SemaDecl.cpp revision 5058ef6c7ab13f285da81c787ea7a5ffe464e8a4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  return D->isCopyAssignment();
548}
549
550bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
551  assert(D);
552
553  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
554    return false;
555
556  // Ignore class templates.
557  if (D->getDeclContext()->isDependentContext())
558    return false;
559
560  // We warn for unused decls internal to the translation unit.
561  if (D->getLinkage() == ExternalLinkage)
562    return false;
563
564  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566      return false;
567
568    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570        return false;
571    } else {
572      // 'static inline' functions are used in headers; don't warn.
573      if (FD->getStorageClass() == SC_Static &&
574          FD->isInlineSpecified())
575        return false;
576    }
577
578    if (FD->isThisDeclarationADefinition())
579      return !Context.DeclMustBeEmitted(FD);
580    return true;
581  }
582
583  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
584    if (VD->isStaticDataMember() &&
585        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
586      return false;
587
588    if ( VD->isFileVarDecl() &&
589        !VD->getType().isConstant(Context))
590      return !Context.DeclMustBeEmitted(VD);
591  }
592
593   return false;
594 }
595
596 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
597  if (!D)
598    return;
599
600  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
601    const FunctionDecl *First = FD->getFirstDeclaration();
602    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
603      return; // First should already be in the vector.
604  }
605
606  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
607    const VarDecl *First = VD->getFirstDeclaration();
608    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612   if (ShouldWarnIfUnusedFileScopedDecl(D))
613     UnusedFileScopedDecls.push_back(D);
614 }
615
616static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
617  if (D->isInvalidDecl())
618    return false;
619
620  if (D->isUsed() || D->hasAttr<UnusedAttr>())
621    return false;
622
623  // White-list anything that isn't a local variable.
624  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
625      !D->getDeclContext()->isFunctionOrMethod())
626    return false;
627
628  // Types of valid local variables should be complete, so this should succeed.
629  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
630
631    // White-list anything with an __attribute__((unused)) type.
632    QualType Ty = VD->getType();
633
634    // Only look at the outermost level of typedef.
635    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
636      if (TT->getDecl()->hasAttr<UnusedAttr>())
637        return false;
638    }
639
640    // If we failed to complete the type for some reason, or if the type is
641    // dependent, don't diagnose the variable.
642    if (Ty->isIncompleteType() || Ty->isDependentType())
643      return false;
644
645    if (const TagType *TT = Ty->getAs<TagType>()) {
646      const TagDecl *Tag = TT->getDecl();
647      if (Tag->hasAttr<UnusedAttr>())
648        return false;
649
650      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
651        // FIXME: Checking for the presence of a user-declared constructor
652        // isn't completely accurate; we'd prefer to check that the initializer
653        // has no side effects.
654        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
655          return false;
656      }
657    }
658
659    // TODO: __attribute__((unused)) templates?
660  }
661
662  return true;
663}
664
665void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
666  if (!ShouldDiagnoseUnusedDecl(D))
667    return;
668
669  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
670    Diag(D->getLocation(), diag::warn_unused_exception_param)
671    << D->getDeclName();
672  else
673    Diag(D->getLocation(), diag::warn_unused_variable)
674    << D->getDeclName();
675}
676
677void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
678  if (S->decl_empty()) return;
679  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
680         "Scope shouldn't contain decls!");
681
682  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
683       I != E; ++I) {
684    Decl *TmpD = (*I);
685    assert(TmpD && "This decl didn't get pushed??");
686
687    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
688    NamedDecl *D = cast<NamedDecl>(TmpD);
689
690    if (!D->getDeclName()) continue;
691
692    // Diagnose unused variables in this scope.
693    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
694      DiagnoseUnusedDecl(D);
695
696    // Remove this name from our lexical scope.
697    IdResolver.RemoveDecl(D);
698  }
699}
700
701/// \brief Look for an Objective-C class in the translation unit.
702///
703/// \param Id The name of the Objective-C class we're looking for. If
704/// typo-correction fixes this name, the Id will be updated
705/// to the fixed name.
706///
707/// \param IdLoc The location of the name in the translation unit.
708///
709/// \param TypoCorrection If true, this routine will attempt typo correction
710/// if there is no class with the given name.
711///
712/// \returns The declaration of the named Objective-C class, or NULL if the
713/// class could not be found.
714ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
715                                              SourceLocation IdLoc,
716                                              bool TypoCorrection) {
717  // The third "scope" argument is 0 since we aren't enabling lazy built-in
718  // creation from this context.
719  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
720
721  if (!IDecl && TypoCorrection) {
722    // Perform typo correction at the given location, but only if we
723    // find an Objective-C class name.
724    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
725    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
726        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
727      Diag(IdLoc, diag::err_undef_interface_suggest)
728        << Id << IDecl->getDeclName()
729        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
730      Diag(IDecl->getLocation(), diag::note_previous_decl)
731        << IDecl->getDeclName();
732
733      Id = IDecl->getIdentifier();
734    }
735  }
736
737  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
738}
739
740/// getNonFieldDeclScope - Retrieves the innermost scope, starting
741/// from S, where a non-field would be declared. This routine copes
742/// with the difference between C and C++ scoping rules in structs and
743/// unions. For example, the following code is well-formed in C but
744/// ill-formed in C++:
745/// @code
746/// struct S6 {
747///   enum { BAR } e;
748/// };
749///
750/// void test_S6() {
751///   struct S6 a;
752///   a.e = BAR;
753/// }
754/// @endcode
755/// For the declaration of BAR, this routine will return a different
756/// scope. The scope S will be the scope of the unnamed enumeration
757/// within S6. In C++, this routine will return the scope associated
758/// with S6, because the enumeration's scope is a transparent
759/// context but structures can contain non-field names. In C, this
760/// routine will return the translation unit scope, since the
761/// enumeration's scope is a transparent context and structures cannot
762/// contain non-field names.
763Scope *Sema::getNonFieldDeclScope(Scope *S) {
764  while (((S->getFlags() & Scope::DeclScope) == 0) ||
765         (S->getEntity() &&
766          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
767         (S->isClassScope() && !getLangOptions().CPlusPlus))
768    S = S->getParent();
769  return S;
770}
771
772void Sema::InitBuiltinVaListType() {
773  if (!Context.getBuiltinVaListType().isNull())
774    return;
775
776  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
777  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
778                                       LookupOrdinaryName, ForRedeclaration);
779  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
780  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
781}
782
783/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
784/// file scope.  lazily create a decl for it. ForRedeclaration is true
785/// if we're creating this built-in in anticipation of redeclaring the
786/// built-in.
787NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
788                                     Scope *S, bool ForRedeclaration,
789                                     SourceLocation Loc) {
790  Builtin::ID BID = (Builtin::ID)bid;
791
792  if (Context.BuiltinInfo.hasVAListUse(BID))
793    InitBuiltinVaListType();
794
795  ASTContext::GetBuiltinTypeError Error;
796  QualType R = Context.GetBuiltinType(BID, Error);
797  switch (Error) {
798  case ASTContext::GE_None:
799    // Okay
800    break;
801
802  case ASTContext::GE_Missing_stdio:
803    if (ForRedeclaration)
804      Diag(Loc, diag::err_implicit_decl_requires_stdio)
805        << Context.BuiltinInfo.GetName(BID);
806    return 0;
807
808  case ASTContext::GE_Missing_setjmp:
809    if (ForRedeclaration)
810      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
811        << Context.BuiltinInfo.GetName(BID);
812    return 0;
813  }
814
815  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
816    Diag(Loc, diag::ext_implicit_lib_function_decl)
817      << Context.BuiltinInfo.GetName(BID)
818      << R;
819    if (Context.BuiltinInfo.getHeaderName(BID) &&
820        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
821          != Diagnostic::Ignored)
822      Diag(Loc, diag::note_please_include_header)
823        << Context.BuiltinInfo.getHeaderName(BID)
824        << Context.BuiltinInfo.GetName(BID);
825  }
826
827  FunctionDecl *New = FunctionDecl::Create(Context,
828                                           Context.getTranslationUnitDecl(),
829                                           Loc, II, R, /*TInfo=*/0,
830                                           SC_Extern,
831                                           SC_None, false,
832                                           /*hasPrototype=*/true);
833  New->setImplicit();
834
835  // Create Decl objects for each parameter, adding them to the
836  // FunctionDecl.
837  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
838    llvm::SmallVector<ParmVarDecl*, 16> Params;
839    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
840      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
841                                           FT->getArgType(i), /*TInfo=*/0,
842                                           SC_None, SC_None, 0));
843    New->setParams(Params.data(), Params.size());
844  }
845
846  AddKnownFunctionAttributes(New);
847
848  // TUScope is the translation-unit scope to insert this function into.
849  // FIXME: This is hideous. We need to teach PushOnScopeChains to
850  // relate Scopes to DeclContexts, and probably eliminate CurContext
851  // entirely, but we're not there yet.
852  DeclContext *SavedContext = CurContext;
853  CurContext = Context.getTranslationUnitDecl();
854  PushOnScopeChains(New, TUScope);
855  CurContext = SavedContext;
856  return New;
857}
858
859/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
860/// same name and scope as a previous declaration 'Old'.  Figure out
861/// how to resolve this situation, merging decls or emitting
862/// diagnostics as appropriate. If there was an error, set New to be invalid.
863///
864void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
865  // If the new decl is known invalid already, don't bother doing any
866  // merging checks.
867  if (New->isInvalidDecl()) return;
868
869  // Allow multiple definitions for ObjC built-in typedefs.
870  // FIXME: Verify the underlying types are equivalent!
871  if (getLangOptions().ObjC1) {
872    const IdentifierInfo *TypeID = New->getIdentifier();
873    switch (TypeID->getLength()) {
874    default: break;
875    case 2:
876      if (!TypeID->isStr("id"))
877        break;
878      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
879      // Install the built-in type for 'id', ignoring the current definition.
880      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
881      return;
882    case 5:
883      if (!TypeID->isStr("Class"))
884        break;
885      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
886      // Install the built-in type for 'Class', ignoring the current definition.
887      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
888      return;
889    case 3:
890      if (!TypeID->isStr("SEL"))
891        break;
892      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
893      // Install the built-in type for 'SEL', ignoring the current definition.
894      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
895      return;
896    case 8:
897      if (!TypeID->isStr("Protocol"))
898        break;
899      Context.setObjCProtoType(New->getUnderlyingType());
900      return;
901    }
902    // Fall through - the typedef name was not a builtin type.
903  }
904
905  // Verify the old decl was also a type.
906  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
907  if (!Old) {
908    Diag(New->getLocation(), diag::err_redefinition_different_kind)
909      << New->getDeclName();
910
911    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
912    if (OldD->getLocation().isValid())
913      Diag(OldD->getLocation(), diag::note_previous_definition);
914
915    return New->setInvalidDecl();
916  }
917
918  // If the old declaration is invalid, just give up here.
919  if (Old->isInvalidDecl())
920    return New->setInvalidDecl();
921
922  // Determine the "old" type we'll use for checking and diagnostics.
923  QualType OldType;
924  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
925    OldType = OldTypedef->getUnderlyingType();
926  else
927    OldType = Context.getTypeDeclType(Old);
928
929  // If the typedef types are not identical, reject them in all languages and
930  // with any extensions enabled.
931
932  if (OldType != New->getUnderlyingType() &&
933      Context.getCanonicalType(OldType) !=
934      Context.getCanonicalType(New->getUnderlyingType())) {
935    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
936      << New->getUnderlyingType() << OldType;
937    if (Old->getLocation().isValid())
938      Diag(Old->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  // The types match.  Link up the redeclaration chain if the old
943  // declaration was a typedef.
944  // FIXME: this is a potential source of wierdness if the type
945  // spellings don't match exactly.
946  if (isa<TypedefDecl>(Old))
947    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
948
949  if (getLangOptions().Microsoft)
950    return;
951
952  if (getLangOptions().CPlusPlus) {
953    // C++ [dcl.typedef]p2:
954    //   In a given non-class scope, a typedef specifier can be used to
955    //   redefine the name of any type declared in that scope to refer
956    //   to the type to which it already refers.
957    if (!isa<CXXRecordDecl>(CurContext))
958      return;
959
960    // C++0x [dcl.typedef]p4:
961    //   In a given class scope, a typedef specifier can be used to redefine
962    //   any class-name declared in that scope that is not also a typedef-name
963    //   to refer to the type to which it already refers.
964    //
965    // This wording came in via DR424, which was a correction to the
966    // wording in DR56, which accidentally banned code like:
967    //
968    //   struct S {
969    //     typedef struct A { } A;
970    //   };
971    //
972    // in the C++03 standard. We implement the C++0x semantics, which
973    // allow the above but disallow
974    //
975    //   struct S {
976    //     typedef int I;
977    //     typedef int I;
978    //   };
979    //
980    // since that was the intent of DR56.
981    if (!isa<TypedefDecl >(Old))
982      return;
983
984    Diag(New->getLocation(), diag::err_redefinition)
985      << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989
990  // If we have a redefinition of a typedef in C, emit a warning.  This warning
991  // is normally mapped to an error, but can be controlled with
992  // -Wtypedef-redefinition.  If either the original or the redefinition is
993  // in a system header, don't emit this for compatibility with GCC.
994  if (getDiagnostics().getSuppressSystemWarnings() &&
995      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
996       Context.getSourceManager().isInSystemHeader(New->getLocation())))
997    return;
998
999  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1000    << New->getDeclName();
1001  Diag(Old->getLocation(), diag::note_previous_definition);
1002  return;
1003}
1004
1005/// DeclhasAttr - returns true if decl Declaration already has the target
1006/// attribute.
1007static bool
1008DeclHasAttr(const Decl *D, const Attr *A) {
1009  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1010  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1011    if ((*i)->getKind() == A->getKind()) {
1012      // FIXME: Don't hardcode this check
1013      if (OA && isa<OwnershipAttr>(*i))
1014        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1015      return true;
1016    }
1017
1018  return false;
1019}
1020
1021/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1022static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1023  if (!Old->hasAttrs())
1024    return;
1025  // Ensure that any moving of objects within the allocated map is done before
1026  // we process them.
1027  if (!New->hasAttrs())
1028    New->setAttrs(AttrVec());
1029  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1030       ++i) {
1031    // FIXME: Make this more general than just checking for Overloadable.
1032    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1033      Attr *NewAttr = (*i)->clone(C);
1034      NewAttr->setInherited(true);
1035      New->addAttr(NewAttr);
1036    }
1037  }
1038}
1039
1040namespace {
1041
1042/// Used in MergeFunctionDecl to keep track of function parameters in
1043/// C.
1044struct GNUCompatibleParamWarning {
1045  ParmVarDecl *OldParm;
1046  ParmVarDecl *NewParm;
1047  QualType PromotedType;
1048};
1049
1050}
1051
1052/// getSpecialMember - get the special member enum for a method.
1053Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1054  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1055    if (Ctor->isCopyConstructor())
1056      return Sema::CXXCopyConstructor;
1057
1058    return Sema::CXXConstructor;
1059  }
1060
1061  if (isa<CXXDestructorDecl>(MD))
1062    return Sema::CXXDestructor;
1063
1064  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1065  return Sema::CXXCopyAssignment;
1066}
1067
1068/// canRedefineFunction - checks if a function can be redefined. Currently,
1069/// only extern inline functions can be redefined, and even then only in
1070/// GNU89 mode.
1071static bool canRedefineFunction(const FunctionDecl *FD,
1072                                const LangOptions& LangOpts) {
1073  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1074          FD->isInlineSpecified() &&
1075          FD->getStorageClass() == SC_Extern);
1076}
1077
1078/// MergeFunctionDecl - We just parsed a function 'New' from
1079/// declarator D which has the same name and scope as a previous
1080/// declaration 'Old'.  Figure out how to resolve this situation,
1081/// merging decls or emitting diagnostics as appropriate.
1082///
1083/// In C++, New and Old must be declarations that are not
1084/// overloaded. Use IsOverload to determine whether New and Old are
1085/// overloaded, and to select the Old declaration that New should be
1086/// merged with.
1087///
1088/// Returns true if there was an error, false otherwise.
1089bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1090  // Verify the old decl was also a function.
1091  FunctionDecl *Old = 0;
1092  if (FunctionTemplateDecl *OldFunctionTemplate
1093        = dyn_cast<FunctionTemplateDecl>(OldD))
1094    Old = OldFunctionTemplate->getTemplatedDecl();
1095  else
1096    Old = dyn_cast<FunctionDecl>(OldD);
1097  if (!Old) {
1098    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1099      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1100      Diag(Shadow->getTargetDecl()->getLocation(),
1101           diag::note_using_decl_target);
1102      Diag(Shadow->getUsingDecl()->getLocation(),
1103           diag::note_using_decl) << 0;
1104      return true;
1105    }
1106
1107    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1108      << New->getDeclName();
1109    Diag(OldD->getLocation(), diag::note_previous_definition);
1110    return true;
1111  }
1112
1113  // Determine whether the previous declaration was a definition,
1114  // implicit declaration, or a declaration.
1115  diag::kind PrevDiag;
1116  if (Old->isThisDeclarationADefinition())
1117    PrevDiag = diag::note_previous_definition;
1118  else if (Old->isImplicit())
1119    PrevDiag = diag::note_previous_implicit_declaration;
1120  else
1121    PrevDiag = diag::note_previous_declaration;
1122
1123  QualType OldQType = Context.getCanonicalType(Old->getType());
1124  QualType NewQType = Context.getCanonicalType(New->getType());
1125
1126  // Don't complain about this if we're in GNU89 mode and the old function
1127  // is an extern inline function.
1128  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1129      New->getStorageClass() == SC_Static &&
1130      Old->getStorageClass() != SC_Static &&
1131      !canRedefineFunction(Old, getLangOptions())) {
1132    Diag(New->getLocation(), diag::err_static_non_static)
1133      << New;
1134    Diag(Old->getLocation(), PrevDiag);
1135    return true;
1136  }
1137
1138  // If a function is first declared with a calling convention, but is
1139  // later declared or defined without one, the second decl assumes the
1140  // calling convention of the first.
1141  //
1142  // For the new decl, we have to look at the NON-canonical type to tell the
1143  // difference between a function that really doesn't have a calling
1144  // convention and one that is declared cdecl. That's because in
1145  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1146  // because it is the default calling convention.
1147  //
1148  // Note also that we DO NOT return at this point, because we still have
1149  // other tests to run.
1150  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1151  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1152  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1153  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1154  if (OldTypeInfo.getCC() != CC_Default &&
1155      NewTypeInfo.getCC() == CC_Default) {
1156    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1157    New->setType(NewQType);
1158    NewQType = Context.getCanonicalType(NewQType);
1159  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1160                                     NewTypeInfo.getCC())) {
1161    // Calling conventions really aren't compatible, so complain.
1162    Diag(New->getLocation(), diag::err_cconv_change)
1163      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1164      << (OldTypeInfo.getCC() == CC_Default)
1165      << (OldTypeInfo.getCC() == CC_Default ? "" :
1166          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1167    Diag(Old->getLocation(), diag::note_previous_declaration);
1168    return true;
1169  }
1170
1171  // FIXME: diagnose the other way around?
1172  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1173    NewQType = Context.getNoReturnType(NewQType);
1174    New->setType(NewQType);
1175    assert(NewQType.isCanonical());
1176  }
1177
1178  // Merge regparm attribute.
1179  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1180    if (NewType->getRegParmType()) {
1181      Diag(New->getLocation(), diag::err_regparm_mismatch)
1182        << NewType->getRegParmType()
1183        << OldType->getRegParmType();
1184      Diag(Old->getLocation(), diag::note_previous_declaration);
1185      return true;
1186    }
1187
1188    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1189    New->setType(NewQType);
1190    assert(NewQType.isCanonical());
1191  }
1192
1193  if (getLangOptions().CPlusPlus) {
1194    // (C++98 13.1p2):
1195    //   Certain function declarations cannot be overloaded:
1196    //     -- Function declarations that differ only in the return type
1197    //        cannot be overloaded.
1198    QualType OldReturnType
1199      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1200    QualType NewReturnType
1201      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1202    QualType ResQT;
1203    if (OldReturnType != NewReturnType) {
1204      if (NewReturnType->isObjCObjectPointerType()
1205          && OldReturnType->isObjCObjectPointerType())
1206        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1207      if (ResQT.isNull()) {
1208        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1209        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1210        return true;
1211      }
1212      else
1213        NewQType = ResQT;
1214    }
1215
1216    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1217    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1218    if (OldMethod && NewMethod) {
1219      // Preserve triviality.
1220      NewMethod->setTrivial(OldMethod->isTrivial());
1221
1222      bool isFriend = NewMethod->getFriendObjectKind();
1223
1224      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1225        //    -- Member function declarations with the same name and the
1226        //       same parameter types cannot be overloaded if any of them
1227        //       is a static member function declaration.
1228        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1229          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1230          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1231          return true;
1232        }
1233
1234        // C++ [class.mem]p1:
1235        //   [...] A member shall not be declared twice in the
1236        //   member-specification, except that a nested class or member
1237        //   class template can be declared and then later defined.
1238        unsigned NewDiag;
1239        if (isa<CXXConstructorDecl>(OldMethod))
1240          NewDiag = diag::err_constructor_redeclared;
1241        else if (isa<CXXDestructorDecl>(NewMethod))
1242          NewDiag = diag::err_destructor_redeclared;
1243        else if (isa<CXXConversionDecl>(NewMethod))
1244          NewDiag = diag::err_conv_function_redeclared;
1245        else
1246          NewDiag = diag::err_member_redeclared;
1247
1248        Diag(New->getLocation(), NewDiag);
1249        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1250
1251      // Complain if this is an explicit declaration of a special
1252      // member that was initially declared implicitly.
1253      //
1254      // As an exception, it's okay to befriend such methods in order
1255      // to permit the implicit constructor/destructor/operator calls.
1256      } else if (OldMethod->isImplicit()) {
1257        if (isFriend) {
1258          NewMethod->setImplicit();
1259        } else {
1260          Diag(NewMethod->getLocation(),
1261               diag::err_definition_of_implicitly_declared_member)
1262            << New << getSpecialMember(OldMethod);
1263          return true;
1264        }
1265      }
1266    }
1267
1268    // (C++98 8.3.5p3):
1269    //   All declarations for a function shall agree exactly in both the
1270    //   return type and the parameter-type-list.
1271    // attributes should be ignored when comparing.
1272    if (Context.getNoReturnType(OldQType, false) ==
1273        Context.getNoReturnType(NewQType, false))
1274      return MergeCompatibleFunctionDecls(New, Old);
1275
1276    // Fall through for conflicting redeclarations and redefinitions.
1277  }
1278
1279  // C: Function types need to be compatible, not identical. This handles
1280  // duplicate function decls like "void f(int); void f(enum X);" properly.
1281  if (!getLangOptions().CPlusPlus &&
1282      Context.typesAreCompatible(OldQType, NewQType)) {
1283    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1284    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1285    const FunctionProtoType *OldProto = 0;
1286    if (isa<FunctionNoProtoType>(NewFuncType) &&
1287        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1288      // The old declaration provided a function prototype, but the
1289      // new declaration does not. Merge in the prototype.
1290      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1291      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1292                                                 OldProto->arg_type_end());
1293      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1294                                         ParamTypes.data(), ParamTypes.size(),
1295                                         OldProto->isVariadic(),
1296                                         OldProto->getTypeQuals(),
1297                                         false, false, 0, 0,
1298                                         OldProto->getExtInfo());
1299      New->setType(NewQType);
1300      New->setHasInheritedPrototype();
1301
1302      // Synthesize a parameter for each argument type.
1303      llvm::SmallVector<ParmVarDecl*, 16> Params;
1304      for (FunctionProtoType::arg_type_iterator
1305             ParamType = OldProto->arg_type_begin(),
1306             ParamEnd = OldProto->arg_type_end();
1307           ParamType != ParamEnd; ++ParamType) {
1308        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1309                                                 SourceLocation(), 0,
1310                                                 *ParamType, /*TInfo=*/0,
1311                                                 SC_None, SC_None,
1312                                                 0);
1313        Param->setImplicit();
1314        Params.push_back(Param);
1315      }
1316
1317      New->setParams(Params.data(), Params.size());
1318    }
1319
1320    return MergeCompatibleFunctionDecls(New, Old);
1321  }
1322
1323  // GNU C permits a K&R definition to follow a prototype declaration
1324  // if the declared types of the parameters in the K&R definition
1325  // match the types in the prototype declaration, even when the
1326  // promoted types of the parameters from the K&R definition differ
1327  // from the types in the prototype. GCC then keeps the types from
1328  // the prototype.
1329  //
1330  // If a variadic prototype is followed by a non-variadic K&R definition,
1331  // the K&R definition becomes variadic.  This is sort of an edge case, but
1332  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1333  // C99 6.9.1p8.
1334  if (!getLangOptions().CPlusPlus &&
1335      Old->hasPrototype() && !New->hasPrototype() &&
1336      New->getType()->getAs<FunctionProtoType>() &&
1337      Old->getNumParams() == New->getNumParams()) {
1338    llvm::SmallVector<QualType, 16> ArgTypes;
1339    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1340    const FunctionProtoType *OldProto
1341      = Old->getType()->getAs<FunctionProtoType>();
1342    const FunctionProtoType *NewProto
1343      = New->getType()->getAs<FunctionProtoType>();
1344
1345    // Determine whether this is the GNU C extension.
1346    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1347                                               NewProto->getResultType());
1348    bool LooseCompatible = !MergedReturn.isNull();
1349    for (unsigned Idx = 0, End = Old->getNumParams();
1350         LooseCompatible && Idx != End; ++Idx) {
1351      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1352      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1353      if (Context.typesAreCompatible(OldParm->getType(),
1354                                     NewProto->getArgType(Idx))) {
1355        ArgTypes.push_back(NewParm->getType());
1356      } else if (Context.typesAreCompatible(OldParm->getType(),
1357                                            NewParm->getType(),
1358                                            /*CompareUnqualified=*/true)) {
1359        GNUCompatibleParamWarning Warn
1360          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1361        Warnings.push_back(Warn);
1362        ArgTypes.push_back(NewParm->getType());
1363      } else
1364        LooseCompatible = false;
1365    }
1366
1367    if (LooseCompatible) {
1368      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1369        Diag(Warnings[Warn].NewParm->getLocation(),
1370             diag::ext_param_promoted_not_compatible_with_prototype)
1371          << Warnings[Warn].PromotedType
1372          << Warnings[Warn].OldParm->getType();
1373        if (Warnings[Warn].OldParm->getLocation().isValid())
1374          Diag(Warnings[Warn].OldParm->getLocation(),
1375               diag::note_previous_declaration);
1376      }
1377
1378      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1379                                           ArgTypes.size(),
1380                                           OldProto->isVariadic(), 0,
1381                                           false, false, 0, 0,
1382                                           OldProto->getExtInfo()));
1383      return MergeCompatibleFunctionDecls(New, Old);
1384    }
1385
1386    // Fall through to diagnose conflicting types.
1387  }
1388
1389  // A function that has already been declared has been redeclared or defined
1390  // with a different type- show appropriate diagnostic
1391  if (unsigned BuiltinID = Old->getBuiltinID()) {
1392    // The user has declared a builtin function with an incompatible
1393    // signature.
1394    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1395      // The function the user is redeclaring is a library-defined
1396      // function like 'malloc' or 'printf'. Warn about the
1397      // redeclaration, then pretend that we don't know about this
1398      // library built-in.
1399      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1400      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1401        << Old << Old->getType();
1402      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1403      Old->setInvalidDecl();
1404      return false;
1405    }
1406
1407    PrevDiag = diag::note_previous_builtin_declaration;
1408  }
1409
1410  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1411  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1412  return true;
1413}
1414
1415/// \brief Completes the merge of two function declarations that are
1416/// known to be compatible.
1417///
1418/// This routine handles the merging of attributes and other
1419/// properties of function declarations form the old declaration to
1420/// the new declaration, once we know that New is in fact a
1421/// redeclaration of Old.
1422///
1423/// \returns false
1424bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1425  // Merge the attributes
1426  MergeDeclAttributes(New, Old, Context);
1427
1428  // Merge the storage class.
1429  if (Old->getStorageClass() != SC_Extern &&
1430      Old->getStorageClass() != SC_None)
1431    New->setStorageClass(Old->getStorageClass());
1432
1433  // Merge "pure" flag.
1434  if (Old->isPure())
1435    New->setPure();
1436
1437  // Merge the "deleted" flag.
1438  if (Old->isDeleted())
1439    New->setDeleted();
1440
1441  if (getLangOptions().CPlusPlus)
1442    return MergeCXXFunctionDecl(New, Old);
1443
1444  return false;
1445}
1446
1447/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1448/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1449/// situation, merging decls or emitting diagnostics as appropriate.
1450///
1451/// Tentative definition rules (C99 6.9.2p2) are checked by
1452/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1453/// definitions here, since the initializer hasn't been attached.
1454///
1455void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1456  // If the new decl is already invalid, don't do any other checking.
1457  if (New->isInvalidDecl())
1458    return;
1459
1460  // Verify the old decl was also a variable.
1461  VarDecl *Old = 0;
1462  if (!Previous.isSingleResult() ||
1463      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1464    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1465      << New->getDeclName();
1466    Diag(Previous.getRepresentativeDecl()->getLocation(),
1467         diag::note_previous_definition);
1468    return New->setInvalidDecl();
1469  }
1470
1471  MergeDeclAttributes(New, Old, Context);
1472
1473  // Merge the types
1474  QualType MergedT;
1475  if (getLangOptions().CPlusPlus) {
1476    if (Context.hasSameType(New->getType(), Old->getType()))
1477      MergedT = New->getType();
1478    // C++ [basic.link]p10:
1479    //   [...] the types specified by all declarations referring to a given
1480    //   object or function shall be identical, except that declarations for an
1481    //   array object can specify array types that differ by the presence or
1482    //   absence of a major array bound (8.3.4).
1483    else if (Old->getType()->isIncompleteArrayType() &&
1484             New->getType()->isArrayType()) {
1485      CanQual<ArrayType> OldArray
1486        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487      CanQual<ArrayType> NewArray
1488        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489      if (OldArray->getElementType() == NewArray->getElementType())
1490        MergedT = New->getType();
1491    } else if (Old->getType()->isArrayType() &&
1492             New->getType()->isIncompleteArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = Old->getType();
1499    } else if (New->getType()->isObjCObjectPointerType()
1500               && Old->getType()->isObjCObjectPointerType()) {
1501        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1502    }
1503  } else {
1504    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1505  }
1506  if (MergedT.isNull()) {
1507    Diag(New->getLocation(), diag::err_redefinition_different_type)
1508      << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  New->setType(MergedT);
1513
1514  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515  if (New->getStorageClass() == SC_Static &&
1516      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518    Diag(Old->getLocation(), diag::note_previous_definition);
1519    return New->setInvalidDecl();
1520  }
1521  // C99 6.2.2p4:
1522  //   For an identifier declared with the storage-class specifier
1523  //   extern in a scope in which a prior declaration of that
1524  //   identifier is visible,23) if the prior declaration specifies
1525  //   internal or external linkage, the linkage of the identifier at
1526  //   the later declaration is the same as the linkage specified at
1527  //   the prior declaration. If no prior declaration is visible, or
1528  //   if the prior declaration specifies no linkage, then the
1529  //   identifier has external linkage.
1530  if (New->hasExternalStorage() && Old->hasLinkage())
1531    /* Okay */;
1532  else if (New->getStorageClass() != SC_Static &&
1533           Old->getStorageClass() == SC_Static) {
1534    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535    Diag(Old->getLocation(), diag::note_previous_definition);
1536    return New->setInvalidDecl();
1537  }
1538
1539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1540
1541  // FIXME: The test for external storage here seems wrong? We still
1542  // need to check for mismatches.
1543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544      // Don't complain about out-of-line definitions of static members.
1545      !(Old->getLexicalDeclContext()->isRecord() &&
1546        !New->getLexicalDeclContext()->isRecord())) {
1547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554    Diag(Old->getLocation(), diag::note_previous_definition);
1555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  }
1559
1560  // C++ doesn't have tentative definitions, so go right ahead and check here.
1561  const VarDecl *Def;
1562  if (getLangOptions().CPlusPlus &&
1563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564      (Def = Old->getDefinition())) {
1565    Diag(New->getLocation(), diag::err_redefinition)
1566      << New->getDeclName();
1567    Diag(Def->getLocation(), diag::note_previous_definition);
1568    New->setInvalidDecl();
1569    return;
1570  }
1571  // c99 6.2.2 P4.
1572  // For an identifier declared with the storage-class specifier extern in a
1573  // scope in which a prior declaration of that identifier is visible, if
1574  // the prior declaration specifies internal or external linkage, the linkage
1575  // of the identifier at the later declaration is the same as the linkage
1576  // specified at the prior declaration.
1577  // FIXME. revisit this code.
1578  if (New->hasExternalStorage() &&
1579      Old->getLinkage() == InternalLinkage &&
1580      New->getDeclContext() == Old->getDeclContext())
1581    New->setStorageClass(Old->getStorageClass());
1582
1583  // Keep a chain of previous declarations.
1584  New->setPreviousDeclaration(Old);
1585
1586  // Inherit access appropriately.
1587  New->setAccess(Old->getAccess());
1588}
1589
1590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591/// no declarator (e.g. "struct foo;") is parsed.
1592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593                                            DeclSpec &DS) {
1594  // FIXME: Error on auto/register at file scope
1595  // FIXME: Error on inline/virtual/explicit
1596  // FIXME: Warn on useless __thread
1597  // FIXME: Warn on useless const/volatile
1598  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1599  // FIXME: Warn on useless attributes
1600  Decl *TagD = 0;
1601  TagDecl *Tag = 0;
1602  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1603      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1604      DS.getTypeSpecType() == DeclSpec::TST_union ||
1605      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1606    TagD = DS.getRepAsDecl();
1607
1608    if (!TagD) // We probably had an error
1609      return 0;
1610
1611    // Note that the above type specs guarantee that the
1612    // type rep is a Decl, whereas in many of the others
1613    // it's a Type.
1614    Tag = dyn_cast<TagDecl>(TagD);
1615  }
1616
1617  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1618    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1619    // or incomplete types shall not be restrict-qualified."
1620    if (TypeQuals & DeclSpec::TQ_restrict)
1621      Diag(DS.getRestrictSpecLoc(),
1622           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1623           << DS.getSourceRange();
1624  }
1625
1626  if (DS.isFriendSpecified()) {
1627    // If we're dealing with a class template decl, assume that the
1628    // template routines are handling it.
1629    if (TagD && isa<ClassTemplateDecl>(TagD))
1630      return 0;
1631    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1632  }
1633
1634  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1635    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1636
1637    if (!Record->getDeclName() && Record->isDefinition() &&
1638        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1639      if (getLangOptions().CPlusPlus ||
1640          Record->getDeclContext()->isRecord())
1641        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1642
1643      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1644        << DS.getSourceRange();
1645    }
1646
1647    // Microsoft allows unnamed struct/union fields. Don't complain
1648    // about them.
1649    // FIXME: Should we support Microsoft's extensions in this area?
1650    if (Record->getDeclName() && getLangOptions().Microsoft)
1651      return Tag;
1652  }
1653
1654  if (getLangOptions().CPlusPlus &&
1655      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1656    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1657      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1658          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1659        Diag(Enum->getLocation(), diag::ext_no_declarators)
1660          << DS.getSourceRange();
1661
1662  if (!DS.isMissingDeclaratorOk() &&
1663      DS.getTypeSpecType() != DeclSpec::TST_error) {
1664    // Warn about typedefs of enums without names, since this is an
1665    // extension in both Microsoft and GNU.
1666    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1667        Tag && isa<EnumDecl>(Tag)) {
1668      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1669        << DS.getSourceRange();
1670      return Tag;
1671    }
1672
1673    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1674      << DS.getSourceRange();
1675  }
1676
1677  return TagD;
1678}
1679
1680/// We are trying to inject an anonymous member into the given scope;
1681/// check if there's an existing declaration that can't be overloaded.
1682///
1683/// \return true if this is a forbidden redeclaration
1684static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1685                                         Scope *S,
1686                                         DeclContext *Owner,
1687                                         DeclarationName Name,
1688                                         SourceLocation NameLoc,
1689                                         unsigned diagnostic) {
1690  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1691                 Sema::ForRedeclaration);
1692  if (!SemaRef.LookupName(R, S)) return false;
1693
1694  if (R.getAsSingle<TagDecl>())
1695    return false;
1696
1697  // Pick a representative declaration.
1698  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1699  if (PrevDecl && Owner->isRecord()) {
1700    RecordDecl *Record = cast<RecordDecl>(Owner);
1701    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1702      return false;
1703  }
1704
1705  SemaRef.Diag(NameLoc, diagnostic) << Name;
1706  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1707
1708  return true;
1709}
1710
1711/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1712/// anonymous struct or union AnonRecord into the owning context Owner
1713/// and scope S. This routine will be invoked just after we realize
1714/// that an unnamed union or struct is actually an anonymous union or
1715/// struct, e.g.,
1716///
1717/// @code
1718/// union {
1719///   int i;
1720///   float f;
1721/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1722///    // f into the surrounding scope.x
1723/// @endcode
1724///
1725/// This routine is recursive, injecting the names of nested anonymous
1726/// structs/unions into the owning context and scope as well.
1727static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1728                                                DeclContext *Owner,
1729                                                RecordDecl *AnonRecord,
1730                                                AccessSpecifier AS) {
1731  unsigned diagKind
1732    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1733                            : diag::err_anonymous_struct_member_redecl;
1734
1735  bool Invalid = false;
1736  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1737                               FEnd = AnonRecord->field_end();
1738       F != FEnd; ++F) {
1739    if ((*F)->getDeclName()) {
1740      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1741                                       (*F)->getLocation(), diagKind)) {
1742        // C++ [class.union]p2:
1743        //   The names of the members of an anonymous union shall be
1744        //   distinct from the names of any other entity in the
1745        //   scope in which the anonymous union is declared.
1746        Invalid = true;
1747      } else {
1748        // C++ [class.union]p2:
1749        //   For the purpose of name lookup, after the anonymous union
1750        //   definition, the members of the anonymous union are
1751        //   considered to have been defined in the scope in which the
1752        //   anonymous union is declared.
1753        Owner->makeDeclVisibleInContext(*F);
1754        S->AddDecl(*F);
1755        SemaRef.IdResolver.AddDecl(*F);
1756
1757        // That includes picking up the appropriate access specifier.
1758        if (AS != AS_none) (*F)->setAccess(AS);
1759      }
1760    } else if (const RecordType *InnerRecordType
1761                 = (*F)->getType()->getAs<RecordType>()) {
1762      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1763      if (InnerRecord->isAnonymousStructOrUnion())
1764        Invalid = Invalid ||
1765          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1766                                              InnerRecord, AS);
1767    }
1768  }
1769
1770  return Invalid;
1771}
1772
1773/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1774/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1775/// illegal input values are mapped to SC_None.
1776static StorageClass
1777StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1778  switch (StorageClassSpec) {
1779  case DeclSpec::SCS_unspecified:    return SC_None;
1780  case DeclSpec::SCS_extern:         return SC_Extern;
1781  case DeclSpec::SCS_static:         return SC_Static;
1782  case DeclSpec::SCS_auto:           return SC_Auto;
1783  case DeclSpec::SCS_register:       return SC_Register;
1784  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1785    // Illegal SCSs map to None: error reporting is up to the caller.
1786  case DeclSpec::SCS_mutable:        // Fall through.
1787  case DeclSpec::SCS_typedef:        return SC_None;
1788  }
1789  llvm_unreachable("unknown storage class specifier");
1790}
1791
1792/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1793/// a StorageClass. Any error reporting is up to the caller:
1794/// illegal input values are mapped to SC_None.
1795static StorageClass
1796StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1797  switch (StorageClassSpec) {
1798  case DeclSpec::SCS_unspecified:    return SC_None;
1799  case DeclSpec::SCS_extern:         return SC_Extern;
1800  case DeclSpec::SCS_static:         return SC_Static;
1801  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1802    // Illegal SCSs map to None: error reporting is up to the caller.
1803  case DeclSpec::SCS_auto:           // Fall through.
1804  case DeclSpec::SCS_mutable:        // Fall through.
1805  case DeclSpec::SCS_register:       // Fall through.
1806  case DeclSpec::SCS_typedef:        return SC_None;
1807  }
1808  llvm_unreachable("unknown storage class specifier");
1809}
1810
1811/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1812/// anonymous structure or union. Anonymous unions are a C++ feature
1813/// (C++ [class.union]) and a GNU C extension; anonymous structures
1814/// are a GNU C and GNU C++ extension.
1815Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1816                                             AccessSpecifier AS,
1817                                             RecordDecl *Record) {
1818  DeclContext *Owner = Record->getDeclContext();
1819
1820  // Diagnose whether this anonymous struct/union is an extension.
1821  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1822    Diag(Record->getLocation(), diag::ext_anonymous_union);
1823  else if (!Record->isUnion())
1824    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1825
1826  // C and C++ require different kinds of checks for anonymous
1827  // structs/unions.
1828  bool Invalid = false;
1829  if (getLangOptions().CPlusPlus) {
1830    const char* PrevSpec = 0;
1831    unsigned DiagID;
1832    // C++ [class.union]p3:
1833    //   Anonymous unions declared in a named namespace or in the
1834    //   global namespace shall be declared static.
1835    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1836        (isa<TranslationUnitDecl>(Owner) ||
1837         (isa<NamespaceDecl>(Owner) &&
1838          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1839      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1840      Invalid = true;
1841
1842      // Recover by adding 'static'.
1843      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1844                             PrevSpec, DiagID);
1845    }
1846    // C++ [class.union]p3:
1847    //   A storage class is not allowed in a declaration of an
1848    //   anonymous union in a class scope.
1849    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1850             isa<RecordDecl>(Owner)) {
1851      Diag(DS.getStorageClassSpecLoc(),
1852           diag::err_anonymous_union_with_storage_spec);
1853      Invalid = true;
1854
1855      // Recover by removing the storage specifier.
1856      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1857                             PrevSpec, DiagID);
1858    }
1859
1860    // C++ [class.union]p2:
1861    //   The member-specification of an anonymous union shall only
1862    //   define non-static data members. [Note: nested types and
1863    //   functions cannot be declared within an anonymous union. ]
1864    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1865                                 MemEnd = Record->decls_end();
1866         Mem != MemEnd; ++Mem) {
1867      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1868        // C++ [class.union]p3:
1869        //   An anonymous union shall not have private or protected
1870        //   members (clause 11).
1871        assert(FD->getAccess() != AS_none);
1872        if (FD->getAccess() != AS_public) {
1873          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1874            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1875          Invalid = true;
1876        }
1877
1878        if (CheckNontrivialField(FD))
1879          Invalid = true;
1880      } else if ((*Mem)->isImplicit()) {
1881        // Any implicit members are fine.
1882      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1883        // This is a type that showed up in an
1884        // elaborated-type-specifier inside the anonymous struct or
1885        // union, but which actually declares a type outside of the
1886        // anonymous struct or union. It's okay.
1887      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1888        if (!MemRecord->isAnonymousStructOrUnion() &&
1889            MemRecord->getDeclName()) {
1890          // This is a nested type declaration.
1891          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1892            << (int)Record->isUnion();
1893          Invalid = true;
1894        }
1895      } else if (isa<AccessSpecDecl>(*Mem)) {
1896        // Any access specifier is fine.
1897      } else {
1898        // We have something that isn't a non-static data
1899        // member. Complain about it.
1900        unsigned DK = diag::err_anonymous_record_bad_member;
1901        if (isa<TypeDecl>(*Mem))
1902          DK = diag::err_anonymous_record_with_type;
1903        else if (isa<FunctionDecl>(*Mem))
1904          DK = diag::err_anonymous_record_with_function;
1905        else if (isa<VarDecl>(*Mem))
1906          DK = diag::err_anonymous_record_with_static;
1907        Diag((*Mem)->getLocation(), DK)
1908            << (int)Record->isUnion();
1909          Invalid = true;
1910      }
1911    }
1912  }
1913
1914  if (!Record->isUnion() && !Owner->isRecord()) {
1915    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1916      << (int)getLangOptions().CPlusPlus;
1917    Invalid = true;
1918  }
1919
1920  // Mock up a declarator.
1921  Declarator Dc(DS, Declarator::TypeNameContext);
1922  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1923  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1924
1925  // Create a declaration for this anonymous struct/union.
1926  NamedDecl *Anon = 0;
1927  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1928    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1929                             /*IdentifierInfo=*/0,
1930                             Context.getTypeDeclType(Record),
1931                             TInfo,
1932                             /*BitWidth=*/0, /*Mutable=*/false);
1933    Anon->setAccess(AS);
1934    if (getLangOptions().CPlusPlus) {
1935      FieldCollector->Add(cast<FieldDecl>(Anon));
1936      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1937        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1938    }
1939  } else {
1940    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1941    assert(SCSpec != DeclSpec::SCS_typedef &&
1942           "Parser allowed 'typedef' as storage class VarDecl.");
1943    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1944    if (SCSpec == DeclSpec::SCS_mutable) {
1945      // mutable can only appear on non-static class members, so it's always
1946      // an error here
1947      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1948      Invalid = true;
1949      SC = SC_None;
1950    }
1951    SCSpec = DS.getStorageClassSpecAsWritten();
1952    VarDecl::StorageClass SCAsWritten
1953      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1954
1955    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1956                           /*IdentifierInfo=*/0,
1957                           Context.getTypeDeclType(Record),
1958                           TInfo, SC, SCAsWritten);
1959  }
1960  Anon->setImplicit();
1961
1962  // Add the anonymous struct/union object to the current
1963  // context. We'll be referencing this object when we refer to one of
1964  // its members.
1965  Owner->addDecl(Anon);
1966
1967  // Inject the members of the anonymous struct/union into the owning
1968  // context and into the identifier resolver chain for name lookup
1969  // purposes.
1970  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1971    Invalid = true;
1972
1973  // Mark this as an anonymous struct/union type. Note that we do not
1974  // do this until after we have already checked and injected the
1975  // members of this anonymous struct/union type, because otherwise
1976  // the members could be injected twice: once by DeclContext when it
1977  // builds its lookup table, and once by
1978  // InjectAnonymousStructOrUnionMembers.
1979  Record->setAnonymousStructOrUnion(true);
1980
1981  if (Invalid)
1982    Anon->setInvalidDecl();
1983
1984  return Anon;
1985}
1986
1987
1988/// GetNameForDeclarator - Determine the full declaration name for the
1989/// given Declarator.
1990DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1991  return GetNameFromUnqualifiedId(D.getName());
1992}
1993
1994/// \brief Retrieves the declaration name from a parsed unqualified-id.
1995DeclarationNameInfo
1996Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1997  DeclarationNameInfo NameInfo;
1998  NameInfo.setLoc(Name.StartLocation);
1999
2000  switch (Name.getKind()) {
2001
2002  case UnqualifiedId::IK_Identifier:
2003    NameInfo.setName(Name.Identifier);
2004    NameInfo.setLoc(Name.StartLocation);
2005    return NameInfo;
2006
2007  case UnqualifiedId::IK_OperatorFunctionId:
2008    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2009                                           Name.OperatorFunctionId.Operator));
2010    NameInfo.setLoc(Name.StartLocation);
2011    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2012      = Name.OperatorFunctionId.SymbolLocations[0];
2013    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2014      = Name.EndLocation.getRawEncoding();
2015    return NameInfo;
2016
2017  case UnqualifiedId::IK_LiteralOperatorId:
2018    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2019                                                           Name.Identifier));
2020    NameInfo.setLoc(Name.StartLocation);
2021    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2022    return NameInfo;
2023
2024  case UnqualifiedId::IK_ConversionFunctionId: {
2025    TypeSourceInfo *TInfo;
2026    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2027    if (Ty.isNull())
2028      return DeclarationNameInfo();
2029    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2030                                               Context.getCanonicalType(Ty)));
2031    NameInfo.setLoc(Name.StartLocation);
2032    NameInfo.setNamedTypeInfo(TInfo);
2033    return NameInfo;
2034  }
2035
2036  case UnqualifiedId::IK_ConstructorName: {
2037    TypeSourceInfo *TInfo;
2038    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2039    if (Ty.isNull())
2040      return DeclarationNameInfo();
2041    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2042                                              Context.getCanonicalType(Ty)));
2043    NameInfo.setLoc(Name.StartLocation);
2044    NameInfo.setNamedTypeInfo(TInfo);
2045    return NameInfo;
2046  }
2047
2048  case UnqualifiedId::IK_ConstructorTemplateId: {
2049    // In well-formed code, we can only have a constructor
2050    // template-id that refers to the current context, so go there
2051    // to find the actual type being constructed.
2052    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2053    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2054      return DeclarationNameInfo();
2055
2056    // Determine the type of the class being constructed.
2057    QualType CurClassType = Context.getTypeDeclType(CurClass);
2058
2059    // FIXME: Check two things: that the template-id names the same type as
2060    // CurClassType, and that the template-id does not occur when the name
2061    // was qualified.
2062
2063    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2064                                    Context.getCanonicalType(CurClassType)));
2065    NameInfo.setLoc(Name.StartLocation);
2066    // FIXME: should we retrieve TypeSourceInfo?
2067    NameInfo.setNamedTypeInfo(0);
2068    return NameInfo;
2069  }
2070
2071  case UnqualifiedId::IK_DestructorName: {
2072    TypeSourceInfo *TInfo;
2073    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2074    if (Ty.isNull())
2075      return DeclarationNameInfo();
2076    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2077                                              Context.getCanonicalType(Ty)));
2078    NameInfo.setLoc(Name.StartLocation);
2079    NameInfo.setNamedTypeInfo(TInfo);
2080    return NameInfo;
2081  }
2082
2083  case UnqualifiedId::IK_TemplateId: {
2084    TemplateName TName = Name.TemplateId->Template.get();
2085    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2086    return Context.getNameForTemplate(TName, TNameLoc);
2087  }
2088
2089  } // switch (Name.getKind())
2090
2091  assert(false && "Unknown name kind");
2092  return DeclarationNameInfo();
2093}
2094
2095/// isNearlyMatchingFunction - Determine whether the C++ functions
2096/// Declaration and Definition are "nearly" matching. This heuristic
2097/// is used to improve diagnostics in the case where an out-of-line
2098/// function definition doesn't match any declaration within
2099/// the class or namespace.
2100static bool isNearlyMatchingFunction(ASTContext &Context,
2101                                     FunctionDecl *Declaration,
2102                                     FunctionDecl *Definition) {
2103  if (Declaration->param_size() != Definition->param_size())
2104    return false;
2105  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2106    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2107    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2108
2109    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2110                                        DefParamTy.getNonReferenceType()))
2111      return false;
2112  }
2113
2114  return true;
2115}
2116
2117/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2118/// declarator needs to be rebuilt in the current instantiation.
2119/// Any bits of declarator which appear before the name are valid for
2120/// consideration here.  That's specifically the type in the decl spec
2121/// and the base type in any member-pointer chunks.
2122static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2123                                                    DeclarationName Name) {
2124  // The types we specifically need to rebuild are:
2125  //   - typenames, typeofs, and decltypes
2126  //   - types which will become injected class names
2127  // Of course, we also need to rebuild any type referencing such a
2128  // type.  It's safest to just say "dependent", but we call out a
2129  // few cases here.
2130
2131  DeclSpec &DS = D.getMutableDeclSpec();
2132  switch (DS.getTypeSpecType()) {
2133  case DeclSpec::TST_typename:
2134  case DeclSpec::TST_typeofType:
2135  case DeclSpec::TST_decltype: {
2136    // Grab the type from the parser.
2137    TypeSourceInfo *TSI = 0;
2138    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2139    if (T.isNull() || !T->isDependentType()) break;
2140
2141    // Make sure there's a type source info.  This isn't really much
2142    // of a waste; most dependent types should have type source info
2143    // attached already.
2144    if (!TSI)
2145      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2146
2147    // Rebuild the type in the current instantiation.
2148    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2149    if (!TSI) return true;
2150
2151    // Store the new type back in the decl spec.
2152    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2153    DS.UpdateTypeRep(LocType);
2154    break;
2155  }
2156
2157  case DeclSpec::TST_typeofExpr: {
2158    Expr *E = DS.getRepAsExpr();
2159    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2160    if (Result.isInvalid()) return true;
2161    DS.UpdateExprRep(Result.get());
2162    break;
2163  }
2164
2165  default:
2166    // Nothing to do for these decl specs.
2167    break;
2168  }
2169
2170  // It doesn't matter what order we do this in.
2171  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2172    DeclaratorChunk &Chunk = D.getTypeObject(I);
2173
2174    // The only type information in the declarator which can come
2175    // before the declaration name is the base type of a member
2176    // pointer.
2177    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2178      continue;
2179
2180    // Rebuild the scope specifier in-place.
2181    CXXScopeSpec &SS = Chunk.Mem.Scope();
2182    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2183      return true;
2184  }
2185
2186  return false;
2187}
2188
2189Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2190  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2191}
2192
2193Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2194                             MultiTemplateParamsArg TemplateParamLists,
2195                             bool IsFunctionDefinition) {
2196  // TODO: consider using NameInfo for diagnostic.
2197  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2198  DeclarationName Name = NameInfo.getName();
2199
2200  // All of these full declarators require an identifier.  If it doesn't have
2201  // one, the ParsedFreeStandingDeclSpec action should be used.
2202  if (!Name) {
2203    if (!D.isInvalidType())  // Reject this if we think it is valid.
2204      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2205           diag::err_declarator_need_ident)
2206        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2207    return 0;
2208  }
2209
2210  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2211  // we find one that is.
2212  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2213         (S->getFlags() & Scope::TemplateParamScope) != 0)
2214    S = S->getParent();
2215
2216  DeclContext *DC = CurContext;
2217  if (D.getCXXScopeSpec().isInvalid())
2218    D.setInvalidType();
2219  else if (D.getCXXScopeSpec().isSet()) {
2220    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2221    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2222    if (!DC) {
2223      // If we could not compute the declaration context, it's because the
2224      // declaration context is dependent but does not refer to a class,
2225      // class template, or class template partial specialization. Complain
2226      // and return early, to avoid the coming semantic disaster.
2227      Diag(D.getIdentifierLoc(),
2228           diag::err_template_qualified_declarator_no_match)
2229        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2230        << D.getCXXScopeSpec().getRange();
2231      return 0;
2232    }
2233
2234    bool IsDependentContext = DC->isDependentContext();
2235
2236    if (!IsDependentContext &&
2237        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2238      return 0;
2239
2240    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2241      Diag(D.getIdentifierLoc(),
2242           diag::err_member_def_undefined_record)
2243        << Name << DC << D.getCXXScopeSpec().getRange();
2244      D.setInvalidType();
2245    }
2246
2247    // Check whether we need to rebuild the type of the given
2248    // declaration in the current instantiation.
2249    if (EnteringContext && IsDependentContext &&
2250        TemplateParamLists.size() != 0) {
2251      ContextRAII SavedContext(*this, DC);
2252      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2253        D.setInvalidType();
2254    }
2255  }
2256
2257  NamedDecl *New;
2258
2259  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2260  QualType R = TInfo->getType();
2261
2262  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2263                        ForRedeclaration);
2264
2265  // See if this is a redefinition of a variable in the same scope.
2266  if (!D.getCXXScopeSpec().isSet()) {
2267    bool IsLinkageLookup = false;
2268
2269    // If the declaration we're planning to build will be a function
2270    // or object with linkage, then look for another declaration with
2271    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2272    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2273      /* Do nothing*/;
2274    else if (R->isFunctionType()) {
2275      if (CurContext->isFunctionOrMethod() ||
2276          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2277        IsLinkageLookup = true;
2278    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2279      IsLinkageLookup = true;
2280    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2281             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2282      IsLinkageLookup = true;
2283
2284    if (IsLinkageLookup)
2285      Previous.clear(LookupRedeclarationWithLinkage);
2286
2287    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2288  } else { // Something like "int foo::x;"
2289    LookupQualifiedName(Previous, DC);
2290
2291    // Don't consider using declarations as previous declarations for
2292    // out-of-line members.
2293    RemoveUsingDecls(Previous);
2294
2295    // C++ 7.3.1.2p2:
2296    // Members (including explicit specializations of templates) of a named
2297    // namespace can also be defined outside that namespace by explicit
2298    // qualification of the name being defined, provided that the entity being
2299    // defined was already declared in the namespace and the definition appears
2300    // after the point of declaration in a namespace that encloses the
2301    // declarations namespace.
2302    //
2303    // Note that we only check the context at this point. We don't yet
2304    // have enough information to make sure that PrevDecl is actually
2305    // the declaration we want to match. For example, given:
2306    //
2307    //   class X {
2308    //     void f();
2309    //     void f(float);
2310    //   };
2311    //
2312    //   void X::f(int) { } // ill-formed
2313    //
2314    // In this case, PrevDecl will point to the overload set
2315    // containing the two f's declared in X, but neither of them
2316    // matches.
2317
2318    // First check whether we named the global scope.
2319    if (isa<TranslationUnitDecl>(DC)) {
2320      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2321        << Name << D.getCXXScopeSpec().getRange();
2322    } else {
2323      DeclContext *Cur = CurContext;
2324      while (isa<LinkageSpecDecl>(Cur))
2325        Cur = Cur->getParent();
2326      if (!Cur->Encloses(DC)) {
2327        // The qualifying scope doesn't enclose the original declaration.
2328        // Emit diagnostic based on current scope.
2329        SourceLocation L = D.getIdentifierLoc();
2330        SourceRange R = D.getCXXScopeSpec().getRange();
2331        if (isa<FunctionDecl>(Cur))
2332          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2333        else
2334          Diag(L, diag::err_invalid_declarator_scope)
2335            << Name << cast<NamedDecl>(DC) << R;
2336        D.setInvalidType();
2337      }
2338    }
2339  }
2340
2341  if (Previous.isSingleResult() &&
2342      Previous.getFoundDecl()->isTemplateParameter()) {
2343    // Maybe we will complain about the shadowed template parameter.
2344    if (!D.isInvalidType())
2345      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2346                                          Previous.getFoundDecl()))
2347        D.setInvalidType();
2348
2349    // Just pretend that we didn't see the previous declaration.
2350    Previous.clear();
2351  }
2352
2353  // In C++, the previous declaration we find might be a tag type
2354  // (class or enum). In this case, the new declaration will hide the
2355  // tag type. Note that this does does not apply if we're declaring a
2356  // typedef (C++ [dcl.typedef]p4).
2357  if (Previous.isSingleTagDecl() &&
2358      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2359    Previous.clear();
2360
2361  bool Redeclaration = false;
2362  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2363    if (TemplateParamLists.size()) {
2364      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2365      return 0;
2366    }
2367
2368    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2369  } else if (R->isFunctionType()) {
2370    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2371                                  move(TemplateParamLists),
2372                                  IsFunctionDefinition, Redeclaration);
2373  } else {
2374    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2375                                  move(TemplateParamLists),
2376                                  Redeclaration);
2377  }
2378
2379  if (New == 0)
2380    return 0;
2381
2382  // If this has an identifier and is not an invalid redeclaration or
2383  // function template specialization, add it to the scope stack.
2384  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2385    PushOnScopeChains(New, S);
2386
2387  return New;
2388}
2389
2390/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2391/// types into constant array types in certain situations which would otherwise
2392/// be errors (for GCC compatibility).
2393static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2394                                                    ASTContext &Context,
2395                                                    bool &SizeIsNegative,
2396                                                    llvm::APSInt &Oversized) {
2397  // This method tries to turn a variable array into a constant
2398  // array even when the size isn't an ICE.  This is necessary
2399  // for compatibility with code that depends on gcc's buggy
2400  // constant expression folding, like struct {char x[(int)(char*)2];}
2401  SizeIsNegative = false;
2402  Oversized = 0;
2403
2404  if (T->isDependentType())
2405    return QualType();
2406
2407  QualifierCollector Qs;
2408  const Type *Ty = Qs.strip(T);
2409
2410  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2411    QualType Pointee = PTy->getPointeeType();
2412    QualType FixedType =
2413        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2414                                            Oversized);
2415    if (FixedType.isNull()) return FixedType;
2416    FixedType = Context.getPointerType(FixedType);
2417    return Qs.apply(FixedType);
2418  }
2419
2420  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2421  if (!VLATy)
2422    return QualType();
2423  // FIXME: We should probably handle this case
2424  if (VLATy->getElementType()->isVariablyModifiedType())
2425    return QualType();
2426
2427  Expr::EvalResult EvalResult;
2428  if (!VLATy->getSizeExpr() ||
2429      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2430      !EvalResult.Val.isInt())
2431    return QualType();
2432
2433  // Check whether the array size is negative.
2434  llvm::APSInt &Res = EvalResult.Val.getInt();
2435  if (Res.isSigned() && Res.isNegative()) {
2436    SizeIsNegative = true;
2437    return QualType();
2438  }
2439
2440  // Check whether the array is too large to be addressed.
2441  unsigned ActiveSizeBits
2442    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2443                                              Res);
2444  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2445    Oversized = Res;
2446    return QualType();
2447  }
2448
2449  return Context.getConstantArrayType(VLATy->getElementType(),
2450                                      Res, ArrayType::Normal, 0);
2451}
2452
2453/// \brief Register the given locally-scoped external C declaration so
2454/// that it can be found later for redeclarations
2455void
2456Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2457                                       const LookupResult &Previous,
2458                                       Scope *S) {
2459  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2460         "Decl is not a locally-scoped decl!");
2461  // Note that we have a locally-scoped external with this name.
2462  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2463
2464  if (!Previous.isSingleResult())
2465    return;
2466
2467  NamedDecl *PrevDecl = Previous.getFoundDecl();
2468
2469  // If there was a previous declaration of this variable, it may be
2470  // in our identifier chain. Update the identifier chain with the new
2471  // declaration.
2472  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2473    // The previous declaration was found on the identifer resolver
2474    // chain, so remove it from its scope.
2475    while (S && !S->isDeclScope(PrevDecl))
2476      S = S->getParent();
2477
2478    if (S)
2479      S->RemoveDecl(PrevDecl);
2480  }
2481}
2482
2483/// \brief Diagnose function specifiers on a declaration of an identifier that
2484/// does not identify a function.
2485void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2486  // FIXME: We should probably indicate the identifier in question to avoid
2487  // confusion for constructs like "inline int a(), b;"
2488  if (D.getDeclSpec().isInlineSpecified())
2489    Diag(D.getDeclSpec().getInlineSpecLoc(),
2490         diag::err_inline_non_function);
2491
2492  if (D.getDeclSpec().isVirtualSpecified())
2493    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2494         diag::err_virtual_non_function);
2495
2496  if (D.getDeclSpec().isExplicitSpecified())
2497    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2498         diag::err_explicit_non_function);
2499}
2500
2501NamedDecl*
2502Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2503                             QualType R,  TypeSourceInfo *TInfo,
2504                             LookupResult &Previous, bool &Redeclaration) {
2505  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2506  if (D.getCXXScopeSpec().isSet()) {
2507    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2508      << D.getCXXScopeSpec().getRange();
2509    D.setInvalidType();
2510    // Pretend we didn't see the scope specifier.
2511    DC = CurContext;
2512    Previous.clear();
2513  }
2514
2515  if (getLangOptions().CPlusPlus) {
2516    // Check that there are no default arguments (C++ only).
2517    CheckExtraCXXDefaultArguments(D);
2518  }
2519
2520  DiagnoseFunctionSpecifiers(D);
2521
2522  if (D.getDeclSpec().isThreadSpecified())
2523    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2524
2525  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2526    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2527      << D.getName().getSourceRange();
2528    return 0;
2529  }
2530
2531  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2532  if (!NewTD) return 0;
2533
2534  // Handle attributes prior to checking for duplicates in MergeVarDecl
2535  ProcessDeclAttributes(S, NewTD, D);
2536
2537  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2538  // then it shall have block scope.
2539  // Note that variably modified types must be fixed before merging the decl so
2540  // that redeclarations will match.
2541  QualType T = NewTD->getUnderlyingType();
2542  if (T->isVariablyModifiedType()) {
2543    getCurFunction()->setHasBranchProtectedScope();
2544
2545    if (S->getFnParent() == 0) {
2546      bool SizeIsNegative;
2547      llvm::APSInt Oversized;
2548      QualType FixedTy =
2549          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2550                                              Oversized);
2551      if (!FixedTy.isNull()) {
2552        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2553        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2554      } else {
2555        if (SizeIsNegative)
2556          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2557        else if (T->isVariableArrayType())
2558          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2559        else if (Oversized.getBoolValue())
2560          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2561            << Oversized.toString(10);
2562        else
2563          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2564        NewTD->setInvalidDecl();
2565      }
2566    }
2567  }
2568
2569  // Merge the decl with the existing one if appropriate. If the decl is
2570  // in an outer scope, it isn't the same thing.
2571  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2572  if (!Previous.empty()) {
2573    Redeclaration = true;
2574    MergeTypeDefDecl(NewTD, Previous);
2575  }
2576
2577  // If this is the C FILE type, notify the AST context.
2578  if (IdentifierInfo *II = NewTD->getIdentifier())
2579    if (!NewTD->isInvalidDecl() &&
2580        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2581      if (II->isStr("FILE"))
2582        Context.setFILEDecl(NewTD);
2583      else if (II->isStr("jmp_buf"))
2584        Context.setjmp_bufDecl(NewTD);
2585      else if (II->isStr("sigjmp_buf"))
2586        Context.setsigjmp_bufDecl(NewTD);
2587    }
2588
2589  return NewTD;
2590}
2591
2592/// \brief Determines whether the given declaration is an out-of-scope
2593/// previous declaration.
2594///
2595/// This routine should be invoked when name lookup has found a
2596/// previous declaration (PrevDecl) that is not in the scope where a
2597/// new declaration by the same name is being introduced. If the new
2598/// declaration occurs in a local scope, previous declarations with
2599/// linkage may still be considered previous declarations (C99
2600/// 6.2.2p4-5, C++ [basic.link]p6).
2601///
2602/// \param PrevDecl the previous declaration found by name
2603/// lookup
2604///
2605/// \param DC the context in which the new declaration is being
2606/// declared.
2607///
2608/// \returns true if PrevDecl is an out-of-scope previous declaration
2609/// for a new delcaration with the same name.
2610static bool
2611isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2612                                ASTContext &Context) {
2613  if (!PrevDecl)
2614    return 0;
2615
2616  if (!PrevDecl->hasLinkage())
2617    return false;
2618
2619  if (Context.getLangOptions().CPlusPlus) {
2620    // C++ [basic.link]p6:
2621    //   If there is a visible declaration of an entity with linkage
2622    //   having the same name and type, ignoring entities declared
2623    //   outside the innermost enclosing namespace scope, the block
2624    //   scope declaration declares that same entity and receives the
2625    //   linkage of the previous declaration.
2626    DeclContext *OuterContext = DC->getLookupContext();
2627    if (!OuterContext->isFunctionOrMethod())
2628      // This rule only applies to block-scope declarations.
2629      return false;
2630    else {
2631      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2632      if (PrevOuterContext->isRecord())
2633        // We found a member function: ignore it.
2634        return false;
2635      else {
2636        // Find the innermost enclosing namespace for the new and
2637        // previous declarations.
2638        while (!OuterContext->isFileContext())
2639          OuterContext = OuterContext->getParent();
2640        while (!PrevOuterContext->isFileContext())
2641          PrevOuterContext = PrevOuterContext->getParent();
2642
2643        // The previous declaration is in a different namespace, so it
2644        // isn't the same function.
2645        if (OuterContext->getPrimaryContext() !=
2646            PrevOuterContext->getPrimaryContext())
2647          return false;
2648      }
2649    }
2650  }
2651
2652  return true;
2653}
2654
2655static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2656  CXXScopeSpec &SS = D.getCXXScopeSpec();
2657  if (!SS.isSet()) return;
2658  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2659                       SS.getRange());
2660}
2661
2662NamedDecl*
2663Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2664                              QualType R, TypeSourceInfo *TInfo,
2665                              LookupResult &Previous,
2666                              MultiTemplateParamsArg TemplateParamLists,
2667                              bool &Redeclaration) {
2668  DeclarationName Name = GetNameForDeclarator(D).getName();
2669
2670  // Check that there are no default arguments (C++ only).
2671  if (getLangOptions().CPlusPlus)
2672    CheckExtraCXXDefaultArguments(D);
2673
2674  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2675  assert(SCSpec != DeclSpec::SCS_typedef &&
2676         "Parser allowed 'typedef' as storage class VarDecl.");
2677  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2678  if (SCSpec == DeclSpec::SCS_mutable) {
2679    // mutable can only appear on non-static class members, so it's always
2680    // an error here
2681    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2682    D.setInvalidType();
2683    SC = SC_None;
2684  }
2685  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2686  VarDecl::StorageClass SCAsWritten
2687    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2688
2689  IdentifierInfo *II = Name.getAsIdentifierInfo();
2690  if (!II) {
2691    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2692      << Name.getAsString();
2693    return 0;
2694  }
2695
2696  DiagnoseFunctionSpecifiers(D);
2697
2698  if (!DC->isRecord() && S->getFnParent() == 0) {
2699    // C99 6.9p2: The storage-class specifiers auto and register shall not
2700    // appear in the declaration specifiers in an external declaration.
2701    if (SC == SC_Auto || SC == SC_Register) {
2702
2703      // If this is a register variable with an asm label specified, then this
2704      // is a GNU extension.
2705      if (SC == SC_Register && D.getAsmLabel())
2706        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2707      else
2708        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2709      D.setInvalidType();
2710    }
2711  }
2712  if (DC->isRecord() && !CurContext->isRecord()) {
2713    // This is an out-of-line definition of a static data member.
2714    if (SC == SC_Static) {
2715      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2716           diag::err_static_out_of_line)
2717        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2718    } else if (SC == SC_None)
2719      SC = SC_Static;
2720  }
2721  if (SC == SC_Static) {
2722    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2723      if (RD->isLocalClass())
2724        Diag(D.getIdentifierLoc(),
2725             diag::err_static_data_member_not_allowed_in_local_class)
2726          << Name << RD->getDeclName();
2727    }
2728  }
2729
2730  // Match up the template parameter lists with the scope specifier, then
2731  // determine whether we have a template or a template specialization.
2732  bool isExplicitSpecialization = false;
2733  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2734  bool Invalid = false;
2735  if (TemplateParameterList *TemplateParams
2736        = MatchTemplateParametersToScopeSpecifier(
2737                                  D.getDeclSpec().getSourceRange().getBegin(),
2738                                                  D.getCXXScopeSpec(),
2739                        (TemplateParameterList**)TemplateParamLists.get(),
2740                                                   TemplateParamLists.size(),
2741                                                  /*never a friend*/ false,
2742                                                  isExplicitSpecialization,
2743                                                  Invalid)) {
2744    // All but one template parameter lists have been matching.
2745    --NumMatchedTemplateParamLists;
2746
2747    if (TemplateParams->size() > 0) {
2748      // There is no such thing as a variable template.
2749      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2750        << II
2751        << SourceRange(TemplateParams->getTemplateLoc(),
2752                       TemplateParams->getRAngleLoc());
2753      return 0;
2754    } else {
2755      // There is an extraneous 'template<>' for this variable. Complain
2756      // about it, but allow the declaration of the variable.
2757      Diag(TemplateParams->getTemplateLoc(),
2758           diag::err_template_variable_noparams)
2759        << II
2760        << SourceRange(TemplateParams->getTemplateLoc(),
2761                       TemplateParams->getRAngleLoc());
2762
2763      isExplicitSpecialization = true;
2764    }
2765  }
2766
2767  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2768                                   II, R, TInfo, SC, SCAsWritten);
2769
2770  if (D.isInvalidType() || Invalid)
2771    NewVD->setInvalidDecl();
2772
2773  SetNestedNameSpecifier(NewVD, D);
2774
2775  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2776    NewVD->setTemplateParameterListsInfo(Context,
2777                                         NumMatchedTemplateParamLists,
2778                        (TemplateParameterList**)TemplateParamLists.release());
2779  }
2780
2781  if (D.getDeclSpec().isThreadSpecified()) {
2782    if (NewVD->hasLocalStorage())
2783      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2784    else if (!Context.Target.isTLSSupported())
2785      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2786    else
2787      NewVD->setThreadSpecified(true);
2788  }
2789
2790  // Set the lexical context. If the declarator has a C++ scope specifier, the
2791  // lexical context will be different from the semantic context.
2792  NewVD->setLexicalDeclContext(CurContext);
2793
2794  // Handle attributes prior to checking for duplicates in MergeVarDecl
2795  ProcessDeclAttributes(S, NewVD, D);
2796
2797  // Handle GNU asm-label extension (encoded as an attribute).
2798  if (Expr *E = (Expr*) D.getAsmLabel()) {
2799    // The parser guarantees this is a string.
2800    StringLiteral *SE = cast<StringLiteral>(E);
2801    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2802                                                Context, SE->getString()));
2803  }
2804
2805  // Diagnose shadowed variables before filtering for scope.
2806  if (!D.getCXXScopeSpec().isSet())
2807    CheckShadow(S, NewVD, Previous);
2808
2809  // Don't consider existing declarations that are in a different
2810  // scope and are out-of-semantic-context declarations (if the new
2811  // declaration has linkage).
2812  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2813
2814  // Merge the decl with the existing one if appropriate.
2815  if (!Previous.empty()) {
2816    if (Previous.isSingleResult() &&
2817        isa<FieldDecl>(Previous.getFoundDecl()) &&
2818        D.getCXXScopeSpec().isSet()) {
2819      // The user tried to define a non-static data member
2820      // out-of-line (C++ [dcl.meaning]p1).
2821      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2822        << D.getCXXScopeSpec().getRange();
2823      Previous.clear();
2824      NewVD->setInvalidDecl();
2825    }
2826  } else if (D.getCXXScopeSpec().isSet()) {
2827    // No previous declaration in the qualifying scope.
2828    Diag(D.getIdentifierLoc(), diag::err_no_member)
2829      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2830      << D.getCXXScopeSpec().getRange();
2831    NewVD->setInvalidDecl();
2832  }
2833
2834  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2835
2836  // This is an explicit specialization of a static data member. Check it.
2837  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2838      CheckMemberSpecialization(NewVD, Previous))
2839    NewVD->setInvalidDecl();
2840
2841  // attributes declared post-definition are currently ignored
2842  // FIXME: This should be handled in attribute merging, not
2843  // here.
2844  if (Previous.isSingleResult()) {
2845    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2846    if (Def && (Def = Def->getDefinition()) &&
2847        Def != NewVD && D.hasAttributes()) {
2848      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2849      Diag(Def->getLocation(), diag::note_previous_definition);
2850    }
2851  }
2852
2853  // If this is a locally-scoped extern C variable, update the map of
2854  // such variables.
2855  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2856      !NewVD->isInvalidDecl())
2857    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2858
2859  // If there's a #pragma GCC visibility in scope, and this isn't a class
2860  // member, set the visibility of this variable.
2861  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2862    AddPushedVisibilityAttribute(NewVD);
2863
2864  MarkUnusedFileScopedDecl(NewVD);
2865
2866  return NewVD;
2867}
2868
2869/// \brief Diagnose variable or built-in function shadowing.  Implements
2870/// -Wshadow.
2871///
2872/// This method is called whenever a VarDecl is added to a "useful"
2873/// scope.
2874///
2875/// \param S the scope in which the shadowing name is being declared
2876/// \param R the lookup of the name
2877///
2878void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2879  // Return if warning is ignored.
2880  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2881    return;
2882
2883  // Don't diagnose declarations at file scope.  The scope might not
2884  // have a DeclContext if (e.g.) we're parsing a function prototype.
2885  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2886  if (NewDC && NewDC->isFileContext())
2887    return;
2888
2889  // Only diagnose if we're shadowing an unambiguous field or variable.
2890  if (R.getResultKind() != LookupResult::Found)
2891    return;
2892
2893  NamedDecl* ShadowedDecl = R.getFoundDecl();
2894  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2895    return;
2896
2897  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2898
2899  // Only warn about certain kinds of shadowing for class members.
2900  if (NewDC && NewDC->isRecord()) {
2901    // In particular, don't warn about shadowing non-class members.
2902    if (!OldDC->isRecord())
2903      return;
2904
2905    // TODO: should we warn about static data members shadowing
2906    // static data members from base classes?
2907
2908    // TODO: don't diagnose for inaccessible shadowed members.
2909    // This is hard to do perfectly because we might friend the
2910    // shadowing context, but that's just a false negative.
2911  }
2912
2913  // Determine what kind of declaration we're shadowing.
2914  unsigned Kind;
2915  if (isa<RecordDecl>(OldDC)) {
2916    if (isa<FieldDecl>(ShadowedDecl))
2917      Kind = 3; // field
2918    else
2919      Kind = 2; // static data member
2920  } else if (OldDC->isFileContext())
2921    Kind = 1; // global
2922  else
2923    Kind = 0; // local
2924
2925  DeclarationName Name = R.getLookupName();
2926
2927  // Emit warning and note.
2928  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2929  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2930}
2931
2932/// \brief Check -Wshadow without the advantage of a previous lookup.
2933void Sema::CheckShadow(Scope *S, VarDecl *D) {
2934  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2935                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2936  LookupName(R, S);
2937  CheckShadow(S, D, R);
2938}
2939
2940/// \brief Perform semantic checking on a newly-created variable
2941/// declaration.
2942///
2943/// This routine performs all of the type-checking required for a
2944/// variable declaration once it has been built. It is used both to
2945/// check variables after they have been parsed and their declarators
2946/// have been translated into a declaration, and to check variables
2947/// that have been instantiated from a template.
2948///
2949/// Sets NewVD->isInvalidDecl() if an error was encountered.
2950void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2951                                    LookupResult &Previous,
2952                                    bool &Redeclaration) {
2953  // If the decl is already known invalid, don't check it.
2954  if (NewVD->isInvalidDecl())
2955    return;
2956
2957  QualType T = NewVD->getType();
2958
2959  if (T->isObjCObjectType()) {
2960    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2961    return NewVD->setInvalidDecl();
2962  }
2963
2964  // Emit an error if an address space was applied to decl with local storage.
2965  // This includes arrays of objects with address space qualifiers, but not
2966  // automatic variables that point to other address spaces.
2967  // ISO/IEC TR 18037 S5.1.2
2968  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2969    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2970    return NewVD->setInvalidDecl();
2971  }
2972
2973  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2974      && !NewVD->hasAttr<BlocksAttr>())
2975    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2976
2977  bool isVM = T->isVariablyModifiedType();
2978  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2979      NewVD->hasAttr<BlocksAttr>())
2980    getCurFunction()->setHasBranchProtectedScope();
2981
2982  if ((isVM && NewVD->hasLinkage()) ||
2983      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2984    bool SizeIsNegative;
2985    llvm::APSInt Oversized;
2986    QualType FixedTy =
2987        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2988                                            Oversized);
2989
2990    if (FixedTy.isNull() && T->isVariableArrayType()) {
2991      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2992      // FIXME: This won't give the correct result for
2993      // int a[10][n];
2994      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2995
2996      if (NewVD->isFileVarDecl())
2997        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2998        << SizeRange;
2999      else if (NewVD->getStorageClass() == SC_Static)
3000        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3001        << SizeRange;
3002      else
3003        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3004        << SizeRange;
3005      return NewVD->setInvalidDecl();
3006    }
3007
3008    if (FixedTy.isNull()) {
3009      if (NewVD->isFileVarDecl())
3010        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3011      else
3012        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3013      return NewVD->setInvalidDecl();
3014    }
3015
3016    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3017    NewVD->setType(FixedTy);
3018  }
3019
3020  if (Previous.empty() && NewVD->isExternC()) {
3021    // Since we did not find anything by this name and we're declaring
3022    // an extern "C" variable, look for a non-visible extern "C"
3023    // declaration with the same name.
3024    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3025      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3026    if (Pos != LocallyScopedExternalDecls.end())
3027      Previous.addDecl(Pos->second);
3028  }
3029
3030  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3031    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3032      << T;
3033    return NewVD->setInvalidDecl();
3034  }
3035
3036  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3037    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3038    return NewVD->setInvalidDecl();
3039  }
3040
3041  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3042    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3043    return NewVD->setInvalidDecl();
3044  }
3045
3046  // Function pointers and references cannot have qualified function type, only
3047  // function pointer-to-members can do that.
3048  QualType Pointee;
3049  unsigned PtrOrRef = 0;
3050  if (const PointerType *Ptr = T->getAs<PointerType>())
3051    Pointee = Ptr->getPointeeType();
3052  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3053    Pointee = Ref->getPointeeType();
3054    PtrOrRef = 1;
3055  }
3056  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3057      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3058    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3059        << PtrOrRef;
3060    return NewVD->setInvalidDecl();
3061  }
3062
3063  if (!Previous.empty()) {
3064    Redeclaration = true;
3065    MergeVarDecl(NewVD, Previous);
3066  }
3067}
3068
3069/// \brief Data used with FindOverriddenMethod
3070struct FindOverriddenMethodData {
3071  Sema *S;
3072  CXXMethodDecl *Method;
3073};
3074
3075/// \brief Member lookup function that determines whether a given C++
3076/// method overrides a method in a base class, to be used with
3077/// CXXRecordDecl::lookupInBases().
3078static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3079                                 CXXBasePath &Path,
3080                                 void *UserData) {
3081  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3082
3083  FindOverriddenMethodData *Data
3084    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3085
3086  DeclarationName Name = Data->Method->getDeclName();
3087
3088  // FIXME: Do we care about other names here too?
3089  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3090    // We really want to find the base class destructor here.
3091    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3092    CanQualType CT = Data->S->Context.getCanonicalType(T);
3093
3094    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3095  }
3096
3097  for (Path.Decls = BaseRecord->lookup(Name);
3098       Path.Decls.first != Path.Decls.second;
3099       ++Path.Decls.first) {
3100    NamedDecl *D = *Path.Decls.first;
3101    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3102      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3103        return true;
3104    }
3105  }
3106
3107  return false;
3108}
3109
3110/// AddOverriddenMethods - See if a method overrides any in the base classes,
3111/// and if so, check that it's a valid override and remember it.
3112void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3113  // Look for virtual methods in base classes that this method might override.
3114  CXXBasePaths Paths;
3115  FindOverriddenMethodData Data;
3116  Data.Method = MD;
3117  Data.S = this;
3118  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3119    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3120         E = Paths.found_decls_end(); I != E; ++I) {
3121      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3122        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3123            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3124            !CheckOverridingFunctionAttributes(MD, OldMD))
3125          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3126      }
3127    }
3128  }
3129}
3130
3131NamedDecl*
3132Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3133                              QualType R, TypeSourceInfo *TInfo,
3134                              LookupResult &Previous,
3135                              MultiTemplateParamsArg TemplateParamLists,
3136                              bool IsFunctionDefinition, bool &Redeclaration) {
3137  assert(R.getTypePtr()->isFunctionType());
3138
3139  // TODO: consider using NameInfo for diagnostic.
3140  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3141  DeclarationName Name = NameInfo.getName();
3142  FunctionDecl::StorageClass SC = SC_None;
3143  switch (D.getDeclSpec().getStorageClassSpec()) {
3144  default: assert(0 && "Unknown storage class!");
3145  case DeclSpec::SCS_auto:
3146  case DeclSpec::SCS_register:
3147  case DeclSpec::SCS_mutable:
3148    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3149         diag::err_typecheck_sclass_func);
3150    D.setInvalidType();
3151    break;
3152  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3153  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3154  case DeclSpec::SCS_static: {
3155    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3156      // C99 6.7.1p5:
3157      //   The declaration of an identifier for a function that has
3158      //   block scope shall have no explicit storage-class specifier
3159      //   other than extern
3160      // See also (C++ [dcl.stc]p4).
3161      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3162           diag::err_static_block_func);
3163      SC = SC_None;
3164    } else
3165      SC = SC_Static;
3166    break;
3167  }
3168  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern;break;
3169  }
3170
3171  if (D.getDeclSpec().isThreadSpecified())
3172    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3173
3174  bool isFriend = D.getDeclSpec().isFriendSpecified();
3175  bool isInline = D.getDeclSpec().isInlineSpecified();
3176  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3177  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3178
3179  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3180  FunctionDecl::StorageClass SCAsWritten
3181    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3182
3183  // Check that the return type is not an abstract class type.
3184  // For record types, this is done by the AbstractClassUsageDiagnoser once
3185  // the class has been completely parsed.
3186  if (!DC->isRecord() &&
3187      RequireNonAbstractType(D.getIdentifierLoc(),
3188                             R->getAs<FunctionType>()->getResultType(),
3189                             diag::err_abstract_type_in_decl,
3190                             AbstractReturnType))
3191    D.setInvalidType();
3192
3193  // Do not allow returning a objc interface by-value.
3194  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3195    Diag(D.getIdentifierLoc(),
3196         diag::err_object_cannot_be_passed_returned_by_value) << 0
3197      << R->getAs<FunctionType>()->getResultType();
3198    D.setInvalidType();
3199  }
3200
3201  bool isVirtualOkay = false;
3202  FunctionDecl *NewFD;
3203
3204  if (isFriend) {
3205    // C++ [class.friend]p5
3206    //   A function can be defined in a friend declaration of a
3207    //   class . . . . Such a function is implicitly inline.
3208    isInline |= IsFunctionDefinition;
3209  }
3210
3211  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3212    // This is a C++ constructor declaration.
3213    assert(DC->isRecord() &&
3214           "Constructors can only be declared in a member context");
3215
3216    R = CheckConstructorDeclarator(D, R, SC);
3217
3218    // Create the new declaration
3219    NewFD = CXXConstructorDecl::Create(Context,
3220                                       cast<CXXRecordDecl>(DC),
3221                                       NameInfo, R, TInfo,
3222                                       isExplicit, isInline,
3223                                       /*isImplicitlyDeclared=*/false);
3224  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3225    // This is a C++ destructor declaration.
3226    if (DC->isRecord()) {
3227      R = CheckDestructorDeclarator(D, R, SC);
3228
3229      NewFD = CXXDestructorDecl::Create(Context,
3230                                        cast<CXXRecordDecl>(DC),
3231                                        NameInfo, R,
3232                                        isInline,
3233                                        /*isImplicitlyDeclared=*/false);
3234      NewFD->setTypeSourceInfo(TInfo);
3235
3236      isVirtualOkay = true;
3237    } else {
3238      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3239
3240      // Create a FunctionDecl to satisfy the function definition parsing
3241      // code path.
3242      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3243                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3244                                   /*hasPrototype=*/true);
3245      D.setInvalidType();
3246    }
3247  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3248    if (!DC->isRecord()) {
3249      Diag(D.getIdentifierLoc(),
3250           diag::err_conv_function_not_member);
3251      return 0;
3252    }
3253
3254    CheckConversionDeclarator(D, R, SC);
3255    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3256                                      NameInfo, R, TInfo,
3257                                      isInline, isExplicit);
3258
3259    isVirtualOkay = true;
3260  } else if (DC->isRecord()) {
3261    // If the of the function is the same as the name of the record, then this
3262    // must be an invalid constructor that has a return type.
3263    // (The parser checks for a return type and makes the declarator a
3264    // constructor if it has no return type).
3265    // must have an invalid constructor that has a return type
3266    if (Name.getAsIdentifierInfo() &&
3267        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3268      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3269        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3270        << SourceRange(D.getIdentifierLoc());
3271      return 0;
3272    }
3273
3274    bool isStatic = SC == SC_Static;
3275
3276    // [class.free]p1:
3277    // Any allocation function for a class T is a static member
3278    // (even if not explicitly declared static).
3279    if (Name.getCXXOverloadedOperator() == OO_New ||
3280        Name.getCXXOverloadedOperator() == OO_Array_New)
3281      isStatic = true;
3282
3283    // [class.free]p6 Any deallocation function for a class X is a static member
3284    // (even if not explicitly declared static).
3285    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3286        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3287      isStatic = true;
3288
3289    // This is a C++ method declaration.
3290    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3291                                  NameInfo, R, TInfo,
3292                                  isStatic, SCAsWritten, isInline);
3293
3294    isVirtualOkay = !isStatic;
3295  } else {
3296    // Determine whether the function was written with a
3297    // prototype. This true when:
3298    //   - we're in C++ (where every function has a prototype),
3299    //   - there is a prototype in the declarator, or
3300    //   - the type R of the function is some kind of typedef or other reference
3301    //     to a type name (which eventually refers to a function type).
3302    bool HasPrototype =
3303       getLangOptions().CPlusPlus ||
3304       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3305       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3306
3307    NewFD = FunctionDecl::Create(Context, DC,
3308                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3309                                 HasPrototype);
3310  }
3311
3312  if (D.isInvalidType())
3313    NewFD->setInvalidDecl();
3314
3315  SetNestedNameSpecifier(NewFD, D);
3316
3317  // Set the lexical context. If the declarator has a C++
3318  // scope specifier, or is the object of a friend declaration, the
3319  // lexical context will be different from the semantic context.
3320  NewFD->setLexicalDeclContext(CurContext);
3321
3322  // Match up the template parameter lists with the scope specifier, then
3323  // determine whether we have a template or a template specialization.
3324  FunctionTemplateDecl *FunctionTemplate = 0;
3325  bool isExplicitSpecialization = false;
3326  bool isFunctionTemplateSpecialization = false;
3327  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3328  bool Invalid = false;
3329  if (TemplateParameterList *TemplateParams
3330        = MatchTemplateParametersToScopeSpecifier(
3331                                  D.getDeclSpec().getSourceRange().getBegin(),
3332                                  D.getCXXScopeSpec(),
3333                           (TemplateParameterList**)TemplateParamLists.get(),
3334                                                  TemplateParamLists.size(),
3335                                                  isFriend,
3336                                                  isExplicitSpecialization,
3337                                                  Invalid)) {
3338    // All but one template parameter lists have been matching.
3339    --NumMatchedTemplateParamLists;
3340
3341    if (TemplateParams->size() > 0) {
3342      // This is a function template
3343
3344      // Check that we can declare a template here.
3345      if (CheckTemplateDeclScope(S, TemplateParams))
3346        return 0;
3347
3348      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3349                                                      NewFD->getLocation(),
3350                                                      Name, TemplateParams,
3351                                                      NewFD);
3352      FunctionTemplate->setLexicalDeclContext(CurContext);
3353      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3354    } else {
3355      // This is a function template specialization.
3356      isFunctionTemplateSpecialization = true;
3357
3358      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3359      if (isFriend && isFunctionTemplateSpecialization) {
3360        // We want to remove the "template<>", found here.
3361        SourceRange RemoveRange = TemplateParams->getSourceRange();
3362
3363        // If we remove the template<> and the name is not a
3364        // template-id, we're actually silently creating a problem:
3365        // the friend declaration will refer to an untemplated decl,
3366        // and clearly the user wants a template specialization.  So
3367        // we need to insert '<>' after the name.
3368        SourceLocation InsertLoc;
3369        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3370          InsertLoc = D.getName().getSourceRange().getEnd();
3371          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3372        }
3373
3374        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3375          << Name << RemoveRange
3376          << FixItHint::CreateRemoval(RemoveRange)
3377          << FixItHint::CreateInsertion(InsertLoc, "<>");
3378      }
3379    }
3380  }
3381
3382  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3383    NewFD->setTemplateParameterListsInfo(Context,
3384                                         NumMatchedTemplateParamLists,
3385                        (TemplateParameterList**)TemplateParamLists.release());
3386  }
3387
3388  if (Invalid) {
3389    NewFD->setInvalidDecl();
3390    if (FunctionTemplate)
3391      FunctionTemplate->setInvalidDecl();
3392  }
3393
3394  // C++ [dcl.fct.spec]p5:
3395  //   The virtual specifier shall only be used in declarations of
3396  //   nonstatic class member functions that appear within a
3397  //   member-specification of a class declaration; see 10.3.
3398  //
3399  if (isVirtual && !NewFD->isInvalidDecl()) {
3400    if (!isVirtualOkay) {
3401       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3402           diag::err_virtual_non_function);
3403    } else if (!CurContext->isRecord()) {
3404      // 'virtual' was specified outside of the class.
3405      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3406        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3407    } else {
3408      // Okay: Add virtual to the method.
3409      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3410      CurClass->setMethodAsVirtual(NewFD);
3411    }
3412  }
3413
3414  // C++ [dcl.fct.spec]p3:
3415  //  The inline specifier shall not appear on a block scope function declaration.
3416  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3417    if (CurContext->isFunctionOrMethod()) {
3418      // 'inline' is not allowed on block scope function declaration.
3419      Diag(D.getDeclSpec().getInlineSpecLoc(),
3420           diag::err_inline_declaration_block_scope) << Name
3421        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3422    }
3423  }
3424
3425  // C++ [dcl.fct.spec]p6:
3426  //  The explicit specifier shall be used only in the declaration of a
3427  //  constructor or conversion function within its class definition; see 12.3.1
3428  //  and 12.3.2.
3429  if (isExplicit && !NewFD->isInvalidDecl()) {
3430    if (!CurContext->isRecord()) {
3431      // 'explicit' was specified outside of the class.
3432      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3433           diag::err_explicit_out_of_class)
3434        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3435    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3436               !isa<CXXConversionDecl>(NewFD)) {
3437      // 'explicit' was specified on a function that wasn't a constructor
3438      // or conversion function.
3439      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3440           diag::err_explicit_non_ctor_or_conv_function)
3441        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3442    }
3443  }
3444
3445  // Filter out previous declarations that don't match the scope.
3446  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3447
3448  if (isFriend) {
3449    // DC is the namespace in which the function is being declared.
3450    assert((DC->isFileContext() || !Previous.empty()) &&
3451           "previously-undeclared friend function being created "
3452           "in a non-namespace context");
3453
3454    // For now, claim that the objects have no previous declaration.
3455    if (FunctionTemplate) {
3456      FunctionTemplate->setObjectOfFriendDecl(false);
3457      FunctionTemplate->setAccess(AS_public);
3458    }
3459    NewFD->setObjectOfFriendDecl(false);
3460    NewFD->setAccess(AS_public);
3461  }
3462
3463  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3464      !CurContext->isRecord()) {
3465    // C++ [class.static]p1:
3466    //   A data or function member of a class may be declared static
3467    //   in a class definition, in which case it is a static member of
3468    //   the class.
3469
3470    // Complain about the 'static' specifier if it's on an out-of-line
3471    // member function definition.
3472    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3473         diag::err_static_out_of_line)
3474      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3475  }
3476
3477  // Handle GNU asm-label extension (encoded as an attribute).
3478  if (Expr *E = (Expr*) D.getAsmLabel()) {
3479    // The parser guarantees this is a string.
3480    StringLiteral *SE = cast<StringLiteral>(E);
3481    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3482                                                SE->getString()));
3483  }
3484
3485  // Copy the parameter declarations from the declarator D to the function
3486  // declaration NewFD, if they are available.  First scavenge them into Params.
3487  llvm::SmallVector<ParmVarDecl*, 16> Params;
3488  if (D.getNumTypeObjects() > 0) {
3489    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3490
3491    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3492    // function that takes no arguments, not a function that takes a
3493    // single void argument.
3494    // We let through "const void" here because Sema::GetTypeForDeclarator
3495    // already checks for that case.
3496    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3497        FTI.ArgInfo[0].Param &&
3498        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3499      // Empty arg list, don't push any params.
3500      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3501
3502      // In C++, the empty parameter-type-list must be spelled "void"; a
3503      // typedef of void is not permitted.
3504      if (getLangOptions().CPlusPlus &&
3505          Param->getType().getUnqualifiedType() != Context.VoidTy)
3506        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3507      // FIXME: Leaks decl?
3508    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3509      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3510        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3511        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3512        Param->setDeclContext(NewFD);
3513        Params.push_back(Param);
3514
3515        if (Param->isInvalidDecl())
3516          NewFD->setInvalidDecl();
3517      }
3518    }
3519
3520  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3521    // When we're declaring a function with a typedef, typeof, etc as in the
3522    // following example, we'll need to synthesize (unnamed)
3523    // parameters for use in the declaration.
3524    //
3525    // @code
3526    // typedef void fn(int);
3527    // fn f;
3528    // @endcode
3529
3530    // Synthesize a parameter for each argument type.
3531    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3532         AE = FT->arg_type_end(); AI != AE; ++AI) {
3533      ParmVarDecl *Param =
3534        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3535      Params.push_back(Param);
3536    }
3537  } else {
3538    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3539           "Should not need args for typedef of non-prototype fn");
3540  }
3541  // Finally, we know we have the right number of parameters, install them.
3542  NewFD->setParams(Params.data(), Params.size());
3543
3544  // If the declarator is a template-id, translate the parser's template
3545  // argument list into our AST format.
3546  bool HasExplicitTemplateArgs = false;
3547  TemplateArgumentListInfo TemplateArgs;
3548  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3549    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3550    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3551    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3552    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3553                                       TemplateId->getTemplateArgs(),
3554                                       TemplateId->NumArgs);
3555    translateTemplateArguments(TemplateArgsPtr,
3556                               TemplateArgs);
3557    TemplateArgsPtr.release();
3558
3559    HasExplicitTemplateArgs = true;
3560
3561    if (FunctionTemplate) {
3562      // FIXME: Diagnose function template with explicit template
3563      // arguments.
3564      HasExplicitTemplateArgs = false;
3565    } else if (!isFunctionTemplateSpecialization &&
3566               !D.getDeclSpec().isFriendSpecified()) {
3567      // We have encountered something that the user meant to be a
3568      // specialization (because it has explicitly-specified template
3569      // arguments) but that was not introduced with a "template<>" (or had
3570      // too few of them).
3571      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3572        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3573        << FixItHint::CreateInsertion(
3574                                   D.getDeclSpec().getSourceRange().getBegin(),
3575                                                 "template<> ");
3576      isFunctionTemplateSpecialization = true;
3577    } else {
3578      // "friend void foo<>(int);" is an implicit specialization decl.
3579      isFunctionTemplateSpecialization = true;
3580    }
3581  } else if (isFriend && isFunctionTemplateSpecialization) {
3582    // This combination is only possible in a recovery case;  the user
3583    // wrote something like:
3584    //   template <> friend void foo(int);
3585    // which we're recovering from as if the user had written:
3586    //   friend void foo<>(int);
3587    // Go ahead and fake up a template id.
3588    HasExplicitTemplateArgs = true;
3589    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3590    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3591  }
3592
3593  // If it's a friend (and only if it's a friend), it's possible
3594  // that either the specialized function type or the specialized
3595  // template is dependent, and therefore matching will fail.  In
3596  // this case, don't check the specialization yet.
3597  if (isFunctionTemplateSpecialization && isFriend &&
3598      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3599    assert(HasExplicitTemplateArgs &&
3600           "friend function specialization without template args");
3601    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3602                                                     Previous))
3603      NewFD->setInvalidDecl();
3604  } else if (isFunctionTemplateSpecialization) {
3605    if (CheckFunctionTemplateSpecialization(NewFD,
3606                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3607                                            Previous))
3608      NewFD->setInvalidDecl();
3609  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3610    if (CheckMemberSpecialization(NewFD, Previous))
3611      NewFD->setInvalidDecl();
3612  }
3613
3614  // Perform semantic checking on the function declaration.
3615  bool OverloadableAttrRequired = false; // FIXME: HACK!
3616  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3617                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3618
3619  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3620          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3621         "previous declaration set still overloaded");
3622
3623  NamedDecl *PrincipalDecl = (FunctionTemplate
3624                              ? cast<NamedDecl>(FunctionTemplate)
3625                              : NewFD);
3626
3627  if (isFriend && Redeclaration) {
3628    AccessSpecifier Access = AS_public;
3629    if (!NewFD->isInvalidDecl())
3630      Access = NewFD->getPreviousDeclaration()->getAccess();
3631
3632    NewFD->setAccess(Access);
3633    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3634
3635    PrincipalDecl->setObjectOfFriendDecl(true);
3636  }
3637
3638  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3639      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3640    PrincipalDecl->setNonMemberOperator();
3641
3642  // If we have a function template, check the template parameter
3643  // list. This will check and merge default template arguments.
3644  if (FunctionTemplate) {
3645    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3646    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3647                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3648             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3649                                                : TPC_FunctionTemplate);
3650  }
3651
3652  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3653    // Fake up an access specifier if it's supposed to be a class member.
3654    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3655      NewFD->setAccess(AS_public);
3656
3657    // An out-of-line member function declaration must also be a
3658    // definition (C++ [dcl.meaning]p1).
3659    // Note that this is not the case for explicit specializations of
3660    // function templates or member functions of class templates, per
3661    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3662    // for compatibility with old SWIG code which likes to generate them.
3663    if (!IsFunctionDefinition && !isFriend &&
3664        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3665      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3666        << D.getCXXScopeSpec().getRange();
3667    }
3668    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3669      // The user tried to provide an out-of-line definition for a
3670      // function that is a member of a class or namespace, but there
3671      // was no such member function declared (C++ [class.mfct]p2,
3672      // C++ [namespace.memdef]p2). For example:
3673      //
3674      // class X {
3675      //   void f() const;
3676      // };
3677      //
3678      // void X::f() { } // ill-formed
3679      //
3680      // Complain about this problem, and attempt to suggest close
3681      // matches (e.g., those that differ only in cv-qualifiers and
3682      // whether the parameter types are references).
3683      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3684        << Name << DC << D.getCXXScopeSpec().getRange();
3685      NewFD->setInvalidDecl();
3686
3687      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3688                        ForRedeclaration);
3689      LookupQualifiedName(Prev, DC);
3690      assert(!Prev.isAmbiguous() &&
3691             "Cannot have an ambiguity in previous-declaration lookup");
3692      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3693           Func != FuncEnd; ++Func) {
3694        if (isa<FunctionDecl>(*Func) &&
3695            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3696          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3697      }
3698    }
3699  }
3700
3701  // Handle attributes. We need to have merged decls when handling attributes
3702  // (for example to check for conflicts, etc).
3703  // FIXME: This needs to happen before we merge declarations. Then,
3704  // let attribute merging cope with attribute conflicts.
3705  ProcessDeclAttributes(S, NewFD, D);
3706
3707  // attributes declared post-definition are currently ignored
3708  // FIXME: This should happen during attribute merging
3709  if (Redeclaration && Previous.isSingleResult()) {
3710    const FunctionDecl *Def;
3711    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3712    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3713      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3714      Diag(Def->getLocation(), diag::note_previous_definition);
3715    }
3716  }
3717
3718  AddKnownFunctionAttributes(NewFD);
3719
3720  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3721    // If a function name is overloadable in C, then every function
3722    // with that name must be marked "overloadable".
3723    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3724      << Redeclaration << NewFD;
3725    if (!Previous.empty())
3726      Diag(Previous.getRepresentativeDecl()->getLocation(),
3727           diag::note_attribute_overloadable_prev_overload);
3728    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3729  }
3730
3731  if (NewFD->hasAttr<OverloadableAttr>() &&
3732      !NewFD->getType()->getAs<FunctionProtoType>()) {
3733    Diag(NewFD->getLocation(),
3734         diag::err_attribute_overloadable_no_prototype)
3735      << NewFD;
3736
3737    // Turn this into a variadic function with no parameters.
3738    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3739    QualType R = Context.getFunctionType(FT->getResultType(),
3740                                         0, 0, true, 0, false, false, 0, 0,
3741                                         FT->getExtInfo());
3742    NewFD->setType(R);
3743  }
3744
3745  // If there's a #pragma GCC visibility in scope, and this isn't a class
3746  // member, set the visibility of this function.
3747  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3748    AddPushedVisibilityAttribute(NewFD);
3749
3750  // If this is a locally-scoped extern C function, update the
3751  // map of such names.
3752  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3753      && !NewFD->isInvalidDecl())
3754    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3755
3756  // Set this FunctionDecl's range up to the right paren.
3757  NewFD->setLocEnd(D.getSourceRange().getEnd());
3758
3759  if (FunctionTemplate && NewFD->isInvalidDecl())
3760    FunctionTemplate->setInvalidDecl();
3761
3762  if (FunctionTemplate)
3763    return FunctionTemplate;
3764
3765  MarkUnusedFileScopedDecl(NewFD);
3766
3767  return NewFD;
3768}
3769
3770/// \brief Perform semantic checking of a new function declaration.
3771///
3772/// Performs semantic analysis of the new function declaration
3773/// NewFD. This routine performs all semantic checking that does not
3774/// require the actual declarator involved in the declaration, and is
3775/// used both for the declaration of functions as they are parsed
3776/// (called via ActOnDeclarator) and for the declaration of functions
3777/// that have been instantiated via C++ template instantiation (called
3778/// via InstantiateDecl).
3779///
3780/// \param IsExplicitSpecialiation whether this new function declaration is
3781/// an explicit specialization of the previous declaration.
3782///
3783/// This sets NewFD->isInvalidDecl() to true if there was an error.
3784void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3785                                    LookupResult &Previous,
3786                                    bool IsExplicitSpecialization,
3787                                    bool &Redeclaration,
3788                                    bool &OverloadableAttrRequired) {
3789  // If NewFD is already known erroneous, don't do any of this checking.
3790  if (NewFD->isInvalidDecl()) {
3791    // If this is a class member, mark the class invalid immediately.
3792    // This avoids some consistency errors later.
3793    if (isa<CXXMethodDecl>(NewFD))
3794      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3795
3796    return;
3797  }
3798
3799  if (NewFD->getResultType()->isVariablyModifiedType()) {
3800    // Functions returning a variably modified type violate C99 6.7.5.2p2
3801    // because all functions have linkage.
3802    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3803    return NewFD->setInvalidDecl();
3804  }
3805
3806  if (NewFD->isMain())
3807    CheckMain(NewFD);
3808
3809  // Check for a previous declaration of this name.
3810  if (Previous.empty() && NewFD->isExternC()) {
3811    // Since we did not find anything by this name and we're declaring
3812    // an extern "C" function, look for a non-visible extern "C"
3813    // declaration with the same name.
3814    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3815      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3816    if (Pos != LocallyScopedExternalDecls.end())
3817      Previous.addDecl(Pos->second);
3818  }
3819
3820  // Merge or overload the declaration with an existing declaration of
3821  // the same name, if appropriate.
3822  if (!Previous.empty()) {
3823    // Determine whether NewFD is an overload of PrevDecl or
3824    // a declaration that requires merging. If it's an overload,
3825    // there's no more work to do here; we'll just add the new
3826    // function to the scope.
3827
3828    NamedDecl *OldDecl = 0;
3829    if (!AllowOverloadingOfFunction(Previous, Context)) {
3830      Redeclaration = true;
3831      OldDecl = Previous.getFoundDecl();
3832    } else {
3833      if (!getLangOptions().CPlusPlus)
3834        OverloadableAttrRequired = true;
3835
3836      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3837                            /*NewIsUsingDecl*/ false)) {
3838      case Ovl_Match:
3839        Redeclaration = true;
3840        break;
3841
3842      case Ovl_NonFunction:
3843        Redeclaration = true;
3844        break;
3845
3846      case Ovl_Overload:
3847        Redeclaration = false;
3848        break;
3849      }
3850    }
3851
3852    if (Redeclaration) {
3853      // NewFD and OldDecl represent declarations that need to be
3854      // merged.
3855      if (MergeFunctionDecl(NewFD, OldDecl))
3856        return NewFD->setInvalidDecl();
3857
3858      Previous.clear();
3859      Previous.addDecl(OldDecl);
3860
3861      if (FunctionTemplateDecl *OldTemplateDecl
3862                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3863        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3864        FunctionTemplateDecl *NewTemplateDecl
3865          = NewFD->getDescribedFunctionTemplate();
3866        assert(NewTemplateDecl && "Template/non-template mismatch");
3867        if (CXXMethodDecl *Method
3868              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3869          Method->setAccess(OldTemplateDecl->getAccess());
3870          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3871        }
3872
3873        // If this is an explicit specialization of a member that is a function
3874        // template, mark it as a member specialization.
3875        if (IsExplicitSpecialization &&
3876            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3877          NewTemplateDecl->setMemberSpecialization();
3878          assert(OldTemplateDecl->isMemberSpecialization());
3879        }
3880      } else {
3881        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3882          NewFD->setAccess(OldDecl->getAccess());
3883        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3884      }
3885    }
3886  }
3887
3888  // Semantic checking for this function declaration (in isolation).
3889  if (getLangOptions().CPlusPlus) {
3890    // C++-specific checks.
3891    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3892      CheckConstructor(Constructor);
3893    } else if (CXXDestructorDecl *Destructor =
3894                dyn_cast<CXXDestructorDecl>(NewFD)) {
3895      CXXRecordDecl *Record = Destructor->getParent();
3896      QualType ClassType = Context.getTypeDeclType(Record);
3897
3898      // FIXME: Shouldn't we be able to perform this check even when the class
3899      // type is dependent? Both gcc and edg can handle that.
3900      if (!ClassType->isDependentType()) {
3901        DeclarationName Name
3902          = Context.DeclarationNames.getCXXDestructorName(
3903                                        Context.getCanonicalType(ClassType));
3904//         NewFD->getDeclName().dump();
3905//         Name.dump();
3906        if (NewFD->getDeclName() != Name) {
3907          Diag(NewFD->getLocation(), diag::err_destructor_name);
3908          return NewFD->setInvalidDecl();
3909        }
3910      }
3911
3912      Record->setUserDeclaredDestructor(true);
3913      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3914      // user-defined destructor.
3915      Record->setPOD(false);
3916
3917      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3918      // declared destructor.
3919      // FIXME: C++0x: don't do this for "= default" destructors
3920      Record->setHasTrivialDestructor(false);
3921    } else if (CXXConversionDecl *Conversion
3922               = dyn_cast<CXXConversionDecl>(NewFD)) {
3923      ActOnConversionDeclarator(Conversion);
3924    }
3925
3926    // Find any virtual functions that this function overrides.
3927    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3928      if (!Method->isFunctionTemplateSpecialization() &&
3929          !Method->getDescribedFunctionTemplate())
3930        AddOverriddenMethods(Method->getParent(), Method);
3931    }
3932
3933    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3934    if (NewFD->isOverloadedOperator() &&
3935        CheckOverloadedOperatorDeclaration(NewFD))
3936      return NewFD->setInvalidDecl();
3937
3938    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3939    if (NewFD->getLiteralIdentifier() &&
3940        CheckLiteralOperatorDeclaration(NewFD))
3941      return NewFD->setInvalidDecl();
3942
3943    // In C++, check default arguments now that we have merged decls. Unless
3944    // the lexical context is the class, because in this case this is done
3945    // during delayed parsing anyway.
3946    if (!CurContext->isRecord())
3947      CheckCXXDefaultArguments(NewFD);
3948  }
3949}
3950
3951void Sema::CheckMain(FunctionDecl* FD) {
3952  // C++ [basic.start.main]p3:  A program that declares main to be inline
3953  //   or static is ill-formed.
3954  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3955  //   shall not appear in a declaration of main.
3956  // static main is not an error under C99, but we should warn about it.
3957  bool isInline = FD->isInlineSpecified();
3958  bool isStatic = FD->getStorageClass() == SC_Static;
3959  if (isInline || isStatic) {
3960    unsigned diagID = diag::warn_unusual_main_decl;
3961    if (isInline || getLangOptions().CPlusPlus)
3962      diagID = diag::err_unusual_main_decl;
3963
3964    int which = isStatic + (isInline << 1) - 1;
3965    Diag(FD->getLocation(), diagID) << which;
3966  }
3967
3968  QualType T = FD->getType();
3969  assert(T->isFunctionType() && "function decl is not of function type");
3970  const FunctionType* FT = T->getAs<FunctionType>();
3971
3972  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3973    // TODO: add a replacement fixit to turn the return type into 'int'.
3974    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3975    FD->setInvalidDecl(true);
3976  }
3977
3978  // Treat protoless main() as nullary.
3979  if (isa<FunctionNoProtoType>(FT)) return;
3980
3981  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3982  unsigned nparams = FTP->getNumArgs();
3983  assert(FD->getNumParams() == nparams);
3984
3985  bool HasExtraParameters = (nparams > 3);
3986
3987  // Darwin passes an undocumented fourth argument of type char**.  If
3988  // other platforms start sprouting these, the logic below will start
3989  // getting shifty.
3990  if (nparams == 4 &&
3991      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3992    HasExtraParameters = false;
3993
3994  if (HasExtraParameters) {
3995    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3996    FD->setInvalidDecl(true);
3997    nparams = 3;
3998  }
3999
4000  // FIXME: a lot of the following diagnostics would be improved
4001  // if we had some location information about types.
4002
4003  QualType CharPP =
4004    Context.getPointerType(Context.getPointerType(Context.CharTy));
4005  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4006
4007  for (unsigned i = 0; i < nparams; ++i) {
4008    QualType AT = FTP->getArgType(i);
4009
4010    bool mismatch = true;
4011
4012    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4013      mismatch = false;
4014    else if (Expected[i] == CharPP) {
4015      // As an extension, the following forms are okay:
4016      //   char const **
4017      //   char const * const *
4018      //   char * const *
4019
4020      QualifierCollector qs;
4021      const PointerType* PT;
4022      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4023          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4024          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4025        qs.removeConst();
4026        mismatch = !qs.empty();
4027      }
4028    }
4029
4030    if (mismatch) {
4031      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4032      // TODO: suggest replacing given type with expected type
4033      FD->setInvalidDecl(true);
4034    }
4035  }
4036
4037  if (nparams == 1 && !FD->isInvalidDecl()) {
4038    Diag(FD->getLocation(), diag::warn_main_one_arg);
4039  }
4040}
4041
4042bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4043  // FIXME: Need strict checking.  In C89, we need to check for
4044  // any assignment, increment, decrement, function-calls, or
4045  // commas outside of a sizeof.  In C99, it's the same list,
4046  // except that the aforementioned are allowed in unevaluated
4047  // expressions.  Everything else falls under the
4048  // "may accept other forms of constant expressions" exception.
4049  // (We never end up here for C++, so the constant expression
4050  // rules there don't matter.)
4051  if (Init->isConstantInitializer(Context, false))
4052    return false;
4053  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4054    << Init->getSourceRange();
4055  return true;
4056}
4057
4058void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4059  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4060}
4061
4062/// AddInitializerToDecl - Adds the initializer Init to the
4063/// declaration dcl. If DirectInit is true, this is C++ direct
4064/// initialization rather than copy initialization.
4065void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4066  // If there is no declaration, there was an error parsing it.  Just ignore
4067  // the initializer.
4068  if (RealDecl == 0)
4069    return;
4070
4071  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4072    // With declarators parsed the way they are, the parser cannot
4073    // distinguish between a normal initializer and a pure-specifier.
4074    // Thus this grotesque test.
4075    IntegerLiteral *IL;
4076    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4077        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4078      CheckPureMethod(Method, Init->getSourceRange());
4079    else {
4080      Diag(Method->getLocation(), diag::err_member_function_initialization)
4081        << Method->getDeclName() << Init->getSourceRange();
4082      Method->setInvalidDecl();
4083    }
4084    return;
4085  }
4086
4087  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4088  if (!VDecl) {
4089    if (getLangOptions().CPlusPlus &&
4090        RealDecl->getLexicalDeclContext()->isRecord() &&
4091        isa<NamedDecl>(RealDecl))
4092      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4093        << cast<NamedDecl>(RealDecl)->getDeclName();
4094    else
4095      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4096    RealDecl->setInvalidDecl();
4097    return;
4098  }
4099
4100
4101
4102  // A definition must end up with a complete type, which means it must be
4103  // complete with the restriction that an array type might be completed by the
4104  // initializer; note that later code assumes this restriction.
4105  QualType BaseDeclType = VDecl->getType();
4106  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4107    BaseDeclType = Array->getElementType();
4108  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4109                          diag::err_typecheck_decl_incomplete_type)) {
4110    RealDecl->setInvalidDecl();
4111    return;
4112  }
4113
4114  // The variable can not have an abstract class type.
4115  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4116                             diag::err_abstract_type_in_decl,
4117                             AbstractVariableType))
4118    VDecl->setInvalidDecl();
4119
4120  const VarDecl *Def;
4121  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4122    Diag(VDecl->getLocation(), diag::err_redefinition)
4123      << VDecl->getDeclName();
4124    Diag(Def->getLocation(), diag::note_previous_definition);
4125    VDecl->setInvalidDecl();
4126    return;
4127  }
4128
4129  // C++ [class.static.data]p4
4130  //   If a static data member is of const integral or const
4131  //   enumeration type, its declaration in the class definition can
4132  //   specify a constant-initializer which shall be an integral
4133  //   constant expression (5.19). In that case, the member can appear
4134  //   in integral constant expressions. The member shall still be
4135  //   defined in a namespace scope if it is used in the program and the
4136  //   namespace scope definition shall not contain an initializer.
4137  //
4138  // We already performed a redefinition check above, but for static
4139  // data members we also need to check whether there was an in-class
4140  // declaration with an initializer.
4141  const VarDecl* PrevInit = 0;
4142  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4143    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4144    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4145    return;
4146  }
4147
4148  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4149    getCurFunction()->setHasBranchProtectedScope();
4150
4151  // Capture the variable that is being initialized and the style of
4152  // initialization.
4153  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4154
4155  // FIXME: Poor source location information.
4156  InitializationKind Kind
4157    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4158                                                   Init->getLocStart(),
4159                                                   Init->getLocEnd())
4160                : InitializationKind::CreateCopy(VDecl->getLocation(),
4161                                                 Init->getLocStart());
4162
4163  // Get the decls type and save a reference for later, since
4164  // CheckInitializerTypes may change it.
4165  QualType DclT = VDecl->getType(), SavT = DclT;
4166  if (VDecl->isBlockVarDecl()) {
4167    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4168      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4169      VDecl->setInvalidDecl();
4170    } else if (!VDecl->isInvalidDecl()) {
4171      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4172      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4173                                                MultiExprArg(*this, &Init, 1),
4174                                                &DclT);
4175      if (Result.isInvalid()) {
4176        VDecl->setInvalidDecl();
4177        return;
4178      }
4179
4180      Init = Result.takeAs<Expr>();
4181
4182      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4183      // Don't check invalid declarations to avoid emitting useless diagnostics.
4184      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4185        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4186          CheckForConstantInitializer(Init, DclT);
4187      }
4188    }
4189  } else if (VDecl->isStaticDataMember() &&
4190             VDecl->getLexicalDeclContext()->isRecord()) {
4191    // This is an in-class initialization for a static data member, e.g.,
4192    //
4193    // struct S {
4194    //   static const int value = 17;
4195    // };
4196
4197    // Attach the initializer
4198    VDecl->setInit(Init);
4199
4200    // C++ [class.mem]p4:
4201    //   A member-declarator can contain a constant-initializer only
4202    //   if it declares a static member (9.4) of const integral or
4203    //   const enumeration type, see 9.4.2.
4204    QualType T = VDecl->getType();
4205    if (!T->isDependentType() &&
4206        (!Context.getCanonicalType(T).isConstQualified() ||
4207         !T->isIntegralOrEnumerationType())) {
4208      Diag(VDecl->getLocation(), diag::err_member_initialization)
4209        << VDecl->getDeclName() << Init->getSourceRange();
4210      VDecl->setInvalidDecl();
4211    } else {
4212      // C++ [class.static.data]p4:
4213      //   If a static data member is of const integral or const
4214      //   enumeration type, its declaration in the class definition
4215      //   can specify a constant-initializer which shall be an
4216      //   integral constant expression (5.19).
4217      if (!Init->isTypeDependent() &&
4218          !Init->getType()->isIntegralOrEnumerationType()) {
4219        // We have a non-dependent, non-integral or enumeration type.
4220        Diag(Init->getSourceRange().getBegin(),
4221             diag::err_in_class_initializer_non_integral_type)
4222          << Init->getType() << Init->getSourceRange();
4223        VDecl->setInvalidDecl();
4224      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4225        // Check whether the expression is a constant expression.
4226        llvm::APSInt Value;
4227        SourceLocation Loc;
4228        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4229          Diag(Loc, diag::err_in_class_initializer_non_constant)
4230            << Init->getSourceRange();
4231          VDecl->setInvalidDecl();
4232        } else if (!VDecl->getType()->isDependentType())
4233          ImpCastExprToType(Init, VDecl->getType(), CK_IntegralCast);
4234      }
4235    }
4236  } else if (VDecl->isFileVarDecl()) {
4237    if (VDecl->getStorageClass() == SC_Extern &&
4238        (!getLangOptions().CPlusPlus ||
4239         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4240      Diag(VDecl->getLocation(), diag::warn_extern_init);
4241    if (!VDecl->isInvalidDecl()) {
4242      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4243      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4244                                                MultiExprArg(*this, &Init, 1),
4245                                                &DclT);
4246      if (Result.isInvalid()) {
4247        VDecl->setInvalidDecl();
4248        return;
4249      }
4250
4251      Init = Result.takeAs<Expr>();
4252    }
4253
4254    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4255    // Don't check invalid declarations to avoid emitting useless diagnostics.
4256    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4257      // C99 6.7.8p4. All file scoped initializers need to be constant.
4258      CheckForConstantInitializer(Init, DclT);
4259    }
4260  }
4261  // If the type changed, it means we had an incomplete type that was
4262  // completed by the initializer. For example:
4263  //   int ary[] = { 1, 3, 5 };
4264  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4265  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4266    VDecl->setType(DclT);
4267    Init->setType(DclT);
4268  }
4269
4270  Init = MaybeCreateCXXExprWithTemporaries(Init);
4271  // Attach the initializer to the decl.
4272  VDecl->setInit(Init);
4273
4274  if (getLangOptions().CPlusPlus) {
4275    if (!VDecl->isInvalidDecl() &&
4276        !VDecl->getDeclContext()->isDependentContext() &&
4277        VDecl->hasGlobalStorage() &&
4278        !Init->isConstantInitializer(Context,
4279                                     VDecl->getType()->isReferenceType()))
4280      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4281        << Init->getSourceRange();
4282
4283    // Make sure we mark the destructor as used if necessary.
4284    QualType InitType = VDecl->getType();
4285    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4286      InitType = Context.getBaseElementType(Array);
4287    if (const RecordType *Record = InitType->getAs<RecordType>())
4288      FinalizeVarWithDestructor(VDecl, Record);
4289  }
4290
4291  return;
4292}
4293
4294/// ActOnInitializerError - Given that there was an error parsing an
4295/// initializer for the given declaration, try to return to some form
4296/// of sanity.
4297void Sema::ActOnInitializerError(Decl *D) {
4298  // Our main concern here is re-establishing invariants like "a
4299  // variable's type is either dependent or complete".
4300  if (!D || D->isInvalidDecl()) return;
4301
4302  VarDecl *VD = dyn_cast<VarDecl>(D);
4303  if (!VD) return;
4304
4305  QualType Ty = VD->getType();
4306  if (Ty->isDependentType()) return;
4307
4308  // Require a complete type.
4309  if (RequireCompleteType(VD->getLocation(),
4310                          Context.getBaseElementType(Ty),
4311                          diag::err_typecheck_decl_incomplete_type)) {
4312    VD->setInvalidDecl();
4313    return;
4314  }
4315
4316  // Require an abstract type.
4317  if (RequireNonAbstractType(VD->getLocation(), Ty,
4318                             diag::err_abstract_type_in_decl,
4319                             AbstractVariableType)) {
4320    VD->setInvalidDecl();
4321    return;
4322  }
4323
4324  // Don't bother complaining about constructors or destructors,
4325  // though.
4326}
4327
4328void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4329                                  bool TypeContainsUndeducedAuto) {
4330  // If there is no declaration, there was an error parsing it. Just ignore it.
4331  if (RealDecl == 0)
4332    return;
4333
4334  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4335    QualType Type = Var->getType();
4336
4337    // C++0x [dcl.spec.auto]p3
4338    if (TypeContainsUndeducedAuto) {
4339      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4340        << Var->getDeclName() << Type;
4341      Var->setInvalidDecl();
4342      return;
4343    }
4344
4345    switch (Var->isThisDeclarationADefinition()) {
4346    case VarDecl::Definition:
4347      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4348        break;
4349
4350      // We have an out-of-line definition of a static data member
4351      // that has an in-class initializer, so we type-check this like
4352      // a declaration.
4353      //
4354      // Fall through
4355
4356    case VarDecl::DeclarationOnly:
4357      // It's only a declaration.
4358
4359      // Block scope. C99 6.7p7: If an identifier for an object is
4360      // declared with no linkage (C99 6.2.2p6), the type for the
4361      // object shall be complete.
4362      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4363          !Var->getLinkage() && !Var->isInvalidDecl() &&
4364          RequireCompleteType(Var->getLocation(), Type,
4365                              diag::err_typecheck_decl_incomplete_type))
4366        Var->setInvalidDecl();
4367
4368      // Make sure that the type is not abstract.
4369      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4370          RequireNonAbstractType(Var->getLocation(), Type,
4371                                 diag::err_abstract_type_in_decl,
4372                                 AbstractVariableType))
4373        Var->setInvalidDecl();
4374      return;
4375
4376    case VarDecl::TentativeDefinition:
4377      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4378      // object that has file scope without an initializer, and without a
4379      // storage-class specifier or with the storage-class specifier "static",
4380      // constitutes a tentative definition. Note: A tentative definition with
4381      // external linkage is valid (C99 6.2.2p5).
4382      if (!Var->isInvalidDecl()) {
4383        if (const IncompleteArrayType *ArrayT
4384                                    = Context.getAsIncompleteArrayType(Type)) {
4385          if (RequireCompleteType(Var->getLocation(),
4386                                  ArrayT->getElementType(),
4387                                  diag::err_illegal_decl_array_incomplete_type))
4388            Var->setInvalidDecl();
4389        } else if (Var->getStorageClass() == SC_Static) {
4390          // C99 6.9.2p3: If the declaration of an identifier for an object is
4391          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4392          // declared type shall not be an incomplete type.
4393          // NOTE: code such as the following
4394          //     static struct s;
4395          //     struct s { int a; };
4396          // is accepted by gcc. Hence here we issue a warning instead of
4397          // an error and we do not invalidate the static declaration.
4398          // NOTE: to avoid multiple warnings, only check the first declaration.
4399          if (Var->getPreviousDeclaration() == 0)
4400            RequireCompleteType(Var->getLocation(), Type,
4401                                diag::ext_typecheck_decl_incomplete_type);
4402        }
4403      }
4404
4405      // Record the tentative definition; we're done.
4406      if (!Var->isInvalidDecl())
4407        TentativeDefinitions.push_back(Var);
4408      return;
4409    }
4410
4411    // Provide a specific diagnostic for uninitialized variable
4412    // definitions with incomplete array type.
4413    if (Type->isIncompleteArrayType()) {
4414      Diag(Var->getLocation(),
4415           diag::err_typecheck_incomplete_array_needs_initializer);
4416      Var->setInvalidDecl();
4417      return;
4418    }
4419
4420    // Provide a specific diagnostic for uninitialized variable
4421    // definitions with reference type.
4422    if (Type->isReferenceType()) {
4423      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4424        << Var->getDeclName()
4425        << SourceRange(Var->getLocation(), Var->getLocation());
4426      Var->setInvalidDecl();
4427      return;
4428    }
4429
4430    // Do not attempt to type-check the default initializer for a
4431    // variable with dependent type.
4432    if (Type->isDependentType())
4433      return;
4434
4435    if (Var->isInvalidDecl())
4436      return;
4437
4438    if (RequireCompleteType(Var->getLocation(),
4439                            Context.getBaseElementType(Type),
4440                            diag::err_typecheck_decl_incomplete_type)) {
4441      Var->setInvalidDecl();
4442      return;
4443    }
4444
4445    // The variable can not have an abstract class type.
4446    if (RequireNonAbstractType(Var->getLocation(), Type,
4447                               diag::err_abstract_type_in_decl,
4448                               AbstractVariableType)) {
4449      Var->setInvalidDecl();
4450      return;
4451    }
4452
4453    const RecordType *Record
4454      = Context.getBaseElementType(Type)->getAs<RecordType>();
4455    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4456        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4457      // C++03 [dcl.init]p9:
4458      //   If no initializer is specified for an object, and the
4459      //   object is of (possibly cv-qualified) non-POD class type (or
4460      //   array thereof), the object shall be default-initialized; if
4461      //   the object is of const-qualified type, the underlying class
4462      //   type shall have a user-declared default
4463      //   constructor. Otherwise, if no initializer is specified for
4464      //   a non- static object, the object and its subobjects, if
4465      //   any, have an indeterminate initial value); if the object
4466      //   or any of its subobjects are of const-qualified type, the
4467      //   program is ill-formed.
4468      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4469    } else {
4470      // Check for jumps past the implicit initializer.  C++0x
4471      // clarifies that this applies to a "variable with automatic
4472      // storage duration", not a "local variable".
4473      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4474        getCurFunction()->setHasBranchProtectedScope();
4475
4476      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4477      InitializationKind Kind
4478        = InitializationKind::CreateDefault(Var->getLocation());
4479
4480      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4481      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4482                                        MultiExprArg(*this, 0, 0));
4483      if (Init.isInvalid())
4484        Var->setInvalidDecl();
4485      else if (Init.get()) {
4486        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4487
4488        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4489            Var->hasGlobalStorage() &&
4490            !Var->getDeclContext()->isDependentContext() &&
4491            !Var->getInit()->isConstantInitializer(Context, false))
4492          Diag(Var->getLocation(), diag::warn_global_constructor);
4493      }
4494    }
4495
4496    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4497      FinalizeVarWithDestructor(Var, Record);
4498  }
4499}
4500
4501Sema::DeclGroupPtrTy
4502Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4503                              Decl **Group, unsigned NumDecls) {
4504  llvm::SmallVector<Decl*, 8> Decls;
4505
4506  if (DS.isTypeSpecOwned())
4507    Decls.push_back(DS.getRepAsDecl());
4508
4509  for (unsigned i = 0; i != NumDecls; ++i)
4510    if (Decl *D = Group[i])
4511      Decls.push_back(D);
4512
4513  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4514                                                   Decls.data(), Decls.size()));
4515}
4516
4517
4518/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4519/// to introduce parameters into function prototype scope.
4520Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4521  const DeclSpec &DS = D.getDeclSpec();
4522
4523  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4524  VarDecl::StorageClass StorageClass = SC_None;
4525  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4526  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4527    StorageClass = SC_Register;
4528    StorageClassAsWritten = SC_Register;
4529  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4530    Diag(DS.getStorageClassSpecLoc(),
4531         diag::err_invalid_storage_class_in_func_decl);
4532    D.getMutableDeclSpec().ClearStorageClassSpecs();
4533  }
4534
4535  if (D.getDeclSpec().isThreadSpecified())
4536    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4537
4538  DiagnoseFunctionSpecifiers(D);
4539
4540  // Check that there are no default arguments inside the type of this
4541  // parameter (C++ only).
4542  if (getLangOptions().CPlusPlus)
4543    CheckExtraCXXDefaultArguments(D);
4544
4545  TagDecl *OwnedDecl = 0;
4546  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4547  QualType parmDeclType = TInfo->getType();
4548
4549  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4550    // C++ [dcl.fct]p6:
4551    //   Types shall not be defined in return or parameter types.
4552    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4553      << Context.getTypeDeclType(OwnedDecl);
4554  }
4555
4556  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4557  IdentifierInfo *II = D.getIdentifier();
4558  if (II) {
4559    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4560                   ForRedeclaration);
4561    LookupName(R, S);
4562    if (R.isSingleResult()) {
4563      NamedDecl *PrevDecl = R.getFoundDecl();
4564      if (PrevDecl->isTemplateParameter()) {
4565        // Maybe we will complain about the shadowed template parameter.
4566        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4567        // Just pretend that we didn't see the previous declaration.
4568        PrevDecl = 0;
4569      } else if (S->isDeclScope(PrevDecl)) {
4570        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4571        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4572
4573        // Recover by removing the name
4574        II = 0;
4575        D.SetIdentifier(0, D.getIdentifierLoc());
4576        D.setInvalidType(true);
4577      }
4578    }
4579  }
4580
4581  // Temporarily put parameter variables in the translation unit, not
4582  // the enclosing context.  This prevents them from accidentally
4583  // looking like class members in C++.
4584  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4585                                    TInfo, parmDeclType, II,
4586                                    D.getIdentifierLoc(),
4587                                    StorageClass, StorageClassAsWritten);
4588
4589  if (D.isInvalidType())
4590    New->setInvalidDecl();
4591
4592  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4593  if (D.getCXXScopeSpec().isSet()) {
4594    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4595      << D.getCXXScopeSpec().getRange();
4596    New->setInvalidDecl();
4597  }
4598
4599  // Add the parameter declaration into this scope.
4600  S->AddDecl(New);
4601  if (II)
4602    IdResolver.AddDecl(New);
4603
4604  ProcessDeclAttributes(S, New, D);
4605
4606  if (New->hasAttr<BlocksAttr>()) {
4607    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4608  }
4609  return New;
4610}
4611
4612/// \brief Synthesizes a variable for a parameter arising from a
4613/// typedef.
4614ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4615                                              SourceLocation Loc,
4616                                              QualType T) {
4617  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4618                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4619                                           SC_None, SC_None, 0);
4620  Param->setImplicit();
4621  return Param;
4622}
4623
4624void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4625                                    ParmVarDecl * const *ParamEnd) {
4626  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4627        Diagnostic::Ignored)
4628    return;
4629
4630  // Don't diagnose unused-parameter errors in template instantiations; we
4631  // will already have done so in the template itself.
4632  if (!ActiveTemplateInstantiations.empty())
4633    return;
4634
4635  for (; Param != ParamEnd; ++Param) {
4636    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4637        !(*Param)->hasAttr<UnusedAttr>()) {
4638      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4639        << (*Param)->getDeclName();
4640    }
4641  }
4642}
4643
4644ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4645                                  TypeSourceInfo *TSInfo, QualType T,
4646                                  IdentifierInfo *Name,
4647                                  SourceLocation NameLoc,
4648                                  VarDecl::StorageClass StorageClass,
4649                                  VarDecl::StorageClass StorageClassAsWritten) {
4650  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4651                                         adjustParameterType(T), TSInfo,
4652                                         StorageClass, StorageClassAsWritten,
4653                                         0);
4654
4655  // Parameters can not be abstract class types.
4656  // For record types, this is done by the AbstractClassUsageDiagnoser once
4657  // the class has been completely parsed.
4658  if (!CurContext->isRecord() &&
4659      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4660                             AbstractParamType))
4661    New->setInvalidDecl();
4662
4663  // Parameter declarators cannot be interface types. All ObjC objects are
4664  // passed by reference.
4665  if (T->isObjCObjectType()) {
4666    Diag(NameLoc,
4667         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4668    New->setInvalidDecl();
4669  }
4670
4671  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4672  // duration shall not be qualified by an address-space qualifier."
4673  // Since all parameters have automatic store duration, they can not have
4674  // an address space.
4675  if (T.getAddressSpace() != 0) {
4676    Diag(NameLoc, diag::err_arg_with_address_space);
4677    New->setInvalidDecl();
4678  }
4679
4680  return New;
4681}
4682
4683void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4684                                           SourceLocation LocAfterDecls) {
4685  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4686         "Not a function declarator!");
4687  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4688
4689  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4690  // for a K&R function.
4691  if (!FTI.hasPrototype) {
4692    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4693      --i;
4694      if (FTI.ArgInfo[i].Param == 0) {
4695        llvm::SmallString<256> Code;
4696        llvm::raw_svector_ostream(Code) << "  int "
4697                                        << FTI.ArgInfo[i].Ident->getName()
4698                                        << ";\n";
4699        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4700          << FTI.ArgInfo[i].Ident
4701          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4702
4703        // Implicitly declare the argument as type 'int' for lack of a better
4704        // type.
4705        DeclSpec DS;
4706        const char* PrevSpec; // unused
4707        unsigned DiagID; // unused
4708        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4709                           PrevSpec, DiagID);
4710        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4711        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4712        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4713      }
4714    }
4715  }
4716}
4717
4718Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4719                                         Declarator &D) {
4720  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4721  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4722         "Not a function declarator!");
4723  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4724
4725  if (FTI.hasPrototype) {
4726    // FIXME: Diagnose arguments without names in C.
4727  }
4728
4729  Scope *ParentScope = FnBodyScope->getParent();
4730
4731  Decl *DP = HandleDeclarator(ParentScope, D,
4732                              MultiTemplateParamsArg(*this),
4733                              /*IsFunctionDefinition=*/true);
4734  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4735}
4736
4737static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4738  // Don't warn about invalid declarations.
4739  if (FD->isInvalidDecl())
4740    return false;
4741
4742  // Or declarations that aren't global.
4743  if (!FD->isGlobal())
4744    return false;
4745
4746  // Don't warn about C++ member functions.
4747  if (isa<CXXMethodDecl>(FD))
4748    return false;
4749
4750  // Don't warn about 'main'.
4751  if (FD->isMain())
4752    return false;
4753
4754  // Don't warn about inline functions.
4755  if (FD->isInlineSpecified())
4756    return false;
4757
4758  // Don't warn about function templates.
4759  if (FD->getDescribedFunctionTemplate())
4760    return false;
4761
4762  // Don't warn about function template specializations.
4763  if (FD->isFunctionTemplateSpecialization())
4764    return false;
4765
4766  bool MissingPrototype = true;
4767  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4768       Prev; Prev = Prev->getPreviousDeclaration()) {
4769    // Ignore any declarations that occur in function or method
4770    // scope, because they aren't visible from the header.
4771    if (Prev->getDeclContext()->isFunctionOrMethod())
4772      continue;
4773
4774    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4775    break;
4776  }
4777
4778  return MissingPrototype;
4779}
4780
4781Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4782  // Clear the last template instantiation error context.
4783  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4784
4785  if (!D)
4786    return D;
4787  FunctionDecl *FD = 0;
4788
4789  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4790    FD = FunTmpl->getTemplatedDecl();
4791  else
4792    FD = cast<FunctionDecl>(D);
4793
4794  // Enter a new function scope
4795  PushFunctionScope();
4796
4797  // See if this is a redefinition.
4798  // But don't complain if we're in GNU89 mode and the previous definition
4799  // was an extern inline function.
4800  const FunctionDecl *Definition;
4801  if (FD->hasBody(Definition) &&
4802      !canRedefineFunction(Definition, getLangOptions())) {
4803    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4804    Diag(Definition->getLocation(), diag::note_previous_definition);
4805  }
4806
4807  // Builtin functions cannot be defined.
4808  if (unsigned BuiltinID = FD->getBuiltinID()) {
4809    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4810      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4811      FD->setInvalidDecl();
4812    }
4813  }
4814
4815  // The return type of a function definition must be complete
4816  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4817  QualType ResultType = FD->getResultType();
4818  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4819      !FD->isInvalidDecl() &&
4820      RequireCompleteType(FD->getLocation(), ResultType,
4821                          diag::err_func_def_incomplete_result))
4822    FD->setInvalidDecl();
4823
4824  // GNU warning -Wmissing-prototypes:
4825  //   Warn if a global function is defined without a previous
4826  //   prototype declaration. This warning is issued even if the
4827  //   definition itself provides a prototype. The aim is to detect
4828  //   global functions that fail to be declared in header files.
4829  if (ShouldWarnAboutMissingPrototype(FD))
4830    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4831
4832  if (FnBodyScope)
4833    PushDeclContext(FnBodyScope, FD);
4834
4835  // Check the validity of our function parameters
4836  CheckParmsForFunctionDef(FD);
4837
4838  bool ShouldCheckShadow =
4839    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4840
4841  // Introduce our parameters into the function scope
4842  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4843    ParmVarDecl *Param = FD->getParamDecl(p);
4844    Param->setOwningFunction(FD);
4845
4846    // If this has an identifier, add it to the scope stack.
4847    if (Param->getIdentifier() && FnBodyScope) {
4848      if (ShouldCheckShadow)
4849        CheckShadow(FnBodyScope, Param);
4850
4851      PushOnScopeChains(Param, FnBodyScope);
4852    }
4853  }
4854
4855  // Checking attributes of current function definition
4856  // dllimport attribute.
4857  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4858  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4859    // dllimport attribute cannot be directly applied to definition.
4860    if (!DA->isInherited()) {
4861      Diag(FD->getLocation(),
4862           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4863        << "dllimport";
4864      FD->setInvalidDecl();
4865      return FD;
4866    }
4867
4868    // Visual C++ appears to not think this is an issue, so only issue
4869    // a warning when Microsoft extensions are disabled.
4870    if (!LangOpts.Microsoft) {
4871      // If a symbol previously declared dllimport is later defined, the
4872      // attribute is ignored in subsequent references, and a warning is
4873      // emitted.
4874      Diag(FD->getLocation(),
4875           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4876        << FD->getName() << "dllimport";
4877    }
4878  }
4879  return FD;
4880}
4881
4882/// \brief Given the set of return statements within a function body,
4883/// compute the variables that are subject to the named return value
4884/// optimization.
4885///
4886/// Each of the variables that is subject to the named return value
4887/// optimization will be marked as NRVO variables in the AST, and any
4888/// return statement that has a marked NRVO variable as its NRVO candidate can
4889/// use the named return value optimization.
4890///
4891/// This function applies a very simplistic algorithm for NRVO: if every return
4892/// statement in the function has the same NRVO candidate, that candidate is
4893/// the NRVO variable.
4894///
4895/// FIXME: Employ a smarter algorithm that accounts for multiple return
4896/// statements and the lifetimes of the NRVO candidates. We should be able to
4897/// find a maximal set of NRVO variables.
4898static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4899  ReturnStmt **Returns = Scope->Returns.data();
4900
4901  const VarDecl *NRVOCandidate = 0;
4902  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4903    if (!Returns[I]->getNRVOCandidate())
4904      return;
4905
4906    if (!NRVOCandidate)
4907      NRVOCandidate = Returns[I]->getNRVOCandidate();
4908    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4909      return;
4910  }
4911
4912  if (NRVOCandidate)
4913    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4914}
4915
4916Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4917  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4918}
4919
4920Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4921                                    bool IsInstantiation) {
4922  FunctionDecl *FD = 0;
4923  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4924  if (FunTmpl)
4925    FD = FunTmpl->getTemplatedDecl();
4926  else
4927    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4928
4929  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4930
4931  if (FD) {
4932    FD->setBody(Body);
4933    if (FD->isMain()) {
4934      // C and C++ allow for main to automagically return 0.
4935      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4936      FD->setHasImplicitReturnZero(true);
4937      WP.disableCheckFallThrough();
4938    }
4939
4940    if (!FD->isInvalidDecl()) {
4941      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4942
4943      // If this is a constructor, we need a vtable.
4944      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4945        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4946
4947      ComputeNRVO(Body, getCurFunction());
4948    }
4949
4950    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4951  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4952    assert(MD == getCurMethodDecl() && "Method parsing confused");
4953    MD->setBody(Body);
4954    MD->setEndLoc(Body->getLocEnd());
4955    if (!MD->isInvalidDecl())
4956      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4957  } else {
4958    return 0;
4959  }
4960
4961  // Verify and clean out per-function state.
4962
4963  // Check goto/label use.
4964  FunctionScopeInfo *CurFn = getCurFunction();
4965  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4966         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
4967    LabelStmt *L = I->second;
4968
4969    // Verify that we have no forward references left.  If so, there was a goto
4970    // or address of a label taken, but no definition of it.  Label fwd
4971    // definitions are indicated with a null substmt.
4972    if (L->getSubStmt() != 0)
4973      continue;
4974
4975    // Emit error.
4976    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4977
4978    // At this point, we have gotos that use the bogus label.  Stitch it into
4979    // the function body so that they aren't leaked and that the AST is well
4980    // formed.
4981    if (Body == 0) {
4982      // The whole function wasn't parsed correctly.
4983      continue;
4984    }
4985
4986    // Otherwise, the body is valid: we want to stitch the label decl into the
4987    // function somewhere so that it is properly owned and so that the goto
4988    // has a valid target.  Do this by creating a new compound stmt with the
4989    // label in it.
4990
4991    // Give the label a sub-statement.
4992    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4993
4994    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4995                               cast<CXXTryStmt>(Body)->getTryBlock() :
4996                               cast<CompoundStmt>(Body);
4997    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4998                                          Compound->body_end());
4999    Elements.push_back(L);
5000    Compound->setStmts(Context, Elements.data(), Elements.size());
5001  }
5002
5003  if (Body) {
5004    // C++ constructors that have function-try-blocks can't have return
5005    // statements in the handlers of that block. (C++ [except.handle]p14)
5006    // Verify this.
5007    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5008      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5009
5010    // Verify that that gotos and switch cases don't jump into scopes illegally.
5011    // Verify that that gotos and switch cases don't jump into scopes illegally.
5012    if (getCurFunction()->NeedsScopeChecking() &&
5013        !dcl->isInvalidDecl() &&
5014        !hasAnyErrorsInThisFunction())
5015      DiagnoseInvalidJumps(Body);
5016
5017    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5018      if (!Destructor->getParent()->isDependentType())
5019        CheckDestructor(Destructor);
5020
5021      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5022                                             Destructor->getParent());
5023    }
5024
5025    // If any errors have occurred, clear out any temporaries that may have
5026    // been leftover. This ensures that these temporaries won't be picked up for
5027    // deletion in some later function.
5028    if (PP.getDiagnostics().hasErrorOccurred())
5029      ExprTemporaries.clear();
5030    else if (!isa<FunctionTemplateDecl>(dcl)) {
5031      // Since the body is valid, issue any analysis-based warnings that are
5032      // enabled.
5033      QualType ResultType;
5034      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5035        AnalysisWarnings.IssueWarnings(WP, FD);
5036      } else {
5037        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5038        AnalysisWarnings.IssueWarnings(WP, MD);
5039      }
5040    }
5041
5042    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5043  }
5044
5045  if (!IsInstantiation)
5046    PopDeclContext();
5047
5048  PopFunctionOrBlockScope();
5049
5050  // If any errors have occurred, clear out any temporaries that may have
5051  // been leftover. This ensures that these temporaries won't be picked up for
5052  // deletion in some later function.
5053  if (getDiagnostics().hasErrorOccurred())
5054    ExprTemporaries.clear();
5055
5056  return dcl;
5057}
5058
5059/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5060/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5061NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5062                                          IdentifierInfo &II, Scope *S) {
5063  // Before we produce a declaration for an implicitly defined
5064  // function, see whether there was a locally-scoped declaration of
5065  // this name as a function or variable. If so, use that
5066  // (non-visible) declaration, and complain about it.
5067  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5068    = LocallyScopedExternalDecls.find(&II);
5069  if (Pos != LocallyScopedExternalDecls.end()) {
5070    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5071    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5072    return Pos->second;
5073  }
5074
5075  // Extension in C99.  Legal in C90, but warn about it.
5076  if (II.getName().startswith("__builtin_"))
5077    Diag(Loc, diag::warn_builtin_unknown) << &II;
5078  else if (getLangOptions().C99)
5079    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5080  else
5081    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5082
5083  // Set a Declarator for the implicit definition: int foo();
5084  const char *Dummy;
5085  DeclSpec DS;
5086  unsigned DiagID;
5087  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5088  Error = Error; // Silence warning.
5089  assert(!Error && "Error setting up implicit decl!");
5090  Declarator D(DS, Declarator::BlockContext);
5091  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5092                                             0, 0, false, SourceLocation(),
5093                                             false, 0,0,0, Loc, Loc, D),
5094                SourceLocation());
5095  D.SetIdentifier(&II, Loc);
5096
5097  // Insert this function into translation-unit scope.
5098
5099  DeclContext *PrevDC = CurContext;
5100  CurContext = Context.getTranslationUnitDecl();
5101
5102  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5103  FD->setImplicit();
5104
5105  CurContext = PrevDC;
5106
5107  AddKnownFunctionAttributes(FD);
5108
5109  return FD;
5110}
5111
5112/// \brief Adds any function attributes that we know a priori based on
5113/// the declaration of this function.
5114///
5115/// These attributes can apply both to implicitly-declared builtins
5116/// (like __builtin___printf_chk) or to library-declared functions
5117/// like NSLog or printf.
5118void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5119  if (FD->isInvalidDecl())
5120    return;
5121
5122  // If this is a built-in function, map its builtin attributes to
5123  // actual attributes.
5124  if (unsigned BuiltinID = FD->getBuiltinID()) {
5125    // Handle printf-formatting attributes.
5126    unsigned FormatIdx;
5127    bool HasVAListArg;
5128    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5129      if (!FD->getAttr<FormatAttr>())
5130        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5131                                                "printf", FormatIdx+1,
5132                                               HasVAListArg ? 0 : FormatIdx+2));
5133    }
5134    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5135                                             HasVAListArg)) {
5136     if (!FD->getAttr<FormatAttr>())
5137       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5138                                              "scanf", FormatIdx+1,
5139                                              HasVAListArg ? 0 : FormatIdx+2));
5140    }
5141
5142    // Mark const if we don't care about errno and that is the only
5143    // thing preventing the function from being const. This allows
5144    // IRgen to use LLVM intrinsics for such functions.
5145    if (!getLangOptions().MathErrno &&
5146        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5147      if (!FD->getAttr<ConstAttr>())
5148        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5149    }
5150
5151    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5152      FD->setType(Context.getNoReturnType(FD->getType()));
5153    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5154      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5155    if (Context.BuiltinInfo.isConst(BuiltinID))
5156      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5157  }
5158
5159  IdentifierInfo *Name = FD->getIdentifier();
5160  if (!Name)
5161    return;
5162  if ((!getLangOptions().CPlusPlus &&
5163       FD->getDeclContext()->isTranslationUnit()) ||
5164      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5165       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5166       LinkageSpecDecl::lang_c)) {
5167    // Okay: this could be a libc/libm/Objective-C function we know
5168    // about.
5169  } else
5170    return;
5171
5172  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5173    // FIXME: NSLog and NSLogv should be target specific
5174    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5175      // FIXME: We known better than our headers.
5176      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5177    } else
5178      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5179                                             "printf", 1,
5180                                             Name->isStr("NSLogv") ? 0 : 2));
5181  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5182    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5183    // target-specific builtins, perhaps?
5184    if (!FD->getAttr<FormatAttr>())
5185      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5186                                             "printf", 2,
5187                                             Name->isStr("vasprintf") ? 0 : 3));
5188  }
5189}
5190
5191TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5192                                    TypeSourceInfo *TInfo) {
5193  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5194  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5195
5196  if (!TInfo) {
5197    assert(D.isInvalidType() && "no declarator info for valid type");
5198    TInfo = Context.getTrivialTypeSourceInfo(T);
5199  }
5200
5201  // Scope manipulation handled by caller.
5202  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5203                                           D.getIdentifierLoc(),
5204                                           D.getIdentifier(),
5205                                           TInfo);
5206
5207  if (const TagType *TT = T->getAs<TagType>()) {
5208    TagDecl *TD = TT->getDecl();
5209
5210    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5211    // keep track of the TypedefDecl.
5212    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5213      TD->setTypedefForAnonDecl(NewTD);
5214  }
5215
5216  if (D.isInvalidType())
5217    NewTD->setInvalidDecl();
5218  return NewTD;
5219}
5220
5221
5222/// \brief Determine whether a tag with a given kind is acceptable
5223/// as a redeclaration of the given tag declaration.
5224///
5225/// \returns true if the new tag kind is acceptable, false otherwise.
5226bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5227                                        TagTypeKind NewTag,
5228                                        SourceLocation NewTagLoc,
5229                                        const IdentifierInfo &Name) {
5230  // C++ [dcl.type.elab]p3:
5231  //   The class-key or enum keyword present in the
5232  //   elaborated-type-specifier shall agree in kind with the
5233  //   declaration to which the name in the elaborated-type-specifier
5234  //   refers. This rule also applies to the form of
5235  //   elaborated-type-specifier that declares a class-name or
5236  //   friend class since it can be construed as referring to the
5237  //   definition of the class. Thus, in any
5238  //   elaborated-type-specifier, the enum keyword shall be used to
5239  //   refer to an enumeration (7.2), the union class-key shall be
5240  //   used to refer to a union (clause 9), and either the class or
5241  //   struct class-key shall be used to refer to a class (clause 9)
5242  //   declared using the class or struct class-key.
5243  TagTypeKind OldTag = Previous->getTagKind();
5244  if (OldTag == NewTag)
5245    return true;
5246
5247  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5248      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5249    // Warn about the struct/class tag mismatch.
5250    bool isTemplate = false;
5251    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5252      isTemplate = Record->getDescribedClassTemplate();
5253
5254    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5255      << (NewTag == TTK_Class)
5256      << isTemplate << &Name
5257      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5258                              OldTag == TTK_Class? "class" : "struct");
5259    Diag(Previous->getLocation(), diag::note_previous_use);
5260    return true;
5261  }
5262  return false;
5263}
5264
5265/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5266/// former case, Name will be non-null.  In the later case, Name will be null.
5267/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5268/// reference/declaration/definition of a tag.
5269Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5270                               SourceLocation KWLoc, CXXScopeSpec &SS,
5271                               IdentifierInfo *Name, SourceLocation NameLoc,
5272                               AttributeList *Attr, AccessSpecifier AS,
5273                               MultiTemplateParamsArg TemplateParameterLists,
5274                               bool &OwnedDecl, bool &IsDependent) {
5275  // If this is not a definition, it must have a name.
5276  assert((Name != 0 || TUK == TUK_Definition) &&
5277         "Nameless record must be a definition!");
5278
5279  OwnedDecl = false;
5280  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5281
5282  // FIXME: Check explicit specializations more carefully.
5283  bool isExplicitSpecialization = false;
5284  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5285  bool Invalid = false;
5286  if (TUK != TUK_Reference) {
5287    if (TemplateParameterList *TemplateParams
5288          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5289                        (TemplateParameterList**)TemplateParameterLists.get(),
5290                                              TemplateParameterLists.size(),
5291                                                    TUK == TUK_Friend,
5292                                                    isExplicitSpecialization,
5293                                                    Invalid)) {
5294      // All but one template parameter lists have been matching.
5295      --NumMatchedTemplateParamLists;
5296
5297      if (TemplateParams->size() > 0) {
5298        // This is a declaration or definition of a class template (which may
5299        // be a member of another template).
5300        if (Invalid)
5301          return 0;
5302
5303        OwnedDecl = false;
5304        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5305                                               SS, Name, NameLoc, Attr,
5306                                               TemplateParams,
5307                                               AS);
5308        TemplateParameterLists.release();
5309        return Result.get();
5310      } else {
5311        // The "template<>" header is extraneous.
5312        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5313          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5314        isExplicitSpecialization = true;
5315      }
5316    }
5317  }
5318
5319  DeclContext *SearchDC = CurContext;
5320  DeclContext *DC = CurContext;
5321  bool isStdBadAlloc = false;
5322
5323  RedeclarationKind Redecl = ForRedeclaration;
5324  if (TUK == TUK_Friend || TUK == TUK_Reference)
5325    Redecl = NotForRedeclaration;
5326
5327  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5328
5329  if (Name && SS.isNotEmpty()) {
5330    // We have a nested-name tag ('struct foo::bar').
5331
5332    // Check for invalid 'foo::'.
5333    if (SS.isInvalid()) {
5334      Name = 0;
5335      goto CreateNewDecl;
5336    }
5337
5338    // If this is a friend or a reference to a class in a dependent
5339    // context, don't try to make a decl for it.
5340    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5341      DC = computeDeclContext(SS, false);
5342      if (!DC) {
5343        IsDependent = true;
5344        return 0;
5345      }
5346    } else {
5347      DC = computeDeclContext(SS, true);
5348      if (!DC) {
5349        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5350          << SS.getRange();
5351        return 0;
5352      }
5353    }
5354
5355    if (RequireCompleteDeclContext(SS, DC))
5356      return 0;
5357
5358    SearchDC = DC;
5359    // Look-up name inside 'foo::'.
5360    LookupQualifiedName(Previous, DC);
5361
5362    if (Previous.isAmbiguous())
5363      return 0;
5364
5365    if (Previous.empty()) {
5366      // Name lookup did not find anything. However, if the
5367      // nested-name-specifier refers to the current instantiation,
5368      // and that current instantiation has any dependent base
5369      // classes, we might find something at instantiation time: treat
5370      // this as a dependent elaborated-type-specifier.
5371      if (Previous.wasNotFoundInCurrentInstantiation()) {
5372        IsDependent = true;
5373        return 0;
5374      }
5375
5376      // A tag 'foo::bar' must already exist.
5377      Diag(NameLoc, diag::err_not_tag_in_scope)
5378        << Kind << Name << DC << SS.getRange();
5379      Name = 0;
5380      Invalid = true;
5381      goto CreateNewDecl;
5382    }
5383  } else if (Name) {
5384    // If this is a named struct, check to see if there was a previous forward
5385    // declaration or definition.
5386    // FIXME: We're looking into outer scopes here, even when we
5387    // shouldn't be. Doing so can result in ambiguities that we
5388    // shouldn't be diagnosing.
5389    LookupName(Previous, S);
5390
5391    // Note:  there used to be some attempt at recovery here.
5392    if (Previous.isAmbiguous())
5393      return 0;
5394
5395    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5396      // FIXME: This makes sure that we ignore the contexts associated
5397      // with C structs, unions, and enums when looking for a matching
5398      // tag declaration or definition. See the similar lookup tweak
5399      // in Sema::LookupName; is there a better way to deal with this?
5400      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5401        SearchDC = SearchDC->getParent();
5402    }
5403  }
5404
5405  if (Previous.isSingleResult() &&
5406      Previous.getFoundDecl()->isTemplateParameter()) {
5407    // Maybe we will complain about the shadowed template parameter.
5408    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5409    // Just pretend that we didn't see the previous declaration.
5410    Previous.clear();
5411  }
5412
5413  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5414      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5415    // This is a declaration of or a reference to "std::bad_alloc".
5416    isStdBadAlloc = true;
5417
5418    if (Previous.empty() && StdBadAlloc) {
5419      // std::bad_alloc has been implicitly declared (but made invisible to
5420      // name lookup). Fill in this implicit declaration as the previous
5421      // declaration, so that the declarations get chained appropriately.
5422      Previous.addDecl(getStdBadAlloc());
5423    }
5424  }
5425
5426  // If we didn't find a previous declaration, and this is a reference
5427  // (or friend reference), move to the correct scope.  In C++, we
5428  // also need to do a redeclaration lookup there, just in case
5429  // there's a shadow friend decl.
5430  if (Name && Previous.empty() &&
5431      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5432    if (Invalid) goto CreateNewDecl;
5433    assert(SS.isEmpty());
5434
5435    if (TUK == TUK_Reference) {
5436      // C++ [basic.scope.pdecl]p5:
5437      //   -- for an elaborated-type-specifier of the form
5438      //
5439      //          class-key identifier
5440      //
5441      //      if the elaborated-type-specifier is used in the
5442      //      decl-specifier-seq or parameter-declaration-clause of a
5443      //      function defined in namespace scope, the identifier is
5444      //      declared as a class-name in the namespace that contains
5445      //      the declaration; otherwise, except as a friend
5446      //      declaration, the identifier is declared in the smallest
5447      //      non-class, non-function-prototype scope that contains the
5448      //      declaration.
5449      //
5450      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5451      // C structs and unions.
5452      //
5453      // It is an error in C++ to declare (rather than define) an enum
5454      // type, including via an elaborated type specifier.  We'll
5455      // diagnose that later; for now, declare the enum in the same
5456      // scope as we would have picked for any other tag type.
5457      //
5458      // GNU C also supports this behavior as part of its incomplete
5459      // enum types extension, while GNU C++ does not.
5460      //
5461      // Find the context where we'll be declaring the tag.
5462      // FIXME: We would like to maintain the current DeclContext as the
5463      // lexical context,
5464      while (SearchDC->isRecord())
5465        SearchDC = SearchDC->getParent();
5466
5467      // Find the scope where we'll be declaring the tag.
5468      while (S->isClassScope() ||
5469             (getLangOptions().CPlusPlus &&
5470              S->isFunctionPrototypeScope()) ||
5471             ((S->getFlags() & Scope::DeclScope) == 0) ||
5472             (S->getEntity() &&
5473              ((DeclContext *)S->getEntity())->isTransparentContext()))
5474        S = S->getParent();
5475    } else {
5476      assert(TUK == TUK_Friend);
5477      // C++ [namespace.memdef]p3:
5478      //   If a friend declaration in a non-local class first declares a
5479      //   class or function, the friend class or function is a member of
5480      //   the innermost enclosing namespace.
5481      SearchDC = SearchDC->getEnclosingNamespaceContext();
5482    }
5483
5484    // In C++, we need to do a redeclaration lookup to properly
5485    // diagnose some problems.
5486    if (getLangOptions().CPlusPlus) {
5487      Previous.setRedeclarationKind(ForRedeclaration);
5488      LookupQualifiedName(Previous, SearchDC);
5489    }
5490  }
5491
5492  if (!Previous.empty()) {
5493    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5494
5495    // It's okay to have a tag decl in the same scope as a typedef
5496    // which hides a tag decl in the same scope.  Finding this
5497    // insanity with a redeclaration lookup can only actually happen
5498    // in C++.
5499    //
5500    // This is also okay for elaborated-type-specifiers, which is
5501    // technically forbidden by the current standard but which is
5502    // okay according to the likely resolution of an open issue;
5503    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5504    if (getLangOptions().CPlusPlus) {
5505      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5506        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5507          TagDecl *Tag = TT->getDecl();
5508          if (Tag->getDeclName() == Name &&
5509              Tag->getDeclContext()->getLookupContext()
5510                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5511            PrevDecl = Tag;
5512            Previous.clear();
5513            Previous.addDecl(Tag);
5514          }
5515        }
5516      }
5517    }
5518
5519    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5520      // If this is a use of a previous tag, or if the tag is already declared
5521      // in the same scope (so that the definition/declaration completes or
5522      // rementions the tag), reuse the decl.
5523      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5524          isDeclInScope(PrevDecl, SearchDC, S)) {
5525        // Make sure that this wasn't declared as an enum and now used as a
5526        // struct or something similar.
5527        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5528          bool SafeToContinue
5529            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5530               Kind != TTK_Enum);
5531          if (SafeToContinue)
5532            Diag(KWLoc, diag::err_use_with_wrong_tag)
5533              << Name
5534              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5535                                              PrevTagDecl->getKindName());
5536          else
5537            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5538          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5539
5540          if (SafeToContinue)
5541            Kind = PrevTagDecl->getTagKind();
5542          else {
5543            // Recover by making this an anonymous redefinition.
5544            Name = 0;
5545            Previous.clear();
5546            Invalid = true;
5547          }
5548        }
5549
5550        if (!Invalid) {
5551          // If this is a use, just return the declaration we found.
5552
5553          // FIXME: In the future, return a variant or some other clue
5554          // for the consumer of this Decl to know it doesn't own it.
5555          // For our current ASTs this shouldn't be a problem, but will
5556          // need to be changed with DeclGroups.
5557          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5558              TUK == TUK_Friend)
5559            return PrevTagDecl;
5560
5561          // Diagnose attempts to redefine a tag.
5562          if (TUK == TUK_Definition) {
5563            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5564              // If we're defining a specialization and the previous definition
5565              // is from an implicit instantiation, don't emit an error
5566              // here; we'll catch this in the general case below.
5567              if (!isExplicitSpecialization ||
5568                  !isa<CXXRecordDecl>(Def) ||
5569                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5570                                               == TSK_ExplicitSpecialization) {
5571                Diag(NameLoc, diag::err_redefinition) << Name;
5572                Diag(Def->getLocation(), diag::note_previous_definition);
5573                // If this is a redefinition, recover by making this
5574                // struct be anonymous, which will make any later
5575                // references get the previous definition.
5576                Name = 0;
5577                Previous.clear();
5578                Invalid = true;
5579              }
5580            } else {
5581              // If the type is currently being defined, complain
5582              // about a nested redefinition.
5583              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5584              if (Tag->isBeingDefined()) {
5585                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5586                Diag(PrevTagDecl->getLocation(),
5587                     diag::note_previous_definition);
5588                Name = 0;
5589                Previous.clear();
5590                Invalid = true;
5591              }
5592            }
5593
5594            // Okay, this is definition of a previously declared or referenced
5595            // tag PrevDecl. We're going to create a new Decl for it.
5596          }
5597        }
5598        // If we get here we have (another) forward declaration or we
5599        // have a definition.  Just create a new decl.
5600
5601      } else {
5602        // If we get here, this is a definition of a new tag type in a nested
5603        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5604        // new decl/type.  We set PrevDecl to NULL so that the entities
5605        // have distinct types.
5606        Previous.clear();
5607      }
5608      // If we get here, we're going to create a new Decl. If PrevDecl
5609      // is non-NULL, it's a definition of the tag declared by
5610      // PrevDecl. If it's NULL, we have a new definition.
5611
5612
5613    // Otherwise, PrevDecl is not a tag, but was found with tag
5614    // lookup.  This is only actually possible in C++, where a few
5615    // things like templates still live in the tag namespace.
5616    } else {
5617      assert(getLangOptions().CPlusPlus);
5618
5619      // Use a better diagnostic if an elaborated-type-specifier
5620      // found the wrong kind of type on the first
5621      // (non-redeclaration) lookup.
5622      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5623          !Previous.isForRedeclaration()) {
5624        unsigned Kind = 0;
5625        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5626        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5627        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5628        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5629        Invalid = true;
5630
5631      // Otherwise, only diagnose if the declaration is in scope.
5632      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5633        // do nothing
5634
5635      // Diagnose implicit declarations introduced by elaborated types.
5636      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5637        unsigned Kind = 0;
5638        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5639        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5640        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5641        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5642        Invalid = true;
5643
5644      // Otherwise it's a declaration.  Call out a particularly common
5645      // case here.
5646      } else if (isa<TypedefDecl>(PrevDecl)) {
5647        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5648          << Name
5649          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5650        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5651        Invalid = true;
5652
5653      // Otherwise, diagnose.
5654      } else {
5655        // The tag name clashes with something else in the target scope,
5656        // issue an error and recover by making this tag be anonymous.
5657        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5658        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5659        Name = 0;
5660        Invalid = true;
5661      }
5662
5663      // The existing declaration isn't relevant to us; we're in a
5664      // new scope, so clear out the previous declaration.
5665      Previous.clear();
5666    }
5667  }
5668
5669CreateNewDecl:
5670
5671  TagDecl *PrevDecl = 0;
5672  if (Previous.isSingleResult())
5673    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5674
5675  // If there is an identifier, use the location of the identifier as the
5676  // location of the decl, otherwise use the location of the struct/union
5677  // keyword.
5678  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5679
5680  // Otherwise, create a new declaration. If there is a previous
5681  // declaration of the same entity, the two will be linked via
5682  // PrevDecl.
5683  TagDecl *New;
5684
5685  if (Kind == TTK_Enum) {
5686    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5687    // enum X { A, B, C } D;    D should chain to X.
5688    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5689                           cast_or_null<EnumDecl>(PrevDecl));
5690    // If this is an undefined enum, warn.
5691    if (TUK != TUK_Definition && !Invalid) {
5692      TagDecl *Def;
5693      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5694        Diag(Loc, diag::ext_forward_ref_enum_def)
5695          << New;
5696        Diag(Def->getLocation(), diag::note_previous_definition);
5697      } else {
5698        Diag(Loc,
5699             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5700                                       : diag::ext_forward_ref_enum);
5701      }
5702    }
5703  } else {
5704    // struct/union/class
5705
5706    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5707    // struct X { int A; } D;    D should chain to X.
5708    if (getLangOptions().CPlusPlus) {
5709      // FIXME: Look for a way to use RecordDecl for simple structs.
5710      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5711                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5712
5713      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5714        StdBadAlloc = cast<CXXRecordDecl>(New);
5715    } else
5716      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5717                               cast_or_null<RecordDecl>(PrevDecl));
5718  }
5719
5720  // Maybe add qualifier info.
5721  if (SS.isNotEmpty()) {
5722    if (SS.isSet()) {
5723      NestedNameSpecifier *NNS
5724        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5725      New->setQualifierInfo(NNS, SS.getRange());
5726      if (NumMatchedTemplateParamLists > 0) {
5727        New->setTemplateParameterListsInfo(Context,
5728                                           NumMatchedTemplateParamLists,
5729                    (TemplateParameterList**) TemplateParameterLists.release());
5730      }
5731    }
5732    else
5733      Invalid = true;
5734  }
5735
5736  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5737    // Add alignment attributes if necessary; these attributes are checked when
5738    // the ASTContext lays out the structure.
5739    //
5740    // It is important for implementing the correct semantics that this
5741    // happen here (in act on tag decl). The #pragma pack stack is
5742    // maintained as a result of parser callbacks which can occur at
5743    // many points during the parsing of a struct declaration (because
5744    // the #pragma tokens are effectively skipped over during the
5745    // parsing of the struct).
5746    AddAlignmentAttributesForRecord(RD);
5747  }
5748
5749  // If this is a specialization of a member class (of a class template),
5750  // check the specialization.
5751  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5752    Invalid = true;
5753
5754  if (Invalid)
5755    New->setInvalidDecl();
5756
5757  if (Attr)
5758    ProcessDeclAttributeList(S, New, Attr);
5759
5760  // If we're declaring or defining a tag in function prototype scope
5761  // in C, note that this type can only be used within the function.
5762  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5763    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5764
5765  // Set the lexical context. If the tag has a C++ scope specifier, the
5766  // lexical context will be different from the semantic context.
5767  New->setLexicalDeclContext(CurContext);
5768
5769  // Mark this as a friend decl if applicable.
5770  if (TUK == TUK_Friend)
5771    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5772
5773  // Set the access specifier.
5774  if (!Invalid && SearchDC->isRecord())
5775    SetMemberAccessSpecifier(New, PrevDecl, AS);
5776
5777  if (TUK == TUK_Definition)
5778    New->startDefinition();
5779
5780  // If this has an identifier, add it to the scope stack.
5781  if (TUK == TUK_Friend) {
5782    // We might be replacing an existing declaration in the lookup tables;
5783    // if so, borrow its access specifier.
5784    if (PrevDecl)
5785      New->setAccess(PrevDecl->getAccess());
5786
5787    DeclContext *DC = New->getDeclContext()->getLookupContext();
5788    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5789    if (Name) // can be null along some error paths
5790      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5791        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5792  } else if (Name) {
5793    S = getNonFieldDeclScope(S);
5794    PushOnScopeChains(New, S);
5795  } else {
5796    CurContext->addDecl(New);
5797  }
5798
5799  // If this is the C FILE type, notify the AST context.
5800  if (IdentifierInfo *II = New->getIdentifier())
5801    if (!New->isInvalidDecl() &&
5802        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5803        II->isStr("FILE"))
5804      Context.setFILEDecl(New);
5805
5806  OwnedDecl = true;
5807  return New;
5808}
5809
5810void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5811  AdjustDeclIfTemplate(TagD);
5812  TagDecl *Tag = cast<TagDecl>(TagD);
5813
5814  // Enter the tag context.
5815  PushDeclContext(S, Tag);
5816}
5817
5818void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5819                                           SourceLocation LBraceLoc) {
5820  AdjustDeclIfTemplate(TagD);
5821  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5822
5823  FieldCollector->StartClass();
5824
5825  if (!Record->getIdentifier())
5826    return;
5827
5828  // C++ [class]p2:
5829  //   [...] The class-name is also inserted into the scope of the
5830  //   class itself; this is known as the injected-class-name. For
5831  //   purposes of access checking, the injected-class-name is treated
5832  //   as if it were a public member name.
5833  CXXRecordDecl *InjectedClassName
5834    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5835                            CurContext, Record->getLocation(),
5836                            Record->getIdentifier(),
5837                            Record->getTagKeywordLoc(),
5838                            Record);
5839  InjectedClassName->setImplicit();
5840  InjectedClassName->setAccess(AS_public);
5841  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5842      InjectedClassName->setDescribedClassTemplate(Template);
5843  PushOnScopeChains(InjectedClassName, S);
5844  assert(InjectedClassName->isInjectedClassName() &&
5845         "Broken injected-class-name");
5846}
5847
5848void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5849                                    SourceLocation RBraceLoc) {
5850  AdjustDeclIfTemplate(TagD);
5851  TagDecl *Tag = cast<TagDecl>(TagD);
5852  Tag->setRBraceLoc(RBraceLoc);
5853
5854  if (isa<CXXRecordDecl>(Tag))
5855    FieldCollector->FinishClass();
5856
5857  // Exit this scope of this tag's definition.
5858  PopDeclContext();
5859
5860  // Notify the consumer that we've defined a tag.
5861  Consumer.HandleTagDeclDefinition(Tag);
5862}
5863
5864void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5865  AdjustDeclIfTemplate(TagD);
5866  TagDecl *Tag = cast<TagDecl>(TagD);
5867  Tag->setInvalidDecl();
5868
5869  // We're undoing ActOnTagStartDefinition here, not
5870  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5871  // the FieldCollector.
5872
5873  PopDeclContext();
5874}
5875
5876// Note that FieldName may be null for anonymous bitfields.
5877bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5878                          QualType FieldTy, const Expr *BitWidth,
5879                          bool *ZeroWidth) {
5880  // Default to true; that shouldn't confuse checks for emptiness
5881  if (ZeroWidth)
5882    *ZeroWidth = true;
5883
5884  // C99 6.7.2.1p4 - verify the field type.
5885  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5886  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5887    // Handle incomplete types with specific error.
5888    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5889      return true;
5890    if (FieldName)
5891      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5892        << FieldName << FieldTy << BitWidth->getSourceRange();
5893    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5894      << FieldTy << BitWidth->getSourceRange();
5895  }
5896
5897  // If the bit-width is type- or value-dependent, don't try to check
5898  // it now.
5899  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5900    return false;
5901
5902  llvm::APSInt Value;
5903  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5904    return true;
5905
5906  if (Value != 0 && ZeroWidth)
5907    *ZeroWidth = false;
5908
5909  // Zero-width bitfield is ok for anonymous field.
5910  if (Value == 0 && FieldName)
5911    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5912
5913  if (Value.isSigned() && Value.isNegative()) {
5914    if (FieldName)
5915      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5916               << FieldName << Value.toString(10);
5917    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5918      << Value.toString(10);
5919  }
5920
5921  if (!FieldTy->isDependentType()) {
5922    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5923    if (Value.getZExtValue() > TypeSize) {
5924      if (!getLangOptions().CPlusPlus) {
5925        if (FieldName)
5926          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5927            << FieldName << (unsigned)Value.getZExtValue()
5928            << (unsigned)TypeSize;
5929
5930        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5931          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5932      }
5933
5934      if (FieldName)
5935        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5936          << FieldName << (unsigned)Value.getZExtValue()
5937          << (unsigned)TypeSize;
5938      else
5939        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5940          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5941    }
5942  }
5943
5944  return false;
5945}
5946
5947/// ActOnField - Each field of a struct/union/class is passed into this in order
5948/// to create a FieldDecl object for it.
5949Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5950                                 SourceLocation DeclStart,
5951                                 Declarator &D, ExprTy *BitfieldWidth) {
5952  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5953                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5954                               AS_public);
5955  return Res;
5956}
5957
5958/// HandleField - Analyze a field of a C struct or a C++ data member.
5959///
5960FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5961                             SourceLocation DeclStart,
5962                             Declarator &D, Expr *BitWidth,
5963                             AccessSpecifier AS) {
5964  IdentifierInfo *II = D.getIdentifier();
5965  SourceLocation Loc = DeclStart;
5966  if (II) Loc = D.getIdentifierLoc();
5967
5968  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5969  QualType T = TInfo->getType();
5970  if (getLangOptions().CPlusPlus)
5971    CheckExtraCXXDefaultArguments(D);
5972
5973  DiagnoseFunctionSpecifiers(D);
5974
5975  if (D.getDeclSpec().isThreadSpecified())
5976    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5977
5978  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5979                                         ForRedeclaration);
5980
5981  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5982    // Maybe we will complain about the shadowed template parameter.
5983    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5984    // Just pretend that we didn't see the previous declaration.
5985    PrevDecl = 0;
5986  }
5987
5988  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5989    PrevDecl = 0;
5990
5991  bool Mutable
5992    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5993  SourceLocation TSSL = D.getSourceRange().getBegin();
5994  FieldDecl *NewFD
5995    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5996                     AS, PrevDecl, &D);
5997
5998  if (NewFD->isInvalidDecl())
5999    Record->setInvalidDecl();
6000
6001  if (NewFD->isInvalidDecl() && PrevDecl) {
6002    // Don't introduce NewFD into scope; there's already something
6003    // with the same name in the same scope.
6004  } else if (II) {
6005    PushOnScopeChains(NewFD, S);
6006  } else
6007    Record->addDecl(NewFD);
6008
6009  return NewFD;
6010}
6011
6012/// \brief Build a new FieldDecl and check its well-formedness.
6013///
6014/// This routine builds a new FieldDecl given the fields name, type,
6015/// record, etc. \p PrevDecl should refer to any previous declaration
6016/// with the same name and in the same scope as the field to be
6017/// created.
6018///
6019/// \returns a new FieldDecl.
6020///
6021/// \todo The Declarator argument is a hack. It will be removed once
6022FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6023                                TypeSourceInfo *TInfo,
6024                                RecordDecl *Record, SourceLocation Loc,
6025                                bool Mutable, Expr *BitWidth,
6026                                SourceLocation TSSL,
6027                                AccessSpecifier AS, NamedDecl *PrevDecl,
6028                                Declarator *D) {
6029  IdentifierInfo *II = Name.getAsIdentifierInfo();
6030  bool InvalidDecl = false;
6031  if (D) InvalidDecl = D->isInvalidType();
6032
6033  // If we receive a broken type, recover by assuming 'int' and
6034  // marking this declaration as invalid.
6035  if (T.isNull()) {
6036    InvalidDecl = true;
6037    T = Context.IntTy;
6038  }
6039
6040  QualType EltTy = Context.getBaseElementType(T);
6041  if (!EltTy->isDependentType() &&
6042      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6043    // Fields of incomplete type force their record to be invalid.
6044    Record->setInvalidDecl();
6045    InvalidDecl = true;
6046  }
6047
6048  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6049  // than a variably modified type.
6050  if (!InvalidDecl && T->isVariablyModifiedType()) {
6051    bool SizeIsNegative;
6052    llvm::APSInt Oversized;
6053    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6054                                                           SizeIsNegative,
6055                                                           Oversized);
6056    if (!FixedTy.isNull()) {
6057      Diag(Loc, diag::warn_illegal_constant_array_size);
6058      T = FixedTy;
6059    } else {
6060      if (SizeIsNegative)
6061        Diag(Loc, diag::err_typecheck_negative_array_size);
6062      else if (Oversized.getBoolValue())
6063        Diag(Loc, diag::err_array_too_large)
6064          << Oversized.toString(10);
6065      else
6066        Diag(Loc, diag::err_typecheck_field_variable_size);
6067      InvalidDecl = true;
6068    }
6069  }
6070
6071  // Fields can not have abstract class types
6072  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6073                                             diag::err_abstract_type_in_decl,
6074                                             AbstractFieldType))
6075    InvalidDecl = true;
6076
6077  bool ZeroWidth = false;
6078  // If this is declared as a bit-field, check the bit-field.
6079  if (!InvalidDecl && BitWidth &&
6080      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6081    InvalidDecl = true;
6082    DeleteExpr(BitWidth);
6083    BitWidth = 0;
6084    ZeroWidth = false;
6085  }
6086
6087  // Check that 'mutable' is consistent with the type of the declaration.
6088  if (!InvalidDecl && Mutable) {
6089    unsigned DiagID = 0;
6090    if (T->isReferenceType())
6091      DiagID = diag::err_mutable_reference;
6092    else if (T.isConstQualified())
6093      DiagID = diag::err_mutable_const;
6094
6095    if (DiagID) {
6096      SourceLocation ErrLoc = Loc;
6097      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6098        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6099      Diag(ErrLoc, DiagID);
6100      Mutable = false;
6101      InvalidDecl = true;
6102    }
6103  }
6104
6105  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6106                                       BitWidth, Mutable);
6107  if (InvalidDecl)
6108    NewFD->setInvalidDecl();
6109
6110  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6111    Diag(Loc, diag::err_duplicate_member) << II;
6112    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6113    NewFD->setInvalidDecl();
6114  }
6115
6116  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6117    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6118
6119    if (!T->isPODType())
6120      CXXRecord->setPOD(false);
6121    if (!ZeroWidth)
6122      CXXRecord->setEmpty(false);
6123
6124    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6125      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6126      if (RDecl->getDefinition()) {
6127        if (!RDecl->hasTrivialConstructor())
6128          CXXRecord->setHasTrivialConstructor(false);
6129        if (!RDecl->hasTrivialCopyConstructor())
6130          CXXRecord->setHasTrivialCopyConstructor(false);
6131        if (!RDecl->hasTrivialCopyAssignment())
6132          CXXRecord->setHasTrivialCopyAssignment(false);
6133        if (!RDecl->hasTrivialDestructor())
6134          CXXRecord->setHasTrivialDestructor(false);
6135
6136        // C++ 9.5p1: An object of a class with a non-trivial
6137        // constructor, a non-trivial copy constructor, a non-trivial
6138        // destructor, or a non-trivial copy assignment operator
6139        // cannot be a member of a union, nor can an array of such
6140        // objects.
6141        // TODO: C++0x alters this restriction significantly.
6142        if (Record->isUnion() && CheckNontrivialField(NewFD))
6143          NewFD->setInvalidDecl();
6144      }
6145    }
6146  }
6147
6148  // FIXME: We need to pass in the attributes given an AST
6149  // representation, not a parser representation.
6150  if (D)
6151    // FIXME: What to pass instead of TUScope?
6152    ProcessDeclAttributes(TUScope, NewFD, *D);
6153
6154  if (T.isObjCGCWeak())
6155    Diag(Loc, diag::warn_attribute_weak_on_field);
6156
6157  NewFD->setAccess(AS);
6158
6159  // C++ [dcl.init.aggr]p1:
6160  //   An aggregate is an array or a class (clause 9) with [...] no
6161  //   private or protected non-static data members (clause 11).
6162  // A POD must be an aggregate.
6163  if (getLangOptions().CPlusPlus &&
6164      (AS == AS_private || AS == AS_protected)) {
6165    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6166    CXXRecord->setAggregate(false);
6167    CXXRecord->setPOD(false);
6168  }
6169
6170  return NewFD;
6171}
6172
6173bool Sema::CheckNontrivialField(FieldDecl *FD) {
6174  assert(FD);
6175  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6176
6177  if (FD->isInvalidDecl())
6178    return true;
6179
6180  QualType EltTy = Context.getBaseElementType(FD->getType());
6181  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6182    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6183    if (RDecl->getDefinition()) {
6184      // We check for copy constructors before constructors
6185      // because otherwise we'll never get complaints about
6186      // copy constructors.
6187
6188      CXXSpecialMember member = CXXInvalid;
6189      if (!RDecl->hasTrivialCopyConstructor())
6190        member = CXXCopyConstructor;
6191      else if (!RDecl->hasTrivialConstructor())
6192        member = CXXConstructor;
6193      else if (!RDecl->hasTrivialCopyAssignment())
6194        member = CXXCopyAssignment;
6195      else if (!RDecl->hasTrivialDestructor())
6196        member = CXXDestructor;
6197
6198      if (member != CXXInvalid) {
6199        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6200              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6201        DiagnoseNontrivial(RT, member);
6202        return true;
6203      }
6204    }
6205  }
6206
6207  return false;
6208}
6209
6210/// DiagnoseNontrivial - Given that a class has a non-trivial
6211/// special member, figure out why.
6212void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6213  QualType QT(T, 0U);
6214  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6215
6216  // Check whether the member was user-declared.
6217  switch (member) {
6218  case CXXInvalid:
6219    break;
6220
6221  case CXXConstructor:
6222    if (RD->hasUserDeclaredConstructor()) {
6223      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6224      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6225        const FunctionDecl *body = 0;
6226        ci->hasBody(body);
6227        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6228          SourceLocation CtorLoc = ci->getLocation();
6229          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6230          return;
6231        }
6232      }
6233
6234      assert(0 && "found no user-declared constructors");
6235      return;
6236    }
6237    break;
6238
6239  case CXXCopyConstructor:
6240    if (RD->hasUserDeclaredCopyConstructor()) {
6241      SourceLocation CtorLoc =
6242        RD->getCopyConstructor(Context, 0)->getLocation();
6243      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6244      return;
6245    }
6246    break;
6247
6248  case CXXCopyAssignment:
6249    if (RD->hasUserDeclaredCopyAssignment()) {
6250      // FIXME: this should use the location of the copy
6251      // assignment, not the type.
6252      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6253      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6254      return;
6255    }
6256    break;
6257
6258  case CXXDestructor:
6259    if (RD->hasUserDeclaredDestructor()) {
6260      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6261      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6262      return;
6263    }
6264    break;
6265  }
6266
6267  typedef CXXRecordDecl::base_class_iterator base_iter;
6268
6269  // Virtual bases and members inhibit trivial copying/construction,
6270  // but not trivial destruction.
6271  if (member != CXXDestructor) {
6272    // Check for virtual bases.  vbases includes indirect virtual bases,
6273    // so we just iterate through the direct bases.
6274    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6275      if (bi->isVirtual()) {
6276        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6277        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6278        return;
6279      }
6280
6281    // Check for virtual methods.
6282    typedef CXXRecordDecl::method_iterator meth_iter;
6283    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6284         ++mi) {
6285      if (mi->isVirtual()) {
6286        SourceLocation MLoc = mi->getSourceRange().getBegin();
6287        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6288        return;
6289      }
6290    }
6291  }
6292
6293  bool (CXXRecordDecl::*hasTrivial)() const;
6294  switch (member) {
6295  case CXXConstructor:
6296    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6297  case CXXCopyConstructor:
6298    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6299  case CXXCopyAssignment:
6300    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6301  case CXXDestructor:
6302    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6303  default:
6304    assert(0 && "unexpected special member"); return;
6305  }
6306
6307  // Check for nontrivial bases (and recurse).
6308  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6309    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6310    assert(BaseRT && "Don't know how to handle dependent bases");
6311    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6312    if (!(BaseRecTy->*hasTrivial)()) {
6313      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6314      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6315      DiagnoseNontrivial(BaseRT, member);
6316      return;
6317    }
6318  }
6319
6320  // Check for nontrivial members (and recurse).
6321  typedef RecordDecl::field_iterator field_iter;
6322  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6323       ++fi) {
6324    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6325    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6326      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6327
6328      if (!(EltRD->*hasTrivial)()) {
6329        SourceLocation FLoc = (*fi)->getLocation();
6330        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6331        DiagnoseNontrivial(EltRT, member);
6332        return;
6333      }
6334    }
6335  }
6336
6337  assert(0 && "found no explanation for non-trivial member");
6338}
6339
6340/// TranslateIvarVisibility - Translate visibility from a token ID to an
6341///  AST enum value.
6342static ObjCIvarDecl::AccessControl
6343TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6344  switch (ivarVisibility) {
6345  default: assert(0 && "Unknown visitibility kind");
6346  case tok::objc_private: return ObjCIvarDecl::Private;
6347  case tok::objc_public: return ObjCIvarDecl::Public;
6348  case tok::objc_protected: return ObjCIvarDecl::Protected;
6349  case tok::objc_package: return ObjCIvarDecl::Package;
6350  }
6351}
6352
6353/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6354/// in order to create an IvarDecl object for it.
6355Decl *Sema::ActOnIvar(Scope *S,
6356                                SourceLocation DeclStart,
6357                                Decl *IntfDecl,
6358                                Declarator &D, ExprTy *BitfieldWidth,
6359                                tok::ObjCKeywordKind Visibility) {
6360
6361  IdentifierInfo *II = D.getIdentifier();
6362  Expr *BitWidth = (Expr*)BitfieldWidth;
6363  SourceLocation Loc = DeclStart;
6364  if (II) Loc = D.getIdentifierLoc();
6365
6366  // FIXME: Unnamed fields can be handled in various different ways, for
6367  // example, unnamed unions inject all members into the struct namespace!
6368
6369  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6370  QualType T = TInfo->getType();
6371
6372  if (BitWidth) {
6373    // 6.7.2.1p3, 6.7.2.1p4
6374    if (VerifyBitField(Loc, II, T, BitWidth)) {
6375      D.setInvalidType();
6376      DeleteExpr(BitWidth);
6377      BitWidth = 0;
6378    }
6379  } else {
6380    // Not a bitfield.
6381
6382    // validate II.
6383
6384  }
6385  if (T->isReferenceType()) {
6386    Diag(Loc, diag::err_ivar_reference_type);
6387    D.setInvalidType();
6388  }
6389  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6390  // than a variably modified type.
6391  else if (T->isVariablyModifiedType()) {
6392    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6393    D.setInvalidType();
6394  }
6395
6396  // Get the visibility (access control) for this ivar.
6397  ObjCIvarDecl::AccessControl ac =
6398    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6399                                        : ObjCIvarDecl::None;
6400  // Must set ivar's DeclContext to its enclosing interface.
6401  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6402  ObjCContainerDecl *EnclosingContext;
6403  if (ObjCImplementationDecl *IMPDecl =
6404      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6405    if (!LangOpts.ObjCNonFragileABI2) {
6406    // Case of ivar declared in an implementation. Context is that of its class.
6407      EnclosingContext = IMPDecl->getClassInterface();
6408      assert(EnclosingContext && "Implementation has no class interface!");
6409    }
6410    else
6411      EnclosingContext = EnclosingDecl;
6412  } else {
6413    if (ObjCCategoryDecl *CDecl =
6414        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6415      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6416        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6417        return 0;
6418      }
6419    }
6420    EnclosingContext = EnclosingDecl;
6421  }
6422
6423  // Construct the decl.
6424  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6425                                             EnclosingContext, Loc, II, T,
6426                                             TInfo, ac, (Expr *)BitfieldWidth);
6427
6428  if (II) {
6429    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6430                                           ForRedeclaration);
6431    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6432        && !isa<TagDecl>(PrevDecl)) {
6433      Diag(Loc, diag::err_duplicate_member) << II;
6434      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6435      NewID->setInvalidDecl();
6436    }
6437  }
6438
6439  // Process attributes attached to the ivar.
6440  ProcessDeclAttributes(S, NewID, D);
6441
6442  if (D.isInvalidType())
6443    NewID->setInvalidDecl();
6444
6445  if (II) {
6446    // FIXME: When interfaces are DeclContexts, we'll need to add
6447    // these to the interface.
6448    S->AddDecl(NewID);
6449    IdResolver.AddDecl(NewID);
6450  }
6451
6452  return NewID;
6453}
6454
6455/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6456/// class and class extensions. For every class @interface and class
6457/// extension @interface, if the last ivar is a bitfield of any type,
6458/// then add an implicit `char :0` ivar to the end of that interface.
6459void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6460                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6461  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6462    return;
6463
6464  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6465  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6466
6467  if (!Ivar->isBitField())
6468    return;
6469  uint64_t BitFieldSize =
6470    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6471  if (BitFieldSize == 0)
6472    return;
6473  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6474  if (!ID) {
6475    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6476      if (!CD->IsClassExtension())
6477        return;
6478    }
6479    // No need to add this to end of @implementation.
6480    else
6481      return;
6482  }
6483  // All conditions are met. Add a new bitfield to the tail end of ivars.
6484  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6485  Expr * BW =
6486    new (Context) IntegerLiteral(Zero, Context.CharTy, DeclLoc);
6487
6488  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6489                              DeclLoc, 0,
6490                              Context.CharTy,
6491                              Context.CreateTypeSourceInfo(Context.CharTy),
6492                              ObjCIvarDecl::Private, BW,
6493                              true);
6494  AllIvarDecls.push_back(Ivar);
6495}
6496
6497void Sema::ActOnFields(Scope* S,
6498                       SourceLocation RecLoc, Decl *EnclosingDecl,
6499                       Decl **Fields, unsigned NumFields,
6500                       SourceLocation LBrac, SourceLocation RBrac,
6501                       AttributeList *Attr) {
6502  assert(EnclosingDecl && "missing record or interface decl");
6503
6504  // If the decl this is being inserted into is invalid, then it may be a
6505  // redeclaration or some other bogus case.  Don't try to add fields to it.
6506  if (EnclosingDecl->isInvalidDecl()) {
6507    // FIXME: Deallocate fields?
6508    return;
6509  }
6510
6511
6512  // Verify that all the fields are okay.
6513  unsigned NumNamedMembers = 0;
6514  llvm::SmallVector<FieldDecl*, 32> RecFields;
6515
6516  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6517  for (unsigned i = 0; i != NumFields; ++i) {
6518    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6519
6520    // Get the type for the field.
6521    Type *FDTy = FD->getType().getTypePtr();
6522
6523    if (!FD->isAnonymousStructOrUnion()) {
6524      // Remember all fields written by the user.
6525      RecFields.push_back(FD);
6526    }
6527
6528    // If the field is already invalid for some reason, don't emit more
6529    // diagnostics about it.
6530    if (FD->isInvalidDecl()) {
6531      EnclosingDecl->setInvalidDecl();
6532      continue;
6533    }
6534
6535    // C99 6.7.2.1p2:
6536    //   A structure or union shall not contain a member with
6537    //   incomplete or function type (hence, a structure shall not
6538    //   contain an instance of itself, but may contain a pointer to
6539    //   an instance of itself), except that the last member of a
6540    //   structure with more than one named member may have incomplete
6541    //   array type; such a structure (and any union containing,
6542    //   possibly recursively, a member that is such a structure)
6543    //   shall not be a member of a structure or an element of an
6544    //   array.
6545    if (FDTy->isFunctionType()) {
6546      // Field declared as a function.
6547      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6548        << FD->getDeclName();
6549      FD->setInvalidDecl();
6550      EnclosingDecl->setInvalidDecl();
6551      continue;
6552    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6553               Record && Record->isStruct()) {
6554      // Flexible array member.
6555      if (NumNamedMembers < 1) {
6556        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6557          << FD->getDeclName();
6558        FD->setInvalidDecl();
6559        EnclosingDecl->setInvalidDecl();
6560        continue;
6561      }
6562      if (!FD->getType()->isDependentType() &&
6563          !Context.getBaseElementType(FD->getType())->isPODType()) {
6564        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6565          << FD->getDeclName() << FD->getType();
6566        FD->setInvalidDecl();
6567        EnclosingDecl->setInvalidDecl();
6568        continue;
6569      }
6570
6571      // Okay, we have a legal flexible array member at the end of the struct.
6572      if (Record)
6573        Record->setHasFlexibleArrayMember(true);
6574    } else if (!FDTy->isDependentType() &&
6575               RequireCompleteType(FD->getLocation(), FD->getType(),
6576                                   diag::err_field_incomplete)) {
6577      // Incomplete type
6578      FD->setInvalidDecl();
6579      EnclosingDecl->setInvalidDecl();
6580      continue;
6581    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6582      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6583        // If this is a member of a union, then entire union becomes "flexible".
6584        if (Record && Record->isUnion()) {
6585          Record->setHasFlexibleArrayMember(true);
6586        } else {
6587          // If this is a struct/class and this is not the last element, reject
6588          // it.  Note that GCC supports variable sized arrays in the middle of
6589          // structures.
6590          if (i != NumFields-1)
6591            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6592              << FD->getDeclName() << FD->getType();
6593          else {
6594            // We support flexible arrays at the end of structs in
6595            // other structs as an extension.
6596            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6597              << FD->getDeclName();
6598            if (Record)
6599              Record->setHasFlexibleArrayMember(true);
6600          }
6601        }
6602      }
6603      if (Record && FDTTy->getDecl()->hasObjectMember())
6604        Record->setHasObjectMember(true);
6605    } else if (FDTy->isObjCObjectType()) {
6606      /// A field cannot be an Objective-c object
6607      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6608      FD->setInvalidDecl();
6609      EnclosingDecl->setInvalidDecl();
6610      continue;
6611    } else if (getLangOptions().ObjC1 &&
6612               getLangOptions().getGCMode() != LangOptions::NonGC &&
6613               Record &&
6614               (FD->getType()->isObjCObjectPointerType() ||
6615                FD->getType().isObjCGCStrong()))
6616      Record->setHasObjectMember(true);
6617    else if (Context.getAsArrayType(FD->getType())) {
6618      QualType BaseType = Context.getBaseElementType(FD->getType());
6619      if (Record && BaseType->isRecordType() &&
6620          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6621        Record->setHasObjectMember(true);
6622    }
6623    // Keep track of the number of named members.
6624    if (FD->getIdentifier())
6625      ++NumNamedMembers;
6626  }
6627
6628  // Okay, we successfully defined 'Record'.
6629  if (Record) {
6630    Record->completeDefinition();
6631  } else {
6632    ObjCIvarDecl **ClsFields =
6633      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6634    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6635      ID->setLocEnd(RBrac);
6636      // Add ivar's to class's DeclContext.
6637      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6638        ClsFields[i]->setLexicalDeclContext(ID);
6639        ID->addDecl(ClsFields[i]);
6640      }
6641      // Must enforce the rule that ivars in the base classes may not be
6642      // duplicates.
6643      if (ID->getSuperClass())
6644        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6645    } else if (ObjCImplementationDecl *IMPDecl =
6646                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6647      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6648      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6649        // Ivar declared in @implementation never belongs to the implementation.
6650        // Only it is in implementation's lexical context.
6651        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6652      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6653    } else if (ObjCCategoryDecl *CDecl =
6654                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6655      // case of ivars in class extension; all other cases have been
6656      // reported as errors elsewhere.
6657      // FIXME. Class extension does not have a LocEnd field.
6658      // CDecl->setLocEnd(RBrac);
6659      // Add ivar's to class extension's DeclContext.
6660      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6661        ClsFields[i]->setLexicalDeclContext(CDecl);
6662        CDecl->addDecl(ClsFields[i]);
6663      }
6664    }
6665  }
6666
6667  if (Attr)
6668    ProcessDeclAttributeList(S, Record, Attr);
6669
6670  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6671  // set the visibility of this record.
6672  if (Record && !Record->getDeclContext()->isRecord())
6673    AddPushedVisibilityAttribute(Record);
6674}
6675
6676/// \brief Determine whether the given integral value is representable within
6677/// the given type T.
6678static bool isRepresentableIntegerValue(ASTContext &Context,
6679                                        llvm::APSInt &Value,
6680                                        QualType T) {
6681  assert(T->isIntegralType(Context) && "Integral type required!");
6682  unsigned BitWidth = Context.getIntWidth(T);
6683
6684  if (Value.isUnsigned() || Value.isNonNegative())
6685    return Value.getActiveBits() < BitWidth;
6686
6687  return Value.getMinSignedBits() <= BitWidth;
6688}
6689
6690// \brief Given an integral type, return the next larger integral type
6691// (or a NULL type of no such type exists).
6692static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6693  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6694  // enum checking below.
6695  assert(T->isIntegralType(Context) && "Integral type required!");
6696  const unsigned NumTypes = 4;
6697  QualType SignedIntegralTypes[NumTypes] = {
6698    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6699  };
6700  QualType UnsignedIntegralTypes[NumTypes] = {
6701    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6702    Context.UnsignedLongLongTy
6703  };
6704
6705  unsigned BitWidth = Context.getTypeSize(T);
6706  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6707                                            : UnsignedIntegralTypes;
6708  for (unsigned I = 0; I != NumTypes; ++I)
6709    if (Context.getTypeSize(Types[I]) > BitWidth)
6710      return Types[I];
6711
6712  return QualType();
6713}
6714
6715EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6716                                          EnumConstantDecl *LastEnumConst,
6717                                          SourceLocation IdLoc,
6718                                          IdentifierInfo *Id,
6719                                          Expr *Val) {
6720  unsigned IntWidth = Context.Target.getIntWidth();
6721  llvm::APSInt EnumVal(IntWidth);
6722  QualType EltTy;
6723  if (Val) {
6724    if (Enum->isDependentType() || Val->isTypeDependent())
6725      EltTy = Context.DependentTy;
6726    else {
6727      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6728      SourceLocation ExpLoc;
6729      if (!Val->isValueDependent() &&
6730          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6731        Val = 0;
6732      } else {
6733        if (!getLangOptions().CPlusPlus) {
6734          // C99 6.7.2.2p2:
6735          //   The expression that defines the value of an enumeration constant
6736          //   shall be an integer constant expression that has a value
6737          //   representable as an int.
6738
6739          // Complain if the value is not representable in an int.
6740          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6741            Diag(IdLoc, diag::ext_enum_value_not_int)
6742              << EnumVal.toString(10) << Val->getSourceRange()
6743              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6744          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6745            // Force the type of the expression to 'int'.
6746            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6747          }
6748        }
6749
6750        // C++0x [dcl.enum]p5:
6751        //   If the underlying type is not fixed, the type of each enumerator
6752        //   is the type of its initializing value:
6753        //     - If an initializer is specified for an enumerator, the
6754        //       initializing value has the same type as the expression.
6755        EltTy = Val->getType();
6756      }
6757    }
6758  }
6759
6760  if (!Val) {
6761    if (Enum->isDependentType())
6762      EltTy = Context.DependentTy;
6763    else if (!LastEnumConst) {
6764      // C++0x [dcl.enum]p5:
6765      //   If the underlying type is not fixed, the type of each enumerator
6766      //   is the type of its initializing value:
6767      //     - If no initializer is specified for the first enumerator, the
6768      //       initializing value has an unspecified integral type.
6769      //
6770      // GCC uses 'int' for its unspecified integral type, as does
6771      // C99 6.7.2.2p3.
6772      EltTy = Context.IntTy;
6773    } else {
6774      // Assign the last value + 1.
6775      EnumVal = LastEnumConst->getInitVal();
6776      ++EnumVal;
6777      EltTy = LastEnumConst->getType();
6778
6779      // Check for overflow on increment.
6780      if (EnumVal < LastEnumConst->getInitVal()) {
6781        // C++0x [dcl.enum]p5:
6782        //   If the underlying type is not fixed, the type of each enumerator
6783        //   is the type of its initializing value:
6784        //
6785        //     - Otherwise the type of the initializing value is the same as
6786        //       the type of the initializing value of the preceding enumerator
6787        //       unless the incremented value is not representable in that type,
6788        //       in which case the type is an unspecified integral type
6789        //       sufficient to contain the incremented value. If no such type
6790        //       exists, the program is ill-formed.
6791        QualType T = getNextLargerIntegralType(Context, EltTy);
6792        if (T.isNull()) {
6793          // There is no integral type larger enough to represent this
6794          // value. Complain, then allow the value to wrap around.
6795          EnumVal = LastEnumConst->getInitVal();
6796          EnumVal.zext(EnumVal.getBitWidth() * 2);
6797          Diag(IdLoc, diag::warn_enumerator_too_large)
6798            << EnumVal.toString(10);
6799        } else {
6800          EltTy = T;
6801        }
6802
6803        // Retrieve the last enumerator's value, extent that type to the
6804        // type that is supposed to be large enough to represent the incremented
6805        // value, then increment.
6806        EnumVal = LastEnumConst->getInitVal();
6807        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6808        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6809        ++EnumVal;
6810
6811        // If we're not in C++, diagnose the overflow of enumerator values,
6812        // which in C99 means that the enumerator value is not representable in
6813        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6814        // permits enumerator values that are representable in some larger
6815        // integral type.
6816        if (!getLangOptions().CPlusPlus && !T.isNull())
6817          Diag(IdLoc, diag::warn_enum_value_overflow);
6818      } else if (!getLangOptions().CPlusPlus &&
6819                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6820        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6821        Diag(IdLoc, diag::ext_enum_value_not_int)
6822          << EnumVal.toString(10) << 1;
6823      }
6824    }
6825  }
6826
6827  if (!EltTy->isDependentType()) {
6828    // Make the enumerator value match the signedness and size of the
6829    // enumerator's type.
6830    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6831    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6832  }
6833
6834  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6835                                  Val, EnumVal);
6836}
6837
6838
6839Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6840                                        Decl *lastEnumConst,
6841                                        SourceLocation IdLoc,
6842                                        IdentifierInfo *Id,
6843                                        SourceLocation EqualLoc, ExprTy *val) {
6844  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6845  EnumConstantDecl *LastEnumConst =
6846    cast_or_null<EnumConstantDecl>(lastEnumConst);
6847  Expr *Val = static_cast<Expr*>(val);
6848
6849  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6850  // we find one that is.
6851  S = getNonFieldDeclScope(S);
6852
6853  // Verify that there isn't already something declared with this name in this
6854  // scope.
6855  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6856                                         ForRedeclaration);
6857  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6858    // Maybe we will complain about the shadowed template parameter.
6859    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6860    // Just pretend that we didn't see the previous declaration.
6861    PrevDecl = 0;
6862  }
6863
6864  if (PrevDecl) {
6865    // When in C++, we may get a TagDecl with the same name; in this case the
6866    // enum constant will 'hide' the tag.
6867    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6868           "Received TagDecl when not in C++!");
6869    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6870      if (isa<EnumConstantDecl>(PrevDecl))
6871        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6872      else
6873        Diag(IdLoc, diag::err_redefinition) << Id;
6874      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6875      return 0;
6876    }
6877  }
6878
6879  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6880                                            IdLoc, Id, Val);
6881
6882  // Register this decl in the current scope stack.
6883  if (New) {
6884    New->setAccess(TheEnumDecl->getAccess());
6885    PushOnScopeChains(New, S);
6886  }
6887
6888  return New;
6889}
6890
6891void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6892                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6893                         Decl **Elements, unsigned NumElements,
6894                         Scope *S, AttributeList *Attr) {
6895  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6896  QualType EnumType = Context.getTypeDeclType(Enum);
6897
6898  if (Attr)
6899    ProcessDeclAttributeList(S, Enum, Attr);
6900
6901  if (Enum->isDependentType()) {
6902    for (unsigned i = 0; i != NumElements; ++i) {
6903      EnumConstantDecl *ECD =
6904        cast_or_null<EnumConstantDecl>(Elements[i]);
6905      if (!ECD) continue;
6906
6907      ECD->setType(EnumType);
6908    }
6909
6910    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6911    return;
6912  }
6913
6914  // TODO: If the result value doesn't fit in an int, it must be a long or long
6915  // long value.  ISO C does not support this, but GCC does as an extension,
6916  // emit a warning.
6917  unsigned IntWidth = Context.Target.getIntWidth();
6918  unsigned CharWidth = Context.Target.getCharWidth();
6919  unsigned ShortWidth = Context.Target.getShortWidth();
6920
6921  // Verify that all the values are okay, compute the size of the values, and
6922  // reverse the list.
6923  unsigned NumNegativeBits = 0;
6924  unsigned NumPositiveBits = 0;
6925
6926  // Keep track of whether all elements have type int.
6927  bool AllElementsInt = true;
6928
6929  for (unsigned i = 0; i != NumElements; ++i) {
6930    EnumConstantDecl *ECD =
6931      cast_or_null<EnumConstantDecl>(Elements[i]);
6932    if (!ECD) continue;  // Already issued a diagnostic.
6933
6934    const llvm::APSInt &InitVal = ECD->getInitVal();
6935
6936    // Keep track of the size of positive and negative values.
6937    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6938      NumPositiveBits = std::max(NumPositiveBits,
6939                                 (unsigned)InitVal.getActiveBits());
6940    else
6941      NumNegativeBits = std::max(NumNegativeBits,
6942                                 (unsigned)InitVal.getMinSignedBits());
6943
6944    // Keep track of whether every enum element has type int (very commmon).
6945    if (AllElementsInt)
6946      AllElementsInt = ECD->getType() == Context.IntTy;
6947  }
6948
6949  // Figure out the type that should be used for this enum.
6950  // FIXME: Support -fshort-enums.
6951  QualType BestType;
6952  unsigned BestWidth;
6953
6954  // C++0x N3000 [conv.prom]p3:
6955  //   An rvalue of an unscoped enumeration type whose underlying
6956  //   type is not fixed can be converted to an rvalue of the first
6957  //   of the following types that can represent all the values of
6958  //   the enumeration: int, unsigned int, long int, unsigned long
6959  //   int, long long int, or unsigned long long int.
6960  // C99 6.4.4.3p2:
6961  //   An identifier declared as an enumeration constant has type int.
6962  // The C99 rule is modified by a gcc extension
6963  QualType BestPromotionType;
6964
6965  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6966
6967  if (NumNegativeBits) {
6968    // If there is a negative value, figure out the smallest integer type (of
6969    // int/long/longlong) that fits.
6970    // If it's packed, check also if it fits a char or a short.
6971    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6972      BestType = Context.SignedCharTy;
6973      BestWidth = CharWidth;
6974    } else if (Packed && NumNegativeBits <= ShortWidth &&
6975               NumPositiveBits < ShortWidth) {
6976      BestType = Context.ShortTy;
6977      BestWidth = ShortWidth;
6978    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6979      BestType = Context.IntTy;
6980      BestWidth = IntWidth;
6981    } else {
6982      BestWidth = Context.Target.getLongWidth();
6983
6984      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6985        BestType = Context.LongTy;
6986      } else {
6987        BestWidth = Context.Target.getLongLongWidth();
6988
6989        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6990          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6991        BestType = Context.LongLongTy;
6992      }
6993    }
6994    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6995  } else {
6996    // If there is no negative value, figure out the smallest type that fits
6997    // all of the enumerator values.
6998    // If it's packed, check also if it fits a char or a short.
6999    if (Packed && NumPositiveBits <= CharWidth) {
7000      BestType = Context.UnsignedCharTy;
7001      BestPromotionType = Context.IntTy;
7002      BestWidth = CharWidth;
7003    } else if (Packed && NumPositiveBits <= ShortWidth) {
7004      BestType = Context.UnsignedShortTy;
7005      BestPromotionType = Context.IntTy;
7006      BestWidth = ShortWidth;
7007    } else if (NumPositiveBits <= IntWidth) {
7008      BestType = Context.UnsignedIntTy;
7009      BestWidth = IntWidth;
7010      BestPromotionType
7011        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7012                           ? Context.UnsignedIntTy : Context.IntTy;
7013    } else if (NumPositiveBits <=
7014               (BestWidth = Context.Target.getLongWidth())) {
7015      BestType = Context.UnsignedLongTy;
7016      BestPromotionType
7017        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7018                           ? Context.UnsignedLongTy : Context.LongTy;
7019    } else {
7020      BestWidth = Context.Target.getLongLongWidth();
7021      assert(NumPositiveBits <= BestWidth &&
7022             "How could an initializer get larger than ULL?");
7023      BestType = Context.UnsignedLongLongTy;
7024      BestPromotionType
7025        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7026                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7027    }
7028  }
7029
7030  // Loop over all of the enumerator constants, changing their types to match
7031  // the type of the enum if needed.
7032  for (unsigned i = 0; i != NumElements; ++i) {
7033    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7034    if (!ECD) continue;  // Already issued a diagnostic.
7035
7036    // Standard C says the enumerators have int type, but we allow, as an
7037    // extension, the enumerators to be larger than int size.  If each
7038    // enumerator value fits in an int, type it as an int, otherwise type it the
7039    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7040    // that X has type 'int', not 'unsigned'.
7041
7042    // Determine whether the value fits into an int.
7043    llvm::APSInt InitVal = ECD->getInitVal();
7044
7045    // If it fits into an integer type, force it.  Otherwise force it to match
7046    // the enum decl type.
7047    QualType NewTy;
7048    unsigned NewWidth;
7049    bool NewSign;
7050    if (!getLangOptions().CPlusPlus &&
7051        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7052      NewTy = Context.IntTy;
7053      NewWidth = IntWidth;
7054      NewSign = true;
7055    } else if (ECD->getType() == BestType) {
7056      // Already the right type!
7057      if (getLangOptions().CPlusPlus)
7058        // C++ [dcl.enum]p4: Following the closing brace of an
7059        // enum-specifier, each enumerator has the type of its
7060        // enumeration.
7061        ECD->setType(EnumType);
7062      continue;
7063    } else {
7064      NewTy = BestType;
7065      NewWidth = BestWidth;
7066      NewSign = BestType->isSignedIntegerType();
7067    }
7068
7069    // Adjust the APSInt value.
7070    InitVal.extOrTrunc(NewWidth);
7071    InitVal.setIsSigned(NewSign);
7072    ECD->setInitVal(InitVal);
7073
7074    // Adjust the Expr initializer and type.
7075    if (ECD->getInitExpr())
7076      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7077                                                CK_IntegralCast,
7078                                                ECD->getInitExpr(),
7079                                                /*base paths*/ 0,
7080                                                VK_RValue));
7081    if (getLangOptions().CPlusPlus)
7082      // C++ [dcl.enum]p4: Following the closing brace of an
7083      // enum-specifier, each enumerator has the type of its
7084      // enumeration.
7085      ECD->setType(EnumType);
7086    else
7087      ECD->setType(NewTy);
7088  }
7089
7090  Enum->completeDefinition(BestType, BestPromotionType,
7091                           NumPositiveBits, NumNegativeBits);
7092}
7093
7094Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7095  StringLiteral *AsmString = cast<StringLiteral>(expr);
7096
7097  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7098                                                   Loc, AsmString);
7099  CurContext->addDecl(New);
7100  return New;
7101}
7102
7103void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7104                             SourceLocation PragmaLoc,
7105                             SourceLocation NameLoc) {
7106  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7107
7108  if (PrevDecl) {
7109    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7110  } else {
7111    (void)WeakUndeclaredIdentifiers.insert(
7112      std::pair<IdentifierInfo*,WeakInfo>
7113        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7114  }
7115}
7116
7117void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7118                                IdentifierInfo* AliasName,
7119                                SourceLocation PragmaLoc,
7120                                SourceLocation NameLoc,
7121                                SourceLocation AliasNameLoc) {
7122  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7123                                    LookupOrdinaryName);
7124  WeakInfo W = WeakInfo(Name, NameLoc);
7125
7126  if (PrevDecl) {
7127    if (!PrevDecl->hasAttr<AliasAttr>())
7128      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7129        DeclApplyPragmaWeak(TUScope, ND, W);
7130  } else {
7131    (void)WeakUndeclaredIdentifiers.insert(
7132      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7133  }
7134}
7135