SemaDecl.cpp revision 53c374f1ac6d28b2341b3a8f3902eb51db9c50e7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  if (OldTypeInfo.getCC() != CC_Default &&
1148      NewTypeInfo.getCC() == CC_Default) {
1149    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1150    New->setType(NewQType);
1151    NewQType = Context.getCanonicalType(NewQType);
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1166    NewQType = Context.getNoReturnType(NewQType);
1167    New->setType(NewQType);
1168    assert(NewQType.isCanonical());
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1173    if (NewType->getRegParmType()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1182    New->setType(NewQType);
1183    assert(NewQType.isCanonical());
1184  }
1185
1186  if (getLangOptions().CPlusPlus) {
1187    // (C++98 13.1p2):
1188    //   Certain function declarations cannot be overloaded:
1189    //     -- Function declarations that differ only in the return type
1190    //        cannot be overloaded.
1191    QualType OldReturnType
1192      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1193    QualType NewReturnType
1194      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1195    QualType ResQT;
1196    if (OldReturnType != NewReturnType) {
1197      if (NewReturnType->isObjCObjectPointerType()
1198          && OldReturnType->isObjCObjectPointerType())
1199        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1200      if (ResQT.isNull()) {
1201        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1202        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1203        return true;
1204      }
1205      else
1206        NewQType = ResQT;
1207    }
1208
1209    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1210    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1211    if (OldMethod && NewMethod) {
1212      // Preserve triviality.
1213      NewMethod->setTrivial(OldMethod->isTrivial());
1214
1215      bool isFriend = NewMethod->getFriendObjectKind();
1216
1217      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1218        //    -- Member function declarations with the same name and the
1219        //       same parameter types cannot be overloaded if any of them
1220        //       is a static member function declaration.
1221        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1222          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1223          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1224          return true;
1225        }
1226
1227        // C++ [class.mem]p1:
1228        //   [...] A member shall not be declared twice in the
1229        //   member-specification, except that a nested class or member
1230        //   class template can be declared and then later defined.
1231        unsigned NewDiag;
1232        if (isa<CXXConstructorDecl>(OldMethod))
1233          NewDiag = diag::err_constructor_redeclared;
1234        else if (isa<CXXDestructorDecl>(NewMethod))
1235          NewDiag = diag::err_destructor_redeclared;
1236        else if (isa<CXXConversionDecl>(NewMethod))
1237          NewDiag = diag::err_conv_function_redeclared;
1238        else
1239          NewDiag = diag::err_member_redeclared;
1240
1241        Diag(New->getLocation(), NewDiag);
1242        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1243
1244      // Complain if this is an explicit declaration of a special
1245      // member that was initially declared implicitly.
1246      //
1247      // As an exception, it's okay to befriend such methods in order
1248      // to permit the implicit constructor/destructor/operator calls.
1249      } else if (OldMethod->isImplicit()) {
1250        if (isFriend) {
1251          NewMethod->setImplicit();
1252        } else {
1253          Diag(NewMethod->getLocation(),
1254               diag::err_definition_of_implicitly_declared_member)
1255            << New << getSpecialMember(OldMethod);
1256          return true;
1257        }
1258      }
1259    }
1260
1261    // (C++98 8.3.5p3):
1262    //   All declarations for a function shall agree exactly in both the
1263    //   return type and the parameter-type-list.
1264    // attributes should be ignored when comparing.
1265    if (Context.getNoReturnType(OldQType, false) ==
1266        Context.getNoReturnType(NewQType, false))
1267      return MergeCompatibleFunctionDecls(New, Old);
1268
1269    // Fall through for conflicting redeclarations and redefinitions.
1270  }
1271
1272  // C: Function types need to be compatible, not identical. This handles
1273  // duplicate function decls like "void f(int); void f(enum X);" properly.
1274  if (!getLangOptions().CPlusPlus &&
1275      Context.typesAreCompatible(OldQType, NewQType)) {
1276    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1277    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1278    const FunctionProtoType *OldProto = 0;
1279    if (isa<FunctionNoProtoType>(NewFuncType) &&
1280        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1281      // The old declaration provided a function prototype, but the
1282      // new declaration does not. Merge in the prototype.
1283      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1284      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1285                                                 OldProto->arg_type_end());
1286      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1287                                         ParamTypes.data(), ParamTypes.size(),
1288                                         OldProto->isVariadic(),
1289                                         OldProto->getTypeQuals(),
1290                                         false, false, 0, 0,
1291                                         OldProto->getExtInfo());
1292      New->setType(NewQType);
1293      New->setHasInheritedPrototype();
1294
1295      // Synthesize a parameter for each argument type.
1296      llvm::SmallVector<ParmVarDecl*, 16> Params;
1297      for (FunctionProtoType::arg_type_iterator
1298             ParamType = OldProto->arg_type_begin(),
1299             ParamEnd = OldProto->arg_type_end();
1300           ParamType != ParamEnd; ++ParamType) {
1301        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1302                                                 SourceLocation(), 0,
1303                                                 *ParamType, /*TInfo=*/0,
1304                                                 SC_None, SC_None,
1305                                                 0);
1306        Param->setImplicit();
1307        Params.push_back(Param);
1308      }
1309
1310      New->setParams(Params.data(), Params.size());
1311    }
1312
1313    return MergeCompatibleFunctionDecls(New, Old);
1314  }
1315
1316  // GNU C permits a K&R definition to follow a prototype declaration
1317  // if the declared types of the parameters in the K&R definition
1318  // match the types in the prototype declaration, even when the
1319  // promoted types of the parameters from the K&R definition differ
1320  // from the types in the prototype. GCC then keeps the types from
1321  // the prototype.
1322  //
1323  // If a variadic prototype is followed by a non-variadic K&R definition,
1324  // the K&R definition becomes variadic.  This is sort of an edge case, but
1325  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1326  // C99 6.9.1p8.
1327  if (!getLangOptions().CPlusPlus &&
1328      Old->hasPrototype() && !New->hasPrototype() &&
1329      New->getType()->getAs<FunctionProtoType>() &&
1330      Old->getNumParams() == New->getNumParams()) {
1331    llvm::SmallVector<QualType, 16> ArgTypes;
1332    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1333    const FunctionProtoType *OldProto
1334      = Old->getType()->getAs<FunctionProtoType>();
1335    const FunctionProtoType *NewProto
1336      = New->getType()->getAs<FunctionProtoType>();
1337
1338    // Determine whether this is the GNU C extension.
1339    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1340                                               NewProto->getResultType());
1341    bool LooseCompatible = !MergedReturn.isNull();
1342    for (unsigned Idx = 0, End = Old->getNumParams();
1343         LooseCompatible && Idx != End; ++Idx) {
1344      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1345      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1346      if (Context.typesAreCompatible(OldParm->getType(),
1347                                     NewProto->getArgType(Idx))) {
1348        ArgTypes.push_back(NewParm->getType());
1349      } else if (Context.typesAreCompatible(OldParm->getType(),
1350                                            NewParm->getType(),
1351                                            /*CompareUnqualified=*/true)) {
1352        GNUCompatibleParamWarning Warn
1353          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1354        Warnings.push_back(Warn);
1355        ArgTypes.push_back(NewParm->getType());
1356      } else
1357        LooseCompatible = false;
1358    }
1359
1360    if (LooseCompatible) {
1361      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1362        Diag(Warnings[Warn].NewParm->getLocation(),
1363             diag::ext_param_promoted_not_compatible_with_prototype)
1364          << Warnings[Warn].PromotedType
1365          << Warnings[Warn].OldParm->getType();
1366        if (Warnings[Warn].OldParm->getLocation().isValid())
1367          Diag(Warnings[Warn].OldParm->getLocation(),
1368               diag::note_previous_declaration);
1369      }
1370
1371      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1372                                           ArgTypes.size(),
1373                                           OldProto->isVariadic(), 0,
1374                                           false, false, 0, 0,
1375                                           OldProto->getExtInfo()));
1376      return MergeCompatibleFunctionDecls(New, Old);
1377    }
1378
1379    // Fall through to diagnose conflicting types.
1380  }
1381
1382  // A function that has already been declared has been redeclared or defined
1383  // with a different type- show appropriate diagnostic
1384  if (unsigned BuiltinID = Old->getBuiltinID()) {
1385    // The user has declared a builtin function with an incompatible
1386    // signature.
1387    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1388      // The function the user is redeclaring is a library-defined
1389      // function like 'malloc' or 'printf'. Warn about the
1390      // redeclaration, then pretend that we don't know about this
1391      // library built-in.
1392      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1393      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1394        << Old << Old->getType();
1395      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1396      Old->setInvalidDecl();
1397      return false;
1398    }
1399
1400    PrevDiag = diag::note_previous_builtin_declaration;
1401  }
1402
1403  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1404  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1405  return true;
1406}
1407
1408/// \brief Completes the merge of two function declarations that are
1409/// known to be compatible.
1410///
1411/// This routine handles the merging of attributes and other
1412/// properties of function declarations form the old declaration to
1413/// the new declaration, once we know that New is in fact a
1414/// redeclaration of Old.
1415///
1416/// \returns false
1417bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1418  // Merge the attributes
1419  MergeDeclAttributes(New, Old, Context);
1420
1421  // Merge the storage class.
1422  if (Old->getStorageClass() != SC_Extern &&
1423      Old->getStorageClass() != SC_None)
1424    New->setStorageClass(Old->getStorageClass());
1425
1426  // Merge "pure" flag.
1427  if (Old->isPure())
1428    New->setPure();
1429
1430  // Merge the "deleted" flag.
1431  if (Old->isDeleted())
1432    New->setDeleted();
1433
1434  if (getLangOptions().CPlusPlus)
1435    return MergeCXXFunctionDecl(New, Old);
1436
1437  return false;
1438}
1439
1440/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1441/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1442/// situation, merging decls or emitting diagnostics as appropriate.
1443///
1444/// Tentative definition rules (C99 6.9.2p2) are checked by
1445/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1446/// definitions here, since the initializer hasn't been attached.
1447///
1448void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1449  // If the new decl is already invalid, don't do any other checking.
1450  if (New->isInvalidDecl())
1451    return;
1452
1453  // Verify the old decl was also a variable.
1454  VarDecl *Old = 0;
1455  if (!Previous.isSingleResult() ||
1456      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1457    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1458      << New->getDeclName();
1459    Diag(Previous.getRepresentativeDecl()->getLocation(),
1460         diag::note_previous_definition);
1461    return New->setInvalidDecl();
1462  }
1463
1464  // C++ [class.mem]p1:
1465  //   A member shall not be declared twice in the member-specification [...]
1466  //
1467  // Here, we need only consider static data members.
1468  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1469    Diag(New->getLocation(), diag::err_duplicate_member)
1470      << New->getIdentifier();
1471    Diag(Old->getLocation(), diag::note_previous_declaration);
1472    New->setInvalidDecl();
1473  }
1474
1475  MergeDeclAttributes(New, Old, Context);
1476
1477  // Merge the types
1478  QualType MergedT;
1479  if (getLangOptions().CPlusPlus) {
1480    if (Context.hasSameType(New->getType(), Old->getType()))
1481      MergedT = New->getType();
1482    // C++ [basic.link]p10:
1483    //   [...] the types specified by all declarations referring to a given
1484    //   object or function shall be identical, except that declarations for an
1485    //   array object can specify array types that differ by the presence or
1486    //   absence of a major array bound (8.3.4).
1487    else if (Old->getType()->isIncompleteArrayType() &&
1488             New->getType()->isArrayType()) {
1489      CanQual<ArrayType> OldArray
1490        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1491      CanQual<ArrayType> NewArray
1492        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1493      if (OldArray->getElementType() == NewArray->getElementType())
1494        MergedT = New->getType();
1495    } else if (Old->getType()->isArrayType() &&
1496             New->getType()->isIncompleteArrayType()) {
1497      CanQual<ArrayType> OldArray
1498        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499      CanQual<ArrayType> NewArray
1500        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501      if (OldArray->getElementType() == NewArray->getElementType())
1502        MergedT = Old->getType();
1503    } else if (New->getType()->isObjCObjectPointerType()
1504               && Old->getType()->isObjCObjectPointerType()) {
1505        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1506    }
1507  } else {
1508    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1509  }
1510  if (MergedT.isNull()) {
1511    Diag(New->getLocation(), diag::err_redefinition_different_type)
1512      << New->getDeclName();
1513    Diag(Old->getLocation(), diag::note_previous_definition);
1514    return New->setInvalidDecl();
1515  }
1516  New->setType(MergedT);
1517
1518  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1519  if (New->getStorageClass() == SC_Static &&
1520      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1521    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1522    Diag(Old->getLocation(), diag::note_previous_definition);
1523    return New->setInvalidDecl();
1524  }
1525  // C99 6.2.2p4:
1526  //   For an identifier declared with the storage-class specifier
1527  //   extern in a scope in which a prior declaration of that
1528  //   identifier is visible,23) if the prior declaration specifies
1529  //   internal or external linkage, the linkage of the identifier at
1530  //   the later declaration is the same as the linkage specified at
1531  //   the prior declaration. If no prior declaration is visible, or
1532  //   if the prior declaration specifies no linkage, then the
1533  //   identifier has external linkage.
1534  if (New->hasExternalStorage() && Old->hasLinkage())
1535    /* Okay */;
1536  else if (New->getStorageClass() != SC_Static &&
1537           Old->getStorageClass() == SC_Static) {
1538    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1539    Diag(Old->getLocation(), diag::note_previous_definition);
1540    return New->setInvalidDecl();
1541  }
1542
1543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1544
1545  // FIXME: The test for external storage here seems wrong? We still
1546  // need to check for mismatches.
1547  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1548      // Don't complain about out-of-line definitions of static members.
1549      !(Old->getLexicalDeclContext()->isRecord() &&
1550        !New->getLexicalDeclContext()->isRecord())) {
1551    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1552    Diag(Old->getLocation(), diag::note_previous_definition);
1553    return New->setInvalidDecl();
1554  }
1555
1556  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1557    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1558    Diag(Old->getLocation(), diag::note_previous_definition);
1559  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1560    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1561    Diag(Old->getLocation(), diag::note_previous_definition);
1562  }
1563
1564  // C++ doesn't have tentative definitions, so go right ahead and check here.
1565  const VarDecl *Def;
1566  if (getLangOptions().CPlusPlus &&
1567      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1568      (Def = Old->getDefinition())) {
1569    Diag(New->getLocation(), diag::err_redefinition)
1570      << New->getDeclName();
1571    Diag(Def->getLocation(), diag::note_previous_definition);
1572    New->setInvalidDecl();
1573    return;
1574  }
1575  // c99 6.2.2 P4.
1576  // For an identifier declared with the storage-class specifier extern in a
1577  // scope in which a prior declaration of that identifier is visible, if
1578  // the prior declaration specifies internal or external linkage, the linkage
1579  // of the identifier at the later declaration is the same as the linkage
1580  // specified at the prior declaration.
1581  // FIXME. revisit this code.
1582  if (New->hasExternalStorage() &&
1583      Old->getLinkage() == InternalLinkage &&
1584      New->getDeclContext() == Old->getDeclContext())
1585    New->setStorageClass(Old->getStorageClass());
1586
1587  // Keep a chain of previous declarations.
1588  New->setPreviousDeclaration(Old);
1589
1590  // Inherit access appropriately.
1591  New->setAccess(Old->getAccess());
1592}
1593
1594/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1595/// no declarator (e.g. "struct foo;") is parsed.
1596Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1597                                            DeclSpec &DS) {
1598  // FIXME: Error on inline/virtual/explicit
1599  // FIXME: Warn on useless __thread
1600  // FIXME: Warn on useless const/volatile
1601  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1602  // FIXME: Warn on useless attributes
1603  Decl *TagD = 0;
1604  TagDecl *Tag = 0;
1605  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1606      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1607      DS.getTypeSpecType() == DeclSpec::TST_union ||
1608      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1609    TagD = DS.getRepAsDecl();
1610
1611    if (!TagD) // We probably had an error
1612      return 0;
1613
1614    // Note that the above type specs guarantee that the
1615    // type rep is a Decl, whereas in many of the others
1616    // it's a Type.
1617    Tag = dyn_cast<TagDecl>(TagD);
1618  }
1619
1620  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1621    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1622    // or incomplete types shall not be restrict-qualified."
1623    if (TypeQuals & DeclSpec::TQ_restrict)
1624      Diag(DS.getRestrictSpecLoc(),
1625           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1626           << DS.getSourceRange();
1627  }
1628
1629  if (DS.isFriendSpecified()) {
1630    // If we're dealing with a decl but not a TagDecl, assume that
1631    // whatever routines created it handled the friendship aspect.
1632    if (TagD && !Tag)
1633      return 0;
1634    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1635  }
1636
1637  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1638    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1639
1640    if (!Record->getDeclName() && Record->isDefinition() &&
1641        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1642      if (getLangOptions().CPlusPlus ||
1643          Record->getDeclContext()->isRecord())
1644        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1645
1646      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1647        << DS.getSourceRange();
1648    }
1649  }
1650
1651  // Check for Microsoft C extension: anonymous struct.
1652  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1653      CurContext->isRecord() &&
1654      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1655    // Handle 2 kinds of anonymous struct:
1656    //   struct STRUCT;
1657    // and
1658    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1659    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1660    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1661        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1662         DS.getRepAsType().get()->isStructureType())) {
1663      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1664        << DS.getSourceRange();
1665      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1666    }
1667  }
1668
1669  if (getLangOptions().CPlusPlus &&
1670      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1671    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1672      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1673          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1674        Diag(Enum->getLocation(), diag::ext_no_declarators)
1675          << DS.getSourceRange();
1676
1677  if (!DS.isMissingDeclaratorOk() &&
1678      DS.getTypeSpecType() != DeclSpec::TST_error) {
1679    // Warn about typedefs of enums without names, since this is an
1680    // extension in both Microsoft and GNU.
1681    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1682        Tag && isa<EnumDecl>(Tag)) {
1683      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1684        << DS.getSourceRange();
1685      return Tag;
1686    }
1687
1688    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1689      << DS.getSourceRange();
1690  }
1691
1692  return TagD;
1693}
1694
1695/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1696/// builds a statement for it and returns it so it is evaluated.
1697StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1698  StmtResult R;
1699  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1700    Expr *Exp = DS.getRepAsExpr();
1701    QualType Ty = Exp->getType();
1702    if (Ty->isPointerType()) {
1703      do
1704        Ty = Ty->getAs<PointerType>()->getPointeeType();
1705      while (Ty->isPointerType());
1706    }
1707    if (Ty->isVariableArrayType()) {
1708      R = ActOnExprStmt(MakeFullExpr(Exp));
1709    }
1710  }
1711  return R;
1712}
1713
1714/// We are trying to inject an anonymous member into the given scope;
1715/// check if there's an existing declaration that can't be overloaded.
1716///
1717/// \return true if this is a forbidden redeclaration
1718static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1719                                         Scope *S,
1720                                         DeclContext *Owner,
1721                                         DeclarationName Name,
1722                                         SourceLocation NameLoc,
1723                                         unsigned diagnostic) {
1724  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1725                 Sema::ForRedeclaration);
1726  if (!SemaRef.LookupName(R, S)) return false;
1727
1728  if (R.getAsSingle<TagDecl>())
1729    return false;
1730
1731  // Pick a representative declaration.
1732  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1733  assert(PrevDecl && "Expected a non-null Decl");
1734
1735  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1736    return false;
1737
1738  SemaRef.Diag(NameLoc, diagnostic) << Name;
1739  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1740
1741  return true;
1742}
1743
1744/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1745/// anonymous struct or union AnonRecord into the owning context Owner
1746/// and scope S. This routine will be invoked just after we realize
1747/// that an unnamed union or struct is actually an anonymous union or
1748/// struct, e.g.,
1749///
1750/// @code
1751/// union {
1752///   int i;
1753///   float f;
1754/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1755///    // f into the surrounding scope.x
1756/// @endcode
1757///
1758/// This routine is recursive, injecting the names of nested anonymous
1759/// structs/unions into the owning context and scope as well.
1760static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1761                                                DeclContext *Owner,
1762                                                RecordDecl *AnonRecord,
1763                                                AccessSpecifier AS,
1764                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1765                                                      bool MSAnonStruct) {
1766  unsigned diagKind
1767    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1768                            : diag::err_anonymous_struct_member_redecl;
1769
1770  bool Invalid = false;
1771
1772  // Look every FieldDecl and IndirectFieldDecl with a name.
1773  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1774                               DEnd = AnonRecord->decls_end();
1775       D != DEnd; ++D) {
1776    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1777        cast<NamedDecl>(*D)->getDeclName()) {
1778      ValueDecl *VD = cast<ValueDecl>(*D);
1779      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1780                                       VD->getLocation(), diagKind)) {
1781        // C++ [class.union]p2:
1782        //   The names of the members of an anonymous union shall be
1783        //   distinct from the names of any other entity in the
1784        //   scope in which the anonymous union is declared.
1785        Invalid = true;
1786      } else {
1787        // C++ [class.union]p2:
1788        //   For the purpose of name lookup, after the anonymous union
1789        //   definition, the members of the anonymous union are
1790        //   considered to have been defined in the scope in which the
1791        //   anonymous union is declared.
1792        unsigned OldChainingSize = Chaining.size();
1793        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1794          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1795               PE = IF->chain_end(); PI != PE; ++PI)
1796            Chaining.push_back(*PI);
1797        else
1798          Chaining.push_back(VD);
1799
1800        assert(Chaining.size() >= 2);
1801        NamedDecl **NamedChain =
1802          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1803        for (unsigned i = 0; i < Chaining.size(); i++)
1804          NamedChain[i] = Chaining[i];
1805
1806        IndirectFieldDecl* IndirectField =
1807          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1808                                    VD->getIdentifier(), VD->getType(),
1809                                    NamedChain, Chaining.size());
1810
1811        IndirectField->setAccess(AS);
1812        IndirectField->setImplicit();
1813        SemaRef.PushOnScopeChains(IndirectField, S);
1814
1815        // That includes picking up the appropriate access specifier.
1816        if (AS != AS_none) IndirectField->setAccess(AS);
1817
1818        Chaining.resize(OldChainingSize);
1819      }
1820    }
1821  }
1822
1823  return Invalid;
1824}
1825
1826/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1827/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1828/// illegal input values are mapped to SC_None.
1829static StorageClass
1830StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1831  switch (StorageClassSpec) {
1832  case DeclSpec::SCS_unspecified:    return SC_None;
1833  case DeclSpec::SCS_extern:         return SC_Extern;
1834  case DeclSpec::SCS_static:         return SC_Static;
1835  case DeclSpec::SCS_auto:           return SC_Auto;
1836  case DeclSpec::SCS_register:       return SC_Register;
1837  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1838    // Illegal SCSs map to None: error reporting is up to the caller.
1839  case DeclSpec::SCS_mutable:        // Fall through.
1840  case DeclSpec::SCS_typedef:        return SC_None;
1841  }
1842  llvm_unreachable("unknown storage class specifier");
1843}
1844
1845/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1846/// a StorageClass. Any error reporting is up to the caller:
1847/// illegal input values are mapped to SC_None.
1848static StorageClass
1849StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1850  switch (StorageClassSpec) {
1851  case DeclSpec::SCS_unspecified:    return SC_None;
1852  case DeclSpec::SCS_extern:         return SC_Extern;
1853  case DeclSpec::SCS_static:         return SC_Static;
1854  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1855    // Illegal SCSs map to None: error reporting is up to the caller.
1856  case DeclSpec::SCS_auto:           // Fall through.
1857  case DeclSpec::SCS_mutable:        // Fall through.
1858  case DeclSpec::SCS_register:       // Fall through.
1859  case DeclSpec::SCS_typedef:        return SC_None;
1860  }
1861  llvm_unreachable("unknown storage class specifier");
1862}
1863
1864/// BuildAnonymousStructOrUnion - Handle the declaration of an
1865/// anonymous structure or union. Anonymous unions are a C++ feature
1866/// (C++ [class.union]) and a GNU C extension; anonymous structures
1867/// are a GNU C and GNU C++ extension.
1868Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1869                                             AccessSpecifier AS,
1870                                             RecordDecl *Record) {
1871  DeclContext *Owner = Record->getDeclContext();
1872
1873  // Diagnose whether this anonymous struct/union is an extension.
1874  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1875    Diag(Record->getLocation(), diag::ext_anonymous_union);
1876  else if (!Record->isUnion())
1877    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1878
1879  // C and C++ require different kinds of checks for anonymous
1880  // structs/unions.
1881  bool Invalid = false;
1882  if (getLangOptions().CPlusPlus) {
1883    const char* PrevSpec = 0;
1884    unsigned DiagID;
1885    // C++ [class.union]p3:
1886    //   Anonymous unions declared in a named namespace or in the
1887    //   global namespace shall be declared static.
1888    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1889        (isa<TranslationUnitDecl>(Owner) ||
1890         (isa<NamespaceDecl>(Owner) &&
1891          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1892      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1893      Invalid = true;
1894
1895      // Recover by adding 'static'.
1896      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1897                             PrevSpec, DiagID);
1898    }
1899    // C++ [class.union]p3:
1900    //   A storage class is not allowed in a declaration of an
1901    //   anonymous union in a class scope.
1902    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1903             isa<RecordDecl>(Owner)) {
1904      Diag(DS.getStorageClassSpecLoc(),
1905           diag::err_anonymous_union_with_storage_spec);
1906      Invalid = true;
1907
1908      // Recover by removing the storage specifier.
1909      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1910                             PrevSpec, DiagID);
1911    }
1912
1913    // C++ [class.union]p2:
1914    //   The member-specification of an anonymous union shall only
1915    //   define non-static data members. [Note: nested types and
1916    //   functions cannot be declared within an anonymous union. ]
1917    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1918                                 MemEnd = Record->decls_end();
1919         Mem != MemEnd; ++Mem) {
1920      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1921        // C++ [class.union]p3:
1922        //   An anonymous union shall not have private or protected
1923        //   members (clause 11).
1924        assert(FD->getAccess() != AS_none);
1925        if (FD->getAccess() != AS_public) {
1926          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1927            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1928          Invalid = true;
1929        }
1930
1931        if (CheckNontrivialField(FD))
1932          Invalid = true;
1933      } else if ((*Mem)->isImplicit()) {
1934        // Any implicit members are fine.
1935      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1936        // This is a type that showed up in an
1937        // elaborated-type-specifier inside the anonymous struct or
1938        // union, but which actually declares a type outside of the
1939        // anonymous struct or union. It's okay.
1940      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1941        if (!MemRecord->isAnonymousStructOrUnion() &&
1942            MemRecord->getDeclName()) {
1943          // Visual C++ allows type definition in anonymous struct or union.
1944          if (getLangOptions().Microsoft)
1945            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1946              << (int)Record->isUnion();
1947          else {
1948            // This is a nested type declaration.
1949            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1950              << (int)Record->isUnion();
1951            Invalid = true;
1952          }
1953        }
1954      } else if (isa<AccessSpecDecl>(*Mem)) {
1955        // Any access specifier is fine.
1956      } else {
1957        // We have something that isn't a non-static data
1958        // member. Complain about it.
1959        unsigned DK = diag::err_anonymous_record_bad_member;
1960        if (isa<TypeDecl>(*Mem))
1961          DK = diag::err_anonymous_record_with_type;
1962        else if (isa<FunctionDecl>(*Mem))
1963          DK = diag::err_anonymous_record_with_function;
1964        else if (isa<VarDecl>(*Mem))
1965          DK = diag::err_anonymous_record_with_static;
1966
1967        // Visual C++ allows type definition in anonymous struct or union.
1968        if (getLangOptions().Microsoft &&
1969            DK == diag::err_anonymous_record_with_type)
1970          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1971            << (int)Record->isUnion();
1972        else {
1973          Diag((*Mem)->getLocation(), DK)
1974              << (int)Record->isUnion();
1975          Invalid = true;
1976        }
1977      }
1978    }
1979  }
1980
1981  if (!Record->isUnion() && !Owner->isRecord()) {
1982    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1983      << (int)getLangOptions().CPlusPlus;
1984    Invalid = true;
1985  }
1986
1987  // Mock up a declarator.
1988  Declarator Dc(DS, Declarator::TypeNameContext);
1989  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1990  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1991
1992  // Create a declaration for this anonymous struct/union.
1993  NamedDecl *Anon = 0;
1994  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1995    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1996                             /*IdentifierInfo=*/0,
1997                             Context.getTypeDeclType(Record),
1998                             TInfo,
1999                             /*BitWidth=*/0, /*Mutable=*/false);
2000    Anon->setAccess(AS);
2001    if (getLangOptions().CPlusPlus)
2002      FieldCollector->Add(cast<FieldDecl>(Anon));
2003  } else {
2004    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2005    assert(SCSpec != DeclSpec::SCS_typedef &&
2006           "Parser allowed 'typedef' as storage class VarDecl.");
2007    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2008    if (SCSpec == DeclSpec::SCS_mutable) {
2009      // mutable can only appear on non-static class members, so it's always
2010      // an error here
2011      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2012      Invalid = true;
2013      SC = SC_None;
2014    }
2015    SCSpec = DS.getStorageClassSpecAsWritten();
2016    VarDecl::StorageClass SCAsWritten
2017      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2018
2019    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2020                           /*IdentifierInfo=*/0,
2021                           Context.getTypeDeclType(Record),
2022                           TInfo, SC, SCAsWritten);
2023  }
2024  Anon->setImplicit();
2025
2026  // Add the anonymous struct/union object to the current
2027  // context. We'll be referencing this object when we refer to one of
2028  // its members.
2029  Owner->addDecl(Anon);
2030
2031  // Inject the members of the anonymous struct/union into the owning
2032  // context and into the identifier resolver chain for name lookup
2033  // purposes.
2034  llvm::SmallVector<NamedDecl*, 2> Chain;
2035  Chain.push_back(Anon);
2036
2037  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2038                                          Chain, false))
2039    Invalid = true;
2040
2041  // Mark this as an anonymous struct/union type. Note that we do not
2042  // do this until after we have already checked and injected the
2043  // members of this anonymous struct/union type, because otherwise
2044  // the members could be injected twice: once by DeclContext when it
2045  // builds its lookup table, and once by
2046  // InjectAnonymousStructOrUnionMembers.
2047  Record->setAnonymousStructOrUnion(true);
2048
2049  if (Invalid)
2050    Anon->setInvalidDecl();
2051
2052  return Anon;
2053}
2054
2055/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2056/// Microsoft C anonymous structure.
2057/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2058/// Example:
2059///
2060/// struct A { int a; };
2061/// struct B { struct A; int b; };
2062///
2063/// void foo() {
2064///   B var;
2065///   var.a = 3;
2066/// }
2067///
2068Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2069                                           RecordDecl *Record) {
2070
2071  // If there is no Record, get the record via the typedef.
2072  if (!Record)
2073    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2074
2075  // Mock up a declarator.
2076  Declarator Dc(DS, Declarator::TypeNameContext);
2077  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2078  assert(TInfo && "couldn't build declarator info for anonymous struct");
2079
2080  // Create a declaration for this anonymous struct.
2081  NamedDecl* Anon = FieldDecl::Create(Context,
2082                             cast<RecordDecl>(CurContext),
2083                             DS.getSourceRange().getBegin(),
2084                             /*IdentifierInfo=*/0,
2085                             Context.getTypeDeclType(Record),
2086                             TInfo,
2087                             /*BitWidth=*/0, /*Mutable=*/false);
2088  Anon->setImplicit();
2089
2090  // Add the anonymous struct object to the current context.
2091  CurContext->addDecl(Anon);
2092
2093  // Inject the members of the anonymous struct into the current
2094  // context and into the identifier resolver chain for name lookup
2095  // purposes.
2096  llvm::SmallVector<NamedDecl*, 2> Chain;
2097  Chain.push_back(Anon);
2098
2099  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2100                                          Record->getDefinition(),
2101                                          AS_none, Chain, true))
2102    Anon->setInvalidDecl();
2103
2104  return Anon;
2105}
2106
2107/// GetNameForDeclarator - Determine the full declaration name for the
2108/// given Declarator.
2109DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2110  return GetNameFromUnqualifiedId(D.getName());
2111}
2112
2113/// \brief Retrieves the declaration name from a parsed unqualified-id.
2114DeclarationNameInfo
2115Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2116  DeclarationNameInfo NameInfo;
2117  NameInfo.setLoc(Name.StartLocation);
2118
2119  switch (Name.getKind()) {
2120
2121  case UnqualifiedId::IK_Identifier:
2122    NameInfo.setName(Name.Identifier);
2123    NameInfo.setLoc(Name.StartLocation);
2124    return NameInfo;
2125
2126  case UnqualifiedId::IK_OperatorFunctionId:
2127    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2128                                           Name.OperatorFunctionId.Operator));
2129    NameInfo.setLoc(Name.StartLocation);
2130    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2131      = Name.OperatorFunctionId.SymbolLocations[0];
2132    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2133      = Name.EndLocation.getRawEncoding();
2134    return NameInfo;
2135
2136  case UnqualifiedId::IK_LiteralOperatorId:
2137    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2138                                                           Name.Identifier));
2139    NameInfo.setLoc(Name.StartLocation);
2140    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2141    return NameInfo;
2142
2143  case UnqualifiedId::IK_ConversionFunctionId: {
2144    TypeSourceInfo *TInfo;
2145    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2146    if (Ty.isNull())
2147      return DeclarationNameInfo();
2148    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2149                                               Context.getCanonicalType(Ty)));
2150    NameInfo.setLoc(Name.StartLocation);
2151    NameInfo.setNamedTypeInfo(TInfo);
2152    return NameInfo;
2153  }
2154
2155  case UnqualifiedId::IK_ConstructorName: {
2156    TypeSourceInfo *TInfo;
2157    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2158    if (Ty.isNull())
2159      return DeclarationNameInfo();
2160    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2161                                              Context.getCanonicalType(Ty)));
2162    NameInfo.setLoc(Name.StartLocation);
2163    NameInfo.setNamedTypeInfo(TInfo);
2164    return NameInfo;
2165  }
2166
2167  case UnqualifiedId::IK_ConstructorTemplateId: {
2168    // In well-formed code, we can only have a constructor
2169    // template-id that refers to the current context, so go there
2170    // to find the actual type being constructed.
2171    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2172    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2173      return DeclarationNameInfo();
2174
2175    // Determine the type of the class being constructed.
2176    QualType CurClassType = Context.getTypeDeclType(CurClass);
2177
2178    // FIXME: Check two things: that the template-id names the same type as
2179    // CurClassType, and that the template-id does not occur when the name
2180    // was qualified.
2181
2182    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2183                                    Context.getCanonicalType(CurClassType)));
2184    NameInfo.setLoc(Name.StartLocation);
2185    // FIXME: should we retrieve TypeSourceInfo?
2186    NameInfo.setNamedTypeInfo(0);
2187    return NameInfo;
2188  }
2189
2190  case UnqualifiedId::IK_DestructorName: {
2191    TypeSourceInfo *TInfo;
2192    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2193    if (Ty.isNull())
2194      return DeclarationNameInfo();
2195    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2196                                              Context.getCanonicalType(Ty)));
2197    NameInfo.setLoc(Name.StartLocation);
2198    NameInfo.setNamedTypeInfo(TInfo);
2199    return NameInfo;
2200  }
2201
2202  case UnqualifiedId::IK_TemplateId: {
2203    TemplateName TName = Name.TemplateId->Template.get();
2204    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2205    return Context.getNameForTemplate(TName, TNameLoc);
2206  }
2207
2208  } // switch (Name.getKind())
2209
2210  assert(false && "Unknown name kind");
2211  return DeclarationNameInfo();
2212}
2213
2214/// isNearlyMatchingFunction - Determine whether the C++ functions
2215/// Declaration and Definition are "nearly" matching. This heuristic
2216/// is used to improve diagnostics in the case where an out-of-line
2217/// function definition doesn't match any declaration within
2218/// the class or namespace.
2219static bool isNearlyMatchingFunction(ASTContext &Context,
2220                                     FunctionDecl *Declaration,
2221                                     FunctionDecl *Definition) {
2222  if (Declaration->param_size() != Definition->param_size())
2223    return false;
2224  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2225    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2226    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2227
2228    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2229                                        DefParamTy.getNonReferenceType()))
2230      return false;
2231  }
2232
2233  return true;
2234}
2235
2236/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2237/// declarator needs to be rebuilt in the current instantiation.
2238/// Any bits of declarator which appear before the name are valid for
2239/// consideration here.  That's specifically the type in the decl spec
2240/// and the base type in any member-pointer chunks.
2241static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2242                                                    DeclarationName Name) {
2243  // The types we specifically need to rebuild are:
2244  //   - typenames, typeofs, and decltypes
2245  //   - types which will become injected class names
2246  // Of course, we also need to rebuild any type referencing such a
2247  // type.  It's safest to just say "dependent", but we call out a
2248  // few cases here.
2249
2250  DeclSpec &DS = D.getMutableDeclSpec();
2251  switch (DS.getTypeSpecType()) {
2252  case DeclSpec::TST_typename:
2253  case DeclSpec::TST_typeofType:
2254  case DeclSpec::TST_decltype: {
2255    // Grab the type from the parser.
2256    TypeSourceInfo *TSI = 0;
2257    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2258    if (T.isNull() || !T->isDependentType()) break;
2259
2260    // Make sure there's a type source info.  This isn't really much
2261    // of a waste; most dependent types should have type source info
2262    // attached already.
2263    if (!TSI)
2264      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2265
2266    // Rebuild the type in the current instantiation.
2267    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2268    if (!TSI) return true;
2269
2270    // Store the new type back in the decl spec.
2271    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2272    DS.UpdateTypeRep(LocType);
2273    break;
2274  }
2275
2276  case DeclSpec::TST_typeofExpr: {
2277    Expr *E = DS.getRepAsExpr();
2278    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2279    if (Result.isInvalid()) return true;
2280    DS.UpdateExprRep(Result.get());
2281    break;
2282  }
2283
2284  default:
2285    // Nothing to do for these decl specs.
2286    break;
2287  }
2288
2289  // It doesn't matter what order we do this in.
2290  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2291    DeclaratorChunk &Chunk = D.getTypeObject(I);
2292
2293    // The only type information in the declarator which can come
2294    // before the declaration name is the base type of a member
2295    // pointer.
2296    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2297      continue;
2298
2299    // Rebuild the scope specifier in-place.
2300    CXXScopeSpec &SS = Chunk.Mem.Scope();
2301    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2302      return true;
2303  }
2304
2305  return false;
2306}
2307
2308Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2309  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2310}
2311
2312Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2313                             MultiTemplateParamsArg TemplateParamLists,
2314                             bool IsFunctionDefinition) {
2315  // TODO: consider using NameInfo for diagnostic.
2316  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2317  DeclarationName Name = NameInfo.getName();
2318
2319  // All of these full declarators require an identifier.  If it doesn't have
2320  // one, the ParsedFreeStandingDeclSpec action should be used.
2321  if (!Name) {
2322    if (!D.isInvalidType())  // Reject this if we think it is valid.
2323      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2324           diag::err_declarator_need_ident)
2325        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2326    return 0;
2327  }
2328
2329  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2330  // we find one that is.
2331  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2332         (S->getFlags() & Scope::TemplateParamScope) != 0)
2333    S = S->getParent();
2334
2335  DeclContext *DC = CurContext;
2336  if (D.getCXXScopeSpec().isInvalid())
2337    D.setInvalidType();
2338  else if (D.getCXXScopeSpec().isSet()) {
2339    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2340    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2341    if (!DC) {
2342      // If we could not compute the declaration context, it's because the
2343      // declaration context is dependent but does not refer to a class,
2344      // class template, or class template partial specialization. Complain
2345      // and return early, to avoid the coming semantic disaster.
2346      Diag(D.getIdentifierLoc(),
2347           diag::err_template_qualified_declarator_no_match)
2348        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2349        << D.getCXXScopeSpec().getRange();
2350      return 0;
2351    }
2352
2353    bool IsDependentContext = DC->isDependentContext();
2354
2355    if (!IsDependentContext &&
2356        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2357      return 0;
2358
2359    if (isa<CXXRecordDecl>(DC)) {
2360      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2361        Diag(D.getIdentifierLoc(),
2362             diag::err_member_def_undefined_record)
2363          << Name << DC << D.getCXXScopeSpec().getRange();
2364        D.setInvalidType();
2365      } else if (isa<CXXRecordDecl>(CurContext) &&
2366                 !D.getDeclSpec().isFriendSpecified()) {
2367        // The user provided a superfluous scope specifier inside a class
2368        // definition:
2369        //
2370        // class X {
2371        //   void X::f();
2372        // };
2373        if (CurContext->Equals(DC))
2374          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2375            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2376        else
2377          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2378            << Name << D.getCXXScopeSpec().getRange();
2379
2380        // Pretend that this qualifier was not here.
2381        D.getCXXScopeSpec().clear();
2382      }
2383    }
2384
2385    // Check whether we need to rebuild the type of the given
2386    // declaration in the current instantiation.
2387    if (EnteringContext && IsDependentContext &&
2388        TemplateParamLists.size() != 0) {
2389      ContextRAII SavedContext(*this, DC);
2390      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2391        D.setInvalidType();
2392    }
2393  }
2394
2395  // C++ [class.mem]p13:
2396  //   If T is the name of a class, then each of the following shall have a
2397  //   name different from T:
2398  //     - every static data member of class T;
2399  //     - every member function of class T
2400  //     - every member of class T that is itself a type;
2401  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2402    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2403      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2404        << Name;
2405
2406      // If this is a typedef, we'll end up spewing multiple diagnostics.
2407      // Just return early; it's safer.
2408      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2409        return 0;
2410    }
2411
2412  NamedDecl *New;
2413
2414  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2415  QualType R = TInfo->getType();
2416
2417  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2418                        ForRedeclaration);
2419
2420  // See if this is a redefinition of a variable in the same scope.
2421  if (!D.getCXXScopeSpec().isSet()) {
2422    bool IsLinkageLookup = false;
2423
2424    // If the declaration we're planning to build will be a function
2425    // or object with linkage, then look for another declaration with
2426    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2427    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2428      /* Do nothing*/;
2429    else if (R->isFunctionType()) {
2430      if (CurContext->isFunctionOrMethod() ||
2431          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2432        IsLinkageLookup = true;
2433    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2434      IsLinkageLookup = true;
2435    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2436             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2437      IsLinkageLookup = true;
2438
2439    if (IsLinkageLookup)
2440      Previous.clear(LookupRedeclarationWithLinkage);
2441
2442    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2443  } else { // Something like "int foo::x;"
2444    LookupQualifiedName(Previous, DC);
2445
2446    // Don't consider using declarations as previous declarations for
2447    // out-of-line members.
2448    RemoveUsingDecls(Previous);
2449
2450    // C++ 7.3.1.2p2:
2451    // Members (including explicit specializations of templates) of a named
2452    // namespace can also be defined outside that namespace by explicit
2453    // qualification of the name being defined, provided that the entity being
2454    // defined was already declared in the namespace and the definition appears
2455    // after the point of declaration in a namespace that encloses the
2456    // declarations namespace.
2457    //
2458    // Note that we only check the context at this point. We don't yet
2459    // have enough information to make sure that PrevDecl is actually
2460    // the declaration we want to match. For example, given:
2461    //
2462    //   class X {
2463    //     void f();
2464    //     void f(float);
2465    //   };
2466    //
2467    //   void X::f(int) { } // ill-formed
2468    //
2469    // In this case, PrevDecl will point to the overload set
2470    // containing the two f's declared in X, but neither of them
2471    // matches.
2472
2473    // First check whether we named the global scope.
2474    if (isa<TranslationUnitDecl>(DC)) {
2475      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2476        << Name << D.getCXXScopeSpec().getRange();
2477    } else {
2478      DeclContext *Cur = CurContext;
2479      while (isa<LinkageSpecDecl>(Cur))
2480        Cur = Cur->getParent();
2481      if (!Cur->Encloses(DC)) {
2482        // The qualifying scope doesn't enclose the original declaration.
2483        // Emit diagnostic based on current scope.
2484        SourceLocation L = D.getIdentifierLoc();
2485        SourceRange R = D.getCXXScopeSpec().getRange();
2486        if (isa<FunctionDecl>(Cur))
2487          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2488        else
2489          Diag(L, diag::err_invalid_declarator_scope)
2490            << Name << cast<NamedDecl>(DC) << R;
2491        D.setInvalidType();
2492      }
2493    }
2494  }
2495
2496  if (Previous.isSingleResult() &&
2497      Previous.getFoundDecl()->isTemplateParameter()) {
2498    // Maybe we will complain about the shadowed template parameter.
2499    if (!D.isInvalidType())
2500      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2501                                          Previous.getFoundDecl()))
2502        D.setInvalidType();
2503
2504    // Just pretend that we didn't see the previous declaration.
2505    Previous.clear();
2506  }
2507
2508  // In C++, the previous declaration we find might be a tag type
2509  // (class or enum). In this case, the new declaration will hide the
2510  // tag type. Note that this does does not apply if we're declaring a
2511  // typedef (C++ [dcl.typedef]p4).
2512  if (Previous.isSingleTagDecl() &&
2513      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2514    Previous.clear();
2515
2516  bool Redeclaration = false;
2517  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2518    if (TemplateParamLists.size()) {
2519      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2520      return 0;
2521    }
2522
2523    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2524  } else if (R->isFunctionType()) {
2525    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2526                                  move(TemplateParamLists),
2527                                  IsFunctionDefinition, Redeclaration);
2528  } else {
2529    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2530                                  move(TemplateParamLists),
2531                                  Redeclaration);
2532  }
2533
2534  if (New == 0)
2535    return 0;
2536
2537  // If this has an identifier and is not an invalid redeclaration or
2538  // function template specialization, add it to the scope stack.
2539  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2540    PushOnScopeChains(New, S);
2541
2542  return New;
2543}
2544
2545/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2546/// types into constant array types in certain situations which would otherwise
2547/// be errors (for GCC compatibility).
2548static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2549                                                    ASTContext &Context,
2550                                                    bool &SizeIsNegative,
2551                                                    llvm::APSInt &Oversized) {
2552  // This method tries to turn a variable array into a constant
2553  // array even when the size isn't an ICE.  This is necessary
2554  // for compatibility with code that depends on gcc's buggy
2555  // constant expression folding, like struct {char x[(int)(char*)2];}
2556  SizeIsNegative = false;
2557  Oversized = 0;
2558
2559  if (T->isDependentType())
2560    return QualType();
2561
2562  QualifierCollector Qs;
2563  const Type *Ty = Qs.strip(T);
2564
2565  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2566    QualType Pointee = PTy->getPointeeType();
2567    QualType FixedType =
2568        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2569                                            Oversized);
2570    if (FixedType.isNull()) return FixedType;
2571    FixedType = Context.getPointerType(FixedType);
2572    return Qs.apply(FixedType);
2573  }
2574
2575  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2576  if (!VLATy)
2577    return QualType();
2578  // FIXME: We should probably handle this case
2579  if (VLATy->getElementType()->isVariablyModifiedType())
2580    return QualType();
2581
2582  Expr::EvalResult EvalResult;
2583  if (!VLATy->getSizeExpr() ||
2584      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2585      !EvalResult.Val.isInt())
2586    return QualType();
2587
2588  // Check whether the array size is negative.
2589  llvm::APSInt &Res = EvalResult.Val.getInt();
2590  if (Res.isSigned() && Res.isNegative()) {
2591    SizeIsNegative = true;
2592    return QualType();
2593  }
2594
2595  // Check whether the array is too large to be addressed.
2596  unsigned ActiveSizeBits
2597    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2598                                              Res);
2599  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2600    Oversized = Res;
2601    return QualType();
2602  }
2603
2604  return Context.getConstantArrayType(VLATy->getElementType(),
2605                                      Res, ArrayType::Normal, 0);
2606}
2607
2608/// \brief Register the given locally-scoped external C declaration so
2609/// that it can be found later for redeclarations
2610void
2611Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2612                                       const LookupResult &Previous,
2613                                       Scope *S) {
2614  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2615         "Decl is not a locally-scoped decl!");
2616  // Note that we have a locally-scoped external with this name.
2617  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2618
2619  if (!Previous.isSingleResult())
2620    return;
2621
2622  NamedDecl *PrevDecl = Previous.getFoundDecl();
2623
2624  // If there was a previous declaration of this variable, it may be
2625  // in our identifier chain. Update the identifier chain with the new
2626  // declaration.
2627  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2628    // The previous declaration was found on the identifer resolver
2629    // chain, so remove it from its scope.
2630    while (S && !S->isDeclScope(PrevDecl))
2631      S = S->getParent();
2632
2633    if (S)
2634      S->RemoveDecl(PrevDecl);
2635  }
2636}
2637
2638/// \brief Diagnose function specifiers on a declaration of an identifier that
2639/// does not identify a function.
2640void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2641  // FIXME: We should probably indicate the identifier in question to avoid
2642  // confusion for constructs like "inline int a(), b;"
2643  if (D.getDeclSpec().isInlineSpecified())
2644    Diag(D.getDeclSpec().getInlineSpecLoc(),
2645         diag::err_inline_non_function);
2646
2647  if (D.getDeclSpec().isVirtualSpecified())
2648    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2649         diag::err_virtual_non_function);
2650
2651  if (D.getDeclSpec().isExplicitSpecified())
2652    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2653         diag::err_explicit_non_function);
2654}
2655
2656NamedDecl*
2657Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2658                             QualType R,  TypeSourceInfo *TInfo,
2659                             LookupResult &Previous, bool &Redeclaration) {
2660  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2661  if (D.getCXXScopeSpec().isSet()) {
2662    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2663      << D.getCXXScopeSpec().getRange();
2664    D.setInvalidType();
2665    // Pretend we didn't see the scope specifier.
2666    DC = CurContext;
2667    Previous.clear();
2668  }
2669
2670  if (getLangOptions().CPlusPlus) {
2671    // Check that there are no default arguments (C++ only).
2672    CheckExtraCXXDefaultArguments(D);
2673  }
2674
2675  DiagnoseFunctionSpecifiers(D);
2676
2677  if (D.getDeclSpec().isThreadSpecified())
2678    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2679
2680  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2681    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2682      << D.getName().getSourceRange();
2683    return 0;
2684  }
2685
2686  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2687  if (!NewTD) return 0;
2688
2689  // Handle attributes prior to checking for duplicates in MergeVarDecl
2690  ProcessDeclAttributes(S, NewTD, D);
2691
2692  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2693  // then it shall have block scope.
2694  // Note that variably modified types must be fixed before merging the decl so
2695  // that redeclarations will match.
2696  QualType T = NewTD->getUnderlyingType();
2697  if (T->isVariablyModifiedType()) {
2698    getCurFunction()->setHasBranchProtectedScope();
2699
2700    if (S->getFnParent() == 0) {
2701      bool SizeIsNegative;
2702      llvm::APSInt Oversized;
2703      QualType FixedTy =
2704          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2705                                              Oversized);
2706      if (!FixedTy.isNull()) {
2707        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2708        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2709      } else {
2710        if (SizeIsNegative)
2711          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2712        else if (T->isVariableArrayType())
2713          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2714        else if (Oversized.getBoolValue())
2715          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2716            << Oversized.toString(10);
2717        else
2718          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2719        NewTD->setInvalidDecl();
2720      }
2721    }
2722  }
2723
2724  // Merge the decl with the existing one if appropriate. If the decl is
2725  // in an outer scope, it isn't the same thing.
2726  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2727  if (!Previous.empty()) {
2728    Redeclaration = true;
2729    MergeTypeDefDecl(NewTD, Previous);
2730  }
2731
2732  // If this is the C FILE type, notify the AST context.
2733  if (IdentifierInfo *II = NewTD->getIdentifier())
2734    if (!NewTD->isInvalidDecl() &&
2735        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2736      if (II->isStr("FILE"))
2737        Context.setFILEDecl(NewTD);
2738      else if (II->isStr("jmp_buf"))
2739        Context.setjmp_bufDecl(NewTD);
2740      else if (II->isStr("sigjmp_buf"))
2741        Context.setsigjmp_bufDecl(NewTD);
2742      else if (II->isStr("__builtin_va_list"))
2743        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2744    }
2745
2746  return NewTD;
2747}
2748
2749/// \brief Determines whether the given declaration is an out-of-scope
2750/// previous declaration.
2751///
2752/// This routine should be invoked when name lookup has found a
2753/// previous declaration (PrevDecl) that is not in the scope where a
2754/// new declaration by the same name is being introduced. If the new
2755/// declaration occurs in a local scope, previous declarations with
2756/// linkage may still be considered previous declarations (C99
2757/// 6.2.2p4-5, C++ [basic.link]p6).
2758///
2759/// \param PrevDecl the previous declaration found by name
2760/// lookup
2761///
2762/// \param DC the context in which the new declaration is being
2763/// declared.
2764///
2765/// \returns true if PrevDecl is an out-of-scope previous declaration
2766/// for a new delcaration with the same name.
2767static bool
2768isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2769                                ASTContext &Context) {
2770  if (!PrevDecl)
2771    return false;
2772
2773  if (!PrevDecl->hasLinkage())
2774    return false;
2775
2776  if (Context.getLangOptions().CPlusPlus) {
2777    // C++ [basic.link]p6:
2778    //   If there is a visible declaration of an entity with linkage
2779    //   having the same name and type, ignoring entities declared
2780    //   outside the innermost enclosing namespace scope, the block
2781    //   scope declaration declares that same entity and receives the
2782    //   linkage of the previous declaration.
2783    DeclContext *OuterContext = DC->getRedeclContext();
2784    if (!OuterContext->isFunctionOrMethod())
2785      // This rule only applies to block-scope declarations.
2786      return false;
2787
2788    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2789    if (PrevOuterContext->isRecord())
2790      // We found a member function: ignore it.
2791      return false;
2792
2793    // Find the innermost enclosing namespace for the new and
2794    // previous declarations.
2795    OuterContext = OuterContext->getEnclosingNamespaceContext();
2796    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2797
2798    // The previous declaration is in a different namespace, so it
2799    // isn't the same function.
2800    if (!OuterContext->Equals(PrevOuterContext))
2801      return false;
2802  }
2803
2804  return true;
2805}
2806
2807static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2808  CXXScopeSpec &SS = D.getCXXScopeSpec();
2809  if (!SS.isSet()) return;
2810  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2811                       SS.getRange());
2812}
2813
2814NamedDecl*
2815Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2816                              QualType R, TypeSourceInfo *TInfo,
2817                              LookupResult &Previous,
2818                              MultiTemplateParamsArg TemplateParamLists,
2819                              bool &Redeclaration) {
2820  DeclarationName Name = GetNameForDeclarator(D).getName();
2821
2822  // Check that there are no default arguments (C++ only).
2823  if (getLangOptions().CPlusPlus)
2824    CheckExtraCXXDefaultArguments(D);
2825
2826  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2827  assert(SCSpec != DeclSpec::SCS_typedef &&
2828         "Parser allowed 'typedef' as storage class VarDecl.");
2829  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2830  if (SCSpec == DeclSpec::SCS_mutable) {
2831    // mutable can only appear on non-static class members, so it's always
2832    // an error here
2833    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2834    D.setInvalidType();
2835    SC = SC_None;
2836  }
2837  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2838  VarDecl::StorageClass SCAsWritten
2839    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2840
2841  IdentifierInfo *II = Name.getAsIdentifierInfo();
2842  if (!II) {
2843    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2844      << Name.getAsString();
2845    return 0;
2846  }
2847
2848  DiagnoseFunctionSpecifiers(D);
2849
2850  if (!DC->isRecord() && S->getFnParent() == 0) {
2851    // C99 6.9p2: The storage-class specifiers auto and register shall not
2852    // appear in the declaration specifiers in an external declaration.
2853    if (SC == SC_Auto || SC == SC_Register) {
2854
2855      // If this is a register variable with an asm label specified, then this
2856      // is a GNU extension.
2857      if (SC == SC_Register && D.getAsmLabel())
2858        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2859      else
2860        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2861      D.setInvalidType();
2862    }
2863  }
2864  if (DC->isRecord() && !CurContext->isRecord()) {
2865    // This is an out-of-line definition of a static data member.
2866    if (SC == SC_Static) {
2867      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2868           diag::err_static_out_of_line)
2869        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2870    } else if (SC == SC_None)
2871      SC = SC_Static;
2872  }
2873  if (SC == SC_Static) {
2874    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2875      if (RD->isLocalClass())
2876        Diag(D.getIdentifierLoc(),
2877             diag::err_static_data_member_not_allowed_in_local_class)
2878          << Name << RD->getDeclName();
2879
2880      // C++ [class.union]p1: If a union contains a static data member,
2881      // the program is ill-formed.
2882      //
2883      // We also disallow static data members in anonymous structs.
2884      if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2885        Diag(D.getIdentifierLoc(),
2886             diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2887          << Name << RD->isUnion();
2888    }
2889  }
2890
2891  // Match up the template parameter lists with the scope specifier, then
2892  // determine whether we have a template or a template specialization.
2893  bool isExplicitSpecialization = false;
2894  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2895  bool Invalid = false;
2896  if (TemplateParameterList *TemplateParams
2897        = MatchTemplateParametersToScopeSpecifier(
2898                                  D.getDeclSpec().getSourceRange().getBegin(),
2899                                                  D.getCXXScopeSpec(),
2900                                                  TemplateParamLists.get(),
2901                                                  TemplateParamLists.size(),
2902                                                  /*never a friend*/ false,
2903                                                  isExplicitSpecialization,
2904                                                  Invalid)) {
2905    // All but one template parameter lists have been matching.
2906    --NumMatchedTemplateParamLists;
2907
2908    if (TemplateParams->size() > 0) {
2909      // There is no such thing as a variable template.
2910      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2911        << II
2912        << SourceRange(TemplateParams->getTemplateLoc(),
2913                       TemplateParams->getRAngleLoc());
2914      return 0;
2915    } else {
2916      // There is an extraneous 'template<>' for this variable. Complain
2917      // about it, but allow the declaration of the variable.
2918      Diag(TemplateParams->getTemplateLoc(),
2919           diag::err_template_variable_noparams)
2920        << II
2921        << SourceRange(TemplateParams->getTemplateLoc(),
2922                       TemplateParams->getRAngleLoc());
2923
2924      isExplicitSpecialization = true;
2925    }
2926  }
2927
2928  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2929                                   II, R, TInfo, SC, SCAsWritten);
2930
2931  if (D.isInvalidType() || Invalid)
2932    NewVD->setInvalidDecl();
2933
2934  SetNestedNameSpecifier(NewVD, D);
2935
2936  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2937    NewVD->setTemplateParameterListsInfo(Context,
2938                                         NumMatchedTemplateParamLists,
2939                                         TemplateParamLists.release());
2940  }
2941
2942  if (D.getDeclSpec().isThreadSpecified()) {
2943    if (NewVD->hasLocalStorage())
2944      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2945    else if (!Context.Target.isTLSSupported())
2946      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2947    else
2948      NewVD->setThreadSpecified(true);
2949  }
2950
2951  // Set the lexical context. If the declarator has a C++ scope specifier, the
2952  // lexical context will be different from the semantic context.
2953  NewVD->setLexicalDeclContext(CurContext);
2954
2955  // Handle attributes prior to checking for duplicates in MergeVarDecl
2956  ProcessDeclAttributes(S, NewVD, D);
2957
2958  // Handle GNU asm-label extension (encoded as an attribute).
2959  if (Expr *E = (Expr*)D.getAsmLabel()) {
2960    // The parser guarantees this is a string.
2961    StringLiteral *SE = cast<StringLiteral>(E);
2962    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2963                                                Context, SE->getString()));
2964  }
2965
2966  // Diagnose shadowed variables before filtering for scope.
2967  if (!D.getCXXScopeSpec().isSet())
2968    CheckShadow(S, NewVD, Previous);
2969
2970  // Don't consider existing declarations that are in a different
2971  // scope and are out-of-semantic-context declarations (if the new
2972  // declaration has linkage).
2973  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2974
2975  // Merge the decl with the existing one if appropriate.
2976  if (!Previous.empty()) {
2977    if (Previous.isSingleResult() &&
2978        isa<FieldDecl>(Previous.getFoundDecl()) &&
2979        D.getCXXScopeSpec().isSet()) {
2980      // The user tried to define a non-static data member
2981      // out-of-line (C++ [dcl.meaning]p1).
2982      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2983        << D.getCXXScopeSpec().getRange();
2984      Previous.clear();
2985      NewVD->setInvalidDecl();
2986    }
2987  } else if (D.getCXXScopeSpec().isSet()) {
2988    // No previous declaration in the qualifying scope.
2989    Diag(D.getIdentifierLoc(), diag::err_no_member)
2990      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2991      << D.getCXXScopeSpec().getRange();
2992    NewVD->setInvalidDecl();
2993  }
2994
2995  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2996
2997  // This is an explicit specialization of a static data member. Check it.
2998  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2999      CheckMemberSpecialization(NewVD, Previous))
3000    NewVD->setInvalidDecl();
3001
3002  // attributes declared post-definition are currently ignored
3003  // FIXME: This should be handled in attribute merging, not
3004  // here.
3005  if (Previous.isSingleResult()) {
3006    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3007    if (Def && (Def = Def->getDefinition()) &&
3008        Def != NewVD && D.hasAttributes()) {
3009      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3010      Diag(Def->getLocation(), diag::note_previous_definition);
3011    }
3012  }
3013
3014  // If this is a locally-scoped extern C variable, update the map of
3015  // such variables.
3016  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3017      !NewVD->isInvalidDecl())
3018    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3019
3020  // If there's a #pragma GCC visibility in scope, and this isn't a class
3021  // member, set the visibility of this variable.
3022  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3023    AddPushedVisibilityAttribute(NewVD);
3024
3025
3026  // For variables declared as __block which require copy construction,
3027  // must capture copy initialization expression here.
3028  if (getLangOptions().CPlusPlus && NewVD->hasAttr<BlocksAttr>()) {
3029    QualType T = NewVD->getType();
3030    if (!T->isDependentType() && !T->isReferenceType() &&
3031        T->getAs<RecordType>() && !T->isUnionType()) {
3032      Expr *E = new (Context) DeclRefExpr(NewVD, T,
3033                                          VK_LValue, SourceLocation());
3034      ExprResult Res = PerformCopyInitialization(
3035                          InitializedEntity::InitializeBlock(NewVD->getLocation(),
3036                                                      T, false),
3037                                                      SourceLocation(),
3038                                                      Owned(E));
3039      if (!Res.isInvalid()) {
3040        Res = MaybeCreateExprWithCleanups(Res);
3041        Expr *Init = Res.takeAs<Expr>();
3042        Context.setBlockVarCopyInits(NewVD, Init);
3043      }
3044    }
3045  }
3046  MarkUnusedFileScopedDecl(NewVD);
3047
3048  return NewVD;
3049}
3050
3051/// \brief Diagnose variable or built-in function shadowing.  Implements
3052/// -Wshadow.
3053///
3054/// This method is called whenever a VarDecl is added to a "useful"
3055/// scope.
3056///
3057/// \param S the scope in which the shadowing name is being declared
3058/// \param R the lookup of the name
3059///
3060void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3061  // Return if warning is ignored.
3062  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
3063    return;
3064
3065  // Don't diagnose declarations at file scope.  The scope might not
3066  // have a DeclContext if (e.g.) we're parsing a function prototype.
3067  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3068  if (NewDC && NewDC->isFileContext())
3069    return;
3070
3071  // Only diagnose if we're shadowing an unambiguous field or variable.
3072  if (R.getResultKind() != LookupResult::Found)
3073    return;
3074
3075  NamedDecl* ShadowedDecl = R.getFoundDecl();
3076  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3077    return;
3078
3079  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3080
3081  // Only warn about certain kinds of shadowing for class members.
3082  if (NewDC && NewDC->isRecord()) {
3083    // In particular, don't warn about shadowing non-class members.
3084    if (!OldDC->isRecord())
3085      return;
3086
3087    // TODO: should we warn about static data members shadowing
3088    // static data members from base classes?
3089
3090    // TODO: don't diagnose for inaccessible shadowed members.
3091    // This is hard to do perfectly because we might friend the
3092    // shadowing context, but that's just a false negative.
3093  }
3094
3095  // Determine what kind of declaration we're shadowing.
3096  unsigned Kind;
3097  if (isa<RecordDecl>(OldDC)) {
3098    if (isa<FieldDecl>(ShadowedDecl))
3099      Kind = 3; // field
3100    else
3101      Kind = 2; // static data member
3102  } else if (OldDC->isFileContext())
3103    Kind = 1; // global
3104  else
3105    Kind = 0; // local
3106
3107  DeclarationName Name = R.getLookupName();
3108
3109  // Emit warning and note.
3110  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3111  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3112}
3113
3114/// \brief Check -Wshadow without the advantage of a previous lookup.
3115void Sema::CheckShadow(Scope *S, VarDecl *D) {
3116  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3117                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3118  LookupName(R, S);
3119  CheckShadow(S, D, R);
3120}
3121
3122/// \brief Perform semantic checking on a newly-created variable
3123/// declaration.
3124///
3125/// This routine performs all of the type-checking required for a
3126/// variable declaration once it has been built. It is used both to
3127/// check variables after they have been parsed and their declarators
3128/// have been translated into a declaration, and to check variables
3129/// that have been instantiated from a template.
3130///
3131/// Sets NewVD->isInvalidDecl() if an error was encountered.
3132void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3133                                    LookupResult &Previous,
3134                                    bool &Redeclaration) {
3135  // If the decl is already known invalid, don't check it.
3136  if (NewVD->isInvalidDecl())
3137    return;
3138
3139  QualType T = NewVD->getType();
3140
3141  if (T->isObjCObjectType()) {
3142    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3143    return NewVD->setInvalidDecl();
3144  }
3145
3146  // Emit an error if an address space was applied to decl with local storage.
3147  // This includes arrays of objects with address space qualifiers, but not
3148  // automatic variables that point to other address spaces.
3149  // ISO/IEC TR 18037 S5.1.2
3150  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3151    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3152    return NewVD->setInvalidDecl();
3153  }
3154
3155  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3156      && !NewVD->hasAttr<BlocksAttr>())
3157    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3158
3159  bool isVM = T->isVariablyModifiedType();
3160  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3161      NewVD->hasAttr<BlocksAttr>())
3162    getCurFunction()->setHasBranchProtectedScope();
3163
3164  if ((isVM && NewVD->hasLinkage()) ||
3165      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3166    bool SizeIsNegative;
3167    llvm::APSInt Oversized;
3168    QualType FixedTy =
3169        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3170                                            Oversized);
3171
3172    if (FixedTy.isNull() && T->isVariableArrayType()) {
3173      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3174      // FIXME: This won't give the correct result for
3175      // int a[10][n];
3176      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3177
3178      if (NewVD->isFileVarDecl())
3179        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3180        << SizeRange;
3181      else if (NewVD->getStorageClass() == SC_Static)
3182        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3183        << SizeRange;
3184      else
3185        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3186        << SizeRange;
3187      return NewVD->setInvalidDecl();
3188    }
3189
3190    if (FixedTy.isNull()) {
3191      if (NewVD->isFileVarDecl())
3192        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3193      else
3194        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3195      return NewVD->setInvalidDecl();
3196    }
3197
3198    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3199    NewVD->setType(FixedTy);
3200  }
3201
3202  if (Previous.empty() && NewVD->isExternC()) {
3203    // Since we did not find anything by this name and we're declaring
3204    // an extern "C" variable, look for a non-visible extern "C"
3205    // declaration with the same name.
3206    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3207      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3208    if (Pos != LocallyScopedExternalDecls.end())
3209      Previous.addDecl(Pos->second);
3210  }
3211
3212  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3213    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3214      << T;
3215    return NewVD->setInvalidDecl();
3216  }
3217
3218  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3219    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3220    return NewVD->setInvalidDecl();
3221  }
3222
3223  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3224    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3225    return NewVD->setInvalidDecl();
3226  }
3227
3228  // Function pointers and references cannot have qualified function type, only
3229  // function pointer-to-members can do that.
3230  QualType Pointee;
3231  unsigned PtrOrRef = 0;
3232  if (const PointerType *Ptr = T->getAs<PointerType>())
3233    Pointee = Ptr->getPointeeType();
3234  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3235    Pointee = Ref->getPointeeType();
3236    PtrOrRef = 1;
3237  }
3238  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3239      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3240    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3241        << PtrOrRef;
3242    return NewVD->setInvalidDecl();
3243  }
3244
3245  if (!Previous.empty()) {
3246    Redeclaration = true;
3247    MergeVarDecl(NewVD, Previous);
3248  }
3249}
3250
3251/// \brief Data used with FindOverriddenMethod
3252struct FindOverriddenMethodData {
3253  Sema *S;
3254  CXXMethodDecl *Method;
3255};
3256
3257/// \brief Member lookup function that determines whether a given C++
3258/// method overrides a method in a base class, to be used with
3259/// CXXRecordDecl::lookupInBases().
3260static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3261                                 CXXBasePath &Path,
3262                                 void *UserData) {
3263  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3264
3265  FindOverriddenMethodData *Data
3266    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3267
3268  DeclarationName Name = Data->Method->getDeclName();
3269
3270  // FIXME: Do we care about other names here too?
3271  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3272    // We really want to find the base class destructor here.
3273    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3274    CanQualType CT = Data->S->Context.getCanonicalType(T);
3275
3276    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3277  }
3278
3279  for (Path.Decls = BaseRecord->lookup(Name);
3280       Path.Decls.first != Path.Decls.second;
3281       ++Path.Decls.first) {
3282    NamedDecl *D = *Path.Decls.first;
3283    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3284      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3285        return true;
3286    }
3287  }
3288
3289  return false;
3290}
3291
3292/// AddOverriddenMethods - See if a method overrides any in the base classes,
3293/// and if so, check that it's a valid override and remember it.
3294bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3295  // Look for virtual methods in base classes that this method might override.
3296  CXXBasePaths Paths;
3297  FindOverriddenMethodData Data;
3298  Data.Method = MD;
3299  Data.S = this;
3300  bool AddedAny = false;
3301  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3302    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3303         E = Paths.found_decls_end(); I != E; ++I) {
3304      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3305        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3306            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3307            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3308          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3309          AddedAny = true;
3310        }
3311      }
3312    }
3313  }
3314
3315  return AddedAny;
3316}
3317
3318static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3319  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3320                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3321  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3322  assert(!Prev.isAmbiguous() &&
3323         "Cannot have an ambiguity in previous-declaration lookup");
3324  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3325       Func != FuncEnd; ++Func) {
3326    if (isa<FunctionDecl>(*Func) &&
3327        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3328      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3329  }
3330}
3331
3332/// CheckClassMemberNameAttributes - Check for class member name checking
3333/// attributes according to [dcl.attr.override]
3334static void
3335CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3336  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3337  if (!MD || !MD->isVirtual())
3338    return;
3339
3340  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3341  bool HasOverriddenMethods =
3342    MD->begin_overridden_methods() != MD->end_overridden_methods();
3343
3344  /// C++ [dcl.attr.override]p2:
3345  ///   If a virtual member function f is marked override and does not override
3346  ///   a member function of a base class the program is ill-formed.
3347  if (HasOverrideAttr && !HasOverriddenMethods) {
3348    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3349      << MD->getDeclName();
3350    return;
3351  }
3352
3353  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3354    return;
3355
3356  /// C++ [dcl.attr.override]p6:
3357  ///   In a class definition marked base_check, if a virtual member function
3358  ///    that is neither implicitly-declared nor a destructor overrides a
3359  ///    member function of a base class and it is not marked override, the
3360  ///    program is ill-formed.
3361  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3362      !isa<CXXDestructorDecl>(MD)) {
3363    llvm::SmallVector<const CXXMethodDecl*, 4>
3364      OverriddenMethods(MD->begin_overridden_methods(),
3365                        MD->end_overridden_methods());
3366
3367    SemaRef.Diag(MD->getLocation(),
3368                 diag::err_function_overriding_without_override)
3369      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3370
3371    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3372      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3373                   diag::note_overridden_virtual_function);
3374  }
3375}
3376
3377NamedDecl*
3378Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3379                              QualType R, TypeSourceInfo *TInfo,
3380                              LookupResult &Previous,
3381                              MultiTemplateParamsArg TemplateParamLists,
3382                              bool IsFunctionDefinition, bool &Redeclaration) {
3383  assert(R.getTypePtr()->isFunctionType());
3384
3385  // TODO: consider using NameInfo for diagnostic.
3386  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3387  DeclarationName Name = NameInfo.getName();
3388  FunctionDecl::StorageClass SC = SC_None;
3389  switch (D.getDeclSpec().getStorageClassSpec()) {
3390  default: assert(0 && "Unknown storage class!");
3391  case DeclSpec::SCS_auto:
3392  case DeclSpec::SCS_register:
3393  case DeclSpec::SCS_mutable:
3394    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3395         diag::err_typecheck_sclass_func);
3396    D.setInvalidType();
3397    break;
3398  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3399  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3400  case DeclSpec::SCS_static: {
3401    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3402      // C99 6.7.1p5:
3403      //   The declaration of an identifier for a function that has
3404      //   block scope shall have no explicit storage-class specifier
3405      //   other than extern
3406      // See also (C++ [dcl.stc]p4).
3407      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3408           diag::err_static_block_func);
3409      SC = SC_None;
3410    } else
3411      SC = SC_Static;
3412    break;
3413  }
3414  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3415  }
3416
3417  if (D.getDeclSpec().isThreadSpecified())
3418    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3419
3420  bool isFriend = D.getDeclSpec().isFriendSpecified();
3421  bool isInline = D.getDeclSpec().isInlineSpecified();
3422  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3423  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3424
3425  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3426  FunctionDecl::StorageClass SCAsWritten
3427    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3428
3429  // Check that the return type is not an abstract class type.
3430  // For record types, this is done by the AbstractClassUsageDiagnoser once
3431  // the class has been completely parsed.
3432  if (!DC->isRecord() &&
3433      RequireNonAbstractType(D.getIdentifierLoc(),
3434                             R->getAs<FunctionType>()->getResultType(),
3435                             diag::err_abstract_type_in_decl,
3436                             AbstractReturnType))
3437    D.setInvalidType();
3438
3439  // Do not allow returning a objc interface by-value.
3440  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3441    Diag(D.getIdentifierLoc(),
3442         diag::err_object_cannot_be_passed_returned_by_value) << 0
3443      << R->getAs<FunctionType>()->getResultType();
3444    D.setInvalidType();
3445  }
3446
3447  bool isVirtualOkay = false;
3448  FunctionDecl *NewFD;
3449
3450  if (isFriend) {
3451    // C++ [class.friend]p5
3452    //   A function can be defined in a friend declaration of a
3453    //   class . . . . Such a function is implicitly inline.
3454    isInline |= IsFunctionDefinition;
3455  }
3456
3457  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3458    // This is a C++ constructor declaration.
3459    assert(DC->isRecord() &&
3460           "Constructors can only be declared in a member context");
3461
3462    R = CheckConstructorDeclarator(D, R, SC);
3463
3464    // Create the new declaration
3465    NewFD = CXXConstructorDecl::Create(Context,
3466                                       cast<CXXRecordDecl>(DC),
3467                                       NameInfo, R, TInfo,
3468                                       isExplicit, isInline,
3469                                       /*isImplicitlyDeclared=*/false);
3470  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3471    // This is a C++ destructor declaration.
3472    if (DC->isRecord()) {
3473      R = CheckDestructorDeclarator(D, R, SC);
3474
3475      NewFD = CXXDestructorDecl::Create(Context,
3476                                        cast<CXXRecordDecl>(DC),
3477                                        NameInfo, R, TInfo,
3478                                        isInline,
3479                                        /*isImplicitlyDeclared=*/false);
3480      isVirtualOkay = true;
3481    } else {
3482      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3483
3484      // Create a FunctionDecl to satisfy the function definition parsing
3485      // code path.
3486      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3487                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3488                                   /*hasPrototype=*/true);
3489      D.setInvalidType();
3490    }
3491  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3492    if (!DC->isRecord()) {
3493      Diag(D.getIdentifierLoc(),
3494           diag::err_conv_function_not_member);
3495      return 0;
3496    }
3497
3498    CheckConversionDeclarator(D, R, SC);
3499    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3500                                      NameInfo, R, TInfo,
3501                                      isInline, isExplicit);
3502
3503    isVirtualOkay = true;
3504  } else if (DC->isRecord()) {
3505    // If the of the function is the same as the name of the record, then this
3506    // must be an invalid constructor that has a return type.
3507    // (The parser checks for a return type and makes the declarator a
3508    // constructor if it has no return type).
3509    // must have an invalid constructor that has a return type
3510    if (Name.getAsIdentifierInfo() &&
3511        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3512      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3513        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3514        << SourceRange(D.getIdentifierLoc());
3515      return 0;
3516    }
3517
3518    bool isStatic = SC == SC_Static;
3519
3520    // [class.free]p1:
3521    // Any allocation function for a class T is a static member
3522    // (even if not explicitly declared static).
3523    if (Name.getCXXOverloadedOperator() == OO_New ||
3524        Name.getCXXOverloadedOperator() == OO_Array_New)
3525      isStatic = true;
3526
3527    // [class.free]p6 Any deallocation function for a class X is a static member
3528    // (even if not explicitly declared static).
3529    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3530        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3531      isStatic = true;
3532
3533    // This is a C++ method declaration.
3534    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3535                                  NameInfo, R, TInfo,
3536                                  isStatic, SCAsWritten, isInline);
3537
3538    isVirtualOkay = !isStatic;
3539  } else {
3540    // Determine whether the function was written with a
3541    // prototype. This true when:
3542    //   - we're in C++ (where every function has a prototype),
3543    //   - there is a prototype in the declarator, or
3544    //   - the type R of the function is some kind of typedef or other reference
3545    //     to a type name (which eventually refers to a function type).
3546    bool HasPrototype =
3547       getLangOptions().CPlusPlus ||
3548       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3549       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3550
3551    NewFD = FunctionDecl::Create(Context, DC,
3552                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3553                                 HasPrototype);
3554  }
3555
3556  if (D.isInvalidType())
3557    NewFD->setInvalidDecl();
3558
3559  SetNestedNameSpecifier(NewFD, D);
3560
3561  // Set the lexical context. If the declarator has a C++
3562  // scope specifier, or is the object of a friend declaration, the
3563  // lexical context will be different from the semantic context.
3564  NewFD->setLexicalDeclContext(CurContext);
3565
3566  // Match up the template parameter lists with the scope specifier, then
3567  // determine whether we have a template or a template specialization.
3568  FunctionTemplateDecl *FunctionTemplate = 0;
3569  bool isExplicitSpecialization = false;
3570  bool isFunctionTemplateSpecialization = false;
3571  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3572  bool Invalid = false;
3573  if (TemplateParameterList *TemplateParams
3574        = MatchTemplateParametersToScopeSpecifier(
3575                                  D.getDeclSpec().getSourceRange().getBegin(),
3576                                  D.getCXXScopeSpec(),
3577                                  TemplateParamLists.get(),
3578                                  TemplateParamLists.size(),
3579                                  isFriend,
3580                                  isExplicitSpecialization,
3581                                  Invalid)) {
3582    // All but one template parameter lists have been matching.
3583    --NumMatchedTemplateParamLists;
3584
3585    if (TemplateParams->size() > 0) {
3586      // This is a function template
3587
3588      // Check that we can declare a template here.
3589      if (CheckTemplateDeclScope(S, TemplateParams))
3590        return 0;
3591
3592      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3593                                                      NewFD->getLocation(),
3594                                                      Name, TemplateParams,
3595                                                      NewFD);
3596      FunctionTemplate->setLexicalDeclContext(CurContext);
3597      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3598    } else {
3599      // This is a function template specialization.
3600      isFunctionTemplateSpecialization = true;
3601
3602      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3603      if (isFriend && isFunctionTemplateSpecialization) {
3604        // We want to remove the "template<>", found here.
3605        SourceRange RemoveRange = TemplateParams->getSourceRange();
3606
3607        // If we remove the template<> and the name is not a
3608        // template-id, we're actually silently creating a problem:
3609        // the friend declaration will refer to an untemplated decl,
3610        // and clearly the user wants a template specialization.  So
3611        // we need to insert '<>' after the name.
3612        SourceLocation InsertLoc;
3613        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3614          InsertLoc = D.getName().getSourceRange().getEnd();
3615          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3616        }
3617
3618        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3619          << Name << RemoveRange
3620          << FixItHint::CreateRemoval(RemoveRange)
3621          << FixItHint::CreateInsertion(InsertLoc, "<>");
3622      }
3623    }
3624  }
3625
3626  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3627    NewFD->setTemplateParameterListsInfo(Context,
3628                                         NumMatchedTemplateParamLists,
3629                                         TemplateParamLists.release());
3630  }
3631
3632  if (Invalid) {
3633    NewFD->setInvalidDecl();
3634    if (FunctionTemplate)
3635      FunctionTemplate->setInvalidDecl();
3636  }
3637
3638  // C++ [dcl.fct.spec]p5:
3639  //   The virtual specifier shall only be used in declarations of
3640  //   nonstatic class member functions that appear within a
3641  //   member-specification of a class declaration; see 10.3.
3642  //
3643  if (isVirtual && !NewFD->isInvalidDecl()) {
3644    if (!isVirtualOkay) {
3645       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3646           diag::err_virtual_non_function);
3647    } else if (!CurContext->isRecord()) {
3648      // 'virtual' was specified outside of the class.
3649      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3650        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3651    } else {
3652      // Okay: Add virtual to the method.
3653      NewFD->setVirtualAsWritten(true);
3654    }
3655  }
3656
3657  // C++ [dcl.fct.spec]p3:
3658  //  The inline specifier shall not appear on a block scope function declaration.
3659  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3660    if (CurContext->isFunctionOrMethod()) {
3661      // 'inline' is not allowed on block scope function declaration.
3662      Diag(D.getDeclSpec().getInlineSpecLoc(),
3663           diag::err_inline_declaration_block_scope) << Name
3664        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3665    }
3666  }
3667
3668  // C++ [dcl.fct.spec]p6:
3669  //  The explicit specifier shall be used only in the declaration of a
3670  //  constructor or conversion function within its class definition; see 12.3.1
3671  //  and 12.3.2.
3672  if (isExplicit && !NewFD->isInvalidDecl()) {
3673    if (!CurContext->isRecord()) {
3674      // 'explicit' was specified outside of the class.
3675      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3676           diag::err_explicit_out_of_class)
3677        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3678    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3679               !isa<CXXConversionDecl>(NewFD)) {
3680      // 'explicit' was specified on a function that wasn't a constructor
3681      // or conversion function.
3682      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3683           diag::err_explicit_non_ctor_or_conv_function)
3684        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3685    }
3686  }
3687
3688  // Filter out previous declarations that don't match the scope.
3689  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3690
3691  if (isFriend) {
3692    // For now, claim that the objects have no previous declaration.
3693    if (FunctionTemplate) {
3694      FunctionTemplate->setObjectOfFriendDecl(false);
3695      FunctionTemplate->setAccess(AS_public);
3696    }
3697    NewFD->setObjectOfFriendDecl(false);
3698    NewFD->setAccess(AS_public);
3699  }
3700
3701  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3702      !CurContext->isRecord()) {
3703    // C++ [class.static]p1:
3704    //   A data or function member of a class may be declared static
3705    //   in a class definition, in which case it is a static member of
3706    //   the class.
3707
3708    // Complain about the 'static' specifier if it's on an out-of-line
3709    // member function definition.
3710    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3711         diag::err_static_out_of_line)
3712      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3713  }
3714
3715  // Handle GNU asm-label extension (encoded as an attribute).
3716  if (Expr *E = (Expr*) D.getAsmLabel()) {
3717    // The parser guarantees this is a string.
3718    StringLiteral *SE = cast<StringLiteral>(E);
3719    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3720                                                SE->getString()));
3721  }
3722
3723  // Copy the parameter declarations from the declarator D to the function
3724  // declaration NewFD, if they are available.  First scavenge them into Params.
3725  llvm::SmallVector<ParmVarDecl*, 16> Params;
3726  if (D.getNumTypeObjects() > 0) {
3727    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3728
3729    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3730    // function that takes no arguments, not a function that takes a
3731    // single void argument.
3732    // We let through "const void" here because Sema::GetTypeForDeclarator
3733    // already checks for that case.
3734    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3735        FTI.ArgInfo[0].Param &&
3736        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3737      // Empty arg list, don't push any params.
3738      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3739
3740      // In C++, the empty parameter-type-list must be spelled "void"; a
3741      // typedef of void is not permitted.
3742      if (getLangOptions().CPlusPlus &&
3743          Param->getType().getUnqualifiedType() != Context.VoidTy)
3744        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3745    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3746      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3747        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3748        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3749        Param->setDeclContext(NewFD);
3750        Params.push_back(Param);
3751
3752        if (Param->isInvalidDecl())
3753          NewFD->setInvalidDecl();
3754      }
3755    }
3756
3757  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3758    // When we're declaring a function with a typedef, typeof, etc as in the
3759    // following example, we'll need to synthesize (unnamed)
3760    // parameters for use in the declaration.
3761    //
3762    // @code
3763    // typedef void fn(int);
3764    // fn f;
3765    // @endcode
3766
3767    // Synthesize a parameter for each argument type.
3768    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3769         AE = FT->arg_type_end(); AI != AE; ++AI) {
3770      ParmVarDecl *Param =
3771        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3772      Params.push_back(Param);
3773    }
3774  } else {
3775    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3776           "Should not need args for typedef of non-prototype fn");
3777  }
3778  // Finally, we know we have the right number of parameters, install them.
3779  NewFD->setParams(Params.data(), Params.size());
3780
3781  // If the declarator is a template-id, translate the parser's template
3782  // argument list into our AST format.
3783  bool HasExplicitTemplateArgs = false;
3784  TemplateArgumentListInfo TemplateArgs;
3785  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3786    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3787    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3788    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3789    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3790                                       TemplateId->getTemplateArgs(),
3791                                       TemplateId->NumArgs);
3792    translateTemplateArguments(TemplateArgsPtr,
3793                               TemplateArgs);
3794    TemplateArgsPtr.release();
3795
3796    HasExplicitTemplateArgs = true;
3797
3798    if (FunctionTemplate) {
3799      // FIXME: Diagnose function template with explicit template
3800      // arguments.
3801      HasExplicitTemplateArgs = false;
3802    } else if (!isFunctionTemplateSpecialization &&
3803               !D.getDeclSpec().isFriendSpecified()) {
3804      // We have encountered something that the user meant to be a
3805      // specialization (because it has explicitly-specified template
3806      // arguments) but that was not introduced with a "template<>" (or had
3807      // too few of them).
3808      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3809        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3810        << FixItHint::CreateInsertion(
3811                                   D.getDeclSpec().getSourceRange().getBegin(),
3812                                                 "template<> ");
3813      isFunctionTemplateSpecialization = true;
3814    } else {
3815      // "friend void foo<>(int);" is an implicit specialization decl.
3816      isFunctionTemplateSpecialization = true;
3817    }
3818  } else if (isFriend && isFunctionTemplateSpecialization) {
3819    // This combination is only possible in a recovery case;  the user
3820    // wrote something like:
3821    //   template <> friend void foo(int);
3822    // which we're recovering from as if the user had written:
3823    //   friend void foo<>(int);
3824    // Go ahead and fake up a template id.
3825    HasExplicitTemplateArgs = true;
3826    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3827    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3828  }
3829
3830  // If it's a friend (and only if it's a friend), it's possible
3831  // that either the specialized function type or the specialized
3832  // template is dependent, and therefore matching will fail.  In
3833  // this case, don't check the specialization yet.
3834  if (isFunctionTemplateSpecialization && isFriend &&
3835      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3836    assert(HasExplicitTemplateArgs &&
3837           "friend function specialization without template args");
3838    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3839                                                     Previous))
3840      NewFD->setInvalidDecl();
3841  } else if (isFunctionTemplateSpecialization) {
3842    if (CheckFunctionTemplateSpecialization(NewFD,
3843                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3844                                            Previous))
3845      NewFD->setInvalidDecl();
3846  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3847    if (CheckMemberSpecialization(NewFD, Previous))
3848      NewFD->setInvalidDecl();
3849  }
3850
3851  // Perform semantic checking on the function declaration.
3852  bool OverloadableAttrRequired = false; // FIXME: HACK!
3853  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3854                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3855
3856  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3857          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3858         "previous declaration set still overloaded");
3859
3860  NamedDecl *PrincipalDecl = (FunctionTemplate
3861                              ? cast<NamedDecl>(FunctionTemplate)
3862                              : NewFD);
3863
3864  if (isFriend && Redeclaration) {
3865    AccessSpecifier Access = AS_public;
3866    if (!NewFD->isInvalidDecl())
3867      Access = NewFD->getPreviousDeclaration()->getAccess();
3868
3869    NewFD->setAccess(Access);
3870    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3871
3872    PrincipalDecl->setObjectOfFriendDecl(true);
3873  }
3874
3875  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3876      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3877    PrincipalDecl->setNonMemberOperator();
3878
3879  // If we have a function template, check the template parameter
3880  // list. This will check and merge default template arguments.
3881  if (FunctionTemplate) {
3882    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3883    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3884                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3885             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3886                                                : TPC_FunctionTemplate);
3887  }
3888
3889  if (NewFD->isInvalidDecl()) {
3890    // Ignore all the rest of this.
3891  } else if (!Redeclaration) {
3892    // Fake up an access specifier if it's supposed to be a class member.
3893    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3894      NewFD->setAccess(AS_public);
3895
3896    // Qualified decls generally require a previous declaration.
3897    if (D.getCXXScopeSpec().isSet()) {
3898      // ...with the major exception of templated-scope or
3899      // dependent-scope friend declarations.
3900
3901      // TODO: we currently also suppress this check in dependent
3902      // contexts because (1) the parameter depth will be off when
3903      // matching friend templates and (2) we might actually be
3904      // selecting a friend based on a dependent factor.  But there
3905      // are situations where these conditions don't apply and we
3906      // can actually do this check immediately.
3907      if (isFriend &&
3908          (NumMatchedTemplateParamLists ||
3909           D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3910           CurContext->isDependentContext())) {
3911        // ignore these
3912      } else {
3913        // The user tried to provide an out-of-line definition for a
3914        // function that is a member of a class or namespace, but there
3915        // was no such member function declared (C++ [class.mfct]p2,
3916        // C++ [namespace.memdef]p2). For example:
3917        //
3918        // class X {
3919        //   void f() const;
3920        // };
3921        //
3922        // void X::f() { } // ill-formed
3923        //
3924        // Complain about this problem, and attempt to suggest close
3925        // matches (e.g., those that differ only in cv-qualifiers and
3926        // whether the parameter types are references).
3927        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3928          << Name << DC << D.getCXXScopeSpec().getRange();
3929        NewFD->setInvalidDecl();
3930
3931        DiagnoseInvalidRedeclaration(*this, NewFD);
3932      }
3933
3934    // Unqualified local friend declarations are required to resolve
3935    // to something.
3936    } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3937      Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3938      NewFD->setInvalidDecl();
3939      DiagnoseInvalidRedeclaration(*this, NewFD);
3940    }
3941
3942  } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3943             !isFriend && !isFunctionTemplateSpecialization &&
3944             !isExplicitSpecialization) {
3945    // An out-of-line member function declaration must also be a
3946    // definition (C++ [dcl.meaning]p1).
3947    // Note that this is not the case for explicit specializations of
3948    // function templates or member functions of class templates, per
3949    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3950    // for compatibility with old SWIG code which likes to generate them.
3951    Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3952      << D.getCXXScopeSpec().getRange();
3953  }
3954
3955  // Handle attributes. We need to have merged decls when handling attributes
3956  // (for example to check for conflicts, etc).
3957  // FIXME: This needs to happen before we merge declarations. Then,
3958  // let attribute merging cope with attribute conflicts.
3959  ProcessDeclAttributes(S, NewFD, D);
3960
3961  // attributes declared post-definition are currently ignored
3962  // FIXME: This should happen during attribute merging
3963  if (Redeclaration && Previous.isSingleResult()) {
3964    const FunctionDecl *Def;
3965    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3966    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3967      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3968      Diag(Def->getLocation(), diag::note_previous_definition);
3969    }
3970  }
3971
3972  AddKnownFunctionAttributes(NewFD);
3973
3974  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3975    // If a function name is overloadable in C, then every function
3976    // with that name must be marked "overloadable".
3977    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3978      << Redeclaration << NewFD;
3979    if (!Previous.empty())
3980      Diag(Previous.getRepresentativeDecl()->getLocation(),
3981           diag::note_attribute_overloadable_prev_overload);
3982    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3983  }
3984
3985  if (NewFD->hasAttr<OverloadableAttr>() &&
3986      !NewFD->getType()->getAs<FunctionProtoType>()) {
3987    Diag(NewFD->getLocation(),
3988         diag::err_attribute_overloadable_no_prototype)
3989      << NewFD;
3990
3991    // Turn this into a variadic function with no parameters.
3992    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3993    QualType R = Context.getFunctionType(FT->getResultType(),
3994                                         0, 0, true, 0, false, false, 0, 0,
3995                                         FT->getExtInfo());
3996    NewFD->setType(R);
3997  }
3998
3999  // If there's a #pragma GCC visibility in scope, and this isn't a class
4000  // member, set the visibility of this function.
4001  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4002    AddPushedVisibilityAttribute(NewFD);
4003
4004  // If this is a locally-scoped extern C function, update the
4005  // map of such names.
4006  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4007      && !NewFD->isInvalidDecl())
4008    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4009
4010  // Set this FunctionDecl's range up to the right paren.
4011  NewFD->setLocEnd(D.getSourceRange().getEnd());
4012
4013  if (FunctionTemplate && NewFD->isInvalidDecl())
4014    FunctionTemplate->setInvalidDecl();
4015
4016  if (FunctionTemplate)
4017    return FunctionTemplate;
4018
4019  MarkUnusedFileScopedDecl(NewFD);
4020
4021  CheckClassMemberNameAttributes(*this, NewFD);
4022
4023  return NewFD;
4024}
4025
4026/// \brief Perform semantic checking of a new function declaration.
4027///
4028/// Performs semantic analysis of the new function declaration
4029/// NewFD. This routine performs all semantic checking that does not
4030/// require the actual declarator involved in the declaration, and is
4031/// used both for the declaration of functions as they are parsed
4032/// (called via ActOnDeclarator) and for the declaration of functions
4033/// that have been instantiated via C++ template instantiation (called
4034/// via InstantiateDecl).
4035///
4036/// \param IsExplicitSpecialiation whether this new function declaration is
4037/// an explicit specialization of the previous declaration.
4038///
4039/// This sets NewFD->isInvalidDecl() to true if there was an error.
4040void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4041                                    LookupResult &Previous,
4042                                    bool IsExplicitSpecialization,
4043                                    bool &Redeclaration,
4044                                    bool &OverloadableAttrRequired) {
4045  // If NewFD is already known erroneous, don't do any of this checking.
4046  if (NewFD->isInvalidDecl()) {
4047    // If this is a class member, mark the class invalid immediately.
4048    // This avoids some consistency errors later.
4049    if (isa<CXXMethodDecl>(NewFD))
4050      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4051
4052    return;
4053  }
4054
4055  if (NewFD->getResultType()->isVariablyModifiedType()) {
4056    // Functions returning a variably modified type violate C99 6.7.5.2p2
4057    // because all functions have linkage.
4058    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4059    return NewFD->setInvalidDecl();
4060  }
4061
4062  if (NewFD->isMain())
4063    CheckMain(NewFD);
4064
4065  // Check for a previous declaration of this name.
4066  if (Previous.empty() && NewFD->isExternC()) {
4067    // Since we did not find anything by this name and we're declaring
4068    // an extern "C" function, look for a non-visible extern "C"
4069    // declaration with the same name.
4070    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4071      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4072    if (Pos != LocallyScopedExternalDecls.end())
4073      Previous.addDecl(Pos->second);
4074  }
4075
4076  // Merge or overload the declaration with an existing declaration of
4077  // the same name, if appropriate.
4078  if (!Previous.empty()) {
4079    // Determine whether NewFD is an overload of PrevDecl or
4080    // a declaration that requires merging. If it's an overload,
4081    // there's no more work to do here; we'll just add the new
4082    // function to the scope.
4083
4084    NamedDecl *OldDecl = 0;
4085    if (!AllowOverloadingOfFunction(Previous, Context)) {
4086      Redeclaration = true;
4087      OldDecl = Previous.getFoundDecl();
4088    } else {
4089      if (!getLangOptions().CPlusPlus)
4090        OverloadableAttrRequired = true;
4091
4092      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4093                            /*NewIsUsingDecl*/ false)) {
4094      case Ovl_Match:
4095        Redeclaration = true;
4096        break;
4097
4098      case Ovl_NonFunction:
4099        Redeclaration = true;
4100        break;
4101
4102      case Ovl_Overload:
4103        Redeclaration = false;
4104        break;
4105      }
4106    }
4107
4108    if (Redeclaration) {
4109      // NewFD and OldDecl represent declarations that need to be
4110      // merged.
4111      if (MergeFunctionDecl(NewFD, OldDecl))
4112        return NewFD->setInvalidDecl();
4113
4114      Previous.clear();
4115      Previous.addDecl(OldDecl);
4116
4117      if (FunctionTemplateDecl *OldTemplateDecl
4118                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4119        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4120        FunctionTemplateDecl *NewTemplateDecl
4121          = NewFD->getDescribedFunctionTemplate();
4122        assert(NewTemplateDecl && "Template/non-template mismatch");
4123        if (CXXMethodDecl *Method
4124              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4125          Method->setAccess(OldTemplateDecl->getAccess());
4126          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4127        }
4128
4129        // If this is an explicit specialization of a member that is a function
4130        // template, mark it as a member specialization.
4131        if (IsExplicitSpecialization &&
4132            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4133          NewTemplateDecl->setMemberSpecialization();
4134          assert(OldTemplateDecl->isMemberSpecialization());
4135        }
4136      } else {
4137        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4138          NewFD->setAccess(OldDecl->getAccess());
4139        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4140      }
4141    }
4142  }
4143
4144  // Semantic checking for this function declaration (in isolation).
4145  if (getLangOptions().CPlusPlus) {
4146    // C++-specific checks.
4147    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4148      CheckConstructor(Constructor);
4149    } else if (CXXDestructorDecl *Destructor =
4150                dyn_cast<CXXDestructorDecl>(NewFD)) {
4151      CXXRecordDecl *Record = Destructor->getParent();
4152      QualType ClassType = Context.getTypeDeclType(Record);
4153
4154      // FIXME: Shouldn't we be able to perform this check even when the class
4155      // type is dependent? Both gcc and edg can handle that.
4156      if (!ClassType->isDependentType()) {
4157        DeclarationName Name
4158          = Context.DeclarationNames.getCXXDestructorName(
4159                                        Context.getCanonicalType(ClassType));
4160        if (NewFD->getDeclName() != Name) {
4161          Diag(NewFD->getLocation(), diag::err_destructor_name);
4162          return NewFD->setInvalidDecl();
4163        }
4164      }
4165    } else if (CXXConversionDecl *Conversion
4166               = dyn_cast<CXXConversionDecl>(NewFD)) {
4167      ActOnConversionDeclarator(Conversion);
4168    }
4169
4170    // Find any virtual functions that this function overrides.
4171    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4172      if (!Method->isFunctionTemplateSpecialization() &&
4173          !Method->getDescribedFunctionTemplate()) {
4174        if (AddOverriddenMethods(Method->getParent(), Method)) {
4175          // If the function was marked as "static", we have a problem.
4176          if (NewFD->getStorageClass() == SC_Static) {
4177            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4178              << NewFD->getDeclName();
4179            for (CXXMethodDecl::method_iterator
4180                      Overridden = Method->begin_overridden_methods(),
4181                   OverriddenEnd = Method->end_overridden_methods();
4182                 Overridden != OverriddenEnd;
4183                 ++Overridden) {
4184              Diag((*Overridden)->getLocation(),
4185                   diag::note_overridden_virtual_function);
4186            }
4187          }
4188        }
4189      }
4190    }
4191
4192    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4193    if (NewFD->isOverloadedOperator() &&
4194        CheckOverloadedOperatorDeclaration(NewFD))
4195      return NewFD->setInvalidDecl();
4196
4197    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4198    if (NewFD->getLiteralIdentifier() &&
4199        CheckLiteralOperatorDeclaration(NewFD))
4200      return NewFD->setInvalidDecl();
4201
4202    // In C++, check default arguments now that we have merged decls. Unless
4203    // the lexical context is the class, because in this case this is done
4204    // during delayed parsing anyway.
4205    if (!CurContext->isRecord())
4206      CheckCXXDefaultArguments(NewFD);
4207  }
4208}
4209
4210void Sema::CheckMain(FunctionDecl* FD) {
4211  // C++ [basic.start.main]p3:  A program that declares main to be inline
4212  //   or static is ill-formed.
4213  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4214  //   shall not appear in a declaration of main.
4215  // static main is not an error under C99, but we should warn about it.
4216  bool isInline = FD->isInlineSpecified();
4217  bool isStatic = FD->getStorageClass() == SC_Static;
4218  if (isInline || isStatic) {
4219    unsigned diagID = diag::warn_unusual_main_decl;
4220    if (isInline || getLangOptions().CPlusPlus)
4221      diagID = diag::err_unusual_main_decl;
4222
4223    int which = isStatic + (isInline << 1) - 1;
4224    Diag(FD->getLocation(), diagID) << which;
4225  }
4226
4227  QualType T = FD->getType();
4228  assert(T->isFunctionType() && "function decl is not of function type");
4229  const FunctionType* FT = T->getAs<FunctionType>();
4230
4231  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4232    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4233    TypeLoc TL = TSI->getTypeLoc();
4234    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4235                                          diag::err_main_returns_nonint);
4236    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4237      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4238                                        "int");
4239    }
4240    FD->setInvalidDecl(true);
4241  }
4242
4243  // Treat protoless main() as nullary.
4244  if (isa<FunctionNoProtoType>(FT)) return;
4245
4246  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4247  unsigned nparams = FTP->getNumArgs();
4248  assert(FD->getNumParams() == nparams);
4249
4250  bool HasExtraParameters = (nparams > 3);
4251
4252  // Darwin passes an undocumented fourth argument of type char**.  If
4253  // other platforms start sprouting these, the logic below will start
4254  // getting shifty.
4255  if (nparams == 4 &&
4256      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4257    HasExtraParameters = false;
4258
4259  if (HasExtraParameters) {
4260    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4261    FD->setInvalidDecl(true);
4262    nparams = 3;
4263  }
4264
4265  // FIXME: a lot of the following diagnostics would be improved
4266  // if we had some location information about types.
4267
4268  QualType CharPP =
4269    Context.getPointerType(Context.getPointerType(Context.CharTy));
4270  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4271
4272  for (unsigned i = 0; i < nparams; ++i) {
4273    QualType AT = FTP->getArgType(i);
4274
4275    bool mismatch = true;
4276
4277    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4278      mismatch = false;
4279    else if (Expected[i] == CharPP) {
4280      // As an extension, the following forms are okay:
4281      //   char const **
4282      //   char const * const *
4283      //   char * const *
4284
4285      QualifierCollector qs;
4286      const PointerType* PT;
4287      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4288          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4289          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4290        qs.removeConst();
4291        mismatch = !qs.empty();
4292      }
4293    }
4294
4295    if (mismatch) {
4296      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4297      // TODO: suggest replacing given type with expected type
4298      FD->setInvalidDecl(true);
4299    }
4300  }
4301
4302  if (nparams == 1 && !FD->isInvalidDecl()) {
4303    Diag(FD->getLocation(), diag::warn_main_one_arg);
4304  }
4305
4306  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4307    Diag(FD->getLocation(), diag::err_main_template_decl);
4308    FD->setInvalidDecl();
4309  }
4310}
4311
4312bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4313  // FIXME: Need strict checking.  In C89, we need to check for
4314  // any assignment, increment, decrement, function-calls, or
4315  // commas outside of a sizeof.  In C99, it's the same list,
4316  // except that the aforementioned are allowed in unevaluated
4317  // expressions.  Everything else falls under the
4318  // "may accept other forms of constant expressions" exception.
4319  // (We never end up here for C++, so the constant expression
4320  // rules there don't matter.)
4321  if (Init->isConstantInitializer(Context, false))
4322    return false;
4323  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4324    << Init->getSourceRange();
4325  return true;
4326}
4327
4328void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4329  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4330}
4331
4332/// AddInitializerToDecl - Adds the initializer Init to the
4333/// declaration dcl. If DirectInit is true, this is C++ direct
4334/// initialization rather than copy initialization.
4335void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4336  // If there is no declaration, there was an error parsing it.  Just ignore
4337  // the initializer.
4338  if (RealDecl == 0)
4339    return;
4340
4341  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4342    // With declarators parsed the way they are, the parser cannot
4343    // distinguish between a normal initializer and a pure-specifier.
4344    // Thus this grotesque test.
4345    IntegerLiteral *IL;
4346    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4347        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4348      CheckPureMethod(Method, Init->getSourceRange());
4349    else {
4350      Diag(Method->getLocation(), diag::err_member_function_initialization)
4351        << Method->getDeclName() << Init->getSourceRange();
4352      Method->setInvalidDecl();
4353    }
4354    return;
4355  }
4356
4357  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4358  if (!VDecl) {
4359    if (getLangOptions().CPlusPlus &&
4360        RealDecl->getLexicalDeclContext()->isRecord() &&
4361        isa<NamedDecl>(RealDecl))
4362      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4363    else
4364      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4365    RealDecl->setInvalidDecl();
4366    return;
4367  }
4368
4369
4370
4371  // A definition must end up with a complete type, which means it must be
4372  // complete with the restriction that an array type might be completed by the
4373  // initializer; note that later code assumes this restriction.
4374  QualType BaseDeclType = VDecl->getType();
4375  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4376    BaseDeclType = Array->getElementType();
4377  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4378                          diag::err_typecheck_decl_incomplete_type)) {
4379    RealDecl->setInvalidDecl();
4380    return;
4381  }
4382
4383  // The variable can not have an abstract class type.
4384  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4385                             diag::err_abstract_type_in_decl,
4386                             AbstractVariableType))
4387    VDecl->setInvalidDecl();
4388
4389  const VarDecl *Def;
4390  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4391    Diag(VDecl->getLocation(), diag::err_redefinition)
4392      << VDecl->getDeclName();
4393    Diag(Def->getLocation(), diag::note_previous_definition);
4394    VDecl->setInvalidDecl();
4395    return;
4396  }
4397
4398  // C++ [class.static.data]p4
4399  //   If a static data member is of const integral or const
4400  //   enumeration type, its declaration in the class definition can
4401  //   specify a constant-initializer which shall be an integral
4402  //   constant expression (5.19). In that case, the member can appear
4403  //   in integral constant expressions. The member shall still be
4404  //   defined in a namespace scope if it is used in the program and the
4405  //   namespace scope definition shall not contain an initializer.
4406  //
4407  // We already performed a redefinition check above, but for static
4408  // data members we also need to check whether there was an in-class
4409  // declaration with an initializer.
4410  const VarDecl* PrevInit = 0;
4411  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4412    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4413    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4414    return;
4415  }
4416
4417  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4418    getCurFunction()->setHasBranchProtectedScope();
4419
4420  // Capture the variable that is being initialized and the style of
4421  // initialization.
4422  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4423
4424  // FIXME: Poor source location information.
4425  InitializationKind Kind
4426    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4427                                                   Init->getLocStart(),
4428                                                   Init->getLocEnd())
4429                : InitializationKind::CreateCopy(VDecl->getLocation(),
4430                                                 Init->getLocStart());
4431
4432  // Get the decls type and save a reference for later, since
4433  // CheckInitializerTypes may change it.
4434  QualType DclT = VDecl->getType(), SavT = DclT;
4435  if (VDecl->isLocalVarDecl()) {
4436    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4437      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4438      VDecl->setInvalidDecl();
4439    } else if (!VDecl->isInvalidDecl()) {
4440      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4441      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4442                                                MultiExprArg(*this, &Init, 1),
4443                                                &DclT);
4444      if (Result.isInvalid()) {
4445        VDecl->setInvalidDecl();
4446        return;
4447      }
4448
4449      Init = Result.takeAs<Expr>();
4450
4451      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4452      // Don't check invalid declarations to avoid emitting useless diagnostics.
4453      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4454        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4455          CheckForConstantInitializer(Init, DclT);
4456      }
4457    }
4458  } else if (VDecl->isStaticDataMember() &&
4459             VDecl->getLexicalDeclContext()->isRecord()) {
4460    // This is an in-class initialization for a static data member, e.g.,
4461    //
4462    // struct S {
4463    //   static const int value = 17;
4464    // };
4465
4466    // Try to perform the initialization regardless.
4467    if (!VDecl->isInvalidDecl()) {
4468      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4469      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4470                                          MultiExprArg(*this, &Init, 1),
4471                                          &DclT);
4472      if (Result.isInvalid()) {
4473        VDecl->setInvalidDecl();
4474        return;
4475      }
4476
4477      Init = Result.takeAs<Expr>();
4478    }
4479
4480    // C++ [class.mem]p4:
4481    //   A member-declarator can contain a constant-initializer only
4482    //   if it declares a static member (9.4) of const integral or
4483    //   const enumeration type, see 9.4.2.
4484    QualType T = VDecl->getType();
4485
4486    // Do nothing on dependent types.
4487    if (T->isDependentType()) {
4488
4489    // Require constness.
4490    } else if (!T.isConstQualified()) {
4491      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4492        << Init->getSourceRange();
4493      VDecl->setInvalidDecl();
4494
4495    // We allow integer constant expressions in all cases.
4496    } else if (T->isIntegralOrEnumerationType()) {
4497      if (!Init->isValueDependent()) {
4498        // Check whether the expression is a constant expression.
4499        llvm::APSInt Value;
4500        SourceLocation Loc;
4501        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4502          Diag(Loc, diag::err_in_class_initializer_non_constant)
4503            << Init->getSourceRange();
4504          VDecl->setInvalidDecl();
4505        }
4506      }
4507
4508    // We allow floating-point constants as an extension in C++03, and
4509    // C++0x has far more complicated rules that we don't really
4510    // implement fully.
4511    } else {
4512      bool Allowed = false;
4513      if (getLangOptions().CPlusPlus0x) {
4514        Allowed = T->isLiteralType();
4515      } else if (T->isFloatingType()) { // also permits complex, which is ok
4516        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4517          << T << Init->getSourceRange();
4518        Allowed = true;
4519      }
4520
4521      if (!Allowed) {
4522        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4523          << T << Init->getSourceRange();
4524        VDecl->setInvalidDecl();
4525
4526      // TODO: there are probably expressions that pass here that shouldn't.
4527      } else if (!Init->isValueDependent() &&
4528                 !Init->isConstantInitializer(Context, false)) {
4529        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4530          << Init->getSourceRange();
4531        VDecl->setInvalidDecl();
4532      }
4533    }
4534  } else if (VDecl->isFileVarDecl()) {
4535    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4536        (!getLangOptions().CPlusPlus ||
4537         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4538      Diag(VDecl->getLocation(), diag::warn_extern_init);
4539    if (!VDecl->isInvalidDecl()) {
4540      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4541      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4542                                                MultiExprArg(*this, &Init, 1),
4543                                                &DclT);
4544      if (Result.isInvalid()) {
4545        VDecl->setInvalidDecl();
4546        return;
4547      }
4548
4549      Init = Result.takeAs<Expr>();
4550    }
4551
4552    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4553    // Don't check invalid declarations to avoid emitting useless diagnostics.
4554    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4555      // C99 6.7.8p4. All file scoped initializers need to be constant.
4556      CheckForConstantInitializer(Init, DclT);
4557    }
4558  }
4559  // If the type changed, it means we had an incomplete type that was
4560  // completed by the initializer. For example:
4561  //   int ary[] = { 1, 3, 5 };
4562  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4563  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4564    VDecl->setType(DclT);
4565    Init->setType(DclT);
4566  }
4567
4568
4569  // If this variable is a local declaration with record type, make sure it
4570  // doesn't have a flexible member initialization.  We only support this as a
4571  // global/static definition.
4572  if (VDecl->hasLocalStorage())
4573    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4574      if (RT->getDecl()->hasFlexibleArrayMember()) {
4575        // Check whether the initializer tries to initialize the flexible
4576        // array member itself to anything other than an empty initializer list.
4577        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4578          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4579                                         RT->getDecl()->field_end()) - 1;
4580          if (Index < ILE->getNumInits() &&
4581              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4582                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4583            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4584            VDecl->setInvalidDecl();
4585          }
4586        }
4587      }
4588
4589  // Check any implicit conversions within the expression.
4590  CheckImplicitConversions(Init, VDecl->getLocation());
4591
4592  Init = MaybeCreateExprWithCleanups(Init);
4593  // Attach the initializer to the decl.
4594  VDecl->setInit(Init);
4595
4596  if (getLangOptions().CPlusPlus) {
4597    if (!VDecl->isInvalidDecl() &&
4598        !VDecl->getDeclContext()->isDependentContext() &&
4599        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4600        !Init->isConstantInitializer(Context,
4601                                     VDecl->getType()->isReferenceType()))
4602      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4603        << Init->getSourceRange();
4604
4605    // Make sure we mark the destructor as used if necessary.
4606    QualType InitType = VDecl->getType();
4607    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4608      InitType = Context.getBaseElementType(Array);
4609    if (const RecordType *Record = InitType->getAs<RecordType>())
4610      FinalizeVarWithDestructor(VDecl, Record);
4611  }
4612
4613  return;
4614}
4615
4616/// ActOnInitializerError - Given that there was an error parsing an
4617/// initializer for the given declaration, try to return to some form
4618/// of sanity.
4619void Sema::ActOnInitializerError(Decl *D) {
4620  // Our main concern here is re-establishing invariants like "a
4621  // variable's type is either dependent or complete".
4622  if (!D || D->isInvalidDecl()) return;
4623
4624  VarDecl *VD = dyn_cast<VarDecl>(D);
4625  if (!VD) return;
4626
4627  QualType Ty = VD->getType();
4628  if (Ty->isDependentType()) return;
4629
4630  // Require a complete type.
4631  if (RequireCompleteType(VD->getLocation(),
4632                          Context.getBaseElementType(Ty),
4633                          diag::err_typecheck_decl_incomplete_type)) {
4634    VD->setInvalidDecl();
4635    return;
4636  }
4637
4638  // Require an abstract type.
4639  if (RequireNonAbstractType(VD->getLocation(), Ty,
4640                             diag::err_abstract_type_in_decl,
4641                             AbstractVariableType)) {
4642    VD->setInvalidDecl();
4643    return;
4644  }
4645
4646  // Don't bother complaining about constructors or destructors,
4647  // though.
4648}
4649
4650void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4651                                  bool TypeContainsUndeducedAuto) {
4652  // If there is no declaration, there was an error parsing it. Just ignore it.
4653  if (RealDecl == 0)
4654    return;
4655
4656  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4657    QualType Type = Var->getType();
4658
4659    // C++0x [dcl.spec.auto]p3
4660    if (TypeContainsUndeducedAuto) {
4661      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4662        << Var->getDeclName() << Type;
4663      Var->setInvalidDecl();
4664      return;
4665    }
4666
4667    switch (Var->isThisDeclarationADefinition()) {
4668    case VarDecl::Definition:
4669      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4670        break;
4671
4672      // We have an out-of-line definition of a static data member
4673      // that has an in-class initializer, so we type-check this like
4674      // a declaration.
4675      //
4676      // Fall through
4677
4678    case VarDecl::DeclarationOnly:
4679      // It's only a declaration.
4680
4681      // Block scope. C99 6.7p7: If an identifier for an object is
4682      // declared with no linkage (C99 6.2.2p6), the type for the
4683      // object shall be complete.
4684      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4685          !Var->getLinkage() && !Var->isInvalidDecl() &&
4686          RequireCompleteType(Var->getLocation(), Type,
4687                              diag::err_typecheck_decl_incomplete_type))
4688        Var->setInvalidDecl();
4689
4690      // Make sure that the type is not abstract.
4691      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4692          RequireNonAbstractType(Var->getLocation(), Type,
4693                                 diag::err_abstract_type_in_decl,
4694                                 AbstractVariableType))
4695        Var->setInvalidDecl();
4696      return;
4697
4698    case VarDecl::TentativeDefinition:
4699      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4700      // object that has file scope without an initializer, and without a
4701      // storage-class specifier or with the storage-class specifier "static",
4702      // constitutes a tentative definition. Note: A tentative definition with
4703      // external linkage is valid (C99 6.2.2p5).
4704      if (!Var->isInvalidDecl()) {
4705        if (const IncompleteArrayType *ArrayT
4706                                    = Context.getAsIncompleteArrayType(Type)) {
4707          if (RequireCompleteType(Var->getLocation(),
4708                                  ArrayT->getElementType(),
4709                                  diag::err_illegal_decl_array_incomplete_type))
4710            Var->setInvalidDecl();
4711        } else if (Var->getStorageClass() == SC_Static) {
4712          // C99 6.9.2p3: If the declaration of an identifier for an object is
4713          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4714          // declared type shall not be an incomplete type.
4715          // NOTE: code such as the following
4716          //     static struct s;
4717          //     struct s { int a; };
4718          // is accepted by gcc. Hence here we issue a warning instead of
4719          // an error and we do not invalidate the static declaration.
4720          // NOTE: to avoid multiple warnings, only check the first declaration.
4721          if (Var->getPreviousDeclaration() == 0)
4722            RequireCompleteType(Var->getLocation(), Type,
4723                                diag::ext_typecheck_decl_incomplete_type);
4724        }
4725      }
4726
4727      // Record the tentative definition; we're done.
4728      if (!Var->isInvalidDecl())
4729        TentativeDefinitions.push_back(Var);
4730      return;
4731    }
4732
4733    // Provide a specific diagnostic for uninitialized variable
4734    // definitions with incomplete array type.
4735    if (Type->isIncompleteArrayType()) {
4736      Diag(Var->getLocation(),
4737           diag::err_typecheck_incomplete_array_needs_initializer);
4738      Var->setInvalidDecl();
4739      return;
4740    }
4741
4742    // Provide a specific diagnostic for uninitialized variable
4743    // definitions with reference type.
4744    if (Type->isReferenceType()) {
4745      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4746        << Var->getDeclName()
4747        << SourceRange(Var->getLocation(), Var->getLocation());
4748      Var->setInvalidDecl();
4749      return;
4750    }
4751
4752    // Do not attempt to type-check the default initializer for a
4753    // variable with dependent type.
4754    if (Type->isDependentType())
4755      return;
4756
4757    if (Var->isInvalidDecl())
4758      return;
4759
4760    if (RequireCompleteType(Var->getLocation(),
4761                            Context.getBaseElementType(Type),
4762                            diag::err_typecheck_decl_incomplete_type)) {
4763      Var->setInvalidDecl();
4764      return;
4765    }
4766
4767    // The variable can not have an abstract class type.
4768    if (RequireNonAbstractType(Var->getLocation(), Type,
4769                               diag::err_abstract_type_in_decl,
4770                               AbstractVariableType)) {
4771      Var->setInvalidDecl();
4772      return;
4773    }
4774
4775    const RecordType *Record
4776      = Context.getBaseElementType(Type)->getAs<RecordType>();
4777    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4778        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4779      // C++03 [dcl.init]p9:
4780      //   If no initializer is specified for an object, and the
4781      //   object is of (possibly cv-qualified) non-POD class type (or
4782      //   array thereof), the object shall be default-initialized; if
4783      //   the object is of const-qualified type, the underlying class
4784      //   type shall have a user-declared default
4785      //   constructor. Otherwise, if no initializer is specified for
4786      //   a non- static object, the object and its subobjects, if
4787      //   any, have an indeterminate initial value); if the object
4788      //   or any of its subobjects are of const-qualified type, the
4789      //   program is ill-formed.
4790      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4791    } else {
4792      // Check for jumps past the implicit initializer.  C++0x
4793      // clarifies that this applies to a "variable with automatic
4794      // storage duration", not a "local variable".
4795      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4796        getCurFunction()->setHasBranchProtectedScope();
4797
4798      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4799      InitializationKind Kind
4800        = InitializationKind::CreateDefault(Var->getLocation());
4801
4802      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4803      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4804                                        MultiExprArg(*this, 0, 0));
4805      if (Init.isInvalid())
4806        Var->setInvalidDecl();
4807      else if (Init.get()) {
4808        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4809
4810        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4811            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4812            !Var->getDeclContext()->isDependentContext() &&
4813            !Var->getInit()->isConstantInitializer(Context, false))
4814          Diag(Var->getLocation(), diag::warn_global_constructor);
4815      }
4816    }
4817
4818    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4819      FinalizeVarWithDestructor(Var, Record);
4820  }
4821}
4822
4823Sema::DeclGroupPtrTy
4824Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4825                              Decl **Group, unsigned NumDecls) {
4826  llvm::SmallVector<Decl*, 8> Decls;
4827
4828  if (DS.isTypeSpecOwned())
4829    Decls.push_back(DS.getRepAsDecl());
4830
4831  for (unsigned i = 0; i != NumDecls; ++i)
4832    if (Decl *D = Group[i])
4833      Decls.push_back(D);
4834
4835  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4836                                                   Decls.data(), Decls.size()));
4837}
4838
4839
4840/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4841/// to introduce parameters into function prototype scope.
4842Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4843  const DeclSpec &DS = D.getDeclSpec();
4844
4845  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4846  VarDecl::StorageClass StorageClass = SC_None;
4847  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4848  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4849    StorageClass = SC_Register;
4850    StorageClassAsWritten = SC_Register;
4851  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4852    Diag(DS.getStorageClassSpecLoc(),
4853         diag::err_invalid_storage_class_in_func_decl);
4854    D.getMutableDeclSpec().ClearStorageClassSpecs();
4855  }
4856
4857  if (D.getDeclSpec().isThreadSpecified())
4858    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4859
4860  DiagnoseFunctionSpecifiers(D);
4861
4862  // Check that there are no default arguments inside the type of this
4863  // parameter (C++ only).
4864  if (getLangOptions().CPlusPlus)
4865    CheckExtraCXXDefaultArguments(D);
4866
4867  TagDecl *OwnedDecl = 0;
4868  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4869  QualType parmDeclType = TInfo->getType();
4870
4871  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4872    // C++ [dcl.fct]p6:
4873    //   Types shall not be defined in return or parameter types.
4874    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4875      << Context.getTypeDeclType(OwnedDecl);
4876  }
4877
4878  // Ensure we have a valid name
4879  IdentifierInfo *II = 0;
4880  if (D.hasName()) {
4881    II = D.getIdentifier();
4882    if (!II) {
4883      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4884        << GetNameForDeclarator(D).getName().getAsString();
4885      D.setInvalidType(true);
4886    }
4887  }
4888
4889  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4890  if (II) {
4891    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4892                   ForRedeclaration);
4893    LookupName(R, S);
4894    if (R.isSingleResult()) {
4895      NamedDecl *PrevDecl = R.getFoundDecl();
4896      if (PrevDecl->isTemplateParameter()) {
4897        // Maybe we will complain about the shadowed template parameter.
4898        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4899        // Just pretend that we didn't see the previous declaration.
4900        PrevDecl = 0;
4901      } else if (S->isDeclScope(PrevDecl)) {
4902        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4903        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4904
4905        // Recover by removing the name
4906        II = 0;
4907        D.SetIdentifier(0, D.getIdentifierLoc());
4908        D.setInvalidType(true);
4909      }
4910    }
4911  }
4912
4913  // Temporarily put parameter variables in the translation unit, not
4914  // the enclosing context.  This prevents them from accidentally
4915  // looking like class members in C++.
4916  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4917                                    TInfo, parmDeclType, II,
4918                                    D.getIdentifierLoc(),
4919                                    StorageClass, StorageClassAsWritten);
4920
4921  if (D.isInvalidType())
4922    New->setInvalidDecl();
4923
4924  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4925  if (D.getCXXScopeSpec().isSet()) {
4926    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4927      << D.getCXXScopeSpec().getRange();
4928    New->setInvalidDecl();
4929  }
4930
4931  // Add the parameter declaration into this scope.
4932  S->AddDecl(New);
4933  if (II)
4934    IdResolver.AddDecl(New);
4935
4936  ProcessDeclAttributes(S, New, D);
4937
4938  if (New->hasAttr<BlocksAttr>()) {
4939    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4940  }
4941  return New;
4942}
4943
4944/// \brief Synthesizes a variable for a parameter arising from a
4945/// typedef.
4946ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4947                                              SourceLocation Loc,
4948                                              QualType T) {
4949  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4950                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4951                                           SC_None, SC_None, 0);
4952  Param->setImplicit();
4953  return Param;
4954}
4955
4956void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4957                                    ParmVarDecl * const *ParamEnd) {
4958  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4959        Diagnostic::Ignored)
4960    return;
4961
4962  // Don't diagnose unused-parameter errors in template instantiations; we
4963  // will already have done so in the template itself.
4964  if (!ActiveTemplateInstantiations.empty())
4965    return;
4966
4967  for (; Param != ParamEnd; ++Param) {
4968    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4969        !(*Param)->hasAttr<UnusedAttr>()) {
4970      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4971        << (*Param)->getDeclName();
4972    }
4973  }
4974}
4975
4976void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
4977                                                  ParmVarDecl * const *ParamEnd,
4978                                                  QualType ReturnTy,
4979                                                  NamedDecl *D) {
4980  if (LangOpts.NumLargeByValueCopy == 0) // No check.
4981    return;
4982
4983  // Warn if the return value is pass-by-value and larger than the specified
4984  // threshold.
4985  if (ReturnTy->isPODType()) {
4986    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
4987    if (Size > LangOpts.NumLargeByValueCopy)
4988      Diag(D->getLocation(), diag::warn_return_value_size)
4989          << D->getDeclName() << Size;
4990  }
4991
4992  if (Diags.getDiagnosticLevel(diag::warn_parameter_size)==Diagnostic::Ignored)
4993    return;
4994
4995  // Warn if any parameter is pass-by-value and larger than the specified
4996  // threshold.
4997  for (; Param != ParamEnd; ++Param) {
4998    QualType T = (*Param)->getType();
4999    if (!T->isPODType())
5000      continue;
5001    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5002    if (Size > LangOpts.NumLargeByValueCopy)
5003      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5004          << (*Param)->getDeclName() << Size;
5005  }
5006}
5007
5008ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5009                                  TypeSourceInfo *TSInfo, QualType T,
5010                                  IdentifierInfo *Name,
5011                                  SourceLocation NameLoc,
5012                                  VarDecl::StorageClass StorageClass,
5013                                  VarDecl::StorageClass StorageClassAsWritten) {
5014  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5015                                         adjustParameterType(T), TSInfo,
5016                                         StorageClass, StorageClassAsWritten,
5017                                         0);
5018
5019  // Parameters can not be abstract class types.
5020  // For record types, this is done by the AbstractClassUsageDiagnoser once
5021  // the class has been completely parsed.
5022  if (!CurContext->isRecord() &&
5023      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5024                             AbstractParamType))
5025    New->setInvalidDecl();
5026
5027  // Parameter declarators cannot be interface types. All ObjC objects are
5028  // passed by reference.
5029  if (T->isObjCObjectType()) {
5030    Diag(NameLoc,
5031         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5032    New->setInvalidDecl();
5033  }
5034
5035  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5036  // duration shall not be qualified by an address-space qualifier."
5037  // Since all parameters have automatic store duration, they can not have
5038  // an address space.
5039  if (T.getAddressSpace() != 0) {
5040    Diag(NameLoc, diag::err_arg_with_address_space);
5041    New->setInvalidDecl();
5042  }
5043
5044  return New;
5045}
5046
5047void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5048                                           SourceLocation LocAfterDecls) {
5049  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5050         "Not a function declarator!");
5051  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
5052
5053  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5054  // for a K&R function.
5055  if (!FTI.hasPrototype) {
5056    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5057      --i;
5058      if (FTI.ArgInfo[i].Param == 0) {
5059        llvm::SmallString<256> Code;
5060        llvm::raw_svector_ostream(Code) << "  int "
5061                                        << FTI.ArgInfo[i].Ident->getName()
5062                                        << ";\n";
5063        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5064          << FTI.ArgInfo[i].Ident
5065          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5066
5067        // Implicitly declare the argument as type 'int' for lack of a better
5068        // type.
5069        DeclSpec DS;
5070        const char* PrevSpec; // unused
5071        unsigned DiagID; // unused
5072        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5073                           PrevSpec, DiagID);
5074        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5075        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5076        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5077      }
5078    }
5079  }
5080}
5081
5082Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5083                                         Declarator &D) {
5084  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5085  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5086         "Not a function declarator!");
5087  Scope *ParentScope = FnBodyScope->getParent();
5088
5089  Decl *DP = HandleDeclarator(ParentScope, D,
5090                              MultiTemplateParamsArg(*this),
5091                              /*IsFunctionDefinition=*/true);
5092  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5093}
5094
5095static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5096  // Don't warn about invalid declarations.
5097  if (FD->isInvalidDecl())
5098    return false;
5099
5100  // Or declarations that aren't global.
5101  if (!FD->isGlobal())
5102    return false;
5103
5104  // Don't warn about C++ member functions.
5105  if (isa<CXXMethodDecl>(FD))
5106    return false;
5107
5108  // Don't warn about 'main'.
5109  if (FD->isMain())
5110    return false;
5111
5112  // Don't warn about inline functions.
5113  if (FD->isInlineSpecified())
5114    return false;
5115
5116  // Don't warn about function templates.
5117  if (FD->getDescribedFunctionTemplate())
5118    return false;
5119
5120  // Don't warn about function template specializations.
5121  if (FD->isFunctionTemplateSpecialization())
5122    return false;
5123
5124  bool MissingPrototype = true;
5125  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5126       Prev; Prev = Prev->getPreviousDeclaration()) {
5127    // Ignore any declarations that occur in function or method
5128    // scope, because they aren't visible from the header.
5129    if (Prev->getDeclContext()->isFunctionOrMethod())
5130      continue;
5131
5132    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5133    break;
5134  }
5135
5136  return MissingPrototype;
5137}
5138
5139Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5140  // Clear the last template instantiation error context.
5141  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5142
5143  if (!D)
5144    return D;
5145  FunctionDecl *FD = 0;
5146
5147  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5148    FD = FunTmpl->getTemplatedDecl();
5149  else
5150    FD = cast<FunctionDecl>(D);
5151
5152  // Enter a new function scope
5153  PushFunctionScope();
5154
5155  // See if this is a redefinition.
5156  // But don't complain if we're in GNU89 mode and the previous definition
5157  // was an extern inline function.
5158  const FunctionDecl *Definition;
5159  if (FD->hasBody(Definition) &&
5160      !canRedefineFunction(Definition, getLangOptions())) {
5161    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5162        Definition->getStorageClass() == SC_Extern)
5163      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5164        << FD->getDeclName() << getLangOptions().CPlusPlus;
5165    else
5166      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5167    Diag(Definition->getLocation(), diag::note_previous_definition);
5168  }
5169
5170  // Builtin functions cannot be defined.
5171  if (unsigned BuiltinID = FD->getBuiltinID()) {
5172    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5173      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5174      FD->setInvalidDecl();
5175    }
5176  }
5177
5178  // The return type of a function definition must be complete
5179  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5180  QualType ResultType = FD->getResultType();
5181  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5182      !FD->isInvalidDecl() &&
5183      RequireCompleteType(FD->getLocation(), ResultType,
5184                          diag::err_func_def_incomplete_result))
5185    FD->setInvalidDecl();
5186
5187  // GNU warning -Wmissing-prototypes:
5188  //   Warn if a global function is defined without a previous
5189  //   prototype declaration. This warning is issued even if the
5190  //   definition itself provides a prototype. The aim is to detect
5191  //   global functions that fail to be declared in header files.
5192  if (ShouldWarnAboutMissingPrototype(FD))
5193    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5194
5195  if (FnBodyScope)
5196    PushDeclContext(FnBodyScope, FD);
5197
5198  // Check the validity of our function parameters
5199  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5200                           /*CheckParameterNames=*/true);
5201
5202  bool ShouldCheckShadow =
5203    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
5204
5205  // Introduce our parameters into the function scope
5206  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5207    ParmVarDecl *Param = FD->getParamDecl(p);
5208    Param->setOwningFunction(FD);
5209
5210    // If this has an identifier, add it to the scope stack.
5211    if (Param->getIdentifier() && FnBodyScope) {
5212      if (ShouldCheckShadow)
5213        CheckShadow(FnBodyScope, Param);
5214
5215      PushOnScopeChains(Param, FnBodyScope);
5216    }
5217  }
5218
5219  // Checking attributes of current function definition
5220  // dllimport attribute.
5221  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5222  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5223    // dllimport attribute cannot be directly applied to definition.
5224    if (!DA->isInherited()) {
5225      Diag(FD->getLocation(),
5226           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5227        << "dllimport";
5228      FD->setInvalidDecl();
5229      return FD;
5230    }
5231
5232    // Visual C++ appears to not think this is an issue, so only issue
5233    // a warning when Microsoft extensions are disabled.
5234    if (!LangOpts.Microsoft) {
5235      // If a symbol previously declared dllimport is later defined, the
5236      // attribute is ignored in subsequent references, and a warning is
5237      // emitted.
5238      Diag(FD->getLocation(),
5239           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5240        << FD->getName() << "dllimport";
5241    }
5242  }
5243  return FD;
5244}
5245
5246/// \brief Given the set of return statements within a function body,
5247/// compute the variables that are subject to the named return value
5248/// optimization.
5249///
5250/// Each of the variables that is subject to the named return value
5251/// optimization will be marked as NRVO variables in the AST, and any
5252/// return statement that has a marked NRVO variable as its NRVO candidate can
5253/// use the named return value optimization.
5254///
5255/// This function applies a very simplistic algorithm for NRVO: if every return
5256/// statement in the function has the same NRVO candidate, that candidate is
5257/// the NRVO variable.
5258///
5259/// FIXME: Employ a smarter algorithm that accounts for multiple return
5260/// statements and the lifetimes of the NRVO candidates. We should be able to
5261/// find a maximal set of NRVO variables.
5262static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5263  ReturnStmt **Returns = Scope->Returns.data();
5264
5265  const VarDecl *NRVOCandidate = 0;
5266  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5267    if (!Returns[I]->getNRVOCandidate())
5268      return;
5269
5270    if (!NRVOCandidate)
5271      NRVOCandidate = Returns[I]->getNRVOCandidate();
5272    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5273      return;
5274  }
5275
5276  if (NRVOCandidate)
5277    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5278}
5279
5280Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5281  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5282}
5283
5284Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5285                                    bool IsInstantiation) {
5286  FunctionDecl *FD = 0;
5287  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5288  if (FunTmpl)
5289    FD = FunTmpl->getTemplatedDecl();
5290  else
5291    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5292
5293  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5294
5295  if (FD) {
5296    FD->setBody(Body);
5297    if (FD->isMain()) {
5298      // C and C++ allow for main to automagically return 0.
5299      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5300      FD->setHasImplicitReturnZero(true);
5301      WP.disableCheckFallThrough();
5302    }
5303
5304    if (!FD->isInvalidDecl()) {
5305      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5306      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5307                                             FD->getResultType(), FD);
5308
5309      // If this is a constructor, we need a vtable.
5310      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5311        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5312
5313      ComputeNRVO(Body, getCurFunction());
5314    }
5315
5316    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5317  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5318    assert(MD == getCurMethodDecl() && "Method parsing confused");
5319    MD->setBody(Body);
5320    MD->setEndLoc(Body->getLocEnd());
5321    if (!MD->isInvalidDecl()) {
5322      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5323      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5324                                             MD->getResultType(), MD);
5325    }
5326  } else {
5327    return 0;
5328  }
5329
5330  // Verify and clean out per-function state.
5331
5332  // Check goto/label use.
5333  FunctionScopeInfo *CurFn = getCurFunction();
5334  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5335         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5336    LabelStmt *L = I->second;
5337
5338    // Verify that we have no forward references left.  If so, there was a goto
5339    // or address of a label taken, but no definition of it.  Label fwd
5340    // definitions are indicated with a null substmt.
5341    if (L->getSubStmt() != 0) {
5342      if (!L->isUsed())
5343        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5344      continue;
5345    }
5346
5347    // Emit error.
5348    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5349
5350    // At this point, we have gotos that use the bogus label.  Stitch it into
5351    // the function body so that they aren't leaked and that the AST is well
5352    // formed.
5353    if (Body == 0) {
5354      // The whole function wasn't parsed correctly.
5355      continue;
5356    }
5357
5358    // Otherwise, the body is valid: we want to stitch the label decl into the
5359    // function somewhere so that it is properly owned and so that the goto
5360    // has a valid target.  Do this by creating a new compound stmt with the
5361    // label in it.
5362
5363    // Give the label a sub-statement.
5364    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5365
5366    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5367                               cast<CXXTryStmt>(Body)->getTryBlock() :
5368                               cast<CompoundStmt>(Body);
5369    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5370                                          Compound->body_end());
5371    Elements.push_back(L);
5372    Compound->setStmts(Context, Elements.data(), Elements.size());
5373  }
5374
5375  if (Body) {
5376    // C++ constructors that have function-try-blocks can't have return
5377    // statements in the handlers of that block. (C++ [except.handle]p14)
5378    // Verify this.
5379    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5380      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5381
5382    // Verify that that gotos and switch cases don't jump into scopes illegally.
5383    // Verify that that gotos and switch cases don't jump into scopes illegally.
5384    if (getCurFunction()->NeedsScopeChecking() &&
5385        !dcl->isInvalidDecl() &&
5386        !hasAnyErrorsInThisFunction())
5387      DiagnoseInvalidJumps(Body);
5388
5389    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5390      if (!Destructor->getParent()->isDependentType())
5391        CheckDestructor(Destructor);
5392
5393      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5394                                             Destructor->getParent());
5395    }
5396
5397    // If any errors have occurred, clear out any temporaries that may have
5398    // been leftover. This ensures that these temporaries won't be picked up for
5399    // deletion in some later function.
5400    if (PP.getDiagnostics().hasErrorOccurred())
5401      ExprTemporaries.clear();
5402    else if (!isa<FunctionTemplateDecl>(dcl)) {
5403      // Since the body is valid, issue any analysis-based warnings that are
5404      // enabled.
5405      QualType ResultType;
5406      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5407        AnalysisWarnings.IssueWarnings(WP, FD);
5408      } else {
5409        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5410        AnalysisWarnings.IssueWarnings(WP, MD);
5411      }
5412    }
5413
5414    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5415  }
5416
5417  if (!IsInstantiation)
5418    PopDeclContext();
5419
5420  PopFunctionOrBlockScope();
5421
5422  // If any errors have occurred, clear out any temporaries that may have
5423  // been leftover. This ensures that these temporaries won't be picked up for
5424  // deletion in some later function.
5425  if (getDiagnostics().hasErrorOccurred())
5426    ExprTemporaries.clear();
5427
5428  return dcl;
5429}
5430
5431/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5432/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5433NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5434                                          IdentifierInfo &II, Scope *S) {
5435  // Before we produce a declaration for an implicitly defined
5436  // function, see whether there was a locally-scoped declaration of
5437  // this name as a function or variable. If so, use that
5438  // (non-visible) declaration, and complain about it.
5439  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5440    = LocallyScopedExternalDecls.find(&II);
5441  if (Pos != LocallyScopedExternalDecls.end()) {
5442    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5443    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5444    return Pos->second;
5445  }
5446
5447  // Extension in C99.  Legal in C90, but warn about it.
5448  if (II.getName().startswith("__builtin_"))
5449    Diag(Loc, diag::warn_builtin_unknown) << &II;
5450  else if (getLangOptions().C99)
5451    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5452  else
5453    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5454
5455  // Set a Declarator for the implicit definition: int foo();
5456  const char *Dummy;
5457  DeclSpec DS;
5458  unsigned DiagID;
5459  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5460  Error = Error; // Silence warning.
5461  assert(!Error && "Error setting up implicit decl!");
5462  Declarator D(DS, Declarator::BlockContext);
5463  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5464                                             0, 0, false, SourceLocation(),
5465                                             false, 0,0,0, Loc, Loc, D),
5466                SourceLocation());
5467  D.SetIdentifier(&II, Loc);
5468
5469  // Insert this function into translation-unit scope.
5470
5471  DeclContext *PrevDC = CurContext;
5472  CurContext = Context.getTranslationUnitDecl();
5473
5474  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5475  FD->setImplicit();
5476
5477  CurContext = PrevDC;
5478
5479  AddKnownFunctionAttributes(FD);
5480
5481  return FD;
5482}
5483
5484/// \brief Adds any function attributes that we know a priori based on
5485/// the declaration of this function.
5486///
5487/// These attributes can apply both to implicitly-declared builtins
5488/// (like __builtin___printf_chk) or to library-declared functions
5489/// like NSLog or printf.
5490void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5491  if (FD->isInvalidDecl())
5492    return;
5493
5494  // If this is a built-in function, map its builtin attributes to
5495  // actual attributes.
5496  if (unsigned BuiltinID = FD->getBuiltinID()) {
5497    // Handle printf-formatting attributes.
5498    unsigned FormatIdx;
5499    bool HasVAListArg;
5500    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5501      if (!FD->getAttr<FormatAttr>())
5502        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5503                                                "printf", FormatIdx+1,
5504                                               HasVAListArg ? 0 : FormatIdx+2));
5505    }
5506    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5507                                             HasVAListArg)) {
5508     if (!FD->getAttr<FormatAttr>())
5509       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5510                                              "scanf", FormatIdx+1,
5511                                              HasVAListArg ? 0 : FormatIdx+2));
5512    }
5513
5514    // Mark const if we don't care about errno and that is the only
5515    // thing preventing the function from being const. This allows
5516    // IRgen to use LLVM intrinsics for such functions.
5517    if (!getLangOptions().MathErrno &&
5518        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5519      if (!FD->getAttr<ConstAttr>())
5520        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5521    }
5522
5523    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5524      FD->setType(Context.getNoReturnType(FD->getType()));
5525    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5526      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5527    if (Context.BuiltinInfo.isConst(BuiltinID))
5528      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5529  }
5530
5531  IdentifierInfo *Name = FD->getIdentifier();
5532  if (!Name)
5533    return;
5534  if ((!getLangOptions().CPlusPlus &&
5535       FD->getDeclContext()->isTranslationUnit()) ||
5536      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5537       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5538       LinkageSpecDecl::lang_c)) {
5539    // Okay: this could be a libc/libm/Objective-C function we know
5540    // about.
5541  } else
5542    return;
5543
5544  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5545    // FIXME: NSLog and NSLogv should be target specific
5546    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5547      // FIXME: We known better than our headers.
5548      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5549    } else
5550      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5551                                             "printf", 1,
5552                                             Name->isStr("NSLogv") ? 0 : 2));
5553  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5554    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5555    // target-specific builtins, perhaps?
5556    if (!FD->getAttr<FormatAttr>())
5557      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5558                                             "printf", 2,
5559                                             Name->isStr("vasprintf") ? 0 : 3));
5560  }
5561}
5562
5563TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5564                                    TypeSourceInfo *TInfo) {
5565  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5566  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5567
5568  if (!TInfo) {
5569    assert(D.isInvalidType() && "no declarator info for valid type");
5570    TInfo = Context.getTrivialTypeSourceInfo(T);
5571  }
5572
5573  // Scope manipulation handled by caller.
5574  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5575                                           D.getIdentifierLoc(),
5576                                           D.getIdentifier(),
5577                                           TInfo);
5578
5579  if (const TagType *TT = T->getAs<TagType>()) {
5580    TagDecl *TD = TT->getDecl();
5581
5582    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5583    // keep track of the TypedefDecl.
5584    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5585      TD->setTypedefForAnonDecl(NewTD);
5586  }
5587
5588  if (D.isInvalidType())
5589    NewTD->setInvalidDecl();
5590  return NewTD;
5591}
5592
5593
5594/// \brief Determine whether a tag with a given kind is acceptable
5595/// as a redeclaration of the given tag declaration.
5596///
5597/// \returns true if the new tag kind is acceptable, false otherwise.
5598bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5599                                        TagTypeKind NewTag,
5600                                        SourceLocation NewTagLoc,
5601                                        const IdentifierInfo &Name) {
5602  // C++ [dcl.type.elab]p3:
5603  //   The class-key or enum keyword present in the
5604  //   elaborated-type-specifier shall agree in kind with the
5605  //   declaration to which the name in the elaborated-type-specifier
5606  //   refers. This rule also applies to the form of
5607  //   elaborated-type-specifier that declares a class-name or
5608  //   friend class since it can be construed as referring to the
5609  //   definition of the class. Thus, in any
5610  //   elaborated-type-specifier, the enum keyword shall be used to
5611  //   refer to an enumeration (7.2), the union class-key shall be
5612  //   used to refer to a union (clause 9), and either the class or
5613  //   struct class-key shall be used to refer to a class (clause 9)
5614  //   declared using the class or struct class-key.
5615  TagTypeKind OldTag = Previous->getTagKind();
5616  if (OldTag == NewTag)
5617    return true;
5618
5619  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5620      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5621    // Warn about the struct/class tag mismatch.
5622    bool isTemplate = false;
5623    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5624      isTemplate = Record->getDescribedClassTemplate();
5625
5626    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5627      << (NewTag == TTK_Class)
5628      << isTemplate << &Name
5629      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5630                              OldTag == TTK_Class? "class" : "struct");
5631    Diag(Previous->getLocation(), diag::note_previous_use);
5632    return true;
5633  }
5634  return false;
5635}
5636
5637/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5638/// former case, Name will be non-null.  In the later case, Name will be null.
5639/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5640/// reference/declaration/definition of a tag.
5641Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5642                     SourceLocation KWLoc, CXXScopeSpec &SS,
5643                     IdentifierInfo *Name, SourceLocation NameLoc,
5644                     AttributeList *Attr, AccessSpecifier AS,
5645                     MultiTemplateParamsArg TemplateParameterLists,
5646                     bool &OwnedDecl, bool &IsDependent,
5647                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5648                     TypeResult UnderlyingType) {
5649  // If this is not a definition, it must have a name.
5650  assert((Name != 0 || TUK == TUK_Definition) &&
5651         "Nameless record must be a definition!");
5652  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5653
5654  OwnedDecl = false;
5655  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5656
5657  // FIXME: Check explicit specializations more carefully.
5658  bool isExplicitSpecialization = false;
5659  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5660  bool Invalid = false;
5661
5662  // We only need to do this matching if we have template parameters
5663  // or a scope specifier, which also conveniently avoids this work
5664  // for non-C++ cases.
5665  if (NumMatchedTemplateParamLists ||
5666      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5667    if (TemplateParameterList *TemplateParams
5668          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5669                                                TemplateParameterLists.get(),
5670                                               TemplateParameterLists.size(),
5671                                                    TUK == TUK_Friend,
5672                                                    isExplicitSpecialization,
5673                                                    Invalid)) {
5674      // All but one template parameter lists have been matching.
5675      --NumMatchedTemplateParamLists;
5676
5677      if (TemplateParams->size() > 0) {
5678        // This is a declaration or definition of a class template (which may
5679        // be a member of another template).
5680        if (Invalid)
5681          return 0;
5682
5683        OwnedDecl = false;
5684        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5685                                               SS, Name, NameLoc, Attr,
5686                                               TemplateParams,
5687                                               AS);
5688        TemplateParameterLists.release();
5689        return Result.get();
5690      } else {
5691        // The "template<>" header is extraneous.
5692        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5693          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5694        isExplicitSpecialization = true;
5695      }
5696    }
5697  }
5698
5699  // Figure out the underlying type if this a enum declaration. We need to do
5700  // this early, because it's needed to detect if this is an incompatible
5701  // redeclaration.
5702  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5703
5704  if (Kind == TTK_Enum) {
5705    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5706      // No underlying type explicitly specified, or we failed to parse the
5707      // type, default to int.
5708      EnumUnderlying = Context.IntTy.getTypePtr();
5709    else if (UnderlyingType.get()) {
5710      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5711      // integral type; any cv-qualification is ignored.
5712      TypeSourceInfo *TI = 0;
5713      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5714      EnumUnderlying = TI;
5715
5716      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5717
5718      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5719        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5720          << T;
5721        // Recover by falling back to int.
5722        EnumUnderlying = Context.IntTy.getTypePtr();
5723      }
5724    } else if (getLangOptions().Microsoft)
5725      // Microsoft enums are always of int type.
5726      EnumUnderlying = Context.IntTy.getTypePtr();
5727  }
5728
5729  DeclContext *SearchDC = CurContext;
5730  DeclContext *DC = CurContext;
5731  bool isStdBadAlloc = false;
5732
5733  RedeclarationKind Redecl = ForRedeclaration;
5734  if (TUK == TUK_Friend || TUK == TUK_Reference)
5735    Redecl = NotForRedeclaration;
5736
5737  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5738
5739  if (Name && SS.isNotEmpty()) {
5740    // We have a nested-name tag ('struct foo::bar').
5741
5742    // Check for invalid 'foo::'.
5743    if (SS.isInvalid()) {
5744      Name = 0;
5745      goto CreateNewDecl;
5746    }
5747
5748    // If this is a friend or a reference to a class in a dependent
5749    // context, don't try to make a decl for it.
5750    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5751      DC = computeDeclContext(SS, false);
5752      if (!DC) {
5753        IsDependent = true;
5754        return 0;
5755      }
5756    } else {
5757      DC = computeDeclContext(SS, true);
5758      if (!DC) {
5759        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5760          << SS.getRange();
5761        return 0;
5762      }
5763    }
5764
5765    if (RequireCompleteDeclContext(SS, DC))
5766      return 0;
5767
5768    SearchDC = DC;
5769    // Look-up name inside 'foo::'.
5770    LookupQualifiedName(Previous, DC);
5771
5772    if (Previous.isAmbiguous())
5773      return 0;
5774
5775    if (Previous.empty()) {
5776      // Name lookup did not find anything. However, if the
5777      // nested-name-specifier refers to the current instantiation,
5778      // and that current instantiation has any dependent base
5779      // classes, we might find something at instantiation time: treat
5780      // this as a dependent elaborated-type-specifier.
5781      // But this only makes any sense for reference-like lookups.
5782      if (Previous.wasNotFoundInCurrentInstantiation() &&
5783          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5784        IsDependent = true;
5785        return 0;
5786      }
5787
5788      // A tag 'foo::bar' must already exist.
5789      Diag(NameLoc, diag::err_not_tag_in_scope)
5790        << Kind << Name << DC << SS.getRange();
5791      Name = 0;
5792      Invalid = true;
5793      goto CreateNewDecl;
5794    }
5795  } else if (Name) {
5796    // If this is a named struct, check to see if there was a previous forward
5797    // declaration or definition.
5798    // FIXME: We're looking into outer scopes here, even when we
5799    // shouldn't be. Doing so can result in ambiguities that we
5800    // shouldn't be diagnosing.
5801    LookupName(Previous, S);
5802
5803    // Note:  there used to be some attempt at recovery here.
5804    if (Previous.isAmbiguous())
5805      return 0;
5806
5807    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5808      // FIXME: This makes sure that we ignore the contexts associated
5809      // with C structs, unions, and enums when looking for a matching
5810      // tag declaration or definition. See the similar lookup tweak
5811      // in Sema::LookupName; is there a better way to deal with this?
5812      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5813        SearchDC = SearchDC->getParent();
5814    }
5815  } else if (S->isFunctionPrototypeScope()) {
5816    // If this is an enum declaration in function prototype scope, set its
5817    // initial context to the translation unit.
5818    SearchDC = Context.getTranslationUnitDecl();
5819  }
5820
5821  if (Previous.isSingleResult() &&
5822      Previous.getFoundDecl()->isTemplateParameter()) {
5823    // Maybe we will complain about the shadowed template parameter.
5824    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5825    // Just pretend that we didn't see the previous declaration.
5826    Previous.clear();
5827  }
5828
5829  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5830      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5831    // This is a declaration of or a reference to "std::bad_alloc".
5832    isStdBadAlloc = true;
5833
5834    if (Previous.empty() && StdBadAlloc) {
5835      // std::bad_alloc has been implicitly declared (but made invisible to
5836      // name lookup). Fill in this implicit declaration as the previous
5837      // declaration, so that the declarations get chained appropriately.
5838      Previous.addDecl(getStdBadAlloc());
5839    }
5840  }
5841
5842  // If we didn't find a previous declaration, and this is a reference
5843  // (or friend reference), move to the correct scope.  In C++, we
5844  // also need to do a redeclaration lookup there, just in case
5845  // there's a shadow friend decl.
5846  if (Name && Previous.empty() &&
5847      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5848    if (Invalid) goto CreateNewDecl;
5849    assert(SS.isEmpty());
5850
5851    if (TUK == TUK_Reference) {
5852      // C++ [basic.scope.pdecl]p5:
5853      //   -- for an elaborated-type-specifier of the form
5854      //
5855      //          class-key identifier
5856      //
5857      //      if the elaborated-type-specifier is used in the
5858      //      decl-specifier-seq or parameter-declaration-clause of a
5859      //      function defined in namespace scope, the identifier is
5860      //      declared as a class-name in the namespace that contains
5861      //      the declaration; otherwise, except as a friend
5862      //      declaration, the identifier is declared in the smallest
5863      //      non-class, non-function-prototype scope that contains the
5864      //      declaration.
5865      //
5866      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5867      // C structs and unions.
5868      //
5869      // It is an error in C++ to declare (rather than define) an enum
5870      // type, including via an elaborated type specifier.  We'll
5871      // diagnose that later; for now, declare the enum in the same
5872      // scope as we would have picked for any other tag type.
5873      //
5874      // GNU C also supports this behavior as part of its incomplete
5875      // enum types extension, while GNU C++ does not.
5876      //
5877      // Find the context where we'll be declaring the tag.
5878      // FIXME: We would like to maintain the current DeclContext as the
5879      // lexical context,
5880      while (SearchDC->isRecord())
5881        SearchDC = SearchDC->getParent();
5882
5883      // Find the scope where we'll be declaring the tag.
5884      while (S->isClassScope() ||
5885             (getLangOptions().CPlusPlus &&
5886              S->isFunctionPrototypeScope()) ||
5887             ((S->getFlags() & Scope::DeclScope) == 0) ||
5888             (S->getEntity() &&
5889              ((DeclContext *)S->getEntity())->isTransparentContext()))
5890        S = S->getParent();
5891    } else {
5892      assert(TUK == TUK_Friend);
5893      // C++ [namespace.memdef]p3:
5894      //   If a friend declaration in a non-local class first declares a
5895      //   class or function, the friend class or function is a member of
5896      //   the innermost enclosing namespace.
5897      SearchDC = SearchDC->getEnclosingNamespaceContext();
5898    }
5899
5900    // In C++, we need to do a redeclaration lookup to properly
5901    // diagnose some problems.
5902    if (getLangOptions().CPlusPlus) {
5903      Previous.setRedeclarationKind(ForRedeclaration);
5904      LookupQualifiedName(Previous, SearchDC);
5905    }
5906  }
5907
5908  if (!Previous.empty()) {
5909    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5910
5911    // It's okay to have a tag decl in the same scope as a typedef
5912    // which hides a tag decl in the same scope.  Finding this
5913    // insanity with a redeclaration lookup can only actually happen
5914    // in C++.
5915    //
5916    // This is also okay for elaborated-type-specifiers, which is
5917    // technically forbidden by the current standard but which is
5918    // okay according to the likely resolution of an open issue;
5919    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5920    if (getLangOptions().CPlusPlus) {
5921      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5922        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5923          TagDecl *Tag = TT->getDecl();
5924          if (Tag->getDeclName() == Name &&
5925              Tag->getDeclContext()->getRedeclContext()
5926                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5927            PrevDecl = Tag;
5928            Previous.clear();
5929            Previous.addDecl(Tag);
5930            Previous.resolveKind();
5931          }
5932        }
5933      }
5934    }
5935
5936    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5937      // If this is a use of a previous tag, or if the tag is already declared
5938      // in the same scope (so that the definition/declaration completes or
5939      // rementions the tag), reuse the decl.
5940      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5941          isDeclInScope(PrevDecl, SearchDC, S)) {
5942        // Make sure that this wasn't declared as an enum and now used as a
5943        // struct or something similar.
5944        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5945          bool SafeToContinue
5946            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5947               Kind != TTK_Enum);
5948          if (SafeToContinue)
5949            Diag(KWLoc, diag::err_use_with_wrong_tag)
5950              << Name
5951              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5952                                              PrevTagDecl->getKindName());
5953          else
5954            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5955          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5956
5957          if (SafeToContinue)
5958            Kind = PrevTagDecl->getTagKind();
5959          else {
5960            // Recover by making this an anonymous redefinition.
5961            Name = 0;
5962            Previous.clear();
5963            Invalid = true;
5964          }
5965        }
5966
5967        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5968          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5969
5970          // All conflicts with previous declarations are recovered by
5971          // returning the previous declaration.
5972          if (ScopedEnum != PrevEnum->isScoped()) {
5973            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5974              << PrevEnum->isScoped();
5975            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5976            return PrevTagDecl;
5977          }
5978          else if (EnumUnderlying && PrevEnum->isFixed()) {
5979            QualType T;
5980            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5981                T = TI->getType();
5982            else
5983                T = QualType(EnumUnderlying.get<const Type*>(), 0);
5984
5985            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5986              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
5987                   diag::err_enum_redeclare_type_mismatch)
5988                << T
5989                << PrevEnum->getIntegerType();
5990              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5991              return PrevTagDecl;
5992            }
5993          }
5994          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5995            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5996              << PrevEnum->isFixed();
5997            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5998            return PrevTagDecl;
5999          }
6000        }
6001
6002        if (!Invalid) {
6003          // If this is a use, just return the declaration we found.
6004
6005          // FIXME: In the future, return a variant or some other clue
6006          // for the consumer of this Decl to know it doesn't own it.
6007          // For our current ASTs this shouldn't be a problem, but will
6008          // need to be changed with DeclGroups.
6009          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6010              TUK == TUK_Friend)
6011            return PrevTagDecl;
6012
6013          // Diagnose attempts to redefine a tag.
6014          if (TUK == TUK_Definition) {
6015            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6016              // If we're defining a specialization and the previous definition
6017              // is from an implicit instantiation, don't emit an error
6018              // here; we'll catch this in the general case below.
6019              if (!isExplicitSpecialization ||
6020                  !isa<CXXRecordDecl>(Def) ||
6021                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6022                                               == TSK_ExplicitSpecialization) {
6023                Diag(NameLoc, diag::err_redefinition) << Name;
6024                Diag(Def->getLocation(), diag::note_previous_definition);
6025                // If this is a redefinition, recover by making this
6026                // struct be anonymous, which will make any later
6027                // references get the previous definition.
6028                Name = 0;
6029                Previous.clear();
6030                Invalid = true;
6031              }
6032            } else {
6033              // If the type is currently being defined, complain
6034              // about a nested redefinition.
6035              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6036              if (Tag->isBeingDefined()) {
6037                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6038                Diag(PrevTagDecl->getLocation(),
6039                     diag::note_previous_definition);
6040                Name = 0;
6041                Previous.clear();
6042                Invalid = true;
6043              }
6044            }
6045
6046            // Okay, this is definition of a previously declared or referenced
6047            // tag PrevDecl. We're going to create a new Decl for it.
6048          }
6049        }
6050        // If we get here we have (another) forward declaration or we
6051        // have a definition.  Just create a new decl.
6052
6053      } else {
6054        // If we get here, this is a definition of a new tag type in a nested
6055        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6056        // new decl/type.  We set PrevDecl to NULL so that the entities
6057        // have distinct types.
6058        Previous.clear();
6059      }
6060      // If we get here, we're going to create a new Decl. If PrevDecl
6061      // is non-NULL, it's a definition of the tag declared by
6062      // PrevDecl. If it's NULL, we have a new definition.
6063
6064
6065    // Otherwise, PrevDecl is not a tag, but was found with tag
6066    // lookup.  This is only actually possible in C++, where a few
6067    // things like templates still live in the tag namespace.
6068    } else {
6069      assert(getLangOptions().CPlusPlus);
6070
6071      // Use a better diagnostic if an elaborated-type-specifier
6072      // found the wrong kind of type on the first
6073      // (non-redeclaration) lookup.
6074      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6075          !Previous.isForRedeclaration()) {
6076        unsigned Kind = 0;
6077        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6078        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6079        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6080        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6081        Invalid = true;
6082
6083      // Otherwise, only diagnose if the declaration is in scope.
6084      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6085        // do nothing
6086
6087      // Diagnose implicit declarations introduced by elaborated types.
6088      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6089        unsigned Kind = 0;
6090        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6091        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6092        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6093        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6094        Invalid = true;
6095
6096      // Otherwise it's a declaration.  Call out a particularly common
6097      // case here.
6098      } else if (isa<TypedefDecl>(PrevDecl)) {
6099        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6100          << Name
6101          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6102        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6103        Invalid = true;
6104
6105      // Otherwise, diagnose.
6106      } else {
6107        // The tag name clashes with something else in the target scope,
6108        // issue an error and recover by making this tag be anonymous.
6109        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6110        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6111        Name = 0;
6112        Invalid = true;
6113      }
6114
6115      // The existing declaration isn't relevant to us; we're in a
6116      // new scope, so clear out the previous declaration.
6117      Previous.clear();
6118    }
6119  }
6120
6121CreateNewDecl:
6122
6123  TagDecl *PrevDecl = 0;
6124  if (Previous.isSingleResult())
6125    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6126
6127  // If there is an identifier, use the location of the identifier as the
6128  // location of the decl, otherwise use the location of the struct/union
6129  // keyword.
6130  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6131
6132  // Otherwise, create a new declaration. If there is a previous
6133  // declaration of the same entity, the two will be linked via
6134  // PrevDecl.
6135  TagDecl *New;
6136
6137  bool IsForwardReference = false;
6138  if (Kind == TTK_Enum) {
6139    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6140    // enum X { A, B, C } D;    D should chain to X.
6141    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6142                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6143                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6144    // If this is an undefined enum, warn.
6145    if (TUK != TUK_Definition && !Invalid) {
6146      TagDecl *Def;
6147      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6148        // C++0x: 7.2p2: opaque-enum-declaration.
6149        // Conflicts are diagnosed above. Do nothing.
6150      }
6151      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6152        Diag(Loc, diag::ext_forward_ref_enum_def)
6153          << New;
6154        Diag(Def->getLocation(), diag::note_previous_definition);
6155      } else {
6156        unsigned DiagID = diag::ext_forward_ref_enum;
6157        if (getLangOptions().Microsoft)
6158          DiagID = diag::ext_ms_forward_ref_enum;
6159        else if (getLangOptions().CPlusPlus)
6160          DiagID = diag::err_forward_ref_enum;
6161        Diag(Loc, DiagID);
6162
6163        // If this is a forward-declared reference to an enumeration, make a
6164        // note of it; we won't actually be introducing the declaration into
6165        // the declaration context.
6166        if (TUK == TUK_Reference)
6167          IsForwardReference = true;
6168      }
6169    }
6170
6171    if (EnumUnderlying) {
6172      EnumDecl *ED = cast<EnumDecl>(New);
6173      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6174        ED->setIntegerTypeSourceInfo(TI);
6175      else
6176        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6177      ED->setPromotionType(ED->getIntegerType());
6178    }
6179
6180  } else {
6181    // struct/union/class
6182
6183    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6184    // struct X { int A; } D;    D should chain to X.
6185    if (getLangOptions().CPlusPlus) {
6186      // FIXME: Look for a way to use RecordDecl for simple structs.
6187      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6188                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6189
6190      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6191        StdBadAlloc = cast<CXXRecordDecl>(New);
6192    } else
6193      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6194                               cast_or_null<RecordDecl>(PrevDecl));
6195  }
6196
6197  // Maybe add qualifier info.
6198  if (SS.isNotEmpty()) {
6199    if (SS.isSet()) {
6200      NestedNameSpecifier *NNS
6201        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6202      New->setQualifierInfo(NNS, SS.getRange());
6203      if (NumMatchedTemplateParamLists > 0) {
6204        New->setTemplateParameterListsInfo(Context,
6205                                           NumMatchedTemplateParamLists,
6206                    (TemplateParameterList**) TemplateParameterLists.release());
6207      }
6208    }
6209    else
6210      Invalid = true;
6211  }
6212
6213  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6214    // Add alignment attributes if necessary; these attributes are checked when
6215    // the ASTContext lays out the structure.
6216    //
6217    // It is important for implementing the correct semantics that this
6218    // happen here (in act on tag decl). The #pragma pack stack is
6219    // maintained as a result of parser callbacks which can occur at
6220    // many points during the parsing of a struct declaration (because
6221    // the #pragma tokens are effectively skipped over during the
6222    // parsing of the struct).
6223    AddAlignmentAttributesForRecord(RD);
6224  }
6225
6226  // If this is a specialization of a member class (of a class template),
6227  // check the specialization.
6228  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6229    Invalid = true;
6230
6231  if (Invalid)
6232    New->setInvalidDecl();
6233
6234  if (Attr)
6235    ProcessDeclAttributeList(S, New, Attr);
6236
6237  // If we're declaring or defining a tag in function prototype scope
6238  // in C, note that this type can only be used within the function.
6239  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6240    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6241
6242  // Set the lexical context. If the tag has a C++ scope specifier, the
6243  // lexical context will be different from the semantic context.
6244  New->setLexicalDeclContext(CurContext);
6245
6246  // Mark this as a friend decl if applicable.
6247  if (TUK == TUK_Friend)
6248    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6249
6250  // Set the access specifier.
6251  if (!Invalid && SearchDC->isRecord())
6252    SetMemberAccessSpecifier(New, PrevDecl, AS);
6253
6254  if (TUK == TUK_Definition)
6255    New->startDefinition();
6256
6257  // If this has an identifier, add it to the scope stack.
6258  if (TUK == TUK_Friend) {
6259    // We might be replacing an existing declaration in the lookup tables;
6260    // if so, borrow its access specifier.
6261    if (PrevDecl)
6262      New->setAccess(PrevDecl->getAccess());
6263
6264    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6265    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6266    if (Name) // can be null along some error paths
6267      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6268        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6269  } else if (Name) {
6270    S = getNonFieldDeclScope(S);
6271    PushOnScopeChains(New, S, !IsForwardReference);
6272    if (IsForwardReference)
6273      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6274
6275  } else {
6276    CurContext->addDecl(New);
6277  }
6278
6279  // If this is the C FILE type, notify the AST context.
6280  if (IdentifierInfo *II = New->getIdentifier())
6281    if (!New->isInvalidDecl() &&
6282        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6283        II->isStr("FILE"))
6284      Context.setFILEDecl(New);
6285
6286  OwnedDecl = true;
6287  return New;
6288}
6289
6290void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6291  AdjustDeclIfTemplate(TagD);
6292  TagDecl *Tag = cast<TagDecl>(TagD);
6293
6294  // Enter the tag context.
6295  PushDeclContext(S, Tag);
6296}
6297
6298void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6299                                           SourceLocation LBraceLoc) {
6300  AdjustDeclIfTemplate(TagD);
6301  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6302
6303  FieldCollector->StartClass();
6304
6305  if (!Record->getIdentifier())
6306    return;
6307
6308  // C++ [class]p2:
6309  //   [...] The class-name is also inserted into the scope of the
6310  //   class itself; this is known as the injected-class-name. For
6311  //   purposes of access checking, the injected-class-name is treated
6312  //   as if it were a public member name.
6313  CXXRecordDecl *InjectedClassName
6314    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6315                            CurContext, Record->getLocation(),
6316                            Record->getIdentifier(),
6317                            Record->getTagKeywordLoc(),
6318                            /*PrevDecl=*/0,
6319                            /*DelayTypeCreation=*/true);
6320  Context.getTypeDeclType(InjectedClassName, Record);
6321  InjectedClassName->setImplicit();
6322  InjectedClassName->setAccess(AS_public);
6323  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6324      InjectedClassName->setDescribedClassTemplate(Template);
6325  PushOnScopeChains(InjectedClassName, S);
6326  assert(InjectedClassName->isInjectedClassName() &&
6327         "Broken injected-class-name");
6328}
6329
6330void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6331                                    SourceLocation RBraceLoc) {
6332  AdjustDeclIfTemplate(TagD);
6333  TagDecl *Tag = cast<TagDecl>(TagD);
6334  Tag->setRBraceLoc(RBraceLoc);
6335
6336  if (isa<CXXRecordDecl>(Tag))
6337    FieldCollector->FinishClass();
6338
6339  // Exit this scope of this tag's definition.
6340  PopDeclContext();
6341
6342  // Notify the consumer that we've defined a tag.
6343  Consumer.HandleTagDeclDefinition(Tag);
6344}
6345
6346void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6347  AdjustDeclIfTemplate(TagD);
6348  TagDecl *Tag = cast<TagDecl>(TagD);
6349  Tag->setInvalidDecl();
6350
6351  // We're undoing ActOnTagStartDefinition here, not
6352  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6353  // the FieldCollector.
6354
6355  PopDeclContext();
6356}
6357
6358// Note that FieldName may be null for anonymous bitfields.
6359bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6360                          QualType FieldTy, const Expr *BitWidth,
6361                          bool *ZeroWidth) {
6362  // Default to true; that shouldn't confuse checks for emptiness
6363  if (ZeroWidth)
6364    *ZeroWidth = true;
6365
6366  // C99 6.7.2.1p4 - verify the field type.
6367  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6368  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6369    // Handle incomplete types with specific error.
6370    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6371      return true;
6372    if (FieldName)
6373      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6374        << FieldName << FieldTy << BitWidth->getSourceRange();
6375    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6376      << FieldTy << BitWidth->getSourceRange();
6377  }
6378
6379  // If the bit-width is type- or value-dependent, don't try to check
6380  // it now.
6381  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6382    return false;
6383
6384  llvm::APSInt Value;
6385  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6386    return true;
6387
6388  if (Value != 0 && ZeroWidth)
6389    *ZeroWidth = false;
6390
6391  // Zero-width bitfield is ok for anonymous field.
6392  if (Value == 0 && FieldName)
6393    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6394
6395  if (Value.isSigned() && Value.isNegative()) {
6396    if (FieldName)
6397      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6398               << FieldName << Value.toString(10);
6399    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6400      << Value.toString(10);
6401  }
6402
6403  if (!FieldTy->isDependentType()) {
6404    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6405    if (Value.getZExtValue() > TypeSize) {
6406      if (!getLangOptions().CPlusPlus) {
6407        if (FieldName)
6408          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6409            << FieldName << (unsigned)Value.getZExtValue()
6410            << (unsigned)TypeSize;
6411
6412        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6413          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6414      }
6415
6416      if (FieldName)
6417        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6418          << FieldName << (unsigned)Value.getZExtValue()
6419          << (unsigned)TypeSize;
6420      else
6421        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6422          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6423    }
6424  }
6425
6426  return false;
6427}
6428
6429/// ActOnField - Each field of a struct/union/class is passed into this in order
6430/// to create a FieldDecl object for it.
6431Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6432                                 SourceLocation DeclStart,
6433                                 Declarator &D, ExprTy *BitfieldWidth) {
6434  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6435                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6436                               AS_public);
6437  return Res;
6438}
6439
6440/// HandleField - Analyze a field of a C struct or a C++ data member.
6441///
6442FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6443                             SourceLocation DeclStart,
6444                             Declarator &D, Expr *BitWidth,
6445                             AccessSpecifier AS) {
6446  IdentifierInfo *II = D.getIdentifier();
6447  SourceLocation Loc = DeclStart;
6448  if (II) Loc = D.getIdentifierLoc();
6449
6450  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6451  QualType T = TInfo->getType();
6452  if (getLangOptions().CPlusPlus)
6453    CheckExtraCXXDefaultArguments(D);
6454
6455  DiagnoseFunctionSpecifiers(D);
6456
6457  if (D.getDeclSpec().isThreadSpecified())
6458    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6459
6460  // Check to see if this name was declared as a member previously
6461  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6462  LookupName(Previous, S);
6463  assert((Previous.empty() || Previous.isOverloadedResult() ||
6464          Previous.isSingleResult())
6465    && "Lookup of member name should be either overloaded, single or null");
6466
6467  // If the name is overloaded then get any declaration else get the single result
6468  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6469    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6470
6471  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6472    // Maybe we will complain about the shadowed template parameter.
6473    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6474    // Just pretend that we didn't see the previous declaration.
6475    PrevDecl = 0;
6476  }
6477
6478  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6479    PrevDecl = 0;
6480
6481  bool Mutable
6482    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6483  SourceLocation TSSL = D.getSourceRange().getBegin();
6484  FieldDecl *NewFD
6485    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6486                     AS, PrevDecl, &D);
6487
6488  if (NewFD->isInvalidDecl())
6489    Record->setInvalidDecl();
6490
6491  if (NewFD->isInvalidDecl() && PrevDecl) {
6492    // Don't introduce NewFD into scope; there's already something
6493    // with the same name in the same scope.
6494  } else if (II) {
6495    PushOnScopeChains(NewFD, S);
6496  } else
6497    Record->addDecl(NewFD);
6498
6499  return NewFD;
6500}
6501
6502/// \brief Build a new FieldDecl and check its well-formedness.
6503///
6504/// This routine builds a new FieldDecl given the fields name, type,
6505/// record, etc. \p PrevDecl should refer to any previous declaration
6506/// with the same name and in the same scope as the field to be
6507/// created.
6508///
6509/// \returns a new FieldDecl.
6510///
6511/// \todo The Declarator argument is a hack. It will be removed once
6512FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6513                                TypeSourceInfo *TInfo,
6514                                RecordDecl *Record, SourceLocation Loc,
6515                                bool Mutable, Expr *BitWidth,
6516                                SourceLocation TSSL,
6517                                AccessSpecifier AS, NamedDecl *PrevDecl,
6518                                Declarator *D) {
6519  IdentifierInfo *II = Name.getAsIdentifierInfo();
6520  bool InvalidDecl = false;
6521  if (D) InvalidDecl = D->isInvalidType();
6522
6523  // If we receive a broken type, recover by assuming 'int' and
6524  // marking this declaration as invalid.
6525  if (T.isNull()) {
6526    InvalidDecl = true;
6527    T = Context.IntTy;
6528  }
6529
6530  QualType EltTy = Context.getBaseElementType(T);
6531  if (!EltTy->isDependentType() &&
6532      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6533    // Fields of incomplete type force their record to be invalid.
6534    Record->setInvalidDecl();
6535    InvalidDecl = true;
6536  }
6537
6538  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6539  // than a variably modified type.
6540  if (!InvalidDecl && T->isVariablyModifiedType()) {
6541    bool SizeIsNegative;
6542    llvm::APSInt Oversized;
6543    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6544                                                           SizeIsNegative,
6545                                                           Oversized);
6546    if (!FixedTy.isNull()) {
6547      Diag(Loc, diag::warn_illegal_constant_array_size);
6548      T = FixedTy;
6549    } else {
6550      if (SizeIsNegative)
6551        Diag(Loc, diag::err_typecheck_negative_array_size);
6552      else if (Oversized.getBoolValue())
6553        Diag(Loc, diag::err_array_too_large)
6554          << Oversized.toString(10);
6555      else
6556        Diag(Loc, diag::err_typecheck_field_variable_size);
6557      InvalidDecl = true;
6558    }
6559  }
6560
6561  // Fields can not have abstract class types
6562  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6563                                             diag::err_abstract_type_in_decl,
6564                                             AbstractFieldType))
6565    InvalidDecl = true;
6566
6567  bool ZeroWidth = false;
6568  // If this is declared as a bit-field, check the bit-field.
6569  if (!InvalidDecl && BitWidth &&
6570      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6571    InvalidDecl = true;
6572    BitWidth = 0;
6573    ZeroWidth = false;
6574  }
6575
6576  // Check that 'mutable' is consistent with the type of the declaration.
6577  if (!InvalidDecl && Mutable) {
6578    unsigned DiagID = 0;
6579    if (T->isReferenceType())
6580      DiagID = diag::err_mutable_reference;
6581    else if (T.isConstQualified())
6582      DiagID = diag::err_mutable_const;
6583
6584    if (DiagID) {
6585      SourceLocation ErrLoc = Loc;
6586      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6587        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6588      Diag(ErrLoc, DiagID);
6589      Mutable = false;
6590      InvalidDecl = true;
6591    }
6592  }
6593
6594  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6595                                       BitWidth, Mutable);
6596  if (InvalidDecl)
6597    NewFD->setInvalidDecl();
6598
6599  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6600    Diag(Loc, diag::err_duplicate_member) << II;
6601    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6602    NewFD->setInvalidDecl();
6603  }
6604
6605  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6606    if (Record->isUnion()) {
6607      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6608        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6609        if (RDecl->getDefinition()) {
6610          // C++ [class.union]p1: An object of a class with a non-trivial
6611          // constructor, a non-trivial copy constructor, a non-trivial
6612          // destructor, or a non-trivial copy assignment operator
6613          // cannot be a member of a union, nor can an array of such
6614          // objects.
6615          // TODO: C++0x alters this restriction significantly.
6616          if (CheckNontrivialField(NewFD))
6617            NewFD->setInvalidDecl();
6618        }
6619      }
6620
6621      // C++ [class.union]p1: If a union contains a member of reference type,
6622      // the program is ill-formed.
6623      if (EltTy->isReferenceType()) {
6624        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6625          << NewFD->getDeclName() << EltTy;
6626        NewFD->setInvalidDecl();
6627      }
6628    }
6629  }
6630
6631  // FIXME: We need to pass in the attributes given an AST
6632  // representation, not a parser representation.
6633  if (D)
6634    // FIXME: What to pass instead of TUScope?
6635    ProcessDeclAttributes(TUScope, NewFD, *D);
6636
6637  if (T.isObjCGCWeak())
6638    Diag(Loc, diag::warn_attribute_weak_on_field);
6639
6640  NewFD->setAccess(AS);
6641  return NewFD;
6642}
6643
6644bool Sema::CheckNontrivialField(FieldDecl *FD) {
6645  assert(FD);
6646  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6647
6648  if (FD->isInvalidDecl())
6649    return true;
6650
6651  QualType EltTy = Context.getBaseElementType(FD->getType());
6652  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6653    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6654    if (RDecl->getDefinition()) {
6655      // We check for copy constructors before constructors
6656      // because otherwise we'll never get complaints about
6657      // copy constructors.
6658
6659      CXXSpecialMember member = CXXInvalid;
6660      if (!RDecl->hasTrivialCopyConstructor())
6661        member = CXXCopyConstructor;
6662      else if (!RDecl->hasTrivialConstructor())
6663        member = CXXConstructor;
6664      else if (!RDecl->hasTrivialCopyAssignment())
6665        member = CXXCopyAssignment;
6666      else if (!RDecl->hasTrivialDestructor())
6667        member = CXXDestructor;
6668
6669      if (member != CXXInvalid) {
6670        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6671              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6672        DiagnoseNontrivial(RT, member);
6673        return true;
6674      }
6675    }
6676  }
6677
6678  return false;
6679}
6680
6681/// DiagnoseNontrivial - Given that a class has a non-trivial
6682/// special member, figure out why.
6683void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6684  QualType QT(T, 0U);
6685  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6686
6687  // Check whether the member was user-declared.
6688  switch (member) {
6689  case CXXInvalid:
6690    break;
6691
6692  case CXXConstructor:
6693    if (RD->hasUserDeclaredConstructor()) {
6694      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6695      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6696        const FunctionDecl *body = 0;
6697        ci->hasBody(body);
6698        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6699          SourceLocation CtorLoc = ci->getLocation();
6700          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6701          return;
6702        }
6703      }
6704
6705      assert(0 && "found no user-declared constructors");
6706      return;
6707    }
6708    break;
6709
6710  case CXXCopyConstructor:
6711    if (RD->hasUserDeclaredCopyConstructor()) {
6712      SourceLocation CtorLoc =
6713        RD->getCopyConstructor(Context, 0)->getLocation();
6714      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6715      return;
6716    }
6717    break;
6718
6719  case CXXCopyAssignment:
6720    if (RD->hasUserDeclaredCopyAssignment()) {
6721      // FIXME: this should use the location of the copy
6722      // assignment, not the type.
6723      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6724      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6725      return;
6726    }
6727    break;
6728
6729  case CXXDestructor:
6730    if (RD->hasUserDeclaredDestructor()) {
6731      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6732      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6733      return;
6734    }
6735    break;
6736  }
6737
6738  typedef CXXRecordDecl::base_class_iterator base_iter;
6739
6740  // Virtual bases and members inhibit trivial copying/construction,
6741  // but not trivial destruction.
6742  if (member != CXXDestructor) {
6743    // Check for virtual bases.  vbases includes indirect virtual bases,
6744    // so we just iterate through the direct bases.
6745    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6746      if (bi->isVirtual()) {
6747        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6748        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6749        return;
6750      }
6751
6752    // Check for virtual methods.
6753    typedef CXXRecordDecl::method_iterator meth_iter;
6754    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6755         ++mi) {
6756      if (mi->isVirtual()) {
6757        SourceLocation MLoc = mi->getSourceRange().getBegin();
6758        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6759        return;
6760      }
6761    }
6762  }
6763
6764  bool (CXXRecordDecl::*hasTrivial)() const;
6765  switch (member) {
6766  case CXXConstructor:
6767    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6768  case CXXCopyConstructor:
6769    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6770  case CXXCopyAssignment:
6771    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6772  case CXXDestructor:
6773    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6774  default:
6775    assert(0 && "unexpected special member"); return;
6776  }
6777
6778  // Check for nontrivial bases (and recurse).
6779  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6780    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6781    assert(BaseRT && "Don't know how to handle dependent bases");
6782    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6783    if (!(BaseRecTy->*hasTrivial)()) {
6784      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6785      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6786      DiagnoseNontrivial(BaseRT, member);
6787      return;
6788    }
6789  }
6790
6791  // Check for nontrivial members (and recurse).
6792  typedef RecordDecl::field_iterator field_iter;
6793  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6794       ++fi) {
6795    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6796    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6797      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6798
6799      if (!(EltRD->*hasTrivial)()) {
6800        SourceLocation FLoc = (*fi)->getLocation();
6801        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6802        DiagnoseNontrivial(EltRT, member);
6803        return;
6804      }
6805    }
6806  }
6807
6808  assert(0 && "found no explanation for non-trivial member");
6809}
6810
6811/// TranslateIvarVisibility - Translate visibility from a token ID to an
6812///  AST enum value.
6813static ObjCIvarDecl::AccessControl
6814TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6815  switch (ivarVisibility) {
6816  default: assert(0 && "Unknown visitibility kind");
6817  case tok::objc_private: return ObjCIvarDecl::Private;
6818  case tok::objc_public: return ObjCIvarDecl::Public;
6819  case tok::objc_protected: return ObjCIvarDecl::Protected;
6820  case tok::objc_package: return ObjCIvarDecl::Package;
6821  }
6822}
6823
6824/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6825/// in order to create an IvarDecl object for it.
6826Decl *Sema::ActOnIvar(Scope *S,
6827                                SourceLocation DeclStart,
6828                                Decl *IntfDecl,
6829                                Declarator &D, ExprTy *BitfieldWidth,
6830                                tok::ObjCKeywordKind Visibility) {
6831
6832  IdentifierInfo *II = D.getIdentifier();
6833  Expr *BitWidth = (Expr*)BitfieldWidth;
6834  SourceLocation Loc = DeclStart;
6835  if (II) Loc = D.getIdentifierLoc();
6836
6837  // FIXME: Unnamed fields can be handled in various different ways, for
6838  // example, unnamed unions inject all members into the struct namespace!
6839
6840  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6841  QualType T = TInfo->getType();
6842
6843  if (BitWidth) {
6844    // 6.7.2.1p3, 6.7.2.1p4
6845    if (VerifyBitField(Loc, II, T, BitWidth)) {
6846      D.setInvalidType();
6847      BitWidth = 0;
6848    }
6849  } else {
6850    // Not a bitfield.
6851
6852    // validate II.
6853
6854  }
6855  if (T->isReferenceType()) {
6856    Diag(Loc, diag::err_ivar_reference_type);
6857    D.setInvalidType();
6858  }
6859  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6860  // than a variably modified type.
6861  else if (T->isVariablyModifiedType()) {
6862    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6863    D.setInvalidType();
6864  }
6865
6866  // Get the visibility (access control) for this ivar.
6867  ObjCIvarDecl::AccessControl ac =
6868    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6869                                        : ObjCIvarDecl::None;
6870  // Must set ivar's DeclContext to its enclosing interface.
6871  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6872  ObjCContainerDecl *EnclosingContext;
6873  if (ObjCImplementationDecl *IMPDecl =
6874      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6875    if (!LangOpts.ObjCNonFragileABI2) {
6876    // Case of ivar declared in an implementation. Context is that of its class.
6877      EnclosingContext = IMPDecl->getClassInterface();
6878      assert(EnclosingContext && "Implementation has no class interface!");
6879    }
6880    else
6881      EnclosingContext = EnclosingDecl;
6882  } else {
6883    if (ObjCCategoryDecl *CDecl =
6884        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6885      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6886        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6887        return 0;
6888      }
6889    }
6890    EnclosingContext = EnclosingDecl;
6891  }
6892
6893  // Construct the decl.
6894  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6895                                             EnclosingContext, Loc, II, T,
6896                                             TInfo, ac, (Expr *)BitfieldWidth);
6897
6898  if (II) {
6899    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6900                                           ForRedeclaration);
6901    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6902        && !isa<TagDecl>(PrevDecl)) {
6903      Diag(Loc, diag::err_duplicate_member) << II;
6904      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6905      NewID->setInvalidDecl();
6906    }
6907  }
6908
6909  // Process attributes attached to the ivar.
6910  ProcessDeclAttributes(S, NewID, D);
6911
6912  if (D.isInvalidType())
6913    NewID->setInvalidDecl();
6914
6915  if (II) {
6916    // FIXME: When interfaces are DeclContexts, we'll need to add
6917    // these to the interface.
6918    S->AddDecl(NewID);
6919    IdResolver.AddDecl(NewID);
6920  }
6921
6922  return NewID;
6923}
6924
6925/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6926/// class and class extensions. For every class @interface and class
6927/// extension @interface, if the last ivar is a bitfield of any type,
6928/// then add an implicit `char :0` ivar to the end of that interface.
6929void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6930                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6931  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6932    return;
6933
6934  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6935  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6936
6937  if (!Ivar->isBitField())
6938    return;
6939  uint64_t BitFieldSize =
6940    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6941  if (BitFieldSize == 0)
6942    return;
6943  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6944  if (!ID) {
6945    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6946      if (!CD->IsClassExtension())
6947        return;
6948    }
6949    // No need to add this to end of @implementation.
6950    else
6951      return;
6952  }
6953  // All conditions are met. Add a new bitfield to the tail end of ivars.
6954  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6955  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6956
6957  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6958                              DeclLoc, 0,
6959                              Context.CharTy,
6960                              Context.CreateTypeSourceInfo(Context.CharTy),
6961                              ObjCIvarDecl::Private, BW,
6962                              true);
6963  AllIvarDecls.push_back(Ivar);
6964}
6965
6966void Sema::ActOnFields(Scope* S,
6967                       SourceLocation RecLoc, Decl *EnclosingDecl,
6968                       Decl **Fields, unsigned NumFields,
6969                       SourceLocation LBrac, SourceLocation RBrac,
6970                       AttributeList *Attr) {
6971  assert(EnclosingDecl && "missing record or interface decl");
6972
6973  // If the decl this is being inserted into is invalid, then it may be a
6974  // redeclaration or some other bogus case.  Don't try to add fields to it.
6975  if (EnclosingDecl->isInvalidDecl()) {
6976    // FIXME: Deallocate fields?
6977    return;
6978  }
6979
6980
6981  // Verify that all the fields are okay.
6982  unsigned NumNamedMembers = 0;
6983  llvm::SmallVector<FieldDecl*, 32> RecFields;
6984
6985  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6986  for (unsigned i = 0; i != NumFields; ++i) {
6987    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6988
6989    // Get the type for the field.
6990    Type *FDTy = FD->getType().getTypePtr();
6991
6992    if (!FD->isAnonymousStructOrUnion()) {
6993      // Remember all fields written by the user.
6994      RecFields.push_back(FD);
6995    }
6996
6997    // If the field is already invalid for some reason, don't emit more
6998    // diagnostics about it.
6999    if (FD->isInvalidDecl()) {
7000      EnclosingDecl->setInvalidDecl();
7001      continue;
7002    }
7003
7004    // C99 6.7.2.1p2:
7005    //   A structure or union shall not contain a member with
7006    //   incomplete or function type (hence, a structure shall not
7007    //   contain an instance of itself, but may contain a pointer to
7008    //   an instance of itself), except that the last member of a
7009    //   structure with more than one named member may have incomplete
7010    //   array type; such a structure (and any union containing,
7011    //   possibly recursively, a member that is such a structure)
7012    //   shall not be a member of a structure or an element of an
7013    //   array.
7014    if (FDTy->isFunctionType()) {
7015      // Field declared as a function.
7016      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7017        << FD->getDeclName();
7018      FD->setInvalidDecl();
7019      EnclosingDecl->setInvalidDecl();
7020      continue;
7021    } else if (FDTy->isIncompleteArrayType() && Record &&
7022               ((i == NumFields - 1 && !Record->isUnion()) ||
7023                (getLangOptions().Microsoft &&
7024                 (i == NumFields - 1 || Record->isUnion())))) {
7025      // Flexible array member.
7026      // Microsoft is more permissive regarding flexible array.
7027      // It will accept flexible array in union and also
7028      // as the sole element of a struct/class.
7029      if (getLangOptions().Microsoft) {
7030        if (Record->isUnion())
7031          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7032            << FD->getDeclName();
7033        else if (NumFields == 1)
7034          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7035            << FD->getDeclName() << Record->getTagKind();
7036      } else  if (NumNamedMembers < 1) {
7037        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7038          << FD->getDeclName();
7039        FD->setInvalidDecl();
7040        EnclosingDecl->setInvalidDecl();
7041        continue;
7042      }
7043      if (!FD->getType()->isDependentType() &&
7044          !Context.getBaseElementType(FD->getType())->isPODType()) {
7045        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7046          << FD->getDeclName() << FD->getType();
7047        FD->setInvalidDecl();
7048        EnclosingDecl->setInvalidDecl();
7049        continue;
7050      }
7051      // Okay, we have a legal flexible array member at the end of the struct.
7052      if (Record)
7053        Record->setHasFlexibleArrayMember(true);
7054    } else if (!FDTy->isDependentType() &&
7055               RequireCompleteType(FD->getLocation(), FD->getType(),
7056                                   diag::err_field_incomplete)) {
7057      // Incomplete type
7058      FD->setInvalidDecl();
7059      EnclosingDecl->setInvalidDecl();
7060      continue;
7061    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7062      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7063        // If this is a member of a union, then entire union becomes "flexible".
7064        if (Record && Record->isUnion()) {
7065          Record->setHasFlexibleArrayMember(true);
7066        } else {
7067          // If this is a struct/class and this is not the last element, reject
7068          // it.  Note that GCC supports variable sized arrays in the middle of
7069          // structures.
7070          if (i != NumFields-1)
7071            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7072              << FD->getDeclName() << FD->getType();
7073          else {
7074            // We support flexible arrays at the end of structs in
7075            // other structs as an extension.
7076            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7077              << FD->getDeclName();
7078            if (Record)
7079              Record->setHasFlexibleArrayMember(true);
7080          }
7081        }
7082      }
7083      if (Record && FDTTy->getDecl()->hasObjectMember())
7084        Record->setHasObjectMember(true);
7085    } else if (FDTy->isObjCObjectType()) {
7086      /// A field cannot be an Objective-c object
7087      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7088      FD->setInvalidDecl();
7089      EnclosingDecl->setInvalidDecl();
7090      continue;
7091    } else if (getLangOptions().ObjC1 &&
7092               getLangOptions().getGCMode() != LangOptions::NonGC &&
7093               Record &&
7094               (FD->getType()->isObjCObjectPointerType() ||
7095                FD->getType().isObjCGCStrong()))
7096      Record->setHasObjectMember(true);
7097    else if (Context.getAsArrayType(FD->getType())) {
7098      QualType BaseType = Context.getBaseElementType(FD->getType());
7099      if (Record && BaseType->isRecordType() &&
7100          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7101        Record->setHasObjectMember(true);
7102    }
7103    // Keep track of the number of named members.
7104    if (FD->getIdentifier())
7105      ++NumNamedMembers;
7106  }
7107
7108  // Okay, we successfully defined 'Record'.
7109  if (Record) {
7110    bool Completed = false;
7111    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7112      if (!CXXRecord->isInvalidDecl()) {
7113        // Set access bits correctly on the directly-declared conversions.
7114        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7115        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7116             I != E; ++I)
7117          Convs->setAccess(I, (*I)->getAccess());
7118
7119        if (!CXXRecord->isDependentType()) {
7120          // Add any implicitly-declared members to this class.
7121          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7122
7123          // If we have virtual base classes, we may end up finding multiple
7124          // final overriders for a given virtual function. Check for this
7125          // problem now.
7126          if (CXXRecord->getNumVBases()) {
7127            CXXFinalOverriderMap FinalOverriders;
7128            CXXRecord->getFinalOverriders(FinalOverriders);
7129
7130            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7131                                             MEnd = FinalOverriders.end();
7132                 M != MEnd; ++M) {
7133              for (OverridingMethods::iterator SO = M->second.begin(),
7134                                            SOEnd = M->second.end();
7135                   SO != SOEnd; ++SO) {
7136                assert(SO->second.size() > 0 &&
7137                       "Virtual function without overridding functions?");
7138                if (SO->second.size() == 1)
7139                  continue;
7140
7141                // C++ [class.virtual]p2:
7142                //   In a derived class, if a virtual member function of a base
7143                //   class subobject has more than one final overrider the
7144                //   program is ill-formed.
7145                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7146                  << (NamedDecl *)M->first << Record;
7147                Diag(M->first->getLocation(),
7148                     diag::note_overridden_virtual_function);
7149                for (OverridingMethods::overriding_iterator
7150                          OM = SO->second.begin(),
7151                       OMEnd = SO->second.end();
7152                     OM != OMEnd; ++OM)
7153                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7154                    << (NamedDecl *)M->first << OM->Method->getParent();
7155
7156                Record->setInvalidDecl();
7157              }
7158            }
7159            CXXRecord->completeDefinition(&FinalOverriders);
7160            Completed = true;
7161          }
7162        }
7163      }
7164    }
7165
7166    if (!Completed)
7167      Record->completeDefinition();
7168  } else {
7169    ObjCIvarDecl **ClsFields =
7170      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7171    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7172      ID->setLocEnd(RBrac);
7173      // Add ivar's to class's DeclContext.
7174      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7175        ClsFields[i]->setLexicalDeclContext(ID);
7176        ID->addDecl(ClsFields[i]);
7177      }
7178      // Must enforce the rule that ivars in the base classes may not be
7179      // duplicates.
7180      if (ID->getSuperClass())
7181        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7182    } else if (ObjCImplementationDecl *IMPDecl =
7183                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7184      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7185      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7186        // Ivar declared in @implementation never belongs to the implementation.
7187        // Only it is in implementation's lexical context.
7188        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7189      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7190    } else if (ObjCCategoryDecl *CDecl =
7191                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7192      // case of ivars in class extension; all other cases have been
7193      // reported as errors elsewhere.
7194      // FIXME. Class extension does not have a LocEnd field.
7195      // CDecl->setLocEnd(RBrac);
7196      // Add ivar's to class extension's DeclContext.
7197      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7198        ClsFields[i]->setLexicalDeclContext(CDecl);
7199        CDecl->addDecl(ClsFields[i]);
7200      }
7201    }
7202  }
7203
7204  if (Attr)
7205    ProcessDeclAttributeList(S, Record, Attr);
7206
7207  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7208  // set the visibility of this record.
7209  if (Record && !Record->getDeclContext()->isRecord())
7210    AddPushedVisibilityAttribute(Record);
7211}
7212
7213/// \brief Determine whether the given integral value is representable within
7214/// the given type T.
7215static bool isRepresentableIntegerValue(ASTContext &Context,
7216                                        llvm::APSInt &Value,
7217                                        QualType T) {
7218  assert(T->isIntegralType(Context) && "Integral type required!");
7219  unsigned BitWidth = Context.getIntWidth(T);
7220
7221  if (Value.isUnsigned() || Value.isNonNegative()) {
7222    if (T->isSignedIntegerType())
7223      --BitWidth;
7224    return Value.getActiveBits() <= BitWidth;
7225  }
7226  return Value.getMinSignedBits() <= BitWidth;
7227}
7228
7229// \brief Given an integral type, return the next larger integral type
7230// (or a NULL type of no such type exists).
7231static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7232  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7233  // enum checking below.
7234  assert(T->isIntegralType(Context) && "Integral type required!");
7235  const unsigned NumTypes = 4;
7236  QualType SignedIntegralTypes[NumTypes] = {
7237    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7238  };
7239  QualType UnsignedIntegralTypes[NumTypes] = {
7240    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7241    Context.UnsignedLongLongTy
7242  };
7243
7244  unsigned BitWidth = Context.getTypeSize(T);
7245  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7246                                            : UnsignedIntegralTypes;
7247  for (unsigned I = 0; I != NumTypes; ++I)
7248    if (Context.getTypeSize(Types[I]) > BitWidth)
7249      return Types[I];
7250
7251  return QualType();
7252}
7253
7254EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7255                                          EnumConstantDecl *LastEnumConst,
7256                                          SourceLocation IdLoc,
7257                                          IdentifierInfo *Id,
7258                                          Expr *Val) {
7259  unsigned IntWidth = Context.Target.getIntWidth();
7260  llvm::APSInt EnumVal(IntWidth);
7261  QualType EltTy;
7262  if (Val) {
7263    if (Enum->isDependentType() || Val->isTypeDependent())
7264      EltTy = Context.DependentTy;
7265    else {
7266      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7267      SourceLocation ExpLoc;
7268      if (!Val->isValueDependent() &&
7269          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7270        Val = 0;
7271      } else {
7272        if (!getLangOptions().CPlusPlus) {
7273          // C99 6.7.2.2p2:
7274          //   The expression that defines the value of an enumeration constant
7275          //   shall be an integer constant expression that has a value
7276          //   representable as an int.
7277
7278          // Complain if the value is not representable in an int.
7279          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7280            Diag(IdLoc, diag::ext_enum_value_not_int)
7281              << EnumVal.toString(10) << Val->getSourceRange()
7282              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7283          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7284            // Force the type of the expression to 'int'.
7285            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7286          }
7287        }
7288
7289        if (Enum->isFixed()) {
7290          EltTy = Enum->getIntegerType();
7291
7292          // C++0x [dcl.enum]p5:
7293          //   ... if the initializing value of an enumerator cannot be
7294          //   represented by the underlying type, the program is ill-formed.
7295          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7296            if (getLangOptions().Microsoft) {
7297              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7298              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7299            } else
7300              Diag(IdLoc, diag::err_enumerator_too_large)
7301                << EltTy;
7302          } else
7303            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7304        }
7305        else {
7306          // C++0x [dcl.enum]p5:
7307          //   If the underlying type is not fixed, the type of each enumerator
7308          //   is the type of its initializing value:
7309          //     - If an initializer is specified for an enumerator, the
7310          //       initializing value has the same type as the expression.
7311          EltTy = Val->getType();
7312        }
7313      }
7314    }
7315  }
7316
7317  if (!Val) {
7318    if (Enum->isDependentType())
7319      EltTy = Context.DependentTy;
7320    else if (!LastEnumConst) {
7321      // C++0x [dcl.enum]p5:
7322      //   If the underlying type is not fixed, the type of each enumerator
7323      //   is the type of its initializing value:
7324      //     - If no initializer is specified for the first enumerator, the
7325      //       initializing value has an unspecified integral type.
7326      //
7327      // GCC uses 'int' for its unspecified integral type, as does
7328      // C99 6.7.2.2p3.
7329      if (Enum->isFixed()) {
7330        EltTy = Enum->getIntegerType();
7331      }
7332      else {
7333        EltTy = Context.IntTy;
7334      }
7335    } else {
7336      // Assign the last value + 1.
7337      EnumVal = LastEnumConst->getInitVal();
7338      ++EnumVal;
7339      EltTy = LastEnumConst->getType();
7340
7341      // Check for overflow on increment.
7342      if (EnumVal < LastEnumConst->getInitVal()) {
7343        // C++0x [dcl.enum]p5:
7344        //   If the underlying type is not fixed, the type of each enumerator
7345        //   is the type of its initializing value:
7346        //
7347        //     - Otherwise the type of the initializing value is the same as
7348        //       the type of the initializing value of the preceding enumerator
7349        //       unless the incremented value is not representable in that type,
7350        //       in which case the type is an unspecified integral type
7351        //       sufficient to contain the incremented value. If no such type
7352        //       exists, the program is ill-formed.
7353        QualType T = getNextLargerIntegralType(Context, EltTy);
7354        if (T.isNull() || Enum->isFixed()) {
7355          // There is no integral type larger enough to represent this
7356          // value. Complain, then allow the value to wrap around.
7357          EnumVal = LastEnumConst->getInitVal();
7358          EnumVal.zext(EnumVal.getBitWidth() * 2);
7359          ++EnumVal;
7360          if (Enum->isFixed())
7361            // When the underlying type is fixed, this is ill-formed.
7362            Diag(IdLoc, diag::err_enumerator_wrapped)
7363              << EnumVal.toString(10)
7364              << EltTy;
7365          else
7366            Diag(IdLoc, diag::warn_enumerator_too_large)
7367              << EnumVal.toString(10);
7368        } else {
7369          EltTy = T;
7370        }
7371
7372        // Retrieve the last enumerator's value, extent that type to the
7373        // type that is supposed to be large enough to represent the incremented
7374        // value, then increment.
7375        EnumVal = LastEnumConst->getInitVal();
7376        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7377        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7378        ++EnumVal;
7379
7380        // If we're not in C++, diagnose the overflow of enumerator values,
7381        // which in C99 means that the enumerator value is not representable in
7382        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7383        // permits enumerator values that are representable in some larger
7384        // integral type.
7385        if (!getLangOptions().CPlusPlus && !T.isNull())
7386          Diag(IdLoc, diag::warn_enum_value_overflow);
7387      } else if (!getLangOptions().CPlusPlus &&
7388                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7389        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7390        Diag(IdLoc, diag::ext_enum_value_not_int)
7391          << EnumVal.toString(10) << 1;
7392      }
7393    }
7394  }
7395
7396  if (!EltTy->isDependentType()) {
7397    // Make the enumerator value match the signedness and size of the
7398    // enumerator's type.
7399    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7400    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7401  }
7402
7403  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7404                                  Val, EnumVal);
7405}
7406
7407
7408Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7409                              SourceLocation IdLoc, IdentifierInfo *Id,
7410                              AttributeList *Attr,
7411                              SourceLocation EqualLoc, ExprTy *val) {
7412  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7413  EnumConstantDecl *LastEnumConst =
7414    cast_or_null<EnumConstantDecl>(lastEnumConst);
7415  Expr *Val = static_cast<Expr*>(val);
7416
7417  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7418  // we find one that is.
7419  S = getNonFieldDeclScope(S);
7420
7421  // Verify that there isn't already something declared with this name in this
7422  // scope.
7423  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7424                                         ForRedeclaration);
7425  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7426    // Maybe we will complain about the shadowed template parameter.
7427    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7428    // Just pretend that we didn't see the previous declaration.
7429    PrevDecl = 0;
7430  }
7431
7432  if (PrevDecl) {
7433    // When in C++, we may get a TagDecl with the same name; in this case the
7434    // enum constant will 'hide' the tag.
7435    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7436           "Received TagDecl when not in C++!");
7437    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7438      if (isa<EnumConstantDecl>(PrevDecl))
7439        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7440      else
7441        Diag(IdLoc, diag::err_redefinition) << Id;
7442      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7443      return 0;
7444    }
7445  }
7446
7447  // C++ [class.mem]p13:
7448  //   If T is the name of a class, then each of the following shall have a
7449  //   name different from T:
7450  //     - every enumerator of every member of class T that is an enumerated
7451  //       type
7452  if (CXXRecordDecl *Record
7453                      = dyn_cast<CXXRecordDecl>(
7454                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7455    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7456      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7457
7458  EnumConstantDecl *New =
7459    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7460
7461  if (New) {
7462    // Process attributes.
7463    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7464
7465    // Register this decl in the current scope stack.
7466    New->setAccess(TheEnumDecl->getAccess());
7467    PushOnScopeChains(New, S);
7468  }
7469
7470  return New;
7471}
7472
7473void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7474                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7475                         Decl **Elements, unsigned NumElements,
7476                         Scope *S, AttributeList *Attr) {
7477  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7478  QualType EnumType = Context.getTypeDeclType(Enum);
7479
7480  if (Attr)
7481    ProcessDeclAttributeList(S, Enum, Attr);
7482
7483  if (Enum->isDependentType()) {
7484    for (unsigned i = 0; i != NumElements; ++i) {
7485      EnumConstantDecl *ECD =
7486        cast_or_null<EnumConstantDecl>(Elements[i]);
7487      if (!ECD) continue;
7488
7489      ECD->setType(EnumType);
7490    }
7491
7492    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7493    return;
7494  }
7495
7496  // TODO: If the result value doesn't fit in an int, it must be a long or long
7497  // long value.  ISO C does not support this, but GCC does as an extension,
7498  // emit a warning.
7499  unsigned IntWidth = Context.Target.getIntWidth();
7500  unsigned CharWidth = Context.Target.getCharWidth();
7501  unsigned ShortWidth = Context.Target.getShortWidth();
7502
7503  // Verify that all the values are okay, compute the size of the values, and
7504  // reverse the list.
7505  unsigned NumNegativeBits = 0;
7506  unsigned NumPositiveBits = 0;
7507
7508  // Keep track of whether all elements have type int.
7509  bool AllElementsInt = true;
7510
7511  for (unsigned i = 0; i != NumElements; ++i) {
7512    EnumConstantDecl *ECD =
7513      cast_or_null<EnumConstantDecl>(Elements[i]);
7514    if (!ECD) continue;  // Already issued a diagnostic.
7515
7516    const llvm::APSInt &InitVal = ECD->getInitVal();
7517
7518    // Keep track of the size of positive and negative values.
7519    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7520      NumPositiveBits = std::max(NumPositiveBits,
7521                                 (unsigned)InitVal.getActiveBits());
7522    else
7523      NumNegativeBits = std::max(NumNegativeBits,
7524                                 (unsigned)InitVal.getMinSignedBits());
7525
7526    // Keep track of whether every enum element has type int (very commmon).
7527    if (AllElementsInt)
7528      AllElementsInt = ECD->getType() == Context.IntTy;
7529  }
7530
7531  // Figure out the type that should be used for this enum.
7532  QualType BestType;
7533  unsigned BestWidth;
7534
7535  // C++0x N3000 [conv.prom]p3:
7536  //   An rvalue of an unscoped enumeration type whose underlying
7537  //   type is not fixed can be converted to an rvalue of the first
7538  //   of the following types that can represent all the values of
7539  //   the enumeration: int, unsigned int, long int, unsigned long
7540  //   int, long long int, or unsigned long long int.
7541  // C99 6.4.4.3p2:
7542  //   An identifier declared as an enumeration constant has type int.
7543  // The C99 rule is modified by a gcc extension
7544  QualType BestPromotionType;
7545
7546  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7547  // -fshort-enums is the equivalent to specifying the packed attribute on all
7548  // enum definitions.
7549  if (LangOpts.ShortEnums)
7550    Packed = true;
7551
7552  if (Enum->isFixed()) {
7553    BestType = BestPromotionType = Enum->getIntegerType();
7554    // We don't need to set BestWidth, because BestType is going to be the type
7555    // of the enumerators, but we do anyway because otherwise some compilers
7556    // warn that it might be used uninitialized.
7557    BestWidth = CharWidth;
7558  }
7559  else if (NumNegativeBits) {
7560    // If there is a negative value, figure out the smallest integer type (of
7561    // int/long/longlong) that fits.
7562    // If it's packed, check also if it fits a char or a short.
7563    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7564      BestType = Context.SignedCharTy;
7565      BestWidth = CharWidth;
7566    } else if (Packed && NumNegativeBits <= ShortWidth &&
7567               NumPositiveBits < ShortWidth) {
7568      BestType = Context.ShortTy;
7569      BestWidth = ShortWidth;
7570    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7571      BestType = Context.IntTy;
7572      BestWidth = IntWidth;
7573    } else {
7574      BestWidth = Context.Target.getLongWidth();
7575
7576      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7577        BestType = Context.LongTy;
7578      } else {
7579        BestWidth = Context.Target.getLongLongWidth();
7580
7581        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7582          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7583        BestType = Context.LongLongTy;
7584      }
7585    }
7586    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7587  } else {
7588    // If there is no negative value, figure out the smallest type that fits
7589    // all of the enumerator values.
7590    // If it's packed, check also if it fits a char or a short.
7591    if (Packed && NumPositiveBits <= CharWidth) {
7592      BestType = Context.UnsignedCharTy;
7593      BestPromotionType = Context.IntTy;
7594      BestWidth = CharWidth;
7595    } else if (Packed && NumPositiveBits <= ShortWidth) {
7596      BestType = Context.UnsignedShortTy;
7597      BestPromotionType = Context.IntTy;
7598      BestWidth = ShortWidth;
7599    } else if (NumPositiveBits <= IntWidth) {
7600      BestType = Context.UnsignedIntTy;
7601      BestWidth = IntWidth;
7602      BestPromotionType
7603        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7604                           ? Context.UnsignedIntTy : Context.IntTy;
7605    } else if (NumPositiveBits <=
7606               (BestWidth = Context.Target.getLongWidth())) {
7607      BestType = Context.UnsignedLongTy;
7608      BestPromotionType
7609        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7610                           ? Context.UnsignedLongTy : Context.LongTy;
7611    } else {
7612      BestWidth = Context.Target.getLongLongWidth();
7613      assert(NumPositiveBits <= BestWidth &&
7614             "How could an initializer get larger than ULL?");
7615      BestType = Context.UnsignedLongLongTy;
7616      BestPromotionType
7617        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7618                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7619    }
7620  }
7621
7622  // Loop over all of the enumerator constants, changing their types to match
7623  // the type of the enum if needed.
7624  for (unsigned i = 0; i != NumElements; ++i) {
7625    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7626    if (!ECD) continue;  // Already issued a diagnostic.
7627
7628    // Standard C says the enumerators have int type, but we allow, as an
7629    // extension, the enumerators to be larger than int size.  If each
7630    // enumerator value fits in an int, type it as an int, otherwise type it the
7631    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7632    // that X has type 'int', not 'unsigned'.
7633
7634    // Determine whether the value fits into an int.
7635    llvm::APSInt InitVal = ECD->getInitVal();
7636
7637    // If it fits into an integer type, force it.  Otherwise force it to match
7638    // the enum decl type.
7639    QualType NewTy;
7640    unsigned NewWidth;
7641    bool NewSign;
7642    if (!getLangOptions().CPlusPlus &&
7643        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7644      NewTy = Context.IntTy;
7645      NewWidth = IntWidth;
7646      NewSign = true;
7647    } else if (ECD->getType() == BestType) {
7648      // Already the right type!
7649      if (getLangOptions().CPlusPlus)
7650        // C++ [dcl.enum]p4: Following the closing brace of an
7651        // enum-specifier, each enumerator has the type of its
7652        // enumeration.
7653        ECD->setType(EnumType);
7654      continue;
7655    } else {
7656      NewTy = BestType;
7657      NewWidth = BestWidth;
7658      NewSign = BestType->isSignedIntegerType();
7659    }
7660
7661    // Adjust the APSInt value.
7662    InitVal.extOrTrunc(NewWidth);
7663    InitVal.setIsSigned(NewSign);
7664    ECD->setInitVal(InitVal);
7665
7666    // Adjust the Expr initializer and type.
7667    if (ECD->getInitExpr())
7668      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7669                                                CK_IntegralCast,
7670                                                ECD->getInitExpr(),
7671                                                /*base paths*/ 0,
7672                                                VK_RValue));
7673    if (getLangOptions().CPlusPlus)
7674      // C++ [dcl.enum]p4: Following the closing brace of an
7675      // enum-specifier, each enumerator has the type of its
7676      // enumeration.
7677      ECD->setType(EnumType);
7678    else
7679      ECD->setType(NewTy);
7680  }
7681
7682  Enum->completeDefinition(BestType, BestPromotionType,
7683                           NumPositiveBits, NumNegativeBits);
7684}
7685
7686Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7687  StringLiteral *AsmString = cast<StringLiteral>(expr);
7688
7689  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7690                                                   Loc, AsmString);
7691  CurContext->addDecl(New);
7692  return New;
7693}
7694
7695void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7696                             SourceLocation PragmaLoc,
7697                             SourceLocation NameLoc) {
7698  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7699
7700  if (PrevDecl) {
7701    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7702  } else {
7703    (void)WeakUndeclaredIdentifiers.insert(
7704      std::pair<IdentifierInfo*,WeakInfo>
7705        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7706  }
7707}
7708
7709void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7710                                IdentifierInfo* AliasName,
7711                                SourceLocation PragmaLoc,
7712                                SourceLocation NameLoc,
7713                                SourceLocation AliasNameLoc) {
7714  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7715                                    LookupOrdinaryName);
7716  WeakInfo W = WeakInfo(Name, NameLoc);
7717
7718  if (PrevDecl) {
7719    if (!PrevDecl->hasAttr<AliasAttr>())
7720      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7721        DeclApplyPragmaWeak(TUScope, ND, W);
7722  } else {
7723    (void)WeakUndeclaredIdentifiers.insert(
7724      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7725  }
7726}
7727