merging).
1970      if (!R->getAsFunctionProtoType()) {
1971        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1972          << NewFD;
1973        InvalidDecl = true;
1974        Redeclaration = true;
1975
1976        // Turn this into a variadic function with no parameters.
1977        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1978                                    0, 0, true, 0);
1979        NewFD->setType(R);
1980      }
1981    }
1982
1983    if (PrevDecl &&
1984        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1985         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1986      Redeclaration = true;
1987      Decl *OldDecl = PrevDecl;
1988
1989      // If PrevDecl was an overloaded function, extract the
1990      // FunctionDecl that matched.
1991      if (isa<OverloadedFunctionDecl>(PrevDecl))
1992        OldDecl = *MatchedDecl;
1993
1994      // NewFD and PrevDecl represent declarations that need to be
1995      // merged.
1996      if (MergeFunctionDecl(NewFD, OldDecl))
1997        InvalidDecl = true;
1998
1999      if (!InvalidDecl) {
2000        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2001
2002        // An out-of-line member function declaration must also be a
2003        // definition (C++ [dcl.meaning]p1).
2004        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
2005            !InvalidDecl) {
2006          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2007            << D.getCXXScopeSpec().getRange();
2008          NewFD->setInvalidDecl();
2009        }
2010      }
2011    }
2012  }
2013
2014  if (D.getCXXScopeSpec().isSet() &&
2015      (!PrevDecl || !Redeclaration)) {
2016    // The user tried to provide an out-of-line definition for a
2017    // function that is a member of a class or namespace, but there
2018    // was no such member function declared (C++ [class.mfct]p2,
2019    // C++ [namespace.memdef]p2). For example:
2020    //
2021    // class X {
2022    //   void f() const;
2023    // };
2024    //
2025    // void X::f() { } // ill-formed
2026    //
2027    // Complain about this problem, and attempt to suggest close
2028    // matches (e.g., those that differ only in cv-qualifiers and
2029    // whether the parameter types are references).
2030    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2031      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2032    InvalidDecl = true;
2033
2034    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2035                                            true);
2036    assert(!Prev.isAmbiguous() &&
2037           "Cannot have an ambiguity in previous-declaration lookup");
2038    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2039         Func != FuncEnd; ++Func) {
2040      if (isa<FunctionDecl>(*Func) &&
2041          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2042        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2043    }
2044
2045    PrevDecl = 0;
2046  }
2047
2048  // Handle attributes. We need to have merged decls when handling attributes
2049  // (for example to check for conflicts, etc).
2050  ProcessDeclAttributes(NewFD, D);
2051  AddKnownFunctionAttributes(NewFD);
2052
2053  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2054    // If a function name is overloadable in C, then every function
2055    // with that name must be marked "overloadable".
2056    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2057      << Redeclaration << NewFD;
2058    if (PrevDecl)
2059      Diag(PrevDecl->getLocation(),
2060           diag::note_attribute_overloadable_prev_overload);
2061    NewFD->addAttr(::new (Context) OverloadableAttr());
2062  }
2063
2064  if (getLangOptions().CPlusPlus) {
2065    // In C++, check default arguments now that we have merged decls. Unless
2066    // the lexical context is the class, because in this case this is done
2067    // during delayed parsing anyway.
2068    if (!CurContext->isRecord())
2069      CheckCXXDefaultArguments(NewFD);
2070
2071    // An out-of-line member function declaration must also be a
2072    // definition (C++ [dcl.meaning]p1).
2073    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2074      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2075        << D.getCXXScopeSpec().getRange();
2076      InvalidDecl = true;
2077    }
2078  }
2079
2080  // If this is a locally-scoped extern C function, update the
2081  // map of such names.
2082  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2083      && !InvalidDecl)
2084    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2085
2086  return NewFD;
2087}
2088
2089bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2090  // FIXME: Need strict checking.  In C89, we need to check for
2091  // any assignment, increment, decrement, function-calls, or
2092  // commas outside of a sizeof.  In C99, it's the same list,
2093  // except that the aforementioned are allowed in unevaluated
2094  // expressions.  Everything else falls under the
2095  // "may accept other forms of constant expressions" exception.
2096  // (We never end up here for C++, so the constant expression
2097  // rules there don't matter.)
2098  if (Init->isConstantInitializer(Context))
2099    return false;
2100  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2101    << Init->getSourceRange();
2102  return true;
2103}
2104
2105void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2106  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2107}
2108
2109/// AddInitializerToDecl - Adds the initializer Init to the
2110/// declaration dcl. If DirectInit is true, this is C++ direct
2111/// initialization rather than copy initialization.
2112void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2113  Decl *RealDecl = static_cast<Decl *>(dcl);
2114  // If there is no declaration, there was an error parsing it.  Just ignore
2115  // the initializer.
2116  if (RealDecl == 0)
2117    return;
2118
2119  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2120  if (!VDecl) {
2121    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2122    RealDecl->setInvalidDecl();
2123    return;
2124  }
2125
2126  const VarDecl *Def = 0;
2127  if (VDecl->getDefinition(Def)) {
2128    Diag(VDecl->getLocation(), diag::err_redefinition)
2129      << VDecl->getDeclName();
2130    Diag(Def->getLocation(), diag::note_previous_definition);
2131    VDecl->setInvalidDecl();
2132    return;
2133  }
2134
2135  // Take ownership of the expression, now that we're sure we have somewhere
2136  // to put it.
2137  Expr *Init = static_cast<Expr *>(init.release());
2138  assert(Init && "missing initializer");
2139
2140  // Get the decls type and save a reference for later, since
2141  // CheckInitializerTypes may change it.
2142  QualType DclT = VDecl->getType(), SavT = DclT;
2143  if (VDecl->isBlockVarDecl()) {
2144    VarDecl::StorageClass SC = VDecl->getStorageClass();
2145    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2146      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2147      VDecl->setInvalidDecl();
2148    } else if (!VDecl->isInvalidDecl()) {
2149      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2150                                VDecl->getDeclName(), DirectInit))
2151        VDecl->setInvalidDecl();
2152
2153      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2154      // Don't check invalid declarations to avoid emitting useless diagnostics.
2155      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2156        if (SC == VarDecl::Static) // C99 6.7.8p4.
2157          CheckForConstantInitializer(Init, DclT);
2158      }
2159    }
2160  } else if (VDecl->isFileVarDecl()) {
2161    if (VDecl->getStorageClass() == VarDecl::Extern)
2162      Diag(VDecl->getLocation(), diag::warn_extern_init);
2163    if (!VDecl->isInvalidDecl())
2164      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2165                                VDecl->getDeclName(), DirectInit))
2166        VDecl->setInvalidDecl();
2167
2168    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2169    // Don't check invalid declarations to avoid emitting useless diagnostics.
2170    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2171      // C99 6.7.8p4. All file scoped initializers need to be constant.
2172      CheckForConstantInitializer(Init, DclT);
2173    }
2174  }
2175  // If the type changed, it means we had an incomplete type that was
2176  // completed by the initializer. For example:
2177  //   int ary[] = { 1, 3, 5 };
2178  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2179  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2180    VDecl->setType(DclT);
2181    Init->setType(DclT);
2182  }
2183
2184  // Attach the initializer to the decl.
2185  VDecl->setInit(Init);
2186  return;
2187}
2188
2189void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2190  Decl *RealDecl = static_cast<Decl *>(dcl);
2191
2192  // If there is no declaration, there was an error parsing it. Just ignore it.
2193  if (RealDecl == 0)
2194    return;
2195
2196  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2197    QualType Type = Var->getType();
2198    // C++ [dcl.init.ref]p3:
2199    //   The initializer can be omitted for a reference only in a
2200    //   parameter declaration (8.3.5), in the declaration of a
2201    //   function return type, in the declaration of a class member
2202    //   within its class declaration (9.2), and where the extern
2203    //   specifier is explicitly used.
2204    if (Type->isReferenceType() &&
2205        Var->getStorageClass() != VarDecl::Extern &&
2206        Var->getStorageClass() != VarDecl::PrivateExtern) {
2207      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2208        << Var->getDeclName()
2209        << SourceRange(Var->getLocation(), Var->getLocation());
2210      Var->setInvalidDecl();
2211      return;
2212    }
2213
2214    // C++ [dcl.init]p9:
2215    //
2216    //   If no initializer is specified for an object, and the object
2217    //   is of (possibly cv-qualified) non-POD class type (or array
2218    //   thereof), the object shall be default-initialized; if the
2219    //   object is of const-qualified type, the underlying class type
2220    //   shall have a user-declared default constructor.
2221    if (getLangOptions().CPlusPlus) {
2222      QualType InitType = Type;
2223      if (const ArrayType *Array = Context.getAsArrayType(Type))
2224        InitType = Array->getElementType();
2225      if (Var->getStorageClass() != VarDecl::Extern &&
2226          Var->getStorageClass() != VarDecl::PrivateExtern &&
2227          InitType->isRecordType()) {
2228        const CXXConstructorDecl *Constructor = 0;
2229        if (!RequireCompleteType(Var->getLocation(), InitType,
2230                                    diag::err_invalid_incomplete_type_use))
2231          Constructor
2232            = PerformInitializationByConstructor(InitType, 0, 0,
2233                                                 Var->getLocation(),
2234                                               SourceRange(Var->getLocation(),
2235                                                           Var->getLocation()),
2236                                                 Var->getDeclName(),
2237                                                 IK_Default);
2238        if (!Constructor)
2239          Var->setInvalidDecl();
2240      }
2241    }
2242
2243#if 0
2244    // FIXME: Temporarily disabled because we are not properly parsing
2245    // linkage specifications on declarations, e.g.,
2246    //
2247    //   extern "C" const CGPoint CGPointerZero;
2248    //
2249    // C++ [dcl.init]p9:
2250    //
2251    //     If no initializer is specified for an object, and the
2252    //     object is of (possibly cv-qualified) non-POD class type (or
2253    //     array thereof), the object shall be default-initialized; if
2254    //     the object is of const-qualified type, the underlying class
2255    //     type shall have a user-declared default
2256    //     constructor. Otherwise, if no initializer is specified for
2257    //     an object, the object and its subobjects, if any, have an
2258    //     indeterminate initial value; if the object or any of its
2259    //     subobjects are of const-qualified type, the program is
2260    //     ill-formed.
2261    //
2262    // This isn't technically an error in C, so we don't diagnose it.
2263    //
2264    // FIXME: Actually perform the POD/user-defined default
2265    // constructor check.
2266    if (getLangOptions().CPlusPlus &&
2267        Context.getCanonicalType(Type).isConstQualified() &&
2268        Var->getStorageClass() != VarDecl::Extern)
2269      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2270        << Var->getName()
2271        << SourceRange(Var->getLocation(), Var->getLocation());
2272#endif
2273  }
2274}
2275
2276/// The declarators are chained together backwards, reverse the list.
2277Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2278  // Often we have single declarators, handle them quickly.
2279  Decl *Group = static_cast<Decl*>(group);
2280  if (Group == 0)
2281    return 0;
2282
2283  Decl *NewGroup = 0;
2284  if (Group->getNextDeclarator() == 0)
2285    NewGroup = Group;
2286  else { // reverse the list.
2287    while (Group) {
2288      Decl *Next = Group->getNextDeclarator();
2289      Group->setNextDeclarator(NewGroup);
2290      NewGroup = Group;
2291      Group = Next;
2292    }
2293  }
2294  // Perform semantic analysis that depends on having fully processed both
2295  // the declarator and initializer.
2296  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2297    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2298    if (!IDecl)
2299      continue;
2300    QualType T = IDecl->getType();
2301
2302    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2303    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2304    if (IDecl->isBlockVarDecl() &&
2305        IDecl->getStorageClass() != VarDecl::Extern) {
2306      if (!IDecl->isInvalidDecl() &&
2307          RequireCompleteType(IDecl->getLocation(), T,
2308                                 diag::err_typecheck_decl_incomplete_type))
2309        IDecl->setInvalidDecl();
2310    }
2311    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2312    // object that has file scope without an initializer, and without a
2313    // storage-class specifier or with the storage-class specifier "static",
2314    // constitutes a tentative definition. Note: A tentative definition with
2315    // external linkage is valid (C99 6.2.2p5).
2316    if (IDecl->isTentativeDefinition(Context)) {
2317      QualType CheckType = T;
2318      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2319
2320      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2321      if (ArrayT) {
2322        CheckType = ArrayT->getElementType();
2323        DiagID = diag::err_illegal_decl_array_incomplete_type;
2324      }
2325
2326      if (IDecl->isInvalidDecl()) {
2327        // Do nothing with invalid declarations
2328      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2329                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2330        // C99 6.9.2p3: If the declaration of an identifier for an object is
2331        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2332        // declared type shall not be an incomplete type.
2333        IDecl->setInvalidDecl();
2334      }
2335    }
2336  }
2337  return NewGroup;
2338}
2339
2340/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2341/// to introduce parameters into function prototype scope.
2342Sema::DeclTy *
2343Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2344  const DeclSpec &DS = D.getDeclSpec();
2345
2346  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2347  VarDecl::StorageClass StorageClass = VarDecl::None;
2348  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2349    StorageClass = VarDecl::Register;
2350  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2351    Diag(DS.getStorageClassSpecLoc(),
2352         diag::err_invalid_storage_class_in_func_decl);
2353    D.getMutableDeclSpec().ClearStorageClassSpecs();
2354  }
2355  if (DS.isThreadSpecified()) {
2356    Diag(DS.getThreadSpecLoc(),
2357         diag::err_invalid_storage_class_in_func_decl);
2358    D.getMutableDeclSpec().ClearStorageClassSpecs();
2359  }
2360
2361  // Check that there are no default arguments inside the type of this
2362  // parameter (C++ only).
2363  if (getLangOptions().CPlusPlus)
2364    CheckExtraCXXDefaultArguments(D);
2365
2366  // In this context, we *do not* check D.getInvalidType(). If the declarator
2367  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2368  // though it will not reflect the user specified type.
2369  QualType parmDeclType = GetTypeForDeclarator(D, S);
2370
2371  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2372
2373  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2374  // Can this happen for params?  We already checked that they don't conflict
2375  // among each other.  Here they can only shadow globals, which is ok.
2376  IdentifierInfo *II = D.getIdentifier();
2377  if (II) {
2378    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2379      if (PrevDecl->isTemplateParameter()) {
2380        // Maybe we will complain about the shadowed template parameter.
2381        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2382        // Just pretend that we didn't see the previous declaration.
2383        PrevDecl = 0;
2384      } else if (S->isDeclScope(PrevDecl)) {
2385        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2386
2387        // Recover by removing the name
2388        II = 0;
2389        D.SetIdentifier(0, D.getIdentifierLoc());
2390      }
2391    }
2392  }
2393
2394  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2395  // Doing the promotion here has a win and a loss. The win is the type for
2396  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2397  // code generator). The loss is the orginal type isn't preserved. For example:
2398  //
2399  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2400  //    int blockvardecl[5];
2401  //    sizeof(parmvardecl);  // size == 4
2402  //    sizeof(blockvardecl); // size == 20
2403  // }
2404  //
2405  // For expressions, all implicit conversions are captured using the
2406  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2407  //
2408  // FIXME: If a source translation tool needs to see the original type, then
2409  // we need to consider storing both types (in ParmVarDecl)...
2410  //
2411  if (parmDeclType->isArrayType()) {
2412    // int x[restrict 4] ->  int *restrict
2413    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2414  } else if (parmDeclType->isFunctionType())
2415    parmDeclType = Context.getPointerType(parmDeclType);
2416
2417  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2418                                         D.getIdentifierLoc(), II,
2419                                         parmDeclType, StorageClass,
2420                                         0);
2421
2422  if (D.getInvalidType())
2423    New->setInvalidDecl();
2424
2425  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2426  if (D.getCXXScopeSpec().isSet()) {
2427    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2428      << D.getCXXScopeSpec().getRange();
2429    New->setInvalidDecl();
2430  }
2431  // Parameter declarators cannot be interface types. All ObjC objects are
2432  // passed by reference.
2433  if (parmDeclType->isObjCInterfaceType()) {
2434    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2435         << "passed";
2436    New->setInvalidDecl();
2437  }
2438
2439  // Add the parameter declaration into this scope.
2440  S->AddDecl(New);
2441  if (II)
2442    IdResolver.AddDecl(New);
2443
2444  ProcessDeclAttributes(New, D);
2445  return New;
2446
2447}
2448
2449void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2450  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2451         "Not a function declarator!");
2452  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2453
2454  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2455  // for a K&R function.
2456  if (!FTI.hasPrototype) {
2457    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2458      if (FTI.ArgInfo[i].Param == 0) {
2459        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2460          << FTI.ArgInfo[i].Ident;
2461        // Implicitly declare the argument as type 'int' for lack of a better
2462        // type.
2463        DeclSpec DS;
2464        const char* PrevSpec; // unused
2465        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2466                           PrevSpec);
2467        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2468        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2469        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2470      }
2471    }
2472  }
2473}
2474
2475Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2476  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2477  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2478         "Not a function declarator!");
2479  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2480
2481  if (FTI.hasPrototype) {
2482    // FIXME: Diagnose arguments without names in C.
2483  }
2484
2485  Scope *ParentScope = FnBodyScope->getParent();
2486
2487  return ActOnStartOfFunctionDef(FnBodyScope,
2488                                 ActOnDeclarator(ParentScope, D, 0,
2489                                                 /*IsFunctionDefinition=*/true));
2490}
2491
2492Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2493  Decl *decl = static_cast<Decl*>(D);
2494  FunctionDecl *FD = cast<FunctionDecl>(decl);
2495
2496  ActiveScope = FnBodyScope;
2497
2498  // See if this is a redefinition.
2499  const FunctionDecl *Definition;
2500  if (FD->getBody(Definition)) {
2501    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2502    Diag(Definition->getLocation(), diag::note_previous_definition);
2503  }
2504
2505  // Builtin functions cannot be defined.
2506  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2507    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2508      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2509      FD->setInvalidDecl();
2510    }
2511  }
2512
2513  // The return type of a function definition must be complete
2514  // (C99 6.9.1p3)
2515  if (FD->getResultType()->isIncompleteType() &&
2516      !FD->getResultType()->isVoidType()) {
2517    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2518    FD->setInvalidDecl();
2519  }
2520
2521  PushDeclContext(FnBodyScope, FD);
2522
2523  // Check the validity of our function parameters
2524  CheckParmsForFunctionDef(FD);
2525
2526  // Introduce our parameters into the function scope
2527  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2528    ParmVarDecl *Param = FD->getParamDecl(p);
2529    Param->setOwningFunction(FD);
2530
2531    // If this has an identifier, add it to the scope stack.
2532    if (Param->getIdentifier())
2533      PushOnScopeChains(Param, FnBodyScope);
2534  }
2535
2536  // Checking attributes of current function definition
2537  // dllimport attribute.
2538  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2539    // dllimport attribute cannot be applied to definition.
2540    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2541      Diag(FD->getLocation(),
2542           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2543        << "dllimport";
2544      FD->setInvalidDecl();
2545      return FD;
2546    } else {
2547      // If a symbol previously declared dllimport is later defined, the
2548      // attribute is ignored in subsequent references, and a warning is
2549      // emitted.
2550      Diag(FD->getLocation(),
2551           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2552        << FD->getNameAsCString() << "dllimport";
2553    }
2554  }
2555  return FD;
2556}
2557
2558static bool StatementCreatesScope(Stmt* S) {
2559  bool result = false;
2560  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2561    for (DeclStmt::decl_iterator i = DS->decl_begin();
2562         i != DS->decl_end(); ++i) {
2563      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2564        result |= D->getType()->isVariablyModifiedType();
2565        result |= !!D->getAttr<CleanupAttr>();
2566      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2567        result |= D->getUnderlyingType()->isVariablyModifiedType();
2568      }
2569    }
2570  }
2571
2572  return result;
2573}
2574
2575void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2576                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2577                                    std::vector<void*>& ScopeStack,
2578                                    Stmt* CurStmt,
2579                                    Stmt* ParentCompoundStmt) {
2580  for (Stmt::child_iterator i = CurStmt->child_begin();
2581       i != CurStmt->child_end(); ++i) {
2582    if (!*i) continue;
2583    if (StatementCreatesScope(*i))  {
2584      ScopeStack.push_back(*i);
2585      PopScopeMap[*i] = ParentCompoundStmt;
2586    } else if (isa<LabelStmt>(CurStmt)) {
2587      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2588    }
2589    if (isa<DeclStmt>(*i)) continue;
2590    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2591    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2592                             *i, CurCompound);
2593  }
2594
2595  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2596    ScopeStack.pop_back();
2597  }
2598}
2599
2600void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2601                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2602                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2603                                   std::vector<void*>& ScopeStack,
2604                                   Stmt* CurStmt) {
2605  for (Stmt::child_iterator i = CurStmt->child_begin();
2606       i != CurStmt->child_end(); ++i) {
2607    if (!*i) continue;
2608    if (StatementCreatesScope(*i))  {
2609      ScopeStack.push_back(*i);
2610    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2611      void* LScope = LabelScopeMap[GS->getLabel()];
2612      if (LScope) {
2613        bool foundScopeInStack = false;
2614        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2615          if (LScope == ScopeStack[i-1]) {
2616            foundScopeInStack = true;
2617            break;
2618          }
2619        }
2620        if (!foundScopeInStack) {
2621          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2622        }
2623      }
2624    }
2625    if (isa<DeclStmt>(*i)) continue;
2626    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2627                            ScopeStack, *i);
2628  }
2629
2630  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2631    ScopeStack.pop_back();
2632  }
2633}
2634
2635Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2636  Decl *dcl = static_cast<Decl *>(D);
2637  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2638  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2639    FD->setBody(Body);
2640    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2641  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2642    assert(MD == getCurMethodDecl() && "Method parsing confused");
2643    MD->setBody((Stmt*)Body);
2644  } else {
2645    Body->Destroy(Context);
2646    return 0;
2647  }
2648  PopDeclContext();
2649
2650  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2651  // class C2 {
2652  //   void f() {
2653  //     class LC1 {
2654  //       int m() { return 1; }
2655  //     };
2656  //   }
2657  // };
2658  if (ActiveScope == 0)
2659    return D;
2660
2661  // Verify and clean out per-function state.
2662
2663  bool HaveLabels = !ActiveScope->LabelMap.empty();
2664  // Check goto/label use.
2665  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2666       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2667    // Verify that we have no forward references left.  If so, there was a goto
2668    // or address of a label taken, but no definition of it.  Label fwd
2669    // definitions are indicated with a null substmt.
2670    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2671    if (L->getSubStmt() == 0) {
2672      // Emit error.
2673      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2674
2675      // At this point, we have gotos that use the bogus label.  Stitch it into
2676      // the function body so that they aren't leaked and that the AST is well
2677      // formed.
2678      if (Body) {
2679#if 0
2680        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2681        // and the AST is malformed anyway.  We should just blow away 'L'.
2682        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2683        cast<CompoundStmt>(Body)->push_back(L);
2684#else
2685        L->Destroy(Context);
2686#endif
2687      } else {
2688        // The whole function wasn't parsed correctly, just delete this.
2689        L->Destroy(Context);
2690      }
2691    }
2692  }
2693  // This reset is for both functions and methods.
2694  ActiveScope = 0;
2695
2696  if (!Body) return D;
2697
2698  if (HaveLabels) {
2699    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2700    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2701    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2702    std::vector<void*> ScopeStack;
2703    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2704    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2705  }
2706
2707  return D;
2708}
2709
2710/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2711/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2712NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2713                                          IdentifierInfo &II, Scope *S) {
2714  // Before we produce a declaration for an implicitly defined
2715  // function, see whether there was a locally-scoped declaration of
2716  // this name as a function or variable. If so, use that
2717  // (non-visible) declaration, and complain about it.
2718  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2719    = LocallyScopedExternalDecls.find(&II);
2720  if (Pos != LocallyScopedExternalDecls.end()) {
2721    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2722    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2723    return Pos->second;
2724  }
2725
2726  // Extension in C99.  Legal in C90, but warn about it.
2727  if (getLangOptions().C99)
2728    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2729  else
2730    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2731
2732  // FIXME: handle stuff like:
2733  // void foo() { extern float X(); }
2734  // void bar() { X(); }  <-- implicit decl for X in another scope.
2735
2736  // Set a Declarator for the implicit definition: int foo();
2737  const char *Dummy;
2738  DeclSpec DS;
2739  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2740  Error = Error; // Silence warning.
2741  assert(!Error && "Error setting up implicit decl!");
2742  Declarator D(DS, Declarator::BlockContext);
2743  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2744                                             0, 0, 0, Loc, D),
2745                SourceLocation());
2746  D.SetIdentifier(&II, Loc);
2747
2748  // Insert this function into translation-unit scope.
2749
2750  DeclContext *PrevDC = CurContext;
2751  CurContext = Context.getTranslationUnitDecl();
2752
2753  FunctionDecl *FD =
2754    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2755  FD->setImplicit();
2756
2757  CurContext = PrevDC;
2758
2759  AddKnownFunctionAttributes(FD);
2760
2761  return FD;
2762}
2763
2764/// \brief Adds any function attributes that we know a priori based on
2765/// the declaration of this function.
2766///
2767/// These attributes can apply both to implicitly-declared builtins
2768/// (like __builtin___printf_chk) or to library-declared functions
2769/// like NSLog or printf.
2770void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2771  if (FD->isInvalidDecl())
2772    return;
2773
2774  // If this is a built-in function, map its builtin attributes to
2775  // actual attributes.
2776  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2777    // Handle printf-formatting attributes.
2778    unsigned FormatIdx;
2779    bool HasVAListArg;
2780    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2781      if (!FD->getAttr<FormatAttr>())
2782        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2783                                               FormatIdx + 2));
2784    }
2785
2786    // Mark const if we don't care about errno and that is the only
2787    // thing preventing the function from being const. This allows
2788    // IRgen to use LLVM intrinsics for such functions.
2789    if (!getLangOptions().MathErrno &&
2790        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2791      if (!FD->getAttr<ConstAttr>())
2792        FD->addAttr(::new (Context) ConstAttr());
2793    }
2794  }
2795
2796  IdentifierInfo *Name = FD->getIdentifier();
2797  if (!Name)
2798    return;
2799  if ((!getLangOptions().CPlusPlus &&
2800       FD->getDeclContext()->isTranslationUnit()) ||
2801      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2802       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2803       LinkageSpecDecl::lang_c)) {
2804    // Okay: this could be a libc/libm/Objective-C function we know
2805    // about.
2806  } else
2807    return;
2808
2809  unsigned KnownID;
2810  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2811    if (KnownFunctionIDs[KnownID] == Name)
2812      break;
2813
2814  switch (KnownID) {
2815  case id_NSLog:
2816  case id_NSLogv:
2817    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2818      // FIXME: We known better than our headers.
2819      const_cast<FormatAttr *>(Format)->setType("printf");
2820    } else
2821      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2822    break;
2823
2824  case id_asprintf:
2825  case id_vasprintf:
2826    if (!FD->getAttr<FormatAttr>())
2827      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2828    break;
2829
2830  default:
2831    // Unknown function or known function without any attributes to
2832    // add. Do nothing.
2833    break;
2834  }
2835}
2836
2837TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2838                                    Decl *LastDeclarator) {
2839  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2840  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2841
2842  // Scope manipulation handled by caller.
2843  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2844                                           D.getIdentifierLoc(),
2845                                           D.getIdentifier(),
2846                                           T);
2847
2848  if (TagType *TT = dyn_cast<TagType>(T)) {
2849    TagDecl *TD = TT->getDecl();
2850
2851    // If the TagDecl that the TypedefDecl points to is an anonymous decl
2852    // keep track of the TypedefDecl.
2853    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
2854      TD->setTypedefForAnonDecl(NewTD);
2855  }
2856
2857  NewTD->setNextDeclarator(LastDeclarator);
2858  if (D.getInvalidType())
2859    NewTD->setInvalidDecl();
2860  return NewTD;
2861}
2862
2863/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2864/// former case, Name will be non-null.  In the later case, Name will be null.
2865/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2866/// reference/declaration/definition of a tag.
2867Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2868                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2869                             IdentifierInfo *Name, SourceLocation NameLoc,
2870                             AttributeList *Attr) {
2871  // If this is not a definition, it must have a name.
2872  assert((Name != 0 || TK == TK_Definition) &&
2873         "Nameless record must be a definition!");
2874
2875  TagDecl::TagKind Kind;
2876  switch (TagSpec) {
2877  default: assert(0 && "Unknown tag type!");
2878  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2879  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2880  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2881  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2882  }
2883
2884  DeclContext *SearchDC = CurContext;
2885  DeclContext *DC = CurContext;
2886  NamedDecl *PrevDecl = 0;
2887
2888  bool Invalid = false;
2889
2890  if (Name && SS.isNotEmpty()) {
2891    // We have a nested-name tag ('struct foo::bar').
2892
2893    // Check for invalid 'foo::'.
2894    if (SS.isInvalid()) {
2895      Name = 0;
2896      goto CreateNewDecl;
2897    }
2898
2899    // FIXME: RequireCompleteDeclContext(SS)?
2900    DC = static_cast<DeclContext*>(SS.getScopeRep());
2901    SearchDC = DC;
2902    // Look-up name inside 'foo::'.
2903    PrevDecl = dyn_cast_or_null<TagDecl>(
2904                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2905
2906    // A tag 'foo::bar' must already exist.
2907    if (PrevDecl == 0) {
2908      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2909      Name = 0;
2910      goto CreateNewDecl;
2911    }
2912  } else if (Name) {
2913    // If this is a named struct, check to see if there was a previous forward
2914    // declaration or definition.
2915    // FIXME: We're looking into outer scopes here, even when we
2916    // shouldn't be. Doing so can result in ambiguities that we
2917    // shouldn't be diagnosing.
2918    LookupResult R = LookupName(S, Name, LookupTagName,
2919                                /*RedeclarationOnly=*/(TK != TK_Reference));
2920    if (R.isAmbiguous()) {
2921      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2922      // FIXME: This is not best way to recover from case like:
2923      //
2924      // struct S s;
2925      //
2926      // causes needless err_ovl_no_viable_function_in_init latter.
2927      Name = 0;
2928      PrevDecl = 0;
2929      Invalid = true;
2930    }
2931    else
2932      PrevDecl = R;
2933
2934    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2935      // FIXME: This makes sure that we ignore the contexts associated
2936      // with C structs, unions, and enums when looking for a matching
2937      // tag declaration or definition. See the similar lookup tweak
2938      // in Sema::LookupName; is there a better way to deal with this?
2939      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2940        SearchDC = SearchDC->getParent();
2941    }
2942  }
2943
2944  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2945    // Maybe we will complain about the shadowed template parameter.
2946    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2947    // Just pretend that we didn't see the previous declaration.
2948    PrevDecl = 0;
2949  }
2950
2951  if (PrevDecl) {
2952    // Check whether the previous declaration is usable.
2953    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2954
2955    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2956      // If this is a use of a previous tag, or if the tag is already declared
2957      // in the same scope (so that the definition/declaration completes or
2958      // rementions the tag), reuse the decl.
2959      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2960        // Make sure that this wasn't declared as an enum and now used as a
2961        // struct or something similar.
2962        if (PrevTagDecl->getTagKind() != Kind) {
2963          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2964          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2965          // Recover by making this an anonymous redefinition.
2966          Name = 0;
2967          PrevDecl = 0;
2968          Invalid = true;
2969        } else {
2970          // If this is a use, just return the declaration we found.
2971
2972          // FIXME: In the future, return a variant or some other clue
2973          // for the consumer of this Decl to know it doesn't own it.
2974          // For our current ASTs this shouldn't be a problem, but will
2975          // need to be changed with DeclGroups.
2976          if (TK == TK_Reference)
2977            return PrevDecl;
2978
2979          // Diagnose attempts to redefine a tag.
2980          if (TK == TK_Definition) {
2981            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2982              Diag(NameLoc, diag::err_redefinition) << Name;
2983              Diag(Def->getLocation(), diag::note_previous_definition);
2984              // If this is a redefinition, recover by making this
2985              // struct be anonymous, which will make any later
2986              // references get the previous definition.
2987              Name = 0;
2988              PrevDecl = 0;
2989              Invalid = true;
2990            } else {
2991              // If the type is currently being defined, complain
2992              // about a nested redefinition.
2993              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2994              if (Tag->isBeingDefined()) {
2995                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2996                Diag(PrevTagDecl->getLocation(),
2997                     diag::note_previous_definition);
2998                Name = 0;
2999                PrevDecl = 0;
3000                Invalid = true;
3001              }
3002            }
3003
3004            // Okay, this is definition of a previously declared or referenced
3005            // tag PrevDecl. We're going to create a new Decl for it.
3006          }
3007        }
3008        // If we get here we have (another) forward declaration or we
3009        // have a definition.  Just create a new decl.
3010      } else {
3011        // If we get here, this is a definition of a new tag type in a nested
3012        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3013        // new decl/type.  We set PrevDecl to NULL so that the entities
3014        // have distinct types.
3015        PrevDecl = 0;
3016      }
3017      // If we get here, we're going to create a new Decl. If PrevDecl
3018      // is non-NULL, it's a definition of the tag declared by
3019      // PrevDecl. If it's NULL, we have a new definition.
3020    } else {
3021      // PrevDecl is a namespace, template, or anything else
3022      // that lives in the IDNS_Tag identifier namespace.
3023      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3024        // The tag name clashes with a namespace name, issue an error and
3025        // recover by making this tag be anonymous.
3026        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3027        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3028        Name = 0;
3029        PrevDecl = 0;
3030        Invalid = true;
3031      } else {
3032        // The existing declaration isn't relevant to us; we're in a
3033        // new scope, so clear out the previous declaration.
3034        PrevDecl = 0;
3035      }
3036    }
3037  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3038             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3039    // C.scope.pdecl]p5:
3040    //   -- for an elaborated-type-specifier of the form
3041    //
3042    //          class-key identifier
3043    //
3044    //      if the elaborated-type-specifier is used in the
3045    //      decl-specifier-seq or parameter-declaration-clause of a
3046    //      function defined in namespace scope, the identifier is
3047    //      declared as a class-name in the namespace that contains
3048    //      the declaration; otherwise, except as a friend
3049    //      declaration, the identifier is declared in the smallest
3050    //      non-class, non-function-prototype scope that contains the
3051    //      declaration.
3052    //
3053    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3054    // C structs and unions.
3055    //
3056    // GNU C also supports this behavior as part of its incomplete
3057    // enum types extension, while GNU C++ does not.
3058    //
3059    // Find the context where we'll be declaring the tag.
3060    // FIXME: We would like to maintain the current DeclContext as the
3061    // lexical context,
3062    while (SearchDC->isRecord())
3063      SearchDC = SearchDC->getParent();
3064
3065    // Find the scope where we'll be declaring the tag.
3066    while (S->isClassScope() ||
3067           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3068           ((S->getFlags() & Scope::DeclScope) == 0) ||
3069           (S->getEntity() &&
3070            ((DeclContext *)S->getEntity())->isTransparentContext()))
3071      S = S->getParent();
3072  }
3073
3074CreateNewDecl:
3075
3076  // If there is an identifier, use the location of the identifier as the
3077  // location of the decl, otherwise use the location of the struct/union
3078  // keyword.
3079  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3080
3081  // Otherwise, create a new declaration. If there is a previous
3082  // declaration of the same entity, the two will be linked via
3083  // PrevDecl.
3084  TagDecl *New;
3085
3086  if (Kind == TagDecl::TK_enum) {
3087    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3088    // enum X { A, B, C } D;    D should chain to X.
3089    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3090                           cast_or_null<EnumDecl>(PrevDecl));
3091    // If this is an undefined enum, warn.
3092    if (TK != TK_Definition && !Invalid)  {
3093      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3094                                              : diag::ext_forward_ref_enum;
3095      Diag(Loc, DK);
3096    }
3097  } else {
3098    // struct/union/class
3099
3100    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3101    // struct X { int A; } D;    D should chain to X.
3102    if (getLangOptions().CPlusPlus)
3103      // FIXME: Look for a way to use RecordDecl for simple structs.
3104      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3105                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3106    else
3107      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3108                               cast_or_null<RecordDecl>(PrevDecl));
3109  }
3110
3111  if (Kind != TagDecl::TK_enum) {
3112    // Handle #pragma pack: if the #pragma pack stack has non-default
3113    // alignment, make up a packed attribute for this decl. These
3114    // attributes are checked when the ASTContext lays out the
3115    // structure.
3116    //
3117    // It is important for implementing the correct semantics that this
3118    // happen here (in act on tag decl). The #pragma pack stack is
3119    // maintained as a result of parser callbacks which can occur at
3120    // many points during the parsing of a struct declaration (because
3121    // the #pragma tokens are effectively skipped over during the
3122    // parsing of the struct).
3123    if (unsigned Alignment = getPragmaPackAlignment())
3124      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3125  }
3126
3127  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3128    // C++ [dcl.typedef]p3:
3129    //   [...] Similarly, in a given scope, a class or enumeration
3130    //   shall not be declared with the same name as a typedef-name
3131    //   that is declared in that scope and refers to a type other
3132    //   than the class or enumeration itself.
3133    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3134    TypedefDecl *PrevTypedef = 0;
3135    if (Lookup.getKind() == LookupResult::Found)
3136      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3137
3138    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3139        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3140          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3141      Diag(Loc, diag::err_tag_definition_of_typedef)
3142        << Context.getTypeDeclType(New)
3143        << PrevTypedef->getUnderlyingType();
3144      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3145      Invalid = true;
3146    }
3147  }
3148
3149  if (Invalid)
3150    New->setInvalidDecl();
3151
3152  if (Attr)
3153    ProcessDeclAttributeList(New, Attr);
3154
3155  // If we're declaring or defining a tag in function prototype scope
3156  // in C, note that this type can only be used within the function.
3157  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3158    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3159
3160  // Set the lexical context. If the tag has a C++ scope specifier, the
3161  // lexical context will be different from the semantic context.
3162  New->setLexicalDeclContext(CurContext);
3163
3164  if (TK == TK_Definition)
3165    New->startDefinition();
3166
3167  // If this has an identifier, add it to the scope stack.
3168  if (Name) {
3169    S = getNonFieldDeclScope(S);
3170    PushOnScopeChains(New, S);
3171  } else {
3172    CurContext->addDecl(New);
3173  }
3174
3175  return New;
3176}
3177
3178void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3179  AdjustDeclIfTemplate(TagD);
3180  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3181
3182  // Enter the tag context.
3183  PushDeclContext(S, Tag);
3184
3185  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3186    FieldCollector->StartClass();
3187
3188    if (Record->getIdentifier()) {
3189      // C++ [class]p2:
3190      //   [...] The class-name is also inserted into the scope of the
3191      //   class itself; this is known as the injected-class-name. For
3192      //   purposes of access checking, the injected-class-name is treated
3193      //   as if it were a public member name.
3194      RecordDecl *InjectedClassName
3195        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3196                                CurContext, Record->getLocation(),
3197                                Record->getIdentifier(), Record);
3198      InjectedClassName->setImplicit();
3199      PushOnScopeChains(InjectedClassName, S);
3200    }
3201  }
3202}
3203
3204void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3205  AdjustDeclIfTemplate(TagD);
3206  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3207
3208  if (isa<CXXRecordDecl>(Tag))
3209    FieldCollector->FinishClass();
3210
3211  // Exit this scope of this tag's definition.
3212  PopDeclContext();
3213
3214  // Notify the consumer that we've defined a tag.
3215  Consumer.HandleTagDeclDefinition(Tag);
3216}
3217
3218bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3219                          QualType FieldTy, const Expr *BitWidth) {
3220  // C99 6.7.2.1p4 - verify the field type.
3221  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3222  if (!FieldTy->isIntegralType()) {
3223    // Handle incomplete types with specific error.
3224    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3225      return true;
3226    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3227      << FieldName << BitWidth->getSourceRange();
3228  }
3229
3230  llvm::APSInt Value;
3231  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3232    return true;
3233
3234  // Zero-width bitfield is ok for anonymous field.
3235  if (Value == 0 && FieldName)
3236    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3237
3238  if (Value.isNegative())
3239    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3240
3241  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3242  // FIXME: We won't need the 0 size once we check that the field type is valid.
3243  if (TypeSize && Value.getZExtValue() > TypeSize)
3244    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3245       << FieldName << (unsigned)TypeSize;
3246
3247  return false;
3248}
3249
3250/// ActOnField - Each field of a struct/union/class is passed into this in order
3251/// to create a FieldDecl object for it.
3252Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3253                               SourceLocation DeclStart,
3254                               Declarator &D, ExprTy *BitfieldWidth) {
3255  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3256                     static_cast<Expr*>(BitfieldWidth));
3257}
3258
3259/// HandleField - Analyze a field of a C struct or a C++ data member.
3260///
3261FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3262                             SourceLocation DeclStart,
3263                             Declarator &D, Expr *BitWidth) {
3264  IdentifierInfo *II = D.getIdentifier();
3265  SourceLocation Loc = DeclStart;
3266  if (II) Loc = D.getIdentifierLoc();
3267
3268  QualType T = GetTypeForDeclarator(D, S);
3269  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3270  bool InvalidDecl = false;
3271
3272  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3273  // than a variably modified type.
3274  if (T->isVariablyModifiedType()) {
3275    bool SizeIsNegative;
3276    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3277                                                           SizeIsNegative);
3278    if (!FixedTy.isNull()) {
3279      Diag(Loc, diag::warn_illegal_constant_array_size);
3280      T = FixedTy;
3281    } else {
3282      if (SizeIsNegative)
3283        Diag(Loc, diag::err_typecheck_negative_array_size);
3284      else
3285        Diag(Loc, diag::err_typecheck_field_variable_size);
3286      T = Context.IntTy;
3287      InvalidDecl = true;
3288    }
3289  }
3290
3291  if (BitWidth) {
3292    if (VerifyBitField(Loc, II, T, BitWidth)) {
3293      InvalidDecl = true;
3294      DeleteExpr(BitWidth);
3295      BitWidth = 0;
3296    }
3297  } else {
3298    // Not a bitfield.
3299
3300    // validate II.
3301
3302  }
3303
3304  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3305                                       Loc, II, T, BitWidth,
3306                                       D.getDeclSpec().getStorageClassSpec() ==
3307                                       DeclSpec::SCS_mutable);
3308
3309  if (II) {
3310    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3311    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3312        && !isa<TagDecl>(PrevDecl)) {
3313      Diag(Loc, diag::err_duplicate_member) << II;
3314      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3315      NewFD->setInvalidDecl();
3316      Record->setInvalidDecl();
3317    }
3318  }
3319
3320  if (getLangOptions().CPlusPlus) {
3321    CheckExtraCXXDefaultArguments(D);
3322    if (!T->isPODType())
3323      cast<CXXRecordDecl>(Record)->setPOD(false);
3324  }
3325
3326  ProcessDeclAttributes(NewFD, D);
3327  if (T.isObjCGCWeak())
3328    Diag(Loc, diag::warn_attribute_weak_on_field);
3329
3330  if (D.getInvalidType() || InvalidDecl)
3331    NewFD->setInvalidDecl();
3332
3333  if (II) {
3334    PushOnScopeChains(NewFD, S);
3335  } else
3336    Record->addDecl(NewFD);
3337
3338  return NewFD;
3339}
3340
3341/// TranslateIvarVisibility - Translate visibility from a token ID to an
3342///  AST enum value.
3343static ObjCIvarDecl::AccessControl
3344TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3345  switch (ivarVisibility) {
3346  default: assert(0 && "Unknown visitibility kind");
3347  case tok::objc_private: return ObjCIvarDecl::Private;
3348  case tok::objc_public: return ObjCIvarDecl::Public;
3349  case tok::objc_protected: return ObjCIvarDecl::Protected;
3350  case tok::objc_package: return ObjCIvarDecl::Package;
3351  }
3352}
3353
3354/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3355/// in order to create an IvarDecl object for it.
3356Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3357                              SourceLocation DeclStart,
3358                              Declarator &D, ExprTy *BitfieldWidth,
3359                              tok::ObjCKeywordKind Visibility) {
3360
3361  IdentifierInfo *II = D.getIdentifier();
3362  Expr *BitWidth = (Expr*)BitfieldWidth;
3363  SourceLocation Loc = DeclStart;
3364  if (II) Loc = D.getIdentifierLoc();
3365
3366  // FIXME: Unnamed fields can be handled in various different ways, for
3367  // example, unnamed unions inject all members into the struct namespace!
3368
3369  QualType T = GetTypeForDeclarator(D, S);
3370  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3371  bool InvalidDecl = false;
3372
3373  if (BitWidth) {
3374    // 6.7.2.1p3, 6.7.2.1p4
3375    if (VerifyBitField(Loc, II, T, BitWidth)) {
3376      InvalidDecl = true;
3377      DeleteExpr(BitWidth);
3378      BitWidth = 0;
3379    }
3380  } else {
3381    // Not a bitfield.
3382
3383    // validate II.
3384
3385  }
3386
3387  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3388  // than a variably modified type.
3389  if (T->isVariablyModifiedType()) {
3390    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3391    InvalidDecl = true;
3392  }
3393
3394  // Get the visibility (access control) for this ivar.
3395  ObjCIvarDecl::AccessControl ac =
3396    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3397                                        : ObjCIvarDecl::None;
3398
3399  // Construct the decl.
3400  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3401                                             (Expr *)BitfieldWidth);
3402
3403  if (II) {
3404    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3405    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3406        && !isa<TagDecl>(PrevDecl)) {
3407      Diag(Loc, diag::err_duplicate_member) << II;
3408      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3409      NewID->setInvalidDecl();
3410    }
3411  }
3412
3413  // Process attributes attached to the ivar.
3414  ProcessDeclAttributes(NewID, D);
3415
3416  if (D.getInvalidType() || InvalidDecl)
3417    NewID->setInvalidDecl();
3418
3419  if (II) {
3420    // FIXME: When interfaces are DeclContexts, we'll need to add
3421    // these to the interface.
3422    S->AddDecl(NewID);
3423    IdResolver.AddDecl(NewID);
3424  }
3425
3426  return NewID;
3427}
3428
3429void Sema::ActOnFields(Scope* S,
3430                       SourceLocation RecLoc, DeclTy *RecDecl,
3431                       DeclTy **Fields, unsigned NumFields,
3432                       SourceLocation LBrac, SourceLocation RBrac,
3433                       AttributeList *Attr) {
3434  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3435  assert(EnclosingDecl && "missing record or interface decl");
3436
3437  // If the decl this is being inserted into is invalid, then it may be a
3438  // redeclaration or some other bogus case.  Don't try to add fields to it.
3439  if (EnclosingDecl->isInvalidDecl()) {
3440    // FIXME: Deallocate fields?
3441    return;
3442  }
3443
3444
3445  // Verify that all the fields are okay.
3446  unsigned NumNamedMembers = 0;
3447  llvm::SmallVector<FieldDecl*, 32> RecFields;
3448
3449  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3450  for (unsigned i = 0; i != NumFields; ++i) {
3451    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3452    assert(FD && "missing field decl");
3453
3454    // Get the type for the field.
3455    Type *FDTy = FD->getType().getTypePtr();
3456
3457    if (!FD->isAnonymousStructOrUnion()) {
3458      // Remember all fields written by the user.
3459      RecFields.push_back(FD);
3460    }
3461
3462    // If the field is already invalid for some reason, don't emit more
3463    // diagnostics about it.
3464    if (FD->isInvalidDecl())
3465      continue;
3466
3467    // C99 6.7.2.1p2 - A field may not be a function type.
3468    if (FDTy->isFunctionType()) {
3469      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3470        << FD->getDeclName();
3471      FD->setInvalidDecl();
3472      EnclosingDecl->setInvalidDecl();
3473      continue;
3474    }
3475    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3476    if (FDTy->isIncompleteType()) {
3477      if (!Record) {  // Incomplete ivar type is always an error.
3478        RequireCompleteType(FD->getLocation(), FD->getType(),
3479                               diag::err_field_incomplete);
3480        FD->setInvalidDecl();
3481        EnclosingDecl->setInvalidDecl();
3482        continue;
3483      }
3484      if (i != NumFields-1 ||                   // ... that the last member ...
3485          !Record->isStruct() ||  // ... of a structure ...
3486          !FDTy->isArrayType()) {         //... may have incomplete array type.
3487        RequireCompleteType(FD->getLocation(), FD->getType(),
3488                               diag::err_field_incomplete);
3489        FD->setInvalidDecl();
3490        EnclosingDecl->setInvalidDecl();
3491        continue;
3492      }
3493      if (NumNamedMembers < 1) {  //... must have more than named member ...
3494        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3495          << FD->getDeclName();
3496        FD->setInvalidDecl();
3497        EnclosingDecl->setInvalidDecl();
3498        continue;
3499      }
3500      // Okay, we have a legal flexible array member at the end of the struct.
3501      if (Record)
3502        Record->setHasFlexibleArrayMember(true);
3503    }
3504    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3505    /// field of another structure or the element of an array.
3506    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3507      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3508        // If this is a member of a union, then entire union becomes "flexible".
3509        if (Record && Record->isUnion()) {
3510          Record->setHasFlexibleArrayMember(true);
3511        } else {
3512          // If this is a struct/class and this is not the last element, reject
3513          // it.  Note that GCC supports variable sized arrays in the middle of
3514          // structures.
3515          if (i != NumFields-1)
3516            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3517              << FD->getDeclName();
3518          else {
3519            // We support flexible arrays at the end of structs in
3520            // other structs as an extension.
3521            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3522              << FD->getDeclName();
3523            if (Record)
3524              Record->setHasFlexibleArrayMember(true);
3525          }
3526        }
3527      }
3528    }
3529    /// A field cannot be an Objective-c object
3530    if (FDTy->isObjCInterfaceType()) {
3531      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3532      FD->setInvalidDecl();
3533      EnclosingDecl->setInvalidDecl();
3534      continue;
3535    }
3536    // Keep track of the number of named members.
3537    if (FD->getIdentifier())
3538      ++NumNamedMembers;
3539  }
3540
3541  // Okay, we successfully defined 'Record'.
3542  if (Record) {
3543    Record->completeDefinition(Context);
3544  } else {
3545    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3546    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3547      ID->setIVarList(ClsFields, RecFields.size(), Context);
3548      ID->setLocEnd(RBrac);
3549
3550      // Must enforce the rule that ivars in the base classes may not be
3551      // duplicates.
3552      if (ID->getSuperClass()) {
3553        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3554             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3555          ObjCIvarDecl* Ivar = (*IVI);
3556          IdentifierInfo *II = Ivar->getIdentifier();
3557          ObjCIvarDecl* prevIvar =
3558            ID->getSuperClass()->lookupInstanceVariable(II);
3559          if (prevIvar) {
3560            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3561            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3562          }
3563        }
3564      }
3565    } else if (ObjCImplementationDecl *IMPDecl =
3566                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3567      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3568      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3569      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3570    }
3571  }
3572
3573  if (Attr)
3574    ProcessDeclAttributeList(Record, Attr);
3575}
3576
3577Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3578                                      DeclTy *lastEnumConst,
3579                                      SourceLocation IdLoc, IdentifierInfo *Id,
3580                                      SourceLocation EqualLoc, ExprTy *val) {
3581  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3582  EnumConstantDecl *LastEnumConst =
3583    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3584  Expr *Val = static_cast<Expr*>(val);
3585
3586  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3587  // we find one that is.
3588  S = getNonFieldDeclScope(S);
3589
3590  // Verify that there isn't already something declared with this name in this
3591  // scope.
3592  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3593  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3594    // Maybe we will complain about the shadowed template parameter.
3595    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3596    // Just pretend that we didn't see the previous declaration.
3597    PrevDecl = 0;
3598  }
3599
3600  if (PrevDecl) {
3601    // When in C++, we may get a TagDecl with the same name; in this case the
3602    // enum constant will 'hide' the tag.
3603    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3604           "Received TagDecl when not in C++!");
3605    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3606      if (isa<EnumConstantDecl>(PrevDecl))
3607        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3608      else
3609        Diag(IdLoc, diag::err_redefinition) << Id;
3610      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3611      if (Val) Val->Destroy(Context);
3612      return 0;
3613    }
3614  }
3615
3616  llvm::APSInt EnumVal(32);
3617  QualType EltTy;
3618  if (Val) {
3619    // Make sure to promote the operand type to int.
3620    UsualUnaryConversions(Val);
3621
3622    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3623    SourceLocation ExpLoc;
3624    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3625      Val->Destroy(Context);
3626      Val = 0;  // Just forget about it.
3627    } else {
3628      EltTy = Val->getType();
3629    }
3630  }
3631
3632  if (!Val) {
3633    if (LastEnumConst) {
3634      // Assign the last value + 1.
3635      EnumVal = LastEnumConst->getInitVal();
3636      ++EnumVal;
3637
3638      // Check for overflow on increment.
3639      if (EnumVal < LastEnumConst->getInitVal())
3640        Diag(IdLoc, diag::warn_enum_value_overflow);
3641
3642      EltTy = LastEnumConst->getType();
3643    } else {
3644      // First value, set to zero.
3645      EltTy = Context.IntTy;
3646      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3647    }
3648  }
3649
3650  EnumConstantDecl *New =
3651    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3652                             Val, EnumVal);
3653
3654  // Register this decl in the current scope stack.
3655  PushOnScopeChains(New, S);
3656
3657  return New;
3658}
3659
3660// FIXME: For consistency with ActOnFields(), we should have the parser
3661// pass in the source location for the left/right braces.
3662void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3663                         DeclTy **Elements, unsigned NumElements) {
3664  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3665  QualType EnumType = Context.getTypeDeclType(Enum);
3666
3667  // TODO: If the result value doesn't fit in an int, it must be a long or long
3668  // long value.  ISO C does not support this, but GCC does as an extension,
3669  // emit a warning.
3670  unsigned IntWidth = Context.Target.getIntWidth();
3671
3672  // Verify that all the values are okay, compute the size of the values, and
3673  // reverse the list.
3674  unsigned NumNegativeBits = 0;
3675  unsigned NumPositiveBits = 0;
3676
3677  // Keep track of whether all elements have type int.
3678  bool AllElementsInt = true;
3679
3680  for (unsigned i = 0; i != NumElements; ++i) {
3681    EnumConstantDecl *ECD =
3682      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3683    if (!ECD) continue;  // Already issued a diagnostic.
3684
3685    // If the enum value doesn't fit in an int, emit an extension warning.
3686    const llvm::APSInt &InitVal = ECD->getInitVal();
3687    assert(InitVal.getBitWidth() >= IntWidth &&
3688           "Should have promoted value to int");
3689    if (InitVal.getBitWidth() > IntWidth) {
3690      llvm::APSInt V(InitVal);
3691      V.trunc(IntWidth);
3692      V.extend(InitVal.getBitWidth());
3693      if (V != InitVal)
3694        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3695          << InitVal.toString(10);
3696    }
3697
3698    // Keep track of the size of positive and negative values.
3699    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3700      NumPositiveBits = std::max(NumPositiveBits,
3701                                 (unsigned)InitVal.getActiveBits());
3702    else
3703      NumNegativeBits = std::max(NumNegativeBits,
3704                                 (unsigned)InitVal.getMinSignedBits());
3705
3706    // Keep track of whether every enum element has type int (very commmon).
3707    if (AllElementsInt)
3708      AllElementsInt = ECD->getType() == Context.IntTy;
3709  }
3710
3711  // Figure out the type that should be used for this enum.
3712  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3713  QualType BestType;
3714  unsigned BestWidth;
3715
3716  if (NumNegativeBits) {
3717    // If there is a negative value, figure out the smallest integer type (of
3718    // int/long/longlong) that fits.
3719    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3720      BestType = Context.IntTy;
3721      BestWidth = IntWidth;
3722    } else {
3723      BestWidth = Context.Target.getLongWidth();
3724
3725      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3726        BestType = Context.LongTy;
3727      else {
3728        BestWidth = Context.Target.getLongLongWidth();
3729
3730        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3731          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3732        BestType = Context.LongLongTy;
3733      }
3734    }
3735  } else {
3736    // If there is no negative value, figure out which of uint, ulong, ulonglong
3737    // fits.
3738    if (NumPositiveBits <= IntWidth) {
3739      BestType = Context.UnsignedIntTy;
3740      BestWidth = IntWidth;
3741    } else if (NumPositiveBits <=
3742               (BestWidth = Context.Target.getLongWidth())) {
3743      BestType = Context.UnsignedLongTy;
3744    } else {
3745      BestWidth = Context.Target.getLongLongWidth();
3746      assert(NumPositiveBits <= BestWidth &&
3747             "How could an initializer get larger than ULL?");
3748      BestType = Context.UnsignedLongLongTy;
3749    }
3750  }
3751
3752  // Loop over all of the enumerator constants, changing their types to match
3753  // the type of the enum if needed.
3754  for (unsigned i = 0; i != NumElements; ++i) {
3755    EnumConstantDecl *ECD =
3756      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3757    if (!ECD) continue;  // Already issued a diagnostic.
3758
3759    // Standard C says the enumerators have int type, but we allow, as an
3760    // extension, the enumerators to be larger than int size.  If each
3761    // enumerator value fits in an int, type it as an int, otherwise type it the
3762    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3763    // that X has type 'int', not 'unsigned'.
3764    if (ECD->getType() == Context.IntTy) {
3765      // Make sure the init value is signed.
3766      llvm::APSInt IV = ECD->getInitVal();
3767      IV.setIsSigned(true);
3768      ECD->setInitVal(IV);
3769
3770      if (getLangOptions().CPlusPlus)
3771        // C++ [dcl.enum]p4: Following the closing brace of an
3772        // enum-specifier, each enumerator has the type of its
3773        // enumeration.
3774        ECD->setType(EnumType);
3775      continue;  // Already int type.
3776    }
3777
3778    // Determine whether the value fits into an int.
3779    llvm::APSInt InitVal = ECD->getInitVal();
3780    bool FitsInInt;
3781    if (InitVal.isUnsigned() || !InitVal.isNegative())
3782      FitsInInt = InitVal.getActiveBits() < IntWidth;
3783    else
3784      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3785
3786    // If it fits into an integer type, force it.  Otherwise force it to match
3787    // the enum decl type.
3788    QualType NewTy;
3789    unsigned NewWidth;
3790    bool NewSign;
3791    if (FitsInInt) {
3792      NewTy = Context.IntTy;
3793      NewWidth = IntWidth;
3794      NewSign = true;
3795    } else if (ECD->getType() == BestType) {
3796      // Already the right type!
3797      if (getLangOptions().CPlusPlus)
3798        // C++ [dcl.enum]p4: Following the closing brace of an
3799        // enum-specifier, each enumerator has the type of its
3800        // enumeration.
3801        ECD->setType(EnumType);
3802      continue;
3803    } else {
3804      NewTy = BestType;
3805      NewWidth = BestWidth;
3806      NewSign = BestType->isSignedIntegerType();
3807    }
3808
3809    // Adjust the APSInt value.
3810    InitVal.extOrTrunc(NewWidth);
3811    InitVal.setIsSigned(NewSign);
3812    ECD->setInitVal(InitVal);
3813
3814    // Adjust the Expr initializer and type.
3815    if (ECD->getInitExpr())
3816      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3817                                                      /*isLvalue=*/false));
3818    if (getLangOptions().CPlusPlus)
3819      // C++ [dcl.enum]p4: Following the closing brace of an
3820      // enum-specifier, each enumerator has the type of its
3821      // enumeration.
3822      ECD->setType(EnumType);
3823    else
3824      ECD->setType(NewTy);
3825  }
3826
3827  Enum->completeDefinition(Context, BestType);
3828}
3829
3830Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3831                                          ExprArg expr) {
3832  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3833
3834  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3835}
3836
3837