SemaDecl.cpp revision 566782aea6d9805c4f703f8101f2dc452cf7286a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
45                 isa<ObjCInterfaceDecl>(IIDecl) ||
46                 isa<TagDecl>(IIDecl) ||
47		 isa<TemplateTypeParmDecl>(IIDecl)))
48    return IIDecl;
49  return 0;
50}
51
52DeclContext *Sema::getContainingDC(DeclContext *DC) {
53  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
54    // A C++ out-of-line method will return to the file declaration context.
55    if (MD->isOutOfLineDefinition())
56      return MD->getLexicalDeclContext();
57
58    // A C++ inline method is parsed *after* the topmost class it was declared in
59    // is fully parsed (it's "complete").
60    // The parsing of a C++ inline method happens at the declaration context of
61    // the topmost (non-nested) class it is lexically declared in.
62    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
63    DC = MD->getParent();
64    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
65      DC = RD;
66
67    // Return the declaration context of the topmost class the inline method is
68    // declared in.
69    return DC;
70  }
71
72  if (isa<ObjCMethodDecl>(DC))
73    return Context.getTranslationUnitDecl();
74
75  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
76    return SD->getLexicalDeclContext();
77
78  return DC->getLexicalParent();
79}
80
81void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
82  assert(getContainingDC(DC) == CurContext &&
83      "The next DeclContext should be lexically contained in the current one.");
84  CurContext = DC;
85  S->setEntity(DC);
86}
87
88void Sema::PopDeclContext() {
89  assert(CurContext && "DeclContext imbalance!");
90
91  CurContext = getContainingDC(CurContext);
92}
93
94/// Add this decl to the scope shadowed decl chains.
95void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
96  // Move up the scope chain until we find the nearest enclosing
97  // non-transparent context. The declaration will be introduced into this
98  // scope.
99  while (S->getEntity() &&
100         ((DeclContext *)S->getEntity())->isTransparentContext())
101    S = S->getParent();
102
103  S->AddDecl(D);
104
105  // Add scoped declarations into their context, so that they can be
106  // found later. Declarations without a context won't be inserted
107  // into any context.
108  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
109    CurContext->addDecl(Context, SD);
110
111  // C++ [basic.scope]p4:
112  //   -- exactly one declaration shall declare a class name or
113  //   enumeration name that is not a typedef name and the other
114  //   declarations shall all refer to the same object or
115  //   enumerator, or all refer to functions and function templates;
116  //   in this case the class name or enumeration name is hidden.
117  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
118    // We are pushing the name of a tag (enum or class).
119    if (CurContext == TD->getDeclContext()) {
120      // We're pushing the tag into the current context, which might
121      // require some reshuffling in the identifier resolver.
122      IdentifierResolver::iterator
123        I = IdResolver.begin(TD->getDeclName(), CurContext,
124                             false/*LookInParentCtx*/),
125        IEnd = IdResolver.end();
126      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
127        NamedDecl *PrevDecl = *I;
128        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
129             PrevDecl = *I, ++I) {
130          if (TD->declarationReplaces(*I)) {
131            // This is a redeclaration. Remove it from the chain and
132            // break out, so that we'll add in the shadowed
133            // declaration.
134            S->RemoveDecl(*I);
135            if (PrevDecl == *I) {
136              IdResolver.RemoveDecl(*I);
137              IdResolver.AddDecl(TD);
138              return;
139            } else {
140              IdResolver.RemoveDecl(*I);
141              break;
142            }
143          }
144        }
145
146        // There is already a declaration with the same name in the same
147        // scope, which is not a tag declaration. It must be found
148        // before we find the new declaration, so insert the new
149        // declaration at the end of the chain.
150        IdResolver.AddShadowedDecl(TD, PrevDecl);
151
152        return;
153      }
154    }
155  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
156    // We are pushing the name of a function, which might be an
157    // overloaded name.
158    FunctionDecl *FD = cast<FunctionDecl>(D);
159    DeclContext *DC = FD->getDeclContext();
160    while (DC->isTransparentContext())
161      DC = DC->getParent();
162    IdentifierResolver::iterator Redecl
163      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
164                                      false/*LookInParentCtx*/),
165                     IdResolver.end(),
166                     std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
167                                  FD));
168    if (Redecl != IdResolver.end()) {
169      // There is already a declaration of a function on our
170      // IdResolver chain. Replace it with this declaration.
171      S->RemoveDecl(*Redecl);
172      IdResolver.RemoveDecl(*Redecl);
173    }
174  }
175
176  IdResolver.AddDecl(D);
177}
178
179void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
180  if (S->decl_empty()) return;
181  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
182	 "Scope shouldn't contain decls!");
183
184  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
185       I != E; ++I) {
186    Decl *TmpD = static_cast<Decl*>(*I);
187    assert(TmpD && "This decl didn't get pushed??");
188
189    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
190    NamedDecl *D = cast<NamedDecl>(TmpD);
191
192    if (!D->getDeclName()) continue;
193
194    // Remove this name from our lexical scope.
195    IdResolver.RemoveDecl(D);
196  }
197}
198
199/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
200/// return 0 if one not found.
201ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
202  // The third "scope" argument is 0 since we aren't enabling lazy built-in
203  // creation from this context.
204  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
205
206  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
207}
208
209/// MaybeConstructOverloadSet - Name lookup has determined that the
210/// elements in [I, IEnd) have the name that we are looking for, and
211/// *I is a match for the namespace. This routine returns an
212/// appropriate Decl for name lookup, which may either be *I or an
213/// OverloadeFunctionDecl that represents the overloaded functions in
214/// [I, IEnd).
215///
216/// The existance of this routine is temporary; LookupDecl should
217/// probably be able to return multiple results, to deal with cases of
218/// ambiguity and overloaded functions without needing to create a
219/// Decl node.
220template<typename DeclIterator>
221static Decl *
222MaybeConstructOverloadSet(ASTContext &Context,
223                          DeclIterator I, DeclIterator IEnd) {
224  assert(I != IEnd && "Iterator range cannot be empty");
225  assert(!isa<OverloadedFunctionDecl>(*I) &&
226         "Cannot have an overloaded function");
227
228  if (isa<FunctionDecl>(*I)) {
229    // If we found a function, there might be more functions. If
230    // so, collect them into an overload set.
231    DeclIterator Last = I;
232    OverloadedFunctionDecl *Ovl = 0;
233    for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
234      if (!Ovl) {
235        // FIXME: We leak this overload set. Eventually, we want to
236        // stop building the declarations for these overload sets, so
237        // there will be nothing to leak.
238        Ovl = OverloadedFunctionDecl::Create(Context,
239                                         cast<ScopedDecl>(*I)->getDeclContext(),
240                                             (*I)->getDeclName());
241        Ovl->addOverload(cast<FunctionDecl>(*I));
242      }
243      Ovl->addOverload(cast<FunctionDecl>(*Last));
244    }
245
246    // If we had more than one function, we built an overload
247    // set. Return it.
248    if (Ovl)
249      return Ovl;
250  }
251
252  return *I;
253}
254
255/// LookupDecl - Look up the inner-most declaration in the specified
256/// namespace. NamespaceNameOnly - during lookup only namespace names
257/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
258/// 'When looking up a namespace-name in a using-directive or
259/// namespace-alias-definition, only namespace names are considered.'
260Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
261                       const DeclContext *LookupCtx,
262                       bool enableLazyBuiltinCreation,
263                       bool LookInParent,
264                       bool NamespaceNameOnly) {
265  if (!Name) return 0;
266  unsigned NS = NSI;
267  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
268    NS |= Decl::IDNS_Tag;
269
270  if (LookupCtx == 0 &&
271      (!getLangOptions().CPlusPlus || (NS == Decl::IDNS_Label))) {
272    // Unqualified name lookup in C/Objective-C and name lookup for
273    // labels in C++ is purely lexical, so search in the
274    // declarations attached to the name.
275    assert(!LookupCtx && "Can't perform qualified name lookup here");
276    assert(!NamespaceNameOnly && "Can't perform namespace name lookup here");
277    IdentifierResolver::iterator I
278      = IdResolver.begin(Name, CurContext, LookInParent);
279
280    // Scan up the scope chain looking for a decl that matches this
281    // identifier that is in the appropriate namespace.  This search
282    // should not take long, as shadowing of names is uncommon, and
283    // deep shadowing is extremely uncommon.
284    for (; I != IdResolver.end(); ++I)
285      if ((*I)->getIdentifierNamespace() & NS)
286        return *I;
287  } else if (LookupCtx) {
288    // Perform qualified name lookup into the LookupCtx.
289    // FIXME: Will need to look into base classes and such.
290    DeclContext::lookup_const_iterator I, E;
291    for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
292      if ((*I)->getIdentifierNamespace() & NS) {
293        if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) {
294          // Skip non-namespace name.
295        } else {
296          return MaybeConstructOverloadSet(Context, I, E);
297        }
298      }
299  } else {
300    // Name lookup for ordinary names and tag names in C++ requires
301    // looking into scopes that aren't strictly lexical, and
302    // therefore we walk through the context as well as walking
303    // through the scopes.
304    IdentifierResolver::iterator
305      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
306      IEnd = IdResolver.end();
307    for (; S; S = S->getParent()) {
308      // Check whether the IdResolver has anything in this scope.
309      // FIXME: The isDeclScope check could be expensive. Can we do better?
310      for (; I != IEnd && S->isDeclScope(*I); ++I) {
311        if ((*I)->getIdentifierNamespace() & NS) {
312          if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) {
313            // Skip non-namespace name.
314          } else {
315            // We found something. Look for anything else in our scope
316            // with this same name and in an acceptable identifier
317            // namespace, so that we can construct an overload set if we
318            // need to.
319            IdentifierResolver::iterator LastI = I;
320            for (++LastI; LastI != IEnd; ++LastI) {
321              if (((*LastI)->getIdentifierNamespace() & NS) == 0 ||
322                  !S->isDeclScope(*LastI))
323                break;
324            }
325            return MaybeConstructOverloadSet(Context, I, LastI);
326          }
327        }
328      }
329
330      // If there is an entity associated with this scope, it's a
331      // DeclContext. We might need to perform qualified lookup into
332      // it.
333      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
334      while (Ctx && Ctx->isFunctionOrMethod())
335        Ctx = Ctx->getParent();
336      while (Ctx && (Ctx->isNamespace() || Ctx->isCXXRecord())) {
337        // Look for declarations of this name in this scope.
338        DeclContext::lookup_const_iterator I, E;
339        for (llvm::tie(I, E) = Ctx->lookup(Context, Name); I != E; ++I) {
340          // FIXME: Cache this result in the IdResolver
341          if ((*I)->getIdentifierNamespace() & NS) {
342            if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) {}
343            else return MaybeConstructOverloadSet(Context, I, E);
344          }
345        }
346
347        Ctx = Ctx->getParent();
348      }
349
350      if (!LookInParent && !Ctx->isTransparentContext())
351        return 0;
352    }
353  }
354
355  // If we didn't find a use of this identifier, and if the identifier
356  // corresponds to a compiler builtin, create the decl object for the builtin
357  // now, injecting it into translation unit scope, and return it.
358  if (NS & Decl::IDNS_Ordinary) {
359    IdentifierInfo *II = Name.getAsIdentifierInfo();
360    if (enableLazyBuiltinCreation && II &&
361        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
362      // If this is a builtin on this (or all) targets, create the decl.
363      if (unsigned BuiltinID = II->getBuiltinID())
364        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
365    }
366    if (getLangOptions().ObjC1 && II) {
367      // @interface and @compatibility_alias introduce typedef-like names.
368      // Unlike typedef's, they can only be introduced at file-scope (and are
369      // therefore not scoped decls). They can, however, be shadowed by
370      // other names in IDNS_Ordinary.
371      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
372      if (IDI != ObjCInterfaceDecls.end())
373        return IDI->second;
374      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
375      if (I != ObjCAliasDecls.end())
376        return I->second->getClassInterface();
377    }
378  }
379  return 0;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
393/// lazily create a decl for it.
394ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
395                                      Scope *S) {
396  Builtin::ID BID = (Builtin::ID)bid;
397
398  if (Context.BuiltinInfo.hasVAListUse(BID))
399    InitBuiltinVaListType();
400
401  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
402  FunctionDecl *New = FunctionDecl::Create(Context,
403                                           Context.getTranslationUnitDecl(),
404                                           SourceLocation(), II, R,
405                                           FunctionDecl::Extern, false, 0);
406
407  // Create Decl objects for each parameter, adding them to the
408  // FunctionDecl.
409  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
410    llvm::SmallVector<ParmVarDecl*, 16> Params;
411    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
412      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
413                                           FT->getArgType(i), VarDecl::None, 0,
414                                           0));
415    New->setParams(&Params[0], Params.size());
416  }
417
418
419
420  // TUScope is the translation-unit scope to insert this function into.
421  PushOnScopeChains(New, TUScope);
422  return New;
423}
424
425/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
426/// everything from the standard library is defined.
427NamespaceDecl *Sema::GetStdNamespace() {
428  if (!StdNamespace) {
429    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
430    DeclContext *Global = Context.getTranslationUnitDecl();
431    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
432                           0, Global, /*enableLazyBuiltinCreation=*/false);
433    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
434  }
435  return StdNamespace;
436}
437
438/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
439/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
440/// situation, merging decls or emitting diagnostics as appropriate.
441///
442TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
443  // Allow multiple definitions for ObjC built-in typedefs.
444  // FIXME: Verify the underlying types are equivalent!
445  if (getLangOptions().ObjC1) {
446    const IdentifierInfo *TypeID = New->getIdentifier();
447    switch (TypeID->getLength()) {
448    default: break;
449    case 2:
450      if (!TypeID->isStr("id"))
451        break;
452      Context.setObjCIdType(New);
453      return New;
454    case 5:
455      if (!TypeID->isStr("Class"))
456        break;
457      Context.setObjCClassType(New);
458      return New;
459    case 3:
460      if (!TypeID->isStr("SEL"))
461        break;
462      Context.setObjCSelType(New);
463      return New;
464    case 8:
465      if (!TypeID->isStr("Protocol"))
466        break;
467      Context.setObjCProtoType(New->getUnderlyingType());
468      return New;
469    }
470    // Fall through - the typedef name was not a builtin type.
471  }
472  // Verify the old decl was also a typedef.
473  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
474  if (!Old) {
475    Diag(New->getLocation(), diag::err_redefinition_different_kind)
476      << New->getDeclName();
477    Diag(OldD->getLocation(), diag::note_previous_definition);
478    return New;
479  }
480
481  // If the typedef types are not identical, reject them in all languages and
482  // with any extensions enabled.
483  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
484      Context.getCanonicalType(Old->getUnderlyingType()) !=
485      Context.getCanonicalType(New->getUnderlyingType())) {
486    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
487      << New->getUnderlyingType() << Old->getUnderlyingType();
488    Diag(Old->getLocation(), diag::note_previous_definition);
489    return Old;
490  }
491
492  if (getLangOptions().Microsoft) return New;
493
494  // C++ [dcl.typedef]p2:
495  //   In a given non-class scope, a typedef specifier can be used to
496  //   redefine the name of any type declared in that scope to refer
497  //   to the type to which it already refers.
498  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
499    return New;
500
501  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
502  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
503  // *either* declaration is in a system header. The code below implements
504  // this adhoc compatibility rule. FIXME: The following code will not
505  // work properly when compiling ".i" files (containing preprocessed output).
506  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
507    SourceManager &SrcMgr = Context.getSourceManager();
508    if (SrcMgr.isInSystemHeader(Old->getLocation()))
509      return New;
510    if (SrcMgr.isInSystemHeader(New->getLocation()))
511      return New;
512  }
513
514  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
515  Diag(Old->getLocation(), diag::note_previous_definition);
516  return New;
517}
518
519/// DeclhasAttr - returns true if decl Declaration already has the target
520/// attribute.
521static bool DeclHasAttr(const Decl *decl, const Attr *target) {
522  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
523    if (attr->getKind() == target->getKind())
524      return true;
525
526  return false;
527}
528
529/// MergeAttributes - append attributes from the Old decl to the New one.
530static void MergeAttributes(Decl *New, Decl *Old) {
531  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
532
533  while (attr) {
534     tmp = attr;
535     attr = attr->getNext();
536
537    if (!DeclHasAttr(New, tmp)) {
538       tmp->setInherited(true);
539       New->addAttr(tmp);
540    } else {
541       tmp->setNext(0);
542       delete(tmp);
543    }
544  }
545
546  Old->invalidateAttrs();
547}
548
549/// MergeFunctionDecl - We just parsed a function 'New' from
550/// declarator D which has the same name and scope as a previous
551/// declaration 'Old'.  Figure out how to resolve this situation,
552/// merging decls or emitting diagnostics as appropriate.
553/// Redeclaration will be set true if this New is a redeclaration OldD.
554///
555/// In C++, New and Old must be declarations that are not
556/// overloaded. Use IsOverload to determine whether New and Old are
557/// overloaded, and to select the Old declaration that New should be
558/// merged with.
559FunctionDecl *
560Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
561  assert(!isa<OverloadedFunctionDecl>(OldD) &&
562         "Cannot merge with an overloaded function declaration");
563
564  Redeclaration = false;
565  // Verify the old decl was also a function.
566  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
567  if (!Old) {
568    Diag(New->getLocation(), diag::err_redefinition_different_kind)
569      << New->getDeclName();
570    Diag(OldD->getLocation(), diag::note_previous_definition);
571    return New;
572  }
573
574  // Determine whether the previous declaration was a definition,
575  // implicit declaration, or a declaration.
576  diag::kind PrevDiag;
577  if (Old->isThisDeclarationADefinition())
578    PrevDiag = diag::note_previous_definition;
579  else if (Old->isImplicit())
580    PrevDiag = diag::note_previous_implicit_declaration;
581  else
582    PrevDiag = diag::note_previous_declaration;
583
584  QualType OldQType = Context.getCanonicalType(Old->getType());
585  QualType NewQType = Context.getCanonicalType(New->getType());
586
587  if (getLangOptions().CPlusPlus) {
588    // (C++98 13.1p2):
589    //   Certain function declarations cannot be overloaded:
590    //     -- Function declarations that differ only in the return type
591    //        cannot be overloaded.
592    QualType OldReturnType
593      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
594    QualType NewReturnType
595      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
596    if (OldReturnType != NewReturnType) {
597      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
598      Diag(Old->getLocation(), PrevDiag);
599      Redeclaration = true;
600      return New;
601    }
602
603    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
604    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
605    if (OldMethod && NewMethod) {
606      //    -- Member function declarations with the same name and the
607      //       same parameter types cannot be overloaded if any of them
608      //       is a static member function declaration.
609      if (OldMethod->isStatic() || NewMethod->isStatic()) {
610        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
611        Diag(Old->getLocation(), PrevDiag);
612        return New;
613      }
614
615      // C++ [class.mem]p1:
616      //   [...] A member shall not be declared twice in the
617      //   member-specification, except that a nested class or member
618      //   class template can be declared and then later defined.
619      if (OldMethod->getLexicalDeclContext() ==
620            NewMethod->getLexicalDeclContext()) {
621        unsigned NewDiag;
622        if (isa<CXXConstructorDecl>(OldMethod))
623          NewDiag = diag::err_constructor_redeclared;
624        else if (isa<CXXDestructorDecl>(NewMethod))
625          NewDiag = diag::err_destructor_redeclared;
626        else if (isa<CXXConversionDecl>(NewMethod))
627          NewDiag = diag::err_conv_function_redeclared;
628        else
629          NewDiag = diag::err_member_redeclared;
630
631        Diag(New->getLocation(), NewDiag);
632        Diag(Old->getLocation(), PrevDiag);
633      }
634    }
635
636    // (C++98 8.3.5p3):
637    //   All declarations for a function shall agree exactly in both the
638    //   return type and the parameter-type-list.
639    if (OldQType == NewQType) {
640      // We have a redeclaration.
641      MergeAttributes(New, Old);
642      Redeclaration = true;
643      return MergeCXXFunctionDecl(New, Old);
644    }
645
646    // Fall through for conflicting redeclarations and redefinitions.
647  }
648
649  // C: Function types need to be compatible, not identical. This handles
650  // duplicate function decls like "void f(int); void f(enum X);" properly.
651  if (!getLangOptions().CPlusPlus &&
652      Context.typesAreCompatible(OldQType, NewQType)) {
653    MergeAttributes(New, Old);
654    Redeclaration = true;
655    return New;
656  }
657
658  // A function that has already been declared has been redeclared or defined
659  // with a different type- show appropriate diagnostic
660
661  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
662  // TODO: This is totally simplistic.  It should handle merging functions
663  // together etc, merging extern int X; int X; ...
664  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
665  Diag(Old->getLocation(), PrevDiag);
666  return New;
667}
668
669/// Predicate for C "tentative" external object definitions (C99 6.9.2).
670static bool isTentativeDefinition(VarDecl *VD) {
671  if (VD->isFileVarDecl())
672    return (!VD->getInit() &&
673            (VD->getStorageClass() == VarDecl::None ||
674             VD->getStorageClass() == VarDecl::Static));
675  return false;
676}
677
678/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
679/// when dealing with C "tentative" external object definitions (C99 6.9.2).
680void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
681  bool VDIsTentative = isTentativeDefinition(VD);
682  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
683
684  // FIXME: I don't this will actually see all of the
685  // redefinitions. Can't we check this property on-the-fly?
686  for (IdentifierResolver::iterator
687       I = IdResolver.begin(VD->getIdentifier(),
688                            VD->getDeclContext(), false/*LookInParentCtx*/),
689       E = IdResolver.end(); I != E; ++I) {
690    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
691      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
692
693      // Handle the following case:
694      //   int a[10];
695      //   int a[];   - the code below makes sure we set the correct type.
696      //   int a[11]; - this is an error, size isn't 10.
697      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
698          OldDecl->getType()->isConstantArrayType())
699        VD->setType(OldDecl->getType());
700
701      // Check for "tentative" definitions. We can't accomplish this in
702      // MergeVarDecl since the initializer hasn't been attached.
703      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
704        continue;
705
706      // Handle __private_extern__ just like extern.
707      if (OldDecl->getStorageClass() != VarDecl::Extern &&
708          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
709          VD->getStorageClass() != VarDecl::Extern &&
710          VD->getStorageClass() != VarDecl::PrivateExtern) {
711        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
712        Diag(OldDecl->getLocation(), diag::note_previous_definition);
713      }
714    }
715  }
716}
717
718/// MergeVarDecl - We just parsed a variable 'New' which has the same name
719/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
720/// situation, merging decls or emitting diagnostics as appropriate.
721///
722/// Tentative definition rules (C99 6.9.2p2) are checked by
723/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
724/// definitions here, since the initializer hasn't been attached.
725///
726VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
727  // Verify the old decl was also a variable.
728  VarDecl *Old = dyn_cast<VarDecl>(OldD);
729  if (!Old) {
730    Diag(New->getLocation(), diag::err_redefinition_different_kind)
731      << New->getDeclName();
732    Diag(OldD->getLocation(), diag::note_previous_definition);
733    return New;
734  }
735
736  MergeAttributes(New, Old);
737
738  // Verify the types match.
739  QualType OldCType = Context.getCanonicalType(Old->getType());
740  QualType NewCType = Context.getCanonicalType(New->getType());
741  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
742    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
743    Diag(Old->getLocation(), diag::note_previous_definition);
744    return New;
745  }
746  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
747  if (New->getStorageClass() == VarDecl::Static &&
748      (Old->getStorageClass() == VarDecl::None ||
749       Old->getStorageClass() == VarDecl::Extern)) {
750    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
751    Diag(Old->getLocation(), diag::note_previous_definition);
752    return New;
753  }
754  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
755  if (New->getStorageClass() != VarDecl::Static &&
756      Old->getStorageClass() == VarDecl::Static) {
757    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
758    Diag(Old->getLocation(), diag::note_previous_definition);
759    return New;
760  }
761  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
762  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
763    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
764    Diag(Old->getLocation(), diag::note_previous_definition);
765  }
766  return New;
767}
768
769/// CheckParmsForFunctionDef - Check that the parameters of the given
770/// function are appropriate for the definition of a function. This
771/// takes care of any checks that cannot be performed on the
772/// declaration itself, e.g., that the types of each of the function
773/// parameters are complete.
774bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
775  bool HasInvalidParm = false;
776  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
777    ParmVarDecl *Param = FD->getParamDecl(p);
778
779    // C99 6.7.5.3p4: the parameters in a parameter type list in a
780    // function declarator that is part of a function definition of
781    // that function shall not have incomplete type.
782    if (Param->getType()->isIncompleteType() &&
783        !Param->isInvalidDecl()) {
784      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
785        << Param->getType();
786      Param->setInvalidDecl();
787      HasInvalidParm = true;
788    }
789
790    // C99 6.9.1p5: If the declarator includes a parameter type list, the
791    // declaration of each parameter shall include an identifier.
792    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
793      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
794  }
795
796  return HasInvalidParm;
797}
798
799/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
800/// no declarator (e.g. "struct foo;") is parsed.
801Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
802  // FIXME: Isn't that more of a parser diagnostic than a sema diagnostic?
803  if (!DS.isMissingDeclaratorOk()) {
804    // FIXME: This diagnostic is emitted even when various previous
805    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
806    // DeclSpec has no means of communicating this information, and the
807    // responsible parser functions are quite far apart.
808    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
809      << DS.getSourceRange();
810    return 0;
811  }
812
813  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
814}
815
816bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
817  // Get the type before calling CheckSingleAssignmentConstraints(), since
818  // it can promote the expression.
819  QualType InitType = Init->getType();
820
821  if (getLangOptions().CPlusPlus)
822    return PerformCopyInitialization(Init, DeclType, "initializing");
823
824  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
825  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
826                                  InitType, Init, "initializing");
827}
828
829bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
830  const ArrayType *AT = Context.getAsArrayType(DeclT);
831
832  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
833    // C99 6.7.8p14. We have an array of character type with unknown size
834    // being initialized to a string literal.
835    llvm::APSInt ConstVal(32);
836    ConstVal = strLiteral->getByteLength() + 1;
837    // Return a new array type (C99 6.7.8p22).
838    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
839                                         ArrayType::Normal, 0);
840  } else {
841    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
842    // C99 6.7.8p14. We have an array of character type with known size.
843    // FIXME: Avoid truncation for 64-bit length strings.
844    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
845      Diag(strLiteral->getSourceRange().getBegin(),
846           diag::warn_initializer_string_for_char_array_too_long)
847        << strLiteral->getSourceRange();
848  }
849  // Set type from "char *" to "constant array of char".
850  strLiteral->setType(DeclT);
851  // For now, we always return false (meaning success).
852  return false;
853}
854
855StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
856  const ArrayType *AT = Context.getAsArrayType(DeclType);
857  if (AT && AT->getElementType()->isCharType()) {
858    return dyn_cast<StringLiteral>(Init);
859  }
860  return 0;
861}
862
863bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
864                                 SourceLocation InitLoc,
865                                 DeclarationName InitEntity) {
866  if (DeclType->isDependentType() || Init->isTypeDependent())
867    return false;
868
869  // C++ [dcl.init.ref]p1:
870  //   A variable declared to be a T&, that is "reference to type T"
871  //   (8.3.2), shall be initialized by an object, or function, of
872  //   type T or by an object that can be converted into a T.
873  if (DeclType->isReferenceType())
874    return CheckReferenceInit(Init, DeclType);
875
876  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
877  // of unknown size ("[]") or an object type that is not a variable array type.
878  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
879    return Diag(InitLoc,  diag::err_variable_object_no_init)
880      << VAT->getSizeExpr()->getSourceRange();
881
882  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
883  if (!InitList) {
884    // FIXME: Handle wide strings
885    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
886      return CheckStringLiteralInit(strLiteral, DeclType);
887
888    // C++ [dcl.init]p14:
889    //   -- If the destination type is a (possibly cv-qualified) class
890    //      type:
891    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
892      QualType DeclTypeC = Context.getCanonicalType(DeclType);
893      QualType InitTypeC = Context.getCanonicalType(Init->getType());
894
895      //   -- If the initialization is direct-initialization, or if it is
896      //      copy-initialization where the cv-unqualified version of the
897      //      source type is the same class as, or a derived class of, the
898      //      class of the destination, constructors are considered.
899      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
900          IsDerivedFrom(InitTypeC, DeclTypeC)) {
901        CXXConstructorDecl *Constructor
902          = PerformInitializationByConstructor(DeclType, &Init, 1,
903                                               InitLoc, Init->getSourceRange(),
904                                               InitEntity, IK_Copy);
905        return Constructor == 0;
906      }
907
908      //   -- Otherwise (i.e., for the remaining copy-initialization
909      //      cases), user-defined conversion sequences that can
910      //      convert from the source type to the destination type or
911      //      (when a conversion function is used) to a derived class
912      //      thereof are enumerated as described in 13.3.1.4, and the
913      //      best one is chosen through overload resolution
914      //      (13.3). If the conversion cannot be done or is
915      //      ambiguous, the initialization is ill-formed. The
916      //      function selected is called with the initializer
917      //      expression as its argument; if the function is a
918      //      constructor, the call initializes a temporary of the
919      //      destination type.
920      // FIXME: We're pretending to do copy elision here; return to
921      // this when we have ASTs for such things.
922      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
923        return false;
924
925      if (InitEntity)
926        return Diag(InitLoc, diag::err_cannot_initialize_decl)
927          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
928          << Init->getType() << Init->getSourceRange();
929      else
930        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
931          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
932          << Init->getType() << Init->getSourceRange();
933    }
934
935    // C99 6.7.8p16.
936    if (DeclType->isArrayType())
937      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
938        << Init->getSourceRange();
939
940    return CheckSingleInitializer(Init, DeclType);
941  } else if (getLangOptions().CPlusPlus) {
942    // C++ [dcl.init]p14:
943    //   [...] If the class is an aggregate (8.5.1), and the initializer
944    //   is a brace-enclosed list, see 8.5.1.
945    //
946    // Note: 8.5.1 is handled below; here, we diagnose the case where
947    // we have an initializer list and a destination type that is not
948    // an aggregate.
949    // FIXME: In C++0x, this is yet another form of initialization.
950    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
951      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
952      if (!ClassDecl->isAggregate())
953        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
954           << DeclType << Init->getSourceRange();
955    }
956  }
957
958  InitListChecker CheckInitList(this, InitList, DeclType);
959  return CheckInitList.HadError();
960}
961
962/// GetNameForDeclarator - Determine the full declaration name for the
963/// given Declarator.
964DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
965  switch (D.getKind()) {
966  case Declarator::DK_Abstract:
967    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
968    return DeclarationName();
969
970  case Declarator::DK_Normal:
971    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
972    return DeclarationName(D.getIdentifier());
973
974  case Declarator::DK_Constructor: {
975    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
976    Ty = Context.getCanonicalType(Ty);
977    return Context.DeclarationNames.getCXXConstructorName(Ty);
978  }
979
980  case Declarator::DK_Destructor: {
981    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
982    Ty = Context.getCanonicalType(Ty);
983    return Context.DeclarationNames.getCXXDestructorName(Ty);
984  }
985
986  case Declarator::DK_Conversion: {
987    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
988    Ty = Context.getCanonicalType(Ty);
989    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
990  }
991
992  case Declarator::DK_Operator:
993    assert(D.getIdentifier() == 0 && "operator names have no identifier");
994    return Context.DeclarationNames.getCXXOperatorName(
995                                                D.getOverloadedOperator());
996  }
997
998  assert(false && "Unknown name kind");
999  return DeclarationName();
1000}
1001
1002/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1003/// functions Declaration and Definition are "nearly" matching. This
1004/// heuristic is used to improve diagnostics in the case where an
1005/// out-of-line member function definition doesn't match any
1006/// declaration within the class.
1007static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1008                                           FunctionDecl *Declaration,
1009                                           FunctionDecl *Definition) {
1010  if (Declaration->param_size() != Definition->param_size())
1011    return false;
1012  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1013    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1014    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1015
1016    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1017    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1018    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1019      return false;
1020  }
1021
1022  return true;
1023}
1024
1025Sema::DeclTy *
1026Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1027                      bool IsFunctionDefinition) {
1028  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
1029  DeclarationName Name = GetNameForDeclarator(D);
1030
1031  // All of these full declarators require an identifier.  If it doesn't have
1032  // one, the ParsedFreeStandingDeclSpec action should be used.
1033  if (!Name) {
1034    if (!D.getInvalidType())  // Reject this if we think it is valid.
1035      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1036           diag::err_declarator_need_ident)
1037        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1038    return 0;
1039  }
1040
1041  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1042  // we find one that is.
1043  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1044        (S->getFlags() & Scope::TemplateParamScope) != 0)
1045    S = S->getParent();
1046
1047  DeclContext *DC;
1048  Decl *PrevDecl;
1049  ScopedDecl *New;
1050  bool InvalidDecl = false;
1051
1052  // See if this is a redefinition of a variable in the same scope.
1053  if (!D.getCXXScopeSpec().isSet()) {
1054    DC = CurContext;
1055    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1056  } else { // Something like "int foo::x;"
1057    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1058    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1059
1060    // C++ 7.3.1.2p2:
1061    // Members (including explicit specializations of templates) of a named
1062    // namespace can also be defined outside that namespace by explicit
1063    // qualification of the name being defined, provided that the entity being
1064    // defined was already declared in the namespace and the definition appears
1065    // after the point of declaration in a namespace that encloses the
1066    // declarations namespace.
1067    //
1068    // Note that we only check the context at this point. We don't yet
1069    // have enough information to make sure that PrevDecl is actually
1070    // the declaration we want to match. For example, given:
1071    //
1072    //   class X {
1073    //     void f();
1074    //     void f(float);
1075    //   };
1076    //
1077    //   void X::f(int) { } // ill-formed
1078    //
1079    // In this case, PrevDecl will point to the overload set
1080    // containing the two f's declared in X, but neither of them
1081    // matches.
1082    if (!CurContext->Encloses(DC)) {
1083      // The qualifying scope doesn't enclose the original declaration.
1084      // Emit diagnostic based on current scope.
1085      SourceLocation L = D.getIdentifierLoc();
1086      SourceRange R = D.getCXXScopeSpec().getRange();
1087      if (isa<FunctionDecl>(CurContext)) {
1088        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1089      } else {
1090        Diag(L, diag::err_invalid_declarator_scope)
1091          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1092      }
1093      InvalidDecl = true;
1094    }
1095  }
1096
1097  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1098    // Maybe we will complain about the shadowed template parameter.
1099    InvalidDecl = InvalidDecl
1100      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1101    // Just pretend that we didn't see the previous declaration.
1102    PrevDecl = 0;
1103  }
1104
1105  // In C++, the previous declaration we find might be a tag type
1106  // (class or enum). In this case, the new declaration will hide the
1107  // tag type.
1108  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1109    PrevDecl = 0;
1110
1111  QualType R = GetTypeForDeclarator(D, S);
1112  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1113
1114  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1115    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1116    if (D.getCXXScopeSpec().isSet()) {
1117      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1118        << D.getCXXScopeSpec().getRange();
1119      InvalidDecl = true;
1120      // Pretend we didn't see the scope specifier.
1121      DC = 0;
1122    }
1123
1124    // Check that there are no default arguments (C++ only).
1125    if (getLangOptions().CPlusPlus)
1126      CheckExtraCXXDefaultArguments(D);
1127
1128    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1129    if (!NewTD) return 0;
1130
1131    // Handle attributes prior to checking for duplicates in MergeVarDecl
1132    ProcessDeclAttributes(NewTD, D);
1133    // Merge the decl with the existing one if appropriate. If the decl is
1134    // in an outer scope, it isn't the same thing.
1135    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1136      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1137      if (NewTD == 0) return 0;
1138    }
1139    New = NewTD;
1140    if (S->getFnParent() == 0) {
1141      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1142      // then it shall have block scope.
1143      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1144        if (NewTD->getUnderlyingType()->isVariableArrayType())
1145          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1146        else
1147          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1148
1149        InvalidDecl = true;
1150      }
1151    }
1152  } else if (R.getTypePtr()->isFunctionType()) {
1153    FunctionDecl::StorageClass SC = FunctionDecl::None;
1154    switch (D.getDeclSpec().getStorageClassSpec()) {
1155      default: assert(0 && "Unknown storage class!");
1156      case DeclSpec::SCS_auto:
1157      case DeclSpec::SCS_register:
1158      case DeclSpec::SCS_mutable:
1159        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1160        InvalidDecl = true;
1161        break;
1162      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1163      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1164      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1165      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1166    }
1167
1168    bool isInline = D.getDeclSpec().isInlineSpecified();
1169    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1170    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1171
1172    FunctionDecl *NewFD;
1173    if (D.getKind() == Declarator::DK_Constructor) {
1174      // This is a C++ constructor declaration.
1175      assert(DC->isCXXRecord() &&
1176             "Constructors can only be declared in a member context");
1177
1178      InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1179
1180      // Create the new declaration
1181      NewFD = CXXConstructorDecl::Create(Context,
1182                                         cast<CXXRecordDecl>(DC),
1183                                         D.getIdentifierLoc(), Name, R,
1184                                         isExplicit, isInline,
1185                                         /*isImplicitlyDeclared=*/false);
1186
1187      if (InvalidDecl)
1188        NewFD->setInvalidDecl();
1189    } else if (D.getKind() == Declarator::DK_Destructor) {
1190      // This is a C++ destructor declaration.
1191      if (DC->isCXXRecord()) {
1192        InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1193
1194        NewFD = CXXDestructorDecl::Create(Context,
1195                                          cast<CXXRecordDecl>(DC),
1196                                          D.getIdentifierLoc(), Name, R,
1197                                          isInline,
1198                                          /*isImplicitlyDeclared=*/false);
1199
1200        if (InvalidDecl)
1201          NewFD->setInvalidDecl();
1202      } else {
1203        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1204
1205        // Create a FunctionDecl to satisfy the function definition parsing
1206        // code path.
1207        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1208                                     Name, R, SC, isInline, LastDeclarator,
1209                                     // FIXME: Move to DeclGroup...
1210                                   D.getDeclSpec().getSourceRange().getBegin());
1211        InvalidDecl = true;
1212        NewFD->setInvalidDecl();
1213      }
1214    } else if (D.getKind() == Declarator::DK_Conversion) {
1215      if (!DC->isCXXRecord()) {
1216        Diag(D.getIdentifierLoc(),
1217             diag::err_conv_function_not_member);
1218        return 0;
1219      } else {
1220        InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1221
1222        NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1223                                          D.getIdentifierLoc(), Name, R,
1224                                          isInline, isExplicit);
1225
1226        if (InvalidDecl)
1227          NewFD->setInvalidDecl();
1228      }
1229    } else if (DC->isCXXRecord()) {
1230      // This is a C++ method declaration.
1231      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1232                                    D.getIdentifierLoc(), Name, R,
1233                                    (SC == FunctionDecl::Static), isInline,
1234                                    LastDeclarator);
1235    } else {
1236      NewFD = FunctionDecl::Create(Context, DC,
1237                                   D.getIdentifierLoc(),
1238                                   Name, R, SC, isInline, LastDeclarator,
1239                                   // FIXME: Move to DeclGroup...
1240                                   D.getDeclSpec().getSourceRange().getBegin());
1241    }
1242
1243    // Set the lexical context. If the declarator has a C++
1244    // scope specifier, the lexical context will be different
1245    // from the semantic context.
1246    NewFD->setLexicalDeclContext(CurContext);
1247
1248    // Handle GNU asm-label extension (encoded as an attribute).
1249    if (Expr *E = (Expr*) D.getAsmLabel()) {
1250      // The parser guarantees this is a string.
1251      StringLiteral *SE = cast<StringLiteral>(E);
1252      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1253                                                  SE->getByteLength())));
1254    }
1255
1256    // Copy the parameter declarations from the declarator D to
1257    // the function declaration NewFD, if they are available.
1258    if (D.getNumTypeObjects() > 0) {
1259      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1260
1261      // Create Decl objects for each parameter, adding them to the
1262      // FunctionDecl.
1263      llvm::SmallVector<ParmVarDecl*, 16> Params;
1264
1265      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1266      // function that takes no arguments, not a function that takes a
1267      // single void argument.
1268      // We let through "const void" here because Sema::GetTypeForDeclarator
1269      // already checks for that case.
1270      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1271          FTI.ArgInfo[0].Param &&
1272          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1273        // empty arg list, don't push any params.
1274        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1275
1276        // In C++, the empty parameter-type-list must be spelled "void"; a
1277        // typedef of void is not permitted.
1278        if (getLangOptions().CPlusPlus &&
1279            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1280          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1281        }
1282      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1283        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1284          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1285      }
1286
1287      NewFD->setParams(&Params[0], Params.size());
1288    } else if (R->getAsTypedefType()) {
1289      // When we're declaring a function with a typedef, as in the
1290      // following example, we'll need to synthesize (unnamed)
1291      // parameters for use in the declaration.
1292      //
1293      // @code
1294      // typedef void fn(int);
1295      // fn f;
1296      // @endcode
1297      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1298      if (!FT) {
1299        // This is a typedef of a function with no prototype, so we
1300        // don't need to do anything.
1301      } else if ((FT->getNumArgs() == 0) ||
1302          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1303           FT->getArgType(0)->isVoidType())) {
1304        // This is a zero-argument function. We don't need to do anything.
1305      } else {
1306        // Synthesize a parameter for each argument type.
1307        llvm::SmallVector<ParmVarDecl*, 16> Params;
1308        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1309             ArgType != FT->arg_type_end(); ++ArgType) {
1310          Params.push_back(ParmVarDecl::Create(Context, DC,
1311                                               SourceLocation(), 0,
1312                                               *ArgType, VarDecl::None,
1313                                               0, 0));
1314        }
1315
1316        NewFD->setParams(&Params[0], Params.size());
1317      }
1318    }
1319
1320    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1321      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1322    else if (isa<CXXDestructorDecl>(NewFD)) {
1323      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1324      Record->setUserDeclaredDestructor(true);
1325      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1326      // user-defined destructor.
1327      Record->setPOD(false);
1328    } else if (CXXConversionDecl *Conversion =
1329               dyn_cast<CXXConversionDecl>(NewFD))
1330      ActOnConversionDeclarator(Conversion);
1331
1332    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1333    if (NewFD->isOverloadedOperator() &&
1334        CheckOverloadedOperatorDeclaration(NewFD))
1335      NewFD->setInvalidDecl();
1336
1337    // Merge the decl with the existing one if appropriate. Since C functions
1338    // are in a flat namespace, make sure we consider decls in outer scopes.
1339    if (PrevDecl &&
1340        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1341      bool Redeclaration = false;
1342
1343      // If C++, determine whether NewFD is an overload of PrevDecl or
1344      // a declaration that requires merging. If it's an overload,
1345      // there's no more work to do here; we'll just add the new
1346      // function to the scope.
1347      OverloadedFunctionDecl::function_iterator MatchedDecl;
1348      if (!getLangOptions().CPlusPlus ||
1349          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1350        Decl *OldDecl = PrevDecl;
1351
1352        // If PrevDecl was an overloaded function, extract the
1353        // FunctionDecl that matched.
1354        if (isa<OverloadedFunctionDecl>(PrevDecl))
1355          OldDecl = *MatchedDecl;
1356
1357        // NewFD and PrevDecl represent declarations that need to be
1358        // merged.
1359        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1360
1361        if (NewFD == 0) return 0;
1362        if (Redeclaration) {
1363          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1364
1365          // An out-of-line member function declaration must also be a
1366          // definition (C++ [dcl.meaning]p1).
1367          if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1368              !InvalidDecl) {
1369            Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1370              << D.getCXXScopeSpec().getRange();
1371            NewFD->setInvalidDecl();
1372          }
1373        }
1374      }
1375
1376      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1377        // The user tried to provide an out-of-line definition for a
1378        // member function, but there was no such member function
1379        // declared (C++ [class.mfct]p2). For example:
1380        //
1381        // class X {
1382        //   void f() const;
1383        // };
1384        //
1385        // void X::f() { } // ill-formed
1386        //
1387        // Complain about this problem, and attempt to suggest close
1388        // matches (e.g., those that differ only in cv-qualifiers and
1389        // whether the parameter types are references).
1390        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1391          << cast<CXXRecordDecl>(DC)->getDeclName()
1392          << D.getCXXScopeSpec().getRange();
1393        InvalidDecl = true;
1394
1395        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1396        if (!PrevDecl) {
1397          // Nothing to suggest.
1398        } else if (OverloadedFunctionDecl *Ovl
1399                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1400          for (OverloadedFunctionDecl::function_iterator
1401                 Func = Ovl->function_begin(),
1402                 FuncEnd = Ovl->function_end();
1403               Func != FuncEnd; ++Func) {
1404            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1405              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1406
1407          }
1408        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1409          // Suggest this no matter how mismatched it is; it's the only
1410          // thing we have.
1411          unsigned diag;
1412          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1413            diag = diag::note_member_def_close_match;
1414          else if (Method->getBody())
1415            diag = diag::note_previous_definition;
1416          else
1417            diag = diag::note_previous_declaration;
1418          Diag(Method->getLocation(), diag);
1419        }
1420
1421        PrevDecl = 0;
1422      }
1423    }
1424    // Handle attributes. We need to have merged decls when handling attributes
1425    // (for example to check for conflicts, etc).
1426    ProcessDeclAttributes(NewFD, D);
1427    New = NewFD;
1428
1429    if (getLangOptions().CPlusPlus) {
1430      // In C++, check default arguments now that we have merged decls.
1431      CheckCXXDefaultArguments(NewFD);
1432
1433      // An out-of-line member function declaration must also be a
1434      // definition (C++ [dcl.meaning]p1).
1435      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1436        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1437          << D.getCXXScopeSpec().getRange();
1438        InvalidDecl = true;
1439      }
1440    }
1441  } else {
1442    // Check that there are no default arguments (C++ only).
1443    if (getLangOptions().CPlusPlus)
1444      CheckExtraCXXDefaultArguments(D);
1445
1446    if (R.getTypePtr()->isObjCInterfaceType()) {
1447      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1448        << D.getIdentifier();
1449      InvalidDecl = true;
1450    }
1451
1452    VarDecl *NewVD;
1453    VarDecl::StorageClass SC;
1454    switch (D.getDeclSpec().getStorageClassSpec()) {
1455    default: assert(0 && "Unknown storage class!");
1456    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1457    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1458    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1459    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1460    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1461    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1462    case DeclSpec::SCS_mutable:
1463      // mutable can only appear on non-static class members, so it's always
1464      // an error here
1465      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1466      InvalidDecl = true;
1467      SC = VarDecl::None;
1468      break;
1469    }
1470
1471    IdentifierInfo *II = Name.getAsIdentifierInfo();
1472    if (!II) {
1473      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1474       << Name.getAsString();
1475      return 0;
1476    }
1477
1478    if (DC->isCXXRecord()) {
1479      // This is a static data member for a C++ class.
1480      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1481                                      D.getIdentifierLoc(), II,
1482                                      R, LastDeclarator);
1483    } else {
1484      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1485      if (S->getFnParent() == 0) {
1486        // C99 6.9p2: The storage-class specifiers auto and register shall not
1487        // appear in the declaration specifiers in an external declaration.
1488        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1489          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1490          InvalidDecl = true;
1491        }
1492      }
1493      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1494                              II, R, SC, LastDeclarator,
1495                              // FIXME: Move to DeclGroup...
1496                              D.getDeclSpec().getSourceRange().getBegin());
1497      NewVD->setThreadSpecified(ThreadSpecified);
1498    }
1499    // Handle attributes prior to checking for duplicates in MergeVarDecl
1500    ProcessDeclAttributes(NewVD, D);
1501
1502    // Handle GNU asm-label extension (encoded as an attribute).
1503    if (Expr *E = (Expr*) D.getAsmLabel()) {
1504      // The parser guarantees this is a string.
1505      StringLiteral *SE = cast<StringLiteral>(E);
1506      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1507                                                  SE->getByteLength())));
1508    }
1509
1510    // Emit an error if an address space was applied to decl with local storage.
1511    // This includes arrays of objects with address space qualifiers, but not
1512    // automatic variables that point to other address spaces.
1513    // ISO/IEC TR 18037 S5.1.2
1514    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1515      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1516      InvalidDecl = true;
1517    }
1518    // Merge the decl with the existing one if appropriate. If the decl is
1519    // in an outer scope, it isn't the same thing.
1520    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1521      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1522        // The user tried to define a non-static data member
1523        // out-of-line (C++ [dcl.meaning]p1).
1524        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1525          << D.getCXXScopeSpec().getRange();
1526        NewVD->Destroy(Context);
1527        return 0;
1528      }
1529
1530      NewVD = MergeVarDecl(NewVD, PrevDecl);
1531      if (NewVD == 0) return 0;
1532
1533      if (D.getCXXScopeSpec().isSet()) {
1534        // No previous declaration in the qualifying scope.
1535        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1536          << Name << D.getCXXScopeSpec().getRange();
1537        InvalidDecl = true;
1538      }
1539    }
1540    New = NewVD;
1541  }
1542
1543  // Set the lexical context. If the declarator has a C++ scope specifier, the
1544  // lexical context will be different from the semantic context.
1545  New->setLexicalDeclContext(CurContext);
1546
1547  // If this has an identifier, add it to the scope stack.
1548  if (Name)
1549    PushOnScopeChains(New, S);
1550  // If any semantic error occurred, mark the decl as invalid.
1551  if (D.getInvalidType() || InvalidDecl)
1552    New->setInvalidDecl();
1553
1554  return New;
1555}
1556
1557void Sema::InitializerElementNotConstant(const Expr *Init) {
1558  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1559    << Init->getSourceRange();
1560}
1561
1562bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1563  switch (Init->getStmtClass()) {
1564  default:
1565    InitializerElementNotConstant(Init);
1566    return true;
1567  case Expr::ParenExprClass: {
1568    const ParenExpr* PE = cast<ParenExpr>(Init);
1569    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1570  }
1571  case Expr::CompoundLiteralExprClass:
1572    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1573  case Expr::DeclRefExprClass:
1574  case Expr::QualifiedDeclRefExprClass: {
1575    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1576    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1577      if (VD->hasGlobalStorage())
1578        return false;
1579      InitializerElementNotConstant(Init);
1580      return true;
1581    }
1582    if (isa<FunctionDecl>(D))
1583      return false;
1584    InitializerElementNotConstant(Init);
1585    return true;
1586  }
1587  case Expr::MemberExprClass: {
1588    const MemberExpr *M = cast<MemberExpr>(Init);
1589    if (M->isArrow())
1590      return CheckAddressConstantExpression(M->getBase());
1591    return CheckAddressConstantExpressionLValue(M->getBase());
1592  }
1593  case Expr::ArraySubscriptExprClass: {
1594    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1595    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1596    return CheckAddressConstantExpression(ASE->getBase()) ||
1597           CheckArithmeticConstantExpression(ASE->getIdx());
1598  }
1599  case Expr::StringLiteralClass:
1600  case Expr::PredefinedExprClass:
1601    return false;
1602  case Expr::UnaryOperatorClass: {
1603    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1604
1605    // C99 6.6p9
1606    if (Exp->getOpcode() == UnaryOperator::Deref)
1607      return CheckAddressConstantExpression(Exp->getSubExpr());
1608
1609    InitializerElementNotConstant(Init);
1610    return true;
1611  }
1612  }
1613}
1614
1615bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1616  switch (Init->getStmtClass()) {
1617  default:
1618    InitializerElementNotConstant(Init);
1619    return true;
1620  case Expr::ParenExprClass:
1621    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1622  case Expr::StringLiteralClass:
1623  case Expr::ObjCStringLiteralClass:
1624    return false;
1625  case Expr::CallExprClass:
1626  case Expr::CXXOperatorCallExprClass:
1627    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1628    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1629           Builtin::BI__builtin___CFStringMakeConstantString)
1630      return false;
1631
1632    InitializerElementNotConstant(Init);
1633    return true;
1634
1635  case Expr::UnaryOperatorClass: {
1636    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1637
1638    // C99 6.6p9
1639    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1640      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1641
1642    if (Exp->getOpcode() == UnaryOperator::Extension)
1643      return CheckAddressConstantExpression(Exp->getSubExpr());
1644
1645    InitializerElementNotConstant(Init);
1646    return true;
1647  }
1648  case Expr::BinaryOperatorClass: {
1649    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1650    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1651
1652    Expr *PExp = Exp->getLHS();
1653    Expr *IExp = Exp->getRHS();
1654    if (IExp->getType()->isPointerType())
1655      std::swap(PExp, IExp);
1656
1657    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1658    return CheckAddressConstantExpression(PExp) ||
1659           CheckArithmeticConstantExpression(IExp);
1660  }
1661  case Expr::ImplicitCastExprClass:
1662  case Expr::CStyleCastExprClass: {
1663    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1664    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1665      // Check for implicit promotion
1666      if (SubExpr->getType()->isFunctionType() ||
1667          SubExpr->getType()->isArrayType())
1668        return CheckAddressConstantExpressionLValue(SubExpr);
1669    }
1670
1671    // Check for pointer->pointer cast
1672    if (SubExpr->getType()->isPointerType())
1673      return CheckAddressConstantExpression(SubExpr);
1674
1675    if (SubExpr->getType()->isIntegralType()) {
1676      // Check for the special-case of a pointer->int->pointer cast;
1677      // this isn't standard, but some code requires it. See
1678      // PR2720 for an example.
1679      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1680        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1681          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1682          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1683          if (IntWidth >= PointerWidth) {
1684            return CheckAddressConstantExpression(SubCast->getSubExpr());
1685          }
1686        }
1687      }
1688    }
1689    if (SubExpr->getType()->isArithmeticType()) {
1690      return CheckArithmeticConstantExpression(SubExpr);
1691    }
1692
1693    InitializerElementNotConstant(Init);
1694    return true;
1695  }
1696  case Expr::ConditionalOperatorClass: {
1697    // FIXME: Should we pedwarn here?
1698    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1699    if (!Exp->getCond()->getType()->isArithmeticType()) {
1700      InitializerElementNotConstant(Init);
1701      return true;
1702    }
1703    if (CheckArithmeticConstantExpression(Exp->getCond()))
1704      return true;
1705    if (Exp->getLHS() &&
1706        CheckAddressConstantExpression(Exp->getLHS()))
1707      return true;
1708    return CheckAddressConstantExpression(Exp->getRHS());
1709  }
1710  case Expr::AddrLabelExprClass:
1711    return false;
1712  }
1713}
1714
1715static const Expr* FindExpressionBaseAddress(const Expr* E);
1716
1717static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1718  switch (E->getStmtClass()) {
1719  default:
1720    return E;
1721  case Expr::ParenExprClass: {
1722    const ParenExpr* PE = cast<ParenExpr>(E);
1723    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1724  }
1725  case Expr::MemberExprClass: {
1726    const MemberExpr *M = cast<MemberExpr>(E);
1727    if (M->isArrow())
1728      return FindExpressionBaseAddress(M->getBase());
1729    return FindExpressionBaseAddressLValue(M->getBase());
1730  }
1731  case Expr::ArraySubscriptExprClass: {
1732    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1733    return FindExpressionBaseAddress(ASE->getBase());
1734  }
1735  case Expr::UnaryOperatorClass: {
1736    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1737
1738    if (Exp->getOpcode() == UnaryOperator::Deref)
1739      return FindExpressionBaseAddress(Exp->getSubExpr());
1740
1741    return E;
1742  }
1743  }
1744}
1745
1746static const Expr* FindExpressionBaseAddress(const Expr* E) {
1747  switch (E->getStmtClass()) {
1748  default:
1749    return E;
1750  case Expr::ParenExprClass: {
1751    const ParenExpr* PE = cast<ParenExpr>(E);
1752    return FindExpressionBaseAddress(PE->getSubExpr());
1753  }
1754  case Expr::UnaryOperatorClass: {
1755    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1756
1757    // C99 6.6p9
1758    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1759      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1760
1761    if (Exp->getOpcode() == UnaryOperator::Extension)
1762      return FindExpressionBaseAddress(Exp->getSubExpr());
1763
1764    return E;
1765  }
1766  case Expr::BinaryOperatorClass: {
1767    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1768
1769    Expr *PExp = Exp->getLHS();
1770    Expr *IExp = Exp->getRHS();
1771    if (IExp->getType()->isPointerType())
1772      std::swap(PExp, IExp);
1773
1774    return FindExpressionBaseAddress(PExp);
1775  }
1776  case Expr::ImplicitCastExprClass: {
1777    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1778
1779    // Check for implicit promotion
1780    if (SubExpr->getType()->isFunctionType() ||
1781        SubExpr->getType()->isArrayType())
1782      return FindExpressionBaseAddressLValue(SubExpr);
1783
1784    // Check for pointer->pointer cast
1785    if (SubExpr->getType()->isPointerType())
1786      return FindExpressionBaseAddress(SubExpr);
1787
1788    // We assume that we have an arithmetic expression here;
1789    // if we don't, we'll figure it out later
1790    return 0;
1791  }
1792  case Expr::CStyleCastExprClass: {
1793    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1794
1795    // Check for pointer->pointer cast
1796    if (SubExpr->getType()->isPointerType())
1797      return FindExpressionBaseAddress(SubExpr);
1798
1799    // We assume that we have an arithmetic expression here;
1800    // if we don't, we'll figure it out later
1801    return 0;
1802  }
1803  }
1804}
1805
1806bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1807  switch (Init->getStmtClass()) {
1808  default:
1809    InitializerElementNotConstant(Init);
1810    return true;
1811  case Expr::ParenExprClass: {
1812    const ParenExpr* PE = cast<ParenExpr>(Init);
1813    return CheckArithmeticConstantExpression(PE->getSubExpr());
1814  }
1815  case Expr::FloatingLiteralClass:
1816  case Expr::IntegerLiteralClass:
1817  case Expr::CharacterLiteralClass:
1818  case Expr::ImaginaryLiteralClass:
1819  case Expr::TypesCompatibleExprClass:
1820  case Expr::CXXBoolLiteralExprClass:
1821    return false;
1822  case Expr::CallExprClass:
1823  case Expr::CXXOperatorCallExprClass: {
1824    const CallExpr *CE = cast<CallExpr>(Init);
1825
1826    // Allow any constant foldable calls to builtins.
1827    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1828      return false;
1829
1830    InitializerElementNotConstant(Init);
1831    return true;
1832  }
1833  case Expr::DeclRefExprClass:
1834  case Expr::QualifiedDeclRefExprClass: {
1835    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1836    if (isa<EnumConstantDecl>(D))
1837      return false;
1838    InitializerElementNotConstant(Init);
1839    return true;
1840  }
1841  case Expr::CompoundLiteralExprClass:
1842    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1843    // but vectors are allowed to be magic.
1844    if (Init->getType()->isVectorType())
1845      return false;
1846    InitializerElementNotConstant(Init);
1847    return true;
1848  case Expr::UnaryOperatorClass: {
1849    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1850
1851    switch (Exp->getOpcode()) {
1852    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1853    // See C99 6.6p3.
1854    default:
1855      InitializerElementNotConstant(Init);
1856      return true;
1857    case UnaryOperator::OffsetOf:
1858      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1859        return false;
1860      InitializerElementNotConstant(Init);
1861      return true;
1862    case UnaryOperator::Extension:
1863    case UnaryOperator::LNot:
1864    case UnaryOperator::Plus:
1865    case UnaryOperator::Minus:
1866    case UnaryOperator::Not:
1867      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1868    }
1869  }
1870  case Expr::SizeOfAlignOfExprClass: {
1871    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1872    // Special check for void types, which are allowed as an extension
1873    if (Exp->getTypeOfArgument()->isVoidType())
1874      return false;
1875    // alignof always evaluates to a constant.
1876    // FIXME: is sizeof(int[3.0]) a constant expression?
1877    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1878      InitializerElementNotConstant(Init);
1879      return true;
1880    }
1881    return false;
1882  }
1883  case Expr::BinaryOperatorClass: {
1884    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1885
1886    if (Exp->getLHS()->getType()->isArithmeticType() &&
1887        Exp->getRHS()->getType()->isArithmeticType()) {
1888      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1889             CheckArithmeticConstantExpression(Exp->getRHS());
1890    }
1891
1892    if (Exp->getLHS()->getType()->isPointerType() &&
1893        Exp->getRHS()->getType()->isPointerType()) {
1894      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1895      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1896
1897      // Only allow a null (constant integer) base; we could
1898      // allow some additional cases if necessary, but this
1899      // is sufficient to cover offsetof-like constructs.
1900      if (!LHSBase && !RHSBase) {
1901        return CheckAddressConstantExpression(Exp->getLHS()) ||
1902               CheckAddressConstantExpression(Exp->getRHS());
1903      }
1904    }
1905
1906    InitializerElementNotConstant(Init);
1907    return true;
1908  }
1909  case Expr::ImplicitCastExprClass:
1910  case Expr::CStyleCastExprClass: {
1911    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1912    if (SubExpr->getType()->isArithmeticType())
1913      return CheckArithmeticConstantExpression(SubExpr);
1914
1915    if (SubExpr->getType()->isPointerType()) {
1916      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1917      // If the pointer has a null base, this is an offsetof-like construct
1918      if (!Base)
1919        return CheckAddressConstantExpression(SubExpr);
1920    }
1921
1922    InitializerElementNotConstant(Init);
1923    return true;
1924  }
1925  case Expr::ConditionalOperatorClass: {
1926    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1927
1928    // If GNU extensions are disabled, we require all operands to be arithmetic
1929    // constant expressions.
1930    if (getLangOptions().NoExtensions) {
1931      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1932          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1933             CheckArithmeticConstantExpression(Exp->getRHS());
1934    }
1935
1936    // Otherwise, we have to emulate some of the behavior of fold here.
1937    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1938    // because it can constant fold things away.  To retain compatibility with
1939    // GCC code, we see if we can fold the condition to a constant (which we
1940    // should always be able to do in theory).  If so, we only require the
1941    // specified arm of the conditional to be a constant.  This is a horrible
1942    // hack, but is require by real world code that uses __builtin_constant_p.
1943    Expr::EvalResult EvalResult;
1944    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
1945        EvalResult.HasSideEffects) {
1946      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1947      // won't be able to either.  Use it to emit the diagnostic though.
1948      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1949      assert(Res && "Evaluate couldn't evaluate this constant?");
1950      return Res;
1951    }
1952
1953    // Verify that the side following the condition is also a constant.
1954    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1955    if (EvalResult.Val.getInt() == 0)
1956      std::swap(TrueSide, FalseSide);
1957
1958    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1959      return true;
1960
1961    // Okay, the evaluated side evaluates to a constant, so we accept this.
1962    // Check to see if the other side is obviously not a constant.  If so,
1963    // emit a warning that this is a GNU extension.
1964    if (FalseSide && !FalseSide->isEvaluatable(Context))
1965      Diag(Init->getExprLoc(),
1966           diag::ext_typecheck_expression_not_constant_but_accepted)
1967        << FalseSide->getSourceRange();
1968    return false;
1969  }
1970  }
1971}
1972
1973bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1974  Expr::EvalResult Result;
1975
1976  Init = Init->IgnoreParens();
1977
1978  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1979    return false;
1980
1981  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1982  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1983    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1984
1985  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1986    return CheckForConstantInitializer(e->getInitializer(), DclT);
1987
1988  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1989    unsigned numInits = Exp->getNumInits();
1990    for (unsigned i = 0; i < numInits; i++) {
1991      // FIXME: Need to get the type of the declaration for C++,
1992      // because it could be a reference?
1993      if (CheckForConstantInitializer(Exp->getInit(i),
1994                                      Exp->getInit(i)->getType()))
1995        return true;
1996    }
1997    return false;
1998  }
1999
2000  // FIXME: We can probably remove some of this code below, now that
2001  // Expr::Evaluate is doing the heavy lifting for scalars.
2002
2003  if (Init->isNullPointerConstant(Context))
2004    return false;
2005  if (Init->getType()->isArithmeticType()) {
2006    QualType InitTy = Context.getCanonicalType(Init->getType())
2007                             .getUnqualifiedType();
2008    if (InitTy == Context.BoolTy) {
2009      // Special handling for pointers implicitly cast to bool;
2010      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2011      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2012        Expr* SubE = ICE->getSubExpr();
2013        if (SubE->getType()->isPointerType() ||
2014            SubE->getType()->isArrayType() ||
2015            SubE->getType()->isFunctionType()) {
2016          return CheckAddressConstantExpression(Init);
2017        }
2018      }
2019    } else if (InitTy->isIntegralType()) {
2020      Expr* SubE = 0;
2021      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2022        SubE = CE->getSubExpr();
2023      // Special check for pointer cast to int; we allow as an extension
2024      // an address constant cast to an integer if the integer
2025      // is of an appropriate width (this sort of code is apparently used
2026      // in some places).
2027      // FIXME: Add pedwarn?
2028      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2029      if (SubE && (SubE->getType()->isPointerType() ||
2030                   SubE->getType()->isArrayType() ||
2031                   SubE->getType()->isFunctionType())) {
2032        unsigned IntWidth = Context.getTypeSize(Init->getType());
2033        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2034        if (IntWidth >= PointerWidth)
2035          return CheckAddressConstantExpression(Init);
2036      }
2037    }
2038
2039    return CheckArithmeticConstantExpression(Init);
2040  }
2041
2042  if (Init->getType()->isPointerType())
2043    return CheckAddressConstantExpression(Init);
2044
2045  // An array type at the top level that isn't an init-list must
2046  // be a string literal
2047  if (Init->getType()->isArrayType())
2048    return false;
2049
2050  if (Init->getType()->isFunctionType())
2051    return false;
2052
2053  // Allow block exprs at top level.
2054  if (Init->getType()->isBlockPointerType())
2055    return false;
2056
2057  InitializerElementNotConstant(Init);
2058  return true;
2059}
2060
2061void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2062  Decl *RealDecl = static_cast<Decl *>(dcl);
2063  Expr *Init = static_cast<Expr *>(init.release());
2064  assert(Init && "missing initializer");
2065
2066  // If there is no declaration, there was an error parsing it.  Just ignore
2067  // the initializer.
2068  if (RealDecl == 0) {
2069    delete Init;
2070    return;
2071  }
2072
2073  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2074  if (!VDecl) {
2075    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2076         diag::err_illegal_initializer);
2077    RealDecl->setInvalidDecl();
2078    return;
2079  }
2080  // Get the decls type and save a reference for later, since
2081  // CheckInitializerTypes may change it.
2082  QualType DclT = VDecl->getType(), SavT = DclT;
2083  if (VDecl->isBlockVarDecl()) {
2084    VarDecl::StorageClass SC = VDecl->getStorageClass();
2085    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2086      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2087      VDecl->setInvalidDecl();
2088    } else if (!VDecl->isInvalidDecl()) {
2089      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2090                                VDecl->getDeclName()))
2091        VDecl->setInvalidDecl();
2092
2093      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2094      if (!getLangOptions().CPlusPlus) {
2095        if (SC == VarDecl::Static) // C99 6.7.8p4.
2096          CheckForConstantInitializer(Init, DclT);
2097      }
2098    }
2099  } else if (VDecl->isFileVarDecl()) {
2100    if (VDecl->getStorageClass() == VarDecl::Extern)
2101      Diag(VDecl->getLocation(), diag::warn_extern_init);
2102    if (!VDecl->isInvalidDecl())
2103      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2104                                VDecl->getDeclName()))
2105        VDecl->setInvalidDecl();
2106
2107    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2108    if (!getLangOptions().CPlusPlus) {
2109      // C99 6.7.8p4. All file scoped initializers need to be constant.
2110      CheckForConstantInitializer(Init, DclT);
2111    }
2112  }
2113  // If the type changed, it means we had an incomplete type that was
2114  // completed by the initializer. For example:
2115  //   int ary[] = { 1, 3, 5 };
2116  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2117  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2118    VDecl->setType(DclT);
2119    Init->setType(DclT);
2120  }
2121
2122  // Attach the initializer to the decl.
2123  VDecl->setInit(Init);
2124  return;
2125}
2126
2127void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2128  Decl *RealDecl = static_cast<Decl *>(dcl);
2129
2130  // If there is no declaration, there was an error parsing it. Just ignore it.
2131  if (RealDecl == 0)
2132    return;
2133
2134  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2135    QualType Type = Var->getType();
2136    // C++ [dcl.init.ref]p3:
2137    //   The initializer can be omitted for a reference only in a
2138    //   parameter declaration (8.3.5), in the declaration of a
2139    //   function return type, in the declaration of a class member
2140    //   within its class declaration (9.2), and where the extern
2141    //   specifier is explicitly used.
2142    if (Type->isReferenceType() &&
2143        Var->getStorageClass() != VarDecl::Extern &&
2144        Var->getStorageClass() != VarDecl::PrivateExtern) {
2145      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2146        << Var->getDeclName()
2147        << SourceRange(Var->getLocation(), Var->getLocation());
2148      Var->setInvalidDecl();
2149      return;
2150    }
2151
2152    // C++ [dcl.init]p9:
2153    //
2154    //   If no initializer is specified for an object, and the object
2155    //   is of (possibly cv-qualified) non-POD class type (or array
2156    //   thereof), the object shall be default-initialized; if the
2157    //   object is of const-qualified type, the underlying class type
2158    //   shall have a user-declared default constructor.
2159    if (getLangOptions().CPlusPlus) {
2160      QualType InitType = Type;
2161      if (const ArrayType *Array = Context.getAsArrayType(Type))
2162        InitType = Array->getElementType();
2163      if (Var->getStorageClass() != VarDecl::Extern &&
2164          Var->getStorageClass() != VarDecl::PrivateExtern &&
2165          InitType->isRecordType()) {
2166        const CXXConstructorDecl *Constructor
2167          = PerformInitializationByConstructor(InitType, 0, 0,
2168                                               Var->getLocation(),
2169                                               SourceRange(Var->getLocation(),
2170                                                           Var->getLocation()),
2171                                               Var->getDeclName(),
2172                                               IK_Default);
2173        if (!Constructor)
2174          Var->setInvalidDecl();
2175      }
2176    }
2177
2178#if 0
2179    // FIXME: Temporarily disabled because we are not properly parsing
2180    // linkage specifications on declarations, e.g.,
2181    //
2182    //   extern "C" const CGPoint CGPointerZero;
2183    //
2184    // C++ [dcl.init]p9:
2185    //
2186    //     If no initializer is specified for an object, and the
2187    //     object is of (possibly cv-qualified) non-POD class type (or
2188    //     array thereof), the object shall be default-initialized; if
2189    //     the object is of const-qualified type, the underlying class
2190    //     type shall have a user-declared default
2191    //     constructor. Otherwise, if no initializer is specified for
2192    //     an object, the object and its subobjects, if any, have an
2193    //     indeterminate initial value; if the object or any of its
2194    //     subobjects are of const-qualified type, the program is
2195    //     ill-formed.
2196    //
2197    // This isn't technically an error in C, so we don't diagnose it.
2198    //
2199    // FIXME: Actually perform the POD/user-defined default
2200    // constructor check.
2201    if (getLangOptions().CPlusPlus &&
2202        Context.getCanonicalType(Type).isConstQualified() &&
2203        Var->getStorageClass() != VarDecl::Extern)
2204      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2205        << Var->getName()
2206        << SourceRange(Var->getLocation(), Var->getLocation());
2207#endif
2208  }
2209}
2210
2211/// The declarators are chained together backwards, reverse the list.
2212Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2213  // Often we have single declarators, handle them quickly.
2214  Decl *GroupDecl = static_cast<Decl*>(group);
2215  if (GroupDecl == 0)
2216    return 0;
2217
2218  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2219  ScopedDecl *NewGroup = 0;
2220  if (Group->getNextDeclarator() == 0)
2221    NewGroup = Group;
2222  else { // reverse the list.
2223    while (Group) {
2224      ScopedDecl *Next = Group->getNextDeclarator();
2225      Group->setNextDeclarator(NewGroup);
2226      NewGroup = Group;
2227      Group = Next;
2228    }
2229  }
2230  // Perform semantic analysis that depends on having fully processed both
2231  // the declarator and initializer.
2232  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2233    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2234    if (!IDecl)
2235      continue;
2236    QualType T = IDecl->getType();
2237
2238    if (T->isVariableArrayType()) {
2239      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2240
2241      // FIXME: This won't give the correct result for
2242      // int a[10][n];
2243      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2244      if (IDecl->isFileVarDecl()) {
2245        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2246          SizeRange;
2247
2248        IDecl->setInvalidDecl();
2249      } else {
2250        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2251        // static storage duration, it shall not have a variable length array.
2252        if (IDecl->getStorageClass() == VarDecl::Static) {
2253          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2254            << SizeRange;
2255          IDecl->setInvalidDecl();
2256        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2257          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2258            << SizeRange;
2259          IDecl->setInvalidDecl();
2260        }
2261      }
2262    } else if (T->isVariablyModifiedType()) {
2263      if (IDecl->isFileVarDecl()) {
2264        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2265        IDecl->setInvalidDecl();
2266      } else {
2267        if (IDecl->getStorageClass() == VarDecl::Extern) {
2268          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2269          IDecl->setInvalidDecl();
2270        }
2271      }
2272    }
2273
2274    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2275    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2276    if (IDecl->isBlockVarDecl() &&
2277        IDecl->getStorageClass() != VarDecl::Extern) {
2278      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2279        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2280        IDecl->setInvalidDecl();
2281      }
2282    }
2283    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2284    // object that has file scope without an initializer, and without a
2285    // storage-class specifier or with the storage-class specifier "static",
2286    // constitutes a tentative definition. Note: A tentative definition with
2287    // external linkage is valid (C99 6.2.2p5).
2288    if (isTentativeDefinition(IDecl)) {
2289      if (T->isIncompleteArrayType()) {
2290        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2291        // array to be completed. Don't issue a diagnostic.
2292      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2293        // C99 6.9.2p3: If the declaration of an identifier for an object is
2294        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2295        // declared type shall not be an incomplete type.
2296        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2297        IDecl->setInvalidDecl();
2298      }
2299    }
2300    if (IDecl->isFileVarDecl())
2301      CheckForFileScopedRedefinitions(S, IDecl);
2302  }
2303  return NewGroup;
2304}
2305
2306/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2307/// to introduce parameters into function prototype scope.
2308Sema::DeclTy *
2309Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2310  const DeclSpec &DS = D.getDeclSpec();
2311
2312  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2313  VarDecl::StorageClass StorageClass = VarDecl::None;
2314  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2315    StorageClass = VarDecl::Register;
2316  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2317    Diag(DS.getStorageClassSpecLoc(),
2318         diag::err_invalid_storage_class_in_func_decl);
2319    D.getMutableDeclSpec().ClearStorageClassSpecs();
2320  }
2321  if (DS.isThreadSpecified()) {
2322    Diag(DS.getThreadSpecLoc(),
2323         diag::err_invalid_storage_class_in_func_decl);
2324    D.getMutableDeclSpec().ClearStorageClassSpecs();
2325  }
2326
2327  // Check that there are no default arguments inside the type of this
2328  // parameter (C++ only).
2329  if (getLangOptions().CPlusPlus)
2330    CheckExtraCXXDefaultArguments(D);
2331
2332  // In this context, we *do not* check D.getInvalidType(). If the declarator
2333  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2334  // though it will not reflect the user specified type.
2335  QualType parmDeclType = GetTypeForDeclarator(D, S);
2336
2337  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2338
2339  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2340  // Can this happen for params?  We already checked that they don't conflict
2341  // among each other.  Here they can only shadow globals, which is ok.
2342  IdentifierInfo *II = D.getIdentifier();
2343  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2344    if (PrevDecl->isTemplateParameter()) {
2345      // Maybe we will complain about the shadowed template parameter.
2346      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2347      // Just pretend that we didn't see the previous declaration.
2348      PrevDecl = 0;
2349    } else if (S->isDeclScope(PrevDecl)) {
2350      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2351
2352      // Recover by removing the name
2353      II = 0;
2354      D.SetIdentifier(0, D.getIdentifierLoc());
2355    }
2356  }
2357
2358  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2359  // Doing the promotion here has a win and a loss. The win is the type for
2360  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2361  // code generator). The loss is the orginal type isn't preserved. For example:
2362  //
2363  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2364  //    int blockvardecl[5];
2365  //    sizeof(parmvardecl);  // size == 4
2366  //    sizeof(blockvardecl); // size == 20
2367  // }
2368  //
2369  // For expressions, all implicit conversions are captured using the
2370  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2371  //
2372  // FIXME: If a source translation tool needs to see the original type, then
2373  // we need to consider storing both types (in ParmVarDecl)...
2374  //
2375  if (parmDeclType->isArrayType()) {
2376    // int x[restrict 4] ->  int *restrict
2377    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2378  } else if (parmDeclType->isFunctionType())
2379    parmDeclType = Context.getPointerType(parmDeclType);
2380
2381  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2382                                         D.getIdentifierLoc(), II,
2383                                         parmDeclType, StorageClass,
2384                                         0, 0);
2385
2386  if (D.getInvalidType())
2387    New->setInvalidDecl();
2388
2389  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2390  if (D.getCXXScopeSpec().isSet()) {
2391    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2392      << D.getCXXScopeSpec().getRange();
2393    New->setInvalidDecl();
2394  }
2395
2396  // Add the parameter declaration into this scope.
2397  S->AddDecl(New);
2398  if (II)
2399    IdResolver.AddDecl(New);
2400
2401  ProcessDeclAttributes(New, D);
2402  return New;
2403
2404}
2405
2406Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2407  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2408  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2409         "Not a function declarator!");
2410  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2411
2412  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2413  // for a K&R function.
2414  if (!FTI.hasPrototype) {
2415    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2416      if (FTI.ArgInfo[i].Param == 0) {
2417        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2418          << FTI.ArgInfo[i].Ident;
2419        // Implicitly declare the argument as type 'int' for lack of a better
2420        // type.
2421        DeclSpec DS;
2422        const char* PrevSpec; // unused
2423        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2424                           PrevSpec);
2425        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2426        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2427        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2428      }
2429    }
2430  } else {
2431    // FIXME: Diagnose arguments without names in C.
2432  }
2433
2434  Scope *ParentScope = FnBodyScope->getParent();
2435
2436  return ActOnStartOfFunctionDef(FnBodyScope,
2437                                 ActOnDeclarator(ParentScope, D, 0,
2438                                                 /*IsFunctionDefinition=*/true));
2439}
2440
2441Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2442  Decl *decl = static_cast<Decl*>(D);
2443  FunctionDecl *FD = cast<FunctionDecl>(decl);
2444
2445  // See if this is a redefinition.
2446  const FunctionDecl *Definition;
2447  if (FD->getBody(Definition)) {
2448    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2449    Diag(Definition->getLocation(), diag::note_previous_definition);
2450  }
2451
2452  PushDeclContext(FnBodyScope, FD);
2453
2454  // Check the validity of our function parameters
2455  CheckParmsForFunctionDef(FD);
2456
2457  // Introduce our parameters into the function scope
2458  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2459    ParmVarDecl *Param = FD->getParamDecl(p);
2460    // If this has an identifier, add it to the scope stack.
2461    if (Param->getIdentifier())
2462      PushOnScopeChains(Param, FnBodyScope);
2463  }
2464
2465  // Checking attributes of current function definition
2466  // dllimport attribute.
2467  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2468    // dllimport attribute cannot be applied to definition.
2469    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2470      Diag(FD->getLocation(),
2471           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2472        << "dllimport";
2473      FD->setInvalidDecl();
2474      return FD;
2475    } else {
2476      // If a symbol previously declared dllimport is later defined, the
2477      // attribute is ignored in subsequent references, and a warning is
2478      // emitted.
2479      Diag(FD->getLocation(),
2480           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2481        << FD->getNameAsCString() << "dllimport";
2482    }
2483  }
2484  return FD;
2485}
2486
2487Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2488  Decl *dcl = static_cast<Decl *>(D);
2489  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2490  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2491    FD->setBody(Body);
2492    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2493  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2494    MD->setBody((Stmt*)Body);
2495  } else
2496    return 0;
2497  PopDeclContext();
2498  // Verify and clean out per-function state.
2499
2500  // Check goto/label use.
2501  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2502       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2503    // Verify that we have no forward references left.  If so, there was a goto
2504    // or address of a label taken, but no definition of it.  Label fwd
2505    // definitions are indicated with a null substmt.
2506    if (I->second->getSubStmt() == 0) {
2507      LabelStmt *L = I->second;
2508      // Emit error.
2509      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2510
2511      // At this point, we have gotos that use the bogus label.  Stitch it into
2512      // the function body so that they aren't leaked and that the AST is well
2513      // formed.
2514      if (Body) {
2515        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2516        cast<CompoundStmt>(Body)->push_back(L);
2517      } else {
2518        // The whole function wasn't parsed correctly, just delete this.
2519        delete L;
2520      }
2521    }
2522  }
2523  LabelMap.clear();
2524
2525  return D;
2526}
2527
2528/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2529/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2530ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2531                                           IdentifierInfo &II, Scope *S) {
2532  // Extension in C99.  Legal in C90, but warn about it.
2533  if (getLangOptions().C99)
2534    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2535  else
2536    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2537
2538  // FIXME: handle stuff like:
2539  // void foo() { extern float X(); }
2540  // void bar() { X(); }  <-- implicit decl for X in another scope.
2541
2542  // Set a Declarator for the implicit definition: int foo();
2543  const char *Dummy;
2544  DeclSpec DS;
2545  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2546  Error = Error; // Silence warning.
2547  assert(!Error && "Error setting up implicit decl!");
2548  Declarator D(DS, Declarator::BlockContext);
2549  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2550  D.SetIdentifier(&II, Loc);
2551
2552  // Insert this function into translation-unit scope.
2553
2554  DeclContext *PrevDC = CurContext;
2555  CurContext = Context.getTranslationUnitDecl();
2556
2557  FunctionDecl *FD =
2558    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2559  FD->setImplicit();
2560
2561  CurContext = PrevDC;
2562
2563  return FD;
2564}
2565
2566
2567TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2568                                    ScopedDecl *LastDeclarator) {
2569  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2570  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2571
2572  // Scope manipulation handled by caller.
2573  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2574                                           D.getIdentifierLoc(),
2575                                           D.getIdentifier(),
2576                                           T, LastDeclarator);
2577  if (D.getInvalidType())
2578    NewTD->setInvalidDecl();
2579  return NewTD;
2580}
2581
2582/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2583/// former case, Name will be non-null.  In the later case, Name will be null.
2584/// TagType indicates what kind of tag this is. TK indicates whether this is a
2585/// reference/declaration/definition of a tag.
2586Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2587                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2588                             IdentifierInfo *Name, SourceLocation NameLoc,
2589                             AttributeList *Attr,
2590                             MultiTemplateParamsArg TemplateParameterLists) {
2591  // If this is not a definition, it must have a name.
2592  assert((Name != 0 || TK == TK_Definition) &&
2593         "Nameless record must be a definition!");
2594
2595  TagDecl::TagKind Kind;
2596  switch (TagType) {
2597  default: assert(0 && "Unknown tag type!");
2598  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2599  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2600  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2601  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2602  }
2603
2604  DeclContext *DC = CurContext;
2605  ScopedDecl *PrevDecl = 0;
2606
2607  if (Name && SS.isNotEmpty()) {
2608    // We have a nested-name tag ('struct foo::bar').
2609
2610    // Check for invalid 'foo::'.
2611    if (SS.isInvalid()) {
2612      Name = 0;
2613      goto CreateNewDecl;
2614    }
2615
2616    DC = static_cast<DeclContext*>(SS.getScopeRep());
2617    // Look-up name inside 'foo::'.
2618    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2619
2620    // A tag 'foo::bar' must already exist.
2621    if (PrevDecl == 0) {
2622      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2623      Name = 0;
2624      goto CreateNewDecl;
2625    }
2626  } else {
2627    // If this is a named struct, check to see if there was a previous forward
2628    // declaration or definition.
2629    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2630    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2631  }
2632
2633  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2634    // Maybe we will complain about the shadowed template parameter.
2635    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2636    // Just pretend that we didn't see the previous declaration.
2637    PrevDecl = 0;
2638  }
2639
2640  if (PrevDecl) {
2641    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2642            "unexpected Decl type");
2643    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2644      // If this is a use of a previous tag, or if the tag is already declared
2645      // in the same scope (so that the definition/declaration completes or
2646      // rementions the tag), reuse the decl.
2647      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2648        // Make sure that this wasn't declared as an enum and now used as a
2649        // struct or something similar.
2650        if (PrevTagDecl->getTagKind() != Kind) {
2651          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2652          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2653          // Recover by making this an anonymous redefinition.
2654          Name = 0;
2655          PrevDecl = 0;
2656        } else {
2657          // If this is a use, just return the declaration we found.
2658
2659          // FIXME: In the future, return a variant or some other clue
2660          // for the consumer of this Decl to know it doesn't own it.
2661          // For our current ASTs this shouldn't be a problem, but will
2662          // need to be changed with DeclGroups.
2663          if (TK == TK_Reference)
2664            return PrevDecl;
2665
2666          // Diagnose attempts to redefine a tag.
2667          if (TK == TK_Definition) {
2668            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2669              Diag(NameLoc, diag::err_redefinition) << Name;
2670              Diag(Def->getLocation(), diag::note_previous_definition);
2671              // If this is a redefinition, recover by making this struct be
2672              // anonymous, which will make any later references get the previous
2673              // definition.
2674              Name = 0;
2675              PrevDecl = 0;
2676            }
2677            // Okay, this is definition of a previously declared or referenced
2678            // tag PrevDecl. We're going to create a new Decl for it.
2679          }
2680        }
2681        // If we get here we have (another) forward declaration or we
2682        // have a definition.  Just create a new decl.
2683      } else {
2684        // If we get here, this is a definition of a new tag type in a nested
2685        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2686        // new decl/type.  We set PrevDecl to NULL so that the entities
2687        // have distinct types.
2688        PrevDecl = 0;
2689      }
2690      // If we get here, we're going to create a new Decl. If PrevDecl
2691      // is non-NULL, it's a definition of the tag declared by
2692      // PrevDecl. If it's NULL, we have a new definition.
2693    } else {
2694      // PrevDecl is a namespace.
2695      if (isDeclInScope(PrevDecl, DC, S)) {
2696        // The tag name clashes with a namespace name, issue an error and
2697        // recover by making this tag be anonymous.
2698        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2699        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2700        Name = 0;
2701        PrevDecl = 0;
2702      } else {
2703        // The existing declaration isn't relevant to us; we're in a
2704        // new scope, so clear out the previous declaration.
2705        PrevDecl = 0;
2706      }
2707    }
2708  }
2709
2710CreateNewDecl:
2711
2712  // If there is an identifier, use the location of the identifier as the
2713  // location of the decl, otherwise use the location of the struct/union
2714  // keyword.
2715  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2716
2717  // Otherwise, create a new declaration. If there is a previous
2718  // declaration of the same entity, the two will be linked via
2719  // PrevDecl.
2720  TagDecl *New;
2721  if (Kind == TagDecl::TK_enum) {
2722    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2723    // enum X { A, B, C } D;    D should chain to X.
2724    New = EnumDecl::Create(Context, DC, Loc, Name,
2725                           cast_or_null<EnumDecl>(PrevDecl));
2726    // If this is an undefined enum, warn.
2727    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2728  } else {
2729    // struct/union/class
2730
2731    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2732    // struct X { int A; } D;    D should chain to X.
2733    if (getLangOptions().CPlusPlus)
2734      // FIXME: Look for a way to use RecordDecl for simple structs.
2735      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2736                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2737    else
2738      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2739                               cast_or_null<RecordDecl>(PrevDecl));
2740  }
2741
2742  if (Kind != TagDecl::TK_enum) {
2743    // Handle #pragma pack: if the #pragma pack stack has non-default
2744    // alignment, make up a packed attribute for this decl. These
2745    // attributes are checked when the ASTContext lays out the
2746    // structure.
2747    //
2748    // It is important for implementing the correct semantics that this
2749    // happen here (in act on tag decl). The #pragma pack stack is
2750    // maintained as a result of parser callbacks which can occur at
2751    // many points during the parsing of a struct declaration (because
2752    // the #pragma tokens are effectively skipped over during the
2753    // parsing of the struct).
2754    if (unsigned Alignment = PackContext.getAlignment())
2755      New->addAttr(new PackedAttr(Alignment * 8));
2756  }
2757
2758  if (Attr)
2759    ProcessDeclAttributeList(New, Attr);
2760
2761  // Set the lexical context. If the tag has a C++ scope specifier, the
2762  // lexical context will be different from the semantic context.
2763  New->setLexicalDeclContext(CurContext);
2764
2765  // If this has an identifier, add it to the scope stack.
2766  if (Name) {
2767    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2768    // we find one that is.
2769    while ((S->getFlags() & Scope::DeclScope) == 0)
2770      S = S->getParent();
2771
2772    // Add it to the decl chain.
2773    PushOnScopeChains(New, S);
2774  }
2775
2776  return New;
2777}
2778
2779
2780/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2781/// types into constant array types in certain situations which would otherwise
2782/// be errors (for GCC compatibility).
2783static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2784                                                    ASTContext &Context) {
2785  // This method tries to turn a variable array into a constant
2786  // array even when the size isn't an ICE.  This is necessary
2787  // for compatibility with code that depends on gcc's buggy
2788  // constant expression folding, like struct {char x[(int)(char*)2];}
2789  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2790  if (!VLATy) return QualType();
2791
2792  Expr::EvalResult EvalResult;
2793  if (!VLATy->getSizeExpr() ||
2794      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
2795    return QualType();
2796
2797  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
2798  llvm::APSInt &Res = EvalResult.Val.getInt();
2799  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2800    return Context.getConstantArrayType(VLATy->getElementType(),
2801                                        Res, ArrayType::Normal, 0);
2802  return QualType();
2803}
2804
2805bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2806                          QualType FieldTy, const Expr *BitWidth) {
2807  // FIXME: 6.7.2.1p4 - verify the field type.
2808
2809  llvm::APSInt Value;
2810  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2811    return true;
2812
2813  // Zero-width bitfield is ok for anonymous field.
2814  if (Value == 0 && FieldName)
2815    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
2816
2817  if (Value.isNegative())
2818    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2819
2820  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2821  // FIXME: We won't need the 0 size once we check that the field type is valid.
2822  if (TypeSize && Value.getZExtValue() > TypeSize)
2823    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
2824       << FieldName << (unsigned)TypeSize;
2825
2826  return false;
2827}
2828
2829/// ActOnField - Each field of a struct/union/class is passed into this in order
2830/// to create a FieldDecl object for it.
2831Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
2832                               SourceLocation DeclStart,
2833                               Declarator &D, ExprTy *BitfieldWidth) {
2834  IdentifierInfo *II = D.getIdentifier();
2835  Expr *BitWidth = (Expr*)BitfieldWidth;
2836  SourceLocation Loc = DeclStart;
2837  RecordDecl *Record = (RecordDecl *)TagD;
2838  if (II) Loc = D.getIdentifierLoc();
2839
2840  // FIXME: Unnamed fields can be handled in various different ways, for
2841  // example, unnamed unions inject all members into the struct namespace!
2842
2843  QualType T = GetTypeForDeclarator(D, S);
2844  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2845  bool InvalidDecl = false;
2846
2847  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2848  // than a variably modified type.
2849  if (T->isVariablyModifiedType()) {
2850    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2851    if (!FixedTy.isNull()) {
2852      Diag(Loc, diag::warn_illegal_constant_array_size);
2853      T = FixedTy;
2854    } else {
2855      Diag(Loc, diag::err_typecheck_field_variable_size);
2856      T = Context.IntTy;
2857      InvalidDecl = true;
2858    }
2859  }
2860
2861  if (BitWidth) {
2862    if (VerifyBitField(Loc, II, T, BitWidth))
2863      InvalidDecl = true;
2864  } else {
2865    // Not a bitfield.
2866
2867    // validate II.
2868
2869  }
2870
2871  // FIXME: Chain fielddecls together.
2872  FieldDecl *NewFD;
2873
2874  // FIXME: We don't want CurContext for C, do we? No, we'll need some
2875  // other way to determine the current RecordDecl.
2876  NewFD = FieldDecl::Create(Context, Record,
2877                            Loc, II, T, BitWidth,
2878                            D.getDeclSpec().getStorageClassSpec() ==
2879                              DeclSpec::SCS_mutable,
2880                            /*PrevDecl=*/0);
2881
2882  if (getLangOptions().CPlusPlus) {
2883    CheckExtraCXXDefaultArguments(D);
2884    if (!T->isPODType())
2885      cast<CXXRecordDecl>(Record)->setPOD(false);
2886  }
2887
2888  ProcessDeclAttributes(NewFD, D);
2889
2890  if (D.getInvalidType() || InvalidDecl)
2891    NewFD->setInvalidDecl();
2892
2893  if (II && getLangOptions().CPlusPlus)
2894    PushOnScopeChains(NewFD, S);
2895  else
2896    Record->addDecl(Context, NewFD);
2897
2898  return NewFD;
2899}
2900
2901/// TranslateIvarVisibility - Translate visibility from a token ID to an
2902///  AST enum value.
2903static ObjCIvarDecl::AccessControl
2904TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2905  switch (ivarVisibility) {
2906  default: assert(0 && "Unknown visitibility kind");
2907  case tok::objc_private: return ObjCIvarDecl::Private;
2908  case tok::objc_public: return ObjCIvarDecl::Public;
2909  case tok::objc_protected: return ObjCIvarDecl::Protected;
2910  case tok::objc_package: return ObjCIvarDecl::Package;
2911  }
2912}
2913
2914/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2915/// in order to create an IvarDecl object for it.
2916Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2917                              SourceLocation DeclStart,
2918                              Declarator &D, ExprTy *BitfieldWidth,
2919                              tok::ObjCKeywordKind Visibility) {
2920  IdentifierInfo *II = D.getIdentifier();
2921  Expr *BitWidth = (Expr*)BitfieldWidth;
2922  SourceLocation Loc = DeclStart;
2923  if (II) Loc = D.getIdentifierLoc();
2924
2925  // FIXME: Unnamed fields can be handled in various different ways, for
2926  // example, unnamed unions inject all members into the struct namespace!
2927
2928  QualType T = GetTypeForDeclarator(D, S);
2929  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2930  bool InvalidDecl = false;
2931
2932  if (BitWidth) {
2933    // TODO: Validate.
2934    //printf("WARNING: BITFIELDS IGNORED!\n");
2935
2936    // 6.7.2.1p3
2937    // 6.7.2.1p4
2938
2939  } else {
2940    // Not a bitfield.
2941
2942    // validate II.
2943
2944  }
2945
2946  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2947  // than a variably modified type.
2948  if (T->isVariablyModifiedType()) {
2949    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2950    InvalidDecl = true;
2951  }
2952
2953  // Get the visibility (access control) for this ivar.
2954  ObjCIvarDecl::AccessControl ac =
2955    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2956                                        : ObjCIvarDecl::None;
2957
2958  // Construct the decl.
2959  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2960                                             (Expr *)BitfieldWidth);
2961
2962  // Process attributes attached to the ivar.
2963  ProcessDeclAttributes(NewID, D);
2964
2965  if (D.getInvalidType() || InvalidDecl)
2966    NewID->setInvalidDecl();
2967
2968  return NewID;
2969}
2970
2971void Sema::ActOnFields(Scope* S,
2972                       SourceLocation RecLoc, DeclTy *RecDecl,
2973                       DeclTy **Fields, unsigned NumFields,
2974                       SourceLocation LBrac, SourceLocation RBrac,
2975                       AttributeList *Attr) {
2976  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2977  assert(EnclosingDecl && "missing record or interface decl");
2978  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2979
2980  if (Record)
2981    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2982      // Diagnose code like:
2983      //     struct S { struct S {} X; };
2984      // We discover this when we complete the outer S.  Reject and ignore the
2985      // outer S.
2986      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2987        << DefRecord->getDeclName();
2988      Diag(RecLoc, diag::note_previous_definition);
2989      Record->setInvalidDecl();
2990      return;
2991    }
2992
2993  // Verify that all the fields are okay.
2994  unsigned NumNamedMembers = 0;
2995  llvm::SmallVector<FieldDecl*, 32> RecFields;
2996  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2997
2998  for (unsigned i = 0; i != NumFields; ++i) {
2999
3000    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3001    assert(FD && "missing field decl");
3002
3003    // Remember all fields.
3004    RecFields.push_back(FD);
3005
3006    // Get the type for the field.
3007    Type *FDTy = FD->getType().getTypePtr();
3008
3009    // C99 6.7.2.1p2 - A field may not be a function type.
3010    if (FDTy->isFunctionType()) {
3011      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3012        << FD->getDeclName();
3013      FD->setInvalidDecl();
3014      EnclosingDecl->setInvalidDecl();
3015      continue;
3016    }
3017    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3018    if (FDTy->isIncompleteType()) {
3019      if (!Record) {  // Incomplete ivar type is always an error.
3020        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3021        FD->setInvalidDecl();
3022        EnclosingDecl->setInvalidDecl();
3023        continue;
3024      }
3025      if (i != NumFields-1 ||                   // ... that the last member ...
3026          !Record->isStruct() ||  // ... of a structure ...
3027          !FDTy->isArrayType()) {         //... may have incomplete array type.
3028        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3029        FD->setInvalidDecl();
3030        EnclosingDecl->setInvalidDecl();
3031        continue;
3032      }
3033      if (NumNamedMembers < 1) {  //... must have more than named member ...
3034        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3035          << FD->getDeclName();
3036        FD->setInvalidDecl();
3037        EnclosingDecl->setInvalidDecl();
3038        continue;
3039      }
3040      // Okay, we have a legal flexible array member at the end of the struct.
3041      if (Record)
3042        Record->setHasFlexibleArrayMember(true);
3043    }
3044    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3045    /// field of another structure or the element of an array.
3046    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3047      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3048        // If this is a member of a union, then entire union becomes "flexible".
3049        if (Record && Record->isUnion()) {
3050          Record->setHasFlexibleArrayMember(true);
3051        } else {
3052          // If this is a struct/class and this is not the last element, reject
3053          // it.  Note that GCC supports variable sized arrays in the middle of
3054          // structures.
3055          if (i != NumFields-1) {
3056            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3057              << FD->getDeclName();
3058            FD->setInvalidDecl();
3059            EnclosingDecl->setInvalidDecl();
3060            continue;
3061          }
3062          // We support flexible arrays at the end of structs in other structs
3063          // as an extension.
3064          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3065            << FD->getDeclName();
3066          if (Record)
3067            Record->setHasFlexibleArrayMember(true);
3068        }
3069      }
3070    }
3071    /// A field cannot be an Objective-c object
3072    if (FDTy->isObjCInterfaceType()) {
3073      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3074        << FD->getDeclName();
3075      FD->setInvalidDecl();
3076      EnclosingDecl->setInvalidDecl();
3077      continue;
3078    }
3079    // Keep track of the number of named members.
3080    if (IdentifierInfo *II = FD->getIdentifier()) {
3081      // Detect duplicate member names.
3082      if (!FieldIDs.insert(II)) {
3083        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
3084        // Find the previous decl.
3085        SourceLocation PrevLoc;
3086        for (unsigned i = 0; ; ++i) {
3087          assert(i != RecFields.size() && "Didn't find previous def!");
3088          if (RecFields[i]->getIdentifier() == II) {
3089            PrevLoc = RecFields[i]->getLocation();
3090            break;
3091          }
3092        }
3093        Diag(PrevLoc, diag::note_previous_definition);
3094        FD->setInvalidDecl();
3095        EnclosingDecl->setInvalidDecl();
3096        continue;
3097      }
3098      ++NumNamedMembers;
3099    }
3100  }
3101
3102  // Okay, we successfully defined 'Record'.
3103  if (Record) {
3104    Record->completeDefinition(Context);
3105    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
3106    // Sema::ActOnFinishCXXClassDef.
3107    if (!isa<CXXRecordDecl>(Record))
3108      Consumer.HandleTagDeclDefinition(Record);
3109  } else {
3110    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3111    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3112      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3113      // Must enforce the rule that ivars in the base classes may not be
3114      // duplicates.
3115      if (ID->getSuperClass()) {
3116        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3117             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3118          ObjCIvarDecl* Ivar = (*IVI);
3119          IdentifierInfo *II = Ivar->getIdentifier();
3120          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3121          if (prevIvar) {
3122            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3123            Diag(prevIvar->getLocation(), diag::note_previous_definition);
3124          }
3125        }
3126      }
3127    }
3128    else if (ObjCImplementationDecl *IMPDecl =
3129               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3130      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3131      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3132      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3133    }
3134  }
3135
3136  if (Attr)
3137    ProcessDeclAttributeList(Record, Attr);
3138}
3139
3140void Sema::ActOnEnumStartDefinition(Scope *S, DeclTy *EnumD) {
3141  EnumDecl *Enum = cast_or_null<EnumDecl>((Decl *)EnumD);
3142
3143  if (Enum) {
3144    // Enter the enumeration context.
3145    PushDeclContext(S, Enum);
3146  }
3147}
3148
3149Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3150                                      DeclTy *lastEnumConst,
3151                                      SourceLocation IdLoc, IdentifierInfo *Id,
3152                                      SourceLocation EqualLoc, ExprTy *val) {
3153  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3154  EnumConstantDecl *LastEnumConst =
3155    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3156  Expr *Val = static_cast<Expr*>(val);
3157
3158  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3159  // we find one that is.
3160  while ((S->getFlags() & Scope::DeclScope) == 0)
3161    S = S->getParent();
3162
3163  // Verify that there isn't already something declared with this name in this
3164  // scope.
3165  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3166  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3167    // Maybe we will complain about the shadowed template parameter.
3168    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3169    // Just pretend that we didn't see the previous declaration.
3170    PrevDecl = 0;
3171  }
3172
3173  if (PrevDecl) {
3174    // When in C++, we may get a TagDecl with the same name; in this case the
3175    // enum constant will 'hide' the tag.
3176    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3177           "Received TagDecl when not in C++!");
3178    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3179      if (isa<EnumConstantDecl>(PrevDecl))
3180        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3181      else
3182        Diag(IdLoc, diag::err_redefinition) << Id;
3183      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3184      delete Val;
3185      return 0;
3186    }
3187  }
3188
3189  llvm::APSInt EnumVal(32);
3190  QualType EltTy;
3191  if (Val) {
3192    // Make sure to promote the operand type to int.
3193    UsualUnaryConversions(Val);
3194
3195    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3196    SourceLocation ExpLoc;
3197    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3198      delete Val;
3199      Val = 0;  // Just forget about it.
3200    } else {
3201      EltTy = Val->getType();
3202    }
3203  }
3204
3205  if (!Val) {
3206    if (LastEnumConst) {
3207      // Assign the last value + 1.
3208      EnumVal = LastEnumConst->getInitVal();
3209      ++EnumVal;
3210
3211      // Check for overflow on increment.
3212      if (EnumVal < LastEnumConst->getInitVal())
3213        Diag(IdLoc, diag::warn_enum_value_overflow);
3214
3215      EltTy = LastEnumConst->getType();
3216    } else {
3217      // First value, set to zero.
3218      EltTy = Context.IntTy;
3219      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3220    }
3221  }
3222
3223  EnumConstantDecl *New =
3224    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3225                             Val, EnumVal,
3226                             LastEnumConst);
3227
3228  // Register this decl in the current scope stack.
3229  PushOnScopeChains(New, S);
3230
3231  // Add this enumerator into the enum itself.
3232  // FIXME: This means that the enumerator is stored in two
3233  // DeclContexts. This is not a long-term solution.
3234  New->setLexicalDeclContext(TheEnumDecl);
3235  TheEnumDecl->addDecl(Context, New, true);
3236  return New;
3237}
3238
3239// FIXME: For consistency with ActOnFields(), we should have the parser
3240// pass in the source location for the left/right braces.
3241void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3242                         DeclTy **Elements, unsigned NumElements) {
3243  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3244  QualType EnumType = Context.getTypeDeclType(Enum);
3245
3246  if (EnumType->getAsEnumType()->getDecl()->isDefinition()) {
3247    EnumDecl *Def = EnumType->getAsEnumType()->getDecl();
3248    // Diagnose code like:
3249    //   enum e0 {
3250    //     E0 = sizeof(enum e0 { E1 })
3251    //   };
3252    Diag(Def->getLocation(), diag::err_nested_redefinition)
3253      << Enum->getDeclName();
3254    Diag(Enum->getLocation(), diag::note_previous_definition);
3255    Enum->setInvalidDecl();
3256    PopDeclContext();
3257    return;
3258  }
3259
3260  // TODO: If the result value doesn't fit in an int, it must be a long or long
3261  // long value.  ISO C does not support this, but GCC does as an extension,
3262  // emit a warning.
3263  unsigned IntWidth = Context.Target.getIntWidth();
3264
3265  // Verify that all the values are okay, compute the size of the values, and
3266  // reverse the list.
3267  unsigned NumNegativeBits = 0;
3268  unsigned NumPositiveBits = 0;
3269
3270  // Keep track of whether all elements have type int.
3271  bool AllElementsInt = true;
3272
3273  EnumConstantDecl *EltList = 0;
3274  for (unsigned i = 0; i != NumElements; ++i) {
3275    EnumConstantDecl *ECD =
3276      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3277    if (!ECD) continue;  // Already issued a diagnostic.
3278
3279    // If the enum value doesn't fit in an int, emit an extension warning.
3280    const llvm::APSInt &InitVal = ECD->getInitVal();
3281    assert(InitVal.getBitWidth() >= IntWidth &&
3282           "Should have promoted value to int");
3283    if (InitVal.getBitWidth() > IntWidth) {
3284      llvm::APSInt V(InitVal);
3285      V.trunc(IntWidth);
3286      V.extend(InitVal.getBitWidth());
3287      if (V != InitVal)
3288        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3289          << InitVal.toString(10);
3290    }
3291
3292    // Keep track of the size of positive and negative values.
3293    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3294      NumPositiveBits = std::max(NumPositiveBits,
3295                                 (unsigned)InitVal.getActiveBits());
3296    else
3297      NumNegativeBits = std::max(NumNegativeBits,
3298                                 (unsigned)InitVal.getMinSignedBits());
3299
3300    // Keep track of whether every enum element has type int (very commmon).
3301    if (AllElementsInt)
3302      AllElementsInt = ECD->getType() == Context.IntTy;
3303
3304    ECD->setNextDeclarator(EltList);
3305    EltList = ECD;
3306  }
3307
3308  // Figure out the type that should be used for this enum.
3309  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3310  QualType BestType;
3311  unsigned BestWidth;
3312
3313  if (NumNegativeBits) {
3314    // If there is a negative value, figure out the smallest integer type (of
3315    // int/long/longlong) that fits.
3316    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3317      BestType = Context.IntTy;
3318      BestWidth = IntWidth;
3319    } else {
3320      BestWidth = Context.Target.getLongWidth();
3321
3322      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3323        BestType = Context.LongTy;
3324      else {
3325        BestWidth = Context.Target.getLongLongWidth();
3326
3327        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3328          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3329        BestType = Context.LongLongTy;
3330      }
3331    }
3332  } else {
3333    // If there is no negative value, figure out which of uint, ulong, ulonglong
3334    // fits.
3335    if (NumPositiveBits <= IntWidth) {
3336      BestType = Context.UnsignedIntTy;
3337      BestWidth = IntWidth;
3338    } else if (NumPositiveBits <=
3339               (BestWidth = Context.Target.getLongWidth())) {
3340      BestType = Context.UnsignedLongTy;
3341    } else {
3342      BestWidth = Context.Target.getLongLongWidth();
3343      assert(NumPositiveBits <= BestWidth &&
3344             "How could an initializer get larger than ULL?");
3345      BestType = Context.UnsignedLongLongTy;
3346    }
3347  }
3348
3349  // Loop over all of the enumerator constants, changing their types to match
3350  // the type of the enum if needed.
3351  for (unsigned i = 0; i != NumElements; ++i) {
3352    EnumConstantDecl *ECD =
3353      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3354    if (!ECD) continue;  // Already issued a diagnostic.
3355
3356    // Standard C says the enumerators have int type, but we allow, as an
3357    // extension, the enumerators to be larger than int size.  If each
3358    // enumerator value fits in an int, type it as an int, otherwise type it the
3359    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3360    // that X has type 'int', not 'unsigned'.
3361    if (ECD->getType() == Context.IntTy) {
3362      // Make sure the init value is signed.
3363      llvm::APSInt IV = ECD->getInitVal();
3364      IV.setIsSigned(true);
3365      ECD->setInitVal(IV);
3366
3367      if (getLangOptions().CPlusPlus)
3368        // C++ [dcl.enum]p4: Following the closing brace of an
3369        // enum-specifier, each enumerator has the type of its
3370        // enumeration.
3371        ECD->setType(EnumType);
3372      continue;  // Already int type.
3373    }
3374
3375    // Determine whether the value fits into an int.
3376    llvm::APSInt InitVal = ECD->getInitVal();
3377    bool FitsInInt;
3378    if (InitVal.isUnsigned() || !InitVal.isNegative())
3379      FitsInInt = InitVal.getActiveBits() < IntWidth;
3380    else
3381      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3382
3383    // If it fits into an integer type, force it.  Otherwise force it to match
3384    // the enum decl type.
3385    QualType NewTy;
3386    unsigned NewWidth;
3387    bool NewSign;
3388    if (FitsInInt) {
3389      NewTy = Context.IntTy;
3390      NewWidth = IntWidth;
3391      NewSign = true;
3392    } else if (ECD->getType() == BestType) {
3393      // Already the right type!
3394      if (getLangOptions().CPlusPlus)
3395        // C++ [dcl.enum]p4: Following the closing brace of an
3396        // enum-specifier, each enumerator has the type of its
3397        // enumeration.
3398        ECD->setType(EnumType);
3399      continue;
3400    } else {
3401      NewTy = BestType;
3402      NewWidth = BestWidth;
3403      NewSign = BestType->isSignedIntegerType();
3404    }
3405
3406    // Adjust the APSInt value.
3407    InitVal.extOrTrunc(NewWidth);
3408    InitVal.setIsSigned(NewSign);
3409    ECD->setInitVal(InitVal);
3410
3411    // Adjust the Expr initializer and type.
3412    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3413                                          /*isLvalue=*/false));
3414    if (getLangOptions().CPlusPlus)
3415      // C++ [dcl.enum]p4: Following the closing brace of an
3416      // enum-specifier, each enumerator has the type of its
3417      // enumeration.
3418      ECD->setType(EnumType);
3419    else
3420      ECD->setType(NewTy);
3421  }
3422
3423  Enum->completeDefinition(Context, BestType);
3424  Consumer.HandleTagDeclDefinition(Enum);
3425
3426  // Leave the context of the enumeration.
3427  PopDeclContext();
3428}
3429
3430Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3431                                          ExprArg expr) {
3432  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3433
3434  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3435}
3436
3437
3438void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3439                           ExprTy *alignment, SourceLocation PragmaLoc,
3440                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3441  Expr *Alignment = static_cast<Expr *>(alignment);
3442
3443  // If specified then alignment must be a "small" power of two.
3444  unsigned AlignmentVal = 0;
3445  if (Alignment) {
3446    llvm::APSInt Val;
3447    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3448        !Val.isPowerOf2() ||
3449        Val.getZExtValue() > 16) {
3450      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3451      delete Alignment;
3452      return; // Ignore
3453    }
3454
3455    AlignmentVal = (unsigned) Val.getZExtValue();
3456  }
3457
3458  switch (Kind) {
3459  case Action::PPK_Default: // pack([n])
3460    PackContext.setAlignment(AlignmentVal);
3461    break;
3462
3463  case Action::PPK_Show: // pack(show)
3464    // Show the current alignment, making sure to show the right value
3465    // for the default.
3466    AlignmentVal = PackContext.getAlignment();
3467    // FIXME: This should come from the target.
3468    if (AlignmentVal == 0)
3469      AlignmentVal = 8;
3470    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3471    break;
3472
3473  case Action::PPK_Push: // pack(push [, id] [, [n])
3474    PackContext.push(Name);
3475    // Set the new alignment if specified.
3476    if (Alignment)
3477      PackContext.setAlignment(AlignmentVal);
3478    break;
3479
3480  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3481    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3482    // "#pragma pack(pop, identifier, n) is undefined"
3483    if (Alignment && Name)
3484      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3485
3486    // Do the pop.
3487    if (!PackContext.pop(Name)) {
3488      // If a name was specified then failure indicates the name
3489      // wasn't found. Otherwise failure indicates the stack was
3490      // empty.
3491      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3492        << (Name ? "no record matching name" : "stack empty");
3493
3494      // FIXME: Warn about popping named records as MSVC does.
3495    } else {
3496      // Pop succeeded, set the new alignment if specified.
3497      if (Alignment)
3498        PackContext.setAlignment(AlignmentVal);
3499    }
3500    break;
3501
3502  default:
3503    assert(0 && "Invalid #pragma pack kind.");
3504  }
3505}
3506
3507bool PragmaPackStack::pop(IdentifierInfo *Name) {
3508  if (Stack.empty())
3509    return false;
3510
3511  // If name is empty just pop top.
3512  if (!Name) {
3513    Alignment = Stack.back().first;
3514    Stack.pop_back();
3515    return true;
3516  }
3517
3518  // Otherwise, find the named record.
3519  for (unsigned i = Stack.size(); i != 0; ) {
3520    --i;
3521    if (Stack[i].second == Name) {
3522      // Found it, pop up to and including this record.
3523      Alignment = Stack[i].first;
3524      Stack.erase(Stack.begin() + i, Stack.end());
3525      return true;
3526    }
3527  }
3528
3529  return false;
3530}
3531