SemaDecl.cpp revision 515ddd8f7a36fc2684492c13665642153fc690c0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else if (UnresolvedUsingTypenameDecl *UUDecl =
200               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
201    // FIXME: preserve source structure information.
202    T = Context.getDependentNameType(ETK_None,
203                                     UUDecl->getTargetNestedNameSpecifier(),
204                                     &II);
205  } else {
206    // If it's not plausibly a type, suppress diagnostics.
207    Result.suppressDiagnostics();
208    return 0;
209  }
210
211  return T.getAsOpaquePtr();
212}
213
214/// isTagName() - This method is called *for error recovery purposes only*
215/// to determine if the specified name is a valid tag name ("struct foo").  If
216/// so, this returns the TST for the tag corresponding to it (TST_enum,
217/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
218/// where the user forgot to specify the tag.
219DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
220  // Do a tag name lookup in this scope.
221  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
222  LookupName(R, S, false);
223  R.suppressDiagnostics();
224  if (R.getResultKind() == LookupResult::Found)
225    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
226      switch (TD->getTagKind()) {
227      default:         return DeclSpec::TST_unspecified;
228      case TTK_Struct: return DeclSpec::TST_struct;
229      case TTK_Union:  return DeclSpec::TST_union;
230      case TTK_Class:  return DeclSpec::TST_class;
231      case TTK_Enum:   return DeclSpec::TST_enum;
232      }
233    }
234
235  return DeclSpec::TST_unspecified;
236}
237
238bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
239                                   SourceLocation IILoc,
240                                   Scope *S,
241                                   CXXScopeSpec *SS,
242                                   TypeTy *&SuggestedType) {
243  // We don't have anything to suggest (yet).
244  SuggestedType = 0;
245
246  // There may have been a typo in the name of the type. Look up typo
247  // results, in case we have something that we can suggest.
248  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
249                      NotForRedeclaration);
250
251  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
252    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
253      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
254          !Result->isInvalidDecl()) {
255        // We found a similarly-named type or interface; suggest that.
256        if (!SS || !SS->isSet())
257          Diag(IILoc, diag::err_unknown_typename_suggest)
258            << &II << Lookup.getLookupName()
259            << FixItHint::CreateReplacement(SourceRange(IILoc),
260                                            Result->getNameAsString());
261        else if (DeclContext *DC = computeDeclContext(*SS, false))
262          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
263            << &II << DC << Lookup.getLookupName() << SS->getRange()
264            << FixItHint::CreateReplacement(SourceRange(IILoc),
265                                            Result->getNameAsString());
266        else
267          llvm_unreachable("could not have corrected a typo here");
268
269        Diag(Result->getLocation(), diag::note_previous_decl)
270          << Result->getDeclName();
271
272        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
273        return true;
274      }
275    } else if (Lookup.empty()) {
276      // We corrected to a keyword.
277      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
278      Diag(IILoc, diag::err_unknown_typename_suggest)
279        << &II << Corrected;
280      return true;
281    }
282  }
283
284  if (getLangOptions().CPlusPlus) {
285    // See if II is a class template that the user forgot to pass arguments to.
286    UnqualifiedId Name;
287    Name.setIdentifier(&II, IILoc);
288    CXXScopeSpec EmptySS;
289    TemplateTy TemplateResult;
290    bool MemberOfUnknownSpecialization;
291    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
292                       MemberOfUnknownSpecialization) == TNK_Type_template) {
293      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
294      Diag(IILoc, diag::err_template_missing_args) << TplName;
295      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
296        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
297          << TplDecl->getTemplateParameters()->getSourceRange();
298      }
299      return true;
300    }
301  }
302
303  // FIXME: Should we move the logic that tries to recover from a missing tag
304  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
305
306  if (!SS || (!SS->isSet() && !SS->isInvalid()))
307    Diag(IILoc, diag::err_unknown_typename) << &II;
308  else if (DeclContext *DC = computeDeclContext(*SS, false))
309    Diag(IILoc, diag::err_typename_nested_not_found)
310      << &II << DC << SS->getRange();
311  else if (isDependentScopeSpecifier(*SS)) {
312    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
313      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
314      << SourceRange(SS->getRange().getBegin(), IILoc)
315      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
316    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
317  } else {
318    assert(SS && SS->isInvalid() &&
319           "Invalid scope specifier has already been diagnosed");
320  }
321
322  return true;
323}
324
325// Determines the context to return to after temporarily entering a
326// context.  This depends in an unnecessarily complicated way on the
327// exact ordering of callbacks from the parser.
328DeclContext *Sema::getContainingDC(DeclContext *DC) {
329
330  // Functions defined inline within classes aren't parsed until we've
331  // finished parsing the top-level class, so the top-level class is
332  // the context we'll need to return to.
333  if (isa<FunctionDecl>(DC)) {
334    DC = DC->getLexicalParent();
335
336    // A function not defined within a class will always return to its
337    // lexical context.
338    if (!isa<CXXRecordDecl>(DC))
339      return DC;
340
341    // A C++ inline method/friend is parsed *after* the topmost class
342    // it was declared in is fully parsed ("complete");  the topmost
343    // class is the context we need to return to.
344    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
345      DC = RD;
346
347    // Return the declaration context of the topmost class the inline method is
348    // declared in.
349    return DC;
350  }
351
352  if (isa<ObjCMethodDecl>(DC))
353    return Context.getTranslationUnitDecl();
354
355  return DC->getLexicalParent();
356}
357
358void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
359  assert(getContainingDC(DC) == CurContext &&
360      "The next DeclContext should be lexically contained in the current one.");
361  CurContext = DC;
362  S->setEntity(DC);
363}
364
365void Sema::PopDeclContext() {
366  assert(CurContext && "DeclContext imbalance!");
367
368  CurContext = getContainingDC(CurContext);
369}
370
371/// EnterDeclaratorContext - Used when we must lookup names in the context
372/// of a declarator's nested name specifier.
373///
374void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
375  // C++0x [basic.lookup.unqual]p13:
376  //   A name used in the definition of a static data member of class
377  //   X (after the qualified-id of the static member) is looked up as
378  //   if the name was used in a member function of X.
379  // C++0x [basic.lookup.unqual]p14:
380  //   If a variable member of a namespace is defined outside of the
381  //   scope of its namespace then any name used in the definition of
382  //   the variable member (after the declarator-id) is looked up as
383  //   if the definition of the variable member occurred in its
384  //   namespace.
385  // Both of these imply that we should push a scope whose context
386  // is the semantic context of the declaration.  We can't use
387  // PushDeclContext here because that context is not necessarily
388  // lexically contained in the current context.  Fortunately,
389  // the containing scope should have the appropriate information.
390
391  assert(!S->getEntity() && "scope already has entity");
392
393#ifndef NDEBUG
394  Scope *Ancestor = S->getParent();
395  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
396  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
397#endif
398
399  CurContext = DC;
400  S->setEntity(DC);
401}
402
403void Sema::ExitDeclaratorContext(Scope *S) {
404  assert(S->getEntity() == CurContext && "Context imbalance!");
405
406  // Switch back to the lexical context.  The safety of this is
407  // enforced by an assert in EnterDeclaratorContext.
408  Scope *Ancestor = S->getParent();
409  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
410  CurContext = (DeclContext*) Ancestor->getEntity();
411
412  // We don't need to do anything with the scope, which is going to
413  // disappear.
414}
415
416/// \brief Determine whether we allow overloading of the function
417/// PrevDecl with another declaration.
418///
419/// This routine determines whether overloading is possible, not
420/// whether some new function is actually an overload. It will return
421/// true in C++ (where we can always provide overloads) or, as an
422/// extension, in C when the previous function is already an
423/// overloaded function declaration or has the "overloadable"
424/// attribute.
425static bool AllowOverloadingOfFunction(LookupResult &Previous,
426                                       ASTContext &Context) {
427  if (Context.getLangOptions().CPlusPlus)
428    return true;
429
430  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
431    return true;
432
433  return (Previous.getResultKind() == LookupResult::Found
434          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
435}
436
437/// Add this decl to the scope shadowed decl chains.
438void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
439  // Move up the scope chain until we find the nearest enclosing
440  // non-transparent context. The declaration will be introduced into this
441  // scope.
442  while (S->getEntity() &&
443         ((DeclContext *)S->getEntity())->isTransparentContext())
444    S = S->getParent();
445
446  // Add scoped declarations into their context, so that they can be
447  // found later. Declarations without a context won't be inserted
448  // into any context.
449  if (AddToContext)
450    CurContext->addDecl(D);
451
452  // Out-of-line definitions shouldn't be pushed into scope in C++.
453  // Out-of-line variable and function definitions shouldn't even in C.
454  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
455      D->isOutOfLine())
456    return;
457
458  // Template instantiations should also not be pushed into scope.
459  if (isa<FunctionDecl>(D) &&
460      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
461    return;
462
463  // If this replaces anything in the current scope,
464  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
465                               IEnd = IdResolver.end();
466  for (; I != IEnd; ++I) {
467    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
468      S->RemoveDecl(DeclPtrTy::make(*I));
469      IdResolver.RemoveDecl(*I);
470
471      // Should only need to replace one decl.
472      break;
473    }
474  }
475
476  S->AddDecl(DeclPtrTy::make(D));
477  IdResolver.AddDecl(D);
478}
479
480bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
481  return IdResolver.isDeclInScope(D, Ctx, Context, S);
482}
483
484static bool isOutOfScopePreviousDeclaration(NamedDecl *,
485                                            DeclContext*,
486                                            ASTContext&);
487
488/// Filters out lookup results that don't fall within the given scope
489/// as determined by isDeclInScope.
490static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
491                                 DeclContext *Ctx, Scope *S,
492                                 bool ConsiderLinkage) {
493  LookupResult::Filter F = R.makeFilter();
494  while (F.hasNext()) {
495    NamedDecl *D = F.next();
496
497    if (SemaRef.isDeclInScope(D, Ctx, S))
498      continue;
499
500    if (ConsiderLinkage &&
501        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
502      continue;
503
504    F.erase();
505  }
506
507  F.done();
508}
509
510static bool isUsingDecl(NamedDecl *D) {
511  return isa<UsingShadowDecl>(D) ||
512         isa<UnresolvedUsingTypenameDecl>(D) ||
513         isa<UnresolvedUsingValueDecl>(D);
514}
515
516/// Removes using shadow declarations from the lookup results.
517static void RemoveUsingDecls(LookupResult &R) {
518  LookupResult::Filter F = R.makeFilter();
519  while (F.hasNext())
520    if (isUsingDecl(F.next()))
521      F.erase();
522
523  F.done();
524}
525
526static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
527  if (D->isInvalidDecl())
528    return false;
529
530  if (D->isUsed() || D->hasAttr<UnusedAttr>())
531    return false;
532
533  // White-list anything that isn't a local variable.
534  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
535      !D->getDeclContext()->isFunctionOrMethod())
536    return false;
537
538  // Types of valid local variables should be complete, so this should succeed.
539  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
540
541    // White-list anything with an __attribute__((unused)) type.
542    QualType Ty = VD->getType();
543
544    // Only look at the outermost level of typedef.
545    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
546      if (TT->getDecl()->hasAttr<UnusedAttr>())
547        return false;
548    }
549
550    // If we failed to complete the type for some reason, or if the type is
551    // dependent, don't diagnose the variable.
552    if (Ty->isIncompleteType() || Ty->isDependentType())
553      return false;
554
555    if (const TagType *TT = Ty->getAs<TagType>()) {
556      const TagDecl *Tag = TT->getDecl();
557      if (Tag->hasAttr<UnusedAttr>())
558        return false;
559
560      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
561        // FIXME: Checking for the presence of a user-declared constructor
562        // isn't completely accurate; we'd prefer to check that the initializer
563        // has no side effects.
564        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
565          return false;
566      }
567    }
568
569    // TODO: __attribute__((unused)) templates?
570  }
571
572  return true;
573}
574
575void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
576  if (!ShouldDiagnoseUnusedDecl(D))
577    return;
578
579  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
580    Diag(D->getLocation(), diag::warn_unused_exception_param)
581    << D->getDeclName();
582  else
583    Diag(D->getLocation(), diag::warn_unused_variable)
584    << D->getDeclName();
585}
586
587void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
588  if (S->decl_empty()) return;
589  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
590         "Scope shouldn't contain decls!");
591
592  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
593       I != E; ++I) {
594    Decl *TmpD = (*I).getAs<Decl>();
595    assert(TmpD && "This decl didn't get pushed??");
596
597    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
598    NamedDecl *D = cast<NamedDecl>(TmpD);
599
600    if (!D->getDeclName()) continue;
601
602    // Diagnose unused variables in this scope.
603    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
604      DiagnoseUnusedDecl(D);
605
606    // Remove this name from our lexical scope.
607    IdResolver.RemoveDecl(D);
608  }
609}
610
611/// \brief Look for an Objective-C class in the translation unit.
612///
613/// \param Id The name of the Objective-C class we're looking for. If
614/// typo-correction fixes this name, the Id will be updated
615/// to the fixed name.
616///
617/// \param IdLoc The location of the name in the translation unit.
618///
619/// \param TypoCorrection If true, this routine will attempt typo correction
620/// if there is no class with the given name.
621///
622/// \returns The declaration of the named Objective-C class, or NULL if the
623/// class could not be found.
624ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
625                                              SourceLocation IdLoc,
626                                              bool TypoCorrection) {
627  // The third "scope" argument is 0 since we aren't enabling lazy built-in
628  // creation from this context.
629  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
630
631  if (!IDecl && TypoCorrection) {
632    // Perform typo correction at the given location, but only if we
633    // find an Objective-C class name.
634    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
635    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
636        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
637      Diag(IdLoc, diag::err_undef_interface_suggest)
638        << Id << IDecl->getDeclName()
639        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
640      Diag(IDecl->getLocation(), diag::note_previous_decl)
641        << IDecl->getDeclName();
642
643      Id = IDecl->getIdentifier();
644    }
645  }
646
647  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
648}
649
650/// getNonFieldDeclScope - Retrieves the innermost scope, starting
651/// from S, where a non-field would be declared. This routine copes
652/// with the difference between C and C++ scoping rules in structs and
653/// unions. For example, the following code is well-formed in C but
654/// ill-formed in C++:
655/// @code
656/// struct S6 {
657///   enum { BAR } e;
658/// };
659///
660/// void test_S6() {
661///   struct S6 a;
662///   a.e = BAR;
663/// }
664/// @endcode
665/// For the declaration of BAR, this routine will return a different
666/// scope. The scope S will be the scope of the unnamed enumeration
667/// within S6. In C++, this routine will return the scope associated
668/// with S6, because the enumeration's scope is a transparent
669/// context but structures can contain non-field names. In C, this
670/// routine will return the translation unit scope, since the
671/// enumeration's scope is a transparent context and structures cannot
672/// contain non-field names.
673Scope *Sema::getNonFieldDeclScope(Scope *S) {
674  while (((S->getFlags() & Scope::DeclScope) == 0) ||
675         (S->getEntity() &&
676          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
677         (S->isClassScope() && !getLangOptions().CPlusPlus))
678    S = S->getParent();
679  return S;
680}
681
682void Sema::InitBuiltinVaListType() {
683  if (!Context.getBuiltinVaListType().isNull())
684    return;
685
686  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
687  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
688                                       LookupOrdinaryName, ForRedeclaration);
689  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
690  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
691}
692
693/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
694/// file scope.  lazily create a decl for it. ForRedeclaration is true
695/// if we're creating this built-in in anticipation of redeclaring the
696/// built-in.
697NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
698                                     Scope *S, bool ForRedeclaration,
699                                     SourceLocation Loc) {
700  Builtin::ID BID = (Builtin::ID)bid;
701
702  if (Context.BuiltinInfo.hasVAListUse(BID))
703    InitBuiltinVaListType();
704
705  ASTContext::GetBuiltinTypeError Error;
706  QualType R = Context.GetBuiltinType(BID, Error);
707  switch (Error) {
708  case ASTContext::GE_None:
709    // Okay
710    break;
711
712  case ASTContext::GE_Missing_stdio:
713    if (ForRedeclaration)
714      Diag(Loc, diag::err_implicit_decl_requires_stdio)
715        << Context.BuiltinInfo.GetName(BID);
716    return 0;
717
718  case ASTContext::GE_Missing_setjmp:
719    if (ForRedeclaration)
720      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
721        << Context.BuiltinInfo.GetName(BID);
722    return 0;
723  }
724
725  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
726    Diag(Loc, diag::ext_implicit_lib_function_decl)
727      << Context.BuiltinInfo.GetName(BID)
728      << R;
729    if (Context.BuiltinInfo.getHeaderName(BID) &&
730        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
731          != Diagnostic::Ignored)
732      Diag(Loc, diag::note_please_include_header)
733        << Context.BuiltinInfo.getHeaderName(BID)
734        << Context.BuiltinInfo.GetName(BID);
735  }
736
737  FunctionDecl *New = FunctionDecl::Create(Context,
738                                           Context.getTranslationUnitDecl(),
739                                           Loc, II, R, /*TInfo=*/0,
740                                           FunctionDecl::Extern,
741                                           FunctionDecl::None, false,
742                                           /*hasPrototype=*/true);
743  New->setImplicit();
744
745  // Create Decl objects for each parameter, adding them to the
746  // FunctionDecl.
747  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
748    llvm::SmallVector<ParmVarDecl*, 16> Params;
749    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
750      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
751                                           FT->getArgType(i), /*TInfo=*/0,
752                                           VarDecl::None, VarDecl::None, 0));
753    New->setParams(Params.data(), Params.size());
754  }
755
756  AddKnownFunctionAttributes(New);
757
758  // TUScope is the translation-unit scope to insert this function into.
759  // FIXME: This is hideous. We need to teach PushOnScopeChains to
760  // relate Scopes to DeclContexts, and probably eliminate CurContext
761  // entirely, but we're not there yet.
762  DeclContext *SavedContext = CurContext;
763  CurContext = Context.getTranslationUnitDecl();
764  PushOnScopeChains(New, TUScope);
765  CurContext = SavedContext;
766  return New;
767}
768
769/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
770/// same name and scope as a previous declaration 'Old'.  Figure out
771/// how to resolve this situation, merging decls or emitting
772/// diagnostics as appropriate. If there was an error, set New to be invalid.
773///
774void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
775  // If the new decl is known invalid already, don't bother doing any
776  // merging checks.
777  if (New->isInvalidDecl()) return;
778
779  // Allow multiple definitions for ObjC built-in typedefs.
780  // FIXME: Verify the underlying types are equivalent!
781  if (getLangOptions().ObjC1) {
782    const IdentifierInfo *TypeID = New->getIdentifier();
783    switch (TypeID->getLength()) {
784    default: break;
785    case 2:
786      if (!TypeID->isStr("id"))
787        break;
788      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
789      // Install the built-in type for 'id', ignoring the current definition.
790      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
791      return;
792    case 5:
793      if (!TypeID->isStr("Class"))
794        break;
795      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
796      // Install the built-in type for 'Class', ignoring the current definition.
797      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
798      return;
799    case 3:
800      if (!TypeID->isStr("SEL"))
801        break;
802      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
803      // Install the built-in type for 'SEL', ignoring the current definition.
804      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
805      return;
806    case 8:
807      if (!TypeID->isStr("Protocol"))
808        break;
809      Context.setObjCProtoType(New->getUnderlyingType());
810      return;
811    }
812    // Fall through - the typedef name was not a builtin type.
813  }
814
815  // Verify the old decl was also a type.
816  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
817  if (!Old) {
818    Diag(New->getLocation(), diag::err_redefinition_different_kind)
819      << New->getDeclName();
820
821    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
822    if (OldD->getLocation().isValid())
823      Diag(OldD->getLocation(), diag::note_previous_definition);
824
825    return New->setInvalidDecl();
826  }
827
828  // If the old declaration is invalid, just give up here.
829  if (Old->isInvalidDecl())
830    return New->setInvalidDecl();
831
832  // Determine the "old" type we'll use for checking and diagnostics.
833  QualType OldType;
834  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
835    OldType = OldTypedef->getUnderlyingType();
836  else
837    OldType = Context.getTypeDeclType(Old);
838
839  // If the typedef types are not identical, reject them in all languages and
840  // with any extensions enabled.
841
842  if (OldType != New->getUnderlyingType() &&
843      Context.getCanonicalType(OldType) !=
844      Context.getCanonicalType(New->getUnderlyingType())) {
845    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
846      << New->getUnderlyingType() << OldType;
847    if (Old->getLocation().isValid())
848      Diag(Old->getLocation(), diag::note_previous_definition);
849    return New->setInvalidDecl();
850  }
851
852  // The types match.  Link up the redeclaration chain if the old
853  // declaration was a typedef.
854  // FIXME: this is a potential source of wierdness if the type
855  // spellings don't match exactly.
856  if (isa<TypedefDecl>(Old))
857    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
858
859  if (getLangOptions().Microsoft)
860    return;
861
862  if (getLangOptions().CPlusPlus) {
863    // C++ [dcl.typedef]p2:
864    //   In a given non-class scope, a typedef specifier can be used to
865    //   redefine the name of any type declared in that scope to refer
866    //   to the type to which it already refers.
867    if (!isa<CXXRecordDecl>(CurContext))
868      return;
869
870    // C++0x [dcl.typedef]p4:
871    //   In a given class scope, a typedef specifier can be used to redefine
872    //   any class-name declared in that scope that is not also a typedef-name
873    //   to refer to the type to which it already refers.
874    //
875    // This wording came in via DR424, which was a correction to the
876    // wording in DR56, which accidentally banned code like:
877    //
878    //   struct S {
879    //     typedef struct A { } A;
880    //   };
881    //
882    // in the C++03 standard. We implement the C++0x semantics, which
883    // allow the above but disallow
884    //
885    //   struct S {
886    //     typedef int I;
887    //     typedef int I;
888    //   };
889    //
890    // since that was the intent of DR56.
891    if (!isa<TypedefDecl >(Old))
892      return;
893
894    Diag(New->getLocation(), diag::err_redefinition)
895      << New->getDeclName();
896    Diag(Old->getLocation(), diag::note_previous_definition);
897    return New->setInvalidDecl();
898  }
899
900  // If we have a redefinition of a typedef in C, emit a warning.  This warning
901  // is normally mapped to an error, but can be controlled with
902  // -Wtypedef-redefinition.  If either the original or the redefinition is
903  // in a system header, don't emit this for compatibility with GCC.
904  if (getDiagnostics().getSuppressSystemWarnings() &&
905      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
906       Context.getSourceManager().isInSystemHeader(New->getLocation())))
907    return;
908
909  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
910    << New->getDeclName();
911  Diag(Old->getLocation(), diag::note_previous_definition);
912  return;
913}
914
915/// DeclhasAttr - returns true if decl Declaration already has the target
916/// attribute.
917static bool
918DeclHasAttr(const Decl *decl, const Attr *target) {
919  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
920    if (attr->getKind() == target->getKind())
921      return true;
922
923  return false;
924}
925
926/// MergeAttributes - append attributes from the Old decl to the New one.
927static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
928  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
929    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
930      Attr *NewAttr = attr->clone(C);
931      NewAttr->setInherited(true);
932      New->addAttr(NewAttr);
933    }
934  }
935}
936
937/// Used in MergeFunctionDecl to keep track of function parameters in
938/// C.
939struct GNUCompatibleParamWarning {
940  ParmVarDecl *OldParm;
941  ParmVarDecl *NewParm;
942  QualType PromotedType;
943};
944
945
946/// getSpecialMember - get the special member enum for a method.
947Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
948  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
949    if (Ctor->isCopyConstructor())
950      return Sema::CXXCopyConstructor;
951
952    return Sema::CXXConstructor;
953  }
954
955  if (isa<CXXDestructorDecl>(MD))
956    return Sema::CXXDestructor;
957
958  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
959  return Sema::CXXCopyAssignment;
960}
961
962/// canRedefineFunction - checks if a function can be redefined. Currently,
963/// only extern inline functions can be redefined, and even then only in
964/// GNU89 mode.
965static bool canRedefineFunction(const FunctionDecl *FD,
966                                const LangOptions& LangOpts) {
967  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
968          FD->isInlineSpecified() &&
969          FD->getStorageClass() == FunctionDecl::Extern);
970}
971
972/// MergeFunctionDecl - We just parsed a function 'New' from
973/// declarator D which has the same name and scope as a previous
974/// declaration 'Old'.  Figure out how to resolve this situation,
975/// merging decls or emitting diagnostics as appropriate.
976///
977/// In C++, New and Old must be declarations that are not
978/// overloaded. Use IsOverload to determine whether New and Old are
979/// overloaded, and to select the Old declaration that New should be
980/// merged with.
981///
982/// Returns true if there was an error, false otherwise.
983bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
984  // Verify the old decl was also a function.
985  FunctionDecl *Old = 0;
986  if (FunctionTemplateDecl *OldFunctionTemplate
987        = dyn_cast<FunctionTemplateDecl>(OldD))
988    Old = OldFunctionTemplate->getTemplatedDecl();
989  else
990    Old = dyn_cast<FunctionDecl>(OldD);
991  if (!Old) {
992    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
993      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
994      Diag(Shadow->getTargetDecl()->getLocation(),
995           diag::note_using_decl_target);
996      Diag(Shadow->getUsingDecl()->getLocation(),
997           diag::note_using_decl) << 0;
998      return true;
999    }
1000
1001    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1002      << New->getDeclName();
1003    Diag(OldD->getLocation(), diag::note_previous_definition);
1004    return true;
1005  }
1006
1007  // Determine whether the previous declaration was a definition,
1008  // implicit declaration, or a declaration.
1009  diag::kind PrevDiag;
1010  if (Old->isThisDeclarationADefinition())
1011    PrevDiag = diag::note_previous_definition;
1012  else if (Old->isImplicit())
1013    PrevDiag = diag::note_previous_implicit_declaration;
1014  else
1015    PrevDiag = diag::note_previous_declaration;
1016
1017  QualType OldQType = Context.getCanonicalType(Old->getType());
1018  QualType NewQType = Context.getCanonicalType(New->getType());
1019
1020  // Don't complain about this if we're in GNU89 mode and the old function
1021  // is an extern inline function.
1022  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1023      New->getStorageClass() == FunctionDecl::Static &&
1024      Old->getStorageClass() != FunctionDecl::Static &&
1025      !canRedefineFunction(Old, getLangOptions())) {
1026    Diag(New->getLocation(), diag::err_static_non_static)
1027      << New;
1028    Diag(Old->getLocation(), PrevDiag);
1029    return true;
1030  }
1031
1032  // If a function is first declared with a calling convention, but is
1033  // later declared or defined without one, the second decl assumes the
1034  // calling convention of the first.
1035  //
1036  // For the new decl, we have to look at the NON-canonical type to tell the
1037  // difference between a function that really doesn't have a calling
1038  // convention and one that is declared cdecl. That's because in
1039  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1040  // because it is the default calling convention.
1041  //
1042  // Note also that we DO NOT return at this point, because we still have
1043  // other tests to run.
1044  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1045  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1046  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1047  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1048  if (OldTypeInfo.getCC() != CC_Default &&
1049      NewTypeInfo.getCC() == CC_Default) {
1050    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1051    New->setType(NewQType);
1052    NewQType = Context.getCanonicalType(NewQType);
1053  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1054                                     NewTypeInfo.getCC())) {
1055    // Calling conventions really aren't compatible, so complain.
1056    Diag(New->getLocation(), diag::err_cconv_change)
1057      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1058      << (OldTypeInfo.getCC() == CC_Default)
1059      << (OldTypeInfo.getCC() == CC_Default ? "" :
1060          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1061    Diag(Old->getLocation(), diag::note_previous_declaration);
1062    return true;
1063  }
1064
1065  // FIXME: diagnose the other way around?
1066  if (OldType->getNoReturnAttr() &&
1067      !NewType->getNoReturnAttr()) {
1068    NewQType = Context.getNoReturnType(NewQType);
1069    New->setType(NewQType);
1070    assert(NewQType.isCanonical());
1071  }
1072
1073  if (getLangOptions().CPlusPlus) {
1074    // (C++98 13.1p2):
1075    //   Certain function declarations cannot be overloaded:
1076    //     -- Function declarations that differ only in the return type
1077    //        cannot be overloaded.
1078    QualType OldReturnType
1079      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1080    QualType NewReturnType
1081      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1082    QualType ResQT;
1083    if (OldReturnType != NewReturnType) {
1084      if (NewReturnType->isObjCObjectPointerType()
1085          && OldReturnType->isObjCObjectPointerType())
1086        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1087      if (ResQT.isNull()) {
1088        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1089        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1090        return true;
1091      }
1092      else
1093        NewQType = ResQT;
1094    }
1095
1096    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1097    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1098    if (OldMethod && NewMethod) {
1099      // Preserve triviality.
1100      NewMethod->setTrivial(OldMethod->isTrivial());
1101
1102      bool isFriend = NewMethod->getFriendObjectKind();
1103
1104      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1105        //    -- Member function declarations with the same name and the
1106        //       same parameter types cannot be overloaded if any of them
1107        //       is a static member function declaration.
1108        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1109          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1110          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1111          return true;
1112        }
1113
1114        // C++ [class.mem]p1:
1115        //   [...] A member shall not be declared twice in the
1116        //   member-specification, except that a nested class or member
1117        //   class template can be declared and then later defined.
1118        unsigned NewDiag;
1119        if (isa<CXXConstructorDecl>(OldMethod))
1120          NewDiag = diag::err_constructor_redeclared;
1121        else if (isa<CXXDestructorDecl>(NewMethod))
1122          NewDiag = diag::err_destructor_redeclared;
1123        else if (isa<CXXConversionDecl>(NewMethod))
1124          NewDiag = diag::err_conv_function_redeclared;
1125        else
1126          NewDiag = diag::err_member_redeclared;
1127
1128        Diag(New->getLocation(), NewDiag);
1129        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1130
1131      // Complain if this is an explicit declaration of a special
1132      // member that was initially declared implicitly.
1133      //
1134      // As an exception, it's okay to befriend such methods in order
1135      // to permit the implicit constructor/destructor/operator calls.
1136      } else if (OldMethod->isImplicit()) {
1137        if (isFriend) {
1138          NewMethod->setImplicit();
1139        } else {
1140          Diag(NewMethod->getLocation(),
1141               diag::err_definition_of_implicitly_declared_member)
1142            << New << getSpecialMember(OldMethod);
1143          return true;
1144        }
1145      }
1146    }
1147
1148    // (C++98 8.3.5p3):
1149    //   All declarations for a function shall agree exactly in both the
1150    //   return type and the parameter-type-list.
1151    // attributes should be ignored when comparing.
1152    if (Context.getNoReturnType(OldQType, false) ==
1153        Context.getNoReturnType(NewQType, false))
1154      return MergeCompatibleFunctionDecls(New, Old);
1155
1156    // Fall through for conflicting redeclarations and redefinitions.
1157  }
1158
1159  // C: Function types need to be compatible, not identical. This handles
1160  // duplicate function decls like "void f(int); void f(enum X);" properly.
1161  if (!getLangOptions().CPlusPlus &&
1162      Context.typesAreCompatible(OldQType, NewQType)) {
1163    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1164    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1165    const FunctionProtoType *OldProto = 0;
1166    if (isa<FunctionNoProtoType>(NewFuncType) &&
1167        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1168      // The old declaration provided a function prototype, but the
1169      // new declaration does not. Merge in the prototype.
1170      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1171      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1172                                                 OldProto->arg_type_end());
1173      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1174                                         ParamTypes.data(), ParamTypes.size(),
1175                                         OldProto->isVariadic(),
1176                                         OldProto->getTypeQuals(),
1177                                         false, false, 0, 0,
1178                                         OldProto->getExtInfo());
1179      New->setType(NewQType);
1180      New->setHasInheritedPrototype();
1181
1182      // Synthesize a parameter for each argument type.
1183      llvm::SmallVector<ParmVarDecl*, 16> Params;
1184      for (FunctionProtoType::arg_type_iterator
1185             ParamType = OldProto->arg_type_begin(),
1186             ParamEnd = OldProto->arg_type_end();
1187           ParamType != ParamEnd; ++ParamType) {
1188        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1189                                                 SourceLocation(), 0,
1190                                                 *ParamType, /*TInfo=*/0,
1191                                                 VarDecl::None, VarDecl::None,
1192                                                 0);
1193        Param->setImplicit();
1194        Params.push_back(Param);
1195      }
1196
1197      New->setParams(Params.data(), Params.size());
1198    }
1199
1200    return MergeCompatibleFunctionDecls(New, Old);
1201  }
1202
1203  // GNU C permits a K&R definition to follow a prototype declaration
1204  // if the declared types of the parameters in the K&R definition
1205  // match the types in the prototype declaration, even when the
1206  // promoted types of the parameters from the K&R definition differ
1207  // from the types in the prototype. GCC then keeps the types from
1208  // the prototype.
1209  //
1210  // If a variadic prototype is followed by a non-variadic K&R definition,
1211  // the K&R definition becomes variadic.  This is sort of an edge case, but
1212  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1213  // C99 6.9.1p8.
1214  if (!getLangOptions().CPlusPlus &&
1215      Old->hasPrototype() && !New->hasPrototype() &&
1216      New->getType()->getAs<FunctionProtoType>() &&
1217      Old->getNumParams() == New->getNumParams()) {
1218    llvm::SmallVector<QualType, 16> ArgTypes;
1219    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1220    const FunctionProtoType *OldProto
1221      = Old->getType()->getAs<FunctionProtoType>();
1222    const FunctionProtoType *NewProto
1223      = New->getType()->getAs<FunctionProtoType>();
1224
1225    // Determine whether this is the GNU C extension.
1226    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1227                                               NewProto->getResultType());
1228    bool LooseCompatible = !MergedReturn.isNull();
1229    for (unsigned Idx = 0, End = Old->getNumParams();
1230         LooseCompatible && Idx != End; ++Idx) {
1231      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1232      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1233      if (Context.typesAreCompatible(OldParm->getType(),
1234                                     NewProto->getArgType(Idx))) {
1235        ArgTypes.push_back(NewParm->getType());
1236      } else if (Context.typesAreCompatible(OldParm->getType(),
1237                                            NewParm->getType())) {
1238        GNUCompatibleParamWarning Warn
1239          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1240        Warnings.push_back(Warn);
1241        ArgTypes.push_back(NewParm->getType());
1242      } else
1243        LooseCompatible = false;
1244    }
1245
1246    if (LooseCompatible) {
1247      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1248        Diag(Warnings[Warn].NewParm->getLocation(),
1249             diag::ext_param_promoted_not_compatible_with_prototype)
1250          << Warnings[Warn].PromotedType
1251          << Warnings[Warn].OldParm->getType();
1252        Diag(Warnings[Warn].OldParm->getLocation(),
1253             diag::note_previous_declaration);
1254      }
1255
1256      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1257                                           ArgTypes.size(),
1258                                           OldProto->isVariadic(), 0,
1259                                           false, false, 0, 0,
1260                                           OldProto->getExtInfo()));
1261      return MergeCompatibleFunctionDecls(New, Old);
1262    }
1263
1264    // Fall through to diagnose conflicting types.
1265  }
1266
1267  // A function that has already been declared has been redeclared or defined
1268  // with a different type- show appropriate diagnostic
1269  if (unsigned BuiltinID = Old->getBuiltinID()) {
1270    // The user has declared a builtin function with an incompatible
1271    // signature.
1272    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1273      // The function the user is redeclaring is a library-defined
1274      // function like 'malloc' or 'printf'. Warn about the
1275      // redeclaration, then pretend that we don't know about this
1276      // library built-in.
1277      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1278      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1279        << Old << Old->getType();
1280      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1281      Old->setInvalidDecl();
1282      return false;
1283    }
1284
1285    PrevDiag = diag::note_previous_builtin_declaration;
1286  }
1287
1288  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1289  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1290  return true;
1291}
1292
1293/// \brief Completes the merge of two function declarations that are
1294/// known to be compatible.
1295///
1296/// This routine handles the merging of attributes and other
1297/// properties of function declarations form the old declaration to
1298/// the new declaration, once we know that New is in fact a
1299/// redeclaration of Old.
1300///
1301/// \returns false
1302bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1303  // Merge the attributes
1304  MergeAttributes(New, Old, Context);
1305
1306  // Merge the storage class.
1307  if (Old->getStorageClass() != FunctionDecl::Extern &&
1308      Old->getStorageClass() != FunctionDecl::None)
1309    New->setStorageClass(Old->getStorageClass());
1310
1311  // Merge "pure" flag.
1312  if (Old->isPure())
1313    New->setPure();
1314
1315  // Merge the "deleted" flag.
1316  if (Old->isDeleted())
1317    New->setDeleted();
1318
1319  if (getLangOptions().CPlusPlus)
1320    return MergeCXXFunctionDecl(New, Old);
1321
1322  return false;
1323}
1324
1325/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1326/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1327/// situation, merging decls or emitting diagnostics as appropriate.
1328///
1329/// Tentative definition rules (C99 6.9.2p2) are checked by
1330/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1331/// definitions here, since the initializer hasn't been attached.
1332///
1333void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1334  // If the new decl is already invalid, don't do any other checking.
1335  if (New->isInvalidDecl())
1336    return;
1337
1338  // Verify the old decl was also a variable.
1339  VarDecl *Old = 0;
1340  if (!Previous.isSingleResult() ||
1341      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1342    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1343      << New->getDeclName();
1344    Diag(Previous.getRepresentativeDecl()->getLocation(),
1345         diag::note_previous_definition);
1346    return New->setInvalidDecl();
1347  }
1348
1349  MergeAttributes(New, Old, Context);
1350
1351  // Merge the types
1352  QualType MergedT;
1353  if (getLangOptions().CPlusPlus) {
1354    if (Context.hasSameType(New->getType(), Old->getType()))
1355      MergedT = New->getType();
1356    // C++ [basic.link]p10:
1357    //   [...] the types specified by all declarations referring to a given
1358    //   object or function shall be identical, except that declarations for an
1359    //   array object can specify array types that differ by the presence or
1360    //   absence of a major array bound (8.3.4).
1361    else if (Old->getType()->isIncompleteArrayType() &&
1362             New->getType()->isArrayType()) {
1363      CanQual<ArrayType> OldArray
1364        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1365      CanQual<ArrayType> NewArray
1366        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1367      if (OldArray->getElementType() == NewArray->getElementType())
1368        MergedT = New->getType();
1369    } else if (Old->getType()->isArrayType() &&
1370             New->getType()->isIncompleteArrayType()) {
1371      CanQual<ArrayType> OldArray
1372        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1373      CanQual<ArrayType> NewArray
1374        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1375      if (OldArray->getElementType() == NewArray->getElementType())
1376        MergedT = Old->getType();
1377    } else if (New->getType()->isObjCObjectPointerType()
1378               && Old->getType()->isObjCObjectPointerType()) {
1379        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1380    }
1381  } else {
1382    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1383  }
1384  if (MergedT.isNull()) {
1385    Diag(New->getLocation(), diag::err_redefinition_different_type)
1386      << New->getDeclName();
1387    Diag(Old->getLocation(), diag::note_previous_definition);
1388    return New->setInvalidDecl();
1389  }
1390  New->setType(MergedT);
1391
1392  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1393  if (New->getStorageClass() == VarDecl::Static &&
1394      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1395    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1396    Diag(Old->getLocation(), diag::note_previous_definition);
1397    return New->setInvalidDecl();
1398  }
1399  // C99 6.2.2p4:
1400  //   For an identifier declared with the storage-class specifier
1401  //   extern in a scope in which a prior declaration of that
1402  //   identifier is visible,23) if the prior declaration specifies
1403  //   internal or external linkage, the linkage of the identifier at
1404  //   the later declaration is the same as the linkage specified at
1405  //   the prior declaration. If no prior declaration is visible, or
1406  //   if the prior declaration specifies no linkage, then the
1407  //   identifier has external linkage.
1408  if (New->hasExternalStorage() && Old->hasLinkage())
1409    /* Okay */;
1410  else if (New->getStorageClass() != VarDecl::Static &&
1411           Old->getStorageClass() == VarDecl::Static) {
1412    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1413    Diag(Old->getLocation(), diag::note_previous_definition);
1414    return New->setInvalidDecl();
1415  }
1416
1417  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1418
1419  // FIXME: The test for external storage here seems wrong? We still
1420  // need to check for mismatches.
1421  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1422      // Don't complain about out-of-line definitions of static members.
1423      !(Old->getLexicalDeclContext()->isRecord() &&
1424        !New->getLexicalDeclContext()->isRecord())) {
1425    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1426    Diag(Old->getLocation(), diag::note_previous_definition);
1427    return New->setInvalidDecl();
1428  }
1429
1430  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1431    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1432    Diag(Old->getLocation(), diag::note_previous_definition);
1433  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1434    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1435    Diag(Old->getLocation(), diag::note_previous_definition);
1436  }
1437
1438  // C++ doesn't have tentative definitions, so go right ahead and check here.
1439  const VarDecl *Def;
1440  if (getLangOptions().CPlusPlus &&
1441      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1442      (Def = Old->getDefinition())) {
1443    Diag(New->getLocation(), diag::err_redefinition)
1444      << New->getDeclName();
1445    Diag(Def->getLocation(), diag::note_previous_definition);
1446    New->setInvalidDecl();
1447    return;
1448  }
1449
1450  // Keep a chain of previous declarations.
1451  New->setPreviousDeclaration(Old);
1452
1453  // Inherit access appropriately.
1454  New->setAccess(Old->getAccess());
1455}
1456
1457/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1458/// no declarator (e.g. "struct foo;") is parsed.
1459Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1460                                                 DeclSpec &DS) {
1461  // FIXME: Error on auto/register at file scope
1462  // FIXME: Error on inline/virtual/explicit
1463  // FIXME: Warn on useless __thread
1464  // FIXME: Warn on useless const/volatile
1465  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1466  // FIXME: Warn on useless attributes
1467  Decl *TagD = 0;
1468  TagDecl *Tag = 0;
1469  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1470      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1471      DS.getTypeSpecType() == DeclSpec::TST_union ||
1472      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1473    TagD = static_cast<Decl *>(DS.getTypeRep());
1474
1475    if (!TagD) // We probably had an error
1476      return DeclPtrTy();
1477
1478    // Note that the above type specs guarantee that the
1479    // type rep is a Decl, whereas in many of the others
1480    // it's a Type.
1481    Tag = dyn_cast<TagDecl>(TagD);
1482  }
1483
1484  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1485    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1486    // or incomplete types shall not be restrict-qualified."
1487    if (TypeQuals & DeclSpec::TQ_restrict)
1488      Diag(DS.getRestrictSpecLoc(),
1489           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1490           << DS.getSourceRange();
1491  }
1492
1493  if (DS.isFriendSpecified()) {
1494    // If we're dealing with a class template decl, assume that the
1495    // template routines are handling it.
1496    if (TagD && isa<ClassTemplateDecl>(TagD))
1497      return DeclPtrTy();
1498    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1499  }
1500
1501  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1502    // If there are attributes in the DeclSpec, apply them to the record.
1503    if (const AttributeList *AL = DS.getAttributes())
1504      ProcessDeclAttributeList(S, Record, AL);
1505
1506    if (!Record->getDeclName() && Record->isDefinition() &&
1507        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1508      if (getLangOptions().CPlusPlus ||
1509          Record->getDeclContext()->isRecord())
1510        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1511
1512      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1513        << DS.getSourceRange();
1514    }
1515
1516    // Microsoft allows unnamed struct/union fields. Don't complain
1517    // about them.
1518    // FIXME: Should we support Microsoft's extensions in this area?
1519    if (Record->getDeclName() && getLangOptions().Microsoft)
1520      return DeclPtrTy::make(Tag);
1521  }
1522
1523  if (!DS.isMissingDeclaratorOk() &&
1524      DS.getTypeSpecType() != DeclSpec::TST_error) {
1525    // Warn about typedefs of enums without names, since this is an
1526    // extension in both Microsoft an GNU.
1527    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1528        Tag && isa<EnumDecl>(Tag)) {
1529      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1530        << DS.getSourceRange();
1531      return DeclPtrTy::make(Tag);
1532    }
1533
1534    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1535      << DS.getSourceRange();
1536  }
1537
1538  return DeclPtrTy::make(Tag);
1539}
1540
1541/// We are trying to inject an anonymous member into the given scope;
1542/// check if there's an existing declaration that can't be overloaded.
1543///
1544/// \return true if this is a forbidden redeclaration
1545static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1546                                         Scope *S,
1547                                         DeclContext *Owner,
1548                                         DeclarationName Name,
1549                                         SourceLocation NameLoc,
1550                                         unsigned diagnostic) {
1551  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1552                 Sema::ForRedeclaration);
1553  if (!SemaRef.LookupName(R, S)) return false;
1554
1555  if (R.getAsSingle<TagDecl>())
1556    return false;
1557
1558  // Pick a representative declaration.
1559  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1560  if (PrevDecl && Owner->isRecord()) {
1561    RecordDecl *Record = cast<RecordDecl>(Owner);
1562    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1563      return false;
1564  }
1565
1566  SemaRef.Diag(NameLoc, diagnostic) << Name;
1567  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1568
1569  return true;
1570}
1571
1572/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1573/// anonymous struct or union AnonRecord into the owning context Owner
1574/// and scope S. This routine will be invoked just after we realize
1575/// that an unnamed union or struct is actually an anonymous union or
1576/// struct, e.g.,
1577///
1578/// @code
1579/// union {
1580///   int i;
1581///   float f;
1582/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1583///    // f into the surrounding scope.x
1584/// @endcode
1585///
1586/// This routine is recursive, injecting the names of nested anonymous
1587/// structs/unions into the owning context and scope as well.
1588static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1589                                                DeclContext *Owner,
1590                                                RecordDecl *AnonRecord,
1591                                                AccessSpecifier AS) {
1592  unsigned diagKind
1593    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1594                            : diag::err_anonymous_struct_member_redecl;
1595
1596  bool Invalid = false;
1597  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1598                               FEnd = AnonRecord->field_end();
1599       F != FEnd; ++F) {
1600    if ((*F)->getDeclName()) {
1601      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1602                                       (*F)->getLocation(), diagKind)) {
1603        // C++ [class.union]p2:
1604        //   The names of the members of an anonymous union shall be
1605        //   distinct from the names of any other entity in the
1606        //   scope in which the anonymous union is declared.
1607        Invalid = true;
1608      } else {
1609        // C++ [class.union]p2:
1610        //   For the purpose of name lookup, after the anonymous union
1611        //   definition, the members of the anonymous union are
1612        //   considered to have been defined in the scope in which the
1613        //   anonymous union is declared.
1614        Owner->makeDeclVisibleInContext(*F);
1615        S->AddDecl(Sema::DeclPtrTy::make(*F));
1616        SemaRef.IdResolver.AddDecl(*F);
1617
1618        // That includes picking up the appropriate access specifier.
1619        if (AS != AS_none) (*F)->setAccess(AS);
1620      }
1621    } else if (const RecordType *InnerRecordType
1622                 = (*F)->getType()->getAs<RecordType>()) {
1623      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1624      if (InnerRecord->isAnonymousStructOrUnion())
1625        Invalid = Invalid ||
1626          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1627                                              InnerRecord, AS);
1628    }
1629  }
1630
1631  return Invalid;
1632}
1633
1634/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1635/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1636/// illegal input values are mapped to VarDecl::None.
1637/// If the input declaration context is a linkage specification
1638/// with no braces, then Extern is mapped to None.
1639static VarDecl::StorageClass
1640StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1641                                      DeclContext *DC) {
1642  switch (StorageClassSpec) {
1643  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1644  case DeclSpec::SCS_extern:
1645    // If the current context is a C++ linkage specification
1646    // having no braces, then the keyword "extern" is properly part
1647    // of the linkage specification itself, rather than being
1648    // the written storage class specifier.
1649    return (DC && isa<LinkageSpecDecl>(DC) &&
1650            !cast<LinkageSpecDecl>(DC)->hasBraces())
1651      ? VarDecl::None : VarDecl::Extern;
1652  case DeclSpec::SCS_static:         return VarDecl::Static;
1653  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1654  case DeclSpec::SCS_register:       return VarDecl::Register;
1655  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1656    // Illegal SCSs map to None: error reporting is up to the caller.
1657  case DeclSpec::SCS_mutable:        // Fall through.
1658  case DeclSpec::SCS_typedef:        return VarDecl::None;
1659  }
1660  llvm_unreachable("unknown storage class specifier");
1661}
1662
1663/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1664/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1665/// illegal input values are mapped to FunctionDecl::None.
1666/// If the input declaration context is a linkage specification
1667/// with no braces, then Extern is mapped to None.
1668static FunctionDecl::StorageClass
1669StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1670                                           DeclContext *DC) {
1671  switch (StorageClassSpec) {
1672  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1673  case DeclSpec::SCS_extern:
1674    // If the current context is a C++ linkage specification
1675    // having no braces, then the keyword "extern" is properly part
1676    // of the linkage specification itself, rather than being
1677    // the written storage class specifier.
1678    return (DC && isa<LinkageSpecDecl>(DC) &&
1679            !cast<LinkageSpecDecl>(DC)->hasBraces())
1680      ? FunctionDecl::None : FunctionDecl::Extern;
1681  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1682  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1683    // Illegal SCSs map to None: error reporting is up to the caller.
1684  case DeclSpec::SCS_auto:           // Fall through.
1685  case DeclSpec::SCS_mutable:        // Fall through.
1686  case DeclSpec::SCS_register:       // Fall through.
1687  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1688  }
1689  llvm_unreachable("unknown storage class specifier");
1690}
1691
1692/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1693/// anonymous structure or union. Anonymous unions are a C++ feature
1694/// (C++ [class.union]) and a GNU C extension; anonymous structures
1695/// are a GNU C and GNU C++ extension.
1696Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1697                                                  AccessSpecifier AS,
1698                                                  RecordDecl *Record) {
1699  DeclContext *Owner = Record->getDeclContext();
1700
1701  // Diagnose whether this anonymous struct/union is an extension.
1702  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1703    Diag(Record->getLocation(), diag::ext_anonymous_union);
1704  else if (!Record->isUnion())
1705    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1706
1707  // C and C++ require different kinds of checks for anonymous
1708  // structs/unions.
1709  bool Invalid = false;
1710  if (getLangOptions().CPlusPlus) {
1711    const char* PrevSpec = 0;
1712    unsigned DiagID;
1713    // C++ [class.union]p3:
1714    //   Anonymous unions declared in a named namespace or in the
1715    //   global namespace shall be declared static.
1716    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1717        (isa<TranslationUnitDecl>(Owner) ||
1718         (isa<NamespaceDecl>(Owner) &&
1719          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1720      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1721      Invalid = true;
1722
1723      // Recover by adding 'static'.
1724      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1725                             PrevSpec, DiagID);
1726    }
1727    // C++ [class.union]p3:
1728    //   A storage class is not allowed in a declaration of an
1729    //   anonymous union in a class scope.
1730    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1731             isa<RecordDecl>(Owner)) {
1732      Diag(DS.getStorageClassSpecLoc(),
1733           diag::err_anonymous_union_with_storage_spec);
1734      Invalid = true;
1735
1736      // Recover by removing the storage specifier.
1737      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1738                             PrevSpec, DiagID);
1739    }
1740
1741    // C++ [class.union]p2:
1742    //   The member-specification of an anonymous union shall only
1743    //   define non-static data members. [Note: nested types and
1744    //   functions cannot be declared within an anonymous union. ]
1745    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1746                                 MemEnd = Record->decls_end();
1747         Mem != MemEnd; ++Mem) {
1748      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1749        // C++ [class.union]p3:
1750        //   An anonymous union shall not have private or protected
1751        //   members (clause 11).
1752        assert(FD->getAccess() != AS_none);
1753        if (FD->getAccess() != AS_public) {
1754          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1755            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1756          Invalid = true;
1757        }
1758      } else if ((*Mem)->isImplicit()) {
1759        // Any implicit members are fine.
1760      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1761        // This is a type that showed up in an
1762        // elaborated-type-specifier inside the anonymous struct or
1763        // union, but which actually declares a type outside of the
1764        // anonymous struct or union. It's okay.
1765      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1766        if (!MemRecord->isAnonymousStructOrUnion() &&
1767            MemRecord->getDeclName()) {
1768          // This is a nested type declaration.
1769          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1770            << (int)Record->isUnion();
1771          Invalid = true;
1772        }
1773      } else if (isa<AccessSpecDecl>(*Mem)) {
1774        // Any access specifier is fine.
1775      } else {
1776        // We have something that isn't a non-static data
1777        // member. Complain about it.
1778        unsigned DK = diag::err_anonymous_record_bad_member;
1779        if (isa<TypeDecl>(*Mem))
1780          DK = diag::err_anonymous_record_with_type;
1781        else if (isa<FunctionDecl>(*Mem))
1782          DK = diag::err_anonymous_record_with_function;
1783        else if (isa<VarDecl>(*Mem))
1784          DK = diag::err_anonymous_record_with_static;
1785        Diag((*Mem)->getLocation(), DK)
1786            << (int)Record->isUnion();
1787          Invalid = true;
1788      }
1789    }
1790  }
1791
1792  if (!Record->isUnion() && !Owner->isRecord()) {
1793    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1794      << (int)getLangOptions().CPlusPlus;
1795    Invalid = true;
1796  }
1797
1798  // Mock up a declarator.
1799  Declarator Dc(DS, Declarator::TypeNameContext);
1800  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1801  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1802
1803  // Create a declaration for this anonymous struct/union.
1804  NamedDecl *Anon = 0;
1805  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1806    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1807                             /*IdentifierInfo=*/0,
1808                             Context.getTypeDeclType(Record),
1809                             TInfo,
1810                             /*BitWidth=*/0, /*Mutable=*/false);
1811    Anon->setAccess(AS);
1812    if (getLangOptions().CPlusPlus) {
1813      FieldCollector->Add(cast<FieldDecl>(Anon));
1814      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1815        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1816    }
1817  } else {
1818    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1819    assert(SCSpec != DeclSpec::SCS_typedef &&
1820           "Parser allowed 'typedef' as storage class VarDecl.");
1821    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1822    if (SCSpec == DeclSpec::SCS_mutable) {
1823      // mutable can only appear on non-static class members, so it's always
1824      // an error here
1825      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1826      Invalid = true;
1827      SC = VarDecl::None;
1828    }
1829    SCSpec = DS.getStorageClassSpecAsWritten();
1830    VarDecl::StorageClass SCAsWritten
1831      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1832
1833    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1834                           /*IdentifierInfo=*/0,
1835                           Context.getTypeDeclType(Record),
1836                           TInfo, SC, SCAsWritten);
1837  }
1838  Anon->setImplicit();
1839
1840  // Add the anonymous struct/union object to the current
1841  // context. We'll be referencing this object when we refer to one of
1842  // its members.
1843  Owner->addDecl(Anon);
1844
1845  // Inject the members of the anonymous struct/union into the owning
1846  // context and into the identifier resolver chain for name lookup
1847  // purposes.
1848  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1849    Invalid = true;
1850
1851  // Mark this as an anonymous struct/union type. Note that we do not
1852  // do this until after we have already checked and injected the
1853  // members of this anonymous struct/union type, because otherwise
1854  // the members could be injected twice: once by DeclContext when it
1855  // builds its lookup table, and once by
1856  // InjectAnonymousStructOrUnionMembers.
1857  Record->setAnonymousStructOrUnion(true);
1858
1859  if (Invalid)
1860    Anon->setInvalidDecl();
1861
1862  return DeclPtrTy::make(Anon);
1863}
1864
1865
1866/// GetNameForDeclarator - Determine the full declaration name for the
1867/// given Declarator.
1868DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1869  return GetNameFromUnqualifiedId(D.getName());
1870}
1871
1872/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1873DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1874  switch (Name.getKind()) {
1875    case UnqualifiedId::IK_Identifier:
1876      return DeclarationName(Name.Identifier);
1877
1878    case UnqualifiedId::IK_OperatorFunctionId:
1879      return Context.DeclarationNames.getCXXOperatorName(
1880                                              Name.OperatorFunctionId.Operator);
1881
1882    case UnqualifiedId::IK_LiteralOperatorId:
1883      return Context.DeclarationNames.getCXXLiteralOperatorName(
1884                                                               Name.Identifier);
1885
1886    case UnqualifiedId::IK_ConversionFunctionId: {
1887      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1888      if (Ty.isNull())
1889        return DeclarationName();
1890
1891      return Context.DeclarationNames.getCXXConversionFunctionName(
1892                                                  Context.getCanonicalType(Ty));
1893    }
1894
1895    case UnqualifiedId::IK_ConstructorName: {
1896      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1897      if (Ty.isNull())
1898        return DeclarationName();
1899
1900      return Context.DeclarationNames.getCXXConstructorName(
1901                                                  Context.getCanonicalType(Ty));
1902    }
1903
1904    case UnqualifiedId::IK_ConstructorTemplateId: {
1905      // In well-formed code, we can only have a constructor
1906      // template-id that refers to the current context, so go there
1907      // to find the actual type being constructed.
1908      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1909      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1910        return DeclarationName();
1911
1912      // Determine the type of the class being constructed.
1913      QualType CurClassType = Context.getTypeDeclType(CurClass);
1914
1915      // FIXME: Check two things: that the template-id names the same type as
1916      // CurClassType, and that the template-id does not occur when the name
1917      // was qualified.
1918
1919      return Context.DeclarationNames.getCXXConstructorName(
1920                                       Context.getCanonicalType(CurClassType));
1921    }
1922
1923    case UnqualifiedId::IK_DestructorName: {
1924      QualType Ty = GetTypeFromParser(Name.DestructorName);
1925      if (Ty.isNull())
1926        return DeclarationName();
1927
1928      return Context.DeclarationNames.getCXXDestructorName(
1929                                                           Context.getCanonicalType(Ty));
1930    }
1931
1932    case UnqualifiedId::IK_TemplateId: {
1933      TemplateName TName
1934        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1935      return Context.getNameForTemplate(TName);
1936    }
1937  }
1938
1939  assert(false && "Unknown name kind");
1940  return DeclarationName();
1941}
1942
1943/// isNearlyMatchingFunction - Determine whether the C++ functions
1944/// Declaration and Definition are "nearly" matching. This heuristic
1945/// is used to improve diagnostics in the case where an out-of-line
1946/// function definition doesn't match any declaration within
1947/// the class or namespace.
1948static bool isNearlyMatchingFunction(ASTContext &Context,
1949                                     FunctionDecl *Declaration,
1950                                     FunctionDecl *Definition) {
1951  if (Declaration->param_size() != Definition->param_size())
1952    return false;
1953  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1954    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1955    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1956
1957    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1958                                        DefParamTy.getNonReferenceType()))
1959      return false;
1960  }
1961
1962  return true;
1963}
1964
1965/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1966/// declarator needs to be rebuilt in the current instantiation.
1967/// Any bits of declarator which appear before the name are valid for
1968/// consideration here.  That's specifically the type in the decl spec
1969/// and the base type in any member-pointer chunks.
1970static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1971                                                    DeclarationName Name) {
1972  // The types we specifically need to rebuild are:
1973  //   - typenames, typeofs, and decltypes
1974  //   - types which will become injected class names
1975  // Of course, we also need to rebuild any type referencing such a
1976  // type.  It's safest to just say "dependent", but we call out a
1977  // few cases here.
1978
1979  DeclSpec &DS = D.getMutableDeclSpec();
1980  switch (DS.getTypeSpecType()) {
1981  case DeclSpec::TST_typename:
1982  case DeclSpec::TST_typeofType:
1983  case DeclSpec::TST_typeofExpr:
1984  case DeclSpec::TST_decltype: {
1985    // Grab the type from the parser.
1986    TypeSourceInfo *TSI = 0;
1987    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
1988    if (T.isNull() || !T->isDependentType()) break;
1989
1990    // Make sure there's a type source info.  This isn't really much
1991    // of a waste; most dependent types should have type source info
1992    // attached already.
1993    if (!TSI)
1994      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
1995
1996    // Rebuild the type in the current instantiation.
1997    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
1998    if (!TSI) return true;
1999
2000    // Store the new type back in the decl spec.
2001    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2002    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2003    break;
2004  }
2005
2006  default:
2007    // Nothing to do for these decl specs.
2008    break;
2009  }
2010
2011  // It doesn't matter what order we do this in.
2012  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2013    DeclaratorChunk &Chunk = D.getTypeObject(I);
2014
2015    // The only type information in the declarator which can come
2016    // before the declaration name is the base type of a member
2017    // pointer.
2018    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2019      continue;
2020
2021    // Rebuild the scope specifier in-place.
2022    CXXScopeSpec &SS = Chunk.Mem.Scope();
2023    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2024      return true;
2025  }
2026
2027  return false;
2028}
2029
2030Sema::DeclPtrTy
2031Sema::HandleDeclarator(Scope *S, Declarator &D,
2032                       MultiTemplateParamsArg TemplateParamLists,
2033                       bool IsFunctionDefinition) {
2034  DeclarationName Name = GetNameForDeclarator(D);
2035
2036  // All of these full declarators require an identifier.  If it doesn't have
2037  // one, the ParsedFreeStandingDeclSpec action should be used.
2038  if (!Name) {
2039    if (!D.isInvalidType())  // Reject this if we think it is valid.
2040      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2041           diag::err_declarator_need_ident)
2042        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2043    return DeclPtrTy();
2044  }
2045
2046  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2047  // we find one that is.
2048  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2049         (S->getFlags() & Scope::TemplateParamScope) != 0)
2050    S = S->getParent();
2051
2052  DeclContext *DC = CurContext;
2053  if (D.getCXXScopeSpec().isInvalid())
2054    D.setInvalidType();
2055  else if (D.getCXXScopeSpec().isSet()) {
2056    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2057    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2058    if (!DC) {
2059      // If we could not compute the declaration context, it's because the
2060      // declaration context is dependent but does not refer to a class,
2061      // class template, or class template partial specialization. Complain
2062      // and return early, to avoid the coming semantic disaster.
2063      Diag(D.getIdentifierLoc(),
2064           diag::err_template_qualified_declarator_no_match)
2065        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2066        << D.getCXXScopeSpec().getRange();
2067      return DeclPtrTy();
2068    }
2069
2070    bool IsDependentContext = DC->isDependentContext();
2071
2072    if (!IsDependentContext &&
2073        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2074      return DeclPtrTy();
2075
2076    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2077      Diag(D.getIdentifierLoc(),
2078           diag::err_member_def_undefined_record)
2079        << Name << DC << D.getCXXScopeSpec().getRange();
2080      D.setInvalidType();
2081    }
2082
2083    // Check whether we need to rebuild the type of the given
2084    // declaration in the current instantiation.
2085    if (EnteringContext && IsDependentContext &&
2086        TemplateParamLists.size() != 0) {
2087      ContextRAII SavedContext(*this, DC);
2088      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2089        D.setInvalidType();
2090    }
2091  }
2092
2093  NamedDecl *New;
2094
2095  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2096  QualType R = TInfo->getType();
2097
2098  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2099                        ForRedeclaration);
2100
2101  // See if this is a redefinition of a variable in the same scope.
2102  if (!D.getCXXScopeSpec().isSet()) {
2103    bool IsLinkageLookup = false;
2104
2105    // If the declaration we're planning to build will be a function
2106    // or object with linkage, then look for another declaration with
2107    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2108    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2109      /* Do nothing*/;
2110    else if (R->isFunctionType()) {
2111      if (CurContext->isFunctionOrMethod() ||
2112          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2113        IsLinkageLookup = true;
2114    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2115      IsLinkageLookup = true;
2116    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2117             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2118      IsLinkageLookup = true;
2119
2120    if (IsLinkageLookup)
2121      Previous.clear(LookupRedeclarationWithLinkage);
2122
2123    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2124  } else { // Something like "int foo::x;"
2125    LookupQualifiedName(Previous, DC);
2126
2127    // Don't consider using declarations as previous declarations for
2128    // out-of-line members.
2129    RemoveUsingDecls(Previous);
2130
2131    // C++ 7.3.1.2p2:
2132    // Members (including explicit specializations of templates) of a named
2133    // namespace can also be defined outside that namespace by explicit
2134    // qualification of the name being defined, provided that the entity being
2135    // defined was already declared in the namespace and the definition appears
2136    // after the point of declaration in a namespace that encloses the
2137    // declarations namespace.
2138    //
2139    // Note that we only check the context at this point. We don't yet
2140    // have enough information to make sure that PrevDecl is actually
2141    // the declaration we want to match. For example, given:
2142    //
2143    //   class X {
2144    //     void f();
2145    //     void f(float);
2146    //   };
2147    //
2148    //   void X::f(int) { } // ill-formed
2149    //
2150    // In this case, PrevDecl will point to the overload set
2151    // containing the two f's declared in X, but neither of them
2152    // matches.
2153
2154    // First check whether we named the global scope.
2155    if (isa<TranslationUnitDecl>(DC)) {
2156      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2157        << Name << D.getCXXScopeSpec().getRange();
2158    } else {
2159      DeclContext *Cur = CurContext;
2160      while (isa<LinkageSpecDecl>(Cur))
2161        Cur = Cur->getParent();
2162      if (!Cur->Encloses(DC)) {
2163        // The qualifying scope doesn't enclose the original declaration.
2164        // Emit diagnostic based on current scope.
2165        SourceLocation L = D.getIdentifierLoc();
2166        SourceRange R = D.getCXXScopeSpec().getRange();
2167        if (isa<FunctionDecl>(Cur))
2168          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2169        else
2170          Diag(L, diag::err_invalid_declarator_scope)
2171            << Name << cast<NamedDecl>(DC) << R;
2172        D.setInvalidType();
2173      }
2174    }
2175  }
2176
2177  if (Previous.isSingleResult() &&
2178      Previous.getFoundDecl()->isTemplateParameter()) {
2179    // Maybe we will complain about the shadowed template parameter.
2180    if (!D.isInvalidType())
2181      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2182                                          Previous.getFoundDecl()))
2183        D.setInvalidType();
2184
2185    // Just pretend that we didn't see the previous declaration.
2186    Previous.clear();
2187  }
2188
2189  // In C++, the previous declaration we find might be a tag type
2190  // (class or enum). In this case, the new declaration will hide the
2191  // tag type. Note that this does does not apply if we're declaring a
2192  // typedef (C++ [dcl.typedef]p4).
2193  if (Previous.isSingleTagDecl() &&
2194      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2195    Previous.clear();
2196
2197  bool Redeclaration = false;
2198  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2199    if (TemplateParamLists.size()) {
2200      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2201      return DeclPtrTy();
2202    }
2203
2204    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2205  } else if (R->isFunctionType()) {
2206    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2207                                  move(TemplateParamLists),
2208                                  IsFunctionDefinition, Redeclaration);
2209  } else {
2210    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2211                                  move(TemplateParamLists),
2212                                  Redeclaration);
2213  }
2214
2215  if (New == 0)
2216    return DeclPtrTy();
2217
2218  // If this has an identifier and is not an invalid redeclaration or
2219  // function template specialization, add it to the scope stack.
2220  if (Name && !(Redeclaration && New->isInvalidDecl()))
2221    PushOnScopeChains(New, S);
2222
2223  return DeclPtrTy::make(New);
2224}
2225
2226/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2227/// types into constant array types in certain situations which would otherwise
2228/// be errors (for GCC compatibility).
2229static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2230                                                    ASTContext &Context,
2231                                                    bool &SizeIsNegative) {
2232  // This method tries to turn a variable array into a constant
2233  // array even when the size isn't an ICE.  This is necessary
2234  // for compatibility with code that depends on gcc's buggy
2235  // constant expression folding, like struct {char x[(int)(char*)2];}
2236  SizeIsNegative = false;
2237
2238  QualifierCollector Qs;
2239  const Type *Ty = Qs.strip(T);
2240
2241  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2242    QualType Pointee = PTy->getPointeeType();
2243    QualType FixedType =
2244        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2245    if (FixedType.isNull()) return FixedType;
2246    FixedType = Context.getPointerType(FixedType);
2247    return Qs.apply(FixedType);
2248  }
2249
2250  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2251  if (!VLATy)
2252    return QualType();
2253  // FIXME: We should probably handle this case
2254  if (VLATy->getElementType()->isVariablyModifiedType())
2255    return QualType();
2256
2257  Expr::EvalResult EvalResult;
2258  if (!VLATy->getSizeExpr() ||
2259      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2260      !EvalResult.Val.isInt())
2261    return QualType();
2262
2263  llvm::APSInt &Res = EvalResult.Val.getInt();
2264  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2265    // TODO: preserve the size expression in declarator info
2266    return Context.getConstantArrayType(VLATy->getElementType(),
2267                                        Res, ArrayType::Normal, 0);
2268  }
2269
2270  SizeIsNegative = true;
2271  return QualType();
2272}
2273
2274/// \brief Register the given locally-scoped external C declaration so
2275/// that it can be found later for redeclarations
2276void
2277Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2278                                       const LookupResult &Previous,
2279                                       Scope *S) {
2280  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2281         "Decl is not a locally-scoped decl!");
2282  // Note that we have a locally-scoped external with this name.
2283  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2284
2285  if (!Previous.isSingleResult())
2286    return;
2287
2288  NamedDecl *PrevDecl = Previous.getFoundDecl();
2289
2290  // If there was a previous declaration of this variable, it may be
2291  // in our identifier chain. Update the identifier chain with the new
2292  // declaration.
2293  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2294    // The previous declaration was found on the identifer resolver
2295    // chain, so remove it from its scope.
2296    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2297      S = S->getParent();
2298
2299    if (S)
2300      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2301  }
2302}
2303
2304/// \brief Diagnose function specifiers on a declaration of an identifier that
2305/// does not identify a function.
2306void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2307  // FIXME: We should probably indicate the identifier in question to avoid
2308  // confusion for constructs like "inline int a(), b;"
2309  if (D.getDeclSpec().isInlineSpecified())
2310    Diag(D.getDeclSpec().getInlineSpecLoc(),
2311         diag::err_inline_non_function);
2312
2313  if (D.getDeclSpec().isVirtualSpecified())
2314    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2315         diag::err_virtual_non_function);
2316
2317  if (D.getDeclSpec().isExplicitSpecified())
2318    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2319         diag::err_explicit_non_function);
2320}
2321
2322NamedDecl*
2323Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2324                             QualType R,  TypeSourceInfo *TInfo,
2325                             LookupResult &Previous, bool &Redeclaration) {
2326  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2327  if (D.getCXXScopeSpec().isSet()) {
2328    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2329      << D.getCXXScopeSpec().getRange();
2330    D.setInvalidType();
2331    // Pretend we didn't see the scope specifier.
2332    DC = CurContext;
2333    Previous.clear();
2334  }
2335
2336  if (getLangOptions().CPlusPlus) {
2337    // Check that there are no default arguments (C++ only).
2338    CheckExtraCXXDefaultArguments(D);
2339  }
2340
2341  DiagnoseFunctionSpecifiers(D);
2342
2343  if (D.getDeclSpec().isThreadSpecified())
2344    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2345
2346  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2347  if (!NewTD) return 0;
2348
2349  // Handle attributes prior to checking for duplicates in MergeVarDecl
2350  ProcessDeclAttributes(S, NewTD, D);
2351
2352  // Merge the decl with the existing one if appropriate. If the decl is
2353  // in an outer scope, it isn't the same thing.
2354  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2355  if (!Previous.empty()) {
2356    Redeclaration = true;
2357    MergeTypeDefDecl(NewTD, Previous);
2358  }
2359
2360  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2361  // then it shall have block scope.
2362  QualType T = NewTD->getUnderlyingType();
2363  if (T->isVariablyModifiedType()) {
2364    FunctionNeedsScopeChecking() = true;
2365
2366    if (S->getFnParent() == 0) {
2367      bool SizeIsNegative;
2368      QualType FixedTy =
2369          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2370      if (!FixedTy.isNull()) {
2371        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2372        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2373      } else {
2374        if (SizeIsNegative)
2375          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2376        else if (T->isVariableArrayType())
2377          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2378        else
2379          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2380        NewTD->setInvalidDecl();
2381      }
2382    }
2383  }
2384
2385  // If this is the C FILE type, notify the AST context.
2386  if (IdentifierInfo *II = NewTD->getIdentifier())
2387    if (!NewTD->isInvalidDecl() &&
2388        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2389      if (II->isStr("FILE"))
2390        Context.setFILEDecl(NewTD);
2391      else if (II->isStr("jmp_buf"))
2392        Context.setjmp_bufDecl(NewTD);
2393      else if (II->isStr("sigjmp_buf"))
2394        Context.setsigjmp_bufDecl(NewTD);
2395    }
2396
2397  return NewTD;
2398}
2399
2400/// \brief Determines whether the given declaration is an out-of-scope
2401/// previous declaration.
2402///
2403/// This routine should be invoked when name lookup has found a
2404/// previous declaration (PrevDecl) that is not in the scope where a
2405/// new declaration by the same name is being introduced. If the new
2406/// declaration occurs in a local scope, previous declarations with
2407/// linkage may still be considered previous declarations (C99
2408/// 6.2.2p4-5, C++ [basic.link]p6).
2409///
2410/// \param PrevDecl the previous declaration found by name
2411/// lookup
2412///
2413/// \param DC the context in which the new declaration is being
2414/// declared.
2415///
2416/// \returns true if PrevDecl is an out-of-scope previous declaration
2417/// for a new delcaration with the same name.
2418static bool
2419isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2420                                ASTContext &Context) {
2421  if (!PrevDecl)
2422    return 0;
2423
2424  if (!PrevDecl->hasLinkage())
2425    return false;
2426
2427  if (Context.getLangOptions().CPlusPlus) {
2428    // C++ [basic.link]p6:
2429    //   If there is a visible declaration of an entity with linkage
2430    //   having the same name and type, ignoring entities declared
2431    //   outside the innermost enclosing namespace scope, the block
2432    //   scope declaration declares that same entity and receives the
2433    //   linkage of the previous declaration.
2434    DeclContext *OuterContext = DC->getLookupContext();
2435    if (!OuterContext->isFunctionOrMethod())
2436      // This rule only applies to block-scope declarations.
2437      return false;
2438    else {
2439      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2440      if (PrevOuterContext->isRecord())
2441        // We found a member function: ignore it.
2442        return false;
2443      else {
2444        // Find the innermost enclosing namespace for the new and
2445        // previous declarations.
2446        while (!OuterContext->isFileContext())
2447          OuterContext = OuterContext->getParent();
2448        while (!PrevOuterContext->isFileContext())
2449          PrevOuterContext = PrevOuterContext->getParent();
2450
2451        // The previous declaration is in a different namespace, so it
2452        // isn't the same function.
2453        if (OuterContext->getPrimaryContext() !=
2454            PrevOuterContext->getPrimaryContext())
2455          return false;
2456      }
2457    }
2458  }
2459
2460  return true;
2461}
2462
2463static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2464  CXXScopeSpec &SS = D.getCXXScopeSpec();
2465  if (!SS.isSet()) return;
2466  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2467                       SS.getRange());
2468}
2469
2470NamedDecl*
2471Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2472                              QualType R, TypeSourceInfo *TInfo,
2473                              LookupResult &Previous,
2474                              MultiTemplateParamsArg TemplateParamLists,
2475                              bool &Redeclaration) {
2476  DeclarationName Name = GetNameForDeclarator(D);
2477
2478  // Check that there are no default arguments (C++ only).
2479  if (getLangOptions().CPlusPlus)
2480    CheckExtraCXXDefaultArguments(D);
2481
2482  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2483  assert(SCSpec != DeclSpec::SCS_typedef &&
2484         "Parser allowed 'typedef' as storage class VarDecl.");
2485  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2486  if (SCSpec == DeclSpec::SCS_mutable) {
2487    // mutable can only appear on non-static class members, so it's always
2488    // an error here
2489    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2490    D.setInvalidType();
2491    SC = VarDecl::None;
2492  }
2493  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2494  VarDecl::StorageClass SCAsWritten
2495    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2496
2497  IdentifierInfo *II = Name.getAsIdentifierInfo();
2498  if (!II) {
2499    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2500      << Name.getAsString();
2501    return 0;
2502  }
2503
2504  DiagnoseFunctionSpecifiers(D);
2505
2506  if (!DC->isRecord() && S->getFnParent() == 0) {
2507    // C99 6.9p2: The storage-class specifiers auto and register shall not
2508    // appear in the declaration specifiers in an external declaration.
2509    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2510
2511      // If this is a register variable with an asm label specified, then this
2512      // is a GNU extension.
2513      if (SC == VarDecl::Register && D.getAsmLabel())
2514        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2515      else
2516        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2517      D.setInvalidType();
2518    }
2519  }
2520  if (DC->isRecord() && !CurContext->isRecord()) {
2521    // This is an out-of-line definition of a static data member.
2522    if (SC == VarDecl::Static) {
2523      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2524           diag::err_static_out_of_line)
2525        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2526    } else if (SC == VarDecl::None)
2527      SC = VarDecl::Static;
2528  }
2529  if (SC == VarDecl::Static) {
2530    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2531      if (RD->isLocalClass())
2532        Diag(D.getIdentifierLoc(),
2533             diag::err_static_data_member_not_allowed_in_local_class)
2534          << Name << RD->getDeclName();
2535    }
2536  }
2537
2538  // Match up the template parameter lists with the scope specifier, then
2539  // determine whether we have a template or a template specialization.
2540  bool isExplicitSpecialization = false;
2541  if (TemplateParameterList *TemplateParams
2542        = MatchTemplateParametersToScopeSpecifier(
2543                                  D.getDeclSpec().getSourceRange().getBegin(),
2544                                                  D.getCXXScopeSpec(),
2545                        (TemplateParameterList**)TemplateParamLists.get(),
2546                                                   TemplateParamLists.size(),
2547                                                  /*never a friend*/ false,
2548                                                  isExplicitSpecialization)) {
2549    if (TemplateParams->size() > 0) {
2550      // There is no such thing as a variable template.
2551      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2552        << II
2553        << SourceRange(TemplateParams->getTemplateLoc(),
2554                       TemplateParams->getRAngleLoc());
2555      return 0;
2556    } else {
2557      // There is an extraneous 'template<>' for this variable. Complain
2558      // about it, but allow the declaration of the variable.
2559      Diag(TemplateParams->getTemplateLoc(),
2560           diag::err_template_variable_noparams)
2561        << II
2562        << SourceRange(TemplateParams->getTemplateLoc(),
2563                       TemplateParams->getRAngleLoc());
2564
2565      isExplicitSpecialization = true;
2566    }
2567  }
2568
2569  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2570                                   II, R, TInfo, SC, SCAsWritten);
2571
2572  if (D.isInvalidType())
2573    NewVD->setInvalidDecl();
2574
2575  SetNestedNameSpecifier(NewVD, D);
2576
2577  if (D.getDeclSpec().isThreadSpecified()) {
2578    if (NewVD->hasLocalStorage())
2579      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2580    else if (!Context.Target.isTLSSupported())
2581      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2582    else
2583      NewVD->setThreadSpecified(true);
2584  }
2585
2586  // Set the lexical context. If the declarator has a C++ scope specifier, the
2587  // lexical context will be different from the semantic context.
2588  NewVD->setLexicalDeclContext(CurContext);
2589
2590  // Handle attributes prior to checking for duplicates in MergeVarDecl
2591  ProcessDeclAttributes(S, NewVD, D);
2592
2593  // Handle GNU asm-label extension (encoded as an attribute).
2594  if (Expr *E = (Expr*) D.getAsmLabel()) {
2595    // The parser guarantees this is a string.
2596    StringLiteral *SE = cast<StringLiteral>(E);
2597    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2598  }
2599
2600  // Diagnose shadowed variables before filtering for scope.
2601  if (!D.getCXXScopeSpec().isSet())
2602    CheckShadow(S, NewVD, Previous);
2603
2604  // Don't consider existing declarations that are in a different
2605  // scope and are out-of-semantic-context declarations (if the new
2606  // declaration has linkage).
2607  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2608
2609  // Merge the decl with the existing one if appropriate.
2610  if (!Previous.empty()) {
2611    if (Previous.isSingleResult() &&
2612        isa<FieldDecl>(Previous.getFoundDecl()) &&
2613        D.getCXXScopeSpec().isSet()) {
2614      // The user tried to define a non-static data member
2615      // out-of-line (C++ [dcl.meaning]p1).
2616      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2617        << D.getCXXScopeSpec().getRange();
2618      Previous.clear();
2619      NewVD->setInvalidDecl();
2620    }
2621  } else if (D.getCXXScopeSpec().isSet()) {
2622    // No previous declaration in the qualifying scope.
2623    Diag(D.getIdentifierLoc(), diag::err_no_member)
2624      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2625      << D.getCXXScopeSpec().getRange();
2626    NewVD->setInvalidDecl();
2627  }
2628
2629  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2630
2631  // This is an explicit specialization of a static data member. Check it.
2632  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2633      CheckMemberSpecialization(NewVD, Previous))
2634    NewVD->setInvalidDecl();
2635
2636  // attributes declared post-definition are currently ignored
2637  if (Previous.isSingleResult()) {
2638    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2639    if (Def && (Def = Def->getDefinition()) &&
2640        Def != NewVD && D.hasAttributes()) {
2641      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2642      Diag(Def->getLocation(), diag::note_previous_definition);
2643    }
2644  }
2645
2646  // If this is a locally-scoped extern C variable, update the map of
2647  // such variables.
2648  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2649      !NewVD->isInvalidDecl())
2650    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2651
2652  return NewVD;
2653}
2654
2655/// \brief Diagnose variable or built-in function shadowing.  Implements
2656/// -Wshadow.
2657///
2658/// This method is called whenever a VarDecl is added to a "useful"
2659/// scope.
2660///
2661/// \param S the scope in which the shadowing name is being declared
2662/// \param R the lookup of the name
2663///
2664void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2665  // Return if warning is ignored.
2666  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2667    return;
2668
2669  // Don't diagnose declarations at file scope.  The scope might not
2670  // have a DeclContext if (e.g.) we're parsing a function prototype.
2671  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2672  if (NewDC && NewDC->isFileContext())
2673    return;
2674
2675  // Only diagnose if we're shadowing an unambiguous field or variable.
2676  if (R.getResultKind() != LookupResult::Found)
2677    return;
2678
2679  NamedDecl* ShadowedDecl = R.getFoundDecl();
2680  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2681    return;
2682
2683  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2684
2685  // Only warn about certain kinds of shadowing for class members.
2686  if (NewDC && NewDC->isRecord()) {
2687    // In particular, don't warn about shadowing non-class members.
2688    if (!OldDC->isRecord())
2689      return;
2690
2691    // TODO: should we warn about static data members shadowing
2692    // static data members from base classes?
2693
2694    // TODO: don't diagnose for inaccessible shadowed members.
2695    // This is hard to do perfectly because we might friend the
2696    // shadowing context, but that's just a false negative.
2697  }
2698
2699  // Determine what kind of declaration we're shadowing.
2700  unsigned Kind;
2701  if (isa<RecordDecl>(OldDC)) {
2702    if (isa<FieldDecl>(ShadowedDecl))
2703      Kind = 3; // field
2704    else
2705      Kind = 2; // static data member
2706  } else if (OldDC->isFileContext())
2707    Kind = 1; // global
2708  else
2709    Kind = 0; // local
2710
2711  DeclarationName Name = R.getLookupName();
2712
2713  // Emit warning and note.
2714  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2715  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2716}
2717
2718/// \brief Check -Wshadow without the advantage of a previous lookup.
2719void Sema::CheckShadow(Scope *S, VarDecl *D) {
2720  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2721                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2722  LookupName(R, S);
2723  CheckShadow(S, D, R);
2724}
2725
2726/// \brief Perform semantic checking on a newly-created variable
2727/// declaration.
2728///
2729/// This routine performs all of the type-checking required for a
2730/// variable declaration once it has been built. It is used both to
2731/// check variables after they have been parsed and their declarators
2732/// have been translated into a declaration, and to check variables
2733/// that have been instantiated from a template.
2734///
2735/// Sets NewVD->isInvalidDecl() if an error was encountered.
2736void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2737                                    LookupResult &Previous,
2738                                    bool &Redeclaration) {
2739  // If the decl is already known invalid, don't check it.
2740  if (NewVD->isInvalidDecl())
2741    return;
2742
2743  QualType T = NewVD->getType();
2744
2745  if (T->isObjCObjectType()) {
2746    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2747    return NewVD->setInvalidDecl();
2748  }
2749
2750  // Emit an error if an address space was applied to decl with local storage.
2751  // This includes arrays of objects with address space qualifiers, but not
2752  // automatic variables that point to other address spaces.
2753  // ISO/IEC TR 18037 S5.1.2
2754  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2755    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2756    return NewVD->setInvalidDecl();
2757  }
2758
2759  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2760      && !NewVD->hasAttr<BlocksAttr>())
2761    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2762
2763  bool isVM = T->isVariablyModifiedType();
2764  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2765      NewVD->hasAttr<BlocksAttr>() ||
2766      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2767      // However, this turns on the scope checker for everything with a variable
2768      // which may impact compile time.  See if we can find a better solution
2769      // to this, perhaps only checking functions that contain gotos in C++?
2770      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2771    FunctionNeedsScopeChecking() = true;
2772
2773  if ((isVM && NewVD->hasLinkage()) ||
2774      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2775    bool SizeIsNegative;
2776    QualType FixedTy =
2777        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2778
2779    if (FixedTy.isNull() && T->isVariableArrayType()) {
2780      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2781      // FIXME: This won't give the correct result for
2782      // int a[10][n];
2783      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2784
2785      if (NewVD->isFileVarDecl())
2786        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2787        << SizeRange;
2788      else if (NewVD->getStorageClass() == VarDecl::Static)
2789        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2790        << SizeRange;
2791      else
2792        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2793        << SizeRange;
2794      return NewVD->setInvalidDecl();
2795    }
2796
2797    if (FixedTy.isNull()) {
2798      if (NewVD->isFileVarDecl())
2799        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2800      else
2801        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2802      return NewVD->setInvalidDecl();
2803    }
2804
2805    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2806    NewVD->setType(FixedTy);
2807  }
2808
2809  if (Previous.empty() && NewVD->isExternC()) {
2810    // Since we did not find anything by this name and we're declaring
2811    // an extern "C" variable, look for a non-visible extern "C"
2812    // declaration with the same name.
2813    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2814      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2815    if (Pos != LocallyScopedExternalDecls.end())
2816      Previous.addDecl(Pos->second);
2817  }
2818
2819  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2820    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2821      << T;
2822    return NewVD->setInvalidDecl();
2823  }
2824
2825  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2826    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2827    return NewVD->setInvalidDecl();
2828  }
2829
2830  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2831    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2832    return NewVD->setInvalidDecl();
2833  }
2834
2835  if (!Previous.empty()) {
2836    Redeclaration = true;
2837    MergeVarDecl(NewVD, Previous);
2838  }
2839}
2840
2841/// \brief Data used with FindOverriddenMethod
2842struct FindOverriddenMethodData {
2843  Sema *S;
2844  CXXMethodDecl *Method;
2845};
2846
2847/// \brief Member lookup function that determines whether a given C++
2848/// method overrides a method in a base class, to be used with
2849/// CXXRecordDecl::lookupInBases().
2850static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2851                                 CXXBasePath &Path,
2852                                 void *UserData) {
2853  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2854
2855  FindOverriddenMethodData *Data
2856    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2857
2858  DeclarationName Name = Data->Method->getDeclName();
2859
2860  // FIXME: Do we care about other names here too?
2861  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2862    // We really want to find the base class constructor here.
2863    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2864    CanQualType CT = Data->S->Context.getCanonicalType(T);
2865
2866    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2867  }
2868
2869  for (Path.Decls = BaseRecord->lookup(Name);
2870       Path.Decls.first != Path.Decls.second;
2871       ++Path.Decls.first) {
2872    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2873      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2874        return true;
2875    }
2876  }
2877
2878  return false;
2879}
2880
2881/// AddOverriddenMethods - See if a method overrides any in the base classes,
2882/// and if so, check that it's a valid override and remember it.
2883void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2884  // Look for virtual methods in base classes that this method might override.
2885  CXXBasePaths Paths;
2886  FindOverriddenMethodData Data;
2887  Data.Method = MD;
2888  Data.S = this;
2889  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2890    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2891         E = Paths.found_decls_end(); I != E; ++I) {
2892      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2893        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2894            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2895            !CheckOverridingFunctionAttributes(MD, OldMD))
2896          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2897      }
2898    }
2899  }
2900}
2901
2902NamedDecl*
2903Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2904                              QualType R, TypeSourceInfo *TInfo,
2905                              LookupResult &Previous,
2906                              MultiTemplateParamsArg TemplateParamLists,
2907                              bool IsFunctionDefinition, bool &Redeclaration) {
2908  assert(R.getTypePtr()->isFunctionType());
2909
2910  DeclarationName Name = GetNameForDeclarator(D);
2911  FunctionDecl::StorageClass SC = FunctionDecl::None;
2912  switch (D.getDeclSpec().getStorageClassSpec()) {
2913  default: assert(0 && "Unknown storage class!");
2914  case DeclSpec::SCS_auto:
2915  case DeclSpec::SCS_register:
2916  case DeclSpec::SCS_mutable:
2917    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2918         diag::err_typecheck_sclass_func);
2919    D.setInvalidType();
2920    break;
2921  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2922  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2923  case DeclSpec::SCS_static: {
2924    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2925      // C99 6.7.1p5:
2926      //   The declaration of an identifier for a function that has
2927      //   block scope shall have no explicit storage-class specifier
2928      //   other than extern
2929      // See also (C++ [dcl.stc]p4).
2930      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2931           diag::err_static_block_func);
2932      SC = FunctionDecl::None;
2933    } else
2934      SC = FunctionDecl::Static;
2935    break;
2936  }
2937  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2938  }
2939
2940  if (D.getDeclSpec().isThreadSpecified())
2941    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2942
2943  bool isFriend = D.getDeclSpec().isFriendSpecified();
2944  bool isInline = D.getDeclSpec().isInlineSpecified();
2945  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2946  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2947
2948  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2949  FunctionDecl::StorageClass SCAsWritten
2950    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2951
2952  // Check that the return type is not an abstract class type.
2953  // For record types, this is done by the AbstractClassUsageDiagnoser once
2954  // the class has been completely parsed.
2955  if (!DC->isRecord() &&
2956      RequireNonAbstractType(D.getIdentifierLoc(),
2957                             R->getAs<FunctionType>()->getResultType(),
2958                             diag::err_abstract_type_in_decl,
2959                             AbstractReturnType))
2960    D.setInvalidType();
2961
2962  // Do not allow returning a objc interface by-value.
2963  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
2964    Diag(D.getIdentifierLoc(),
2965         diag::err_object_cannot_be_passed_returned_by_value) << 0
2966      << R->getAs<FunctionType>()->getResultType();
2967    D.setInvalidType();
2968  }
2969
2970  bool isVirtualOkay = false;
2971  FunctionDecl *NewFD;
2972
2973  if (isFriend) {
2974    // C++ [class.friend]p5
2975    //   A function can be defined in a friend declaration of a
2976    //   class . . . . Such a function is implicitly inline.
2977    isInline |= IsFunctionDefinition;
2978  }
2979
2980  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2981    // This is a C++ constructor declaration.
2982    assert(DC->isRecord() &&
2983           "Constructors can only be declared in a member context");
2984
2985    R = CheckConstructorDeclarator(D, R, SC);
2986
2987    // Create the new declaration
2988    NewFD = CXXConstructorDecl::Create(Context,
2989                                       cast<CXXRecordDecl>(DC),
2990                                       D.getIdentifierLoc(), Name, R, TInfo,
2991                                       isExplicit, isInline,
2992                                       /*isImplicitlyDeclared=*/false);
2993  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2994    // This is a C++ destructor declaration.
2995    if (DC->isRecord()) {
2996      R = CheckDestructorDeclarator(D, SC);
2997
2998      NewFD = CXXDestructorDecl::Create(Context,
2999                                        cast<CXXRecordDecl>(DC),
3000                                        D.getIdentifierLoc(), Name, R,
3001                                        isInline,
3002                                        /*isImplicitlyDeclared=*/false);
3003      NewFD->setTypeSourceInfo(TInfo);
3004
3005      isVirtualOkay = true;
3006    } else {
3007      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3008
3009      // Create a FunctionDecl to satisfy the function definition parsing
3010      // code path.
3011      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3012                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3013                                   /*hasPrototype=*/true);
3014      D.setInvalidType();
3015    }
3016  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3017    if (!DC->isRecord()) {
3018      Diag(D.getIdentifierLoc(),
3019           diag::err_conv_function_not_member);
3020      return 0;
3021    }
3022
3023    CheckConversionDeclarator(D, R, SC);
3024    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3025                                      D.getIdentifierLoc(), Name, R, TInfo,
3026                                      isInline, isExplicit);
3027
3028    isVirtualOkay = true;
3029  } else if (DC->isRecord()) {
3030    // If the of the function is the same as the name of the record, then this
3031    // must be an invalid constructor that has a return type.
3032    // (The parser checks for a return type and makes the declarator a
3033    // constructor if it has no return type).
3034    // must have an invalid constructor that has a return type
3035    if (Name.getAsIdentifierInfo() &&
3036        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3037      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3038        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3039        << SourceRange(D.getIdentifierLoc());
3040      return 0;
3041    }
3042
3043    bool isStatic = SC == FunctionDecl::Static;
3044
3045    // [class.free]p1:
3046    // Any allocation function for a class T is a static member
3047    // (even if not explicitly declared static).
3048    if (Name.getCXXOverloadedOperator() == OO_New ||
3049        Name.getCXXOverloadedOperator() == OO_Array_New)
3050      isStatic = true;
3051
3052    // [class.free]p6 Any deallocation function for a class X is a static member
3053    // (even if not explicitly declared static).
3054    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3055        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3056      isStatic = true;
3057
3058    // This is a C++ method declaration.
3059    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3060                                  D.getIdentifierLoc(), Name, R, TInfo,
3061                                  isStatic, SCAsWritten, isInline);
3062
3063    isVirtualOkay = !isStatic;
3064  } else {
3065    // Determine whether the function was written with a
3066    // prototype. This true when:
3067    //   - we're in C++ (where every function has a prototype),
3068    //   - there is a prototype in the declarator, or
3069    //   - the type R of the function is some kind of typedef or other reference
3070    //     to a type name (which eventually refers to a function type).
3071    bool HasPrototype =
3072       getLangOptions().CPlusPlus ||
3073       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3074       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3075
3076    NewFD = FunctionDecl::Create(Context, DC,
3077                                 D.getIdentifierLoc(),
3078                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3079                                 HasPrototype);
3080  }
3081
3082  if (D.isInvalidType())
3083    NewFD->setInvalidDecl();
3084
3085  SetNestedNameSpecifier(NewFD, D);
3086
3087  // Set the lexical context. If the declarator has a C++
3088  // scope specifier, or is the object of a friend declaration, the
3089  // lexical context will be different from the semantic context.
3090  NewFD->setLexicalDeclContext(CurContext);
3091
3092  // Match up the template parameter lists with the scope specifier, then
3093  // determine whether we have a template or a template specialization.
3094  FunctionTemplateDecl *FunctionTemplate = 0;
3095  bool isExplicitSpecialization = false;
3096  bool isFunctionTemplateSpecialization = false;
3097  if (TemplateParameterList *TemplateParams
3098        = MatchTemplateParametersToScopeSpecifier(
3099                                  D.getDeclSpec().getSourceRange().getBegin(),
3100                                  D.getCXXScopeSpec(),
3101                           (TemplateParameterList**)TemplateParamLists.get(),
3102                                                  TemplateParamLists.size(),
3103                                                  isFriend,
3104                                                  isExplicitSpecialization)) {
3105    if (TemplateParams->size() > 0) {
3106      // This is a function template
3107
3108      // Check that we can declare a template here.
3109      if (CheckTemplateDeclScope(S, TemplateParams))
3110        return 0;
3111
3112      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3113                                                      NewFD->getLocation(),
3114                                                      Name, TemplateParams,
3115                                                      NewFD);
3116      FunctionTemplate->setLexicalDeclContext(CurContext);
3117      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3118    } else {
3119      // This is a function template specialization.
3120      isFunctionTemplateSpecialization = true;
3121
3122      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3123      if (isFriend && isFunctionTemplateSpecialization) {
3124        // We want to remove the "template<>", found here.
3125        SourceRange RemoveRange = TemplateParams->getSourceRange();
3126
3127        // If we remove the template<> and the name is not a
3128        // template-id, we're actually silently creating a problem:
3129        // the friend declaration will refer to an untemplated decl,
3130        // and clearly the user wants a template specialization.  So
3131        // we need to insert '<>' after the name.
3132        SourceLocation InsertLoc;
3133        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3134          InsertLoc = D.getName().getSourceRange().getEnd();
3135          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3136        }
3137
3138        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3139          << Name << RemoveRange
3140          << FixItHint::CreateRemoval(RemoveRange)
3141          << FixItHint::CreateInsertion(InsertLoc, "<>");
3142      }
3143    }
3144
3145    // FIXME: Free this memory properly.
3146    TemplateParamLists.release();
3147  }
3148
3149  // C++ [dcl.fct.spec]p5:
3150  //   The virtual specifier shall only be used in declarations of
3151  //   nonstatic class member functions that appear within a
3152  //   member-specification of a class declaration; see 10.3.
3153  //
3154  if (isVirtual && !NewFD->isInvalidDecl()) {
3155    if (!isVirtualOkay) {
3156       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3157           diag::err_virtual_non_function);
3158    } else if (!CurContext->isRecord()) {
3159      // 'virtual' was specified outside of the class.
3160      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3161        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3162    } else {
3163      // Okay: Add virtual to the method.
3164      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3165      CurClass->setMethodAsVirtual(NewFD);
3166    }
3167  }
3168
3169  // C++ [dcl.fct.spec]p6:
3170  //  The explicit specifier shall be used only in the declaration of a
3171  //  constructor or conversion function within its class definition; see 12.3.1
3172  //  and 12.3.2.
3173  if (isExplicit && !NewFD->isInvalidDecl()) {
3174    if (!CurContext->isRecord()) {
3175      // 'explicit' was specified outside of the class.
3176      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3177           diag::err_explicit_out_of_class)
3178        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3179    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3180               !isa<CXXConversionDecl>(NewFD)) {
3181      // 'explicit' was specified on a function that wasn't a constructor
3182      // or conversion function.
3183      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3184           diag::err_explicit_non_ctor_or_conv_function)
3185        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3186    }
3187  }
3188
3189  // Filter out previous declarations that don't match the scope.
3190  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3191
3192  if (isFriend) {
3193    // DC is the namespace in which the function is being declared.
3194    assert((DC->isFileContext() || !Previous.empty()) &&
3195           "previously-undeclared friend function being created "
3196           "in a non-namespace context");
3197
3198    // For now, claim that the objects have no previous declaration.
3199    if (FunctionTemplate) {
3200      FunctionTemplate->setObjectOfFriendDecl(false);
3201      FunctionTemplate->setAccess(AS_public);
3202    }
3203    NewFD->setObjectOfFriendDecl(false);
3204    NewFD->setAccess(AS_public);
3205  }
3206
3207  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3208      !CurContext->isRecord()) {
3209    // C++ [class.static]p1:
3210    //   A data or function member of a class may be declared static
3211    //   in a class definition, in which case it is a static member of
3212    //   the class.
3213
3214    // Complain about the 'static' specifier if it's on an out-of-line
3215    // member function definition.
3216    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3217         diag::err_static_out_of_line)
3218      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3219  }
3220
3221  // Handle GNU asm-label extension (encoded as an attribute).
3222  if (Expr *E = (Expr*) D.getAsmLabel()) {
3223    // The parser guarantees this is a string.
3224    StringLiteral *SE = cast<StringLiteral>(E);
3225    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3226  }
3227
3228  // Copy the parameter declarations from the declarator D to the function
3229  // declaration NewFD, if they are available.  First scavenge them into Params.
3230  llvm::SmallVector<ParmVarDecl*, 16> Params;
3231  if (D.getNumTypeObjects() > 0) {
3232    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3233
3234    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3235    // function that takes no arguments, not a function that takes a
3236    // single void argument.
3237    // We let through "const void" here because Sema::GetTypeForDeclarator
3238    // already checks for that case.
3239    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3240        FTI.ArgInfo[0].Param &&
3241        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3242      // Empty arg list, don't push any params.
3243      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3244
3245      // In C++, the empty parameter-type-list must be spelled "void"; a
3246      // typedef of void is not permitted.
3247      if (getLangOptions().CPlusPlus &&
3248          Param->getType().getUnqualifiedType() != Context.VoidTy)
3249        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3250      // FIXME: Leaks decl?
3251    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3252      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3253        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3254        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3255        Param->setDeclContext(NewFD);
3256        Params.push_back(Param);
3257
3258        if (Param->isInvalidDecl())
3259          NewFD->setInvalidDecl();
3260      }
3261    }
3262
3263  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3264    // When we're declaring a function with a typedef, typeof, etc as in the
3265    // following example, we'll need to synthesize (unnamed)
3266    // parameters for use in the declaration.
3267    //
3268    // @code
3269    // typedef void fn(int);
3270    // fn f;
3271    // @endcode
3272
3273    // Synthesize a parameter for each argument type.
3274    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3275         AE = FT->arg_type_end(); AI != AE; ++AI) {
3276      ParmVarDecl *Param =
3277        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3278      Params.push_back(Param);
3279    }
3280  } else {
3281    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3282           "Should not need args for typedef of non-prototype fn");
3283  }
3284  // Finally, we know we have the right number of parameters, install them.
3285  NewFD->setParams(Params.data(), Params.size());
3286
3287  // If the declarator is a template-id, translate the parser's template
3288  // argument list into our AST format.
3289  bool HasExplicitTemplateArgs = false;
3290  TemplateArgumentListInfo TemplateArgs;
3291  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3292    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3293    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3294    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3295    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3296                                       TemplateId->getTemplateArgs(),
3297                                       TemplateId->NumArgs);
3298    translateTemplateArguments(TemplateArgsPtr,
3299                               TemplateArgs);
3300    TemplateArgsPtr.release();
3301
3302    HasExplicitTemplateArgs = true;
3303
3304    if (FunctionTemplate) {
3305      // FIXME: Diagnose function template with explicit template
3306      // arguments.
3307      HasExplicitTemplateArgs = false;
3308    } else if (!isFunctionTemplateSpecialization &&
3309               !D.getDeclSpec().isFriendSpecified()) {
3310      // We have encountered something that the user meant to be a
3311      // specialization (because it has explicitly-specified template
3312      // arguments) but that was not introduced with a "template<>" (or had
3313      // too few of them).
3314      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3315        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3316        << FixItHint::CreateInsertion(
3317                                   D.getDeclSpec().getSourceRange().getBegin(),
3318                                                 "template<> ");
3319      isFunctionTemplateSpecialization = true;
3320    } else {
3321      // "friend void foo<>(int);" is an implicit specialization decl.
3322      isFunctionTemplateSpecialization = true;
3323    }
3324  } else if (isFriend && isFunctionTemplateSpecialization) {
3325    // This combination is only possible in a recovery case;  the user
3326    // wrote something like:
3327    //   template <> friend void foo(int);
3328    // which we're recovering from as if the user had written:
3329    //   friend void foo<>(int);
3330    // Go ahead and fake up a template id.
3331    HasExplicitTemplateArgs = true;
3332    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3333    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3334  }
3335
3336  // If it's a friend (and only if it's a friend), it's possible
3337  // that either the specialized function type or the specialized
3338  // template is dependent, and therefore matching will fail.  In
3339  // this case, don't check the specialization yet.
3340  if (isFunctionTemplateSpecialization && isFriend &&
3341      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3342    assert(HasExplicitTemplateArgs &&
3343           "friend function specialization without template args");
3344    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3345                                                     Previous))
3346      NewFD->setInvalidDecl();
3347  } else if (isFunctionTemplateSpecialization) {
3348    if (CheckFunctionTemplateSpecialization(NewFD,
3349                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3350                                            Previous))
3351      NewFD->setInvalidDecl();
3352  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3353    if (CheckMemberSpecialization(NewFD, Previous))
3354      NewFD->setInvalidDecl();
3355  }
3356
3357  // Perform semantic checking on the function declaration.
3358  bool OverloadableAttrRequired = false; // FIXME: HACK!
3359  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3360                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3361
3362  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3363          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3364         "previous declaration set still overloaded");
3365
3366  NamedDecl *PrincipalDecl = (FunctionTemplate
3367                              ? cast<NamedDecl>(FunctionTemplate)
3368                              : NewFD);
3369
3370  if (isFriend && Redeclaration) {
3371    AccessSpecifier Access = AS_public;
3372    if (!NewFD->isInvalidDecl())
3373      Access = NewFD->getPreviousDeclaration()->getAccess();
3374
3375    NewFD->setAccess(Access);
3376    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3377
3378    PrincipalDecl->setObjectOfFriendDecl(true);
3379  }
3380
3381  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3382      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3383    PrincipalDecl->setNonMemberOperator();
3384
3385  // If we have a function template, check the template parameter
3386  // list. This will check and merge default template arguments.
3387  if (FunctionTemplate) {
3388    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3389    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3390                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3391             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3392                                                : TPC_FunctionTemplate);
3393  }
3394
3395  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3396    // Fake up an access specifier if it's supposed to be a class member.
3397    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3398      NewFD->setAccess(AS_public);
3399
3400    // An out-of-line member function declaration must also be a
3401    // definition (C++ [dcl.meaning]p1).
3402    // Note that this is not the case for explicit specializations of
3403    // function templates or member functions of class templates, per
3404    // C++ [temp.expl.spec]p2.
3405    if (!IsFunctionDefinition && !isFriend &&
3406        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3407      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3408        << D.getCXXScopeSpec().getRange();
3409      NewFD->setInvalidDecl();
3410    } else if (!Redeclaration &&
3411               !(isFriend && CurContext->isDependentContext())) {
3412      // The user tried to provide an out-of-line definition for a
3413      // function that is a member of a class or namespace, but there
3414      // was no such member function declared (C++ [class.mfct]p2,
3415      // C++ [namespace.memdef]p2). For example:
3416      //
3417      // class X {
3418      //   void f() const;
3419      // };
3420      //
3421      // void X::f() { } // ill-formed
3422      //
3423      // Complain about this problem, and attempt to suggest close
3424      // matches (e.g., those that differ only in cv-qualifiers and
3425      // whether the parameter types are references).
3426      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3427        << Name << DC << D.getCXXScopeSpec().getRange();
3428      NewFD->setInvalidDecl();
3429
3430      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3431                        ForRedeclaration);
3432      LookupQualifiedName(Prev, DC);
3433      assert(!Prev.isAmbiguous() &&
3434             "Cannot have an ambiguity in previous-declaration lookup");
3435      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3436           Func != FuncEnd; ++Func) {
3437        if (isa<FunctionDecl>(*Func) &&
3438            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3439          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3440      }
3441    }
3442  }
3443
3444  // Handle attributes. We need to have merged decls when handling attributes
3445  // (for example to check for conflicts, etc).
3446  // FIXME: This needs to happen before we merge declarations. Then,
3447  // let attribute merging cope with attribute conflicts.
3448  ProcessDeclAttributes(S, NewFD, D);
3449
3450  // attributes declared post-definition are currently ignored
3451  if (Redeclaration && Previous.isSingleResult()) {
3452    const FunctionDecl *Def;
3453    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3454    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3455      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3456      Diag(Def->getLocation(), diag::note_previous_definition);
3457    }
3458  }
3459
3460  AddKnownFunctionAttributes(NewFD);
3461
3462  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3463    // If a function name is overloadable in C, then every function
3464    // with that name must be marked "overloadable".
3465    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3466      << Redeclaration << NewFD;
3467    if (!Previous.empty())
3468      Diag(Previous.getRepresentativeDecl()->getLocation(),
3469           diag::note_attribute_overloadable_prev_overload);
3470    NewFD->addAttr(::new (Context) OverloadableAttr());
3471  }
3472
3473  // If this is a locally-scoped extern C function, update the
3474  // map of such names.
3475  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3476      && !NewFD->isInvalidDecl())
3477    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3478
3479  // Set this FunctionDecl's range up to the right paren.
3480  NewFD->setLocEnd(D.getSourceRange().getEnd());
3481
3482  if (FunctionTemplate && NewFD->isInvalidDecl())
3483    FunctionTemplate->setInvalidDecl();
3484
3485  if (FunctionTemplate)
3486    return FunctionTemplate;
3487
3488
3489  // Keep track of static, non-inlined function definitions that
3490  // have not been used. We will warn later.
3491  // FIXME: Also include static functions declared but not defined.
3492  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3493      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3494      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3495      && !NewFD->hasAttr<ConstructorAttr>()
3496      && !NewFD->hasAttr<DestructorAttr>())
3497    UnusedStaticFuncs.push_back(NewFD);
3498
3499  return NewFD;
3500}
3501
3502/// \brief Perform semantic checking of a new function declaration.
3503///
3504/// Performs semantic analysis of the new function declaration
3505/// NewFD. This routine performs all semantic checking that does not
3506/// require the actual declarator involved in the declaration, and is
3507/// used both for the declaration of functions as they are parsed
3508/// (called via ActOnDeclarator) and for the declaration of functions
3509/// that have been instantiated via C++ template instantiation (called
3510/// via InstantiateDecl).
3511///
3512/// \param IsExplicitSpecialiation whether this new function declaration is
3513/// an explicit specialization of the previous declaration.
3514///
3515/// This sets NewFD->isInvalidDecl() to true if there was an error.
3516void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3517                                    LookupResult &Previous,
3518                                    bool IsExplicitSpecialization,
3519                                    bool &Redeclaration,
3520                                    bool &OverloadableAttrRequired) {
3521  // If NewFD is already known erroneous, don't do any of this checking.
3522  if (NewFD->isInvalidDecl())
3523    return;
3524
3525  if (NewFD->getResultType()->isVariablyModifiedType()) {
3526    // Functions returning a variably modified type violate C99 6.7.5.2p2
3527    // because all functions have linkage.
3528    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3529    return NewFD->setInvalidDecl();
3530  }
3531
3532  if (NewFD->isMain())
3533    CheckMain(NewFD);
3534
3535  // Check for a previous declaration of this name.
3536  if (Previous.empty() && NewFD->isExternC()) {
3537    // Since we did not find anything by this name and we're declaring
3538    // an extern "C" function, look for a non-visible extern "C"
3539    // declaration with the same name.
3540    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3541      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3542    if (Pos != LocallyScopedExternalDecls.end())
3543      Previous.addDecl(Pos->second);
3544  }
3545
3546  // Merge or overload the declaration with an existing declaration of
3547  // the same name, if appropriate.
3548  if (!Previous.empty()) {
3549    // Determine whether NewFD is an overload of PrevDecl or
3550    // a declaration that requires merging. If it's an overload,
3551    // there's no more work to do here; we'll just add the new
3552    // function to the scope.
3553
3554    NamedDecl *OldDecl = 0;
3555    if (!AllowOverloadingOfFunction(Previous, Context)) {
3556      Redeclaration = true;
3557      OldDecl = Previous.getFoundDecl();
3558    } else {
3559      if (!getLangOptions().CPlusPlus) {
3560        OverloadableAttrRequired = true;
3561
3562        // Functions marked "overloadable" must have a prototype (that
3563        // we can't get through declaration merging).
3564        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3565          Diag(NewFD->getLocation(),
3566               diag::err_attribute_overloadable_no_prototype)
3567            << NewFD;
3568          Redeclaration = true;
3569
3570          // Turn this into a variadic function with no parameters.
3571          QualType R = Context.getFunctionType(
3572                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3573                     0, 0, true, 0, false, false, 0, 0,
3574                     FunctionType::ExtInfo());
3575          NewFD->setType(R);
3576          return NewFD->setInvalidDecl();
3577        }
3578      }
3579
3580      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3581      case Ovl_Match:
3582        Redeclaration = true;
3583        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3584          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3585          Redeclaration = false;
3586        }
3587        break;
3588
3589      case Ovl_NonFunction:
3590        Redeclaration = true;
3591        break;
3592
3593      case Ovl_Overload:
3594        Redeclaration = false;
3595        break;
3596      }
3597    }
3598
3599    if (Redeclaration) {
3600      // NewFD and OldDecl represent declarations that need to be
3601      // merged.
3602      if (MergeFunctionDecl(NewFD, OldDecl))
3603        return NewFD->setInvalidDecl();
3604
3605      Previous.clear();
3606      Previous.addDecl(OldDecl);
3607
3608      if (FunctionTemplateDecl *OldTemplateDecl
3609                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3610        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3611        FunctionTemplateDecl *NewTemplateDecl
3612          = NewFD->getDescribedFunctionTemplate();
3613        assert(NewTemplateDecl && "Template/non-template mismatch");
3614        if (CXXMethodDecl *Method
3615              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3616          Method->setAccess(OldTemplateDecl->getAccess());
3617          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3618        }
3619
3620        // If this is an explicit specialization of a member that is a function
3621        // template, mark it as a member specialization.
3622        if (IsExplicitSpecialization &&
3623            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3624          NewTemplateDecl->setMemberSpecialization();
3625          assert(OldTemplateDecl->isMemberSpecialization());
3626        }
3627      } else {
3628        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3629          NewFD->setAccess(OldDecl->getAccess());
3630        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3631      }
3632    }
3633  }
3634
3635  // Semantic checking for this function declaration (in isolation).
3636  if (getLangOptions().CPlusPlus) {
3637    // C++-specific checks.
3638    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3639      CheckConstructor(Constructor);
3640    } else if (CXXDestructorDecl *Destructor =
3641                dyn_cast<CXXDestructorDecl>(NewFD)) {
3642      CXXRecordDecl *Record = Destructor->getParent();
3643      QualType ClassType = Context.getTypeDeclType(Record);
3644
3645      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3646      // type is dependent? Both gcc and edg can handle that.
3647      if (!ClassType->isDependentType()) {
3648        DeclarationName Name
3649          = Context.DeclarationNames.getCXXDestructorName(
3650                                        Context.getCanonicalType(ClassType));
3651        if (NewFD->getDeclName() != Name) {
3652          Diag(NewFD->getLocation(), diag::err_destructor_name);
3653          return NewFD->setInvalidDecl();
3654        }
3655      }
3656
3657      Record->setUserDeclaredDestructor(true);
3658      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3659      // user-defined destructor.
3660      Record->setPOD(false);
3661
3662      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3663      // declared destructor.
3664      // FIXME: C++0x: don't do this for "= default" destructors
3665      Record->setHasTrivialDestructor(false);
3666    } else if (CXXConversionDecl *Conversion
3667               = dyn_cast<CXXConversionDecl>(NewFD)) {
3668      ActOnConversionDeclarator(Conversion);
3669    }
3670
3671    // Find any virtual functions that this function overrides.
3672    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3673      if (!Method->isFunctionTemplateSpecialization() &&
3674          !Method->getDescribedFunctionTemplate())
3675        AddOverriddenMethods(Method->getParent(), Method);
3676    }
3677
3678    // Additional checks for the destructor; make sure we do this after we
3679    // figure out whether the destructor is virtual.
3680    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3681      if (!Destructor->getParent()->isDependentType())
3682        CheckDestructor(Destructor);
3683
3684    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3685    if (NewFD->isOverloadedOperator() &&
3686        CheckOverloadedOperatorDeclaration(NewFD))
3687      return NewFD->setInvalidDecl();
3688
3689    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3690    if (NewFD->getLiteralIdentifier() &&
3691        CheckLiteralOperatorDeclaration(NewFD))
3692      return NewFD->setInvalidDecl();
3693
3694    // In C++, check default arguments now that we have merged decls. Unless
3695    // the lexical context is the class, because in this case this is done
3696    // during delayed parsing anyway.
3697    if (!CurContext->isRecord())
3698      CheckCXXDefaultArguments(NewFD);
3699  }
3700}
3701
3702void Sema::CheckMain(FunctionDecl* FD) {
3703  // C++ [basic.start.main]p3:  A program that declares main to be inline
3704  //   or static is ill-formed.
3705  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3706  //   shall not appear in a declaration of main.
3707  // static main is not an error under C99, but we should warn about it.
3708  bool isInline = FD->isInlineSpecified();
3709  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3710  if (isInline || isStatic) {
3711    unsigned diagID = diag::warn_unusual_main_decl;
3712    if (isInline || getLangOptions().CPlusPlus)
3713      diagID = diag::err_unusual_main_decl;
3714
3715    int which = isStatic + (isInline << 1) - 1;
3716    Diag(FD->getLocation(), diagID) << which;
3717  }
3718
3719  QualType T = FD->getType();
3720  assert(T->isFunctionType() && "function decl is not of function type");
3721  const FunctionType* FT = T->getAs<FunctionType>();
3722
3723  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3724    // TODO: add a replacement fixit to turn the return type into 'int'.
3725    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3726    FD->setInvalidDecl(true);
3727  }
3728
3729  // Treat protoless main() as nullary.
3730  if (isa<FunctionNoProtoType>(FT)) return;
3731
3732  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3733  unsigned nparams = FTP->getNumArgs();
3734  assert(FD->getNumParams() == nparams);
3735
3736  bool HasExtraParameters = (nparams > 3);
3737
3738  // Darwin passes an undocumented fourth argument of type char**.  If
3739  // other platforms start sprouting these, the logic below will start
3740  // getting shifty.
3741  if (nparams == 4 &&
3742      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3743    HasExtraParameters = false;
3744
3745  if (HasExtraParameters) {
3746    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3747    FD->setInvalidDecl(true);
3748    nparams = 3;
3749  }
3750
3751  // FIXME: a lot of the following diagnostics would be improved
3752  // if we had some location information about types.
3753
3754  QualType CharPP =
3755    Context.getPointerType(Context.getPointerType(Context.CharTy));
3756  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3757
3758  for (unsigned i = 0; i < nparams; ++i) {
3759    QualType AT = FTP->getArgType(i);
3760
3761    bool mismatch = true;
3762
3763    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3764      mismatch = false;
3765    else if (Expected[i] == CharPP) {
3766      // As an extension, the following forms are okay:
3767      //   char const **
3768      //   char const * const *
3769      //   char * const *
3770
3771      QualifierCollector qs;
3772      const PointerType* PT;
3773      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3774          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3775          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3776        qs.removeConst();
3777        mismatch = !qs.empty();
3778      }
3779    }
3780
3781    if (mismatch) {
3782      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3783      // TODO: suggest replacing given type with expected type
3784      FD->setInvalidDecl(true);
3785    }
3786  }
3787
3788  if (nparams == 1 && !FD->isInvalidDecl()) {
3789    Diag(FD->getLocation(), diag::warn_main_one_arg);
3790  }
3791}
3792
3793bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3794  // FIXME: Need strict checking.  In C89, we need to check for
3795  // any assignment, increment, decrement, function-calls, or
3796  // commas outside of a sizeof.  In C99, it's the same list,
3797  // except that the aforementioned are allowed in unevaluated
3798  // expressions.  Everything else falls under the
3799  // "may accept other forms of constant expressions" exception.
3800  // (We never end up here for C++, so the constant expression
3801  // rules there don't matter.)
3802  if (Init->isConstantInitializer(Context))
3803    return false;
3804  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3805    << Init->getSourceRange();
3806  return true;
3807}
3808
3809void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3810  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3811}
3812
3813/// AddInitializerToDecl - Adds the initializer Init to the
3814/// declaration dcl. If DirectInit is true, this is C++ direct
3815/// initialization rather than copy initialization.
3816void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3817  Decl *RealDecl = dcl.getAs<Decl>();
3818  // If there is no declaration, there was an error parsing it.  Just ignore
3819  // the initializer.
3820  if (RealDecl == 0)
3821    return;
3822
3823  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3824    // With declarators parsed the way they are, the parser cannot
3825    // distinguish between a normal initializer and a pure-specifier.
3826    // Thus this grotesque test.
3827    IntegerLiteral *IL;
3828    Expr *Init = static_cast<Expr *>(init.get());
3829    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3830        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3831      CheckPureMethod(Method, Init->getSourceRange());
3832    else {
3833      Diag(Method->getLocation(), diag::err_member_function_initialization)
3834        << Method->getDeclName() << Init->getSourceRange();
3835      Method->setInvalidDecl();
3836    }
3837    return;
3838  }
3839
3840  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3841  if (!VDecl) {
3842    if (getLangOptions().CPlusPlus &&
3843        RealDecl->getLexicalDeclContext()->isRecord() &&
3844        isa<NamedDecl>(RealDecl))
3845      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3846        << cast<NamedDecl>(RealDecl)->getDeclName();
3847    else
3848      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3849    RealDecl->setInvalidDecl();
3850    return;
3851  }
3852
3853  // A definition must end up with a complete type, which means it must be
3854  // complete with the restriction that an array type might be completed by the
3855  // initializer; note that later code assumes this restriction.
3856  QualType BaseDeclType = VDecl->getType();
3857  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3858    BaseDeclType = Array->getElementType();
3859  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3860                          diag::err_typecheck_decl_incomplete_type)) {
3861    RealDecl->setInvalidDecl();
3862    return;
3863  }
3864
3865  // The variable can not have an abstract class type.
3866  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3867                             diag::err_abstract_type_in_decl,
3868                             AbstractVariableType))
3869    VDecl->setInvalidDecl();
3870
3871  const VarDecl *Def;
3872  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3873    Diag(VDecl->getLocation(), diag::err_redefinition)
3874      << VDecl->getDeclName();
3875    Diag(Def->getLocation(), diag::note_previous_definition);
3876    VDecl->setInvalidDecl();
3877    return;
3878  }
3879
3880  // Take ownership of the expression, now that we're sure we have somewhere
3881  // to put it.
3882  Expr *Init = init.takeAs<Expr>();
3883  assert(Init && "missing initializer");
3884
3885  // Capture the variable that is being initialized and the style of
3886  // initialization.
3887  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3888
3889  // FIXME: Poor source location information.
3890  InitializationKind Kind
3891    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3892                                                   Init->getLocStart(),
3893                                                   Init->getLocEnd())
3894                : InitializationKind::CreateCopy(VDecl->getLocation(),
3895                                                 Init->getLocStart());
3896
3897  // Get the decls type and save a reference for later, since
3898  // CheckInitializerTypes may change it.
3899  QualType DclT = VDecl->getType(), SavT = DclT;
3900  if (VDecl->isBlockVarDecl()) {
3901    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3902      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3903      VDecl->setInvalidDecl();
3904    } else if (!VDecl->isInvalidDecl()) {
3905      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3906      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3907                                          MultiExprArg(*this, (void**)&Init, 1),
3908                                                &DclT);
3909      if (Result.isInvalid()) {
3910        VDecl->setInvalidDecl();
3911        return;
3912      }
3913
3914      Init = Result.takeAs<Expr>();
3915
3916      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3917      // Don't check invalid declarations to avoid emitting useless diagnostics.
3918      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3919        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3920          CheckForConstantInitializer(Init, DclT);
3921      }
3922    }
3923  } else if (VDecl->isStaticDataMember() &&
3924             VDecl->getLexicalDeclContext()->isRecord()) {
3925    // This is an in-class initialization for a static data member, e.g.,
3926    //
3927    // struct S {
3928    //   static const int value = 17;
3929    // };
3930
3931    // Attach the initializer
3932    VDecl->setInit(Init);
3933
3934    // C++ [class.mem]p4:
3935    //   A member-declarator can contain a constant-initializer only
3936    //   if it declares a static member (9.4) of const integral or
3937    //   const enumeration type, see 9.4.2.
3938    QualType T = VDecl->getType();
3939    if (!T->isDependentType() &&
3940        (!Context.getCanonicalType(T).isConstQualified() ||
3941         !T->isIntegralType())) {
3942      Diag(VDecl->getLocation(), diag::err_member_initialization)
3943        << VDecl->getDeclName() << Init->getSourceRange();
3944      VDecl->setInvalidDecl();
3945    } else {
3946      // C++ [class.static.data]p4:
3947      //   If a static data member is of const integral or const
3948      //   enumeration type, its declaration in the class definition
3949      //   can specify a constant-initializer which shall be an
3950      //   integral constant expression (5.19).
3951      if (!Init->isTypeDependent() &&
3952          !Init->getType()->isIntegralType()) {
3953        // We have a non-dependent, non-integral or enumeration type.
3954        Diag(Init->getSourceRange().getBegin(),
3955             diag::err_in_class_initializer_non_integral_type)
3956          << Init->getType() << Init->getSourceRange();
3957        VDecl->setInvalidDecl();
3958      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3959        // Check whether the expression is a constant expression.
3960        llvm::APSInt Value;
3961        SourceLocation Loc;
3962        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3963          Diag(Loc, diag::err_in_class_initializer_non_constant)
3964            << Init->getSourceRange();
3965          VDecl->setInvalidDecl();
3966        } else if (!VDecl->getType()->isDependentType())
3967          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3968      }
3969    }
3970  } else if (VDecl->isFileVarDecl()) {
3971    if (VDecl->getStorageClass() == VarDecl::Extern &&
3972        (!getLangOptions().CPlusPlus ||
3973         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
3974      Diag(VDecl->getLocation(), diag::warn_extern_init);
3975    if (!VDecl->isInvalidDecl()) {
3976      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3977      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3978                                          MultiExprArg(*this, (void**)&Init, 1),
3979                                                &DclT);
3980      if (Result.isInvalid()) {
3981        VDecl->setInvalidDecl();
3982        return;
3983      }
3984
3985      Init = Result.takeAs<Expr>();
3986    }
3987
3988    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3989    // Don't check invalid declarations to avoid emitting useless diagnostics.
3990    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3991      // C99 6.7.8p4. All file scoped initializers need to be constant.
3992      CheckForConstantInitializer(Init, DclT);
3993    }
3994  }
3995  // If the type changed, it means we had an incomplete type that was
3996  // completed by the initializer. For example:
3997  //   int ary[] = { 1, 3, 5 };
3998  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3999  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4000    VDecl->setType(DclT);
4001    Init->setType(DclT);
4002  }
4003
4004  Init = MaybeCreateCXXExprWithTemporaries(Init);
4005  // Attach the initializer to the decl.
4006  VDecl->setInit(Init);
4007
4008  if (getLangOptions().CPlusPlus) {
4009    // Make sure we mark the destructor as used if necessary.
4010    QualType InitType = VDecl->getType();
4011    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4012      InitType = Context.getBaseElementType(Array);
4013    if (const RecordType *Record = InitType->getAs<RecordType>())
4014      FinalizeVarWithDestructor(VDecl, Record);
4015  }
4016
4017  return;
4018}
4019
4020/// ActOnInitializerError - Given that there was an error parsing an
4021/// initializer for the given declaration, try to return to some form
4022/// of sanity.
4023void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4024  // Our main concern here is re-establishing invariants like "a
4025  // variable's type is either dependent or complete".
4026  Decl *D = dcl.getAs<Decl>();
4027  if (!D || D->isInvalidDecl()) return;
4028
4029  VarDecl *VD = dyn_cast<VarDecl>(D);
4030  if (!VD) return;
4031
4032  QualType Ty = VD->getType();
4033  if (Ty->isDependentType()) return;
4034
4035  // Require a complete type.
4036  if (RequireCompleteType(VD->getLocation(),
4037                          Context.getBaseElementType(Ty),
4038                          diag::err_typecheck_decl_incomplete_type)) {
4039    VD->setInvalidDecl();
4040    return;
4041  }
4042
4043  // Require an abstract type.
4044  if (RequireNonAbstractType(VD->getLocation(), Ty,
4045                             diag::err_abstract_type_in_decl,
4046                             AbstractVariableType)) {
4047    VD->setInvalidDecl();
4048    return;
4049  }
4050
4051  // Don't bother complaining about constructors or destructors,
4052  // though.
4053}
4054
4055void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4056                                  bool TypeContainsUndeducedAuto) {
4057  Decl *RealDecl = dcl.getAs<Decl>();
4058
4059  // If there is no declaration, there was an error parsing it. Just ignore it.
4060  if (RealDecl == 0)
4061    return;
4062
4063  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4064    QualType Type = Var->getType();
4065
4066    // C++0x [dcl.spec.auto]p3
4067    if (TypeContainsUndeducedAuto) {
4068      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4069        << Var->getDeclName() << Type;
4070      Var->setInvalidDecl();
4071      return;
4072    }
4073
4074    switch (Var->isThisDeclarationADefinition()) {
4075    case VarDecl::Definition:
4076      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4077        break;
4078
4079      // We have an out-of-line definition of a static data member
4080      // that has an in-class initializer, so we type-check this like
4081      // a declaration.
4082      //
4083      // Fall through
4084
4085    case VarDecl::DeclarationOnly:
4086      // It's only a declaration.
4087
4088      // Block scope. C99 6.7p7: If an identifier for an object is
4089      // declared with no linkage (C99 6.2.2p6), the type for the
4090      // object shall be complete.
4091      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4092          !Var->getLinkage() && !Var->isInvalidDecl() &&
4093          RequireCompleteType(Var->getLocation(), Type,
4094                              diag::err_typecheck_decl_incomplete_type))
4095        Var->setInvalidDecl();
4096
4097      // Make sure that the type is not abstract.
4098      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4099          RequireNonAbstractType(Var->getLocation(), Type,
4100                                 diag::err_abstract_type_in_decl,
4101                                 AbstractVariableType))
4102        Var->setInvalidDecl();
4103      return;
4104
4105    case VarDecl::TentativeDefinition:
4106      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4107      // object that has file scope without an initializer, and without a
4108      // storage-class specifier or with the storage-class specifier "static",
4109      // constitutes a tentative definition. Note: A tentative definition with
4110      // external linkage is valid (C99 6.2.2p5).
4111      if (!Var->isInvalidDecl()) {
4112        if (const IncompleteArrayType *ArrayT
4113                                    = Context.getAsIncompleteArrayType(Type)) {
4114          if (RequireCompleteType(Var->getLocation(),
4115                                  ArrayT->getElementType(),
4116                                  diag::err_illegal_decl_array_incomplete_type))
4117            Var->setInvalidDecl();
4118        } else if (Var->getStorageClass() == VarDecl::Static) {
4119          // C99 6.9.2p3: If the declaration of an identifier for an object is
4120          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4121          // declared type shall not be an incomplete type.
4122          // NOTE: code such as the following
4123          //     static struct s;
4124          //     struct s { int a; };
4125          // is accepted by gcc. Hence here we issue a warning instead of
4126          // an error and we do not invalidate the static declaration.
4127          // NOTE: to avoid multiple warnings, only check the first declaration.
4128          if (Var->getPreviousDeclaration() == 0)
4129            RequireCompleteType(Var->getLocation(), Type,
4130                                diag::ext_typecheck_decl_incomplete_type);
4131        }
4132      }
4133
4134      // Record the tentative definition; we're done.
4135      if (!Var->isInvalidDecl())
4136        TentativeDefinitions.push_back(Var);
4137      return;
4138    }
4139
4140    // Provide a specific diagnostic for uninitialized variable
4141    // definitions with incomplete array type.
4142    if (Type->isIncompleteArrayType()) {
4143      Diag(Var->getLocation(),
4144           diag::err_typecheck_incomplete_array_needs_initializer);
4145      Var->setInvalidDecl();
4146      return;
4147    }
4148
4149   // Provide a specific diagnostic for uninitialized variable
4150   // definitions with reference type.
4151   if (Type->isReferenceType()) {
4152     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4153       << Var->getDeclName()
4154       << SourceRange(Var->getLocation(), Var->getLocation());
4155     Var->setInvalidDecl();
4156     return;
4157   }
4158
4159    // Do not attempt to type-check the default initializer for a
4160    // variable with dependent type.
4161    if (Type->isDependentType())
4162      return;
4163
4164    if (Var->isInvalidDecl())
4165      return;
4166
4167    if (RequireCompleteType(Var->getLocation(),
4168                            Context.getBaseElementType(Type),
4169                            diag::err_typecheck_decl_incomplete_type)) {
4170      Var->setInvalidDecl();
4171      return;
4172    }
4173
4174    // The variable can not have an abstract class type.
4175    if (RequireNonAbstractType(Var->getLocation(), Type,
4176                               diag::err_abstract_type_in_decl,
4177                               AbstractVariableType)) {
4178      Var->setInvalidDecl();
4179      return;
4180    }
4181
4182    const RecordType *Record
4183      = Context.getBaseElementType(Type)->getAs<RecordType>();
4184    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4185        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4186      // C++03 [dcl.init]p9:
4187      //   If no initializer is specified for an object, and the
4188      //   object is of (possibly cv-qualified) non-POD class type (or
4189      //   array thereof), the object shall be default-initialized; if
4190      //   the object is of const-qualified type, the underlying class
4191      //   type shall have a user-declared default
4192      //   constructor. Otherwise, if no initializer is specified for
4193      //   a non- static object, the object and its subobjects, if
4194      //   any, have an indeterminate initial value); if the object
4195      //   or any of its subobjects are of const-qualified type, the
4196      //   program is ill-formed.
4197      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4198    } else {
4199      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4200      InitializationKind Kind
4201        = InitializationKind::CreateDefault(Var->getLocation());
4202
4203      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4204      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4205                                              MultiExprArg(*this, 0, 0));
4206      if (Init.isInvalid())
4207        Var->setInvalidDecl();
4208      else if (Init.get())
4209        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4210    }
4211
4212    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4213      FinalizeVarWithDestructor(Var, Record);
4214  }
4215}
4216
4217Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4218                                                   DeclPtrTy *Group,
4219                                                   unsigned NumDecls) {
4220  llvm::SmallVector<Decl*, 8> Decls;
4221
4222  if (DS.isTypeSpecOwned())
4223    Decls.push_back((Decl*)DS.getTypeRep());
4224
4225  for (unsigned i = 0; i != NumDecls; ++i)
4226    if (Decl *D = Group[i].getAs<Decl>())
4227      Decls.push_back(D);
4228
4229  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4230                                                   Decls.data(), Decls.size()));
4231}
4232
4233
4234/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4235/// to introduce parameters into function prototype scope.
4236Sema::DeclPtrTy
4237Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4238  const DeclSpec &DS = D.getDeclSpec();
4239
4240  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4241  VarDecl::StorageClass StorageClass = VarDecl::None;
4242  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4243  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4244    StorageClass = VarDecl::Register;
4245    StorageClassAsWritten = VarDecl::Register;
4246  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4247    Diag(DS.getStorageClassSpecLoc(),
4248         diag::err_invalid_storage_class_in_func_decl);
4249    D.getMutableDeclSpec().ClearStorageClassSpecs();
4250  }
4251
4252  if (D.getDeclSpec().isThreadSpecified())
4253    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4254
4255  DiagnoseFunctionSpecifiers(D);
4256
4257  // Check that there are no default arguments inside the type of this
4258  // parameter (C++ only).
4259  if (getLangOptions().CPlusPlus)
4260    CheckExtraCXXDefaultArguments(D);
4261
4262  TagDecl *OwnedDecl = 0;
4263  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4264  QualType parmDeclType = TInfo->getType();
4265
4266  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4267    // C++ [dcl.fct]p6:
4268    //   Types shall not be defined in return or parameter types.
4269    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4270      << Context.getTypeDeclType(OwnedDecl);
4271  }
4272
4273  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4274  IdentifierInfo *II = D.getIdentifier();
4275  if (II) {
4276    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4277                   ForRedeclaration);
4278    LookupName(R, S);
4279    if (R.isSingleResult()) {
4280      NamedDecl *PrevDecl = R.getFoundDecl();
4281      if (PrevDecl->isTemplateParameter()) {
4282        // Maybe we will complain about the shadowed template parameter.
4283        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4284        // Just pretend that we didn't see the previous declaration.
4285        PrevDecl = 0;
4286      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4287        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4288        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4289
4290        // Recover by removing the name
4291        II = 0;
4292        D.SetIdentifier(0, D.getIdentifierLoc());
4293        D.setInvalidType(true);
4294      }
4295    }
4296  }
4297
4298  // Temporarily put parameter variables in the translation unit, not
4299  // the enclosing context.  This prevents them from accidentally
4300  // looking like class members in C++.
4301  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4302                                    TInfo, parmDeclType, II,
4303                                    D.getIdentifierLoc(),
4304                                    StorageClass, StorageClassAsWritten);
4305
4306  if (D.isInvalidType())
4307    New->setInvalidDecl();
4308
4309  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4310  if (D.getCXXScopeSpec().isSet()) {
4311    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4312      << D.getCXXScopeSpec().getRange();
4313    New->setInvalidDecl();
4314  }
4315
4316  // Add the parameter declaration into this scope.
4317  S->AddDecl(DeclPtrTy::make(New));
4318  if (II)
4319    IdResolver.AddDecl(New);
4320
4321  ProcessDeclAttributes(S, New, D);
4322
4323  if (New->hasAttr<BlocksAttr>()) {
4324    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4325  }
4326  return DeclPtrTy::make(New);
4327}
4328
4329/// \brief Synthesizes a variable for a parameter arising from a
4330/// typedef.
4331ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4332                                              SourceLocation Loc,
4333                                              QualType T) {
4334  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4335                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4336                                           VarDecl::None, VarDecl::None, 0);
4337  Param->setImplicit();
4338  return Param;
4339}
4340
4341ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4342                                  TypeSourceInfo *TSInfo, QualType T,
4343                                  IdentifierInfo *Name,
4344                                  SourceLocation NameLoc,
4345                                  VarDecl::StorageClass StorageClass,
4346                                  VarDecl::StorageClass StorageClassAsWritten) {
4347  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4348                                         adjustParameterType(T), TSInfo,
4349                                         StorageClass, StorageClassAsWritten,
4350                                         0);
4351
4352  // Parameters can not be abstract class types.
4353  // For record types, this is done by the AbstractClassUsageDiagnoser once
4354  // the class has been completely parsed.
4355  if (!CurContext->isRecord() &&
4356      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4357                             AbstractParamType))
4358    New->setInvalidDecl();
4359
4360  // Parameter declarators cannot be interface types. All ObjC objects are
4361  // passed by reference.
4362  if (T->isObjCObjectType()) {
4363    Diag(NameLoc,
4364         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4365    New->setInvalidDecl();
4366  }
4367
4368  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4369  // duration shall not be qualified by an address-space qualifier."
4370  // Since all parameters have automatic store duration, they can not have
4371  // an address space.
4372  if (T.getAddressSpace() != 0) {
4373    Diag(NameLoc, diag::err_arg_with_address_space);
4374    New->setInvalidDecl();
4375  }
4376
4377  return New;
4378}
4379
4380void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4381                                           SourceLocation LocAfterDecls) {
4382  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4383         "Not a function declarator!");
4384  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4385
4386  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4387  // for a K&R function.
4388  if (!FTI.hasPrototype) {
4389    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4390      --i;
4391      if (FTI.ArgInfo[i].Param == 0) {
4392        llvm::SmallString<256> Code;
4393        llvm::raw_svector_ostream(Code) << "  int "
4394                                        << FTI.ArgInfo[i].Ident->getName()
4395                                        << ";\n";
4396        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4397          << FTI.ArgInfo[i].Ident
4398          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4399
4400        // Implicitly declare the argument as type 'int' for lack of a better
4401        // type.
4402        DeclSpec DS;
4403        const char* PrevSpec; // unused
4404        unsigned DiagID; // unused
4405        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4406                           PrevSpec, DiagID);
4407        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4408        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4409        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4410      }
4411    }
4412  }
4413}
4414
4415Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4416                                              Declarator &D) {
4417  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4418  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4419         "Not a function declarator!");
4420  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4421
4422  if (FTI.hasPrototype) {
4423    // FIXME: Diagnose arguments without names in C.
4424  }
4425
4426  Scope *ParentScope = FnBodyScope->getParent();
4427
4428  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4429                                  MultiTemplateParamsArg(*this),
4430                                  /*IsFunctionDefinition=*/true);
4431  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4432}
4433
4434static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4435  // Don't warn about invalid declarations.
4436  if (FD->isInvalidDecl())
4437    return false;
4438
4439  // Or declarations that aren't global.
4440  if (!FD->isGlobal())
4441    return false;
4442
4443  // Don't warn about C++ member functions.
4444  if (isa<CXXMethodDecl>(FD))
4445    return false;
4446
4447  // Don't warn about 'main'.
4448  if (FD->isMain())
4449    return false;
4450
4451  // Don't warn about inline functions.
4452  if (FD->isInlineSpecified())
4453    return false;
4454
4455  // Don't warn about function templates.
4456  if (FD->getDescribedFunctionTemplate())
4457    return false;
4458
4459  // Don't warn about function template specializations.
4460  if (FD->isFunctionTemplateSpecialization())
4461    return false;
4462
4463  bool MissingPrototype = true;
4464  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4465       Prev; Prev = Prev->getPreviousDeclaration()) {
4466    // Ignore any declarations that occur in function or method
4467    // scope, because they aren't visible from the header.
4468    if (Prev->getDeclContext()->isFunctionOrMethod())
4469      continue;
4470
4471    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4472    break;
4473  }
4474
4475  return MissingPrototype;
4476}
4477
4478Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4479  // Clear the last template instantiation error context.
4480  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4481
4482  if (!D)
4483    return D;
4484  FunctionDecl *FD = 0;
4485
4486  if (FunctionTemplateDecl *FunTmpl
4487        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4488    FD = FunTmpl->getTemplatedDecl();
4489  else
4490    FD = cast<FunctionDecl>(D.getAs<Decl>());
4491
4492  // Enter a new function scope
4493  PushFunctionScope();
4494
4495  // See if this is a redefinition.
4496  // But don't complain if we're in GNU89 mode and the previous definition
4497  // was an extern inline function.
4498  const FunctionDecl *Definition;
4499  if (FD->getBody(Definition) &&
4500      !canRedefineFunction(Definition, getLangOptions())) {
4501    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4502    Diag(Definition->getLocation(), diag::note_previous_definition);
4503  }
4504
4505  // Builtin functions cannot be defined.
4506  if (unsigned BuiltinID = FD->getBuiltinID()) {
4507    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4508      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4509      FD->setInvalidDecl();
4510    }
4511  }
4512
4513  // The return type of a function definition must be complete
4514  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4515  QualType ResultType = FD->getResultType();
4516  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4517      !FD->isInvalidDecl() &&
4518      RequireCompleteType(FD->getLocation(), ResultType,
4519                          diag::err_func_def_incomplete_result))
4520    FD->setInvalidDecl();
4521
4522  // GNU warning -Wmissing-prototypes:
4523  //   Warn if a global function is defined without a previous
4524  //   prototype declaration. This warning is issued even if the
4525  //   definition itself provides a prototype. The aim is to detect
4526  //   global functions that fail to be declared in header files.
4527  if (ShouldWarnAboutMissingPrototype(FD))
4528    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4529
4530  if (FnBodyScope)
4531    PushDeclContext(FnBodyScope, FD);
4532
4533  // Check the validity of our function parameters
4534  CheckParmsForFunctionDef(FD);
4535
4536  bool ShouldCheckShadow =
4537    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4538
4539  // Introduce our parameters into the function scope
4540  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4541    ParmVarDecl *Param = FD->getParamDecl(p);
4542    Param->setOwningFunction(FD);
4543
4544    // If this has an identifier, add it to the scope stack.
4545    if (Param->getIdentifier() && FnBodyScope) {
4546      if (ShouldCheckShadow)
4547        CheckShadow(FnBodyScope, Param);
4548
4549      PushOnScopeChains(Param, FnBodyScope);
4550    }
4551  }
4552
4553  // Checking attributes of current function definition
4554  // dllimport attribute.
4555  if (FD->getAttr<DLLImportAttr>() &&
4556      (!FD->getAttr<DLLExportAttr>())) {
4557    // dllimport attribute cannot be applied to definition.
4558    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4559      Diag(FD->getLocation(),
4560           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4561        << "dllimport";
4562      FD->setInvalidDecl();
4563      return DeclPtrTy::make(FD);
4564    }
4565
4566    // Visual C++ appears to not think this is an issue, so only issue
4567    // a warning when Microsoft extensions are disabled.
4568    if (!LangOpts.Microsoft) {
4569      // If a symbol previously declared dllimport is later defined, the
4570      // attribute is ignored in subsequent references, and a warning is
4571      // emitted.
4572      Diag(FD->getLocation(),
4573           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4574        << FD->getNameAsCString() << "dllimport";
4575    }
4576  }
4577  return DeclPtrTy::make(FD);
4578}
4579
4580/// \brief Given the set of return statements within a function body,
4581/// compute the variables that are subject to the named return value
4582/// optimization.
4583///
4584/// Each of the variables that is subject to the named return value
4585/// optimization will be marked as NRVO variables in the AST, and any
4586/// return statement that has a marked NRVO variable as its NRVO candidate can
4587/// use the named return value optimization.
4588///
4589/// This function applies a very simplistic algorithm for NRVO: if every return
4590/// statement in the function has the same NRVO candidate, that candidate is
4591/// the NRVO variable.
4592///
4593/// FIXME: Employ a smarter algorithm that accounts for multiple return
4594/// statements and the lifetimes of the NRVO candidates. We should be able to
4595/// find a maximal set of NRVO variables.
4596static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4597  const VarDecl *NRVOCandidate = 0;
4598  for (unsigned I = 0; I != NumReturns; ++I) {
4599    if (!Returns[I]->getNRVOCandidate())
4600      return;
4601
4602    if (!NRVOCandidate)
4603      NRVOCandidate = Returns[I]->getNRVOCandidate();
4604    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4605      return;
4606  }
4607
4608  if (NRVOCandidate)
4609    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4610}
4611
4612Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4613  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4614}
4615
4616Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4617                                              bool IsInstantiation) {
4618  Decl *dcl = D.getAs<Decl>();
4619  Stmt *Body = BodyArg.takeAs<Stmt>();
4620
4621  FunctionDecl *FD = 0;
4622  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4623  if (FunTmpl)
4624    FD = FunTmpl->getTemplatedDecl();
4625  else
4626    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4627
4628  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4629
4630  if (FD) {
4631    FD->setBody(Body);
4632    if (FD->isMain()) {
4633      // C and C++ allow for main to automagically return 0.
4634      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4635      FD->setHasImplicitReturnZero(true);
4636      WP.disableCheckFallThrough();
4637    }
4638
4639    if (!FD->isInvalidDecl()) {
4640      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4641
4642      // If this is a constructor, we need a vtable.
4643      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4644        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4645
4646      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4647                  FunctionScopes.back()->Returns.size());
4648    }
4649
4650    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4651  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4652    assert(MD == getCurMethodDecl() && "Method parsing confused");
4653    MD->setBody(Body);
4654    MD->setEndLoc(Body->getLocEnd());
4655    if (!MD->isInvalidDecl())
4656      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4657  } else {
4658    Body->Destroy(Context);
4659    return DeclPtrTy();
4660  }
4661
4662  // Verify and clean out per-function state.
4663
4664  // Check goto/label use.
4665  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4666       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4667    LabelStmt *L = I->second;
4668
4669    // Verify that we have no forward references left.  If so, there was a goto
4670    // or address of a label taken, but no definition of it.  Label fwd
4671    // definitions are indicated with a null substmt.
4672    if (L->getSubStmt() != 0)
4673      continue;
4674
4675    // Emit error.
4676    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4677
4678    // At this point, we have gotos that use the bogus label.  Stitch it into
4679    // the function body so that they aren't leaked and that the AST is well
4680    // formed.
4681    if (Body == 0) {
4682      // The whole function wasn't parsed correctly, just delete this.
4683      L->Destroy(Context);
4684      continue;
4685    }
4686
4687    // Otherwise, the body is valid: we want to stitch the label decl into the
4688    // function somewhere so that it is properly owned and so that the goto
4689    // has a valid target.  Do this by creating a new compound stmt with the
4690    // label in it.
4691
4692    // Give the label a sub-statement.
4693    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4694
4695    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4696                               cast<CXXTryStmt>(Body)->getTryBlock() :
4697                               cast<CompoundStmt>(Body);
4698    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4699                                          Compound->body_end());
4700    Elements.push_back(L);
4701    Compound->setStmts(Context, Elements.data(), Elements.size());
4702  }
4703
4704  if (Body) {
4705    // C++ constructors that have function-try-blocks can't have return
4706    // statements in the handlers of that block. (C++ [except.handle]p14)
4707    // Verify this.
4708    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4709      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4710
4711    // Verify that that gotos and switch cases don't jump into scopes illegally.
4712    // Verify that that gotos and switch cases don't jump into scopes illegally.
4713    if (FunctionNeedsScopeChecking() &&
4714        !dcl->isInvalidDecl() &&
4715        !hasAnyErrorsInThisFunction())
4716      DiagnoseInvalidJumps(Body);
4717
4718    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4719      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4720                                             Destructor->getParent());
4721
4722    // If any errors have occurred, clear out any temporaries that may have
4723    // been leftover. This ensures that these temporaries won't be picked up for
4724    // deletion in some later function.
4725    if (PP.getDiagnostics().hasErrorOccurred())
4726      ExprTemporaries.clear();
4727    else if (!isa<FunctionTemplateDecl>(dcl)) {
4728      // Since the body is valid, issue any analysis-based warnings that are
4729      // enabled.
4730      QualType ResultType;
4731      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4732        ResultType = FD->getResultType();
4733      }
4734      else {
4735        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4736        ResultType = MD->getResultType();
4737      }
4738      AnalysisWarnings.IssueWarnings(WP, dcl);
4739    }
4740
4741    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4742  }
4743
4744  if (!IsInstantiation)
4745    PopDeclContext();
4746
4747  PopFunctionOrBlockScope();
4748
4749  // If any errors have occurred, clear out any temporaries that may have
4750  // been leftover. This ensures that these temporaries won't be picked up for
4751  // deletion in some later function.
4752  if (getDiagnostics().hasErrorOccurred())
4753    ExprTemporaries.clear();
4754
4755  return D;
4756}
4757
4758/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4759/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4760NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4761                                          IdentifierInfo &II, Scope *S) {
4762  // Before we produce a declaration for an implicitly defined
4763  // function, see whether there was a locally-scoped declaration of
4764  // this name as a function or variable. If so, use that
4765  // (non-visible) declaration, and complain about it.
4766  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4767    = LocallyScopedExternalDecls.find(&II);
4768  if (Pos != LocallyScopedExternalDecls.end()) {
4769    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4770    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4771    return Pos->second;
4772  }
4773
4774  // Extension in C99.  Legal in C90, but warn about it.
4775  if (II.getName().startswith("__builtin_"))
4776    Diag(Loc, diag::warn_builtin_unknown) << &II;
4777  else if (getLangOptions().C99)
4778    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4779  else
4780    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4781
4782  // Set a Declarator for the implicit definition: int foo();
4783  const char *Dummy;
4784  DeclSpec DS;
4785  unsigned DiagID;
4786  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4787  Error = Error; // Silence warning.
4788  assert(!Error && "Error setting up implicit decl!");
4789  Declarator D(DS, Declarator::BlockContext);
4790  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4791                                             0, 0, false, SourceLocation(),
4792                                             false, 0,0,0, Loc, Loc, D),
4793                SourceLocation());
4794  D.SetIdentifier(&II, Loc);
4795
4796  // Insert this function into translation-unit scope.
4797
4798  DeclContext *PrevDC = CurContext;
4799  CurContext = Context.getTranslationUnitDecl();
4800
4801  FunctionDecl *FD =
4802 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4803  FD->setImplicit();
4804
4805  CurContext = PrevDC;
4806
4807  AddKnownFunctionAttributes(FD);
4808
4809  return FD;
4810}
4811
4812/// \brief Adds any function attributes that we know a priori based on
4813/// the declaration of this function.
4814///
4815/// These attributes can apply both to implicitly-declared builtins
4816/// (like __builtin___printf_chk) or to library-declared functions
4817/// like NSLog or printf.
4818void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4819  if (FD->isInvalidDecl())
4820    return;
4821
4822  // If this is a built-in function, map its builtin attributes to
4823  // actual attributes.
4824  if (unsigned BuiltinID = FD->getBuiltinID()) {
4825    // Handle printf-formatting attributes.
4826    unsigned FormatIdx;
4827    bool HasVAListArg;
4828    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4829      if (!FD->getAttr<FormatAttr>())
4830        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4831                                               HasVAListArg ? 0 : FormatIdx+2));
4832    }
4833
4834    // Mark const if we don't care about errno and that is the only
4835    // thing preventing the function from being const. This allows
4836    // IRgen to use LLVM intrinsics for such functions.
4837    if (!getLangOptions().MathErrno &&
4838        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4839      if (!FD->getAttr<ConstAttr>())
4840        FD->addAttr(::new (Context) ConstAttr());
4841    }
4842
4843    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4844      FD->setType(Context.getNoReturnType(FD->getType()));
4845    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4846      FD->addAttr(::new (Context) NoThrowAttr());
4847    if (Context.BuiltinInfo.isConst(BuiltinID))
4848      FD->addAttr(::new (Context) ConstAttr());
4849  }
4850
4851  IdentifierInfo *Name = FD->getIdentifier();
4852  if (!Name)
4853    return;
4854  if ((!getLangOptions().CPlusPlus &&
4855       FD->getDeclContext()->isTranslationUnit()) ||
4856      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4857       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4858       LinkageSpecDecl::lang_c)) {
4859    // Okay: this could be a libc/libm/Objective-C function we know
4860    // about.
4861  } else
4862    return;
4863
4864  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4865    // FIXME: NSLog and NSLogv should be target specific
4866    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4867      // FIXME: We known better than our headers.
4868      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4869    } else
4870      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4871                                             Name->isStr("NSLogv") ? 0 : 2));
4872  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4873    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4874    // target-specific builtins, perhaps?
4875    if (!FD->getAttr<FormatAttr>())
4876      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4877                                             Name->isStr("vasprintf") ? 0 : 3));
4878  }
4879}
4880
4881TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4882                                    TypeSourceInfo *TInfo) {
4883  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4884  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4885
4886  if (!TInfo) {
4887    assert(D.isInvalidType() && "no declarator info for valid type");
4888    TInfo = Context.getTrivialTypeSourceInfo(T);
4889  }
4890
4891  // Scope manipulation handled by caller.
4892  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4893                                           D.getIdentifierLoc(),
4894                                           D.getIdentifier(),
4895                                           TInfo);
4896
4897  if (const TagType *TT = T->getAs<TagType>()) {
4898    TagDecl *TD = TT->getDecl();
4899
4900    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4901    // keep track of the TypedefDecl.
4902    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4903      TD->setTypedefForAnonDecl(NewTD);
4904  }
4905
4906  if (D.isInvalidType())
4907    NewTD->setInvalidDecl();
4908  return NewTD;
4909}
4910
4911
4912/// \brief Determine whether a tag with a given kind is acceptable
4913/// as a redeclaration of the given tag declaration.
4914///
4915/// \returns true if the new tag kind is acceptable, false otherwise.
4916bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4917                                        TagTypeKind NewTag,
4918                                        SourceLocation NewTagLoc,
4919                                        const IdentifierInfo &Name) {
4920  // C++ [dcl.type.elab]p3:
4921  //   The class-key or enum keyword present in the
4922  //   elaborated-type-specifier shall agree in kind with the
4923  //   declaration to which the name in the elaborated-type-specifier
4924  //   refers. This rule also applies to the form of
4925  //   elaborated-type-specifier that declares a class-name or
4926  //   friend class since it can be construed as referring to the
4927  //   definition of the class. Thus, in any
4928  //   elaborated-type-specifier, the enum keyword shall be used to
4929  //   refer to an enumeration (7.2), the union class-key shall be
4930  //   used to refer to a union (clause 9), and either the class or
4931  //   struct class-key shall be used to refer to a class (clause 9)
4932  //   declared using the class or struct class-key.
4933  TagTypeKind OldTag = Previous->getTagKind();
4934  if (OldTag == NewTag)
4935    return true;
4936
4937  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
4938      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
4939    // Warn about the struct/class tag mismatch.
4940    bool isTemplate = false;
4941    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4942      isTemplate = Record->getDescribedClassTemplate();
4943
4944    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4945      << (NewTag == TTK_Class)
4946      << isTemplate << &Name
4947      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4948                              OldTag == TTK_Class? "class" : "struct");
4949    Diag(Previous->getLocation(), diag::note_previous_use);
4950    return true;
4951  }
4952  return false;
4953}
4954
4955/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4956/// former case, Name will be non-null.  In the later case, Name will be null.
4957/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4958/// reference/declaration/definition of a tag.
4959Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4960                               SourceLocation KWLoc, CXXScopeSpec &SS,
4961                               IdentifierInfo *Name, SourceLocation NameLoc,
4962                               AttributeList *Attr, AccessSpecifier AS,
4963                               MultiTemplateParamsArg TemplateParameterLists,
4964                               bool &OwnedDecl, bool &IsDependent) {
4965  // If this is not a definition, it must have a name.
4966  assert((Name != 0 || TUK == TUK_Definition) &&
4967         "Nameless record must be a definition!");
4968
4969  OwnedDecl = false;
4970  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4971
4972  // FIXME: Check explicit specializations more carefully.
4973  bool isExplicitSpecialization = false;
4974  if (TUK != TUK_Reference) {
4975    if (TemplateParameterList *TemplateParams
4976          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4977                        (TemplateParameterList**)TemplateParameterLists.get(),
4978                                              TemplateParameterLists.size(),
4979                                                    TUK == TUK_Friend,
4980                                                    isExplicitSpecialization)) {
4981      if (TemplateParams->size() > 0) {
4982        // This is a declaration or definition of a class template (which may
4983        // be a member of another template).
4984        OwnedDecl = false;
4985        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4986                                               SS, Name, NameLoc, Attr,
4987                                               TemplateParams,
4988                                               AS);
4989        TemplateParameterLists.release();
4990        return Result.get();
4991      } else {
4992        // The "template<>" header is extraneous.
4993        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4994          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
4995        isExplicitSpecialization = true;
4996      }
4997    }
4998
4999    TemplateParameterLists.release();
5000  }
5001
5002  DeclContext *SearchDC = CurContext;
5003  DeclContext *DC = CurContext;
5004  bool isStdBadAlloc = false;
5005  bool Invalid = false;
5006
5007  RedeclarationKind Redecl = ForRedeclaration;
5008  if (TUK == TUK_Friend || TUK == TUK_Reference)
5009    Redecl = NotForRedeclaration;
5010
5011  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5012
5013  if (Name && SS.isNotEmpty()) {
5014    // We have a nested-name tag ('struct foo::bar').
5015
5016    // Check for invalid 'foo::'.
5017    if (SS.isInvalid()) {
5018      Name = 0;
5019      goto CreateNewDecl;
5020    }
5021
5022    // If this is a friend or a reference to a class in a dependent
5023    // context, don't try to make a decl for it.
5024    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5025      DC = computeDeclContext(SS, false);
5026      if (!DC) {
5027        IsDependent = true;
5028        return DeclPtrTy();
5029      }
5030    } else {
5031      DC = computeDeclContext(SS, true);
5032      if (!DC) {
5033        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5034          << SS.getRange();
5035        return DeclPtrTy();
5036      }
5037    }
5038
5039    if (RequireCompleteDeclContext(SS, DC))
5040      return DeclPtrTy::make((Decl *)0);
5041
5042    SearchDC = DC;
5043    // Look-up name inside 'foo::'.
5044    LookupQualifiedName(Previous, DC);
5045
5046    if (Previous.isAmbiguous())
5047      return DeclPtrTy();
5048
5049    if (Previous.empty()) {
5050      // Name lookup did not find anything. However, if the
5051      // nested-name-specifier refers to the current instantiation,
5052      // and that current instantiation has any dependent base
5053      // classes, we might find something at instantiation time: treat
5054      // this as a dependent elaborated-type-specifier.
5055      if (Previous.wasNotFoundInCurrentInstantiation()) {
5056        IsDependent = true;
5057        return DeclPtrTy();
5058      }
5059
5060      // A tag 'foo::bar' must already exist.
5061      Diag(NameLoc, diag::err_not_tag_in_scope)
5062        << Kind << Name << DC << SS.getRange();
5063      Name = 0;
5064      Invalid = true;
5065      goto CreateNewDecl;
5066    }
5067  } else if (Name) {
5068    // If this is a named struct, check to see if there was a previous forward
5069    // declaration or definition.
5070    // FIXME: We're looking into outer scopes here, even when we
5071    // shouldn't be. Doing so can result in ambiguities that we
5072    // shouldn't be diagnosing.
5073    LookupName(Previous, S);
5074
5075    // Note:  there used to be some attempt at recovery here.
5076    if (Previous.isAmbiguous())
5077      return DeclPtrTy();
5078
5079    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5080      // FIXME: This makes sure that we ignore the contexts associated
5081      // with C structs, unions, and enums when looking for a matching
5082      // tag declaration or definition. See the similar lookup tweak
5083      // in Sema::LookupName; is there a better way to deal with this?
5084      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5085        SearchDC = SearchDC->getParent();
5086    }
5087  }
5088
5089  if (Previous.isSingleResult() &&
5090      Previous.getFoundDecl()->isTemplateParameter()) {
5091    // Maybe we will complain about the shadowed template parameter.
5092    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5093    // Just pretend that we didn't see the previous declaration.
5094    Previous.clear();
5095  }
5096
5097  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5098      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5099    // This is a declaration of or a reference to "std::bad_alloc".
5100    isStdBadAlloc = true;
5101
5102    if (Previous.empty() && StdBadAlloc) {
5103      // std::bad_alloc has been implicitly declared (but made invisible to
5104      // name lookup). Fill in this implicit declaration as the previous
5105      // declaration, so that the declarations get chained appropriately.
5106      Previous.addDecl(StdBadAlloc);
5107    }
5108  }
5109
5110  // If we didn't find a previous declaration, and this is a reference
5111  // (or friend reference), move to the correct scope.  In C++, we
5112  // also need to do a redeclaration lookup there, just in case
5113  // there's a shadow friend decl.
5114  if (Name && Previous.empty() &&
5115      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5116    if (Invalid) goto CreateNewDecl;
5117    assert(SS.isEmpty());
5118
5119    if (TUK == TUK_Reference) {
5120      // C++ [basic.scope.pdecl]p5:
5121      //   -- for an elaborated-type-specifier of the form
5122      //
5123      //          class-key identifier
5124      //
5125      //      if the elaborated-type-specifier is used in the
5126      //      decl-specifier-seq or parameter-declaration-clause of a
5127      //      function defined in namespace scope, the identifier is
5128      //      declared as a class-name in the namespace that contains
5129      //      the declaration; otherwise, except as a friend
5130      //      declaration, the identifier is declared in the smallest
5131      //      non-class, non-function-prototype scope that contains the
5132      //      declaration.
5133      //
5134      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5135      // C structs and unions.
5136      //
5137      // It is an error in C++ to declare (rather than define) an enum
5138      // type, including via an elaborated type specifier.  We'll
5139      // diagnose that later; for now, declare the enum in the same
5140      // scope as we would have picked for any other tag type.
5141      //
5142      // GNU C also supports this behavior as part of its incomplete
5143      // enum types extension, while GNU C++ does not.
5144      //
5145      // Find the context where we'll be declaring the tag.
5146      // FIXME: We would like to maintain the current DeclContext as the
5147      // lexical context,
5148      while (SearchDC->isRecord())
5149        SearchDC = SearchDC->getParent();
5150
5151      // Find the scope where we'll be declaring the tag.
5152      while (S->isClassScope() ||
5153             (getLangOptions().CPlusPlus &&
5154              S->isFunctionPrototypeScope()) ||
5155             ((S->getFlags() & Scope::DeclScope) == 0) ||
5156             (S->getEntity() &&
5157              ((DeclContext *)S->getEntity())->isTransparentContext()))
5158        S = S->getParent();
5159    } else {
5160      assert(TUK == TUK_Friend);
5161      // C++ [namespace.memdef]p3:
5162      //   If a friend declaration in a non-local class first declares a
5163      //   class or function, the friend class or function is a member of
5164      //   the innermost enclosing namespace.
5165      SearchDC = SearchDC->getEnclosingNamespaceContext();
5166    }
5167
5168    // In C++, we need to do a redeclaration lookup to properly
5169    // diagnose some problems.
5170    if (getLangOptions().CPlusPlus) {
5171      Previous.setRedeclarationKind(ForRedeclaration);
5172      LookupQualifiedName(Previous, SearchDC);
5173    }
5174  }
5175
5176  if (!Previous.empty()) {
5177    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5178
5179    // It's okay to have a tag decl in the same scope as a typedef
5180    // which hides a tag decl in the same scope.  Finding this
5181    // insanity with a redeclaration lookup can only actually happen
5182    // in C++.
5183    //
5184    // This is also okay for elaborated-type-specifiers, which is
5185    // technically forbidden by the current standard but which is
5186    // okay according to the likely resolution of an open issue;
5187    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5188    if (getLangOptions().CPlusPlus) {
5189      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5190        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5191          TagDecl *Tag = TT->getDecl();
5192          if (Tag->getDeclName() == Name &&
5193              Tag->getDeclContext()->getLookupContext()
5194                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5195            PrevDecl = Tag;
5196            Previous.clear();
5197            Previous.addDecl(Tag);
5198          }
5199        }
5200      }
5201    }
5202
5203    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5204      // If this is a use of a previous tag, or if the tag is already declared
5205      // in the same scope (so that the definition/declaration completes or
5206      // rementions the tag), reuse the decl.
5207      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5208          isDeclInScope(PrevDecl, SearchDC, S)) {
5209        // Make sure that this wasn't declared as an enum and now used as a
5210        // struct or something similar.
5211        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5212          bool SafeToContinue
5213            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5214               Kind != TTK_Enum);
5215          if (SafeToContinue)
5216            Diag(KWLoc, diag::err_use_with_wrong_tag)
5217              << Name
5218              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5219                                              PrevTagDecl->getKindName());
5220          else
5221            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5222          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5223
5224          if (SafeToContinue)
5225            Kind = PrevTagDecl->getTagKind();
5226          else {
5227            // Recover by making this an anonymous redefinition.
5228            Name = 0;
5229            Previous.clear();
5230            Invalid = true;
5231          }
5232        }
5233
5234        if (!Invalid) {
5235          // If this is a use, just return the declaration we found.
5236
5237          // FIXME: In the future, return a variant or some other clue
5238          // for the consumer of this Decl to know it doesn't own it.
5239          // For our current ASTs this shouldn't be a problem, but will
5240          // need to be changed with DeclGroups.
5241          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5242              TUK == TUK_Friend)
5243            return DeclPtrTy::make(PrevTagDecl);
5244
5245          // Diagnose attempts to redefine a tag.
5246          if (TUK == TUK_Definition) {
5247            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5248              // If we're defining a specialization and the previous definition
5249              // is from an implicit instantiation, don't emit an error
5250              // here; we'll catch this in the general case below.
5251              if (!isExplicitSpecialization ||
5252                  !isa<CXXRecordDecl>(Def) ||
5253                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5254                                               == TSK_ExplicitSpecialization) {
5255                Diag(NameLoc, diag::err_redefinition) << Name;
5256                Diag(Def->getLocation(), diag::note_previous_definition);
5257                // If this is a redefinition, recover by making this
5258                // struct be anonymous, which will make any later
5259                // references get the previous definition.
5260                Name = 0;
5261                Previous.clear();
5262                Invalid = true;
5263              }
5264            } else {
5265              // If the type is currently being defined, complain
5266              // about a nested redefinition.
5267              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5268              if (Tag->isBeingDefined()) {
5269                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5270                Diag(PrevTagDecl->getLocation(),
5271                     diag::note_previous_definition);
5272                Name = 0;
5273                Previous.clear();
5274                Invalid = true;
5275              }
5276            }
5277
5278            // Okay, this is definition of a previously declared or referenced
5279            // tag PrevDecl. We're going to create a new Decl for it.
5280          }
5281        }
5282        // If we get here we have (another) forward declaration or we
5283        // have a definition.  Just create a new decl.
5284
5285      } else {
5286        // If we get here, this is a definition of a new tag type in a nested
5287        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5288        // new decl/type.  We set PrevDecl to NULL so that the entities
5289        // have distinct types.
5290        Previous.clear();
5291      }
5292      // If we get here, we're going to create a new Decl. If PrevDecl
5293      // is non-NULL, it's a definition of the tag declared by
5294      // PrevDecl. If it's NULL, we have a new definition.
5295
5296
5297    // Otherwise, PrevDecl is not a tag, but was found with tag
5298    // lookup.  This is only actually possible in C++, where a few
5299    // things like templates still live in the tag namespace.
5300    } else {
5301      assert(getLangOptions().CPlusPlus);
5302
5303      // Use a better diagnostic if an elaborated-type-specifier
5304      // found the wrong kind of type on the first
5305      // (non-redeclaration) lookup.
5306      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5307          !Previous.isForRedeclaration()) {
5308        unsigned Kind = 0;
5309        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5310        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5311        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5312        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5313        Invalid = true;
5314
5315      // Otherwise, only diagnose if the declaration is in scope.
5316      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5317        // do nothing
5318
5319      // Diagnose implicit declarations introduced by elaborated types.
5320      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5321        unsigned Kind = 0;
5322        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5323        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5324        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5325        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5326        Invalid = true;
5327
5328      // Otherwise it's a declaration.  Call out a particularly common
5329      // case here.
5330      } else if (isa<TypedefDecl>(PrevDecl)) {
5331        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5332          << Name
5333          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5334        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5335        Invalid = true;
5336
5337      // Otherwise, diagnose.
5338      } else {
5339        // The tag name clashes with something else in the target scope,
5340        // issue an error and recover by making this tag be anonymous.
5341        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5342        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5343        Name = 0;
5344        Invalid = true;
5345      }
5346
5347      // The existing declaration isn't relevant to us; we're in a
5348      // new scope, so clear out the previous declaration.
5349      Previous.clear();
5350    }
5351  }
5352
5353CreateNewDecl:
5354
5355  TagDecl *PrevDecl = 0;
5356  if (Previous.isSingleResult())
5357    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5358
5359  // If there is an identifier, use the location of the identifier as the
5360  // location of the decl, otherwise use the location of the struct/union
5361  // keyword.
5362  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5363
5364  // Otherwise, create a new declaration. If there is a previous
5365  // declaration of the same entity, the two will be linked via
5366  // PrevDecl.
5367  TagDecl *New;
5368
5369  if (Kind == TTK_Enum) {
5370    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5371    // enum X { A, B, C } D;    D should chain to X.
5372    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5373                           cast_or_null<EnumDecl>(PrevDecl));
5374    // If this is an undefined enum, warn.
5375    if (TUK != TUK_Definition && !Invalid)  {
5376      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5377                                              : diag::ext_forward_ref_enum;
5378      Diag(Loc, DK);
5379    }
5380  } else {
5381    // struct/union/class
5382
5383    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5384    // struct X { int A; } D;    D should chain to X.
5385    if (getLangOptions().CPlusPlus) {
5386      // FIXME: Look for a way to use RecordDecl for simple structs.
5387      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5388                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5389
5390      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5391        StdBadAlloc = cast<CXXRecordDecl>(New);
5392    } else
5393      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5394                               cast_or_null<RecordDecl>(PrevDecl));
5395  }
5396
5397  // Maybe add qualifier info.
5398  if (SS.isNotEmpty()) {
5399    if (SS.isSet()) {
5400      NestedNameSpecifier *NNS
5401        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5402      New->setQualifierInfo(NNS, SS.getRange());
5403    }
5404    else
5405      Invalid = true;
5406  }
5407
5408  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5409    // Add alignment attributes if necessary; these attributes are checked when
5410    // the ASTContext lays out the structure.
5411    //
5412    // It is important for implementing the correct semantics that this
5413    // happen here (in act on tag decl). The #pragma pack stack is
5414    // maintained as a result of parser callbacks which can occur at
5415    // many points during the parsing of a struct declaration (because
5416    // the #pragma tokens are effectively skipped over during the
5417    // parsing of the struct).
5418    AddAlignmentAttributesForRecord(RD);
5419  }
5420
5421  // If this is a specialization of a member class (of a class template),
5422  // check the specialization.
5423  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5424    Invalid = true;
5425
5426  if (Invalid)
5427    New->setInvalidDecl();
5428
5429  if (Attr)
5430    ProcessDeclAttributeList(S, New, Attr);
5431
5432  // If we're declaring or defining a tag in function prototype scope
5433  // in C, note that this type can only be used within the function.
5434  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5435    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5436
5437  // Set the lexical context. If the tag has a C++ scope specifier, the
5438  // lexical context will be different from the semantic context.
5439  New->setLexicalDeclContext(CurContext);
5440
5441  // Mark this as a friend decl if applicable.
5442  if (TUK == TUK_Friend)
5443    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5444
5445  // Set the access specifier.
5446  if (!Invalid && SearchDC->isRecord())
5447    SetMemberAccessSpecifier(New, PrevDecl, AS);
5448
5449  if (TUK == TUK_Definition)
5450    New->startDefinition();
5451
5452  // If this has an identifier, add it to the scope stack.
5453  if (TUK == TUK_Friend) {
5454    // We might be replacing an existing declaration in the lookup tables;
5455    // if so, borrow its access specifier.
5456    if (PrevDecl)
5457      New->setAccess(PrevDecl->getAccess());
5458
5459    DeclContext *DC = New->getDeclContext()->getLookupContext();
5460    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5461    if (Name) // can be null along some error paths
5462      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5463        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5464  } else if (Name) {
5465    S = getNonFieldDeclScope(S);
5466    PushOnScopeChains(New, S);
5467  } else {
5468    CurContext->addDecl(New);
5469  }
5470
5471  // If this is the C FILE type, notify the AST context.
5472  if (IdentifierInfo *II = New->getIdentifier())
5473    if (!New->isInvalidDecl() &&
5474        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5475        II->isStr("FILE"))
5476      Context.setFILEDecl(New);
5477
5478  OwnedDecl = true;
5479  return DeclPtrTy::make(New);
5480}
5481
5482void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5483  AdjustDeclIfTemplate(TagD);
5484  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5485
5486  // Enter the tag context.
5487  PushDeclContext(S, Tag);
5488}
5489
5490void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5491                                           SourceLocation LBraceLoc) {
5492  AdjustDeclIfTemplate(TagD);
5493  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5494
5495  FieldCollector->StartClass();
5496
5497  if (!Record->getIdentifier())
5498    return;
5499
5500  // C++ [class]p2:
5501  //   [...] The class-name is also inserted into the scope of the
5502  //   class itself; this is known as the injected-class-name. For
5503  //   purposes of access checking, the injected-class-name is treated
5504  //   as if it were a public member name.
5505  CXXRecordDecl *InjectedClassName
5506    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5507                            CurContext, Record->getLocation(),
5508                            Record->getIdentifier(),
5509                            Record->getTagKeywordLoc(),
5510                            Record);
5511  InjectedClassName->setImplicit();
5512  InjectedClassName->setAccess(AS_public);
5513  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5514      InjectedClassName->setDescribedClassTemplate(Template);
5515  PushOnScopeChains(InjectedClassName, S);
5516  assert(InjectedClassName->isInjectedClassName() &&
5517         "Broken injected-class-name");
5518}
5519
5520void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5521                                    SourceLocation RBraceLoc) {
5522  AdjustDeclIfTemplate(TagD);
5523  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5524  Tag->setRBraceLoc(RBraceLoc);
5525
5526  if (isa<CXXRecordDecl>(Tag))
5527    FieldCollector->FinishClass();
5528
5529  // Exit this scope of this tag's definition.
5530  PopDeclContext();
5531
5532  // Notify the consumer that we've defined a tag.
5533  Consumer.HandleTagDeclDefinition(Tag);
5534}
5535
5536void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5537  AdjustDeclIfTemplate(TagD);
5538  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5539  Tag->setInvalidDecl();
5540
5541  // We're undoing ActOnTagStartDefinition here, not
5542  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5543  // the FieldCollector.
5544
5545  PopDeclContext();
5546}
5547
5548// Note that FieldName may be null for anonymous bitfields.
5549bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5550                          QualType FieldTy, const Expr *BitWidth,
5551                          bool *ZeroWidth) {
5552  // Default to true; that shouldn't confuse checks for emptiness
5553  if (ZeroWidth)
5554    *ZeroWidth = true;
5555
5556  // C99 6.7.2.1p4 - verify the field type.
5557  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5558  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5559    // Handle incomplete types with specific error.
5560    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5561      return true;
5562    if (FieldName)
5563      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5564        << FieldName << FieldTy << BitWidth->getSourceRange();
5565    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5566      << FieldTy << BitWidth->getSourceRange();
5567  }
5568
5569  // If the bit-width is type- or value-dependent, don't try to check
5570  // it now.
5571  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5572    return false;
5573
5574  llvm::APSInt Value;
5575  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5576    return true;
5577
5578  if (Value != 0 && ZeroWidth)
5579    *ZeroWidth = false;
5580
5581  // Zero-width bitfield is ok for anonymous field.
5582  if (Value == 0 && FieldName)
5583    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5584
5585  if (Value.isSigned() && Value.isNegative()) {
5586    if (FieldName)
5587      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5588               << FieldName << Value.toString(10);
5589    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5590      << Value.toString(10);
5591  }
5592
5593  if (!FieldTy->isDependentType()) {
5594    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5595    if (Value.getZExtValue() > TypeSize) {
5596      if (!getLangOptions().CPlusPlus) {
5597        if (FieldName)
5598          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5599            << FieldName << (unsigned)Value.getZExtValue()
5600            << (unsigned)TypeSize;
5601
5602        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5603          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5604      }
5605
5606      if (FieldName)
5607        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5608          << FieldName << (unsigned)Value.getZExtValue()
5609          << (unsigned)TypeSize;
5610      else
5611        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5612          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5613    }
5614  }
5615
5616  return false;
5617}
5618
5619/// ActOnField - Each field of a struct/union/class is passed into this in order
5620/// to create a FieldDecl object for it.
5621Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5622                                 SourceLocation DeclStart,
5623                                 Declarator &D, ExprTy *BitfieldWidth) {
5624  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5625                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5626                               AS_public);
5627  return DeclPtrTy::make(Res);
5628}
5629
5630/// HandleField - Analyze a field of a C struct or a C++ data member.
5631///
5632FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5633                             SourceLocation DeclStart,
5634                             Declarator &D, Expr *BitWidth,
5635                             AccessSpecifier AS) {
5636  IdentifierInfo *II = D.getIdentifier();
5637  SourceLocation Loc = DeclStart;
5638  if (II) Loc = D.getIdentifierLoc();
5639
5640  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5641  QualType T = TInfo->getType();
5642  if (getLangOptions().CPlusPlus)
5643    CheckExtraCXXDefaultArguments(D);
5644
5645  DiagnoseFunctionSpecifiers(D);
5646
5647  if (D.getDeclSpec().isThreadSpecified())
5648    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5649
5650  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5651                                         ForRedeclaration);
5652
5653  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5654    // Maybe we will complain about the shadowed template parameter.
5655    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5656    // Just pretend that we didn't see the previous declaration.
5657    PrevDecl = 0;
5658  }
5659
5660  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5661    PrevDecl = 0;
5662
5663  bool Mutable
5664    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5665  SourceLocation TSSL = D.getSourceRange().getBegin();
5666  FieldDecl *NewFD
5667    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5668                     AS, PrevDecl, &D);
5669
5670  if (NewFD->isInvalidDecl())
5671    Record->setInvalidDecl();
5672
5673  if (NewFD->isInvalidDecl() && PrevDecl) {
5674    // Don't introduce NewFD into scope; there's already something
5675    // with the same name in the same scope.
5676  } else if (II) {
5677    PushOnScopeChains(NewFD, S);
5678  } else
5679    Record->addDecl(NewFD);
5680
5681  return NewFD;
5682}
5683
5684/// \brief Build a new FieldDecl and check its well-formedness.
5685///
5686/// This routine builds a new FieldDecl given the fields name, type,
5687/// record, etc. \p PrevDecl should refer to any previous declaration
5688/// with the same name and in the same scope as the field to be
5689/// created.
5690///
5691/// \returns a new FieldDecl.
5692///
5693/// \todo The Declarator argument is a hack. It will be removed once
5694FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5695                                TypeSourceInfo *TInfo,
5696                                RecordDecl *Record, SourceLocation Loc,
5697                                bool Mutable, Expr *BitWidth,
5698                                SourceLocation TSSL,
5699                                AccessSpecifier AS, NamedDecl *PrevDecl,
5700                                Declarator *D) {
5701  IdentifierInfo *II = Name.getAsIdentifierInfo();
5702  bool InvalidDecl = false;
5703  if (D) InvalidDecl = D->isInvalidType();
5704
5705  // If we receive a broken type, recover by assuming 'int' and
5706  // marking this declaration as invalid.
5707  if (T.isNull()) {
5708    InvalidDecl = true;
5709    T = Context.IntTy;
5710  }
5711
5712  QualType EltTy = Context.getBaseElementType(T);
5713  if (!EltTy->isDependentType() &&
5714      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5715    InvalidDecl = true;
5716
5717  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5718  // than a variably modified type.
5719  if (!InvalidDecl && T->isVariablyModifiedType()) {
5720    bool SizeIsNegative;
5721    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5722                                                           SizeIsNegative);
5723    if (!FixedTy.isNull()) {
5724      Diag(Loc, diag::warn_illegal_constant_array_size);
5725      T = FixedTy;
5726    } else {
5727      if (SizeIsNegative)
5728        Diag(Loc, diag::err_typecheck_negative_array_size);
5729      else
5730        Diag(Loc, diag::err_typecheck_field_variable_size);
5731      InvalidDecl = true;
5732    }
5733  }
5734
5735  // Fields can not have abstract class types
5736  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5737                                             diag::err_abstract_type_in_decl,
5738                                             AbstractFieldType))
5739    InvalidDecl = true;
5740
5741  bool ZeroWidth = false;
5742  // If this is declared as a bit-field, check the bit-field.
5743  if (!InvalidDecl && BitWidth &&
5744      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5745    InvalidDecl = true;
5746    DeleteExpr(BitWidth);
5747    BitWidth = 0;
5748    ZeroWidth = false;
5749  }
5750
5751  // Check that 'mutable' is consistent with the type of the declaration.
5752  if (!InvalidDecl && Mutable) {
5753    unsigned DiagID = 0;
5754    if (T->isReferenceType())
5755      DiagID = diag::err_mutable_reference;
5756    else if (T.isConstQualified())
5757      DiagID = diag::err_mutable_const;
5758
5759    if (DiagID) {
5760      SourceLocation ErrLoc = Loc;
5761      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5762        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5763      Diag(ErrLoc, DiagID);
5764      Mutable = false;
5765      InvalidDecl = true;
5766    }
5767  }
5768
5769  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5770                                       BitWidth, Mutable);
5771  if (InvalidDecl)
5772    NewFD->setInvalidDecl();
5773
5774  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5775    Diag(Loc, diag::err_duplicate_member) << II;
5776    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5777    NewFD->setInvalidDecl();
5778  }
5779
5780  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5781    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5782
5783    if (!T->isPODType())
5784      CXXRecord->setPOD(false);
5785    if (!ZeroWidth)
5786      CXXRecord->setEmpty(false);
5787
5788    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5789      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5790
5791      if (!RDecl->hasTrivialConstructor())
5792        CXXRecord->setHasTrivialConstructor(false);
5793      if (!RDecl->hasTrivialCopyConstructor())
5794        CXXRecord->setHasTrivialCopyConstructor(false);
5795      if (!RDecl->hasTrivialCopyAssignment())
5796        CXXRecord->setHasTrivialCopyAssignment(false);
5797      if (!RDecl->hasTrivialDestructor())
5798        CXXRecord->setHasTrivialDestructor(false);
5799
5800      // C++ 9.5p1: An object of a class with a non-trivial
5801      // constructor, a non-trivial copy constructor, a non-trivial
5802      // destructor, or a non-trivial copy assignment operator
5803      // cannot be a member of a union, nor can an array of such
5804      // objects.
5805      // TODO: C++0x alters this restriction significantly.
5806      if (Record->isUnion()) {
5807        // We check for copy constructors before constructors
5808        // because otherwise we'll never get complaints about
5809        // copy constructors.
5810
5811        CXXSpecialMember member = CXXInvalid;
5812        if (!RDecl->hasTrivialCopyConstructor())
5813          member = CXXCopyConstructor;
5814        else if (!RDecl->hasTrivialConstructor())
5815          member = CXXConstructor;
5816        else if (!RDecl->hasTrivialCopyAssignment())
5817          member = CXXCopyAssignment;
5818        else if (!RDecl->hasTrivialDestructor())
5819          member = CXXDestructor;
5820
5821        if (member != CXXInvalid) {
5822          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5823          DiagnoseNontrivial(RT, member);
5824          NewFD->setInvalidDecl();
5825        }
5826      }
5827    }
5828  }
5829
5830  // FIXME: We need to pass in the attributes given an AST
5831  // representation, not a parser representation.
5832  if (D)
5833    // FIXME: What to pass instead of TUScope?
5834    ProcessDeclAttributes(TUScope, NewFD, *D);
5835
5836  if (T.isObjCGCWeak())
5837    Diag(Loc, diag::warn_attribute_weak_on_field);
5838
5839  NewFD->setAccess(AS);
5840
5841  // C++ [dcl.init.aggr]p1:
5842  //   An aggregate is an array or a class (clause 9) with [...] no
5843  //   private or protected non-static data members (clause 11).
5844  // A POD must be an aggregate.
5845  if (getLangOptions().CPlusPlus &&
5846      (AS == AS_private || AS == AS_protected)) {
5847    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5848    CXXRecord->setAggregate(false);
5849    CXXRecord->setPOD(false);
5850  }
5851
5852  return NewFD;
5853}
5854
5855/// DiagnoseNontrivial - Given that a class has a non-trivial
5856/// special member, figure out why.
5857void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5858  QualType QT(T, 0U);
5859  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5860
5861  // Check whether the member was user-declared.
5862  switch (member) {
5863  case CXXInvalid:
5864    break;
5865
5866  case CXXConstructor:
5867    if (RD->hasUserDeclaredConstructor()) {
5868      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5869      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5870        const FunctionDecl *body = 0;
5871        ci->getBody(body);
5872        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5873          SourceLocation CtorLoc = ci->getLocation();
5874          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5875          return;
5876        }
5877      }
5878
5879      assert(0 && "found no user-declared constructors");
5880      return;
5881    }
5882    break;
5883
5884  case CXXCopyConstructor:
5885    if (RD->hasUserDeclaredCopyConstructor()) {
5886      SourceLocation CtorLoc =
5887        RD->getCopyConstructor(Context, 0)->getLocation();
5888      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5889      return;
5890    }
5891    break;
5892
5893  case CXXCopyAssignment:
5894    if (RD->hasUserDeclaredCopyAssignment()) {
5895      // FIXME: this should use the location of the copy
5896      // assignment, not the type.
5897      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5898      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5899      return;
5900    }
5901    break;
5902
5903  case CXXDestructor:
5904    if (RD->hasUserDeclaredDestructor()) {
5905      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5906      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5907      return;
5908    }
5909    break;
5910  }
5911
5912  typedef CXXRecordDecl::base_class_iterator base_iter;
5913
5914  // Virtual bases and members inhibit trivial copying/construction,
5915  // but not trivial destruction.
5916  if (member != CXXDestructor) {
5917    // Check for virtual bases.  vbases includes indirect virtual bases,
5918    // so we just iterate through the direct bases.
5919    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5920      if (bi->isVirtual()) {
5921        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5922        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5923        return;
5924      }
5925
5926    // Check for virtual methods.
5927    typedef CXXRecordDecl::method_iterator meth_iter;
5928    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5929         ++mi) {
5930      if (mi->isVirtual()) {
5931        SourceLocation MLoc = mi->getSourceRange().getBegin();
5932        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5933        return;
5934      }
5935    }
5936  }
5937
5938  bool (CXXRecordDecl::*hasTrivial)() const;
5939  switch (member) {
5940  case CXXConstructor:
5941    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5942  case CXXCopyConstructor:
5943    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5944  case CXXCopyAssignment:
5945    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5946  case CXXDestructor:
5947    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5948  default:
5949    assert(0 && "unexpected special member"); return;
5950  }
5951
5952  // Check for nontrivial bases (and recurse).
5953  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5954    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5955    assert(BaseRT && "Don't know how to handle dependent bases");
5956    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5957    if (!(BaseRecTy->*hasTrivial)()) {
5958      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5959      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5960      DiagnoseNontrivial(BaseRT, member);
5961      return;
5962    }
5963  }
5964
5965  // Check for nontrivial members (and recurse).
5966  typedef RecordDecl::field_iterator field_iter;
5967  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5968       ++fi) {
5969    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5970    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5971      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5972
5973      if (!(EltRD->*hasTrivial)()) {
5974        SourceLocation FLoc = (*fi)->getLocation();
5975        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5976        DiagnoseNontrivial(EltRT, member);
5977        return;
5978      }
5979    }
5980  }
5981
5982  assert(0 && "found no explanation for non-trivial member");
5983}
5984
5985/// TranslateIvarVisibility - Translate visibility from a token ID to an
5986///  AST enum value.
5987static ObjCIvarDecl::AccessControl
5988TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5989  switch (ivarVisibility) {
5990  default: assert(0 && "Unknown visitibility kind");
5991  case tok::objc_private: return ObjCIvarDecl::Private;
5992  case tok::objc_public: return ObjCIvarDecl::Public;
5993  case tok::objc_protected: return ObjCIvarDecl::Protected;
5994  case tok::objc_package: return ObjCIvarDecl::Package;
5995  }
5996}
5997
5998/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5999/// in order to create an IvarDecl object for it.
6000Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6001                                SourceLocation DeclStart,
6002                                DeclPtrTy IntfDecl,
6003                                Declarator &D, ExprTy *BitfieldWidth,
6004                                tok::ObjCKeywordKind Visibility) {
6005
6006  IdentifierInfo *II = D.getIdentifier();
6007  Expr *BitWidth = (Expr*)BitfieldWidth;
6008  SourceLocation Loc = DeclStart;
6009  if (II) Loc = D.getIdentifierLoc();
6010
6011  // FIXME: Unnamed fields can be handled in various different ways, for
6012  // example, unnamed unions inject all members into the struct namespace!
6013
6014  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6015  QualType T = TInfo->getType();
6016
6017  if (BitWidth) {
6018    // 6.7.2.1p3, 6.7.2.1p4
6019    if (VerifyBitField(Loc, II, T, BitWidth)) {
6020      D.setInvalidType();
6021      DeleteExpr(BitWidth);
6022      BitWidth = 0;
6023    }
6024  } else {
6025    // Not a bitfield.
6026
6027    // validate II.
6028
6029  }
6030  if (T->isReferenceType()) {
6031    Diag(Loc, diag::err_ivar_reference_type);
6032    D.setInvalidType();
6033  }
6034  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6035  // than a variably modified type.
6036  else if (T->isVariablyModifiedType()) {
6037    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6038    D.setInvalidType();
6039  }
6040
6041  // Get the visibility (access control) for this ivar.
6042  ObjCIvarDecl::AccessControl ac =
6043    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6044                                        : ObjCIvarDecl::None;
6045  // Must set ivar's DeclContext to its enclosing interface.
6046  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6047  ObjCContainerDecl *EnclosingContext;
6048  if (ObjCImplementationDecl *IMPDecl =
6049      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6050    // Case of ivar declared in an implementation. Context is that of its class.
6051    EnclosingContext = IMPDecl->getClassInterface();
6052    assert(EnclosingContext && "Implementation has no class interface!");
6053  } else {
6054    if (ObjCCategoryDecl *CDecl =
6055        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6056      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6057        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6058        return DeclPtrTy();
6059      }
6060    }
6061    EnclosingContext = EnclosingDecl;
6062  }
6063
6064  // Construct the decl.
6065  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6066                                             EnclosingContext, Loc, II, T,
6067                                             TInfo, ac, (Expr *)BitfieldWidth);
6068
6069  if (II) {
6070    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6071                                           ForRedeclaration);
6072    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6073        && !isa<TagDecl>(PrevDecl)) {
6074      Diag(Loc, diag::err_duplicate_member) << II;
6075      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6076      NewID->setInvalidDecl();
6077    }
6078  }
6079
6080  // Process attributes attached to the ivar.
6081  ProcessDeclAttributes(S, NewID, D);
6082
6083  if (D.isInvalidType())
6084    NewID->setInvalidDecl();
6085
6086  if (II) {
6087    // FIXME: When interfaces are DeclContexts, we'll need to add
6088    // these to the interface.
6089    S->AddDecl(DeclPtrTy::make(NewID));
6090    IdResolver.AddDecl(NewID);
6091  }
6092
6093  return DeclPtrTy::make(NewID);
6094}
6095
6096void Sema::ActOnFields(Scope* S,
6097                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6098                       DeclPtrTy *Fields, unsigned NumFields,
6099                       SourceLocation LBrac, SourceLocation RBrac,
6100                       AttributeList *Attr) {
6101  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6102  assert(EnclosingDecl && "missing record or interface decl");
6103
6104  // If the decl this is being inserted into is invalid, then it may be a
6105  // redeclaration or some other bogus case.  Don't try to add fields to it.
6106  if (EnclosingDecl->isInvalidDecl()) {
6107    // FIXME: Deallocate fields?
6108    return;
6109  }
6110
6111
6112  // Verify that all the fields are okay.
6113  unsigned NumNamedMembers = 0;
6114  llvm::SmallVector<FieldDecl*, 32> RecFields;
6115
6116  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6117  for (unsigned i = 0; i != NumFields; ++i) {
6118    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6119
6120    // Get the type for the field.
6121    Type *FDTy = FD->getType().getTypePtr();
6122
6123    if (!FD->isAnonymousStructOrUnion()) {
6124      // Remember all fields written by the user.
6125      RecFields.push_back(FD);
6126    }
6127
6128    // If the field is already invalid for some reason, don't emit more
6129    // diagnostics about it.
6130    if (FD->isInvalidDecl()) {
6131      EnclosingDecl->setInvalidDecl();
6132      continue;
6133    }
6134
6135    // C99 6.7.2.1p2:
6136    //   A structure or union shall not contain a member with
6137    //   incomplete or function type (hence, a structure shall not
6138    //   contain an instance of itself, but may contain a pointer to
6139    //   an instance of itself), except that the last member of a
6140    //   structure with more than one named member may have incomplete
6141    //   array type; such a structure (and any union containing,
6142    //   possibly recursively, a member that is such a structure)
6143    //   shall not be a member of a structure or an element of an
6144    //   array.
6145    if (FDTy->isFunctionType()) {
6146      // Field declared as a function.
6147      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6148        << FD->getDeclName();
6149      FD->setInvalidDecl();
6150      EnclosingDecl->setInvalidDecl();
6151      continue;
6152    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6153               Record && Record->isStruct()) {
6154      // Flexible array member.
6155      if (NumNamedMembers < 1) {
6156        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6157          << FD->getDeclName();
6158        FD->setInvalidDecl();
6159        EnclosingDecl->setInvalidDecl();
6160        continue;
6161      }
6162      if (!FD->getType()->isDependentType() &&
6163          !Context.getBaseElementType(FD->getType())->isPODType()) {
6164        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6165          << FD->getDeclName() << FD->getType();
6166        FD->setInvalidDecl();
6167        EnclosingDecl->setInvalidDecl();
6168        continue;
6169      }
6170
6171      // Okay, we have a legal flexible array member at the end of the struct.
6172      if (Record)
6173        Record->setHasFlexibleArrayMember(true);
6174    } else if (!FDTy->isDependentType() &&
6175               RequireCompleteType(FD->getLocation(), FD->getType(),
6176                                   diag::err_field_incomplete)) {
6177      // Incomplete type
6178      FD->setInvalidDecl();
6179      EnclosingDecl->setInvalidDecl();
6180      continue;
6181    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6182      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6183        // If this is a member of a union, then entire union becomes "flexible".
6184        if (Record && Record->isUnion()) {
6185          Record->setHasFlexibleArrayMember(true);
6186        } else {
6187          // If this is a struct/class and this is not the last element, reject
6188          // it.  Note that GCC supports variable sized arrays in the middle of
6189          // structures.
6190          if (i != NumFields-1)
6191            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6192              << FD->getDeclName() << FD->getType();
6193          else {
6194            // We support flexible arrays at the end of structs in
6195            // other structs as an extension.
6196            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6197              << FD->getDeclName();
6198            if (Record)
6199              Record->setHasFlexibleArrayMember(true);
6200          }
6201        }
6202      }
6203      if (Record && FDTTy->getDecl()->hasObjectMember())
6204        Record->setHasObjectMember(true);
6205    } else if (FDTy->isObjCObjectType()) {
6206      /// A field cannot be an Objective-c object
6207      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6208      FD->setInvalidDecl();
6209      EnclosingDecl->setInvalidDecl();
6210      continue;
6211    } else if (getLangOptions().ObjC1 &&
6212               getLangOptions().getGCMode() != LangOptions::NonGC &&
6213               Record &&
6214               (FD->getType()->isObjCObjectPointerType() ||
6215                FD->getType().isObjCGCStrong()))
6216      Record->setHasObjectMember(true);
6217    // Keep track of the number of named members.
6218    if (FD->getIdentifier())
6219      ++NumNamedMembers;
6220  }
6221
6222  // Okay, we successfully defined 'Record'.
6223  if (Record) {
6224    Record->completeDefinition();
6225  } else {
6226    ObjCIvarDecl **ClsFields =
6227      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6228    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6229      ID->setLocEnd(RBrac);
6230      // Add ivar's to class's DeclContext.
6231      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6232        ClsFields[i]->setLexicalDeclContext(ID);
6233        ID->addDecl(ClsFields[i]);
6234      }
6235      // Must enforce the rule that ivars in the base classes may not be
6236      // duplicates.
6237      if (ID->getSuperClass())
6238        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6239    } else if (ObjCImplementationDecl *IMPDecl =
6240                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6241      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6242      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6243        // Ivar declared in @implementation never belongs to the implementation.
6244        // Only it is in implementation's lexical context.
6245        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6246      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6247    } else if (ObjCCategoryDecl *CDecl =
6248                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6249      // case of ivars in class extension; all other cases have been
6250      // reported as errors elsewhere.
6251      // FIXME. Class extension does not have a LocEnd field.
6252      // CDecl->setLocEnd(RBrac);
6253      // Add ivar's to class extension's DeclContext.
6254      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6255        ClsFields[i]->setLexicalDeclContext(CDecl);
6256        CDecl->addDecl(ClsFields[i]);
6257      }
6258    }
6259  }
6260
6261  if (Attr)
6262    ProcessDeclAttributeList(S, Record, Attr);
6263}
6264
6265/// \brief Determine whether the given integral value is representable within
6266/// the given type T.
6267static bool isRepresentableIntegerValue(ASTContext &Context,
6268                                        llvm::APSInt &Value,
6269                                        QualType T) {
6270  assert(T->isIntegralType() && "Integral type required!");
6271  unsigned BitWidth = Context.getIntWidth(T);
6272
6273  if (Value.isUnsigned() || Value.isNonNegative())
6274    return Value.getActiveBits() < BitWidth;
6275
6276  return Value.getMinSignedBits() <= BitWidth;
6277}
6278
6279// \brief Given an integral type, return the next larger integral type
6280// (or a NULL type of no such type exists).
6281static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6282  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6283  // enum checking below.
6284  assert(T->isIntegralType() && "Integral type required!");
6285  const unsigned NumTypes = 4;
6286  QualType SignedIntegralTypes[NumTypes] = {
6287    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6288  };
6289  QualType UnsignedIntegralTypes[NumTypes] = {
6290    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6291    Context.UnsignedLongLongTy
6292  };
6293
6294  unsigned BitWidth = Context.getTypeSize(T);
6295  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6296                                            : UnsignedIntegralTypes;
6297  for (unsigned I = 0; I != NumTypes; ++I)
6298    if (Context.getTypeSize(Types[I]) > BitWidth)
6299      return Types[I];
6300
6301  return QualType();
6302}
6303
6304EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6305                                          EnumConstantDecl *LastEnumConst,
6306                                          SourceLocation IdLoc,
6307                                          IdentifierInfo *Id,
6308                                          ExprArg val) {
6309  Expr *Val = (Expr *)val.get();
6310
6311  unsigned IntWidth = Context.Target.getIntWidth();
6312  llvm::APSInt EnumVal(IntWidth);
6313  QualType EltTy;
6314  if (Val) {
6315    if (Enum->isDependentType() || Val->isTypeDependent())
6316      EltTy = Context.DependentTy;
6317    else {
6318      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6319      SourceLocation ExpLoc;
6320      if (!Val->isValueDependent() &&
6321          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6322        Val = 0;
6323      } else {
6324        if (!getLangOptions().CPlusPlus) {
6325          // C99 6.7.2.2p2:
6326          //   The expression that defines the value of an enumeration constant
6327          //   shall be an integer constant expression that has a value
6328          //   representable as an int.
6329
6330          // Complain if the value is not representable in an int.
6331          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6332            Diag(IdLoc, diag::ext_enum_value_not_int)
6333              << EnumVal.toString(10) << Val->getSourceRange()
6334              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6335          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6336            // Force the type of the expression to 'int'.
6337            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6338
6339            if (Val != val.get()) {
6340              val.release();
6341              val = Val;
6342            }
6343          }
6344        }
6345
6346        // C++0x [dcl.enum]p5:
6347        //   If the underlying type is not fixed, the type of each enumerator
6348        //   is the type of its initializing value:
6349        //     - If an initializer is specified for an enumerator, the
6350        //       initializing value has the same type as the expression.
6351        EltTy = Val->getType();
6352      }
6353    }
6354  }
6355
6356  if (!Val) {
6357    if (Enum->isDependentType())
6358      EltTy = Context.DependentTy;
6359    else if (!LastEnumConst) {
6360      // C++0x [dcl.enum]p5:
6361      //   If the underlying type is not fixed, the type of each enumerator
6362      //   is the type of its initializing value:
6363      //     - If no initializer is specified for the first enumerator, the
6364      //       initializing value has an unspecified integral type.
6365      //
6366      // GCC uses 'int' for its unspecified integral type, as does
6367      // C99 6.7.2.2p3.
6368      EltTy = Context.IntTy;
6369    } else {
6370      // Assign the last value + 1.
6371      EnumVal = LastEnumConst->getInitVal();
6372      ++EnumVal;
6373      EltTy = LastEnumConst->getType();
6374
6375      // Check for overflow on increment.
6376      if (EnumVal < LastEnumConst->getInitVal()) {
6377        // C++0x [dcl.enum]p5:
6378        //   If the underlying type is not fixed, the type of each enumerator
6379        //   is the type of its initializing value:
6380        //
6381        //     - Otherwise the type of the initializing value is the same as
6382        //       the type of the initializing value of the preceding enumerator
6383        //       unless the incremented value is not representable in that type,
6384        //       in which case the type is an unspecified integral type
6385        //       sufficient to contain the incremented value. If no such type
6386        //       exists, the program is ill-formed.
6387        QualType T = getNextLargerIntegralType(Context, EltTy);
6388        if (T.isNull()) {
6389          // There is no integral type larger enough to represent this
6390          // value. Complain, then allow the value to wrap around.
6391          EnumVal = LastEnumConst->getInitVal();
6392          EnumVal.zext(EnumVal.getBitWidth() * 2);
6393          Diag(IdLoc, diag::warn_enumerator_too_large)
6394            << EnumVal.toString(10);
6395        } else {
6396          EltTy = T;
6397        }
6398
6399        // Retrieve the last enumerator's value, extent that type to the
6400        // type that is supposed to be large enough to represent the incremented
6401        // value, then increment.
6402        EnumVal = LastEnumConst->getInitVal();
6403        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6404        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6405        ++EnumVal;
6406
6407        // If we're not in C++, diagnose the overflow of enumerator values,
6408        // which in C99 means that the enumerator value is not representable in
6409        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6410        // permits enumerator values that are representable in some larger
6411        // integral type.
6412        if (!getLangOptions().CPlusPlus && !T.isNull())
6413          Diag(IdLoc, diag::warn_enum_value_overflow);
6414      } else if (!getLangOptions().CPlusPlus &&
6415                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6416        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6417        Diag(IdLoc, diag::ext_enum_value_not_int)
6418          << EnumVal.toString(10) << 1;
6419      }
6420    }
6421  }
6422
6423  if (!EltTy->isDependentType()) {
6424    // Make the enumerator value match the signedness and size of the
6425    // enumerator's type.
6426    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6427    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6428  }
6429
6430  val.release();
6431  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6432                                  Val, EnumVal);
6433}
6434
6435
6436Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6437                                        DeclPtrTy lastEnumConst,
6438                                        SourceLocation IdLoc,
6439                                        IdentifierInfo *Id,
6440                                        SourceLocation EqualLoc, ExprTy *val) {
6441  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6442  EnumConstantDecl *LastEnumConst =
6443    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6444  Expr *Val = static_cast<Expr*>(val);
6445
6446  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6447  // we find one that is.
6448  S = getNonFieldDeclScope(S);
6449
6450  // Verify that there isn't already something declared with this name in this
6451  // scope.
6452  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6453                                         ForRedeclaration);
6454  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6455    // Maybe we will complain about the shadowed template parameter.
6456    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6457    // Just pretend that we didn't see the previous declaration.
6458    PrevDecl = 0;
6459  }
6460
6461  if (PrevDecl) {
6462    // When in C++, we may get a TagDecl with the same name; in this case the
6463    // enum constant will 'hide' the tag.
6464    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6465           "Received TagDecl when not in C++!");
6466    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6467      if (isa<EnumConstantDecl>(PrevDecl))
6468        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6469      else
6470        Diag(IdLoc, diag::err_redefinition) << Id;
6471      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6472      if (Val) Val->Destroy(Context);
6473      return DeclPtrTy();
6474    }
6475  }
6476
6477  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6478                                            IdLoc, Id, Owned(Val));
6479
6480  // Register this decl in the current scope stack.
6481  if (New) {
6482    New->setAccess(TheEnumDecl->getAccess());
6483    PushOnScopeChains(New, S);
6484  }
6485
6486  return DeclPtrTy::make(New);
6487}
6488
6489void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6490                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6491                         DeclPtrTy *Elements, unsigned NumElements,
6492                         Scope *S, AttributeList *Attr) {
6493  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6494  QualType EnumType = Context.getTypeDeclType(Enum);
6495
6496  if (Attr)
6497    ProcessDeclAttributeList(S, Enum, Attr);
6498
6499  if (Enum->isDependentType()) {
6500    for (unsigned i = 0; i != NumElements; ++i) {
6501      EnumConstantDecl *ECD =
6502        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6503      if (!ECD) continue;
6504
6505      ECD->setType(EnumType);
6506    }
6507
6508    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6509    return;
6510  }
6511
6512  // TODO: If the result value doesn't fit in an int, it must be a long or long
6513  // long value.  ISO C does not support this, but GCC does as an extension,
6514  // emit a warning.
6515  unsigned IntWidth = Context.Target.getIntWidth();
6516  unsigned CharWidth = Context.Target.getCharWidth();
6517  unsigned ShortWidth = Context.Target.getShortWidth();
6518
6519  // Verify that all the values are okay, compute the size of the values, and
6520  // reverse the list.
6521  unsigned NumNegativeBits = 0;
6522  unsigned NumPositiveBits = 0;
6523
6524  // Keep track of whether all elements have type int.
6525  bool AllElementsInt = true;
6526
6527  for (unsigned i = 0; i != NumElements; ++i) {
6528    EnumConstantDecl *ECD =
6529      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6530    if (!ECD) continue;  // Already issued a diagnostic.
6531
6532    const llvm::APSInt &InitVal = ECD->getInitVal();
6533
6534    // Keep track of the size of positive and negative values.
6535    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6536      NumPositiveBits = std::max(NumPositiveBits,
6537                                 (unsigned)InitVal.getActiveBits());
6538    else
6539      NumNegativeBits = std::max(NumNegativeBits,
6540                                 (unsigned)InitVal.getMinSignedBits());
6541
6542    // Keep track of whether every enum element has type int (very commmon).
6543    if (AllElementsInt)
6544      AllElementsInt = ECD->getType() == Context.IntTy;
6545  }
6546
6547  // Figure out the type that should be used for this enum.
6548  // FIXME: Support -fshort-enums.
6549  QualType BestType;
6550  unsigned BestWidth;
6551
6552  // C++0x N3000 [conv.prom]p3:
6553  //   An rvalue of an unscoped enumeration type whose underlying
6554  //   type is not fixed can be converted to an rvalue of the first
6555  //   of the following types that can represent all the values of
6556  //   the enumeration: int, unsigned int, long int, unsigned long
6557  //   int, long long int, or unsigned long long int.
6558  // C99 6.4.4.3p2:
6559  //   An identifier declared as an enumeration constant has type int.
6560  // The C99 rule is modified by a gcc extension
6561  QualType BestPromotionType;
6562
6563  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6564
6565  if (NumNegativeBits) {
6566    // If there is a negative value, figure out the smallest integer type (of
6567    // int/long/longlong) that fits.
6568    // If it's packed, check also if it fits a char or a short.
6569    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6570      BestType = Context.SignedCharTy;
6571      BestWidth = CharWidth;
6572    } else if (Packed && NumNegativeBits <= ShortWidth &&
6573               NumPositiveBits < ShortWidth) {
6574      BestType = Context.ShortTy;
6575      BestWidth = ShortWidth;
6576    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6577      BestType = Context.IntTy;
6578      BestWidth = IntWidth;
6579    } else {
6580      BestWidth = Context.Target.getLongWidth();
6581
6582      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6583        BestType = Context.LongTy;
6584      } else {
6585        BestWidth = Context.Target.getLongLongWidth();
6586
6587        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6588          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6589        BestType = Context.LongLongTy;
6590      }
6591    }
6592    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6593  } else {
6594    // If there is no negative value, figure out the smallest type that fits
6595    // all of the enumerator values.
6596    // If it's packed, check also if it fits a char or a short.
6597    if (Packed && NumPositiveBits <= CharWidth) {
6598      BestType = Context.UnsignedCharTy;
6599      BestPromotionType = Context.IntTy;
6600      BestWidth = CharWidth;
6601    } else if (Packed && NumPositiveBits <= ShortWidth) {
6602      BestType = Context.UnsignedShortTy;
6603      BestPromotionType = Context.IntTy;
6604      BestWidth = ShortWidth;
6605    } else if (NumPositiveBits <= IntWidth) {
6606      BestType = Context.UnsignedIntTy;
6607      BestWidth = IntWidth;
6608      BestPromotionType
6609        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6610                           ? Context.UnsignedIntTy : Context.IntTy;
6611    } else if (NumPositiveBits <=
6612               (BestWidth = Context.Target.getLongWidth())) {
6613      BestType = Context.UnsignedLongTy;
6614      BestPromotionType
6615        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6616                           ? Context.UnsignedLongTy : Context.LongTy;
6617    } else {
6618      BestWidth = Context.Target.getLongLongWidth();
6619      assert(NumPositiveBits <= BestWidth &&
6620             "How could an initializer get larger than ULL?");
6621      BestType = Context.UnsignedLongLongTy;
6622      BestPromotionType
6623        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6624                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6625    }
6626  }
6627
6628  // Loop over all of the enumerator constants, changing their types to match
6629  // the type of the enum if needed.
6630  for (unsigned i = 0; i != NumElements; ++i) {
6631    EnumConstantDecl *ECD =
6632      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6633    if (!ECD) continue;  // Already issued a diagnostic.
6634
6635    // Standard C says the enumerators have int type, but we allow, as an
6636    // extension, the enumerators to be larger than int size.  If each
6637    // enumerator value fits in an int, type it as an int, otherwise type it the
6638    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6639    // that X has type 'int', not 'unsigned'.
6640
6641    // Determine whether the value fits into an int.
6642    llvm::APSInt InitVal = ECD->getInitVal();
6643
6644    // If it fits into an integer type, force it.  Otherwise force it to match
6645    // the enum decl type.
6646    QualType NewTy;
6647    unsigned NewWidth;
6648    bool NewSign;
6649    if (!getLangOptions().CPlusPlus &&
6650        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6651      NewTy = Context.IntTy;
6652      NewWidth = IntWidth;
6653      NewSign = true;
6654    } else if (ECD->getType() == BestType) {
6655      // Already the right type!
6656      if (getLangOptions().CPlusPlus)
6657        // C++ [dcl.enum]p4: Following the closing brace of an
6658        // enum-specifier, each enumerator has the type of its
6659        // enumeration.
6660        ECD->setType(EnumType);
6661      continue;
6662    } else {
6663      NewTy = BestType;
6664      NewWidth = BestWidth;
6665      NewSign = BestType->isSignedIntegerType();
6666    }
6667
6668    // Adjust the APSInt value.
6669    InitVal.extOrTrunc(NewWidth);
6670    InitVal.setIsSigned(NewSign);
6671    ECD->setInitVal(InitVal);
6672
6673    // Adjust the Expr initializer and type.
6674    if (ECD->getInitExpr())
6675      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6676                                                      CastExpr::CK_IntegralCast,
6677                                                      ECD->getInitExpr(),
6678                                                      CXXBaseSpecifierArray(),
6679                                                      /*isLvalue=*/false));
6680    if (getLangOptions().CPlusPlus)
6681      // C++ [dcl.enum]p4: Following the closing brace of an
6682      // enum-specifier, each enumerator has the type of its
6683      // enumeration.
6684      ECD->setType(EnumType);
6685    else
6686      ECD->setType(NewTy);
6687  }
6688
6689  Enum->completeDefinition(BestType, BestPromotionType,
6690                           NumPositiveBits, NumNegativeBits);
6691}
6692
6693Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6694                                            ExprArg expr) {
6695  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6696
6697  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6698                                                   Loc, AsmString);
6699  CurContext->addDecl(New);
6700  return DeclPtrTy::make(New);
6701}
6702
6703void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6704                             SourceLocation PragmaLoc,
6705                             SourceLocation NameLoc) {
6706  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6707
6708  if (PrevDecl) {
6709    PrevDecl->addAttr(::new (Context) WeakAttr());
6710  } else {
6711    (void)WeakUndeclaredIdentifiers.insert(
6712      std::pair<IdentifierInfo*,WeakInfo>
6713        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6714  }
6715}
6716
6717void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6718                                IdentifierInfo* AliasName,
6719                                SourceLocation PragmaLoc,
6720                                SourceLocation NameLoc,
6721                                SourceLocation AliasNameLoc) {
6722  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6723                                    LookupOrdinaryName);
6724  WeakInfo W = WeakInfo(Name, NameLoc);
6725
6726  if (PrevDecl) {
6727    if (!PrevDecl->hasAttr<AliasAttr>())
6728      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6729        DeclApplyPragmaWeak(TUScope, ND, W);
6730  } else {
6731    (void)WeakUndeclaredIdentifiers.insert(
6732      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6733  }
6734}
6735