SemaDecl.cpp revision 5186872629d6c9a48433bafe62dc06975bbbf7af
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        IIDecl = *Res;
89        break;
90      }
91    }
92
93    if (!IIDecl) {
94      // None of the entities we found is a type, so there is no way
95      // to even assume that the result is a type. In this case, don't
96      // complain about the ambiguity. The parser will either try to
97      // perform this lookup again (e.g., as an object name), which
98      // will produce the ambiguity, or will complain that it expected
99      // a type name.
100      Result.Destroy();
101      return 0;
102    }
103
104    // We found a type within the ambiguous lookup; diagnose the
105    // ambiguity and then return that type. This might be the right
106    // answer, or it might not be, but it suppresses any attempt to
107    // perform the name lookup again.
108    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
109    break;
110  }
111
112  case LookupResult::Found:
113    IIDecl = Result.getAsDecl();
114    break;
115  }
116
117  if (IIDecl) {
118    QualType T;
119
120    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
121      // Check whether we can use this type
122      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
123
124      T = Context.getTypeDeclType(TD);
125    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
126      // Check whether we can use this interface.
127      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
128
129      T = Context.getObjCInterfaceType(IDecl);
130    } else
131      return 0;
132
133    if (SS)
134      T = getQualifiedNameType(*SS, T);
135
136    return T.getAsOpaquePtr();
137  }
138
139  return 0;
140}
141
142DeclContext *Sema::getContainingDC(DeclContext *DC) {
143  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
144    // A C++ out-of-line method will return to the file declaration context.
145    if (MD->isOutOfLineDefinition())
146      return MD->getLexicalDeclContext();
147
148    // A C++ inline method is parsed *after* the topmost class it was declared
149    // in is fully parsed (it's "complete").
150    // The parsing of a C++ inline method happens at the declaration context of
151    // the topmost (non-nested) class it is lexically declared in.
152    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
153    DC = MD->getParent();
154    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
155      DC = RD;
156
157    // Return the declaration context of the topmost class the inline method is
158    // declared in.
159    return DC;
160  }
161
162  if (isa<ObjCMethodDecl>(DC))
163    return Context.getTranslationUnitDecl();
164
165  return DC->getLexicalParent();
166}
167
168void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
169  assert(getContainingDC(DC) == CurContext &&
170      "The next DeclContext should be lexically contained in the current one.");
171  CurContext = DC;
172  S->setEntity(DC);
173}
174
175void Sema::PopDeclContext() {
176  assert(CurContext && "DeclContext imbalance!");
177
178  CurContext = getContainingDC(CurContext);
179}
180
181/// \brief Determine whether we allow overloading of the function
182/// PrevDecl with another declaration.
183///
184/// This routine determines whether overloading is possible, not
185/// whether some new function is actually an overload. It will return
186/// true in C++ (where we can always provide overloads) or, as an
187/// extension, in C when the previous function is already an
188/// overloaded function declaration or has the "overloadable"
189/// attribute.
190static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
191  if (Context.getLangOptions().CPlusPlus)
192    return true;
193
194  if (isa<OverloadedFunctionDecl>(PrevDecl))
195    return true;
196
197  return PrevDecl->getAttr<OverloadableAttr>() != 0;
198}
199
200/// Add this decl to the scope shadowed decl chains.
201void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
202  // Move up the scope chain until we find the nearest enclosing
203  // non-transparent context. The declaration will be introduced into this
204  // scope.
205  while (S->getEntity() &&
206         ((DeclContext *)S->getEntity())->isTransparentContext())
207    S = S->getParent();
208
209  S->AddDecl(DeclPtrTy::make(D));
210
211  // Add scoped declarations into their context, so that they can be
212  // found later. Declarations without a context won't be inserted
213  // into any context.
214  CurContext->addDecl(Context, D);
215
216  // C++ [basic.scope]p4:
217  //   -- exactly one declaration shall declare a class name or
218  //   enumeration name that is not a typedef name and the other
219  //   declarations shall all refer to the same object or
220  //   enumerator, or all refer to functions and function templates;
221  //   in this case the class name or enumeration name is hidden.
222  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
223    // We are pushing the name of a tag (enum or class).
224    if (CurContext->getLookupContext()
225          == TD->getDeclContext()->getLookupContext()) {
226      // We're pushing the tag into the current context, which might
227      // require some reshuffling in the identifier resolver.
228      IdentifierResolver::iterator
229        I = IdResolver.begin(TD->getDeclName()),
230        IEnd = IdResolver.end();
231      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
232        NamedDecl *PrevDecl = *I;
233        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
234             PrevDecl = *I, ++I) {
235          if (TD->declarationReplaces(*I)) {
236            // This is a redeclaration. Remove it from the chain and
237            // break out, so that we'll add in the shadowed
238            // declaration.
239            S->RemoveDecl(DeclPtrTy::make(*I));
240            if (PrevDecl == *I) {
241              IdResolver.RemoveDecl(*I);
242              IdResolver.AddDecl(TD);
243              return;
244            } else {
245              IdResolver.RemoveDecl(*I);
246              break;
247            }
248          }
249        }
250
251        // There is already a declaration with the same name in the same
252        // scope, which is not a tag declaration. It must be found
253        // before we find the new declaration, so insert the new
254        // declaration at the end of the chain.
255        IdResolver.AddShadowedDecl(TD, PrevDecl);
256
257        return;
258      }
259    }
260  } else if (isa<FunctionDecl>(D) &&
261             AllowOverloadingOfFunction(D, Context)) {
262    // We are pushing the name of a function, which might be an
263    // overloaded name.
264    FunctionDecl *FD = cast<FunctionDecl>(D);
265    IdentifierResolver::iterator Redecl
266      = std::find_if(IdResolver.begin(FD->getDeclName()),
267                     IdResolver.end(),
268                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
269                                  FD));
270    if (Redecl != IdResolver.end() &&
271        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
272      // There is already a declaration of a function on our
273      // IdResolver chain. Replace it with this declaration.
274      S->RemoveDecl(DeclPtrTy::make(*Redecl));
275      IdResolver.RemoveDecl(*Redecl);
276    }
277  }
278
279  IdResolver.AddDecl(D);
280}
281
282void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
283  if (S->decl_empty()) return;
284  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
285	 "Scope shouldn't contain decls!");
286
287  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
288       I != E; ++I) {
289    Decl *TmpD = (*I).getAs<Decl>();
290    assert(TmpD && "This decl didn't get pushed??");
291
292    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
293    NamedDecl *D = cast<NamedDecl>(TmpD);
294
295    if (!D->getDeclName()) continue;
296
297    // Remove this name from our lexical scope.
298    IdResolver.RemoveDecl(D);
299  }
300}
301
302/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
303/// return 0 if one not found.
304ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
305  // The third "scope" argument is 0 since we aren't enabling lazy built-in
306  // creation from this context.
307  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
308
309  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
310}
311
312/// getNonFieldDeclScope - Retrieves the innermost scope, starting
313/// from S, where a non-field would be declared. This routine copes
314/// with the difference between C and C++ scoping rules in structs and
315/// unions. For example, the following code is well-formed in C but
316/// ill-formed in C++:
317/// @code
318/// struct S6 {
319///   enum { BAR } e;
320/// };
321///
322/// void test_S6() {
323///   struct S6 a;
324///   a.e = BAR;
325/// }
326/// @endcode
327/// For the declaration of BAR, this routine will return a different
328/// scope. The scope S will be the scope of the unnamed enumeration
329/// within S6. In C++, this routine will return the scope associated
330/// with S6, because the enumeration's scope is a transparent
331/// context but structures can contain non-field names. In C, this
332/// routine will return the translation unit scope, since the
333/// enumeration's scope is a transparent context and structures cannot
334/// contain non-field names.
335Scope *Sema::getNonFieldDeclScope(Scope *S) {
336  while (((S->getFlags() & Scope::DeclScope) == 0) ||
337         (S->getEntity() &&
338          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
339         (S->isClassScope() && !getLangOptions().CPlusPlus))
340    S = S->getParent();
341  return S;
342}
343
344void Sema::InitBuiltinVaListType() {
345  if (!Context.getBuiltinVaListType().isNull())
346    return;
347
348  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
349  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
350  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
351  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
352}
353
354/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
355/// file scope.  lazily create a decl for it. ForRedeclaration is true
356/// if we're creating this built-in in anticipation of redeclaring the
357/// built-in.
358NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
359                                     Scope *S, bool ForRedeclaration,
360                                     SourceLocation Loc) {
361  Builtin::ID BID = (Builtin::ID)bid;
362
363  if (Context.BuiltinInfo.hasVAListUse(BID))
364    InitBuiltinVaListType();
365
366  Builtin::Context::GetBuiltinTypeError Error;
367  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
368  switch (Error) {
369  case Builtin::Context::GE_None:
370    // Okay
371    break;
372
373  case Builtin::Context::GE_Missing_FILE:
374    if (ForRedeclaration)
375      Diag(Loc, diag::err_implicit_decl_requires_stdio)
376        << Context.BuiltinInfo.GetName(BID);
377    return 0;
378  }
379
380  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
381    Diag(Loc, diag::ext_implicit_lib_function_decl)
382      << Context.BuiltinInfo.GetName(BID)
383      << R;
384    if (Context.BuiltinInfo.getHeaderName(BID) &&
385        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
386          != diag::MAP_IGNORE)
387      Diag(Loc, diag::note_please_include_header)
388        << Context.BuiltinInfo.getHeaderName(BID)
389        << Context.BuiltinInfo.GetName(BID);
390  }
391
392  FunctionDecl *New = FunctionDecl::Create(Context,
393                                           Context.getTranslationUnitDecl(),
394                                           Loc, II, R,
395                                           FunctionDecl::Extern, false,
396                                           /*hasPrototype=*/true);
397  New->setImplicit();
398
399  // Create Decl objects for each parameter, adding them to the
400  // FunctionDecl.
401  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
402    llvm::SmallVector<ParmVarDecl*, 16> Params;
403    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
404      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
405                                           FT->getArgType(i), VarDecl::None, 0));
406    New->setParams(Context, &Params[0], Params.size());
407  }
408
409  AddKnownFunctionAttributes(New);
410
411  // TUScope is the translation-unit scope to insert this function into.
412  // FIXME: This is hideous. We need to teach PushOnScopeChains to
413  // relate Scopes to DeclContexts, and probably eliminate CurContext
414  // entirely, but we're not there yet.
415  DeclContext *SavedContext = CurContext;
416  CurContext = Context.getTranslationUnitDecl();
417  PushOnScopeChains(New, TUScope);
418  CurContext = SavedContext;
419  return New;
420}
421
422/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
423/// everything from the standard library is defined.
424NamespaceDecl *Sema::GetStdNamespace() {
425  if (!StdNamespace) {
426    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
427    DeclContext *Global = Context.getTranslationUnitDecl();
428    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
429    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
430  }
431  return StdNamespace;
432}
433
434/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
435/// same name and scope as a previous declaration 'Old'.  Figure out
436/// how to resolve this situation, merging decls or emitting
437/// diagnostics as appropriate. Returns true if there was an error,
438/// false otherwise.
439///
440bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
441  bool objc_types = false;
442  // Allow multiple definitions for ObjC built-in typedefs.
443  // FIXME: Verify the underlying types are equivalent!
444  if (getLangOptions().ObjC1) {
445    const IdentifierInfo *TypeID = New->getIdentifier();
446    switch (TypeID->getLength()) {
447    default: break;
448    case 2:
449      if (!TypeID->isStr("id"))
450        break;
451      Context.setObjCIdType(New);
452      objc_types = true;
453      break;
454    case 5:
455      if (!TypeID->isStr("Class"))
456        break;
457      Context.setObjCClassType(New);
458      objc_types = true;
459      return false;
460    case 3:
461      if (!TypeID->isStr("SEL"))
462        break;
463      Context.setObjCSelType(New);
464      objc_types = true;
465      return false;
466    case 8:
467      if (!TypeID->isStr("Protocol"))
468        break;
469      Context.setObjCProtoType(New->getUnderlyingType());
470      objc_types = true;
471      return false;
472    }
473    // Fall through - the typedef name was not a builtin type.
474  }
475  // Verify the old decl was also a type.
476  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
477  if (!Old) {
478    Diag(New->getLocation(), diag::err_redefinition_different_kind)
479      << New->getDeclName();
480    if (!objc_types)
481      Diag(OldD->getLocation(), diag::note_previous_definition);
482    return true;
483  }
484
485  // Determine the "old" type we'll use for checking and diagnostics.
486  QualType OldType;
487  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
488    OldType = OldTypedef->getUnderlyingType();
489  else
490    OldType = Context.getTypeDeclType(Old);
491
492  // If the typedef types are not identical, reject them in all languages and
493  // with any extensions enabled.
494
495  if (OldType != New->getUnderlyingType() &&
496      Context.getCanonicalType(OldType) !=
497      Context.getCanonicalType(New->getUnderlyingType())) {
498    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
499      << New->getUnderlyingType() << OldType;
500    if (!objc_types)
501      Diag(Old->getLocation(), diag::note_previous_definition);
502    return true;
503  }
504  if (objc_types) return false;
505  if (getLangOptions().Microsoft) return false;
506
507  // C++ [dcl.typedef]p2:
508  //   In a given non-class scope, a typedef specifier can be used to
509  //   redefine the name of any type declared in that scope to refer
510  //   to the type to which it already refers.
511  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
512    return false;
513
514  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
515  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
516  // *either* declaration is in a system header. The code below implements
517  // this adhoc compatibility rule. FIXME: The following code will not
518  // work properly when compiling ".i" files (containing preprocessed output).
519  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
520    SourceManager &SrcMgr = Context.getSourceManager();
521    if (SrcMgr.isInSystemHeader(Old->getLocation()))
522      return false;
523    if (SrcMgr.isInSystemHeader(New->getLocation()))
524      return false;
525  }
526
527  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
528  Diag(Old->getLocation(), diag::note_previous_definition);
529  return true;
530}
531
532/// DeclhasAttr - returns true if decl Declaration already has the target
533/// attribute.
534static bool DeclHasAttr(const Decl *decl, const Attr *target) {
535  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
536    if (attr->getKind() == target->getKind())
537      return true;
538
539  return false;
540}
541
542/// MergeAttributes - append attributes from the Old decl to the New one.
543static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
544  Attr *attr = const_cast<Attr*>(Old->getAttrs());
545
546  while (attr) {
547    Attr *tmp = attr;
548    attr = attr->getNext();
549
550    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
551      tmp->setInherited(true);
552      New->addAttr(tmp);
553    } else {
554      tmp->setNext(0);
555      tmp->Destroy(C);
556    }
557  }
558
559  Old->invalidateAttrs();
560}
561
562/// Used in MergeFunctionDecl to keep track of function parameters in
563/// C.
564struct GNUCompatibleParamWarning {
565  ParmVarDecl *OldParm;
566  ParmVarDecl *NewParm;
567  QualType PromotedType;
568};
569
570/// MergeFunctionDecl - We just parsed a function 'New' from
571/// declarator D which has the same name and scope as a previous
572/// declaration 'Old'.  Figure out how to resolve this situation,
573/// merging decls or emitting diagnostics as appropriate.
574///
575/// In C++, New and Old must be declarations that are not
576/// overloaded. Use IsOverload to determine whether New and Old are
577/// overloaded, and to select the Old declaration that New should be
578/// merged with.
579///
580/// Returns true if there was an error, false otherwise.
581bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
582  assert(!isa<OverloadedFunctionDecl>(OldD) &&
583         "Cannot merge with an overloaded function declaration");
584
585  // Verify the old decl was also a function.
586  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
587  if (!Old) {
588    Diag(New->getLocation(), diag::err_redefinition_different_kind)
589      << New->getDeclName();
590    Diag(OldD->getLocation(), diag::note_previous_definition);
591    return true;
592  }
593
594  // Determine whether the previous declaration was a definition,
595  // implicit declaration, or a declaration.
596  diag::kind PrevDiag;
597  if (Old->isThisDeclarationADefinition())
598    PrevDiag = diag::note_previous_definition;
599  else if (Old->isImplicit())
600    PrevDiag = diag::note_previous_implicit_declaration;
601  else
602    PrevDiag = diag::note_previous_declaration;
603
604  QualType OldQType = Context.getCanonicalType(Old->getType());
605  QualType NewQType = Context.getCanonicalType(New->getType());
606
607  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
608      New->getStorageClass() == FunctionDecl::Static &&
609      Old->getStorageClass() != FunctionDecl::Static) {
610    Diag(New->getLocation(), diag::err_static_non_static)
611      << New;
612    Diag(Old->getLocation(), PrevDiag);
613    return true;
614  }
615
616  if (getLangOptions().CPlusPlus) {
617    // (C++98 13.1p2):
618    //   Certain function declarations cannot be overloaded:
619    //     -- Function declarations that differ only in the return type
620    //        cannot be overloaded.
621    QualType OldReturnType
622      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
623    QualType NewReturnType
624      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
625    if (OldReturnType != NewReturnType) {
626      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
627      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
628      return true;
629    }
630
631    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
632    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
633    if (OldMethod && NewMethod &&
634        OldMethod->getLexicalDeclContext() ==
635          NewMethod->getLexicalDeclContext()) {
636      //    -- Member function declarations with the same name and the
637      //       same parameter types cannot be overloaded if any of them
638      //       is a static member function declaration.
639      if (OldMethod->isStatic() || NewMethod->isStatic()) {
640        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
641        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
642        return true;
643      }
644
645      // C++ [class.mem]p1:
646      //   [...] A member shall not be declared twice in the
647      //   member-specification, except that a nested class or member
648      //   class template can be declared and then later defined.
649      unsigned NewDiag;
650      if (isa<CXXConstructorDecl>(OldMethod))
651        NewDiag = diag::err_constructor_redeclared;
652      else if (isa<CXXDestructorDecl>(NewMethod))
653        NewDiag = diag::err_destructor_redeclared;
654      else if (isa<CXXConversionDecl>(NewMethod))
655        NewDiag = diag::err_conv_function_redeclared;
656      else
657        NewDiag = diag::err_member_redeclared;
658
659      Diag(New->getLocation(), NewDiag);
660      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
661    }
662
663    // (C++98 8.3.5p3):
664    //   All declarations for a function shall agree exactly in both the
665    //   return type and the parameter-type-list.
666    if (OldQType == NewQType)
667      return MergeCompatibleFunctionDecls(New, Old);
668
669    // Fall through for conflicting redeclarations and redefinitions.
670  }
671
672  // C: Function types need to be compatible, not identical. This handles
673  // duplicate function decls like "void f(int); void f(enum X);" properly.
674  if (!getLangOptions().CPlusPlus &&
675      Context.typesAreCompatible(OldQType, NewQType)) {
676    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
677    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
678    const FunctionProtoType *OldProto = 0;
679    if (isa<FunctionNoProtoType>(NewFuncType) &&
680        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
681      // The old declaration provided a function prototype, but the
682      // new declaration does not. Merge in the prototype.
683      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
684                                                 OldProto->arg_type_end());
685      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
686                                         &ParamTypes[0], ParamTypes.size(),
687                                         OldProto->isVariadic(),
688                                         OldProto->getTypeQuals());
689      New->setType(NewQType);
690      New->setInheritedPrototype();
691
692      // Synthesize a parameter for each argument type.
693      llvm::SmallVector<ParmVarDecl*, 16> Params;
694      for (FunctionProtoType::arg_type_iterator
695             ParamType = OldProto->arg_type_begin(),
696             ParamEnd = OldProto->arg_type_end();
697           ParamType != ParamEnd; ++ParamType) {
698        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
699                                                 SourceLocation(), 0,
700                                                 *ParamType, VarDecl::None,
701                                                 0);
702        Param->setImplicit();
703        Params.push_back(Param);
704      }
705
706      New->setParams(Context, &Params[0], Params.size());
707    }
708
709    return MergeCompatibleFunctionDecls(New, Old);
710  }
711
712  // GNU C permits a K&R definition to follow a prototype declaration
713  // if the declared types of the parameters in the K&R definition
714  // match the types in the prototype declaration, even when the
715  // promoted types of the parameters from the K&R definition differ
716  // from the types in the prototype. GCC then keeps the types from
717  // the prototype.
718  if (!getLangOptions().CPlusPlus &&
719      !getLangOptions().NoExtensions &&
720      Old->hasPrototype() && !New->hasPrototype() &&
721      New->getType()->getAsFunctionProtoType() &&
722      Old->getNumParams() == New->getNumParams()) {
723    llvm::SmallVector<QualType, 16> ArgTypes;
724    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
725    const FunctionProtoType *OldProto
726      = Old->getType()->getAsFunctionProtoType();
727    const FunctionProtoType *NewProto
728      = New->getType()->getAsFunctionProtoType();
729
730    // Determine whether this is the GNU C extension.
731    bool GNUCompatible =
732      Context.typesAreCompatible(OldProto->getResultType(),
733                                 NewProto->getResultType()) &&
734      (OldProto->isVariadic() == NewProto->isVariadic());
735    for (unsigned Idx = 0, End = Old->getNumParams();
736         GNUCompatible && Idx != End; ++Idx) {
737      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
738      ParmVarDecl *NewParm = New->getParamDecl(Idx);
739      if (Context.typesAreCompatible(OldParm->getType(),
740                                     NewProto->getArgType(Idx))) {
741        ArgTypes.push_back(NewParm->getType());
742      } else if (Context.typesAreCompatible(OldParm->getType(),
743                                            NewParm->getType())) {
744        GNUCompatibleParamWarning Warn
745          = { OldParm, NewParm, NewProto->getArgType(Idx) };
746        Warnings.push_back(Warn);
747        ArgTypes.push_back(NewParm->getType());
748      } else
749        GNUCompatible = false;
750    }
751
752    if (GNUCompatible) {
753      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
754        Diag(Warnings[Warn].NewParm->getLocation(),
755             diag::ext_param_promoted_not_compatible_with_prototype)
756          << Warnings[Warn].PromotedType
757          << Warnings[Warn].OldParm->getType();
758        Diag(Warnings[Warn].OldParm->getLocation(),
759             diag::note_previous_declaration);
760      }
761
762      New->setType(Context.getFunctionType(NewProto->getResultType(),
763                                           &ArgTypes[0], ArgTypes.size(),
764                                           NewProto->isVariadic(),
765                                           NewProto->getTypeQuals()));
766      return MergeCompatibleFunctionDecls(New, Old);
767    }
768
769    // Fall through to diagnose conflicting types.
770  }
771
772  // A function that has already been declared has been redeclared or defined
773  // with a different type- show appropriate diagnostic
774  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
775    // The user has declared a builtin function with an incompatible
776    // signature.
777    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
778      // The function the user is redeclaring is a library-defined
779      // function like 'malloc' or 'printf'. Warn about the
780      // redeclaration, then pretend that we don't know about this
781      // library built-in.
782      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
783      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
784        << Old << Old->getType();
785      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
786      Old->setInvalidDecl();
787      return false;
788    }
789
790    PrevDiag = diag::note_previous_builtin_declaration;
791  }
792
793  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
794  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
795  return true;
796}
797
798/// \brief Completes the merge of two function declarations that are
799/// known to be compatible.
800///
801/// This routine handles the merging of attributes and other
802/// properties of function declarations form the old declaration to
803/// the new declaration, once we know that New is in fact a
804/// redeclaration of Old.
805///
806/// \returns false
807bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
808  // Merge the attributes
809  MergeAttributes(New, Old, Context);
810
811  // Merge the storage class.
812  New->setStorageClass(Old->getStorageClass());
813
814  // FIXME: need to implement inline semantics
815
816  // Merge "pure" flag.
817  if (Old->isPure())
818    New->setPure();
819
820  // Merge the "deleted" flag.
821  if (Old->isDeleted())
822    New->setDeleted();
823
824  if (getLangOptions().CPlusPlus)
825    return MergeCXXFunctionDecl(New, Old);
826
827  return false;
828}
829
830/// MergeVarDecl - We just parsed a variable 'New' which has the same name
831/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
832/// situation, merging decls or emitting diagnostics as appropriate.
833///
834/// Tentative definition rules (C99 6.9.2p2) are checked by
835/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
836/// definitions here, since the initializer hasn't been attached.
837///
838bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
839  // Verify the old decl was also a variable.
840  VarDecl *Old = dyn_cast<VarDecl>(OldD);
841  if (!Old) {
842    Diag(New->getLocation(), diag::err_redefinition_different_kind)
843      << New->getDeclName();
844    Diag(OldD->getLocation(), diag::note_previous_definition);
845    return true;
846  }
847
848  MergeAttributes(New, Old, Context);
849
850  // Merge the types
851  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
852  if (MergedT.isNull()) {
853    Diag(New->getLocation(), diag::err_redefinition_different_type)
854      << New->getDeclName();
855    Diag(Old->getLocation(), diag::note_previous_definition);
856    return true;
857  }
858  New->setType(MergedT);
859
860  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
861  if (New->getStorageClass() == VarDecl::Static &&
862      (Old->getStorageClass() == VarDecl::None ||
863       Old->getStorageClass() == VarDecl::Extern)) {
864    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
865    Diag(Old->getLocation(), diag::note_previous_definition);
866    return true;
867  }
868  // C99 6.2.2p4:
869  //   For an identifier declared with the storage-class specifier
870  //   extern in a scope in which a prior declaration of that
871  //   identifier is visible,23) if the prior declaration specifies
872  //   internal or external linkage, the linkage of the identifier at
873  //   the later declaration is the same as the linkage specified at
874  //   the prior declaration. If no prior declaration is visible, or
875  //   if the prior declaration specifies no linkage, then the
876  //   identifier has external linkage.
877  if (New->hasExternalStorage() && Old->hasLinkage())
878    /* Okay */;
879  else if (New->getStorageClass() != VarDecl::Static &&
880           Old->getStorageClass() == VarDecl::Static) {
881    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
882    Diag(Old->getLocation(), diag::note_previous_definition);
883    return true;
884  }
885  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
886  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
887      // Don't complain about out-of-line definitions of static members.
888      !(Old->getLexicalDeclContext()->isRecord() &&
889        !New->getLexicalDeclContext()->isRecord())) {
890    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return true;
893  }
894
895  // Keep a chain of previous declarations.
896  New->setPreviousDeclaration(Old);
897
898  return false;
899}
900
901/// CheckParmsForFunctionDef - Check that the parameters of the given
902/// function are appropriate for the definition of a function. This
903/// takes care of any checks that cannot be performed on the
904/// declaration itself, e.g., that the types of each of the function
905/// parameters are complete.
906bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
907  bool HasInvalidParm = false;
908  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
909    ParmVarDecl *Param = FD->getParamDecl(p);
910
911    // C99 6.7.5.3p4: the parameters in a parameter type list in a
912    // function declarator that is part of a function definition of
913    // that function shall not have incomplete type.
914    //
915    // This is also C++ [dcl.fct]p6.
916    if (!Param->isInvalidDecl() &&
917        RequireCompleteType(Param->getLocation(), Param->getType(),
918                               diag::err_typecheck_decl_incomplete_type)) {
919      Param->setInvalidDecl();
920      HasInvalidParm = true;
921    }
922
923    // C99 6.9.1p5: If the declarator includes a parameter type list, the
924    // declaration of each parameter shall include an identifier.
925    if (Param->getIdentifier() == 0 &&
926        !Param->isImplicit() &&
927        !getLangOptions().CPlusPlus)
928      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
929  }
930
931  return HasInvalidParm;
932}
933
934/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
935/// no declarator (e.g. "struct foo;") is parsed.
936Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
937  // FIXME: Error on auto/register at file scope
938  // FIXME: Error on inline/virtual/explicit
939  // FIXME: Error on invalid restrict
940  // FIXME: Warn on useless const/volatile
941  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
942  // FIXME: Warn on useless attributes
943
944  TagDecl *Tag = 0;
945  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
946      DS.getTypeSpecType() == DeclSpec::TST_struct ||
947      DS.getTypeSpecType() == DeclSpec::TST_union ||
948      DS.getTypeSpecType() == DeclSpec::TST_enum)
949    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
950
951  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
952    if (!Record->getDeclName() && Record->isDefinition() &&
953        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
954      if (getLangOptions().CPlusPlus ||
955          Record->getDeclContext()->isRecord())
956        return BuildAnonymousStructOrUnion(S, DS, Record);
957
958      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
959        << DS.getSourceRange();
960    }
961
962    // Microsoft allows unnamed struct/union fields. Don't complain
963    // about them.
964    // FIXME: Should we support Microsoft's extensions in this area?
965    if (Record->getDeclName() && getLangOptions().Microsoft)
966      return DeclPtrTy::make(Tag);
967  }
968
969  if (!DS.isMissingDeclaratorOk() &&
970      DS.getTypeSpecType() != DeclSpec::TST_error) {
971    // Warn about typedefs of enums without names, since this is an
972    // extension in both Microsoft an GNU.
973    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
974        Tag && isa<EnumDecl>(Tag)) {
975      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
976        << DS.getSourceRange();
977      return DeclPtrTy::make(Tag);
978    }
979
980    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
981      << DS.getSourceRange();
982    return DeclPtrTy();
983  }
984
985  return DeclPtrTy::make(Tag);
986}
987
988/// InjectAnonymousStructOrUnionMembers - Inject the members of the
989/// anonymous struct or union AnonRecord into the owning context Owner
990/// and scope S. This routine will be invoked just after we realize
991/// that an unnamed union or struct is actually an anonymous union or
992/// struct, e.g.,
993///
994/// @code
995/// union {
996///   int i;
997///   float f;
998/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
999///    // f into the surrounding scope.x
1000/// @endcode
1001///
1002/// This routine is recursive, injecting the names of nested anonymous
1003/// structs/unions into the owning context and scope as well.
1004bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1005                                               RecordDecl *AnonRecord) {
1006  bool Invalid = false;
1007  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1008                               FEnd = AnonRecord->field_end(Context);
1009       F != FEnd; ++F) {
1010    if ((*F)->getDeclName()) {
1011      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1012                                                LookupOrdinaryName, true);
1013      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1014        // C++ [class.union]p2:
1015        //   The names of the members of an anonymous union shall be
1016        //   distinct from the names of any other entity in the
1017        //   scope in which the anonymous union is declared.
1018        unsigned diagKind
1019          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1020                                 : diag::err_anonymous_struct_member_redecl;
1021        Diag((*F)->getLocation(), diagKind)
1022          << (*F)->getDeclName();
1023        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1024        Invalid = true;
1025      } else {
1026        // C++ [class.union]p2:
1027        //   For the purpose of name lookup, after the anonymous union
1028        //   definition, the members of the anonymous union are
1029        //   considered to have been defined in the scope in which the
1030        //   anonymous union is declared.
1031        Owner->makeDeclVisibleInContext(Context, *F);
1032        S->AddDecl(DeclPtrTy::make(*F));
1033        IdResolver.AddDecl(*F);
1034      }
1035    } else if (const RecordType *InnerRecordType
1036                 = (*F)->getType()->getAsRecordType()) {
1037      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1038      if (InnerRecord->isAnonymousStructOrUnion())
1039        Invalid = Invalid ||
1040          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1041    }
1042  }
1043
1044  return Invalid;
1045}
1046
1047/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1048/// anonymous structure or union. Anonymous unions are a C++ feature
1049/// (C++ [class.union]) and a GNU C extension; anonymous structures
1050/// are a GNU C and GNU C++ extension.
1051Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1052                                                  RecordDecl *Record) {
1053  DeclContext *Owner = Record->getDeclContext();
1054
1055  // Diagnose whether this anonymous struct/union is an extension.
1056  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1057    Diag(Record->getLocation(), diag::ext_anonymous_union);
1058  else if (!Record->isUnion())
1059    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1060
1061  // C and C++ require different kinds of checks for anonymous
1062  // structs/unions.
1063  bool Invalid = false;
1064  if (getLangOptions().CPlusPlus) {
1065    const char* PrevSpec = 0;
1066    // C++ [class.union]p3:
1067    //   Anonymous unions declared in a named namespace or in the
1068    //   global namespace shall be declared static.
1069    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1070        (isa<TranslationUnitDecl>(Owner) ||
1071         (isa<NamespaceDecl>(Owner) &&
1072          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1073      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1074      Invalid = true;
1075
1076      // Recover by adding 'static'.
1077      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1078    }
1079    // C++ [class.union]p3:
1080    //   A storage class is not allowed in a declaration of an
1081    //   anonymous union in a class scope.
1082    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1083             isa<RecordDecl>(Owner)) {
1084      Diag(DS.getStorageClassSpecLoc(),
1085           diag::err_anonymous_union_with_storage_spec);
1086      Invalid = true;
1087
1088      // Recover by removing the storage specifier.
1089      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1090                             PrevSpec);
1091    }
1092
1093    // C++ [class.union]p2:
1094    //   The member-specification of an anonymous union shall only
1095    //   define non-static data members. [Note: nested types and
1096    //   functions cannot be declared within an anonymous union. ]
1097    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1098                                 MemEnd = Record->decls_end(Context);
1099         Mem != MemEnd; ++Mem) {
1100      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1101        // C++ [class.union]p3:
1102        //   An anonymous union shall not have private or protected
1103        //   members (clause 11).
1104        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1105          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1106            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1107          Invalid = true;
1108        }
1109      } else if ((*Mem)->isImplicit()) {
1110        // Any implicit members are fine.
1111      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1112        // This is a type that showed up in an
1113        // elaborated-type-specifier inside the anonymous struct or
1114        // union, but which actually declares a type outside of the
1115        // anonymous struct or union. It's okay.
1116      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1117        if (!MemRecord->isAnonymousStructOrUnion() &&
1118            MemRecord->getDeclName()) {
1119          // This is a nested type declaration.
1120          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1121            << (int)Record->isUnion();
1122          Invalid = true;
1123        }
1124      } else {
1125        // We have something that isn't a non-static data
1126        // member. Complain about it.
1127        unsigned DK = diag::err_anonymous_record_bad_member;
1128        if (isa<TypeDecl>(*Mem))
1129          DK = diag::err_anonymous_record_with_type;
1130        else if (isa<FunctionDecl>(*Mem))
1131          DK = diag::err_anonymous_record_with_function;
1132        else if (isa<VarDecl>(*Mem))
1133          DK = diag::err_anonymous_record_with_static;
1134        Diag((*Mem)->getLocation(), DK)
1135            << (int)Record->isUnion();
1136          Invalid = true;
1137      }
1138    }
1139  }
1140
1141  if (!Record->isUnion() && !Owner->isRecord()) {
1142    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1143      << (int)getLangOptions().CPlusPlus;
1144    Invalid = true;
1145  }
1146
1147  // Create a declaration for this anonymous struct/union.
1148  NamedDecl *Anon = 0;
1149  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1150    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1151                             /*IdentifierInfo=*/0,
1152                             Context.getTypeDeclType(Record),
1153                             /*BitWidth=*/0, /*Mutable=*/false);
1154    Anon->setAccess(AS_public);
1155    if (getLangOptions().CPlusPlus)
1156      FieldCollector->Add(cast<FieldDecl>(Anon));
1157  } else {
1158    VarDecl::StorageClass SC;
1159    switch (DS.getStorageClassSpec()) {
1160    default: assert(0 && "Unknown storage class!");
1161    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1162    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1163    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1164    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1165    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1166    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1167    case DeclSpec::SCS_mutable:
1168      // mutable can only appear on non-static class members, so it's always
1169      // an error here
1170      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1171      Invalid = true;
1172      SC = VarDecl::None;
1173      break;
1174    }
1175
1176    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1177                           /*IdentifierInfo=*/0,
1178                           Context.getTypeDeclType(Record),
1179                           SC, DS.getSourceRange().getBegin());
1180  }
1181  Anon->setImplicit();
1182
1183  // Add the anonymous struct/union object to the current
1184  // context. We'll be referencing this object when we refer to one of
1185  // its members.
1186  Owner->addDecl(Context, Anon);
1187
1188  // Inject the members of the anonymous struct/union into the owning
1189  // context and into the identifier resolver chain for name lookup
1190  // purposes.
1191  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1192    Invalid = true;
1193
1194  // Mark this as an anonymous struct/union type. Note that we do not
1195  // do this until after we have already checked and injected the
1196  // members of this anonymous struct/union type, because otherwise
1197  // the members could be injected twice: once by DeclContext when it
1198  // builds its lookup table, and once by
1199  // InjectAnonymousStructOrUnionMembers.
1200  Record->setAnonymousStructOrUnion(true);
1201
1202  if (Invalid)
1203    Anon->setInvalidDecl();
1204
1205  return DeclPtrTy::make(Anon);
1206}
1207
1208
1209/// GetNameForDeclarator - Determine the full declaration name for the
1210/// given Declarator.
1211DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1212  switch (D.getKind()) {
1213  case Declarator::DK_Abstract:
1214    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1215    return DeclarationName();
1216
1217  case Declarator::DK_Normal:
1218    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1219    return DeclarationName(D.getIdentifier());
1220
1221  case Declarator::DK_Constructor: {
1222    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1223    Ty = Context.getCanonicalType(Ty);
1224    return Context.DeclarationNames.getCXXConstructorName(Ty);
1225  }
1226
1227  case Declarator::DK_Destructor: {
1228    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1229    Ty = Context.getCanonicalType(Ty);
1230    return Context.DeclarationNames.getCXXDestructorName(Ty);
1231  }
1232
1233  case Declarator::DK_Conversion: {
1234    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1235    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1236    Ty = Context.getCanonicalType(Ty);
1237    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1238  }
1239
1240  case Declarator::DK_Operator:
1241    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1242    return Context.DeclarationNames.getCXXOperatorName(
1243                                                D.getOverloadedOperator());
1244  }
1245
1246  assert(false && "Unknown name kind");
1247  return DeclarationName();
1248}
1249
1250/// isNearlyMatchingFunction - Determine whether the C++ functions
1251/// Declaration and Definition are "nearly" matching. This heuristic
1252/// is used to improve diagnostics in the case where an out-of-line
1253/// function definition doesn't match any declaration within
1254/// the class or namespace.
1255static bool isNearlyMatchingFunction(ASTContext &Context,
1256                                     FunctionDecl *Declaration,
1257                                     FunctionDecl *Definition) {
1258  if (Declaration->param_size() != Definition->param_size())
1259    return false;
1260  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1261    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1262    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1263
1264    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1265    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1266    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1267      return false;
1268  }
1269
1270  return true;
1271}
1272
1273Sema::DeclPtrTy
1274Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1275  DeclarationName Name = GetNameForDeclarator(D);
1276
1277  // All of these full declarators require an identifier.  If it doesn't have
1278  // one, the ParsedFreeStandingDeclSpec action should be used.
1279  if (!Name) {
1280    if (!D.getInvalidType())  // Reject this if we think it is valid.
1281      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1282           diag::err_declarator_need_ident)
1283        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1284    return DeclPtrTy();
1285  }
1286
1287  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1288  // we find one that is.
1289  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1290         (S->getFlags() & Scope::TemplateParamScope) != 0)
1291    S = S->getParent();
1292
1293  DeclContext *DC;
1294  NamedDecl *PrevDecl;
1295  NamedDecl *New;
1296  bool InvalidDecl = false;
1297
1298  QualType R = GetTypeForDeclarator(D, S);
1299  if (R.isNull()) {
1300    InvalidDecl = true;
1301    R = Context.IntTy;
1302  }
1303
1304  // See if this is a redefinition of a variable in the same scope.
1305  if (D.getCXXScopeSpec().isInvalid()) {
1306    DC = CurContext;
1307    PrevDecl = 0;
1308    InvalidDecl = true;
1309  } else if (!D.getCXXScopeSpec().isSet()) {
1310    LookupNameKind NameKind = LookupOrdinaryName;
1311
1312    // If the declaration we're planning to build will be a function
1313    // or object with linkage, then look for another declaration with
1314    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1315    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1316      /* Do nothing*/;
1317    else if (R->isFunctionType()) {
1318      if (CurContext->isFunctionOrMethod())
1319        NameKind = LookupRedeclarationWithLinkage;
1320    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1321      NameKind = LookupRedeclarationWithLinkage;
1322
1323    DC = CurContext;
1324    PrevDecl = LookupName(S, Name, NameKind, true,
1325                          D.getDeclSpec().getStorageClassSpec() !=
1326                            DeclSpec::SCS_static,
1327                          D.getIdentifierLoc());
1328  } else { // Something like "int foo::x;"
1329    DC = computeDeclContext(D.getCXXScopeSpec());
1330    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1331    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1332
1333    // C++ 7.3.1.2p2:
1334    // Members (including explicit specializations of templates) of a named
1335    // namespace can also be defined outside that namespace by explicit
1336    // qualification of the name being defined, provided that the entity being
1337    // defined was already declared in the namespace and the definition appears
1338    // after the point of declaration in a namespace that encloses the
1339    // declarations namespace.
1340    //
1341    // Note that we only check the context at this point. We don't yet
1342    // have enough information to make sure that PrevDecl is actually
1343    // the declaration we want to match. For example, given:
1344    //
1345    //   class X {
1346    //     void f();
1347    //     void f(float);
1348    //   };
1349    //
1350    //   void X::f(int) { } // ill-formed
1351    //
1352    // In this case, PrevDecl will point to the overload set
1353    // containing the two f's declared in X, but neither of them
1354    // matches.
1355
1356    // First check whether we named the global scope.
1357    if (isa<TranslationUnitDecl>(DC)) {
1358      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1359        << Name << D.getCXXScopeSpec().getRange();
1360    } else if (!CurContext->Encloses(DC)) {
1361      // The qualifying scope doesn't enclose the original declaration.
1362      // Emit diagnostic based on current scope.
1363      SourceLocation L = D.getIdentifierLoc();
1364      SourceRange R = D.getCXXScopeSpec().getRange();
1365      if (isa<FunctionDecl>(CurContext))
1366        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1367      else
1368        Diag(L, diag::err_invalid_declarator_scope)
1369          << Name << cast<NamedDecl>(DC) << R;
1370      InvalidDecl = true;
1371    }
1372  }
1373
1374  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1375    // Maybe we will complain about the shadowed template parameter.
1376    InvalidDecl = InvalidDecl
1377      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1378    // Just pretend that we didn't see the previous declaration.
1379    PrevDecl = 0;
1380  }
1381
1382  // In C++, the previous declaration we find might be a tag type
1383  // (class or enum). In this case, the new declaration will hide the
1384  // tag type. Note that this does does not apply if we're declaring a
1385  // typedef (C++ [dcl.typedef]p4).
1386  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1387      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1388    PrevDecl = 0;
1389
1390  bool Redeclaration = false;
1391  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1392    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1393                                 InvalidDecl, Redeclaration);
1394  } else if (R->isFunctionType()) {
1395    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1396                                  IsFunctionDefinition, InvalidDecl,
1397                                  Redeclaration);
1398  } else {
1399    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1400                                  InvalidDecl, Redeclaration);
1401  }
1402
1403  if (New == 0)
1404    return DeclPtrTy();
1405
1406  // If this has an identifier and is not an invalid redeclaration,
1407  // add it to the scope stack.
1408  if (Name && !(Redeclaration && InvalidDecl))
1409    PushOnScopeChains(New, S);
1410  // If any semantic error occurred, mark the decl as invalid.
1411  if (D.getInvalidType() || InvalidDecl)
1412    New->setInvalidDecl();
1413
1414  return DeclPtrTy::make(New);
1415}
1416
1417/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1418/// types into constant array types in certain situations which would otherwise
1419/// be errors (for GCC compatibility).
1420static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1421                                                    ASTContext &Context,
1422                                                    bool &SizeIsNegative) {
1423  // This method tries to turn a variable array into a constant
1424  // array even when the size isn't an ICE.  This is necessary
1425  // for compatibility with code that depends on gcc's buggy
1426  // constant expression folding, like struct {char x[(int)(char*)2];}
1427  SizeIsNegative = false;
1428
1429  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1430    QualType Pointee = PTy->getPointeeType();
1431    QualType FixedType =
1432        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1433    if (FixedType.isNull()) return FixedType;
1434    FixedType = Context.getPointerType(FixedType);
1435    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1436    return FixedType;
1437  }
1438
1439  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1440  if (!VLATy)
1441    return QualType();
1442  // FIXME: We should probably handle this case
1443  if (VLATy->getElementType()->isVariablyModifiedType())
1444    return QualType();
1445
1446  Expr::EvalResult EvalResult;
1447  if (!VLATy->getSizeExpr() ||
1448      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1449      !EvalResult.Val.isInt())
1450    return QualType();
1451
1452  llvm::APSInt &Res = EvalResult.Val.getInt();
1453  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1454    return Context.getConstantArrayType(VLATy->getElementType(),
1455                                        Res, ArrayType::Normal, 0);
1456
1457  SizeIsNegative = true;
1458  return QualType();
1459}
1460
1461/// \brief Register the given locally-scoped external C declaration so
1462/// that it can be found later for redeclarations
1463void
1464Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1465                                       Scope *S) {
1466  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1467         "Decl is not a locally-scoped decl!");
1468  // Note that we have a locally-scoped external with this name.
1469  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1470
1471  if (!PrevDecl)
1472    return;
1473
1474  // If there was a previous declaration of this variable, it may be
1475  // in our identifier chain. Update the identifier chain with the new
1476  // declaration.
1477  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1478    // The previous declaration was found on the identifer resolver
1479    // chain, so remove it from its scope.
1480    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1481      S = S->getParent();
1482
1483    if (S)
1484      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1485  }
1486}
1487
1488/// \brief Diagnose function specifiers on a declaration of an identifier that
1489/// does not identify a function.
1490void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1491  // FIXME: We should probably indicate the identifier in question to avoid
1492  // confusion for constructs like "inline int a(), b;"
1493  if (D.getDeclSpec().isInlineSpecified())
1494    Diag(D.getDeclSpec().getInlineSpecLoc(),
1495         diag::err_inline_non_function);
1496
1497  if (D.getDeclSpec().isVirtualSpecified())
1498    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1499         diag::err_virtual_non_function);
1500
1501  if (D.getDeclSpec().isExplicitSpecified())
1502    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1503         diag::err_explicit_non_function);
1504}
1505
1506NamedDecl*
1507Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1508                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1509                             bool &Redeclaration) {
1510  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1511  if (D.getCXXScopeSpec().isSet()) {
1512    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1513      << D.getCXXScopeSpec().getRange();
1514    InvalidDecl = true;
1515    // Pretend we didn't see the scope specifier.
1516    DC = 0;
1517  }
1518
1519  if (getLangOptions().CPlusPlus) {
1520    // Check that there are no default arguments (C++ only).
1521    CheckExtraCXXDefaultArguments(D);
1522  }
1523
1524  DiagnoseFunctionSpecifiers(D);
1525
1526  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1527  if (!NewTD) return 0;
1528
1529  // Handle attributes prior to checking for duplicates in MergeVarDecl
1530  ProcessDeclAttributes(NewTD, D);
1531  // Merge the decl with the existing one if appropriate. If the decl is
1532  // in an outer scope, it isn't the same thing.
1533  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1534    Redeclaration = true;
1535    if (MergeTypeDefDecl(NewTD, PrevDecl))
1536      InvalidDecl = true;
1537  }
1538
1539  if (S->getFnParent() == 0) {
1540    QualType T = NewTD->getUnderlyingType();
1541    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1542    // then it shall have block scope.
1543    if (T->isVariablyModifiedType()) {
1544      bool SizeIsNegative;
1545      QualType FixedTy =
1546          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1547      if (!FixedTy.isNull()) {
1548        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1549        NewTD->setUnderlyingType(FixedTy);
1550      } else {
1551        if (SizeIsNegative)
1552          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1553        else if (T->isVariableArrayType())
1554          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1555        else
1556          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1557        InvalidDecl = true;
1558      }
1559    }
1560  }
1561  return NewTD;
1562}
1563
1564/// \brief Determines whether the given declaration is an out-of-scope
1565/// previous declaration.
1566///
1567/// This routine should be invoked when name lookup has found a
1568/// previous declaration (PrevDecl) that is not in the scope where a
1569/// new declaration by the same name is being introduced. If the new
1570/// declaration occurs in a local scope, previous declarations with
1571/// linkage may still be considered previous declarations (C99
1572/// 6.2.2p4-5, C++ [basic.link]p6).
1573///
1574/// \param PrevDecl the previous declaration found by name
1575/// lookup
1576///
1577/// \param DC the context in which the new declaration is being
1578/// declared.
1579///
1580/// \returns true if PrevDecl is an out-of-scope previous declaration
1581/// for a new delcaration with the same name.
1582static bool
1583isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1584                                ASTContext &Context) {
1585  if (!PrevDecl)
1586    return 0;
1587
1588  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1589  // case we need to check each of the overloaded functions.
1590  if (!PrevDecl->hasLinkage())
1591    return false;
1592
1593  if (Context.getLangOptions().CPlusPlus) {
1594    // C++ [basic.link]p6:
1595    //   If there is a visible declaration of an entity with linkage
1596    //   having the same name and type, ignoring entities declared
1597    //   outside the innermost enclosing namespace scope, the block
1598    //   scope declaration declares that same entity and receives the
1599    //   linkage of the previous declaration.
1600    DeclContext *OuterContext = DC->getLookupContext();
1601    if (!OuterContext->isFunctionOrMethod())
1602      // This rule only applies to block-scope declarations.
1603      return false;
1604    else {
1605      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1606      if (PrevOuterContext->isRecord())
1607        // We found a member function: ignore it.
1608        return false;
1609      else {
1610        // Find the innermost enclosing namespace for the new and
1611        // previous declarations.
1612        while (!OuterContext->isFileContext())
1613          OuterContext = OuterContext->getParent();
1614        while (!PrevOuterContext->isFileContext())
1615          PrevOuterContext = PrevOuterContext->getParent();
1616
1617        // The previous declaration is in a different namespace, so it
1618        // isn't the same function.
1619        if (OuterContext->getPrimaryContext() !=
1620            PrevOuterContext->getPrimaryContext())
1621          return false;
1622      }
1623    }
1624  }
1625
1626  return true;
1627}
1628
1629NamedDecl*
1630Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1631                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1632                              bool &Redeclaration) {
1633  DeclarationName Name = GetNameForDeclarator(D);
1634
1635  // Check that there are no default arguments (C++ only).
1636  if (getLangOptions().CPlusPlus)
1637    CheckExtraCXXDefaultArguments(D);
1638
1639  VarDecl *NewVD;
1640  VarDecl::StorageClass SC;
1641  switch (D.getDeclSpec().getStorageClassSpec()) {
1642  default: assert(0 && "Unknown storage class!");
1643  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1644  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1645  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1646  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1647  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1648  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1649  case DeclSpec::SCS_mutable:
1650    // mutable can only appear on non-static class members, so it's always
1651    // an error here
1652    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1653    InvalidDecl = true;
1654    SC = VarDecl::None;
1655    break;
1656  }
1657
1658  IdentifierInfo *II = Name.getAsIdentifierInfo();
1659  if (!II) {
1660    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1661      << Name.getAsString();
1662    return 0;
1663  }
1664
1665  DiagnoseFunctionSpecifiers(D);
1666
1667  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1668  if (!DC->isRecord() && S->getFnParent() == 0) {
1669    // C99 6.9p2: The storage-class specifiers auto and register shall not
1670    // appear in the declaration specifiers in an external declaration.
1671    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1672      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1673      InvalidDecl = true;
1674    }
1675  }
1676  if (DC->isRecord() && !CurContext->isRecord()) {
1677    // This is an out-of-line definition of a static data member.
1678    if (SC == VarDecl::Static) {
1679      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1680           diag::err_static_out_of_line)
1681        << CodeModificationHint::CreateRemoval(
1682                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1683    } else if (SC == VarDecl::None)
1684      SC = VarDecl::Static;
1685  }
1686
1687  // The variable can not
1688  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1689                          II, R, SC,
1690                          // FIXME: Move to DeclGroup...
1691                          D.getDeclSpec().getSourceRange().getBegin());
1692  NewVD->setThreadSpecified(ThreadSpecified);
1693
1694  // Set the lexical context. If the declarator has a C++ scope specifier, the
1695  // lexical context will be different from the semantic context.
1696  NewVD->setLexicalDeclContext(CurContext);
1697
1698  // Handle attributes prior to checking for duplicates in MergeVarDecl
1699  ProcessDeclAttributes(NewVD, D);
1700
1701  // Handle GNU asm-label extension (encoded as an attribute).
1702  if (Expr *E = (Expr*) D.getAsmLabel()) {
1703    // The parser guarantees this is a string.
1704    StringLiteral *SE = cast<StringLiteral>(E);
1705    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1706                                                        SE->getByteLength())));
1707  }
1708
1709  // If name lookup finds a previous declaration that is not in the
1710  // same scope as the new declaration, this may still be an
1711  // acceptable redeclaration.
1712  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1713      !(NewVD->hasLinkage() &&
1714        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1715    PrevDecl = 0;
1716
1717  // Merge the decl with the existing one if appropriate.
1718  if (PrevDecl) {
1719    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1720      // The user tried to define a non-static data member
1721      // out-of-line (C++ [dcl.meaning]p1).
1722      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1723        << D.getCXXScopeSpec().getRange();
1724      PrevDecl = 0;
1725      InvalidDecl = true;
1726    }
1727  } else if (D.getCXXScopeSpec().isSet()) {
1728    // No previous declaration in the qualifying scope.
1729    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1730      << Name << D.getCXXScopeSpec().getRange();
1731    InvalidDecl = true;
1732  }
1733
1734  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1735    InvalidDecl = true;
1736
1737  // If this is a locally-scoped extern C variable, update the map of
1738  // such variables.
1739  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1740      !InvalidDecl)
1741    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1742
1743  return NewVD;
1744}
1745
1746/// \brief Perform semantic checking on a newly-created variable
1747/// declaration.
1748///
1749/// This routine performs all of the type-checking required for a
1750/// variable declaration once it has been build. It is used both to
1751/// check variables after they have been parsed and their declarators
1752/// have been translated into a declaration, and to check
1753///
1754/// \returns true if an error was encountered, false otherwise.
1755bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1756                                    bool &Redeclaration) {
1757  bool Invalid = false;
1758
1759  QualType T = NewVD->getType();
1760
1761  if (T->isObjCInterfaceType()) {
1762    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1763    Invalid = true;
1764  }
1765
1766  // The variable can not have an abstract class type.
1767  if (RequireNonAbstractType(NewVD->getLocation(), T,
1768                             diag::err_abstract_type_in_decl,
1769                             AbstractVariableType))
1770    Invalid = true;
1771
1772  // Emit an error if an address space was applied to decl with local storage.
1773  // This includes arrays of objects with address space qualifiers, but not
1774  // automatic variables that point to other address spaces.
1775  // ISO/IEC TR 18037 S5.1.2
1776  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1777    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1778    Invalid = true;
1779  }
1780
1781  if (NewVD->hasLocalStorage() && T.isObjCGCWeak())
1782    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1783
1784  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1785  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1786  if (isIllegalVLA || isIllegalVM) {
1787    bool SizeIsNegative;
1788    QualType FixedTy =
1789        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1790    if (!FixedTy.isNull()) {
1791      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1792      NewVD->setType(FixedTy);
1793    } else if (T->isVariableArrayType()) {
1794      Invalid = true;
1795
1796      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1797      // FIXME: This won't give the correct result for
1798      // int a[10][n];
1799      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1800
1801      if (NewVD->isFileVarDecl())
1802        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1803          << SizeRange;
1804      else if (NewVD->getStorageClass() == VarDecl::Static)
1805        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1806          << SizeRange;
1807      else
1808        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1809            << SizeRange;
1810    } else {
1811      Invalid = true;
1812
1813      if (NewVD->isFileVarDecl())
1814        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1815      else
1816        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1817    }
1818  }
1819
1820  if (!PrevDecl && NewVD->isExternC(Context)) {
1821    // Since we did not find anything by this name and we're declaring
1822    // an extern "C" variable, look for a non-visible extern "C"
1823    // declaration with the same name.
1824    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1825      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1826    if (Pos != LocallyScopedExternalDecls.end())
1827      PrevDecl = Pos->second;
1828  }
1829
1830  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1831    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1832      << T;
1833    Invalid = true;
1834  }
1835
1836  if (PrevDecl) {
1837    Redeclaration = true;
1838    if (MergeVarDecl(NewVD, PrevDecl))
1839      Invalid = true;
1840  }
1841
1842  return NewVD->isInvalidDecl() || Invalid;
1843}
1844
1845NamedDecl*
1846Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1847                              QualType R, NamedDecl* PrevDecl,
1848                              bool IsFunctionDefinition,
1849                              bool& InvalidDecl, bool &Redeclaration) {
1850  assert(R.getTypePtr()->isFunctionType());
1851
1852  DeclarationName Name = GetNameForDeclarator(D);
1853  FunctionDecl::StorageClass SC = FunctionDecl::None;
1854  switch (D.getDeclSpec().getStorageClassSpec()) {
1855  default: assert(0 && "Unknown storage class!");
1856  case DeclSpec::SCS_auto:
1857  case DeclSpec::SCS_register:
1858  case DeclSpec::SCS_mutable:
1859    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1860         diag::err_typecheck_sclass_func);
1861    InvalidDecl = true;
1862    break;
1863  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1864  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1865  case DeclSpec::SCS_static: {
1866    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1867      // C99 6.7.1p5:
1868      //   The declaration of an identifier for a function that has
1869      //   block scope shall have no explicit storage-class specifier
1870      //   other than extern
1871      // See also (C++ [dcl.stc]p4).
1872      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1873           diag::err_static_block_func);
1874      SC = FunctionDecl::None;
1875    } else
1876      SC = FunctionDecl::Static;
1877    break;
1878  }
1879  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1880  }
1881
1882  bool isInline = D.getDeclSpec().isInlineSpecified();
1883  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1884  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1885
1886  // Check that the return type is not an abstract class type.
1887  // For record types, this is done by the AbstractClassUsageDiagnoser once
1888  // the class has been completely parsed.
1889  if (!DC->isRecord() &&
1890      RequireNonAbstractType(D.getIdentifierLoc(),
1891                             R->getAsFunctionType()->getResultType(),
1892                             diag::err_abstract_type_in_decl,
1893                             AbstractReturnType))
1894    InvalidDecl = true;
1895
1896  // Do not allow returning a objc interface by-value.
1897  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1898    Diag(D.getIdentifierLoc(),
1899         diag::err_object_cannot_be_passed_returned_by_value) << 0
1900      << R->getAsFunctionType()->getResultType();
1901    InvalidDecl = true;
1902  }
1903
1904  bool isVirtualOkay = false;
1905  FunctionDecl *NewFD;
1906  if (D.getKind() == Declarator::DK_Constructor) {
1907    // This is a C++ constructor declaration.
1908    assert(DC->isRecord() &&
1909           "Constructors can only be declared in a member context");
1910
1911    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1912
1913    // Create the new declaration
1914    NewFD = CXXConstructorDecl::Create(Context,
1915                                       cast<CXXRecordDecl>(DC),
1916                                       D.getIdentifierLoc(), Name, R,
1917                                       isExplicit, isInline,
1918                                       /*isImplicitlyDeclared=*/false);
1919
1920    if (InvalidDecl)
1921      NewFD->setInvalidDecl();
1922  } else if (D.getKind() == Declarator::DK_Destructor) {
1923    // This is a C++ destructor declaration.
1924    if (DC->isRecord()) {
1925      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1926
1927      NewFD = CXXDestructorDecl::Create(Context,
1928                                        cast<CXXRecordDecl>(DC),
1929                                        D.getIdentifierLoc(), Name, R,
1930                                        isInline,
1931                                        /*isImplicitlyDeclared=*/false);
1932
1933      if (InvalidDecl)
1934        NewFD->setInvalidDecl();
1935
1936      isVirtualOkay = true;
1937    } else {
1938      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1939
1940      // Create a FunctionDecl to satisfy the function definition parsing
1941      // code path.
1942      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1943                                   Name, R, SC, isInline,
1944                                   /*hasPrototype=*/true,
1945                                   // FIXME: Move to DeclGroup...
1946                                   D.getDeclSpec().getSourceRange().getBegin());
1947      InvalidDecl = true;
1948      NewFD->setInvalidDecl();
1949    }
1950  } else if (D.getKind() == Declarator::DK_Conversion) {
1951    if (!DC->isRecord()) {
1952      Diag(D.getIdentifierLoc(),
1953           diag::err_conv_function_not_member);
1954      return 0;
1955    } else {
1956      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1957
1958      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1959                                        D.getIdentifierLoc(), Name, R,
1960                                        isInline, isExplicit);
1961
1962      if (InvalidDecl)
1963        NewFD->setInvalidDecl();
1964
1965      isVirtualOkay = true;
1966    }
1967  } else if (DC->isRecord()) {
1968    // This is a C++ method declaration.
1969    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1970                                  D.getIdentifierLoc(), Name, R,
1971                                  (SC == FunctionDecl::Static), isInline);
1972
1973    isVirtualOkay = (SC != FunctionDecl::Static);
1974  } else {
1975    // Determine whether the function was written with a
1976    // prototype. This true when:
1977    //   - we're in C++ (where every function has a prototype),
1978    //   - there is a prototype in the declarator, or
1979    //   - the type R of the function is some kind of typedef or other reference
1980    //     to a type name (which eventually refers to a function type).
1981    bool HasPrototype =
1982       getLangOptions().CPlusPlus ||
1983       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1984       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1985
1986    NewFD = FunctionDecl::Create(Context, DC,
1987                                 D.getIdentifierLoc(),
1988                                 Name, R, SC, isInline, HasPrototype,
1989                                 // FIXME: Move to DeclGroup...
1990                                 D.getDeclSpec().getSourceRange().getBegin());
1991  }
1992
1993  // Set the lexical context. If the declarator has a C++
1994  // scope specifier, the lexical context will be different
1995  // from the semantic context.
1996  NewFD->setLexicalDeclContext(CurContext);
1997
1998  // C++ [dcl.fct.spec]p5:
1999  //   The virtual specifier shall only be used in declarations of
2000  //   nonstatic class member functions that appear within a
2001  //   member-specification of a class declaration; see 10.3.
2002  //
2003  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2004  // function is also virtual if it overrides an already virtual
2005  // function. This is important to do here because it's part of the
2006  // declaration.
2007  if (isVirtual && !InvalidDecl) {
2008    if (!isVirtualOkay) {
2009       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2010           diag::err_virtual_non_function);
2011    } else if (!CurContext->isRecord()) {
2012      // 'virtual' was specified outside of the class.
2013      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2014        << CodeModificationHint::CreateRemoval(
2015                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2016    } else {
2017      // Okay: Add virtual to the method.
2018      cast<CXXMethodDecl>(NewFD)->setVirtual();
2019      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2020      CurClass->setAggregate(false);
2021      CurClass->setPOD(false);
2022      CurClass->setPolymorphic(true);
2023    }
2024  }
2025
2026  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2027      !CurContext->isRecord()) {
2028    // C++ [class.static]p1:
2029    //   A data or function member of a class may be declared static
2030    //   in a class definition, in which case it is a static member of
2031    //   the class.
2032
2033    // Complain about the 'static' specifier if it's on an out-of-line
2034    // member function definition.
2035    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2036         diag::err_static_out_of_line)
2037      << CodeModificationHint::CreateRemoval(
2038                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2039  }
2040
2041  // Handle GNU asm-label extension (encoded as an attribute).
2042  if (Expr *E = (Expr*) D.getAsmLabel()) {
2043    // The parser guarantees this is a string.
2044    StringLiteral *SE = cast<StringLiteral>(E);
2045    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2046                                                        SE->getByteLength())));
2047  }
2048
2049  // Copy the parameter declarations from the declarator D to
2050  // the function declaration NewFD, if they are available.
2051  if (D.getNumTypeObjects() > 0) {
2052    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2053
2054    // Create Decl objects for each parameter, adding them to the
2055    // FunctionDecl.
2056    llvm::SmallVector<ParmVarDecl*, 16> Params;
2057
2058    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2059    // function that takes no arguments, not a function that takes a
2060    // single void argument.
2061    // We let through "const void" here because Sema::GetTypeForDeclarator
2062    // already checks for that case.
2063    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2064        FTI.ArgInfo[0].Param &&
2065        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2066      // empty arg list, don't push any params.
2067      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2068
2069      // In C++, the empty parameter-type-list must be spelled "void"; a
2070      // typedef of void is not permitted.
2071      if (getLangOptions().CPlusPlus &&
2072          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2073        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2074      }
2075    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2076      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2077        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2078    }
2079
2080    NewFD->setParams(Context, &Params[0], Params.size());
2081  } else if (R->getAsTypedefType()) {
2082    // When we're declaring a function with a typedef, as in the
2083    // following example, we'll need to synthesize (unnamed)
2084    // parameters for use in the declaration.
2085    //
2086    // @code
2087    // typedef void fn(int);
2088    // fn f;
2089    // @endcode
2090    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2091    if (!FT) {
2092      // This is a typedef of a function with no prototype, so we
2093      // don't need to do anything.
2094    } else if ((FT->getNumArgs() == 0) ||
2095               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2096                FT->getArgType(0)->isVoidType())) {
2097      // This is a zero-argument function. We don't need to do anything.
2098    } else {
2099      // Synthesize a parameter for each argument type.
2100      llvm::SmallVector<ParmVarDecl*, 16> Params;
2101      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2102           ArgType != FT->arg_type_end(); ++ArgType) {
2103        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2104                                                 SourceLocation(), 0,
2105                                                 *ArgType, VarDecl::None,
2106                                                 0);
2107        Param->setImplicit();
2108        Params.push_back(Param);
2109      }
2110
2111      NewFD->setParams(Context, &Params[0], Params.size());
2112    }
2113  }
2114
2115  // If name lookup finds a previous declaration that is not in the
2116  // same scope as the new declaration, this may still be an
2117  // acceptable redeclaration.
2118  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2119      !(NewFD->hasLinkage() &&
2120        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2121    PrevDecl = 0;
2122
2123  // Perform semantic checking on the function declaration.
2124  bool OverloadableAttrRequired = false; // FIXME: HACK!
2125  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2126                               /*FIXME:*/OverloadableAttrRequired))
2127    InvalidDecl = true;
2128
2129  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2130    // An out-of-line member function declaration must also be a
2131    // definition (C++ [dcl.meaning]p1).
2132    if (!IsFunctionDefinition) {
2133      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2134        << D.getCXXScopeSpec().getRange();
2135      InvalidDecl = true;
2136    } else if (!Redeclaration) {
2137      // The user tried to provide an out-of-line definition for a
2138      // function that is a member of a class or namespace, but there
2139      // was no such member function declared (C++ [class.mfct]p2,
2140      // C++ [namespace.memdef]p2). For example:
2141      //
2142      // class X {
2143      //   void f() const;
2144      // };
2145      //
2146      // void X::f() { } // ill-formed
2147      //
2148      // Complain about this problem, and attempt to suggest close
2149      // matches (e.g., those that differ only in cv-qualifiers and
2150      // whether the parameter types are references).
2151      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2152        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2153      InvalidDecl = true;
2154
2155      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2156                                              true);
2157      assert(!Prev.isAmbiguous() &&
2158             "Cannot have an ambiguity in previous-declaration lookup");
2159      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2160           Func != FuncEnd; ++Func) {
2161        if (isa<FunctionDecl>(*Func) &&
2162            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2163          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2164      }
2165
2166      PrevDecl = 0;
2167    }
2168  }
2169
2170  // Handle attributes. We need to have merged decls when handling attributes
2171  // (for example to check for conflicts, etc).
2172  // FIXME: This needs to happen before we merge declarations. Then,
2173  // let attribute merging cope with attribute conflicts.
2174  ProcessDeclAttributes(NewFD, D);
2175  AddKnownFunctionAttributes(NewFD);
2176
2177  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2178    // If a function name is overloadable in C, then every function
2179    // with that name must be marked "overloadable".
2180    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2181      << Redeclaration << NewFD;
2182    if (PrevDecl)
2183      Diag(PrevDecl->getLocation(),
2184           diag::note_attribute_overloadable_prev_overload);
2185    NewFD->addAttr(::new (Context) OverloadableAttr());
2186  }
2187
2188  // If this is a locally-scoped extern C function, update the
2189  // map of such names.
2190  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2191      && !InvalidDecl)
2192    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2193
2194  return NewFD;
2195}
2196
2197/// \brief Perform semantic checking of a new function declaration.
2198///
2199/// Performs semantic analysis of the new function declaration
2200/// NewFD. This routine performs all semantic checking that does not
2201/// require the actual declarator involved in the declaration, and is
2202/// used both for the declaration of functions as they are parsed
2203/// (called via ActOnDeclarator) and for the declaration of functions
2204/// that have been instantiated via C++ template instantiation (called
2205/// via InstantiateDecl).
2206///
2207/// \returns true if there was an error, false otherwise.
2208bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2209                                    bool &Redeclaration,
2210                                    bool &OverloadableAttrRequired) {
2211  bool InvalidDecl = false;
2212
2213  // Semantic checking for this function declaration (in isolation).
2214  if (getLangOptions().CPlusPlus) {
2215    // C++-specific checks.
2216    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2217      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2218    else if (isa<CXXDestructorDecl>(NewFD)) {
2219      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2220      Record->setUserDeclaredDestructor(true);
2221      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2222      // user-defined destructor.
2223      Record->setPOD(false);
2224    } else if (CXXConversionDecl *Conversion
2225               = dyn_cast<CXXConversionDecl>(NewFD))
2226      ActOnConversionDeclarator(Conversion);
2227
2228    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2229    if (NewFD->isOverloadedOperator() &&
2230        CheckOverloadedOperatorDeclaration(NewFD))
2231      InvalidDecl = true;
2232  }
2233
2234  // Check for a previous declaration of this name.
2235  if (!PrevDecl && NewFD->isExternC(Context)) {
2236    // Since we did not find anything by this name and we're declaring
2237    // an extern "C" function, look for a non-visible extern "C"
2238    // declaration with the same name.
2239    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2240      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2241    if (Pos != LocallyScopedExternalDecls.end())
2242      PrevDecl = Pos->second;
2243  }
2244
2245  // Merge or overload the declaration with an existing declaration of
2246  // the same name, if appropriate.
2247  if (PrevDecl) {
2248    // Determine whether NewFD is an overload of PrevDecl or
2249    // a declaration that requires merging. If it's an overload,
2250    // there's no more work to do here; we'll just add the new
2251    // function to the scope.
2252    OverloadedFunctionDecl::function_iterator MatchedDecl;
2253
2254    if (!getLangOptions().CPlusPlus &&
2255        AllowOverloadingOfFunction(PrevDecl, Context)) {
2256      OverloadableAttrRequired = true;
2257
2258      // Functions marked "overloadable" must have a prototype (that
2259      // we can't get through declaration merging).
2260      if (!NewFD->getType()->getAsFunctionProtoType()) {
2261        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2262          << NewFD;
2263        InvalidDecl = true;
2264        Redeclaration = true;
2265
2266        // Turn this into a variadic function with no parameters.
2267        QualType R = Context.getFunctionType(
2268                       NewFD->getType()->getAsFunctionType()->getResultType(),
2269                       0, 0, true, 0);
2270        NewFD->setType(R);
2271      }
2272    }
2273
2274    if (PrevDecl &&
2275        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2276         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2277      Redeclaration = true;
2278      Decl *OldDecl = PrevDecl;
2279
2280      // If PrevDecl was an overloaded function, extract the
2281      // FunctionDecl that matched.
2282      if (isa<OverloadedFunctionDecl>(PrevDecl))
2283        OldDecl = *MatchedDecl;
2284
2285      // NewFD and OldDecl represent declarations that need to be
2286      // merged.
2287      if (MergeFunctionDecl(NewFD, OldDecl))
2288        InvalidDecl = true;
2289
2290      if (!InvalidDecl)
2291        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2292    }
2293  }
2294
2295  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2296    // In C++, check default arguments now that we have merged decls. Unless
2297    // the lexical context is the class, because in this case this is done
2298    // during delayed parsing anyway.
2299    CheckCXXDefaultArguments(NewFD);
2300  }
2301
2302  return InvalidDecl || NewFD->isInvalidDecl();
2303}
2304
2305bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2306  // FIXME: Need strict checking.  In C89, we need to check for
2307  // any assignment, increment, decrement, function-calls, or
2308  // commas outside of a sizeof.  In C99, it's the same list,
2309  // except that the aforementioned are allowed in unevaluated
2310  // expressions.  Everything else falls under the
2311  // "may accept other forms of constant expressions" exception.
2312  // (We never end up here for C++, so the constant expression
2313  // rules there don't matter.)
2314  if (Init->isConstantInitializer(Context))
2315    return false;
2316  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2317    << Init->getSourceRange();
2318  return true;
2319}
2320
2321void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2322  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2323}
2324
2325/// AddInitializerToDecl - Adds the initializer Init to the
2326/// declaration dcl. If DirectInit is true, this is C++ direct
2327/// initialization rather than copy initialization.
2328void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2329  Decl *RealDecl = dcl.getAs<Decl>();
2330  // If there is no declaration, there was an error parsing it.  Just ignore
2331  // the initializer.
2332  if (RealDecl == 0)
2333    return;
2334
2335  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2336    // With declarators parsed the way they are, the parser cannot
2337    // distinguish between a normal initializer and a pure-specifier.
2338    // Thus this grotesque test.
2339    IntegerLiteral *IL;
2340    Expr *Init = static_cast<Expr *>(init.get());
2341    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2342        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2343      if (Method->isVirtual()) {
2344        Method->setPure();
2345
2346        // A class is abstract if at least one function is pure virtual.
2347        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2348      } else if (!Method->isInvalidDecl()) {
2349        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2350          << Method->getDeclName() << Init->getSourceRange();
2351        Method->setInvalidDecl();
2352      }
2353    } else {
2354      Diag(Method->getLocation(), diag::err_member_function_initialization)
2355        << Method->getDeclName() << Init->getSourceRange();
2356      Method->setInvalidDecl();
2357    }
2358    return;
2359  }
2360
2361  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2362  if (!VDecl) {
2363    if (getLangOptions().CPlusPlus &&
2364        RealDecl->getLexicalDeclContext()->isRecord() &&
2365        isa<NamedDecl>(RealDecl))
2366      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2367        << cast<NamedDecl>(RealDecl)->getDeclName();
2368    else
2369      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2370    RealDecl->setInvalidDecl();
2371    return;
2372  }
2373
2374  const VarDecl *Def = 0;
2375  if (VDecl->getDefinition(Def)) {
2376    Diag(VDecl->getLocation(), diag::err_redefinition)
2377      << VDecl->getDeclName();
2378    Diag(Def->getLocation(), diag::note_previous_definition);
2379    VDecl->setInvalidDecl();
2380    return;
2381  }
2382
2383  // Take ownership of the expression, now that we're sure we have somewhere
2384  // to put it.
2385  Expr *Init = static_cast<Expr *>(init.release());
2386  assert(Init && "missing initializer");
2387
2388  // Get the decls type and save a reference for later, since
2389  // CheckInitializerTypes may change it.
2390  QualType DclT = VDecl->getType(), SavT = DclT;
2391  if (VDecl->isBlockVarDecl()) {
2392    VarDecl::StorageClass SC = VDecl->getStorageClass();
2393    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2394      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2395      VDecl->setInvalidDecl();
2396    } else if (!VDecl->isInvalidDecl()) {
2397      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2398                                VDecl->getDeclName(), DirectInit))
2399        VDecl->setInvalidDecl();
2400
2401      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2402      // Don't check invalid declarations to avoid emitting useless diagnostics.
2403      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2404        if (SC == VarDecl::Static) // C99 6.7.8p4.
2405          CheckForConstantInitializer(Init, DclT);
2406      }
2407    }
2408  } else if (VDecl->isStaticDataMember() &&
2409             VDecl->getLexicalDeclContext()->isRecord()) {
2410    // This is an in-class initialization for a static data member, e.g.,
2411    //
2412    // struct S {
2413    //   static const int value = 17;
2414    // };
2415
2416    // Attach the initializer
2417    VDecl->setInit(Init);
2418
2419    // C++ [class.mem]p4:
2420    //   A member-declarator can contain a constant-initializer only
2421    //   if it declares a static member (9.4) of const integral or
2422    //   const enumeration type, see 9.4.2.
2423    QualType T = VDecl->getType();
2424    if (!T->isDependentType() &&
2425        (!Context.getCanonicalType(T).isConstQualified() ||
2426         !T->isIntegralType())) {
2427      Diag(VDecl->getLocation(), diag::err_member_initialization)
2428        << VDecl->getDeclName() << Init->getSourceRange();
2429      VDecl->setInvalidDecl();
2430    } else {
2431      // C++ [class.static.data]p4:
2432      //   If a static data member is of const integral or const
2433      //   enumeration type, its declaration in the class definition
2434      //   can specify a constant-initializer which shall be an
2435      //   integral constant expression (5.19).
2436      if (!Init->isTypeDependent() &&
2437          !Init->getType()->isIntegralType()) {
2438        // We have a non-dependent, non-integral or enumeration type.
2439        Diag(Init->getSourceRange().getBegin(),
2440             diag::err_in_class_initializer_non_integral_type)
2441          << Init->getType() << Init->getSourceRange();
2442        VDecl->setInvalidDecl();
2443      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2444        // Check whether the expression is a constant expression.
2445        llvm::APSInt Value;
2446        SourceLocation Loc;
2447        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2448          Diag(Loc, diag::err_in_class_initializer_non_constant)
2449            << Init->getSourceRange();
2450          VDecl->setInvalidDecl();
2451        } else if (!VDecl->getType()->isDependentType())
2452          ImpCastExprToType(Init, VDecl->getType());
2453      }
2454    }
2455  } else if (VDecl->isFileVarDecl()) {
2456    if (VDecl->getStorageClass() == VarDecl::Extern)
2457      Diag(VDecl->getLocation(), diag::warn_extern_init);
2458    if (!VDecl->isInvalidDecl())
2459      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2460                                VDecl->getDeclName(), DirectInit))
2461        VDecl->setInvalidDecl();
2462
2463    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2464    // Don't check invalid declarations to avoid emitting useless diagnostics.
2465    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2466      // C99 6.7.8p4. All file scoped initializers need to be constant.
2467      CheckForConstantInitializer(Init, DclT);
2468    }
2469  }
2470  // If the type changed, it means we had an incomplete type that was
2471  // completed by the initializer. For example:
2472  //   int ary[] = { 1, 3, 5 };
2473  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2474  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2475    VDecl->setType(DclT);
2476    Init->setType(DclT);
2477  }
2478
2479  // Attach the initializer to the decl.
2480  VDecl->setInit(Init);
2481  return;
2482}
2483
2484void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2485  Decl *RealDecl = dcl.getAs<Decl>();
2486
2487  // If there is no declaration, there was an error parsing it. Just ignore it.
2488  if (RealDecl == 0)
2489    return;
2490
2491  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2492    QualType Type = Var->getType();
2493    // C++ [dcl.init.ref]p3:
2494    //   The initializer can be omitted for a reference only in a
2495    //   parameter declaration (8.3.5), in the declaration of a
2496    //   function return type, in the declaration of a class member
2497    //   within its class declaration (9.2), and where the extern
2498    //   specifier is explicitly used.
2499    if (Type->isReferenceType() &&
2500        Var->getStorageClass() != VarDecl::Extern &&
2501        Var->getStorageClass() != VarDecl::PrivateExtern) {
2502      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2503        << Var->getDeclName()
2504        << SourceRange(Var->getLocation(), Var->getLocation());
2505      Var->setInvalidDecl();
2506      return;
2507    }
2508
2509    // C++ [dcl.init]p9:
2510    //
2511    //   If no initializer is specified for an object, and the object
2512    //   is of (possibly cv-qualified) non-POD class type (or array
2513    //   thereof), the object shall be default-initialized; if the
2514    //   object is of const-qualified type, the underlying class type
2515    //   shall have a user-declared default constructor.
2516    if (getLangOptions().CPlusPlus) {
2517      QualType InitType = Type;
2518      if (const ArrayType *Array = Context.getAsArrayType(Type))
2519        InitType = Array->getElementType();
2520      if (Var->getStorageClass() != VarDecl::Extern &&
2521          Var->getStorageClass() != VarDecl::PrivateExtern &&
2522          InitType->isRecordType()) {
2523        const CXXConstructorDecl *Constructor = 0;
2524        if (!RequireCompleteType(Var->getLocation(), InitType,
2525                                    diag::err_invalid_incomplete_type_use))
2526          Constructor
2527            = PerformInitializationByConstructor(InitType, 0, 0,
2528                                                 Var->getLocation(),
2529                                               SourceRange(Var->getLocation(),
2530                                                           Var->getLocation()),
2531                                                 Var->getDeclName(),
2532                                                 IK_Default);
2533        if (!Constructor)
2534          Var->setInvalidDecl();
2535      }
2536    }
2537
2538#if 0
2539    // FIXME: Temporarily disabled because we are not properly parsing
2540    // linkage specifications on declarations, e.g.,
2541    //
2542    //   extern "C" const CGPoint CGPointerZero;
2543    //
2544    // C++ [dcl.init]p9:
2545    //
2546    //     If no initializer is specified for an object, and the
2547    //     object is of (possibly cv-qualified) non-POD class type (or
2548    //     array thereof), the object shall be default-initialized; if
2549    //     the object is of const-qualified type, the underlying class
2550    //     type shall have a user-declared default
2551    //     constructor. Otherwise, if no initializer is specified for
2552    //     an object, the object and its subobjects, if any, have an
2553    //     indeterminate initial value; if the object or any of its
2554    //     subobjects are of const-qualified type, the program is
2555    //     ill-formed.
2556    //
2557    // This isn't technically an error in C, so we don't diagnose it.
2558    //
2559    // FIXME: Actually perform the POD/user-defined default
2560    // constructor check.
2561    if (getLangOptions().CPlusPlus &&
2562        Context.getCanonicalType(Type).isConstQualified() &&
2563        Var->getStorageClass() != VarDecl::Extern)
2564      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2565        << Var->getName()
2566        << SourceRange(Var->getLocation(), Var->getLocation());
2567#endif
2568  }
2569}
2570
2571Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2572                                                   unsigned NumDecls) {
2573  llvm::SmallVector<Decl*, 8> Decls;
2574
2575  for (unsigned i = 0; i != NumDecls; ++i)
2576    if (Decl *D = Group[i].getAs<Decl>())
2577      Decls.push_back(D);
2578
2579  // Perform semantic analysis that depends on having fully processed both
2580  // the declarator and initializer.
2581  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2582    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2583    if (!IDecl)
2584      continue;
2585    QualType T = IDecl->getType();
2586
2587    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2588    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2589    if (IDecl->isBlockVarDecl() &&
2590        IDecl->getStorageClass() != VarDecl::Extern) {
2591      if (!IDecl->isInvalidDecl() &&
2592          RequireCompleteType(IDecl->getLocation(), T,
2593                              diag::err_typecheck_decl_incomplete_type))
2594        IDecl->setInvalidDecl();
2595    }
2596    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2597    // object that has file scope without an initializer, and without a
2598    // storage-class specifier or with the storage-class specifier "static",
2599    // constitutes a tentative definition. Note: A tentative definition with
2600    // external linkage is valid (C99 6.2.2p5).
2601    if (IDecl->isTentativeDefinition(Context)) {
2602      QualType CheckType = T;
2603      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2604
2605      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2606      if (ArrayT) {
2607        CheckType = ArrayT->getElementType();
2608        DiagID = diag::err_illegal_decl_array_incomplete_type;
2609      }
2610
2611      if (IDecl->isInvalidDecl()) {
2612        // Do nothing with invalid declarations
2613      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2614                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2615        // C99 6.9.2p3: If the declaration of an identifier for an object is
2616        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2617        // declared type shall not be an incomplete type.
2618        IDecl->setInvalidDecl();
2619      }
2620    }
2621  }
2622  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2623                                                   &Decls[0], Decls.size()));
2624}
2625
2626
2627/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2628/// to introduce parameters into function prototype scope.
2629Sema::DeclPtrTy
2630Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2631  const DeclSpec &DS = D.getDeclSpec();
2632
2633  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2634  VarDecl::StorageClass StorageClass = VarDecl::None;
2635  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2636    StorageClass = VarDecl::Register;
2637  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2638    Diag(DS.getStorageClassSpecLoc(),
2639         diag::err_invalid_storage_class_in_func_decl);
2640    D.getMutableDeclSpec().ClearStorageClassSpecs();
2641  }
2642  if (DS.isThreadSpecified()) {
2643    Diag(DS.getThreadSpecLoc(),
2644         diag::err_invalid_storage_class_in_func_decl);
2645    D.getMutableDeclSpec().ClearStorageClassSpecs();
2646  }
2647  DiagnoseFunctionSpecifiers(D);
2648
2649  // Check that there are no default arguments inside the type of this
2650  // parameter (C++ only).
2651  if (getLangOptions().CPlusPlus)
2652    CheckExtraCXXDefaultArguments(D);
2653
2654  // In this context, we *do not* check D.getInvalidType(). If the declarator
2655  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2656  // though it will not reflect the user specified type.
2657  QualType parmDeclType = GetTypeForDeclarator(D, S);
2658
2659  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2660
2661  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2662  // Can this happen for params?  We already checked that they don't conflict
2663  // among each other.  Here they can only shadow globals, which is ok.
2664  IdentifierInfo *II = D.getIdentifier();
2665  if (II) {
2666    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2667      if (PrevDecl->isTemplateParameter()) {
2668        // Maybe we will complain about the shadowed template parameter.
2669        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2670        // Just pretend that we didn't see the previous declaration.
2671        PrevDecl = 0;
2672      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2673        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2674
2675        // Recover by removing the name
2676        II = 0;
2677        D.SetIdentifier(0, D.getIdentifierLoc());
2678      }
2679    }
2680  }
2681
2682  // Parameters can not be abstract class types.
2683  // For record types, this is done by the AbstractClassUsageDiagnoser once
2684  // the class has been completely parsed.
2685  if (!CurContext->isRecord() &&
2686      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2687                             diag::err_abstract_type_in_decl,
2688                             AbstractParamType))
2689    D.setInvalidType(true);
2690
2691  QualType T = adjustParameterType(parmDeclType);
2692
2693  ParmVarDecl *New;
2694  if (T == parmDeclType) // parameter type did not need adjustment
2695    New = ParmVarDecl::Create(Context, CurContext,
2696                              D.getIdentifierLoc(), II,
2697                              parmDeclType, StorageClass,
2698                              0);
2699  else // keep track of both the adjusted and unadjusted types
2700    New = OriginalParmVarDecl::Create(Context, CurContext,
2701                                      D.getIdentifierLoc(), II, T,
2702                                      parmDeclType, StorageClass, 0);
2703
2704  if (D.getInvalidType())
2705    New->setInvalidDecl();
2706
2707  // Parameter declarators cannot be interface types. All ObjC objects are
2708  // passed by reference.
2709  if (T->isObjCInterfaceType()) {
2710    Diag(D.getIdentifierLoc(),
2711         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2712    New->setInvalidDecl();
2713  }
2714
2715  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2716  if (D.getCXXScopeSpec().isSet()) {
2717    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2718      << D.getCXXScopeSpec().getRange();
2719    New->setInvalidDecl();
2720  }
2721
2722  // Add the parameter declaration into this scope.
2723  S->AddDecl(DeclPtrTy::make(New));
2724  if (II)
2725    IdResolver.AddDecl(New);
2726
2727  ProcessDeclAttributes(New, D);
2728  return DeclPtrTy::make(New);
2729}
2730
2731void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2732                                           SourceLocation LocAfterDecls) {
2733  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2734         "Not a function declarator!");
2735  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2736
2737  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2738  // for a K&R function.
2739  if (!FTI.hasPrototype) {
2740    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2741      --i;
2742      if (FTI.ArgInfo[i].Param == 0) {
2743        std::string Code = "  int ";
2744        Code += FTI.ArgInfo[i].Ident->getName();
2745        Code += ";\n";
2746        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2747          << FTI.ArgInfo[i].Ident
2748          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2749
2750        // Implicitly declare the argument as type 'int' for lack of a better
2751        // type.
2752        DeclSpec DS;
2753        const char* PrevSpec; // unused
2754        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2755                           PrevSpec);
2756        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2757        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2758        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2759      }
2760    }
2761  }
2762}
2763
2764Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2765                                              Declarator &D) {
2766  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2767  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2768         "Not a function declarator!");
2769  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2770
2771  if (FTI.hasPrototype) {
2772    // FIXME: Diagnose arguments without names in C.
2773  }
2774
2775  Scope *ParentScope = FnBodyScope->getParent();
2776
2777  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2778  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2779}
2780
2781Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2782  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2783
2784  // See if this is a redefinition.
2785  const FunctionDecl *Definition;
2786  if (FD->getBody(Definition)) {
2787    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2788    Diag(Definition->getLocation(), diag::note_previous_definition);
2789  }
2790
2791  // Builtin functions cannot be defined.
2792  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2793    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2794      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2795      FD->setInvalidDecl();
2796    }
2797  }
2798
2799  // The return type of a function definition must be complete
2800  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2801  QualType ResultType = FD->getResultType();
2802  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2803      RequireCompleteType(FD->getLocation(), ResultType,
2804                          diag::err_func_def_incomplete_result))
2805    FD->setInvalidDecl();
2806
2807  // GNU warning -Wmissing-prototypes:
2808  //   Warn if a global function is defined without a previous
2809  //   prototype declaration. This warning is issued even if the
2810  //   definition itself provides a prototype. The aim is to detect
2811  //   global functions that fail to be declared in header files.
2812  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2813      !FD->isMain()) {
2814    bool MissingPrototype = true;
2815    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2816         Prev; Prev = Prev->getPreviousDeclaration()) {
2817      // Ignore any declarations that occur in function or method
2818      // scope, because they aren't visible from the header.
2819      if (Prev->getDeclContext()->isFunctionOrMethod())
2820        continue;
2821
2822      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2823      break;
2824    }
2825
2826    if (MissingPrototype)
2827      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2828  }
2829
2830  PushDeclContext(FnBodyScope, FD);
2831
2832  // Check the validity of our function parameters
2833  CheckParmsForFunctionDef(FD);
2834
2835  // Introduce our parameters into the function scope
2836  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2837    ParmVarDecl *Param = FD->getParamDecl(p);
2838    Param->setOwningFunction(FD);
2839
2840    // If this has an identifier, add it to the scope stack.
2841    if (Param->getIdentifier())
2842      PushOnScopeChains(Param, FnBodyScope);
2843  }
2844
2845  // Checking attributes of current function definition
2846  // dllimport attribute.
2847  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2848    // dllimport attribute cannot be applied to definition.
2849    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2850      Diag(FD->getLocation(),
2851           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2852        << "dllimport";
2853      FD->setInvalidDecl();
2854      return DeclPtrTy::make(FD);
2855    } else {
2856      // If a symbol previously declared dllimport is later defined, the
2857      // attribute is ignored in subsequent references, and a warning is
2858      // emitted.
2859      Diag(FD->getLocation(),
2860           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2861        << FD->getNameAsCString() << "dllimport";
2862    }
2863  }
2864  return DeclPtrTy::make(FD);
2865}
2866
2867static bool StatementCreatesScope(Stmt* S) {
2868  DeclStmt *DS = dyn_cast<DeclStmt>(S);
2869  if (DS == 0) return false;
2870
2871  for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
2872       I != E; ++I) {
2873    if (VarDecl *D = dyn_cast<VarDecl>(*I)) {
2874      if (D->getType()->isVariablyModifiedType() ||
2875          D->hasAttr<CleanupAttr>())
2876        return true;
2877    } else if (TypedefDecl *D = dyn_cast<TypedefDecl>(*I)) {
2878      if (D->getUnderlyingType()->isVariablyModifiedType())
2879        return true;
2880    }
2881  }
2882
2883  return false;
2884}
2885
2886
2887void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2888                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2889                                    std::vector<void*>& ScopeStack,
2890                                    Stmt* CurStmt,
2891                                    Stmt* ParentCompoundStmt) {
2892  for (Stmt::child_iterator i = CurStmt->child_begin();
2893       i != CurStmt->child_end(); ++i) {
2894    if (!*i) continue;
2895    if (StatementCreatesScope(*i))  {
2896      ScopeStack.push_back(*i);
2897      PopScopeMap[*i] = ParentCompoundStmt;
2898    } else if (isa<LabelStmt>(CurStmt)) {
2899      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2900    }
2901    if (isa<DeclStmt>(*i)) continue;
2902    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2903    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2904                             *i, CurCompound);
2905  }
2906
2907  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2908    ScopeStack.pop_back();
2909  }
2910}
2911
2912void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2913                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2914                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2915                                   std::vector<void*>& ScopeStack,
2916                                   Stmt* CurStmt) {
2917  for (Stmt::child_iterator i = CurStmt->child_begin();
2918       i != CurStmt->child_end(); ++i) {
2919    if (!*i) continue;
2920    if (StatementCreatesScope(*i))  {
2921      ScopeStack.push_back(*i);
2922    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2923      void* LScope = LabelScopeMap[GS->getLabel()];
2924      if (LScope) {
2925        bool foundScopeInStack = false;
2926        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2927          if (LScope == ScopeStack[i-1]) {
2928            foundScopeInStack = true;
2929            break;
2930          }
2931        }
2932        if (!foundScopeInStack) {
2933          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2934        }
2935      }
2936    }
2937    if (isa<DeclStmt>(*i)) continue;
2938    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2939                            ScopeStack, *i);
2940  }
2941
2942  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2943    ScopeStack.pop_back();
2944  }
2945}
2946
2947Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2948  Decl *dcl = D.getAs<Decl>();
2949  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2950  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2951    FD->setBody(cast<CompoundStmt>(Body));
2952    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2953  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2954    assert(MD == getCurMethodDecl() && "Method parsing confused");
2955    MD->setBody(cast<CompoundStmt>(Body));
2956  } else {
2957    Body->Destroy(Context);
2958    return DeclPtrTy();
2959  }
2960  PopDeclContext();
2961  // Verify and clean out per-function state.
2962
2963  bool HaveLabels = !LabelMap.empty();
2964  // Check goto/label use.
2965  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2966       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2967    // Verify that we have no forward references left.  If so, there was a goto
2968    // or address of a label taken, but no definition of it.  Label fwd
2969    // definitions are indicated with a null substmt.
2970    if (I->second->getSubStmt() == 0) {
2971      LabelStmt *L = I->second;
2972      // Emit error.
2973      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2974
2975      // At this point, we have gotos that use the bogus label.  Stitch it into
2976      // the function body so that they aren't leaked and that the AST is well
2977      // formed.
2978      if (Body) {
2979#if 0
2980        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2981        // and the AST is malformed anyway.  We should just blow away 'L'.
2982        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2983        cast<CompoundStmt>(Body)->push_back(L);
2984#else
2985        L->Destroy(Context);
2986#endif
2987      } else {
2988        // The whole function wasn't parsed correctly, just delete this.
2989        L->Destroy(Context);
2990      }
2991    }
2992  }
2993  LabelMap.clear();
2994
2995  if (!Body) return D;
2996
2997  if (HaveLabels) {
2998    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2999    llvm::DenseMap<void*, Stmt*> PopScopeMap;
3000    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
3001    std::vector<void*> ScopeStack;
3002    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
3003    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
3004  }
3005
3006  return D;
3007}
3008
3009/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3010/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3011NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3012                                          IdentifierInfo &II, Scope *S) {
3013  // Before we produce a declaration for an implicitly defined
3014  // function, see whether there was a locally-scoped declaration of
3015  // this name as a function or variable. If so, use that
3016  // (non-visible) declaration, and complain about it.
3017  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3018    = LocallyScopedExternalDecls.find(&II);
3019  if (Pos != LocallyScopedExternalDecls.end()) {
3020    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3021    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3022    return Pos->second;
3023  }
3024
3025  // Extension in C99.  Legal in C90, but warn about it.
3026  if (getLangOptions().C99)
3027    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3028  else
3029    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3030
3031  // FIXME: handle stuff like:
3032  // void foo() { extern float X(); }
3033  // void bar() { X(); }  <-- implicit decl for X in another scope.
3034
3035  // Set a Declarator for the implicit definition: int foo();
3036  const char *Dummy;
3037  DeclSpec DS;
3038  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3039  Error = Error; // Silence warning.
3040  assert(!Error && "Error setting up implicit decl!");
3041  Declarator D(DS, Declarator::BlockContext);
3042  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3043                                             0, 0, 0, Loc, D),
3044                SourceLocation());
3045  D.SetIdentifier(&II, Loc);
3046
3047  // Insert this function into translation-unit scope.
3048
3049  DeclContext *PrevDC = CurContext;
3050  CurContext = Context.getTranslationUnitDecl();
3051
3052  FunctionDecl *FD =
3053 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3054  FD->setImplicit();
3055
3056  CurContext = PrevDC;
3057
3058  AddKnownFunctionAttributes(FD);
3059
3060  return FD;
3061}
3062
3063/// \brief Adds any function attributes that we know a priori based on
3064/// the declaration of this function.
3065///
3066/// These attributes can apply both to implicitly-declared builtins
3067/// (like __builtin___printf_chk) or to library-declared functions
3068/// like NSLog or printf.
3069void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3070  if (FD->isInvalidDecl())
3071    return;
3072
3073  // If this is a built-in function, map its builtin attributes to
3074  // actual attributes.
3075  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3076    // Handle printf-formatting attributes.
3077    unsigned FormatIdx;
3078    bool HasVAListArg;
3079    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3080      if (!FD->getAttr<FormatAttr>())
3081        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3082                                               FormatIdx + 2));
3083    }
3084
3085    // Mark const if we don't care about errno and that is the only
3086    // thing preventing the function from being const. This allows
3087    // IRgen to use LLVM intrinsics for such functions.
3088    if (!getLangOptions().MathErrno &&
3089        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3090      if (!FD->getAttr<ConstAttr>())
3091        FD->addAttr(::new (Context) ConstAttr());
3092    }
3093  }
3094
3095  IdentifierInfo *Name = FD->getIdentifier();
3096  if (!Name)
3097    return;
3098  if ((!getLangOptions().CPlusPlus &&
3099       FD->getDeclContext()->isTranslationUnit()) ||
3100      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3101       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3102       LinkageSpecDecl::lang_c)) {
3103    // Okay: this could be a libc/libm/Objective-C function we know
3104    // about.
3105  } else
3106    return;
3107
3108  unsigned KnownID;
3109  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3110    if (KnownFunctionIDs[KnownID] == Name)
3111      break;
3112
3113  switch (KnownID) {
3114  case id_NSLog:
3115  case id_NSLogv:
3116    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3117      // FIXME: We known better than our headers.
3118      const_cast<FormatAttr *>(Format)->setType("printf");
3119    } else
3120      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3121    break;
3122
3123  case id_asprintf:
3124  case id_vasprintf:
3125    if (!FD->getAttr<FormatAttr>())
3126      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3127    break;
3128
3129  default:
3130    // Unknown function or known function without any attributes to
3131    // add. Do nothing.
3132    break;
3133  }
3134}
3135
3136TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3137  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3138  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3139
3140  // Scope manipulation handled by caller.
3141  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3142                                           D.getIdentifierLoc(),
3143                                           D.getIdentifier(),
3144                                           T);
3145
3146  if (TagType *TT = dyn_cast<TagType>(T)) {
3147    TagDecl *TD = TT->getDecl();
3148
3149    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3150    // keep track of the TypedefDecl.
3151    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3152      TD->setTypedefForAnonDecl(NewTD);
3153  }
3154
3155  if (D.getInvalidType())
3156    NewTD->setInvalidDecl();
3157  return NewTD;
3158}
3159
3160/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3161/// former case, Name will be non-null.  In the later case, Name will be null.
3162/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3163/// reference/declaration/definition of a tag.
3164Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3165                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3166                               IdentifierInfo *Name, SourceLocation NameLoc,
3167                               AttributeList *Attr, AccessSpecifier AS) {
3168  // If this is not a definition, it must have a name.
3169  assert((Name != 0 || TK == TK_Definition) &&
3170         "Nameless record must be a definition!");
3171
3172  TagDecl::TagKind Kind;
3173  switch (TagSpec) {
3174  default: assert(0 && "Unknown tag type!");
3175  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3176  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3177  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3178  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3179  }
3180
3181  DeclContext *SearchDC = CurContext;
3182  DeclContext *DC = CurContext;
3183  NamedDecl *PrevDecl = 0;
3184
3185  bool Invalid = false;
3186
3187  if (Name && SS.isNotEmpty()) {
3188    // We have a nested-name tag ('struct foo::bar').
3189
3190    // Check for invalid 'foo::'.
3191    if (SS.isInvalid()) {
3192      Name = 0;
3193      goto CreateNewDecl;
3194    }
3195
3196    // FIXME: RequireCompleteDeclContext(SS)?
3197    DC = computeDeclContext(SS);
3198    SearchDC = DC;
3199    // Look-up name inside 'foo::'.
3200    PrevDecl = dyn_cast_or_null<TagDecl>(
3201                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3202
3203    // A tag 'foo::bar' must already exist.
3204    if (PrevDecl == 0) {
3205      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3206      Name = 0;
3207      goto CreateNewDecl;
3208    }
3209  } else if (Name) {
3210    // If this is a named struct, check to see if there was a previous forward
3211    // declaration or definition.
3212    // FIXME: We're looking into outer scopes here, even when we
3213    // shouldn't be. Doing so can result in ambiguities that we
3214    // shouldn't be diagnosing.
3215    LookupResult R = LookupName(S, Name, LookupTagName,
3216                                /*RedeclarationOnly=*/(TK != TK_Reference));
3217    if (R.isAmbiguous()) {
3218      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3219      // FIXME: This is not best way to recover from case like:
3220      //
3221      // struct S s;
3222      //
3223      // causes needless "incomplete type" error later.
3224      Name = 0;
3225      PrevDecl = 0;
3226      Invalid = true;
3227    }
3228    else
3229      PrevDecl = R;
3230
3231    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3232      // FIXME: This makes sure that we ignore the contexts associated
3233      // with C structs, unions, and enums when looking for a matching
3234      // tag declaration or definition. See the similar lookup tweak
3235      // in Sema::LookupName; is there a better way to deal with this?
3236      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3237        SearchDC = SearchDC->getParent();
3238    }
3239  }
3240
3241  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3242    // Maybe we will complain about the shadowed template parameter.
3243    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3244    // Just pretend that we didn't see the previous declaration.
3245    PrevDecl = 0;
3246  }
3247
3248  if (PrevDecl) {
3249    // Check whether the previous declaration is usable.
3250    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3251
3252    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3253      // If this is a use of a previous tag, or if the tag is already declared
3254      // in the same scope (so that the definition/declaration completes or
3255      // rementions the tag), reuse the decl.
3256      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3257        // Make sure that this wasn't declared as an enum and now used as a
3258        // struct or something similar.
3259        if (PrevTagDecl->getTagKind() != Kind) {
3260          bool SafeToContinue
3261            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3262               Kind != TagDecl::TK_enum);
3263          if (SafeToContinue)
3264            Diag(KWLoc, diag::err_use_with_wrong_tag)
3265              << Name
3266              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3267                                                  PrevTagDecl->getKindName());
3268          else
3269            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3270          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3271
3272          if (SafeToContinue)
3273            Kind = PrevTagDecl->getTagKind();
3274          else {
3275            // Recover by making this an anonymous redefinition.
3276            Name = 0;
3277            PrevDecl = 0;
3278            Invalid = true;
3279          }
3280        }
3281
3282        if (!Invalid) {
3283          // If this is a use, just return the declaration we found.
3284
3285          // FIXME: In the future, return a variant or some other clue
3286          // for the consumer of this Decl to know it doesn't own it.
3287          // For our current ASTs this shouldn't be a problem, but will
3288          // need to be changed with DeclGroups.
3289          if (TK == TK_Reference)
3290            return DeclPtrTy::make(PrevDecl);
3291
3292          // Diagnose attempts to redefine a tag.
3293          if (TK == TK_Definition) {
3294            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3295              Diag(NameLoc, diag::err_redefinition) << Name;
3296              Diag(Def->getLocation(), diag::note_previous_definition);
3297              // If this is a redefinition, recover by making this
3298              // struct be anonymous, which will make any later
3299              // references get the previous definition.
3300              Name = 0;
3301              PrevDecl = 0;
3302              Invalid = true;
3303            } else {
3304              // If the type is currently being defined, complain
3305              // about a nested redefinition.
3306              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3307              if (Tag->isBeingDefined()) {
3308                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3309                Diag(PrevTagDecl->getLocation(),
3310                     diag::note_previous_definition);
3311                Name = 0;
3312                PrevDecl = 0;
3313                Invalid = true;
3314              }
3315            }
3316
3317            // Okay, this is definition of a previously declared or referenced
3318            // tag PrevDecl. We're going to create a new Decl for it.
3319          }
3320        }
3321        // If we get here we have (another) forward declaration or we
3322        // have a definition.  Just create a new decl.
3323      } else {
3324        // If we get here, this is a definition of a new tag type in a nested
3325        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3326        // new decl/type.  We set PrevDecl to NULL so that the entities
3327        // have distinct types.
3328        PrevDecl = 0;
3329      }
3330      // If we get here, we're going to create a new Decl. If PrevDecl
3331      // is non-NULL, it's a definition of the tag declared by
3332      // PrevDecl. If it's NULL, we have a new definition.
3333    } else {
3334      // PrevDecl is a namespace, template, or anything else
3335      // that lives in the IDNS_Tag identifier namespace.
3336      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3337        // The tag name clashes with a namespace name, issue an error and
3338        // recover by making this tag be anonymous.
3339        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3340        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3341        Name = 0;
3342        PrevDecl = 0;
3343        Invalid = true;
3344      } else {
3345        // The existing declaration isn't relevant to us; we're in a
3346        // new scope, so clear out the previous declaration.
3347        PrevDecl = 0;
3348      }
3349    }
3350  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3351             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3352    // C.scope.pdecl]p5:
3353    //   -- for an elaborated-type-specifier of the form
3354    //
3355    //          class-key identifier
3356    //
3357    //      if the elaborated-type-specifier is used in the
3358    //      decl-specifier-seq or parameter-declaration-clause of a
3359    //      function defined in namespace scope, the identifier is
3360    //      declared as a class-name in the namespace that contains
3361    //      the declaration; otherwise, except as a friend
3362    //      declaration, the identifier is declared in the smallest
3363    //      non-class, non-function-prototype scope that contains the
3364    //      declaration.
3365    //
3366    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3367    // C structs and unions.
3368    //
3369    // GNU C also supports this behavior as part of its incomplete
3370    // enum types extension, while GNU C++ does not.
3371    //
3372    // Find the context where we'll be declaring the tag.
3373    // FIXME: We would like to maintain the current DeclContext as the
3374    // lexical context,
3375    while (SearchDC->isRecord())
3376      SearchDC = SearchDC->getParent();
3377
3378    // Find the scope where we'll be declaring the tag.
3379    while (S->isClassScope() ||
3380           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3381           ((S->getFlags() & Scope::DeclScope) == 0) ||
3382           (S->getEntity() &&
3383            ((DeclContext *)S->getEntity())->isTransparentContext()))
3384      S = S->getParent();
3385  }
3386
3387CreateNewDecl:
3388
3389  // If there is an identifier, use the location of the identifier as the
3390  // location of the decl, otherwise use the location of the struct/union
3391  // keyword.
3392  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3393
3394  // Otherwise, create a new declaration. If there is a previous
3395  // declaration of the same entity, the two will be linked via
3396  // PrevDecl.
3397  TagDecl *New;
3398
3399  if (Kind == TagDecl::TK_enum) {
3400    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3401    // enum X { A, B, C } D;    D should chain to X.
3402    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3403                           cast_or_null<EnumDecl>(PrevDecl));
3404    // If this is an undefined enum, warn.
3405    if (TK != TK_Definition && !Invalid)  {
3406      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3407                                              : diag::ext_forward_ref_enum;
3408      Diag(Loc, DK);
3409    }
3410  } else {
3411    // struct/union/class
3412
3413    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3414    // struct X { int A; } D;    D should chain to X.
3415    if (getLangOptions().CPlusPlus)
3416      // FIXME: Look for a way to use RecordDecl for simple structs.
3417      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3418                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3419    else
3420      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3421                               cast_or_null<RecordDecl>(PrevDecl));
3422  }
3423
3424  if (Kind != TagDecl::TK_enum) {
3425    // Handle #pragma pack: if the #pragma pack stack has non-default
3426    // alignment, make up a packed attribute for this decl. These
3427    // attributes are checked when the ASTContext lays out the
3428    // structure.
3429    //
3430    // It is important for implementing the correct semantics that this
3431    // happen here (in act on tag decl). The #pragma pack stack is
3432    // maintained as a result of parser callbacks which can occur at
3433    // many points during the parsing of a struct declaration (because
3434    // the #pragma tokens are effectively skipped over during the
3435    // parsing of the struct).
3436    if (unsigned Alignment = getPragmaPackAlignment())
3437      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3438  }
3439
3440  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3441    // C++ [dcl.typedef]p3:
3442    //   [...] Similarly, in a given scope, a class or enumeration
3443    //   shall not be declared with the same name as a typedef-name
3444    //   that is declared in that scope and refers to a type other
3445    //   than the class or enumeration itself.
3446    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3447    TypedefDecl *PrevTypedef = 0;
3448    if (Lookup.getKind() == LookupResult::Found)
3449      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3450
3451    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3452        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3453          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3454      Diag(Loc, diag::err_tag_definition_of_typedef)
3455        << Context.getTypeDeclType(New)
3456        << PrevTypedef->getUnderlyingType();
3457      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3458      Invalid = true;
3459    }
3460  }
3461
3462  if (Invalid)
3463    New->setInvalidDecl();
3464
3465  if (Attr)
3466    ProcessDeclAttributeList(New, Attr);
3467
3468  // If we're declaring or defining a tag in function prototype scope
3469  // in C, note that this type can only be used within the function.
3470  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3471    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3472
3473  // Set the lexical context. If the tag has a C++ scope specifier, the
3474  // lexical context will be different from the semantic context.
3475  New->setLexicalDeclContext(CurContext);
3476
3477  // Set the access specifier.
3478  SetMemberAccessSpecifier(New, PrevDecl, AS);
3479
3480  if (TK == TK_Definition)
3481    New->startDefinition();
3482
3483  // If this has an identifier, add it to the scope stack.
3484  if (Name) {
3485    S = getNonFieldDeclScope(S);
3486    PushOnScopeChains(New, S);
3487  } else {
3488    CurContext->addDecl(Context, New);
3489  }
3490
3491  return DeclPtrTy::make(New);
3492}
3493
3494void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3495  AdjustDeclIfTemplate(TagD);
3496  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3497
3498  // Enter the tag context.
3499  PushDeclContext(S, Tag);
3500
3501  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3502    FieldCollector->StartClass();
3503
3504    if (Record->getIdentifier()) {
3505      // C++ [class]p2:
3506      //   [...] The class-name is also inserted into the scope of the
3507      //   class itself; this is known as the injected-class-name. For
3508      //   purposes of access checking, the injected-class-name is treated
3509      //   as if it were a public member name.
3510      CXXRecordDecl *InjectedClassName
3511        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3512                                CurContext, Record->getLocation(),
3513                                Record->getIdentifier(), Record);
3514      InjectedClassName->setImplicit();
3515      InjectedClassName->setAccess(AS_public);
3516      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3517        InjectedClassName->setDescribedClassTemplate(Template);
3518      PushOnScopeChains(InjectedClassName, S);
3519      assert(InjectedClassName->isInjectedClassName() &&
3520             "Broken injected-class-name");
3521    }
3522  }
3523}
3524
3525void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3526  AdjustDeclIfTemplate(TagD);
3527  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3528
3529  if (isa<CXXRecordDecl>(Tag))
3530    FieldCollector->FinishClass();
3531
3532  // Exit this scope of this tag's definition.
3533  PopDeclContext();
3534
3535  // Notify the consumer that we've defined a tag.
3536  Consumer.HandleTagDeclDefinition(Tag);
3537}
3538
3539bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3540                          QualType FieldTy, const Expr *BitWidth) {
3541  // C99 6.7.2.1p4 - verify the field type.
3542  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3543  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3544    // Handle incomplete types with specific error.
3545    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3546      return true;
3547    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3548      << FieldName << FieldTy << BitWidth->getSourceRange();
3549  }
3550
3551  // If the bit-width is type- or value-dependent, don't try to check
3552  // it now.
3553  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3554    return false;
3555
3556  llvm::APSInt Value;
3557  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3558    return true;
3559
3560  // Zero-width bitfield is ok for anonymous field.
3561  if (Value == 0 && FieldName)
3562    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3563
3564  if (Value.isSigned() && Value.isNegative())
3565    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3566             << FieldName << Value.toString(10);
3567
3568  if (!FieldTy->isDependentType()) {
3569    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3570    // FIXME: We won't need the 0 size once we check that the field type is valid.
3571    if (TypeSize && Value.getZExtValue() > TypeSize)
3572      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3573        << FieldName << (unsigned)TypeSize;
3574  }
3575
3576  return false;
3577}
3578
3579/// ActOnField - Each field of a struct/union/class is passed into this in order
3580/// to create a FieldDecl object for it.
3581Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3582                                 SourceLocation DeclStart,
3583                                 Declarator &D, ExprTy *BitfieldWidth) {
3584  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3585                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3586                               AS_public);
3587  return DeclPtrTy::make(Res);
3588}
3589
3590/// HandleField - Analyze a field of a C struct or a C++ data member.
3591///
3592FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3593                             SourceLocation DeclStart,
3594                             Declarator &D, Expr *BitWidth,
3595                             AccessSpecifier AS) {
3596  IdentifierInfo *II = D.getIdentifier();
3597  SourceLocation Loc = DeclStart;
3598  if (II) Loc = D.getIdentifierLoc();
3599
3600  QualType T = GetTypeForDeclarator(D, S);
3601
3602  if (getLangOptions().CPlusPlus) {
3603    CheckExtraCXXDefaultArguments(D);
3604  }
3605
3606  DiagnoseFunctionSpecifiers(D);
3607
3608  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3609  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3610    PrevDecl = 0;
3611
3612  FieldDecl *NewFD
3613    = CheckFieldDecl(II, T, Record, Loc,
3614               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3615                     BitWidth, AS, PrevDecl, &D);
3616  if (NewFD->isInvalidDecl() && PrevDecl) {
3617    // Don't introduce NewFD into scope; there's already something
3618    // with the same name in the same scope.
3619  } else if (II) {
3620    PushOnScopeChains(NewFD, S);
3621  } else
3622    Record->addDecl(Context, NewFD);
3623
3624  return NewFD;
3625}
3626
3627/// \brief Build a new FieldDecl and check its well-formedness.
3628///
3629/// This routine builds a new FieldDecl given the fields name, type,
3630/// record, etc. \p PrevDecl should refer to any previous declaration
3631/// with the same name and in the same scope as the field to be
3632/// created.
3633///
3634/// \returns a new FieldDecl.
3635///
3636/// \todo The Declarator argument is a hack. It will be removed once
3637FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3638                                RecordDecl *Record, SourceLocation Loc,
3639                                bool Mutable, Expr *BitWidth,
3640                                AccessSpecifier AS, NamedDecl *PrevDecl,
3641                                Declarator *D) {
3642  IdentifierInfo *II = Name.getAsIdentifierInfo();
3643  bool InvalidDecl = false;
3644
3645  // If we receive a broken type, recover by assuming 'int' and
3646  // marking this declaration as invalid.
3647  if (T.isNull()) {
3648    InvalidDecl = true;
3649    T = Context.IntTy;
3650  }
3651
3652  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3653  // than a variably modified type.
3654  if (T->isVariablyModifiedType()) {
3655    bool SizeIsNegative;
3656    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3657                                                           SizeIsNegative);
3658    if (!FixedTy.isNull()) {
3659      Diag(Loc, diag::warn_illegal_constant_array_size);
3660      T = FixedTy;
3661    } else {
3662      if (SizeIsNegative)
3663        Diag(Loc, diag::err_typecheck_negative_array_size);
3664      else
3665        Diag(Loc, diag::err_typecheck_field_variable_size);
3666      T = Context.IntTy;
3667      InvalidDecl = true;
3668    }
3669  }
3670
3671  // Fields can not have abstract class types
3672  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3673                             AbstractFieldType))
3674    InvalidDecl = true;
3675
3676  // If this is declared as a bit-field, check the bit-field.
3677  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3678    InvalidDecl = true;
3679    DeleteExpr(BitWidth);
3680    BitWidth = 0;
3681  }
3682
3683  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3684                                       Mutable);
3685
3686  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3687    Diag(Loc, diag::err_duplicate_member) << II;
3688    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3689    NewFD->setInvalidDecl();
3690    Record->setInvalidDecl();
3691  }
3692
3693  if (getLangOptions().CPlusPlus && !T->isPODType())
3694    cast<CXXRecordDecl>(Record)->setPOD(false);
3695
3696  // FIXME: We need to pass in the attributes given an AST
3697  // representation, not a parser representation.
3698  if (D)
3699    ProcessDeclAttributes(NewFD, *D);
3700
3701  if (T.isObjCGCWeak())
3702    Diag(Loc, diag::warn_attribute_weak_on_field);
3703
3704  if (InvalidDecl)
3705    NewFD->setInvalidDecl();
3706
3707  NewFD->setAccess(AS);
3708
3709  // C++ [dcl.init.aggr]p1:
3710  //   An aggregate is an array or a class (clause 9) with [...] no
3711  //   private or protected non-static data members (clause 11).
3712  // A POD must be an aggregate.
3713  if (getLangOptions().CPlusPlus &&
3714      (AS == AS_private || AS == AS_protected)) {
3715    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3716    CXXRecord->setAggregate(false);
3717    CXXRecord->setPOD(false);
3718  }
3719
3720  return NewFD;
3721}
3722
3723/// TranslateIvarVisibility - Translate visibility from a token ID to an
3724///  AST enum value.
3725static ObjCIvarDecl::AccessControl
3726TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3727  switch (ivarVisibility) {
3728  default: assert(0 && "Unknown visitibility kind");
3729  case tok::objc_private: return ObjCIvarDecl::Private;
3730  case tok::objc_public: return ObjCIvarDecl::Public;
3731  case tok::objc_protected: return ObjCIvarDecl::Protected;
3732  case tok::objc_package: return ObjCIvarDecl::Package;
3733  }
3734}
3735
3736/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3737/// in order to create an IvarDecl object for it.
3738Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3739                                SourceLocation DeclStart,
3740                                Declarator &D, ExprTy *BitfieldWidth,
3741                                tok::ObjCKeywordKind Visibility) {
3742
3743  IdentifierInfo *II = D.getIdentifier();
3744  Expr *BitWidth = (Expr*)BitfieldWidth;
3745  SourceLocation Loc = DeclStart;
3746  if (II) Loc = D.getIdentifierLoc();
3747
3748  // FIXME: Unnamed fields can be handled in various different ways, for
3749  // example, unnamed unions inject all members into the struct namespace!
3750
3751  QualType T = GetTypeForDeclarator(D, S);
3752  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3753  bool InvalidDecl = false;
3754
3755  if (BitWidth) {
3756    // 6.7.2.1p3, 6.7.2.1p4
3757    if (VerifyBitField(Loc, II, T, BitWidth)) {
3758      InvalidDecl = true;
3759      DeleteExpr(BitWidth);
3760      BitWidth = 0;
3761    }
3762  } else {
3763    // Not a bitfield.
3764
3765    // validate II.
3766
3767  }
3768
3769  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3770  // than a variably modified type.
3771  if (T->isVariablyModifiedType()) {
3772    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3773    InvalidDecl = true;
3774  }
3775
3776  // Get the visibility (access control) for this ivar.
3777  ObjCIvarDecl::AccessControl ac =
3778    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3779                                        : ObjCIvarDecl::None;
3780
3781  // Construct the decl.
3782  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3783                                             (Expr *)BitfieldWidth);
3784
3785  if (II) {
3786    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3787    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3788        && !isa<TagDecl>(PrevDecl)) {
3789      Diag(Loc, diag::err_duplicate_member) << II;
3790      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3791      NewID->setInvalidDecl();
3792    }
3793  }
3794
3795  // Process attributes attached to the ivar.
3796  ProcessDeclAttributes(NewID, D);
3797
3798  if (D.getInvalidType() || InvalidDecl)
3799    NewID->setInvalidDecl();
3800
3801  if (II) {
3802    // FIXME: When interfaces are DeclContexts, we'll need to add
3803    // these to the interface.
3804    S->AddDecl(DeclPtrTy::make(NewID));
3805    IdResolver.AddDecl(NewID);
3806  }
3807
3808  return DeclPtrTy::make(NewID);
3809}
3810
3811void Sema::ActOnFields(Scope* S,
3812                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3813                       DeclPtrTy *Fields, unsigned NumFields,
3814                       SourceLocation LBrac, SourceLocation RBrac,
3815                       AttributeList *Attr) {
3816  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3817  assert(EnclosingDecl && "missing record or interface decl");
3818
3819  // If the decl this is being inserted into is invalid, then it may be a
3820  // redeclaration or some other bogus case.  Don't try to add fields to it.
3821  if (EnclosingDecl->isInvalidDecl()) {
3822    // FIXME: Deallocate fields?
3823    return;
3824  }
3825
3826
3827  // Verify that all the fields are okay.
3828  unsigned NumNamedMembers = 0;
3829  llvm::SmallVector<FieldDecl*, 32> RecFields;
3830
3831  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3832  for (unsigned i = 0; i != NumFields; ++i) {
3833    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3834
3835    // Get the type for the field.
3836    Type *FDTy = FD->getType().getTypePtr();
3837
3838    if (!FD->isAnonymousStructOrUnion()) {
3839      // Remember all fields written by the user.
3840      RecFields.push_back(FD);
3841    }
3842
3843    // If the field is already invalid for some reason, don't emit more
3844    // diagnostics about it.
3845    if (FD->isInvalidDecl())
3846      continue;
3847
3848    // C99 6.7.2.1p2:
3849    //   A structure or union shall not contain a member with
3850    //   incomplete or function type (hence, a structure shall not
3851    //   contain an instance of itself, but may contain a pointer to
3852    //   an instance of itself), except that the last member of a
3853    //   structure with more than one named member may have incomplete
3854    //   array type; such a structure (and any union containing,
3855    //   possibly recursively, a member that is such a structure)
3856    //   shall not be a member of a structure or an element of an
3857    //   array.
3858    if (FDTy->isFunctionType()) {
3859      // Field declared as a function.
3860      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3861        << FD->getDeclName();
3862      FD->setInvalidDecl();
3863      EnclosingDecl->setInvalidDecl();
3864      continue;
3865    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3866               Record && Record->isStruct()) {
3867      // Flexible array member.
3868      if (NumNamedMembers < 1) {
3869        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3870          << FD->getDeclName();
3871        FD->setInvalidDecl();
3872        EnclosingDecl->setInvalidDecl();
3873        continue;
3874      }
3875      // Okay, we have a legal flexible array member at the end of the struct.
3876      if (Record)
3877        Record->setHasFlexibleArrayMember(true);
3878    } else if (!FDTy->isDependentType() &&
3879               RequireCompleteType(FD->getLocation(), FD->getType(),
3880                                   diag::err_field_incomplete)) {
3881      // Incomplete type
3882      FD->setInvalidDecl();
3883      EnclosingDecl->setInvalidDecl();
3884      continue;
3885    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3886      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3887        // If this is a member of a union, then entire union becomes "flexible".
3888        if (Record && Record->isUnion()) {
3889          Record->setHasFlexibleArrayMember(true);
3890        } else {
3891          // If this is a struct/class and this is not the last element, reject
3892          // it.  Note that GCC supports variable sized arrays in the middle of
3893          // structures.
3894          if (i != NumFields-1)
3895            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3896              << FD->getDeclName();
3897          else {
3898            // We support flexible arrays at the end of structs in
3899            // other structs as an extension.
3900            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3901              << FD->getDeclName();
3902            if (Record)
3903              Record->setHasFlexibleArrayMember(true);
3904          }
3905        }
3906      }
3907    } else if (FDTy->isObjCInterfaceType()) {
3908      /// A field cannot be an Objective-c object
3909      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3910      FD->setInvalidDecl();
3911      EnclosingDecl->setInvalidDecl();
3912      continue;
3913    }
3914    // Keep track of the number of named members.
3915    if (FD->getIdentifier())
3916      ++NumNamedMembers;
3917  }
3918
3919  // Okay, we successfully defined 'Record'.
3920  if (Record) {
3921    Record->completeDefinition(Context);
3922  } else {
3923    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3924    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3925      ID->setIVarList(ClsFields, RecFields.size(), Context);
3926      ID->setLocEnd(RBrac);
3927
3928      // Must enforce the rule that ivars in the base classes may not be
3929      // duplicates.
3930      if (ID->getSuperClass()) {
3931        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3932             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3933          ObjCIvarDecl* Ivar = (*IVI);
3934          IdentifierInfo *II = Ivar->getIdentifier();
3935          ObjCIvarDecl* prevIvar =
3936            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3937          if (prevIvar) {
3938            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3939            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3940          }
3941        }
3942      }
3943    } else if (ObjCImplementationDecl *IMPDecl =
3944                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3945      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3946      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3947      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3948    }
3949  }
3950
3951  if (Attr)
3952    ProcessDeclAttributeList(Record, Attr);
3953}
3954
3955EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3956                                          EnumConstantDecl *LastEnumConst,
3957                                          SourceLocation IdLoc,
3958                                          IdentifierInfo *Id,
3959                                          ExprArg val) {
3960  Expr *Val = (Expr *)val.get();
3961
3962  llvm::APSInt EnumVal(32);
3963  QualType EltTy;
3964  if (Val && !Val->isTypeDependent()) {
3965    // Make sure to promote the operand type to int.
3966    UsualUnaryConversions(Val);
3967    if (Val != val.get()) {
3968      val.release();
3969      val = Val;
3970    }
3971
3972    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3973    SourceLocation ExpLoc;
3974    if (!Val->isValueDependent() &&
3975        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3976      Val = 0;
3977    } else {
3978      EltTy = Val->getType();
3979    }
3980  }
3981
3982  if (!Val) {
3983    if (LastEnumConst) {
3984      // Assign the last value + 1.
3985      EnumVal = LastEnumConst->getInitVal();
3986      ++EnumVal;
3987
3988      // Check for overflow on increment.
3989      if (EnumVal < LastEnumConst->getInitVal())
3990        Diag(IdLoc, diag::warn_enum_value_overflow);
3991
3992      EltTy = LastEnumConst->getType();
3993    } else {
3994      // First value, set to zero.
3995      EltTy = Context.IntTy;
3996      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3997    }
3998  }
3999
4000  val.release();
4001  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4002                                  Val, EnumVal);
4003}
4004
4005
4006Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4007                                        DeclPtrTy lastEnumConst,
4008                                        SourceLocation IdLoc,
4009                                        IdentifierInfo *Id,
4010                                        SourceLocation EqualLoc, ExprTy *val) {
4011  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4012  EnumConstantDecl *LastEnumConst =
4013    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4014  Expr *Val = static_cast<Expr*>(val);
4015
4016  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4017  // we find one that is.
4018  S = getNonFieldDeclScope(S);
4019
4020  // Verify that there isn't already something declared with this name in this
4021  // scope.
4022  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4023  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4024    // Maybe we will complain about the shadowed template parameter.
4025    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4026    // Just pretend that we didn't see the previous declaration.
4027    PrevDecl = 0;
4028  }
4029
4030  if (PrevDecl) {
4031    // When in C++, we may get a TagDecl with the same name; in this case the
4032    // enum constant will 'hide' the tag.
4033    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4034           "Received TagDecl when not in C++!");
4035    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4036      if (isa<EnumConstantDecl>(PrevDecl))
4037        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4038      else
4039        Diag(IdLoc, diag::err_redefinition) << Id;
4040      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4041      if (Val) Val->Destroy(Context);
4042      return DeclPtrTy();
4043    }
4044  }
4045
4046  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4047                                            IdLoc, Id, Owned(Val));
4048
4049  // Register this decl in the current scope stack.
4050  if (New)
4051    PushOnScopeChains(New, S);
4052
4053  return DeclPtrTy::make(New);
4054}
4055
4056// FIXME: For consistency with ActOnFields(), we should have the parser
4057// pass in the source location for the left/right braces.
4058void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4059                         DeclPtrTy *Elements, unsigned NumElements) {
4060  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4061  QualType EnumType = Context.getTypeDeclType(Enum);
4062
4063  // TODO: If the result value doesn't fit in an int, it must be a long or long
4064  // long value.  ISO C does not support this, but GCC does as an extension,
4065  // emit a warning.
4066  unsigned IntWidth = Context.Target.getIntWidth();
4067
4068  // Verify that all the values are okay, compute the size of the values, and
4069  // reverse the list.
4070  unsigned NumNegativeBits = 0;
4071  unsigned NumPositiveBits = 0;
4072
4073  // Keep track of whether all elements have type int.
4074  bool AllElementsInt = true;
4075
4076  for (unsigned i = 0; i != NumElements; ++i) {
4077    EnumConstantDecl *ECD =
4078      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4079    if (!ECD) continue;  // Already issued a diagnostic.
4080
4081    // If the enum value doesn't fit in an int, emit an extension warning.
4082    const llvm::APSInt &InitVal = ECD->getInitVal();
4083    assert(InitVal.getBitWidth() >= IntWidth &&
4084           "Should have promoted value to int");
4085    if (InitVal.getBitWidth() > IntWidth) {
4086      llvm::APSInt V(InitVal);
4087      V.trunc(IntWidth);
4088      V.extend(InitVal.getBitWidth());
4089      if (V != InitVal)
4090        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4091          << InitVal.toString(10);
4092    }
4093
4094    // Keep track of the size of positive and negative values.
4095    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4096      NumPositiveBits = std::max(NumPositiveBits,
4097                                 (unsigned)InitVal.getActiveBits());
4098    else
4099      NumNegativeBits = std::max(NumNegativeBits,
4100                                 (unsigned)InitVal.getMinSignedBits());
4101
4102    // Keep track of whether every enum element has type int (very commmon).
4103    if (AllElementsInt)
4104      AllElementsInt = ECD->getType() == Context.IntTy;
4105  }
4106
4107  // Figure out the type that should be used for this enum.
4108  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4109  QualType BestType;
4110  unsigned BestWidth;
4111
4112  if (NumNegativeBits) {
4113    // If there is a negative value, figure out the smallest integer type (of
4114    // int/long/longlong) that fits.
4115    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4116      BestType = Context.IntTy;
4117      BestWidth = IntWidth;
4118    } else {
4119      BestWidth = Context.Target.getLongWidth();
4120
4121      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4122        BestType = Context.LongTy;
4123      else {
4124        BestWidth = Context.Target.getLongLongWidth();
4125
4126        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4127          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4128        BestType = Context.LongLongTy;
4129      }
4130    }
4131  } else {
4132    // If there is no negative value, figure out which of uint, ulong, ulonglong
4133    // fits.
4134    if (NumPositiveBits <= IntWidth) {
4135      BestType = Context.UnsignedIntTy;
4136      BestWidth = IntWidth;
4137    } else if (NumPositiveBits <=
4138               (BestWidth = Context.Target.getLongWidth())) {
4139      BestType = Context.UnsignedLongTy;
4140    } else {
4141      BestWidth = Context.Target.getLongLongWidth();
4142      assert(NumPositiveBits <= BestWidth &&
4143             "How could an initializer get larger than ULL?");
4144      BestType = Context.UnsignedLongLongTy;
4145    }
4146  }
4147
4148  // Loop over all of the enumerator constants, changing their types to match
4149  // the type of the enum if needed.
4150  for (unsigned i = 0; i != NumElements; ++i) {
4151    EnumConstantDecl *ECD =
4152      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4153    if (!ECD) continue;  // Already issued a diagnostic.
4154
4155    // Standard C says the enumerators have int type, but we allow, as an
4156    // extension, the enumerators to be larger than int size.  If each
4157    // enumerator value fits in an int, type it as an int, otherwise type it the
4158    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4159    // that X has type 'int', not 'unsigned'.
4160    if (ECD->getType() == Context.IntTy) {
4161      // Make sure the init value is signed.
4162      llvm::APSInt IV = ECD->getInitVal();
4163      IV.setIsSigned(true);
4164      ECD->setInitVal(IV);
4165
4166      if (getLangOptions().CPlusPlus)
4167        // C++ [dcl.enum]p4: Following the closing brace of an
4168        // enum-specifier, each enumerator has the type of its
4169        // enumeration.
4170        ECD->setType(EnumType);
4171      continue;  // Already int type.
4172    }
4173
4174    // Determine whether the value fits into an int.
4175    llvm::APSInt InitVal = ECD->getInitVal();
4176    bool FitsInInt;
4177    if (InitVal.isUnsigned() || !InitVal.isNegative())
4178      FitsInInt = InitVal.getActiveBits() < IntWidth;
4179    else
4180      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4181
4182    // If it fits into an integer type, force it.  Otherwise force it to match
4183    // the enum decl type.
4184    QualType NewTy;
4185    unsigned NewWidth;
4186    bool NewSign;
4187    if (FitsInInt) {
4188      NewTy = Context.IntTy;
4189      NewWidth = IntWidth;
4190      NewSign = true;
4191    } else if (ECD->getType() == BestType) {
4192      // Already the right type!
4193      if (getLangOptions().CPlusPlus)
4194        // C++ [dcl.enum]p4: Following the closing brace of an
4195        // enum-specifier, each enumerator has the type of its
4196        // enumeration.
4197        ECD->setType(EnumType);
4198      continue;
4199    } else {
4200      NewTy = BestType;
4201      NewWidth = BestWidth;
4202      NewSign = BestType->isSignedIntegerType();
4203    }
4204
4205    // Adjust the APSInt value.
4206    InitVal.extOrTrunc(NewWidth);
4207    InitVal.setIsSigned(NewSign);
4208    ECD->setInitVal(InitVal);
4209
4210    // Adjust the Expr initializer and type.
4211    if (ECD->getInitExpr())
4212      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4213                                                      /*isLvalue=*/false));
4214    if (getLangOptions().CPlusPlus)
4215      // C++ [dcl.enum]p4: Following the closing brace of an
4216      // enum-specifier, each enumerator has the type of its
4217      // enumeration.
4218      ECD->setType(EnumType);
4219    else
4220      ECD->setType(NewTy);
4221  }
4222
4223  Enum->completeDefinition(Context, BestType);
4224}
4225
4226Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4227                                            ExprArg expr) {
4228  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4229
4230  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4231                                                  Loc, AsmString));
4232}
4233
4234