SemaDecl.cpp revision 591dc84101228dc391fca05193be5870ec661edc
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = ObjectTypePtr.get();
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isNotEmpty()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return ParsedType();
96
97        // We know from the grammar that this name refers to a type,
98        // so build a dependent node to describe the type.
99        if (WantNontrivialTypeSourceInfo)
100          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
101
102        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
103        QualType T =
104          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
105                            II, NameLoc);
106
107          return ParsedType::make(T);
108      }
109
110      return ParsedType();
111    }
112
113    if (!LookupCtx->isDependentContext() &&
114        RequireCompleteDeclContext(*SS, LookupCtx))
115      return ParsedType();
116  }
117
118  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
119  // lookup for class-names.
120  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
121                                      LookupOrdinaryName;
122  LookupResult Result(*this, &II, NameLoc, Kind);
123  if (LookupCtx) {
124    // Perform "qualified" name lookup into the declaration context we
125    // computed, which is either the type of the base of a member access
126    // expression or the declaration context associated with a prior
127    // nested-name-specifier.
128    LookupQualifiedName(Result, LookupCtx);
129
130    if (ObjectTypePtr && Result.empty()) {
131      // C++ [basic.lookup.classref]p3:
132      //   If the unqualified-id is ~type-name, the type-name is looked up
133      //   in the context of the entire postfix-expression. If the type T of
134      //   the object expression is of a class type C, the type-name is also
135      //   looked up in the scope of class C. At least one of the lookups shall
136      //   find a name that refers to (possibly cv-qualified) T.
137      LookupName(Result, S);
138    }
139  } else {
140    // Perform unqualified name lookup.
141    LookupName(Result, S);
142  }
143
144  NamedDecl *IIDecl = 0;
145  switch (Result.getResultKind()) {
146  case LookupResult::NotFound:
147  case LookupResult::NotFoundInCurrentInstantiation:
148  case LookupResult::FoundOverloaded:
149  case LookupResult::FoundUnresolvedValue:
150    Result.suppressDiagnostics();
151    return ParsedType();
152
153  case LookupResult::Ambiguous:
154    // Recover from type-hiding ambiguities by hiding the type.  We'll
155    // do the lookup again when looking for an object, and we can
156    // diagnose the error then.  If we don't do this, then the error
157    // about hiding the type will be immediately followed by an error
158    // that only makes sense if the identifier was treated like a type.
159    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
160      Result.suppressDiagnostics();
161      return ParsedType();
162    }
163
164    // Look to see if we have a type anywhere in the list of results.
165    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
166         Res != ResEnd; ++Res) {
167      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
168        if (!IIDecl ||
169            (*Res)->getLocation().getRawEncoding() <
170              IIDecl->getLocation().getRawEncoding())
171          IIDecl = *Res;
172      }
173    }
174
175    if (!IIDecl) {
176      // None of the entities we found is a type, so there is no way
177      // to even assume that the result is a type. In this case, don't
178      // complain about the ambiguity. The parser will either try to
179      // perform this lookup again (e.g., as an object name), which
180      // will produce the ambiguity, or will complain that it expected
181      // a type name.
182      Result.suppressDiagnostics();
183      return ParsedType();
184    }
185
186    // We found a type within the ambiguous lookup; diagnose the
187    // ambiguity and then return that type. This might be the right
188    // answer, or it might not be, but it suppresses any attempt to
189    // perform the name lookup again.
190    break;
191
192  case LookupResult::Found:
193    IIDecl = Result.getFoundDecl();
194    break;
195  }
196
197  assert(IIDecl && "Didn't find decl");
198
199  QualType T;
200  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
201    DiagnoseUseOfDecl(IIDecl, NameLoc);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS && SS->isNotEmpty()) {
207      if (WantNontrivialTypeSourceInfo) {
208        // Construct a type with type-source information.
209        TypeLocBuilder Builder;
210        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
211
212        T = getElaboratedType(ETK_None, *SS, T);
213        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
214        ElabTL.setKeywordLoc(SourceLocation());
215        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
216        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
217      } else {
218        T = getElaboratedType(ETK_None, *SS, T);
219      }
220    }
221  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
222    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
223    if (!HasTrailingDot)
224      T = Context.getObjCInterfaceType(IDecl);
225  }
226
227  if (T.isNull()) {
228    // If it's not plausibly a type, suppress diagnostics.
229    Result.suppressDiagnostics();
230    return ParsedType();
231  }
232  return ParsedType::make(T);
233}
234
235/// isTagName() - This method is called *for error recovery purposes only*
236/// to determine if the specified name is a valid tag name ("struct foo").  If
237/// so, this returns the TST for the tag corresponding to it (TST_enum,
238/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
239/// where the user forgot to specify the tag.
240DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
241  // Do a tag name lookup in this scope.
242  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
243  LookupName(R, S, false);
244  R.suppressDiagnostics();
245  if (R.getResultKind() == LookupResult::Found)
246    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
247      switch (TD->getTagKind()) {
248      default:         return DeclSpec::TST_unspecified;
249      case TTK_Struct: return DeclSpec::TST_struct;
250      case TTK_Union:  return DeclSpec::TST_union;
251      case TTK_Class:  return DeclSpec::TST_class;
252      case TTK_Enum:   return DeclSpec::TST_enum;
253      }
254    }
255
256  return DeclSpec::TST_unspecified;
257}
258
259/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
260/// if a CXXScopeSpec's type is equal to the type of one of the base classes
261/// then downgrade the missing typename error to a warning.
262/// This is needed for MSVC compatibility; Example:
263/// @code
264/// template<class T> class A {
265/// public:
266///   typedef int TYPE;
267/// };
268/// template<class T> class B : public A<T> {
269/// public:
270///   A<T>::TYPE a; // no typename required because A<T> is a base class.
271/// };
272/// @endcode
273bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
274  if (CurContext->isRecord()) {
275    const Type *Ty = SS->getScopeRep()->getAsType();
276
277    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
278    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
279          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
280      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
281        return true;
282  }
283  return false;
284}
285
286bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
287                                   SourceLocation IILoc,
288                                   Scope *S,
289                                   CXXScopeSpec *SS,
290                                   ParsedType &SuggestedType) {
291  // We don't have anything to suggest (yet).
292  SuggestedType = ParsedType();
293
294  // There may have been a typo in the name of the type. Look up typo
295  // results, in case we have something that we can suggest.
296  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
297                                             LookupOrdinaryName, S, SS, NULL,
298                                             false, CTC_Type)) {
299    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
300    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
301
302    if (Corrected.isKeyword()) {
303      // We corrected to a keyword.
304      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
305      Diag(IILoc, diag::err_unknown_typename_suggest)
306        << &II << CorrectedQuotedStr;
307      return true;
308    } else {
309      NamedDecl *Result = Corrected.getCorrectionDecl();
310      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
311          !Result->isInvalidDecl()) {
312        // We found a similarly-named type or interface; suggest that.
313        if (!SS || !SS->isSet())
314          Diag(IILoc, diag::err_unknown_typename_suggest)
315            << &II << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
317        else if (DeclContext *DC = computeDeclContext(*SS, false))
318          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
319            << &II << DC << CorrectedQuotedStr << SS->getRange()
320            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
321        else
322          llvm_unreachable("could not have corrected a typo here");
323
324        Diag(Result->getLocation(), diag::note_previous_decl)
325          << CorrectedQuotedStr;
326
327        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
328                                    false, false, ParsedType(),
329                                    /*NonTrivialTypeSourceInfo=*/true);
330        return true;
331      }
332    }
333  }
334
335  if (getLangOptions().CPlusPlus) {
336    // See if II is a class template that the user forgot to pass arguments to.
337    UnqualifiedId Name;
338    Name.setIdentifier(&II, IILoc);
339    CXXScopeSpec EmptySS;
340    TemplateTy TemplateResult;
341    bool MemberOfUnknownSpecialization;
342    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
343                       Name, ParsedType(), true, TemplateResult,
344                       MemberOfUnknownSpecialization) == TNK_Type_template) {
345      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
346      Diag(IILoc, diag::err_template_missing_args) << TplName;
347      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
348        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
349          << TplDecl->getTemplateParameters()->getSourceRange();
350      }
351      return true;
352    }
353  }
354
355  // FIXME: Should we move the logic that tries to recover from a missing tag
356  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
357
358  if (!SS || (!SS->isSet() && !SS->isInvalid()))
359    Diag(IILoc, diag::err_unknown_typename) << &II;
360  else if (DeclContext *DC = computeDeclContext(*SS, false))
361    Diag(IILoc, diag::err_typename_nested_not_found)
362      << &II << DC << SS->getRange();
363  else if (isDependentScopeSpecifier(*SS)) {
364    unsigned DiagID = diag::err_typename_missing;
365    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
366      DiagID = diag::warn_typename_missing;
367
368    Diag(SS->getRange().getBegin(), DiagID)
369      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
370      << SourceRange(SS->getRange().getBegin(), IILoc)
371      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
372    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
373  } else {
374    assert(SS && SS->isInvalid() &&
375           "Invalid scope specifier has already been diagnosed");
376  }
377
378  return true;
379}
380
381/// \brief Determine whether the given result set contains either a type name
382/// or
383static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
384  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
385                       NextToken.is(tok::less);
386
387  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
388    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
389      return true;
390
391    if (CheckTemplate && isa<TemplateDecl>(*I))
392      return true;
393  }
394
395  return false;
396}
397
398Sema::NameClassification Sema::ClassifyName(Scope *S,
399                                            CXXScopeSpec &SS,
400                                            IdentifierInfo *&Name,
401                                            SourceLocation NameLoc,
402                                            const Token &NextToken) {
403  DeclarationNameInfo NameInfo(Name, NameLoc);
404  ObjCMethodDecl *CurMethod = getCurMethodDecl();
405
406  if (NextToken.is(tok::coloncolon)) {
407    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
408                                QualType(), false, SS, 0, false);
409
410  }
411
412  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
413  LookupParsedName(Result, S, &SS, !CurMethod);
414
415  // Perform lookup for Objective-C instance variables (including automatically
416  // synthesized instance variables), if we're in an Objective-C method.
417  // FIXME: This lookup really, really needs to be folded in to the normal
418  // unqualified lookup mechanism.
419  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
420    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
421    if (E.get() || E.isInvalid())
422      return E;
423  }
424
425  bool SecondTry = false;
426  bool IsFilteredTemplateName = false;
427
428Corrected:
429  switch (Result.getResultKind()) {
430  case LookupResult::NotFound:
431    // If an unqualified-id is followed by a '(', then we have a function
432    // call.
433    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
434      // In C++, this is an ADL-only call.
435      // FIXME: Reference?
436      if (getLangOptions().CPlusPlus)
437        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
438
439      // C90 6.3.2.2:
440      //   If the expression that precedes the parenthesized argument list in a
441      //   function call consists solely of an identifier, and if no
442      //   declaration is visible for this identifier, the identifier is
443      //   implicitly declared exactly as if, in the innermost block containing
444      //   the function call, the declaration
445      //
446      //     extern int identifier ();
447      //
448      //   appeared.
449      //
450      // We also allow this in C99 as an extension.
451      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
452        Result.addDecl(D);
453        Result.resolveKind();
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
455      }
456    }
457
458    // In C, we first see whether there is a tag type by the same name, in
459    // which case it's likely that the user just forget to write "enum",
460    // "struct", or "union".
461    if (!getLangOptions().CPlusPlus && !SecondTry) {
462      Result.clear(LookupTagName);
463      LookupParsedName(Result, S, &SS);
464      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
465        const char *TagName = 0;
466        const char *FixItTagName = 0;
467        switch (Tag->getTagKind()) {
468          case TTK_Class:
469            TagName = "class";
470            FixItTagName = "class ";
471            break;
472
473          case TTK_Enum:
474            TagName = "enum";
475            FixItTagName = "enum ";
476            break;
477
478          case TTK_Struct:
479            TagName = "struct";
480            FixItTagName = "struct ";
481            break;
482
483          case TTK_Union:
484            TagName = "union";
485            FixItTagName = "union ";
486            break;
487        }
488
489        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
490          << Name << TagName << getLangOptions().CPlusPlus
491          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
492        break;
493      }
494
495      Result.clear(LookupOrdinaryName);
496    }
497
498    // Perform typo correction to determine if there is another name that is
499    // close to this name.
500    if (!SecondTry) {
501      SecondTry = true;
502      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
503                                                 Result.getLookupKind(), S, &SS)) {
504        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
505        unsigned QualifiedDiag = diag::err_no_member_suggest;
506        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
507        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
508
509        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
510        NamedDecl *UnderlyingFirstDecl
511          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
512        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
513            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
514          UnqualifiedDiag = diag::err_no_template_suggest;
515          QualifiedDiag = diag::err_no_member_template_suggest;
516        } else if (UnderlyingFirstDecl &&
517                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
518                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
520           UnqualifiedDiag = diag::err_unknown_typename_suggest;
521           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
522         }
523
524        if (SS.isEmpty())
525          Diag(NameLoc, UnqualifiedDiag)
526            << Name << CorrectedQuotedStr
527            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
528        else
529          Diag(NameLoc, QualifiedDiag)
530            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
531            << SS.getRange()
532            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
533
534        // Update the name, so that the caller has the new name.
535        Name = Corrected.getCorrectionAsIdentifierInfo();
536
537        // Also update the LookupResult...
538        // FIXME: This should probably go away at some point
539        Result.clear();
540        Result.setLookupName(Corrected.getCorrection());
541        if (FirstDecl) Result.addDecl(FirstDecl);
542
543        // Typo correction corrected to a keyword.
544        if (Corrected.isKeyword())
545          return Corrected.getCorrectionAsIdentifierInfo();
546
547        if (FirstDecl)
548          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549            << CorrectedQuotedStr;
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  return DC->getLexicalParent();
724}
725
726void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
727  assert(getContainingDC(DC) == CurContext &&
728      "The next DeclContext should be lexically contained in the current one.");
729  CurContext = DC;
730  S->setEntity(DC);
731}
732
733void Sema::PopDeclContext() {
734  assert(CurContext && "DeclContext imbalance!");
735
736  CurContext = getContainingDC(CurContext);
737  assert(CurContext && "Popped translation unit!");
738}
739
740/// EnterDeclaratorContext - Used when we must lookup names in the context
741/// of a declarator's nested name specifier.
742///
743void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
744  // C++0x [basic.lookup.unqual]p13:
745  //   A name used in the definition of a static data member of class
746  //   X (after the qualified-id of the static member) is looked up as
747  //   if the name was used in a member function of X.
748  // C++0x [basic.lookup.unqual]p14:
749  //   If a variable member of a namespace is defined outside of the
750  //   scope of its namespace then any name used in the definition of
751  //   the variable member (after the declarator-id) is looked up as
752  //   if the definition of the variable member occurred in its
753  //   namespace.
754  // Both of these imply that we should push a scope whose context
755  // is the semantic context of the declaration.  We can't use
756  // PushDeclContext here because that context is not necessarily
757  // lexically contained in the current context.  Fortunately,
758  // the containing scope should have the appropriate information.
759
760  assert(!S->getEntity() && "scope already has entity");
761
762#ifndef NDEBUG
763  Scope *Ancestor = S->getParent();
764  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
765  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
766#endif
767
768  CurContext = DC;
769  S->setEntity(DC);
770}
771
772void Sema::ExitDeclaratorContext(Scope *S) {
773  assert(S->getEntity() == CurContext && "Context imbalance!");
774
775  // Switch back to the lexical context.  The safety of this is
776  // enforced by an assert in EnterDeclaratorContext.
777  Scope *Ancestor = S->getParent();
778  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
779  CurContext = (DeclContext*) Ancestor->getEntity();
780
781  // We don't need to do anything with the scope, which is going to
782  // disappear.
783}
784
785
786void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
787  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
788  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
789    // We assume that the caller has already called
790    // ActOnReenterTemplateScope
791    FD = TFD->getTemplatedDecl();
792  }
793  if (!FD)
794    return;
795
796  PushDeclContext(S, FD);
797  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
798    ParmVarDecl *Param = FD->getParamDecl(P);
799    // If the parameter has an identifier, then add it to the scope
800    if (Param->getIdentifier()) {
801      S->AddDecl(Param);
802      IdResolver.AddDecl(Param);
803    }
804  }
805}
806
807
808/// \brief Determine whether we allow overloading of the function
809/// PrevDecl with another declaration.
810///
811/// This routine determines whether overloading is possible, not
812/// whether some new function is actually an overload. It will return
813/// true in C++ (where we can always provide overloads) or, as an
814/// extension, in C when the previous function is already an
815/// overloaded function declaration or has the "overloadable"
816/// attribute.
817static bool AllowOverloadingOfFunction(LookupResult &Previous,
818                                       ASTContext &Context) {
819  if (Context.getLangOptions().CPlusPlus)
820    return true;
821
822  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
823    return true;
824
825  return (Previous.getResultKind() == LookupResult::Found
826          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
827}
828
829/// Add this decl to the scope shadowed decl chains.
830void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
831  // Move up the scope chain until we find the nearest enclosing
832  // non-transparent context. The declaration will be introduced into this
833  // scope.
834  while (S->getEntity() &&
835         ((DeclContext *)S->getEntity())->isTransparentContext())
836    S = S->getParent();
837
838  // Add scoped declarations into their context, so that they can be
839  // found later. Declarations without a context won't be inserted
840  // into any context.
841  if (AddToContext)
842    CurContext->addDecl(D);
843
844  // Out-of-line definitions shouldn't be pushed into scope in C++.
845  // Out-of-line variable and function definitions shouldn't even in C.
846  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
847      D->isOutOfLine())
848    return;
849
850  // Template instantiations should also not be pushed into scope.
851  if (isa<FunctionDecl>(D) &&
852      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
853    return;
854
855  // If this replaces anything in the current scope,
856  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
857                               IEnd = IdResolver.end();
858  for (; I != IEnd; ++I) {
859    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
860      S->RemoveDecl(*I);
861      IdResolver.RemoveDecl(*I);
862
863      // Should only need to replace one decl.
864      break;
865    }
866  }
867
868  S->AddDecl(D);
869
870  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
871    // Implicitly-generated labels may end up getting generated in an order that
872    // isn't strictly lexical, which breaks name lookup. Be careful to insert
873    // the label at the appropriate place in the identifier chain.
874    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
875      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
876      if (IDC == CurContext) {
877        if (!S->isDeclScope(*I))
878          continue;
879      } else if (IDC->Encloses(CurContext))
880        break;
881    }
882
883    IdResolver.InsertDeclAfter(I, D);
884  } else {
885    IdResolver.AddDecl(D);
886  }
887}
888
889bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
890                         bool ExplicitInstantiationOrSpecialization) {
891  return IdResolver.isDeclInScope(D, Ctx, Context, S,
892                                  ExplicitInstantiationOrSpecialization);
893}
894
895Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
896  DeclContext *TargetDC = DC->getPrimaryContext();
897  do {
898    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
899      if (ScopeDC->getPrimaryContext() == TargetDC)
900        return S;
901  } while ((S = S->getParent()));
902
903  return 0;
904}
905
906static bool isOutOfScopePreviousDeclaration(NamedDecl *,
907                                            DeclContext*,
908                                            ASTContext&);
909
910/// Filters out lookup results that don't fall within the given scope
911/// as determined by isDeclInScope.
912void Sema::FilterLookupForScope(LookupResult &R,
913                                DeclContext *Ctx, Scope *S,
914                                bool ConsiderLinkage,
915                                bool ExplicitInstantiationOrSpecialization) {
916  LookupResult::Filter F = R.makeFilter();
917  while (F.hasNext()) {
918    NamedDecl *D = F.next();
919
920    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
921      continue;
922
923    if (ConsiderLinkage &&
924        isOutOfScopePreviousDeclaration(D, Ctx, Context))
925      continue;
926
927    F.erase();
928  }
929
930  F.done();
931}
932
933static bool isUsingDecl(NamedDecl *D) {
934  return isa<UsingShadowDecl>(D) ||
935         isa<UnresolvedUsingTypenameDecl>(D) ||
936         isa<UnresolvedUsingValueDecl>(D);
937}
938
939/// Removes using shadow declarations from the lookup results.
940static void RemoveUsingDecls(LookupResult &R) {
941  LookupResult::Filter F = R.makeFilter();
942  while (F.hasNext())
943    if (isUsingDecl(F.next()))
944      F.erase();
945
946  F.done();
947}
948
949/// \brief Check for this common pattern:
950/// @code
951/// class S {
952///   S(const S&); // DO NOT IMPLEMENT
953///   void operator=(const S&); // DO NOT IMPLEMENT
954/// };
955/// @endcode
956static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
957  // FIXME: Should check for private access too but access is set after we get
958  // the decl here.
959  if (D->doesThisDeclarationHaveABody())
960    return false;
961
962  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
963    return CD->isCopyConstructor();
964  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
965    return Method->isCopyAssignmentOperator();
966  return false;
967}
968
969bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
970  assert(D);
971
972  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
973    return false;
974
975  // Ignore class templates.
976  if (D->getDeclContext()->isDependentContext() ||
977      D->getLexicalDeclContext()->isDependentContext())
978    return false;
979
980  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
981    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
982      return false;
983
984    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
985      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
986        return false;
987    } else {
988      // 'static inline' functions are used in headers; don't warn.
989      if (FD->getStorageClass() == SC_Static &&
990          FD->isInlineSpecified())
991        return false;
992    }
993
994    if (FD->doesThisDeclarationHaveABody() &&
995        Context.DeclMustBeEmitted(FD))
996      return false;
997  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
998    if (!VD->isFileVarDecl() ||
999        VD->getType().isConstant(Context) ||
1000        Context.DeclMustBeEmitted(VD))
1001      return false;
1002
1003    if (VD->isStaticDataMember() &&
1004        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1005      return false;
1006
1007  } else {
1008    return false;
1009  }
1010
1011  // Only warn for unused decls internal to the translation unit.
1012  if (D->getLinkage() == ExternalLinkage)
1013    return false;
1014
1015  return true;
1016}
1017
1018void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1019  if (!D)
1020    return;
1021
1022  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1023    const FunctionDecl *First = FD->getFirstDeclaration();
1024    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1025      return; // First should already be in the vector.
1026  }
1027
1028  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1029    const VarDecl *First = VD->getFirstDeclaration();
1030    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1031      return; // First should already be in the vector.
1032  }
1033
1034   if (ShouldWarnIfUnusedFileScopedDecl(D))
1035     UnusedFileScopedDecls.push_back(D);
1036 }
1037
1038static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1039  if (D->isInvalidDecl())
1040    return false;
1041
1042  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1043    return false;
1044
1045  if (isa<LabelDecl>(D))
1046    return true;
1047
1048  // White-list anything that isn't a local variable.
1049  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1050      !D->getDeclContext()->isFunctionOrMethod())
1051    return false;
1052
1053  // Types of valid local variables should be complete, so this should succeed.
1054  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1055
1056    // White-list anything with an __attribute__((unused)) type.
1057    QualType Ty = VD->getType();
1058
1059    // Only look at the outermost level of typedef.
1060    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1061      if (TT->getDecl()->hasAttr<UnusedAttr>())
1062        return false;
1063    }
1064
1065    // If we failed to complete the type for some reason, or if the type is
1066    // dependent, don't diagnose the variable.
1067    if (Ty->isIncompleteType() || Ty->isDependentType())
1068      return false;
1069
1070    if (const TagType *TT = Ty->getAs<TagType>()) {
1071      const TagDecl *Tag = TT->getDecl();
1072      if (Tag->hasAttr<UnusedAttr>())
1073        return false;
1074
1075      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1076        // FIXME: Checking for the presence of a user-declared constructor
1077        // isn't completely accurate; we'd prefer to check that the initializer
1078        // has no side effects.
1079        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1080          return false;
1081      }
1082    }
1083
1084    // TODO: __attribute__((unused)) templates?
1085  }
1086
1087  return true;
1088}
1089
1090static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1091                                     FixItHint &Hint) {
1092  if (isa<LabelDecl>(D)) {
1093    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1094                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1095    if (AfterColon.isInvalid())
1096      return;
1097    Hint = FixItHint::CreateRemoval(CharSourceRange::
1098                                    getCharRange(D->getLocStart(), AfterColon));
1099  }
1100  return;
1101}
1102
1103/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1104/// unless they are marked attr(unused).
1105void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1106  FixItHint Hint;
1107  if (!ShouldDiagnoseUnusedDecl(D))
1108    return;
1109
1110  GenerateFixForUnusedDecl(D, Context, Hint);
1111
1112  unsigned DiagID;
1113  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1114    DiagID = diag::warn_unused_exception_param;
1115  else if (isa<LabelDecl>(D))
1116    DiagID = diag::warn_unused_label;
1117  else
1118    DiagID = diag::warn_unused_variable;
1119
1120  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1121}
1122
1123static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1124  // Verify that we have no forward references left.  If so, there was a goto
1125  // or address of a label taken, but no definition of it.  Label fwd
1126  // definitions are indicated with a null substmt.
1127  if (L->getStmt() == 0)
1128    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1129}
1130
1131void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1132  if (S->decl_empty()) return;
1133  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1134         "Scope shouldn't contain decls!");
1135
1136  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1137       I != E; ++I) {
1138    Decl *TmpD = (*I);
1139    assert(TmpD && "This decl didn't get pushed??");
1140
1141    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1142    NamedDecl *D = cast<NamedDecl>(TmpD);
1143
1144    if (!D->getDeclName()) continue;
1145
1146    // Diagnose unused variables in this scope.
1147    if (!S->hasErrorOccurred())
1148      DiagnoseUnusedDecl(D);
1149
1150    // If this was a forward reference to a label, verify it was defined.
1151    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1152      CheckPoppedLabel(LD, *this);
1153
1154    // Remove this name from our lexical scope.
1155    IdResolver.RemoveDecl(D);
1156  }
1157}
1158
1159/// \brief Look for an Objective-C class in the translation unit.
1160///
1161/// \param Id The name of the Objective-C class we're looking for. If
1162/// typo-correction fixes this name, the Id will be updated
1163/// to the fixed name.
1164///
1165/// \param IdLoc The location of the name in the translation unit.
1166///
1167/// \param TypoCorrection If true, this routine will attempt typo correction
1168/// if there is no class with the given name.
1169///
1170/// \returns The declaration of the named Objective-C class, or NULL if the
1171/// class could not be found.
1172ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1173                                              SourceLocation IdLoc,
1174                                              bool DoTypoCorrection) {
1175  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1176  // creation from this context.
1177  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1178
1179  if (!IDecl && DoTypoCorrection) {
1180    // Perform typo correction at the given location, but only if we
1181    // find an Objective-C class name.
1182    TypoCorrection C;
1183    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1184                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1185        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1186      Diag(IdLoc, diag::err_undef_interface_suggest)
1187        << Id << IDecl->getDeclName()
1188        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1189      Diag(IDecl->getLocation(), diag::note_previous_decl)
1190        << IDecl->getDeclName();
1191
1192      Id = IDecl->getIdentifier();
1193    }
1194  }
1195
1196  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1197}
1198
1199/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1200/// from S, where a non-field would be declared. This routine copes
1201/// with the difference between C and C++ scoping rules in structs and
1202/// unions. For example, the following code is well-formed in C but
1203/// ill-formed in C++:
1204/// @code
1205/// struct S6 {
1206///   enum { BAR } e;
1207/// };
1208///
1209/// void test_S6() {
1210///   struct S6 a;
1211///   a.e = BAR;
1212/// }
1213/// @endcode
1214/// For the declaration of BAR, this routine will return a different
1215/// scope. The scope S will be the scope of the unnamed enumeration
1216/// within S6. In C++, this routine will return the scope associated
1217/// with S6, because the enumeration's scope is a transparent
1218/// context but structures can contain non-field names. In C, this
1219/// routine will return the translation unit scope, since the
1220/// enumeration's scope is a transparent context and structures cannot
1221/// contain non-field names.
1222Scope *Sema::getNonFieldDeclScope(Scope *S) {
1223  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1224         (S->getEntity() &&
1225          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1226         (S->isClassScope() && !getLangOptions().CPlusPlus))
1227    S = S->getParent();
1228  return S;
1229}
1230
1231/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1232/// file scope.  lazily create a decl for it. ForRedeclaration is true
1233/// if we're creating this built-in in anticipation of redeclaring the
1234/// built-in.
1235NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1236                                     Scope *S, bool ForRedeclaration,
1237                                     SourceLocation Loc) {
1238  Builtin::ID BID = (Builtin::ID)bid;
1239
1240  ASTContext::GetBuiltinTypeError Error;
1241  QualType R = Context.GetBuiltinType(BID, Error);
1242  switch (Error) {
1243  case ASTContext::GE_None:
1244    // Okay
1245    break;
1246
1247  case ASTContext::GE_Missing_stdio:
1248    if (ForRedeclaration)
1249      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1250        << Context.BuiltinInfo.GetName(BID);
1251    return 0;
1252
1253  case ASTContext::GE_Missing_setjmp:
1254    if (ForRedeclaration)
1255      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1256        << Context.BuiltinInfo.GetName(BID);
1257    return 0;
1258  }
1259
1260  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1261    Diag(Loc, diag::ext_implicit_lib_function_decl)
1262      << Context.BuiltinInfo.GetName(BID)
1263      << R;
1264    if (Context.BuiltinInfo.getHeaderName(BID) &&
1265        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1266          != Diagnostic::Ignored)
1267      Diag(Loc, diag::note_please_include_header)
1268        << Context.BuiltinInfo.getHeaderName(BID)
1269        << Context.BuiltinInfo.GetName(BID);
1270  }
1271
1272  FunctionDecl *New = FunctionDecl::Create(Context,
1273                                           Context.getTranslationUnitDecl(),
1274                                           Loc, Loc, II, R, /*TInfo=*/0,
1275                                           SC_Extern,
1276                                           SC_None, false,
1277                                           /*hasPrototype=*/true);
1278  New->setImplicit();
1279
1280  // Create Decl objects for each parameter, adding them to the
1281  // FunctionDecl.
1282  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1283    SmallVector<ParmVarDecl*, 16> Params;
1284    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1285      ParmVarDecl *parm =
1286        ParmVarDecl::Create(Context, New, SourceLocation(),
1287                            SourceLocation(), 0,
1288                            FT->getArgType(i), /*TInfo=*/0,
1289                            SC_None, SC_None, 0);
1290      parm->setScopeInfo(0, i);
1291      Params.push_back(parm);
1292    }
1293    New->setParams(Params.data(), Params.size());
1294  }
1295
1296  AddKnownFunctionAttributes(New);
1297
1298  // TUScope is the translation-unit scope to insert this function into.
1299  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1300  // relate Scopes to DeclContexts, and probably eliminate CurContext
1301  // entirely, but we're not there yet.
1302  DeclContext *SavedContext = CurContext;
1303  CurContext = Context.getTranslationUnitDecl();
1304  PushOnScopeChains(New, TUScope);
1305  CurContext = SavedContext;
1306  return New;
1307}
1308
1309/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1310/// same name and scope as a previous declaration 'Old'.  Figure out
1311/// how to resolve this situation, merging decls or emitting
1312/// diagnostics as appropriate. If there was an error, set New to be invalid.
1313///
1314void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1315  // If the new decl is known invalid already, don't bother doing any
1316  // merging checks.
1317  if (New->isInvalidDecl()) return;
1318
1319  // Allow multiple definitions for ObjC built-in typedefs.
1320  // FIXME: Verify the underlying types are equivalent!
1321  if (getLangOptions().ObjC1) {
1322    const IdentifierInfo *TypeID = New->getIdentifier();
1323    switch (TypeID->getLength()) {
1324    default: break;
1325    case 2:
1326      if (!TypeID->isStr("id"))
1327        break;
1328      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1329      // Install the built-in type for 'id', ignoring the current definition.
1330      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1331      return;
1332    case 5:
1333      if (!TypeID->isStr("Class"))
1334        break;
1335      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1336      // Install the built-in type for 'Class', ignoring the current definition.
1337      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1338      return;
1339    case 3:
1340      if (!TypeID->isStr("SEL"))
1341        break;
1342      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1343      // Install the built-in type for 'SEL', ignoring the current definition.
1344      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1345      return;
1346    }
1347    // Fall through - the typedef name was not a builtin type.
1348  }
1349
1350  // Verify the old decl was also a type.
1351  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1352  if (!Old) {
1353    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1354      << New->getDeclName();
1355
1356    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1357    if (OldD->getLocation().isValid())
1358      Diag(OldD->getLocation(), diag::note_previous_definition);
1359
1360    return New->setInvalidDecl();
1361  }
1362
1363  // If the old declaration is invalid, just give up here.
1364  if (Old->isInvalidDecl())
1365    return New->setInvalidDecl();
1366
1367  // Determine the "old" type we'll use for checking and diagnostics.
1368  QualType OldType;
1369  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1370    OldType = OldTypedef->getUnderlyingType();
1371  else
1372    OldType = Context.getTypeDeclType(Old);
1373
1374  // If the typedef types are not identical, reject them in all languages and
1375  // with any extensions enabled.
1376
1377  if (OldType != New->getUnderlyingType() &&
1378      Context.getCanonicalType(OldType) !=
1379      Context.getCanonicalType(New->getUnderlyingType())) {
1380    int Kind = 0;
1381    if (isa<TypeAliasDecl>(Old))
1382      Kind = 1;
1383    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1384      << Kind << New->getUnderlyingType() << OldType;
1385    if (Old->getLocation().isValid())
1386      Diag(Old->getLocation(), diag::note_previous_definition);
1387    return New->setInvalidDecl();
1388  }
1389
1390  // The types match.  Link up the redeclaration chain if the old
1391  // declaration was a typedef.
1392  // FIXME: this is a potential source of weirdness if the type
1393  // spellings don't match exactly.
1394  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1395    New->setPreviousDeclaration(Typedef);
1396
1397  // __module_private__ is propagated to later declarations.
1398  if (Old->isModulePrivate())
1399    New->setModulePrivate();
1400  else if (New->isModulePrivate())
1401    diagnoseModulePrivateRedeclaration(New, Old);
1402
1403  if (getLangOptions().Microsoft)
1404    return;
1405
1406  if (getLangOptions().CPlusPlus) {
1407    // C++ [dcl.typedef]p2:
1408    //   In a given non-class scope, a typedef specifier can be used to
1409    //   redefine the name of any type declared in that scope to refer
1410    //   to the type to which it already refers.
1411    if (!isa<CXXRecordDecl>(CurContext))
1412      return;
1413
1414    // C++0x [dcl.typedef]p4:
1415    //   In a given class scope, a typedef specifier can be used to redefine
1416    //   any class-name declared in that scope that is not also a typedef-name
1417    //   to refer to the type to which it already refers.
1418    //
1419    // This wording came in via DR424, which was a correction to the
1420    // wording in DR56, which accidentally banned code like:
1421    //
1422    //   struct S {
1423    //     typedef struct A { } A;
1424    //   };
1425    //
1426    // in the C++03 standard. We implement the C++0x semantics, which
1427    // allow the above but disallow
1428    //
1429    //   struct S {
1430    //     typedef int I;
1431    //     typedef int I;
1432    //   };
1433    //
1434    // since that was the intent of DR56.
1435    if (!isa<TypedefNameDecl>(Old))
1436      return;
1437
1438    Diag(New->getLocation(), diag::err_redefinition)
1439      << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441    return New->setInvalidDecl();
1442  }
1443
1444  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1445  // is normally mapped to an error, but can be controlled with
1446  // -Wtypedef-redefinition.  If either the original or the redefinition is
1447  // in a system header, don't emit this for compatibility with GCC.
1448  if (getDiagnostics().getSuppressSystemWarnings() &&
1449      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1450       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1451    return;
1452
1453  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1454    << New->getDeclName();
1455  Diag(Old->getLocation(), diag::note_previous_definition);
1456  return;
1457}
1458
1459/// DeclhasAttr - returns true if decl Declaration already has the target
1460/// attribute.
1461static bool
1462DeclHasAttr(const Decl *D, const Attr *A) {
1463  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1464  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1465  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1466    if ((*i)->getKind() == A->getKind()) {
1467      if (Ann) {
1468        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1469          return true;
1470        continue;
1471      }
1472      // FIXME: Don't hardcode this check
1473      if (OA && isa<OwnershipAttr>(*i))
1474        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1475      return true;
1476    }
1477
1478  return false;
1479}
1480
1481/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1482static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1483                                ASTContext &C, bool mergeDeprecation = true) {
1484  if (!oldDecl->hasAttrs())
1485    return;
1486
1487  bool foundAny = newDecl->hasAttrs();
1488
1489  // Ensure that any moving of objects within the allocated map is done before
1490  // we process them.
1491  if (!foundAny) newDecl->setAttrs(AttrVec());
1492
1493  for (specific_attr_iterator<InheritableAttr>
1494       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1495       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1496    // Ignore deprecated and unavailable attributes if requested.
1497    if (!mergeDeprecation &&
1498        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1499      continue;
1500
1501    if (!DeclHasAttr(newDecl, *i)) {
1502      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1503      newAttr->setInherited(true);
1504      newDecl->addAttr(newAttr);
1505      foundAny = true;
1506    }
1507  }
1508
1509  if (!foundAny) newDecl->dropAttrs();
1510}
1511
1512/// mergeParamDeclAttributes - Copy attributes from the old parameter
1513/// to the new one.
1514static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1515                                     const ParmVarDecl *oldDecl,
1516                                     ASTContext &C) {
1517  if (!oldDecl->hasAttrs())
1518    return;
1519
1520  bool foundAny = newDecl->hasAttrs();
1521
1522  // Ensure that any moving of objects within the allocated map is
1523  // done before we process them.
1524  if (!foundAny) newDecl->setAttrs(AttrVec());
1525
1526  for (specific_attr_iterator<InheritableParamAttr>
1527       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1528       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1529    if (!DeclHasAttr(newDecl, *i)) {
1530      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1531      newAttr->setInherited(true);
1532      newDecl->addAttr(newAttr);
1533      foundAny = true;
1534    }
1535  }
1536
1537  if (!foundAny) newDecl->dropAttrs();
1538}
1539
1540namespace {
1541
1542/// Used in MergeFunctionDecl to keep track of function parameters in
1543/// C.
1544struct GNUCompatibleParamWarning {
1545  ParmVarDecl *OldParm;
1546  ParmVarDecl *NewParm;
1547  QualType PromotedType;
1548};
1549
1550}
1551
1552/// getSpecialMember - get the special member enum for a method.
1553Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1554  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1555    if (Ctor->isDefaultConstructor())
1556      return Sema::CXXDefaultConstructor;
1557
1558    if (Ctor->isCopyConstructor())
1559      return Sema::CXXCopyConstructor;
1560
1561    if (Ctor->isMoveConstructor())
1562      return Sema::CXXMoveConstructor;
1563  } else if (isa<CXXDestructorDecl>(MD)) {
1564    return Sema::CXXDestructor;
1565  } else if (MD->isCopyAssignmentOperator()) {
1566    return Sema::CXXCopyAssignment;
1567  } else if (MD->isMoveAssignmentOperator()) {
1568    return Sema::CXXMoveAssignment;
1569  }
1570
1571  return Sema::CXXInvalid;
1572}
1573
1574/// canRedefineFunction - checks if a function can be redefined. Currently,
1575/// only extern inline functions can be redefined, and even then only in
1576/// GNU89 mode.
1577static bool canRedefineFunction(const FunctionDecl *FD,
1578                                const LangOptions& LangOpts) {
1579  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1580          !LangOpts.CPlusPlus &&
1581          FD->isInlineSpecified() &&
1582          FD->getStorageClass() == SC_Extern);
1583}
1584
1585/// MergeFunctionDecl - We just parsed a function 'New' from
1586/// declarator D which has the same name and scope as a previous
1587/// declaration 'Old'.  Figure out how to resolve this situation,
1588/// merging decls or emitting diagnostics as appropriate.
1589///
1590/// In C++, New and Old must be declarations that are not
1591/// overloaded. Use IsOverload to determine whether New and Old are
1592/// overloaded, and to select the Old declaration that New should be
1593/// merged with.
1594///
1595/// Returns true if there was an error, false otherwise.
1596bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1597  // Verify the old decl was also a function.
1598  FunctionDecl *Old = 0;
1599  if (FunctionTemplateDecl *OldFunctionTemplate
1600        = dyn_cast<FunctionTemplateDecl>(OldD))
1601    Old = OldFunctionTemplate->getTemplatedDecl();
1602  else
1603    Old = dyn_cast<FunctionDecl>(OldD);
1604  if (!Old) {
1605    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1606      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1607      Diag(Shadow->getTargetDecl()->getLocation(),
1608           diag::note_using_decl_target);
1609      Diag(Shadow->getUsingDecl()->getLocation(),
1610           diag::note_using_decl) << 0;
1611      return true;
1612    }
1613
1614    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1615      << New->getDeclName();
1616    Diag(OldD->getLocation(), diag::note_previous_definition);
1617    return true;
1618  }
1619
1620  // Determine whether the previous declaration was a definition,
1621  // implicit declaration, or a declaration.
1622  diag::kind PrevDiag;
1623  if (Old->isThisDeclarationADefinition())
1624    PrevDiag = diag::note_previous_definition;
1625  else if (Old->isImplicit())
1626    PrevDiag = diag::note_previous_implicit_declaration;
1627  else
1628    PrevDiag = diag::note_previous_declaration;
1629
1630  QualType OldQType = Context.getCanonicalType(Old->getType());
1631  QualType NewQType = Context.getCanonicalType(New->getType());
1632
1633  // Don't complain about this if we're in GNU89 mode and the old function
1634  // is an extern inline function.
1635  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1636      New->getStorageClass() == SC_Static &&
1637      Old->getStorageClass() != SC_Static &&
1638      !canRedefineFunction(Old, getLangOptions())) {
1639    if (getLangOptions().Microsoft) {
1640      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1641      Diag(Old->getLocation(), PrevDiag);
1642    } else {
1643      Diag(New->getLocation(), diag::err_static_non_static) << New;
1644      Diag(Old->getLocation(), PrevDiag);
1645      return true;
1646    }
1647  }
1648
1649  // If a function is first declared with a calling convention, but is
1650  // later declared or defined without one, the second decl assumes the
1651  // calling convention of the first.
1652  //
1653  // For the new decl, we have to look at the NON-canonical type to tell the
1654  // difference between a function that really doesn't have a calling
1655  // convention and one that is declared cdecl. That's because in
1656  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1657  // because it is the default calling convention.
1658  //
1659  // Note also that we DO NOT return at this point, because we still have
1660  // other tests to run.
1661  const FunctionType *OldType = cast<FunctionType>(OldQType);
1662  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1663  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1664  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1665  bool RequiresAdjustment = false;
1666  if (OldTypeInfo.getCC() != CC_Default &&
1667      NewTypeInfo.getCC() == CC_Default) {
1668    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1669    RequiresAdjustment = true;
1670  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1671                                     NewTypeInfo.getCC())) {
1672    // Calling conventions really aren't compatible, so complain.
1673    Diag(New->getLocation(), diag::err_cconv_change)
1674      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1675      << (OldTypeInfo.getCC() == CC_Default)
1676      << (OldTypeInfo.getCC() == CC_Default ? "" :
1677          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1678    Diag(Old->getLocation(), diag::note_previous_declaration);
1679    return true;
1680  }
1681
1682  // FIXME: diagnose the other way around?
1683  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1684    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1685    RequiresAdjustment = true;
1686  }
1687
1688  // Merge regparm attribute.
1689  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1690      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1691    if (NewTypeInfo.getHasRegParm()) {
1692      Diag(New->getLocation(), diag::err_regparm_mismatch)
1693        << NewType->getRegParmType()
1694        << OldType->getRegParmType();
1695      Diag(Old->getLocation(), diag::note_previous_declaration);
1696      return true;
1697    }
1698
1699    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1700    RequiresAdjustment = true;
1701  }
1702
1703  if (RequiresAdjustment) {
1704    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1705    New->setType(QualType(NewType, 0));
1706    NewQType = Context.getCanonicalType(New->getType());
1707  }
1708
1709  if (getLangOptions().CPlusPlus) {
1710    // (C++98 13.1p2):
1711    //   Certain function declarations cannot be overloaded:
1712    //     -- Function declarations that differ only in the return type
1713    //        cannot be overloaded.
1714    QualType OldReturnType = OldType->getResultType();
1715    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1716    QualType ResQT;
1717    if (OldReturnType != NewReturnType) {
1718      if (NewReturnType->isObjCObjectPointerType()
1719          && OldReturnType->isObjCObjectPointerType())
1720        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1721      if (ResQT.isNull()) {
1722        if (New->isCXXClassMember() && New->isOutOfLine())
1723          Diag(New->getLocation(),
1724               diag::err_member_def_does_not_match_ret_type) << New;
1725        else
1726          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1727        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1728        return true;
1729      }
1730      else
1731        NewQType = ResQT;
1732    }
1733
1734    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1735    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1736    if (OldMethod && NewMethod) {
1737      // Preserve triviality.
1738      NewMethod->setTrivial(OldMethod->isTrivial());
1739
1740      // MSVC allows explicit template specialization at class scope:
1741      // 2 CXMethodDecls referring to the same function will be injected.
1742      // We don't want a redeclartion error.
1743      bool IsClassScopeExplicitSpecialization =
1744                              OldMethod->isFunctionTemplateSpecialization() &&
1745                              NewMethod->isFunctionTemplateSpecialization();
1746      bool isFriend = NewMethod->getFriendObjectKind();
1747
1748      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1749          !IsClassScopeExplicitSpecialization) {
1750        //    -- Member function declarations with the same name and the
1751        //       same parameter types cannot be overloaded if any of them
1752        //       is a static member function declaration.
1753        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1754          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1755          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1756          return true;
1757        }
1758
1759        // C++ [class.mem]p1:
1760        //   [...] A member shall not be declared twice in the
1761        //   member-specification, except that a nested class or member
1762        //   class template can be declared and then later defined.
1763        unsigned NewDiag;
1764        if (isa<CXXConstructorDecl>(OldMethod))
1765          NewDiag = diag::err_constructor_redeclared;
1766        else if (isa<CXXDestructorDecl>(NewMethod))
1767          NewDiag = diag::err_destructor_redeclared;
1768        else if (isa<CXXConversionDecl>(NewMethod))
1769          NewDiag = diag::err_conv_function_redeclared;
1770        else
1771          NewDiag = diag::err_member_redeclared;
1772
1773        Diag(New->getLocation(), NewDiag);
1774        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1775
1776      // Complain if this is an explicit declaration of a special
1777      // member that was initially declared implicitly.
1778      //
1779      // As an exception, it's okay to befriend such methods in order
1780      // to permit the implicit constructor/destructor/operator calls.
1781      } else if (OldMethod->isImplicit()) {
1782        if (isFriend) {
1783          NewMethod->setImplicit();
1784        } else {
1785          Diag(NewMethod->getLocation(),
1786               diag::err_definition_of_implicitly_declared_member)
1787            << New << getSpecialMember(OldMethod);
1788          return true;
1789        }
1790      } else if (OldMethod->isExplicitlyDefaulted()) {
1791        Diag(NewMethod->getLocation(),
1792             diag::err_definition_of_explicitly_defaulted_member)
1793          << getSpecialMember(OldMethod);
1794        return true;
1795      }
1796    }
1797
1798    // (C++98 8.3.5p3):
1799    //   All declarations for a function shall agree exactly in both the
1800    //   return type and the parameter-type-list.
1801    // We also want to respect all the extended bits except noreturn.
1802
1803    // noreturn should now match unless the old type info didn't have it.
1804    QualType OldQTypeForComparison = OldQType;
1805    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1806      assert(OldQType == QualType(OldType, 0));
1807      const FunctionType *OldTypeForComparison
1808        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1809      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1810      assert(OldQTypeForComparison.isCanonical());
1811    }
1812
1813    if (OldQTypeForComparison == NewQType)
1814      return MergeCompatibleFunctionDecls(New, Old);
1815
1816    // Fall through for conflicting redeclarations and redefinitions.
1817  }
1818
1819  // C: Function types need to be compatible, not identical. This handles
1820  // duplicate function decls like "void f(int); void f(enum X);" properly.
1821  if (!getLangOptions().CPlusPlus &&
1822      Context.typesAreCompatible(OldQType, NewQType)) {
1823    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1824    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1825    const FunctionProtoType *OldProto = 0;
1826    if (isa<FunctionNoProtoType>(NewFuncType) &&
1827        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1828      // The old declaration provided a function prototype, but the
1829      // new declaration does not. Merge in the prototype.
1830      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1831      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1832                                                 OldProto->arg_type_end());
1833      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1834                                         ParamTypes.data(), ParamTypes.size(),
1835                                         OldProto->getExtProtoInfo());
1836      New->setType(NewQType);
1837      New->setHasInheritedPrototype();
1838
1839      // Synthesize a parameter for each argument type.
1840      SmallVector<ParmVarDecl*, 16> Params;
1841      for (FunctionProtoType::arg_type_iterator
1842             ParamType = OldProto->arg_type_begin(),
1843             ParamEnd = OldProto->arg_type_end();
1844           ParamType != ParamEnd; ++ParamType) {
1845        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1846                                                 SourceLocation(),
1847                                                 SourceLocation(), 0,
1848                                                 *ParamType, /*TInfo=*/0,
1849                                                 SC_None, SC_None,
1850                                                 0);
1851        Param->setScopeInfo(0, Params.size());
1852        Param->setImplicit();
1853        Params.push_back(Param);
1854      }
1855
1856      New->setParams(Params.data(), Params.size());
1857    }
1858
1859    return MergeCompatibleFunctionDecls(New, Old);
1860  }
1861
1862  // GNU C permits a K&R definition to follow a prototype declaration
1863  // if the declared types of the parameters in the K&R definition
1864  // match the types in the prototype declaration, even when the
1865  // promoted types of the parameters from the K&R definition differ
1866  // from the types in the prototype. GCC then keeps the types from
1867  // the prototype.
1868  //
1869  // If a variadic prototype is followed by a non-variadic K&R definition,
1870  // the K&R definition becomes variadic.  This is sort of an edge case, but
1871  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1872  // C99 6.9.1p8.
1873  if (!getLangOptions().CPlusPlus &&
1874      Old->hasPrototype() && !New->hasPrototype() &&
1875      New->getType()->getAs<FunctionProtoType>() &&
1876      Old->getNumParams() == New->getNumParams()) {
1877    SmallVector<QualType, 16> ArgTypes;
1878    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1879    const FunctionProtoType *OldProto
1880      = Old->getType()->getAs<FunctionProtoType>();
1881    const FunctionProtoType *NewProto
1882      = New->getType()->getAs<FunctionProtoType>();
1883
1884    // Determine whether this is the GNU C extension.
1885    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1886                                               NewProto->getResultType());
1887    bool LooseCompatible = !MergedReturn.isNull();
1888    for (unsigned Idx = 0, End = Old->getNumParams();
1889         LooseCompatible && Idx != End; ++Idx) {
1890      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1891      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1892      if (Context.typesAreCompatible(OldParm->getType(),
1893                                     NewProto->getArgType(Idx))) {
1894        ArgTypes.push_back(NewParm->getType());
1895      } else if (Context.typesAreCompatible(OldParm->getType(),
1896                                            NewParm->getType(),
1897                                            /*CompareUnqualified=*/true)) {
1898        GNUCompatibleParamWarning Warn
1899          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1900        Warnings.push_back(Warn);
1901        ArgTypes.push_back(NewParm->getType());
1902      } else
1903        LooseCompatible = false;
1904    }
1905
1906    if (LooseCompatible) {
1907      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1908        Diag(Warnings[Warn].NewParm->getLocation(),
1909             diag::ext_param_promoted_not_compatible_with_prototype)
1910          << Warnings[Warn].PromotedType
1911          << Warnings[Warn].OldParm->getType();
1912        if (Warnings[Warn].OldParm->getLocation().isValid())
1913          Diag(Warnings[Warn].OldParm->getLocation(),
1914               diag::note_previous_declaration);
1915      }
1916
1917      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1918                                           ArgTypes.size(),
1919                                           OldProto->getExtProtoInfo()));
1920      return MergeCompatibleFunctionDecls(New, Old);
1921    }
1922
1923    // Fall through to diagnose conflicting types.
1924  }
1925
1926  // A function that has already been declared has been redeclared or defined
1927  // with a different type- show appropriate diagnostic
1928  if (unsigned BuiltinID = Old->getBuiltinID()) {
1929    // The user has declared a builtin function with an incompatible
1930    // signature.
1931    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1932      // The function the user is redeclaring is a library-defined
1933      // function like 'malloc' or 'printf'. Warn about the
1934      // redeclaration, then pretend that we don't know about this
1935      // library built-in.
1936      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1937      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1938        << Old << Old->getType();
1939      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1940      Old->setInvalidDecl();
1941      return false;
1942    }
1943
1944    PrevDiag = diag::note_previous_builtin_declaration;
1945  }
1946
1947  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1948  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1949  return true;
1950}
1951
1952/// \brief Completes the merge of two function declarations that are
1953/// known to be compatible.
1954///
1955/// This routine handles the merging of attributes and other
1956/// properties of function declarations form the old declaration to
1957/// the new declaration, once we know that New is in fact a
1958/// redeclaration of Old.
1959///
1960/// \returns false
1961bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1962  // Merge the attributes
1963  mergeDeclAttributes(New, Old, Context);
1964
1965  // Merge the storage class.
1966  if (Old->getStorageClass() != SC_Extern &&
1967      Old->getStorageClass() != SC_None)
1968    New->setStorageClass(Old->getStorageClass());
1969
1970  // Merge "pure" flag.
1971  if (Old->isPure())
1972    New->setPure();
1973
1974  // __module_private__ is propagated to later declarations.
1975  if (Old->isModulePrivate())
1976    New->setModulePrivate();
1977  else if (New->isModulePrivate())
1978    diagnoseModulePrivateRedeclaration(New, Old);
1979
1980  // Merge attributes from the parameters.  These can mismatch with K&R
1981  // declarations.
1982  if (New->getNumParams() == Old->getNumParams())
1983    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1984      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1985                               Context);
1986
1987  if (getLangOptions().CPlusPlus)
1988    return MergeCXXFunctionDecl(New, Old);
1989
1990  return false;
1991}
1992
1993
1994void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1995                                const ObjCMethodDecl *oldMethod) {
1996  // We don't want to merge unavailable and deprecated attributes
1997  // except from interface to implementation.
1998  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1999
2000  // Merge the attributes.
2001  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2002
2003  // Merge attributes from the parameters.
2004  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
2005         ni = newMethod->param_begin(), ne = newMethod->param_end();
2006       ni != ne; ++ni, ++oi)
2007    mergeParamDeclAttributes(*ni, *oi, Context);
2008
2009  CheckObjCMethodOverride(newMethod, oldMethod, true);
2010}
2011
2012/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2013/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2014/// emitting diagnostics as appropriate.
2015///
2016/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2017/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2018/// check them before the initializer is attached.
2019///
2020void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2021  if (New->isInvalidDecl() || Old->isInvalidDecl())
2022    return;
2023
2024  QualType MergedT;
2025  if (getLangOptions().CPlusPlus) {
2026    AutoType *AT = New->getType()->getContainedAutoType();
2027    if (AT && !AT->isDeduced()) {
2028      // We don't know what the new type is until the initializer is attached.
2029      return;
2030    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2031      // These could still be something that needs exception specs checked.
2032      return MergeVarDeclExceptionSpecs(New, Old);
2033    }
2034    // C++ [basic.link]p10:
2035    //   [...] the types specified by all declarations referring to a given
2036    //   object or function shall be identical, except that declarations for an
2037    //   array object can specify array types that differ by the presence or
2038    //   absence of a major array bound (8.3.4).
2039    else if (Old->getType()->isIncompleteArrayType() &&
2040             New->getType()->isArrayType()) {
2041      CanQual<ArrayType> OldArray
2042        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2043      CanQual<ArrayType> NewArray
2044        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2045      if (OldArray->getElementType() == NewArray->getElementType())
2046        MergedT = New->getType();
2047    } else if (Old->getType()->isArrayType() &&
2048             New->getType()->isIncompleteArrayType()) {
2049      CanQual<ArrayType> OldArray
2050        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2051      CanQual<ArrayType> NewArray
2052        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2053      if (OldArray->getElementType() == NewArray->getElementType())
2054        MergedT = Old->getType();
2055    } else if (New->getType()->isObjCObjectPointerType()
2056               && Old->getType()->isObjCObjectPointerType()) {
2057        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2058                                                        Old->getType());
2059    }
2060  } else {
2061    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2062  }
2063  if (MergedT.isNull()) {
2064    Diag(New->getLocation(), diag::err_redefinition_different_type)
2065      << New->getDeclName();
2066    Diag(Old->getLocation(), diag::note_previous_definition);
2067    return New->setInvalidDecl();
2068  }
2069  New->setType(MergedT);
2070}
2071
2072/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2073/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2074/// situation, merging decls or emitting diagnostics as appropriate.
2075///
2076/// Tentative definition rules (C99 6.9.2p2) are checked by
2077/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2078/// definitions here, since the initializer hasn't been attached.
2079///
2080void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2081  // If the new decl is already invalid, don't do any other checking.
2082  if (New->isInvalidDecl())
2083    return;
2084
2085  // Verify the old decl was also a variable.
2086  VarDecl *Old = 0;
2087  if (!Previous.isSingleResult() ||
2088      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2089    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2090      << New->getDeclName();
2091    Diag(Previous.getRepresentativeDecl()->getLocation(),
2092         diag::note_previous_definition);
2093    return New->setInvalidDecl();
2094  }
2095
2096  // C++ [class.mem]p1:
2097  //   A member shall not be declared twice in the member-specification [...]
2098  //
2099  // Here, we need only consider static data members.
2100  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2101    Diag(New->getLocation(), diag::err_duplicate_member)
2102      << New->getIdentifier();
2103    Diag(Old->getLocation(), diag::note_previous_declaration);
2104    New->setInvalidDecl();
2105  }
2106
2107  mergeDeclAttributes(New, Old, Context);
2108  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2109  if (New->getAttr<WeakImportAttr>() &&
2110      Old->getStorageClass() == SC_None &&
2111      !Old->getAttr<WeakImportAttr>()) {
2112    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2113    Diag(Old->getLocation(), diag::note_previous_definition);
2114    // Remove weak_import attribute on new declaration.
2115    New->dropAttr<WeakImportAttr>();
2116  }
2117
2118  // Merge the types.
2119  MergeVarDeclTypes(New, Old);
2120  if (New->isInvalidDecl())
2121    return;
2122
2123  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2124  if (New->getStorageClass() == SC_Static &&
2125      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2126    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2127    Diag(Old->getLocation(), diag::note_previous_definition);
2128    return New->setInvalidDecl();
2129  }
2130  // C99 6.2.2p4:
2131  //   For an identifier declared with the storage-class specifier
2132  //   extern in a scope in which a prior declaration of that
2133  //   identifier is visible,23) if the prior declaration specifies
2134  //   internal or external linkage, the linkage of the identifier at
2135  //   the later declaration is the same as the linkage specified at
2136  //   the prior declaration. If no prior declaration is visible, or
2137  //   if the prior declaration specifies no linkage, then the
2138  //   identifier has external linkage.
2139  if (New->hasExternalStorage() && Old->hasLinkage())
2140    /* Okay */;
2141  else if (New->getStorageClass() != SC_Static &&
2142           Old->getStorageClass() == SC_Static) {
2143    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2144    Diag(Old->getLocation(), diag::note_previous_definition);
2145    return New->setInvalidDecl();
2146  }
2147
2148  // Check if extern is followed by non-extern and vice-versa.
2149  if (New->hasExternalStorage() &&
2150      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2151    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2152    Diag(Old->getLocation(), diag::note_previous_definition);
2153    return New->setInvalidDecl();
2154  }
2155  if (Old->hasExternalStorage() &&
2156      !New->hasLinkage() && New->isLocalVarDecl()) {
2157    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2158    Diag(Old->getLocation(), diag::note_previous_definition);
2159    return New->setInvalidDecl();
2160  }
2161
2162  // __module_private__ is propagated to later declarations.
2163  if (Old->isModulePrivate())
2164    New->setModulePrivate();
2165  else if (New->isModulePrivate())
2166    diagnoseModulePrivateRedeclaration(New, Old);
2167
2168  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2169
2170  // FIXME: The test for external storage here seems wrong? We still
2171  // need to check for mismatches.
2172  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2173      // Don't complain about out-of-line definitions of static members.
2174      !(Old->getLexicalDeclContext()->isRecord() &&
2175        !New->getLexicalDeclContext()->isRecord())) {
2176    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2177    Diag(Old->getLocation(), diag::note_previous_definition);
2178    return New->setInvalidDecl();
2179  }
2180
2181  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2182    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2183    Diag(Old->getLocation(), diag::note_previous_definition);
2184  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2185    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2186    Diag(Old->getLocation(), diag::note_previous_definition);
2187  }
2188
2189  // C++ doesn't have tentative definitions, so go right ahead and check here.
2190  const VarDecl *Def;
2191  if (getLangOptions().CPlusPlus &&
2192      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2193      (Def = Old->getDefinition())) {
2194    Diag(New->getLocation(), diag::err_redefinition)
2195      << New->getDeclName();
2196    Diag(Def->getLocation(), diag::note_previous_definition);
2197    New->setInvalidDecl();
2198    return;
2199  }
2200  // c99 6.2.2 P4.
2201  // For an identifier declared with the storage-class specifier extern in a
2202  // scope in which a prior declaration of that identifier is visible, if
2203  // the prior declaration specifies internal or external linkage, the linkage
2204  // of the identifier at the later declaration is the same as the linkage
2205  // specified at the prior declaration.
2206  // FIXME. revisit this code.
2207  if (New->hasExternalStorage() &&
2208      Old->getLinkage() == InternalLinkage &&
2209      New->getDeclContext() == Old->getDeclContext())
2210    New->setStorageClass(Old->getStorageClass());
2211
2212  // Keep a chain of previous declarations.
2213  New->setPreviousDeclaration(Old);
2214
2215  // Inherit access appropriately.
2216  New->setAccess(Old->getAccess());
2217}
2218
2219/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2220/// no declarator (e.g. "struct foo;") is parsed.
2221Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2222                                       DeclSpec &DS) {
2223  return ParsedFreeStandingDeclSpec(S, AS, DS,
2224                                    MultiTemplateParamsArg(*this, 0, 0));
2225}
2226
2227/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2228/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2229/// parameters to cope with template friend declarations.
2230Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2231                                       DeclSpec &DS,
2232                                       MultiTemplateParamsArg TemplateParams) {
2233  Decl *TagD = 0;
2234  TagDecl *Tag = 0;
2235  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2236      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2237      DS.getTypeSpecType() == DeclSpec::TST_union ||
2238      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2239    TagD = DS.getRepAsDecl();
2240
2241    if (!TagD) // We probably had an error
2242      return 0;
2243
2244    // Note that the above type specs guarantee that the
2245    // type rep is a Decl, whereas in many of the others
2246    // it's a Type.
2247    Tag = dyn_cast<TagDecl>(TagD);
2248  }
2249
2250  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2251    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2252    // or incomplete types shall not be restrict-qualified."
2253    if (TypeQuals & DeclSpec::TQ_restrict)
2254      Diag(DS.getRestrictSpecLoc(),
2255           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2256           << DS.getSourceRange();
2257  }
2258
2259  if (DS.isConstexprSpecified()) {
2260    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2261    // and definitions of functions and variables.
2262    if (Tag)
2263      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2264        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2265            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2266            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2267    else
2268      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2269    // Don't emit warnings after this error.
2270    return TagD;
2271  }
2272
2273  if (DS.isFriendSpecified()) {
2274    // If we're dealing with a decl but not a TagDecl, assume that
2275    // whatever routines created it handled the friendship aspect.
2276    if (TagD && !Tag)
2277      return 0;
2278    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2279  }
2280
2281  // Track whether we warned about the fact that there aren't any
2282  // declarators.
2283  bool emittedWarning = false;
2284
2285  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2286    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2287
2288    if (!Record->getDeclName() && Record->isDefinition() &&
2289        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2290      if (getLangOptions().CPlusPlus ||
2291          Record->getDeclContext()->isRecord())
2292        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2293
2294      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2295        << DS.getSourceRange();
2296      emittedWarning = true;
2297    }
2298  }
2299
2300  // Check for Microsoft C extension: anonymous struct.
2301  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2302      CurContext->isRecord() &&
2303      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2304    // Handle 2 kinds of anonymous struct:
2305    //   struct STRUCT;
2306    // and
2307    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2308    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2309    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2310        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2311         DS.getRepAsType().get()->isStructureType())) {
2312      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2313        << DS.getSourceRange();
2314      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2315    }
2316  }
2317
2318  if (getLangOptions().CPlusPlus &&
2319      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2320    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2321      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2322          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2323        Diag(Enum->getLocation(), diag::ext_no_declarators)
2324          << DS.getSourceRange();
2325        emittedWarning = true;
2326      }
2327
2328  // Skip all the checks below if we have a type error.
2329  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2330
2331  if (!DS.isMissingDeclaratorOk()) {
2332    // Warn about typedefs of enums without names, since this is an
2333    // extension in both Microsoft and GNU.
2334    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2335        Tag && isa<EnumDecl>(Tag)) {
2336      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2337        << DS.getSourceRange();
2338      return Tag;
2339    }
2340
2341    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2342      << DS.getSourceRange();
2343    emittedWarning = true;
2344  }
2345
2346  // We're going to complain about a bunch of spurious specifiers;
2347  // only do this if we're declaring a tag, because otherwise we
2348  // should be getting diag::ext_no_declarators.
2349  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2350    return TagD;
2351
2352  // Note that a linkage-specification sets a storage class, but
2353  // 'extern "C" struct foo;' is actually valid and not theoretically
2354  // useless.
2355  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2356    if (!DS.isExternInLinkageSpec())
2357      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2358        << DeclSpec::getSpecifierName(scs);
2359
2360  if (DS.isThreadSpecified())
2361    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2362  if (DS.getTypeQualifiers()) {
2363    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2364      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2365    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2366      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2367    // Restrict is covered above.
2368  }
2369  if (DS.isInlineSpecified())
2370    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2371  if (DS.isVirtualSpecified())
2372    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2373  if (DS.isExplicitSpecified())
2374    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2375
2376  // FIXME: Warn on useless attributes
2377
2378  return TagD;
2379}
2380
2381/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2382/// builds a statement for it and returns it so it is evaluated.
2383StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2384  StmtResult R;
2385  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2386    Expr *Exp = DS.getRepAsExpr();
2387    QualType Ty = Exp->getType();
2388    if (Ty->isPointerType()) {
2389      do
2390        Ty = Ty->getAs<PointerType>()->getPointeeType();
2391      while (Ty->isPointerType());
2392    }
2393    if (Ty->isVariableArrayType()) {
2394      R = ActOnExprStmt(MakeFullExpr(Exp));
2395    }
2396  }
2397  return R;
2398}
2399
2400/// We are trying to inject an anonymous member into the given scope;
2401/// check if there's an existing declaration that can't be overloaded.
2402///
2403/// \return true if this is a forbidden redeclaration
2404static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2405                                         Scope *S,
2406                                         DeclContext *Owner,
2407                                         DeclarationName Name,
2408                                         SourceLocation NameLoc,
2409                                         unsigned diagnostic) {
2410  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2411                 Sema::ForRedeclaration);
2412  if (!SemaRef.LookupName(R, S)) return false;
2413
2414  if (R.getAsSingle<TagDecl>())
2415    return false;
2416
2417  // Pick a representative declaration.
2418  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2419  assert(PrevDecl && "Expected a non-null Decl");
2420
2421  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2422    return false;
2423
2424  SemaRef.Diag(NameLoc, diagnostic) << Name;
2425  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2426
2427  return true;
2428}
2429
2430/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2431/// anonymous struct or union AnonRecord into the owning context Owner
2432/// and scope S. This routine will be invoked just after we realize
2433/// that an unnamed union or struct is actually an anonymous union or
2434/// struct, e.g.,
2435///
2436/// @code
2437/// union {
2438///   int i;
2439///   float f;
2440/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2441///    // f into the surrounding scope.x
2442/// @endcode
2443///
2444/// This routine is recursive, injecting the names of nested anonymous
2445/// structs/unions into the owning context and scope as well.
2446static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2447                                                DeclContext *Owner,
2448                                                RecordDecl *AnonRecord,
2449                                                AccessSpecifier AS,
2450                              SmallVector<NamedDecl*, 2> &Chaining,
2451                                                      bool MSAnonStruct) {
2452  unsigned diagKind
2453    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2454                            : diag::err_anonymous_struct_member_redecl;
2455
2456  bool Invalid = false;
2457
2458  // Look every FieldDecl and IndirectFieldDecl with a name.
2459  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2460                               DEnd = AnonRecord->decls_end();
2461       D != DEnd; ++D) {
2462    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2463        cast<NamedDecl>(*D)->getDeclName()) {
2464      ValueDecl *VD = cast<ValueDecl>(*D);
2465      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2466                                       VD->getLocation(), diagKind)) {
2467        // C++ [class.union]p2:
2468        //   The names of the members of an anonymous union shall be
2469        //   distinct from the names of any other entity in the
2470        //   scope in which the anonymous union is declared.
2471        Invalid = true;
2472      } else {
2473        // C++ [class.union]p2:
2474        //   For the purpose of name lookup, after the anonymous union
2475        //   definition, the members of the anonymous union are
2476        //   considered to have been defined in the scope in which the
2477        //   anonymous union is declared.
2478        unsigned OldChainingSize = Chaining.size();
2479        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2480          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2481               PE = IF->chain_end(); PI != PE; ++PI)
2482            Chaining.push_back(*PI);
2483        else
2484          Chaining.push_back(VD);
2485
2486        assert(Chaining.size() >= 2);
2487        NamedDecl **NamedChain =
2488          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2489        for (unsigned i = 0; i < Chaining.size(); i++)
2490          NamedChain[i] = Chaining[i];
2491
2492        IndirectFieldDecl* IndirectField =
2493          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2494                                    VD->getIdentifier(), VD->getType(),
2495                                    NamedChain, Chaining.size());
2496
2497        IndirectField->setAccess(AS);
2498        IndirectField->setImplicit();
2499        SemaRef.PushOnScopeChains(IndirectField, S);
2500
2501        // That includes picking up the appropriate access specifier.
2502        if (AS != AS_none) IndirectField->setAccess(AS);
2503
2504        Chaining.resize(OldChainingSize);
2505      }
2506    }
2507  }
2508
2509  return Invalid;
2510}
2511
2512/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2513/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2514/// illegal input values are mapped to SC_None.
2515static StorageClass
2516StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2517  switch (StorageClassSpec) {
2518  case DeclSpec::SCS_unspecified:    return SC_None;
2519  case DeclSpec::SCS_extern:         return SC_Extern;
2520  case DeclSpec::SCS_static:         return SC_Static;
2521  case DeclSpec::SCS_auto:           return SC_Auto;
2522  case DeclSpec::SCS_register:       return SC_Register;
2523  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2524    // Illegal SCSs map to None: error reporting is up to the caller.
2525  case DeclSpec::SCS_mutable:        // Fall through.
2526  case DeclSpec::SCS_typedef:        return SC_None;
2527  }
2528  llvm_unreachable("unknown storage class specifier");
2529}
2530
2531/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2532/// a StorageClass. Any error reporting is up to the caller:
2533/// illegal input values are mapped to SC_None.
2534static StorageClass
2535StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2536  switch (StorageClassSpec) {
2537  case DeclSpec::SCS_unspecified:    return SC_None;
2538  case DeclSpec::SCS_extern:         return SC_Extern;
2539  case DeclSpec::SCS_static:         return SC_Static;
2540  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2541    // Illegal SCSs map to None: error reporting is up to the caller.
2542  case DeclSpec::SCS_auto:           // Fall through.
2543  case DeclSpec::SCS_mutable:        // Fall through.
2544  case DeclSpec::SCS_register:       // Fall through.
2545  case DeclSpec::SCS_typedef:        return SC_None;
2546  }
2547  llvm_unreachable("unknown storage class specifier");
2548}
2549
2550/// BuildAnonymousStructOrUnion - Handle the declaration of an
2551/// anonymous structure or union. Anonymous unions are a C++ feature
2552/// (C++ [class.union]) and a GNU C extension; anonymous structures
2553/// are a GNU C and GNU C++ extension.
2554Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2555                                             AccessSpecifier AS,
2556                                             RecordDecl *Record) {
2557  DeclContext *Owner = Record->getDeclContext();
2558
2559  // Diagnose whether this anonymous struct/union is an extension.
2560  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2561    Diag(Record->getLocation(), diag::ext_anonymous_union);
2562  else if (!Record->isUnion())
2563    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2564
2565  // C and C++ require different kinds of checks for anonymous
2566  // structs/unions.
2567  bool Invalid = false;
2568  if (getLangOptions().CPlusPlus) {
2569    const char* PrevSpec = 0;
2570    unsigned DiagID;
2571    // C++ [class.union]p3:
2572    //   Anonymous unions declared in a named namespace or in the
2573    //   global namespace shall be declared static.
2574    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2575        (isa<TranslationUnitDecl>(Owner) ||
2576         (isa<NamespaceDecl>(Owner) &&
2577          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2578      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2579      Invalid = true;
2580
2581      // Recover by adding 'static'.
2582      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2583                             PrevSpec, DiagID, getLangOptions());
2584    }
2585    // C++ [class.union]p3:
2586    //   A storage class is not allowed in a declaration of an
2587    //   anonymous union in a class scope.
2588    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2589             isa<RecordDecl>(Owner)) {
2590      Diag(DS.getStorageClassSpecLoc(),
2591           diag::err_anonymous_union_with_storage_spec);
2592      Invalid = true;
2593
2594      // Recover by removing the storage specifier.
2595      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2596                             PrevSpec, DiagID, getLangOptions());
2597    }
2598
2599    // Ignore const/volatile/restrict qualifiers.
2600    if (DS.getTypeQualifiers()) {
2601      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2602        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2603          << Record->isUnion() << 0
2604          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2605      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2606        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2607          << Record->isUnion() << 1
2608          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2609      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2610        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2611          << Record->isUnion() << 2
2612          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2613
2614      DS.ClearTypeQualifiers();
2615    }
2616
2617    // C++ [class.union]p2:
2618    //   The member-specification of an anonymous union shall only
2619    //   define non-static data members. [Note: nested types and
2620    //   functions cannot be declared within an anonymous union. ]
2621    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2622                                 MemEnd = Record->decls_end();
2623         Mem != MemEnd; ++Mem) {
2624      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2625        // C++ [class.union]p3:
2626        //   An anonymous union shall not have private or protected
2627        //   members (clause 11).
2628        assert(FD->getAccess() != AS_none);
2629        if (FD->getAccess() != AS_public) {
2630          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2631            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2632          Invalid = true;
2633        }
2634
2635        // C++ [class.union]p1
2636        //   An object of a class with a non-trivial constructor, a non-trivial
2637        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2638        //   assignment operator cannot be a member of a union, nor can an
2639        //   array of such objects.
2640        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2641          Invalid = true;
2642      } else if ((*Mem)->isImplicit()) {
2643        // Any implicit members are fine.
2644      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2645        // This is a type that showed up in an
2646        // elaborated-type-specifier inside the anonymous struct or
2647        // union, but which actually declares a type outside of the
2648        // anonymous struct or union. It's okay.
2649      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2650        if (!MemRecord->isAnonymousStructOrUnion() &&
2651            MemRecord->getDeclName()) {
2652          // Visual C++ allows type definition in anonymous struct or union.
2653          if (getLangOptions().Microsoft)
2654            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2655              << (int)Record->isUnion();
2656          else {
2657            // This is a nested type declaration.
2658            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2659              << (int)Record->isUnion();
2660            Invalid = true;
2661          }
2662        }
2663      } else if (isa<AccessSpecDecl>(*Mem)) {
2664        // Any access specifier is fine.
2665      } else {
2666        // We have something that isn't a non-static data
2667        // member. Complain about it.
2668        unsigned DK = diag::err_anonymous_record_bad_member;
2669        if (isa<TypeDecl>(*Mem))
2670          DK = diag::err_anonymous_record_with_type;
2671        else if (isa<FunctionDecl>(*Mem))
2672          DK = diag::err_anonymous_record_with_function;
2673        else if (isa<VarDecl>(*Mem))
2674          DK = diag::err_anonymous_record_with_static;
2675
2676        // Visual C++ allows type definition in anonymous struct or union.
2677        if (getLangOptions().Microsoft &&
2678            DK == diag::err_anonymous_record_with_type)
2679          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2680            << (int)Record->isUnion();
2681        else {
2682          Diag((*Mem)->getLocation(), DK)
2683              << (int)Record->isUnion();
2684          Invalid = true;
2685        }
2686      }
2687    }
2688  }
2689
2690  if (!Record->isUnion() && !Owner->isRecord()) {
2691    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2692      << (int)getLangOptions().CPlusPlus;
2693    Invalid = true;
2694  }
2695
2696  // Mock up a declarator.
2697  Declarator Dc(DS, Declarator::MemberContext);
2698  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2699  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2700
2701  // Create a declaration for this anonymous struct/union.
2702  NamedDecl *Anon = 0;
2703  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2704    Anon = FieldDecl::Create(Context, OwningClass,
2705                             DS.getSourceRange().getBegin(),
2706                             Record->getLocation(),
2707                             /*IdentifierInfo=*/0,
2708                             Context.getTypeDeclType(Record),
2709                             TInfo,
2710                             /*BitWidth=*/0, /*Mutable=*/false,
2711                             /*HasInit=*/false);
2712    Anon->setAccess(AS);
2713    if (getLangOptions().CPlusPlus)
2714      FieldCollector->Add(cast<FieldDecl>(Anon));
2715  } else {
2716    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2717    assert(SCSpec != DeclSpec::SCS_typedef &&
2718           "Parser allowed 'typedef' as storage class VarDecl.");
2719    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2720    if (SCSpec == DeclSpec::SCS_mutable) {
2721      // mutable can only appear on non-static class members, so it's always
2722      // an error here
2723      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2724      Invalid = true;
2725      SC = SC_None;
2726    }
2727    SCSpec = DS.getStorageClassSpecAsWritten();
2728    VarDecl::StorageClass SCAsWritten
2729      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2730
2731    Anon = VarDecl::Create(Context, Owner,
2732                           DS.getSourceRange().getBegin(),
2733                           Record->getLocation(), /*IdentifierInfo=*/0,
2734                           Context.getTypeDeclType(Record),
2735                           TInfo, SC, SCAsWritten);
2736  }
2737  Anon->setImplicit();
2738
2739  // Add the anonymous struct/union object to the current
2740  // context. We'll be referencing this object when we refer to one of
2741  // its members.
2742  Owner->addDecl(Anon);
2743
2744  // Inject the members of the anonymous struct/union into the owning
2745  // context and into the identifier resolver chain for name lookup
2746  // purposes.
2747  SmallVector<NamedDecl*, 2> Chain;
2748  Chain.push_back(Anon);
2749
2750  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2751                                          Chain, false))
2752    Invalid = true;
2753
2754  // Mark this as an anonymous struct/union type. Note that we do not
2755  // do this until after we have already checked and injected the
2756  // members of this anonymous struct/union type, because otherwise
2757  // the members could be injected twice: once by DeclContext when it
2758  // builds its lookup table, and once by
2759  // InjectAnonymousStructOrUnionMembers.
2760  Record->setAnonymousStructOrUnion(true);
2761
2762  if (Invalid)
2763    Anon->setInvalidDecl();
2764
2765  return Anon;
2766}
2767
2768/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2769/// Microsoft C anonymous structure.
2770/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2771/// Example:
2772///
2773/// struct A { int a; };
2774/// struct B { struct A; int b; };
2775///
2776/// void foo() {
2777///   B var;
2778///   var.a = 3;
2779/// }
2780///
2781Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2782                                           RecordDecl *Record) {
2783
2784  // If there is no Record, get the record via the typedef.
2785  if (!Record)
2786    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2787
2788  // Mock up a declarator.
2789  Declarator Dc(DS, Declarator::TypeNameContext);
2790  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2791  assert(TInfo && "couldn't build declarator info for anonymous struct");
2792
2793  // Create a declaration for this anonymous struct.
2794  NamedDecl* Anon = FieldDecl::Create(Context,
2795                             cast<RecordDecl>(CurContext),
2796                             DS.getSourceRange().getBegin(),
2797                             DS.getSourceRange().getBegin(),
2798                             /*IdentifierInfo=*/0,
2799                             Context.getTypeDeclType(Record),
2800                             TInfo,
2801                             /*BitWidth=*/0, /*Mutable=*/false,
2802                             /*HasInit=*/false);
2803  Anon->setImplicit();
2804
2805  // Add the anonymous struct object to the current context.
2806  CurContext->addDecl(Anon);
2807
2808  // Inject the members of the anonymous struct into the current
2809  // context and into the identifier resolver chain for name lookup
2810  // purposes.
2811  SmallVector<NamedDecl*, 2> Chain;
2812  Chain.push_back(Anon);
2813
2814  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2815                                          Record->getDefinition(),
2816                                          AS_none, Chain, true))
2817    Anon->setInvalidDecl();
2818
2819  return Anon;
2820}
2821
2822/// GetNameForDeclarator - Determine the full declaration name for the
2823/// given Declarator.
2824DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2825  return GetNameFromUnqualifiedId(D.getName());
2826}
2827
2828/// \brief Retrieves the declaration name from a parsed unqualified-id.
2829DeclarationNameInfo
2830Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2831  DeclarationNameInfo NameInfo;
2832  NameInfo.setLoc(Name.StartLocation);
2833
2834  switch (Name.getKind()) {
2835
2836  case UnqualifiedId::IK_ImplicitSelfParam:
2837  case UnqualifiedId::IK_Identifier:
2838    NameInfo.setName(Name.Identifier);
2839    NameInfo.setLoc(Name.StartLocation);
2840    return NameInfo;
2841
2842  case UnqualifiedId::IK_OperatorFunctionId:
2843    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2844                                           Name.OperatorFunctionId.Operator));
2845    NameInfo.setLoc(Name.StartLocation);
2846    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2847      = Name.OperatorFunctionId.SymbolLocations[0];
2848    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2849      = Name.EndLocation.getRawEncoding();
2850    return NameInfo;
2851
2852  case UnqualifiedId::IK_LiteralOperatorId:
2853    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2854                                                           Name.Identifier));
2855    NameInfo.setLoc(Name.StartLocation);
2856    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2857    return NameInfo;
2858
2859  case UnqualifiedId::IK_ConversionFunctionId: {
2860    TypeSourceInfo *TInfo;
2861    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2862    if (Ty.isNull())
2863      return DeclarationNameInfo();
2864    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2865                                               Context.getCanonicalType(Ty)));
2866    NameInfo.setLoc(Name.StartLocation);
2867    NameInfo.setNamedTypeInfo(TInfo);
2868    return NameInfo;
2869  }
2870
2871  case UnqualifiedId::IK_ConstructorName: {
2872    TypeSourceInfo *TInfo;
2873    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2874    if (Ty.isNull())
2875      return DeclarationNameInfo();
2876    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2877                                              Context.getCanonicalType(Ty)));
2878    NameInfo.setLoc(Name.StartLocation);
2879    NameInfo.setNamedTypeInfo(TInfo);
2880    return NameInfo;
2881  }
2882
2883  case UnqualifiedId::IK_ConstructorTemplateId: {
2884    // In well-formed code, we can only have a constructor
2885    // template-id that refers to the current context, so go there
2886    // to find the actual type being constructed.
2887    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2888    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2889      return DeclarationNameInfo();
2890
2891    // Determine the type of the class being constructed.
2892    QualType CurClassType = Context.getTypeDeclType(CurClass);
2893
2894    // FIXME: Check two things: that the template-id names the same type as
2895    // CurClassType, and that the template-id does not occur when the name
2896    // was qualified.
2897
2898    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2899                                    Context.getCanonicalType(CurClassType)));
2900    NameInfo.setLoc(Name.StartLocation);
2901    // FIXME: should we retrieve TypeSourceInfo?
2902    NameInfo.setNamedTypeInfo(0);
2903    return NameInfo;
2904  }
2905
2906  case UnqualifiedId::IK_DestructorName: {
2907    TypeSourceInfo *TInfo;
2908    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2909    if (Ty.isNull())
2910      return DeclarationNameInfo();
2911    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2912                                              Context.getCanonicalType(Ty)));
2913    NameInfo.setLoc(Name.StartLocation);
2914    NameInfo.setNamedTypeInfo(TInfo);
2915    return NameInfo;
2916  }
2917
2918  case UnqualifiedId::IK_TemplateId: {
2919    TemplateName TName = Name.TemplateId->Template.get();
2920    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2921    return Context.getNameForTemplate(TName, TNameLoc);
2922  }
2923
2924  } // switch (Name.getKind())
2925
2926  assert(false && "Unknown name kind");
2927  return DeclarationNameInfo();
2928}
2929
2930static QualType getCoreType(QualType Ty) {
2931  do {
2932    if (Ty->isPointerType() || Ty->isReferenceType())
2933      Ty = Ty->getPointeeType();
2934    else if (Ty->isArrayType())
2935      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2936    else
2937      return Ty.withoutLocalFastQualifiers();
2938  } while (true);
2939}
2940
2941/// isNearlyMatchingFunction - Determine whether the C++ functions
2942/// Declaration and Definition are "nearly" matching. This heuristic
2943/// is used to improve diagnostics in the case where an out-of-line
2944/// function definition doesn't match any declaration within the class
2945/// or namespace. Also sets Params to the list of indices to the
2946/// parameters that differ between the declaration and the definition.
2947static bool isNearlyMatchingFunction(ASTContext &Context,
2948                                     FunctionDecl *Declaration,
2949                                     FunctionDecl *Definition,
2950                                     llvm::SmallVectorImpl<unsigned> &Params) {
2951  Params.clear();
2952  if (Declaration->param_size() != Definition->param_size())
2953    return false;
2954  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2955    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2956    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2957
2958    // The parameter types are identical
2959    if (Context.hasSameType(DefParamTy, DeclParamTy))
2960      continue;
2961
2962    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2963    QualType DefParamBaseTy = getCoreType(DefParamTy);
2964    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2965    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2966
2967    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2968        (DeclTyName && DeclTyName == DefTyName))
2969      Params.push_back(Idx);
2970    else  // The two parameters aren't even close
2971      return false;
2972  }
2973
2974  return true;
2975}
2976
2977/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2978/// declarator needs to be rebuilt in the current instantiation.
2979/// Any bits of declarator which appear before the name are valid for
2980/// consideration here.  That's specifically the type in the decl spec
2981/// and the base type in any member-pointer chunks.
2982static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2983                                                    DeclarationName Name) {
2984  // The types we specifically need to rebuild are:
2985  //   - typenames, typeofs, and decltypes
2986  //   - types which will become injected class names
2987  // Of course, we also need to rebuild any type referencing such a
2988  // type.  It's safest to just say "dependent", but we call out a
2989  // few cases here.
2990
2991  DeclSpec &DS = D.getMutableDeclSpec();
2992  switch (DS.getTypeSpecType()) {
2993  case DeclSpec::TST_typename:
2994  case DeclSpec::TST_typeofType:
2995  case DeclSpec::TST_decltype:
2996  case DeclSpec::TST_underlyingType: {
2997    // Grab the type from the parser.
2998    TypeSourceInfo *TSI = 0;
2999    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3000    if (T.isNull() || !T->isDependentType()) break;
3001
3002    // Make sure there's a type source info.  This isn't really much
3003    // of a waste; most dependent types should have type source info
3004    // attached already.
3005    if (!TSI)
3006      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3007
3008    // Rebuild the type in the current instantiation.
3009    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3010    if (!TSI) return true;
3011
3012    // Store the new type back in the decl spec.
3013    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3014    DS.UpdateTypeRep(LocType);
3015    break;
3016  }
3017
3018  case DeclSpec::TST_typeofExpr: {
3019    Expr *E = DS.getRepAsExpr();
3020    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3021    if (Result.isInvalid()) return true;
3022    DS.UpdateExprRep(Result.get());
3023    break;
3024  }
3025
3026  default:
3027    // Nothing to do for these decl specs.
3028    break;
3029  }
3030
3031  // It doesn't matter what order we do this in.
3032  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3033    DeclaratorChunk &Chunk = D.getTypeObject(I);
3034
3035    // The only type information in the declarator which can come
3036    // before the declaration name is the base type of a member
3037    // pointer.
3038    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3039      continue;
3040
3041    // Rebuild the scope specifier in-place.
3042    CXXScopeSpec &SS = Chunk.Mem.Scope();
3043    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3044      return true;
3045  }
3046
3047  return false;
3048}
3049
3050Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3051  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3052                          /*IsFunctionDefinition=*/false);
3053}
3054
3055/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3056///   If T is the name of a class, then each of the following shall have a
3057///   name different from T:
3058///     - every static data member of class T;
3059///     - every member function of class T
3060///     - every member of class T that is itself a type;
3061/// \returns true if the declaration name violates these rules.
3062bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3063                                   DeclarationNameInfo NameInfo) {
3064  DeclarationName Name = NameInfo.getName();
3065
3066  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3067    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3068      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3069      return true;
3070    }
3071
3072  return false;
3073}
3074
3075Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3076                             MultiTemplateParamsArg TemplateParamLists,
3077                             bool IsFunctionDefinition) {
3078  // TODO: consider using NameInfo for diagnostic.
3079  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3080  DeclarationName Name = NameInfo.getName();
3081
3082  // All of these full declarators require an identifier.  If it doesn't have
3083  // one, the ParsedFreeStandingDeclSpec action should be used.
3084  if (!Name) {
3085    if (!D.isInvalidType())  // Reject this if we think it is valid.
3086      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3087           diag::err_declarator_need_ident)
3088        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3089    return 0;
3090  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3091    return 0;
3092
3093  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3094  // we find one that is.
3095  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3096         (S->getFlags() & Scope::TemplateParamScope) != 0)
3097    S = S->getParent();
3098
3099  DeclContext *DC = CurContext;
3100  if (D.getCXXScopeSpec().isInvalid())
3101    D.setInvalidType();
3102  else if (D.getCXXScopeSpec().isSet()) {
3103    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3104                                        UPPC_DeclarationQualifier))
3105      return 0;
3106
3107    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3108    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3109    if (!DC) {
3110      // If we could not compute the declaration context, it's because the
3111      // declaration context is dependent but does not refer to a class,
3112      // class template, or class template partial specialization. Complain
3113      // and return early, to avoid the coming semantic disaster.
3114      Diag(D.getIdentifierLoc(),
3115           diag::err_template_qualified_declarator_no_match)
3116        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3117        << D.getCXXScopeSpec().getRange();
3118      return 0;
3119    }
3120    bool IsDependentContext = DC->isDependentContext();
3121
3122    if (!IsDependentContext &&
3123        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3124      return 0;
3125
3126    if (isa<CXXRecordDecl>(DC)) {
3127      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3128        Diag(D.getIdentifierLoc(),
3129             diag::err_member_def_undefined_record)
3130          << Name << DC << D.getCXXScopeSpec().getRange();
3131        D.setInvalidType();
3132      } else if (isa<CXXRecordDecl>(CurContext) &&
3133                 !D.getDeclSpec().isFriendSpecified()) {
3134        // The user provided a superfluous scope specifier inside a class
3135        // definition:
3136        //
3137        // class X {
3138        //   void X::f();
3139        // };
3140        if (CurContext->Equals(DC))
3141          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3142            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3143        else
3144          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3145            << Name << D.getCXXScopeSpec().getRange();
3146
3147        // Pretend that this qualifier was not here.
3148        D.getCXXScopeSpec().clear();
3149      }
3150    }
3151
3152    // Check whether we need to rebuild the type of the given
3153    // declaration in the current instantiation.
3154    if (EnteringContext && IsDependentContext &&
3155        TemplateParamLists.size() != 0) {
3156      ContextRAII SavedContext(*this, DC);
3157      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3158        D.setInvalidType();
3159    }
3160  }
3161
3162  if (DiagnoseClassNameShadow(DC, NameInfo))
3163    // If this is a typedef, we'll end up spewing multiple diagnostics.
3164    // Just return early; it's safer.
3165    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3166      return 0;
3167
3168  NamedDecl *New;
3169
3170  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3171  QualType R = TInfo->getType();
3172
3173  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3174                                      UPPC_DeclarationType))
3175    D.setInvalidType();
3176
3177  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3178                        ForRedeclaration);
3179
3180  // See if this is a redefinition of a variable in the same scope.
3181  if (!D.getCXXScopeSpec().isSet()) {
3182    bool IsLinkageLookup = false;
3183
3184    // If the declaration we're planning to build will be a function
3185    // or object with linkage, then look for another declaration with
3186    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3187    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3188      /* Do nothing*/;
3189    else if (R->isFunctionType()) {
3190      if (CurContext->isFunctionOrMethod() ||
3191          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3192        IsLinkageLookup = true;
3193    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3194      IsLinkageLookup = true;
3195    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3196             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3197      IsLinkageLookup = true;
3198
3199    if (IsLinkageLookup)
3200      Previous.clear(LookupRedeclarationWithLinkage);
3201
3202    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3203  } else { // Something like "int foo::x;"
3204    LookupQualifiedName(Previous, DC);
3205
3206    // Don't consider using declarations as previous declarations for
3207    // out-of-line members.
3208    RemoveUsingDecls(Previous);
3209
3210    // C++ 7.3.1.2p2:
3211    // Members (including explicit specializations of templates) of a named
3212    // namespace can also be defined outside that namespace by explicit
3213    // qualification of the name being defined, provided that the entity being
3214    // defined was already declared in the namespace and the definition appears
3215    // after the point of declaration in a namespace that encloses the
3216    // declarations namespace.
3217    //
3218    // Note that we only check the context at this point. We don't yet
3219    // have enough information to make sure that PrevDecl is actually
3220    // the declaration we want to match. For example, given:
3221    //
3222    //   class X {
3223    //     void f();
3224    //     void f(float);
3225    //   };
3226    //
3227    //   void X::f(int) { } // ill-formed
3228    //
3229    // In this case, PrevDecl will point to the overload set
3230    // containing the two f's declared in X, but neither of them
3231    // matches.
3232
3233    // First check whether we named the global scope.
3234    if (isa<TranslationUnitDecl>(DC)) {
3235      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3236        << Name << D.getCXXScopeSpec().getRange();
3237    } else {
3238      DeclContext *Cur = CurContext;
3239      while (isa<LinkageSpecDecl>(Cur))
3240        Cur = Cur->getParent();
3241      if (!Cur->Encloses(DC)) {
3242        // The qualifying scope doesn't enclose the original declaration.
3243        // Emit diagnostic based on current scope.
3244        SourceLocation L = D.getIdentifierLoc();
3245        SourceRange R = D.getCXXScopeSpec().getRange();
3246        if (isa<FunctionDecl>(Cur))
3247          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3248        else
3249          Diag(L, diag::err_invalid_declarator_scope)
3250            << Name << cast<NamedDecl>(DC) << R;
3251        D.setInvalidType();
3252      }
3253    }
3254  }
3255
3256  if (Previous.isSingleResult() &&
3257      Previous.getFoundDecl()->isTemplateParameter()) {
3258    // Maybe we will complain about the shadowed template parameter.
3259    if (!D.isInvalidType())
3260      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3261                                          Previous.getFoundDecl()))
3262        D.setInvalidType();
3263
3264    // Just pretend that we didn't see the previous declaration.
3265    Previous.clear();
3266  }
3267
3268  // In C++, the previous declaration we find might be a tag type
3269  // (class or enum). In this case, the new declaration will hide the
3270  // tag type. Note that this does does not apply if we're declaring a
3271  // typedef (C++ [dcl.typedef]p4).
3272  if (Previous.isSingleTagDecl() &&
3273      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3274    Previous.clear();
3275
3276  bool Redeclaration = false;
3277  bool AddToScope = true;
3278  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3279    if (TemplateParamLists.size()) {
3280      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3281      return 0;
3282    }
3283
3284    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3285  } else if (R->isFunctionType()) {
3286    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3287                                  move(TemplateParamLists),
3288                                  IsFunctionDefinition, Redeclaration,
3289                                  AddToScope);
3290  } else {
3291    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3292                                  move(TemplateParamLists),
3293                                  Redeclaration);
3294  }
3295
3296  if (New == 0)
3297    return 0;
3298
3299  // If this has an identifier and is not an invalid redeclaration or
3300  // function template specialization, add it to the scope stack.
3301  if (New->getDeclName() && AddToScope &&
3302       !(Redeclaration && New->isInvalidDecl()))
3303    PushOnScopeChains(New, S);
3304
3305  return New;
3306}
3307
3308/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3309/// types into constant array types in certain situations which would otherwise
3310/// be errors (for GCC compatibility).
3311static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3312                                                    ASTContext &Context,
3313                                                    bool &SizeIsNegative,
3314                                                    llvm::APSInt &Oversized) {
3315  // This method tries to turn a variable array into a constant
3316  // array even when the size isn't an ICE.  This is necessary
3317  // for compatibility with code that depends on gcc's buggy
3318  // constant expression folding, like struct {char x[(int)(char*)2];}
3319  SizeIsNegative = false;
3320  Oversized = 0;
3321
3322  if (T->isDependentType())
3323    return QualType();
3324
3325  QualifierCollector Qs;
3326  const Type *Ty = Qs.strip(T);
3327
3328  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3329    QualType Pointee = PTy->getPointeeType();
3330    QualType FixedType =
3331        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3332                                            Oversized);
3333    if (FixedType.isNull()) return FixedType;
3334    FixedType = Context.getPointerType(FixedType);
3335    return Qs.apply(Context, FixedType);
3336  }
3337  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3338    QualType Inner = PTy->getInnerType();
3339    QualType FixedType =
3340        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3341                                            Oversized);
3342    if (FixedType.isNull()) return FixedType;
3343    FixedType = Context.getParenType(FixedType);
3344    return Qs.apply(Context, FixedType);
3345  }
3346
3347  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3348  if (!VLATy)
3349    return QualType();
3350  // FIXME: We should probably handle this case
3351  if (VLATy->getElementType()->isVariablyModifiedType())
3352    return QualType();
3353
3354  Expr::EvalResult EvalResult;
3355  if (!VLATy->getSizeExpr() ||
3356      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3357      !EvalResult.Val.isInt())
3358    return QualType();
3359
3360  // Check whether the array size is negative.
3361  llvm::APSInt &Res = EvalResult.Val.getInt();
3362  if (Res.isSigned() && Res.isNegative()) {
3363    SizeIsNegative = true;
3364    return QualType();
3365  }
3366
3367  // Check whether the array is too large to be addressed.
3368  unsigned ActiveSizeBits
3369    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3370                                              Res);
3371  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3372    Oversized = Res;
3373    return QualType();
3374  }
3375
3376  return Context.getConstantArrayType(VLATy->getElementType(),
3377                                      Res, ArrayType::Normal, 0);
3378}
3379
3380/// \brief Register the given locally-scoped external C declaration so
3381/// that it can be found later for redeclarations
3382void
3383Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3384                                       const LookupResult &Previous,
3385                                       Scope *S) {
3386  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3387         "Decl is not a locally-scoped decl!");
3388  // Note that we have a locally-scoped external with this name.
3389  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3390
3391  if (!Previous.isSingleResult())
3392    return;
3393
3394  NamedDecl *PrevDecl = Previous.getFoundDecl();
3395
3396  // If there was a previous declaration of this variable, it may be
3397  // in our identifier chain. Update the identifier chain with the new
3398  // declaration.
3399  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3400    // The previous declaration was found on the identifer resolver
3401    // chain, so remove it from its scope.
3402
3403    if (S->isDeclScope(PrevDecl)) {
3404      // Special case for redeclarations in the SAME scope.
3405      // Because this declaration is going to be added to the identifier chain
3406      // later, we should temporarily take it OFF the chain.
3407      IdResolver.RemoveDecl(ND);
3408
3409    } else {
3410      // Find the scope for the original declaration.
3411      while (S && !S->isDeclScope(PrevDecl))
3412        S = S->getParent();
3413    }
3414
3415    if (S)
3416      S->RemoveDecl(PrevDecl);
3417  }
3418}
3419
3420llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3421Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3422  if (ExternalSource) {
3423    // Load locally-scoped external decls from the external source.
3424    SmallVector<NamedDecl *, 4> Decls;
3425    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3426    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3427      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3428        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3429      if (Pos == LocallyScopedExternalDecls.end())
3430        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3431    }
3432  }
3433
3434  return LocallyScopedExternalDecls.find(Name);
3435}
3436
3437/// \brief Diagnose function specifiers on a declaration of an identifier that
3438/// does not identify a function.
3439void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3440  // FIXME: We should probably indicate the identifier in question to avoid
3441  // confusion for constructs like "inline int a(), b;"
3442  if (D.getDeclSpec().isInlineSpecified())
3443    Diag(D.getDeclSpec().getInlineSpecLoc(),
3444         diag::err_inline_non_function);
3445
3446  if (D.getDeclSpec().isVirtualSpecified())
3447    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3448         diag::err_virtual_non_function);
3449
3450  if (D.getDeclSpec().isExplicitSpecified())
3451    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3452         diag::err_explicit_non_function);
3453}
3454
3455NamedDecl*
3456Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3457                             QualType R,  TypeSourceInfo *TInfo,
3458                             LookupResult &Previous, bool &Redeclaration) {
3459  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3460  if (D.getCXXScopeSpec().isSet()) {
3461    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3462      << D.getCXXScopeSpec().getRange();
3463    D.setInvalidType();
3464    // Pretend we didn't see the scope specifier.
3465    DC = CurContext;
3466    Previous.clear();
3467  }
3468
3469  if (getLangOptions().CPlusPlus) {
3470    // Check that there are no default arguments (C++ only).
3471    CheckExtraCXXDefaultArguments(D);
3472  }
3473
3474  DiagnoseFunctionSpecifiers(D);
3475
3476  if (D.getDeclSpec().isThreadSpecified())
3477    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3478  if (D.getDeclSpec().isConstexprSpecified())
3479    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3480      << 1;
3481
3482  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3483    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3484      << D.getName().getSourceRange();
3485    return 0;
3486  }
3487
3488  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3489  if (!NewTD) return 0;
3490
3491  // Handle attributes prior to checking for duplicates in MergeVarDecl
3492  ProcessDeclAttributes(S, NewTD, D);
3493
3494  CheckTypedefForVariablyModifiedType(S, NewTD);
3495
3496  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3497}
3498
3499void
3500Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3501  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3502  // then it shall have block scope.
3503  // Note that variably modified types must be fixed before merging the decl so
3504  // that redeclarations will match.
3505  QualType T = NewTD->getUnderlyingType();
3506  if (T->isVariablyModifiedType()) {
3507    getCurFunction()->setHasBranchProtectedScope();
3508
3509    if (S->getFnParent() == 0) {
3510      bool SizeIsNegative;
3511      llvm::APSInt Oversized;
3512      QualType FixedTy =
3513          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3514                                              Oversized);
3515      if (!FixedTy.isNull()) {
3516        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3517        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3518      } else {
3519        if (SizeIsNegative)
3520          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3521        else if (T->isVariableArrayType())
3522          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3523        else if (Oversized.getBoolValue())
3524          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3525        else
3526          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3527        NewTD->setInvalidDecl();
3528      }
3529    }
3530  }
3531}
3532
3533
3534/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3535/// declares a typedef-name, either using the 'typedef' type specifier or via
3536/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3537NamedDecl*
3538Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3539                           LookupResult &Previous, bool &Redeclaration) {
3540  // Merge the decl with the existing one if appropriate. If the decl is
3541  // in an outer scope, it isn't the same thing.
3542  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3543                       /*ExplicitInstantiationOrSpecialization=*/false);
3544  if (!Previous.empty()) {
3545    Redeclaration = true;
3546    MergeTypedefNameDecl(NewTD, Previous);
3547  }
3548
3549  // If this is the C FILE type, notify the AST context.
3550  if (IdentifierInfo *II = NewTD->getIdentifier())
3551    if (!NewTD->isInvalidDecl() &&
3552        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3553      if (II->isStr("FILE"))
3554        Context.setFILEDecl(NewTD);
3555      else if (II->isStr("jmp_buf"))
3556        Context.setjmp_bufDecl(NewTD);
3557      else if (II->isStr("sigjmp_buf"))
3558        Context.setsigjmp_bufDecl(NewTD);
3559      else if (II->isStr("__builtin_va_list"))
3560        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3561    }
3562
3563  return NewTD;
3564}
3565
3566/// \brief Determines whether the given declaration is an out-of-scope
3567/// previous declaration.
3568///
3569/// This routine should be invoked when name lookup has found a
3570/// previous declaration (PrevDecl) that is not in the scope where a
3571/// new declaration by the same name is being introduced. If the new
3572/// declaration occurs in a local scope, previous declarations with
3573/// linkage may still be considered previous declarations (C99
3574/// 6.2.2p4-5, C++ [basic.link]p6).
3575///
3576/// \param PrevDecl the previous declaration found by name
3577/// lookup
3578///
3579/// \param DC the context in which the new declaration is being
3580/// declared.
3581///
3582/// \returns true if PrevDecl is an out-of-scope previous declaration
3583/// for a new delcaration with the same name.
3584static bool
3585isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3586                                ASTContext &Context) {
3587  if (!PrevDecl)
3588    return false;
3589
3590  if (!PrevDecl->hasLinkage())
3591    return false;
3592
3593  if (Context.getLangOptions().CPlusPlus) {
3594    // C++ [basic.link]p6:
3595    //   If there is a visible declaration of an entity with linkage
3596    //   having the same name and type, ignoring entities declared
3597    //   outside the innermost enclosing namespace scope, the block
3598    //   scope declaration declares that same entity and receives the
3599    //   linkage of the previous declaration.
3600    DeclContext *OuterContext = DC->getRedeclContext();
3601    if (!OuterContext->isFunctionOrMethod())
3602      // This rule only applies to block-scope declarations.
3603      return false;
3604
3605    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3606    if (PrevOuterContext->isRecord())
3607      // We found a member function: ignore it.
3608      return false;
3609
3610    // Find the innermost enclosing namespace for the new and
3611    // previous declarations.
3612    OuterContext = OuterContext->getEnclosingNamespaceContext();
3613    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3614
3615    // The previous declaration is in a different namespace, so it
3616    // isn't the same function.
3617    if (!OuterContext->Equals(PrevOuterContext))
3618      return false;
3619  }
3620
3621  return true;
3622}
3623
3624static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3625  CXXScopeSpec &SS = D.getCXXScopeSpec();
3626  if (!SS.isSet()) return;
3627  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3628}
3629
3630bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3631  QualType type = decl->getType();
3632  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3633  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3634    // Various kinds of declaration aren't allowed to be __autoreleasing.
3635    unsigned kind = -1U;
3636    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3637      if (var->hasAttr<BlocksAttr>())
3638        kind = 0; // __block
3639      else if (!var->hasLocalStorage())
3640        kind = 1; // global
3641    } else if (isa<ObjCIvarDecl>(decl)) {
3642      kind = 3; // ivar
3643    } else if (isa<FieldDecl>(decl)) {
3644      kind = 2; // field
3645    }
3646
3647    if (kind != -1U) {
3648      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3649        << kind;
3650    }
3651  } else if (lifetime == Qualifiers::OCL_None) {
3652    // Try to infer lifetime.
3653    if (!type->isObjCLifetimeType())
3654      return false;
3655
3656    lifetime = type->getObjCARCImplicitLifetime();
3657    type = Context.getLifetimeQualifiedType(type, lifetime);
3658    decl->setType(type);
3659  }
3660
3661  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3662    // Thread-local variables cannot have lifetime.
3663    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3664        var->isThreadSpecified()) {
3665      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3666        << var->getType();
3667      return true;
3668    }
3669  }
3670
3671  return false;
3672}
3673
3674NamedDecl*
3675Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3676                              QualType R, TypeSourceInfo *TInfo,
3677                              LookupResult &Previous,
3678                              MultiTemplateParamsArg TemplateParamLists,
3679                              bool &Redeclaration) {
3680  DeclarationName Name = GetNameForDeclarator(D).getName();
3681
3682  // Check that there are no default arguments (C++ only).
3683  if (getLangOptions().CPlusPlus)
3684    CheckExtraCXXDefaultArguments(D);
3685
3686  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3687  assert(SCSpec != DeclSpec::SCS_typedef &&
3688         "Parser allowed 'typedef' as storage class VarDecl.");
3689  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3690  if (SCSpec == DeclSpec::SCS_mutable) {
3691    // mutable can only appear on non-static class members, so it's always
3692    // an error here
3693    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3694    D.setInvalidType();
3695    SC = SC_None;
3696  }
3697  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3698  VarDecl::StorageClass SCAsWritten
3699    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3700
3701  IdentifierInfo *II = Name.getAsIdentifierInfo();
3702  if (!II) {
3703    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3704      << Name.getAsString();
3705    return 0;
3706  }
3707
3708  DiagnoseFunctionSpecifiers(D);
3709
3710  if (!DC->isRecord() && S->getFnParent() == 0) {
3711    // C99 6.9p2: The storage-class specifiers auto and register shall not
3712    // appear in the declaration specifiers in an external declaration.
3713    if (SC == SC_Auto || SC == SC_Register) {
3714
3715      // If this is a register variable with an asm label specified, then this
3716      // is a GNU extension.
3717      if (SC == SC_Register && D.getAsmLabel())
3718        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3719      else
3720        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3721      D.setInvalidType();
3722    }
3723  }
3724
3725  bool isExplicitSpecialization = false;
3726  VarDecl *NewVD;
3727  if (!getLangOptions().CPlusPlus) {
3728    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3729                            D.getIdentifierLoc(), II,
3730                            R, TInfo, SC, SCAsWritten);
3731
3732    if (D.isInvalidType())
3733      NewVD->setInvalidDecl();
3734  } else {
3735    if (DC->isRecord() && !CurContext->isRecord()) {
3736      // This is an out-of-line definition of a static data member.
3737      if (SC == SC_Static) {
3738        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3739             diag::err_static_out_of_line)
3740          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3741      } else if (SC == SC_None)
3742        SC = SC_Static;
3743    }
3744    if (SC == SC_Static) {
3745      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3746        if (RD->isLocalClass())
3747          Diag(D.getIdentifierLoc(),
3748               diag::err_static_data_member_not_allowed_in_local_class)
3749            << Name << RD->getDeclName();
3750
3751        // C++ [class.union]p1: If a union contains a static data member,
3752        // the program is ill-formed.
3753        //
3754        // We also disallow static data members in anonymous structs.
3755        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3756          Diag(D.getIdentifierLoc(),
3757               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3758            << Name << RD->isUnion();
3759      }
3760    }
3761
3762    // Match up the template parameter lists with the scope specifier, then
3763    // determine whether we have a template or a template specialization.
3764    isExplicitSpecialization = false;
3765    bool Invalid = false;
3766    if (TemplateParameterList *TemplateParams
3767        = MatchTemplateParametersToScopeSpecifier(
3768                                  D.getDeclSpec().getSourceRange().getBegin(),
3769                                                  D.getIdentifierLoc(),
3770                                                  D.getCXXScopeSpec(),
3771                                                  TemplateParamLists.get(),
3772                                                  TemplateParamLists.size(),
3773                                                  /*never a friend*/ false,
3774                                                  isExplicitSpecialization,
3775                                                  Invalid)) {
3776      if (TemplateParams->size() > 0) {
3777        // There is no such thing as a variable template.
3778        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3779          << II
3780          << SourceRange(TemplateParams->getTemplateLoc(),
3781                         TemplateParams->getRAngleLoc());
3782        return 0;
3783      } else {
3784        // There is an extraneous 'template<>' for this variable. Complain
3785        // about it, but allow the declaration of the variable.
3786        Diag(TemplateParams->getTemplateLoc(),
3787             diag::err_template_variable_noparams)
3788          << II
3789          << SourceRange(TemplateParams->getTemplateLoc(),
3790                         TemplateParams->getRAngleLoc());
3791      }
3792    }
3793
3794    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3795                            D.getIdentifierLoc(), II,
3796                            R, TInfo, SC, SCAsWritten);
3797
3798    // If this decl has an auto type in need of deduction, make a note of the
3799    // Decl so we can diagnose uses of it in its own initializer.
3800    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3801        R->getContainedAutoType())
3802      ParsingInitForAutoVars.insert(NewVD);
3803
3804    if (D.isInvalidType() || Invalid)
3805      NewVD->setInvalidDecl();
3806
3807    SetNestedNameSpecifier(NewVD, D);
3808
3809    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3810      NewVD->setTemplateParameterListsInfo(Context,
3811                                           TemplateParamLists.size(),
3812                                           TemplateParamLists.release());
3813    }
3814
3815    if (D.getDeclSpec().isConstexprSpecified()) {
3816      // FIXME: check this is a valid use of constexpr.
3817      NewVD->setConstexpr(true);
3818    }
3819  }
3820
3821  if (D.getDeclSpec().isThreadSpecified()) {
3822    if (NewVD->hasLocalStorage())
3823      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3824    else if (!Context.getTargetInfo().isTLSSupported())
3825      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3826    else
3827      NewVD->setThreadSpecified(true);
3828  }
3829
3830  if (D.getDeclSpec().isModulePrivateSpecified()) {
3831    if (isExplicitSpecialization)
3832      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3833        << 2
3834        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3835    else
3836      NewVD->setModulePrivate();
3837  }
3838
3839  // Set the lexical context. If the declarator has a C++ scope specifier, the
3840  // lexical context will be different from the semantic context.
3841  NewVD->setLexicalDeclContext(CurContext);
3842
3843  // Handle attributes prior to checking for duplicates in MergeVarDecl
3844  ProcessDeclAttributes(S, NewVD, D);
3845
3846  // In auto-retain/release, infer strong retension for variables of
3847  // retainable type.
3848  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3849    NewVD->setInvalidDecl();
3850
3851  // Handle GNU asm-label extension (encoded as an attribute).
3852  if (Expr *E = (Expr*)D.getAsmLabel()) {
3853    // The parser guarantees this is a string.
3854    StringLiteral *SE = cast<StringLiteral>(E);
3855    StringRef Label = SE->getString();
3856    if (S->getFnParent() != 0) {
3857      switch (SC) {
3858      case SC_None:
3859      case SC_Auto:
3860        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3861        break;
3862      case SC_Register:
3863        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3864          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3865        break;
3866      case SC_Static:
3867      case SC_Extern:
3868      case SC_PrivateExtern:
3869        break;
3870      }
3871    }
3872
3873    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3874                                                Context, Label));
3875  }
3876
3877  // Diagnose shadowed variables before filtering for scope.
3878  if (!D.getCXXScopeSpec().isSet())
3879    CheckShadow(S, NewVD, Previous);
3880
3881  // Don't consider existing declarations that are in a different
3882  // scope and are out-of-semantic-context declarations (if the new
3883  // declaration has linkage).
3884  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3885                       isExplicitSpecialization);
3886
3887  if (!getLangOptions().CPlusPlus)
3888    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3889  else {
3890    // Merge the decl with the existing one if appropriate.
3891    if (!Previous.empty()) {
3892      if (Previous.isSingleResult() &&
3893          isa<FieldDecl>(Previous.getFoundDecl()) &&
3894          D.getCXXScopeSpec().isSet()) {
3895        // The user tried to define a non-static data member
3896        // out-of-line (C++ [dcl.meaning]p1).
3897        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3898          << D.getCXXScopeSpec().getRange();
3899        Previous.clear();
3900        NewVD->setInvalidDecl();
3901      }
3902    } else if (D.getCXXScopeSpec().isSet()) {
3903      // No previous declaration in the qualifying scope.
3904      Diag(D.getIdentifierLoc(), diag::err_no_member)
3905        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3906        << D.getCXXScopeSpec().getRange();
3907      NewVD->setInvalidDecl();
3908    }
3909
3910    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3911
3912    // This is an explicit specialization of a static data member. Check it.
3913    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3914        CheckMemberSpecialization(NewVD, Previous))
3915      NewVD->setInvalidDecl();
3916  }
3917
3918  // attributes declared post-definition are currently ignored
3919  // FIXME: This should be handled in attribute merging, not
3920  // here.
3921  if (Previous.isSingleResult()) {
3922    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3923    if (Def && (Def = Def->getDefinition()) &&
3924        Def != NewVD && D.hasAttributes()) {
3925      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3926      Diag(Def->getLocation(), diag::note_previous_definition);
3927    }
3928  }
3929
3930  // If this is a locally-scoped extern C variable, update the map of
3931  // such variables.
3932  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3933      !NewVD->isInvalidDecl())
3934    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3935
3936  // If there's a #pragma GCC visibility in scope, and this isn't a class
3937  // member, set the visibility of this variable.
3938  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3939    AddPushedVisibilityAttribute(NewVD);
3940
3941  MarkUnusedFileScopedDecl(NewVD);
3942
3943  return NewVD;
3944}
3945
3946/// \brief Diagnose variable or built-in function shadowing.  Implements
3947/// -Wshadow.
3948///
3949/// This method is called whenever a VarDecl is added to a "useful"
3950/// scope.
3951///
3952/// \param S the scope in which the shadowing name is being declared
3953/// \param R the lookup of the name
3954///
3955void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3956  // Return if warning is ignored.
3957  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3958        Diagnostic::Ignored)
3959    return;
3960
3961  // Don't diagnose declarations at file scope.
3962  if (D->hasGlobalStorage())
3963    return;
3964
3965  DeclContext *NewDC = D->getDeclContext();
3966
3967  // Only diagnose if we're shadowing an unambiguous field or variable.
3968  if (R.getResultKind() != LookupResult::Found)
3969    return;
3970
3971  NamedDecl* ShadowedDecl = R.getFoundDecl();
3972  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3973    return;
3974
3975  // Fields are not shadowed by variables in C++ static methods.
3976  if (isa<FieldDecl>(ShadowedDecl))
3977    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3978      if (MD->isStatic())
3979        return;
3980
3981  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3982    if (shadowedVar->isExternC()) {
3983      // For shadowing external vars, make sure that we point to the global
3984      // declaration, not a locally scoped extern declaration.
3985      for (VarDecl::redecl_iterator
3986             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3987           I != E; ++I)
3988        if (I->isFileVarDecl()) {
3989          ShadowedDecl = *I;
3990          break;
3991        }
3992    }
3993
3994  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3995
3996  // Only warn about certain kinds of shadowing for class members.
3997  if (NewDC && NewDC->isRecord()) {
3998    // In particular, don't warn about shadowing non-class members.
3999    if (!OldDC->isRecord())
4000      return;
4001
4002    // TODO: should we warn about static data members shadowing
4003    // static data members from base classes?
4004
4005    // TODO: don't diagnose for inaccessible shadowed members.
4006    // This is hard to do perfectly because we might friend the
4007    // shadowing context, but that's just a false negative.
4008  }
4009
4010  // Determine what kind of declaration we're shadowing.
4011  unsigned Kind;
4012  if (isa<RecordDecl>(OldDC)) {
4013    if (isa<FieldDecl>(ShadowedDecl))
4014      Kind = 3; // field
4015    else
4016      Kind = 2; // static data member
4017  } else if (OldDC->isFileContext())
4018    Kind = 1; // global
4019  else
4020    Kind = 0; // local
4021
4022  DeclarationName Name = R.getLookupName();
4023
4024  // Emit warning and note.
4025  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4026  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4027}
4028
4029/// \brief Check -Wshadow without the advantage of a previous lookup.
4030void Sema::CheckShadow(Scope *S, VarDecl *D) {
4031  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4032        Diagnostic::Ignored)
4033    return;
4034
4035  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4036                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4037  LookupName(R, S);
4038  CheckShadow(S, D, R);
4039}
4040
4041/// \brief Perform semantic checking on a newly-created variable
4042/// declaration.
4043///
4044/// This routine performs all of the type-checking required for a
4045/// variable declaration once it has been built. It is used both to
4046/// check variables after they have been parsed and their declarators
4047/// have been translated into a declaration, and to check variables
4048/// that have been instantiated from a template.
4049///
4050/// Sets NewVD->isInvalidDecl() if an error was encountered.
4051void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4052                                    LookupResult &Previous,
4053                                    bool &Redeclaration) {
4054  // If the decl is already known invalid, don't check it.
4055  if (NewVD->isInvalidDecl())
4056    return;
4057
4058  QualType T = NewVD->getType();
4059
4060  if (T->isObjCObjectType()) {
4061    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4062      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4063    T = Context.getObjCObjectPointerType(T);
4064    NewVD->setType(T);
4065  }
4066
4067  // Emit an error if an address space was applied to decl with local storage.
4068  // This includes arrays of objects with address space qualifiers, but not
4069  // automatic variables that point to other address spaces.
4070  // ISO/IEC TR 18037 S5.1.2
4071  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4072    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4073    return NewVD->setInvalidDecl();
4074  }
4075
4076  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4077      && !NewVD->hasAttr<BlocksAttr>()) {
4078    if (getLangOptions().getGCMode() != LangOptions::NonGC)
4079      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4080    else
4081      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4082  }
4083
4084  bool isVM = T->isVariablyModifiedType();
4085  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4086      NewVD->hasAttr<BlocksAttr>())
4087    getCurFunction()->setHasBranchProtectedScope();
4088
4089  if ((isVM && NewVD->hasLinkage()) ||
4090      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4091    bool SizeIsNegative;
4092    llvm::APSInt Oversized;
4093    QualType FixedTy =
4094        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4095                                            Oversized);
4096
4097    if (FixedTy.isNull() && T->isVariableArrayType()) {
4098      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4099      // FIXME: This won't give the correct result for
4100      // int a[10][n];
4101      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4102
4103      if (NewVD->isFileVarDecl())
4104        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4105        << SizeRange;
4106      else if (NewVD->getStorageClass() == SC_Static)
4107        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4108        << SizeRange;
4109      else
4110        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4111        << SizeRange;
4112      return NewVD->setInvalidDecl();
4113    }
4114
4115    if (FixedTy.isNull()) {
4116      if (NewVD->isFileVarDecl())
4117        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4118      else
4119        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4120      return NewVD->setInvalidDecl();
4121    }
4122
4123    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4124    NewVD->setType(FixedTy);
4125  }
4126
4127  if (Previous.empty() && NewVD->isExternC()) {
4128    // Since we did not find anything by this name and we're declaring
4129    // an extern "C" variable, look for a non-visible extern "C"
4130    // declaration with the same name.
4131    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4132      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4133    if (Pos != LocallyScopedExternalDecls.end())
4134      Previous.addDecl(Pos->second);
4135  }
4136
4137  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4138    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4139      << T;
4140    return NewVD->setInvalidDecl();
4141  }
4142
4143  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4144    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4145    return NewVD->setInvalidDecl();
4146  }
4147
4148  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4149    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4150    return NewVD->setInvalidDecl();
4151  }
4152
4153  // Function pointers and references cannot have qualified function type, only
4154  // function pointer-to-members can do that.
4155  QualType Pointee;
4156  unsigned PtrOrRef = 0;
4157  if (const PointerType *Ptr = T->getAs<PointerType>())
4158    Pointee = Ptr->getPointeeType();
4159  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4160    Pointee = Ref->getPointeeType();
4161    PtrOrRef = 1;
4162  }
4163  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4164      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4165    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4166        << PtrOrRef;
4167    return NewVD->setInvalidDecl();
4168  }
4169
4170  if (!Previous.empty()) {
4171    Redeclaration = true;
4172    MergeVarDecl(NewVD, Previous);
4173  }
4174}
4175
4176/// \brief Data used with FindOverriddenMethod
4177struct FindOverriddenMethodData {
4178  Sema *S;
4179  CXXMethodDecl *Method;
4180};
4181
4182/// \brief Member lookup function that determines whether a given C++
4183/// method overrides a method in a base class, to be used with
4184/// CXXRecordDecl::lookupInBases().
4185static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4186                                 CXXBasePath &Path,
4187                                 void *UserData) {
4188  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4189
4190  FindOverriddenMethodData *Data
4191    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4192
4193  DeclarationName Name = Data->Method->getDeclName();
4194
4195  // FIXME: Do we care about other names here too?
4196  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4197    // We really want to find the base class destructor here.
4198    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4199    CanQualType CT = Data->S->Context.getCanonicalType(T);
4200
4201    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4202  }
4203
4204  for (Path.Decls = BaseRecord->lookup(Name);
4205       Path.Decls.first != Path.Decls.second;
4206       ++Path.Decls.first) {
4207    NamedDecl *D = *Path.Decls.first;
4208    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4209      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4210        return true;
4211    }
4212  }
4213
4214  return false;
4215}
4216
4217/// AddOverriddenMethods - See if a method overrides any in the base classes,
4218/// and if so, check that it's a valid override and remember it.
4219bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4220  // Look for virtual methods in base classes that this method might override.
4221  CXXBasePaths Paths;
4222  FindOverriddenMethodData Data;
4223  Data.Method = MD;
4224  Data.S = this;
4225  bool AddedAny = false;
4226  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4227    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4228         E = Paths.found_decls_end(); I != E; ++I) {
4229      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4230        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4231        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4232            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4233            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4234          AddedAny = true;
4235        }
4236      }
4237    }
4238  }
4239
4240  return AddedAny;
4241}
4242
4243static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4244                                         bool isFriendDecl) {
4245  DeclarationName Name = NewFD->getDeclName();
4246  DeclContext *DC = NewFD->getDeclContext();
4247  LookupResult Prev(S, Name, NewFD->getLocation(),
4248                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4249  llvm::SmallVector<unsigned, 1> MismatchedParams;
4250  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4251  TypoCorrection Correction;
4252  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4253                                  : diag::err_member_def_does_not_match;
4254
4255  NewFD->setInvalidDecl();
4256  S.LookupQualifiedName(Prev, DC);
4257  assert(!Prev.isAmbiguous() &&
4258         "Cannot have an ambiguity in previous-declaration lookup");
4259  if (!Prev.empty()) {
4260    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4261         Func != FuncEnd; ++Func) {
4262      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4263      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4264                                         MismatchedParams)) {
4265        // Add 1 to the index so that 0 can mean the mismatch didn't
4266        // involve a parameter
4267        unsigned ParamNum =
4268            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4269        NearMatches.push_back(std::make_pair(FD, ParamNum));
4270      }
4271    }
4272  // If the qualified name lookup yielded nothing, try typo correction
4273  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4274                                         Prev.getLookupKind(), 0, 0, DC)) &&
4275             Correction.getCorrection() != Name) {
4276    DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4277                           : diag::err_member_def_does_not_match_suggest;
4278    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4279                                    CDeclEnd = Correction.end();
4280         CDecl != CDeclEnd; ++CDecl) {
4281      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4282      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4283                                         MismatchedParams)) {
4284        // Add 1 to the index so that 0 can mean the mismatch didn't
4285        // involve a parameter
4286        unsigned ParamNum =
4287            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4288        NearMatches.push_back(std::make_pair(FD, ParamNum));
4289      }
4290    }
4291  }
4292
4293  if (Correction)
4294    S.Diag(NewFD->getLocation(), DiagMsg)
4295        << Name << DC << Correction.getQuoted(S.getLangOptions())
4296        << FixItHint::CreateReplacement(
4297            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4298  else
4299    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4300
4301  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4302       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4303       NearMatch != NearMatchEnd; ++NearMatch) {
4304    FunctionDecl *FD = NearMatch->first;
4305
4306    if (unsigned Idx = NearMatch->second) {
4307      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4308      S.Diag(FDParam->getTypeSpecStartLoc(),
4309             diag::note_member_def_close_param_match)
4310          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4311    } else if (Correction) {
4312      S.Diag(FD->getLocation(), diag::note_previous_decl)
4313        << Correction.getQuoted(S.getLangOptions());
4314    } else
4315      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4316  }
4317}
4318
4319NamedDecl*
4320Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4321                              QualType R, TypeSourceInfo *TInfo,
4322                              LookupResult &Previous,
4323                              MultiTemplateParamsArg TemplateParamLists,
4324                              bool IsFunctionDefinition, bool &Redeclaration,
4325                              bool &AddToScope) {
4326  assert(R.getTypePtr()->isFunctionType());
4327
4328  // TODO: consider using NameInfo for diagnostic.
4329  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4330  DeclarationName Name = NameInfo.getName();
4331  FunctionDecl::StorageClass SC = SC_None;
4332  switch (D.getDeclSpec().getStorageClassSpec()) {
4333  default: assert(0 && "Unknown storage class!");
4334  case DeclSpec::SCS_auto:
4335  case DeclSpec::SCS_register:
4336  case DeclSpec::SCS_mutable:
4337    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4338         diag::err_typecheck_sclass_func);
4339    D.setInvalidType();
4340    break;
4341  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4342  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4343  case DeclSpec::SCS_static: {
4344    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4345      // C99 6.7.1p5:
4346      //   The declaration of an identifier for a function that has
4347      //   block scope shall have no explicit storage-class specifier
4348      //   other than extern
4349      // See also (C++ [dcl.stc]p4).
4350      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4351           diag::err_static_block_func);
4352      SC = SC_None;
4353    } else
4354      SC = SC_Static;
4355    break;
4356  }
4357  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4358  }
4359
4360  if (D.getDeclSpec().isThreadSpecified())
4361    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4362
4363  // Do not allow returning a objc interface by-value.
4364  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4365    Diag(D.getIdentifierLoc(),
4366         diag::err_object_cannot_be_passed_returned_by_value) << 0
4367    << R->getAs<FunctionType>()->getResultType()
4368    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4369
4370    QualType T = R->getAs<FunctionType>()->getResultType();
4371    T = Context.getObjCObjectPointerType(T);
4372    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4373      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4374      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4375                                  FPT->getNumArgs(), EPI);
4376    }
4377    else if (isa<FunctionNoProtoType>(R))
4378      R = Context.getFunctionNoProtoType(T);
4379  }
4380
4381  FunctionDecl *NewFD;
4382  bool isInline = D.getDeclSpec().isInlineSpecified();
4383  bool isFriend = false;
4384  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4385  FunctionDecl::StorageClass SCAsWritten
4386    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4387  FunctionTemplateDecl *FunctionTemplate = 0;
4388  bool isExplicitSpecialization = false;
4389  bool isFunctionTemplateSpecialization = false;
4390  bool isDependentClassScopeExplicitSpecialization = false;
4391
4392  if (!getLangOptions().CPlusPlus) {
4393    // Determine whether the function was written with a
4394    // prototype. This true when:
4395    //   - there is a prototype in the declarator, or
4396    //   - the type R of the function is some kind of typedef or other reference
4397    //     to a type name (which eventually refers to a function type).
4398    bool HasPrototype =
4399    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4400    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4401
4402    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4403                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4404                                 HasPrototype);
4405    if (D.isInvalidType())
4406      NewFD->setInvalidDecl();
4407
4408    // Set the lexical context.
4409    NewFD->setLexicalDeclContext(CurContext);
4410    // Filter out previous declarations that don't match the scope.
4411    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4412                         /*ExplicitInstantiationOrSpecialization=*/false);
4413  } else {
4414    isFriend = D.getDeclSpec().isFriendSpecified();
4415    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4416    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4417    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4418    bool isVirtualOkay = false;
4419
4420    // Check that the return type is not an abstract class type.
4421    // For record types, this is done by the AbstractClassUsageDiagnoser once
4422    // the class has been completely parsed.
4423    if (!DC->isRecord() &&
4424      RequireNonAbstractType(D.getIdentifierLoc(),
4425                             R->getAs<FunctionType>()->getResultType(),
4426                             diag::err_abstract_type_in_decl,
4427                             AbstractReturnType))
4428      D.setInvalidType();
4429
4430    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4431      // This is a C++ constructor declaration.
4432      assert(DC->isRecord() &&
4433             "Constructors can only be declared in a member context");
4434
4435      R = CheckConstructorDeclarator(D, R, SC);
4436
4437      // Create the new declaration
4438      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4439                                         Context,
4440                                         cast<CXXRecordDecl>(DC),
4441                                         D.getSourceRange().getBegin(),
4442                                         NameInfo, R, TInfo,
4443                                         isExplicit, isInline,
4444                                         /*isImplicitlyDeclared=*/false,
4445                                         isConstexpr);
4446
4447      NewFD = NewCD;
4448    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4449      // This is a C++ destructor declaration.
4450      if (DC->isRecord()) {
4451        R = CheckDestructorDeclarator(D, R, SC);
4452        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4453
4454        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4455                                          D.getSourceRange().getBegin(),
4456                                          NameInfo, R, TInfo,
4457                                          isInline,
4458                                          /*isImplicitlyDeclared=*/false);
4459        NewFD = NewDD;
4460        isVirtualOkay = true;
4461
4462        // If the class is complete, then we now create the implicit exception
4463        // specification. If the class is incomplete or dependent, we can't do
4464        // it yet.
4465        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4466            Record->getDefinition() && !Record->isBeingDefined() &&
4467            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4468          AdjustDestructorExceptionSpec(Record, NewDD);
4469        }
4470
4471      } else {
4472        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4473
4474        // Create a FunctionDecl to satisfy the function definition parsing
4475        // code path.
4476        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4477                                     D.getIdentifierLoc(), Name, R, TInfo,
4478                                     SC, SCAsWritten, isInline,
4479                                     /*hasPrototype=*/true, isConstexpr);
4480        D.setInvalidType();
4481      }
4482    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4483      if (!DC->isRecord()) {
4484        Diag(D.getIdentifierLoc(),
4485             diag::err_conv_function_not_member);
4486        return 0;
4487      }
4488
4489      CheckConversionDeclarator(D, R, SC);
4490      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4491                                        D.getSourceRange().getBegin(),
4492                                        NameInfo, R, TInfo,
4493                                        isInline, isExplicit, isConstexpr,
4494                                        SourceLocation());
4495
4496      isVirtualOkay = true;
4497    } else if (DC->isRecord()) {
4498      // If the name of the function is the same as the name of the record,
4499      // then this must be an invalid constructor that has a return type.
4500      // (The parser checks for a return type and makes the declarator a
4501      // constructor if it has no return type).
4502      if (Name.getAsIdentifierInfo() &&
4503          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4504        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4505          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4506          << SourceRange(D.getIdentifierLoc());
4507        return 0;
4508      }
4509
4510      bool isStatic = SC == SC_Static;
4511
4512      // [class.free]p1:
4513      // Any allocation function for a class T is a static member
4514      // (even if not explicitly declared static).
4515      if (Name.getCXXOverloadedOperator() == OO_New ||
4516          Name.getCXXOverloadedOperator() == OO_Array_New)
4517        isStatic = true;
4518
4519      // [class.free]p6 Any deallocation function for a class X is a static member
4520      // (even if not explicitly declared static).
4521      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4522          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4523        isStatic = true;
4524
4525      // This is a C++ method declaration.
4526      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4527                                               Context, cast<CXXRecordDecl>(DC),
4528                                               D.getSourceRange().getBegin(),
4529                                               NameInfo, R, TInfo,
4530                                               isStatic, SCAsWritten, isInline,
4531                                               isConstexpr,
4532                                               SourceLocation());
4533      NewFD = NewMD;
4534
4535      isVirtualOkay = !isStatic;
4536    } else {
4537      // Determine whether the function was written with a
4538      // prototype. This true when:
4539      //   - we're in C++ (where every function has a prototype),
4540      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4541                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4542                                   true/*HasPrototype*/, isConstexpr);
4543    }
4544
4545    if (isFriend && !isInline && IsFunctionDefinition) {
4546      // C++ [class.friend]p5
4547      //   A function can be defined in a friend declaration of a
4548      //   class . . . . Such a function is implicitly inline.
4549      NewFD->setImplicitlyInline();
4550    }
4551
4552    SetNestedNameSpecifier(NewFD, D);
4553    isExplicitSpecialization = false;
4554    isFunctionTemplateSpecialization = false;
4555    if (D.isInvalidType())
4556      NewFD->setInvalidDecl();
4557
4558    // Set the lexical context. If the declarator has a C++
4559    // scope specifier, or is the object of a friend declaration, the
4560    // lexical context will be different from the semantic context.
4561    NewFD->setLexicalDeclContext(CurContext);
4562
4563    // Match up the template parameter lists with the scope specifier, then
4564    // determine whether we have a template or a template specialization.
4565    bool Invalid = false;
4566    if (TemplateParameterList *TemplateParams
4567          = MatchTemplateParametersToScopeSpecifier(
4568                                  D.getDeclSpec().getSourceRange().getBegin(),
4569                                  D.getIdentifierLoc(),
4570                                  D.getCXXScopeSpec(),
4571                                  TemplateParamLists.get(),
4572                                  TemplateParamLists.size(),
4573                                  isFriend,
4574                                  isExplicitSpecialization,
4575                                  Invalid)) {
4576      if (TemplateParams->size() > 0) {
4577        // This is a function template
4578
4579        // Check that we can declare a template here.
4580        if (CheckTemplateDeclScope(S, TemplateParams))
4581          return 0;
4582
4583        // A destructor cannot be a template.
4584        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4585          Diag(NewFD->getLocation(), diag::err_destructor_template);
4586          return 0;
4587        }
4588
4589        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4590                                                        NewFD->getLocation(),
4591                                                        Name, TemplateParams,
4592                                                        NewFD);
4593        FunctionTemplate->setLexicalDeclContext(CurContext);
4594        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4595
4596        // For source fidelity, store the other template param lists.
4597        if (TemplateParamLists.size() > 1) {
4598          NewFD->setTemplateParameterListsInfo(Context,
4599                                               TemplateParamLists.size() - 1,
4600                                               TemplateParamLists.release());
4601        }
4602      } else {
4603        // This is a function template specialization.
4604        isFunctionTemplateSpecialization = true;
4605        // For source fidelity, store all the template param lists.
4606        NewFD->setTemplateParameterListsInfo(Context,
4607                                             TemplateParamLists.size(),
4608                                             TemplateParamLists.release());
4609
4610        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4611        if (isFriend) {
4612          // We want to remove the "template<>", found here.
4613          SourceRange RemoveRange = TemplateParams->getSourceRange();
4614
4615          // If we remove the template<> and the name is not a
4616          // template-id, we're actually silently creating a problem:
4617          // the friend declaration will refer to an untemplated decl,
4618          // and clearly the user wants a template specialization.  So
4619          // we need to insert '<>' after the name.
4620          SourceLocation InsertLoc;
4621          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4622            InsertLoc = D.getName().getSourceRange().getEnd();
4623            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4624          }
4625
4626          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4627            << Name << RemoveRange
4628            << FixItHint::CreateRemoval(RemoveRange)
4629            << FixItHint::CreateInsertion(InsertLoc, "<>");
4630        }
4631      }
4632    }
4633    else {
4634      // All template param lists were matched against the scope specifier:
4635      // this is NOT (an explicit specialization of) a template.
4636      if (TemplateParamLists.size() > 0)
4637        // For source fidelity, store all the template param lists.
4638        NewFD->setTemplateParameterListsInfo(Context,
4639                                             TemplateParamLists.size(),
4640                                             TemplateParamLists.release());
4641    }
4642
4643    if (Invalid) {
4644      NewFD->setInvalidDecl();
4645      if (FunctionTemplate)
4646        FunctionTemplate->setInvalidDecl();
4647    }
4648
4649    // C++ [dcl.fct.spec]p5:
4650    //   The virtual specifier shall only be used in declarations of
4651    //   nonstatic class member functions that appear within a
4652    //   member-specification of a class declaration; see 10.3.
4653    //
4654    if (isVirtual && !NewFD->isInvalidDecl()) {
4655      if (!isVirtualOkay) {
4656        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4657             diag::err_virtual_non_function);
4658      } else if (!CurContext->isRecord()) {
4659        // 'virtual' was specified outside of the class.
4660        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4661             diag::err_virtual_out_of_class)
4662          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4663      } else if (NewFD->getDescribedFunctionTemplate()) {
4664        // C++ [temp.mem]p3:
4665        //  A member function template shall not be virtual.
4666        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4667             diag::err_virtual_member_function_template)
4668          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4669      } else {
4670        // Okay: Add virtual to the method.
4671        NewFD->setVirtualAsWritten(true);
4672      }
4673    }
4674
4675    // C++ [dcl.fct.spec]p3:
4676    //  The inline specifier shall not appear on a block scope function declaration.
4677    if (isInline && !NewFD->isInvalidDecl()) {
4678      if (CurContext->isFunctionOrMethod()) {
4679        // 'inline' is not allowed on block scope function declaration.
4680        Diag(D.getDeclSpec().getInlineSpecLoc(),
4681             diag::err_inline_declaration_block_scope) << Name
4682          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4683      }
4684    }
4685
4686    // C++ [dcl.fct.spec]p6:
4687    //  The explicit specifier shall be used only in the declaration of a
4688    //  constructor or conversion function within its class definition; see 12.3.1
4689    //  and 12.3.2.
4690    if (isExplicit && !NewFD->isInvalidDecl()) {
4691      if (!CurContext->isRecord()) {
4692        // 'explicit' was specified outside of the class.
4693        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4694             diag::err_explicit_out_of_class)
4695          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4696      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4697                 !isa<CXXConversionDecl>(NewFD)) {
4698        // 'explicit' was specified on a function that wasn't a constructor
4699        // or conversion function.
4700        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4701             diag::err_explicit_non_ctor_or_conv_function)
4702          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4703      }
4704    }
4705
4706    if (isConstexpr) {
4707      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4708      // are implicitly inline.
4709      NewFD->setImplicitlyInline();
4710
4711      // FIXME: If this is a redeclaration, check the original declaration was
4712      // marked constepr.
4713
4714      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4715      // be either constructors or to return a literal type. Therefore,
4716      // destructors cannot be declared constexpr.
4717      if (isa<CXXDestructorDecl>(NewFD))
4718        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4719             diag::err_constexpr_dtor);
4720    }
4721
4722    // If __module_private__ was specified, mark the function accordingly.
4723    if (D.getDeclSpec().isModulePrivateSpecified()) {
4724      if (isFunctionTemplateSpecialization) {
4725        SourceLocation ModulePrivateLoc
4726          = D.getDeclSpec().getModulePrivateSpecLoc();
4727        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4728          << 0
4729          << FixItHint::CreateRemoval(ModulePrivateLoc);
4730      } else {
4731        NewFD->setModulePrivate();
4732        if (FunctionTemplate)
4733          FunctionTemplate->setModulePrivate();
4734      }
4735    }
4736
4737    // Filter out previous declarations that don't match the scope.
4738    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4739                         isExplicitSpecialization ||
4740                         isFunctionTemplateSpecialization);
4741
4742    if (isFriend) {
4743      // For now, claim that the objects have no previous declaration.
4744      if (FunctionTemplate) {
4745        FunctionTemplate->setObjectOfFriendDecl(false);
4746        FunctionTemplate->setAccess(AS_public);
4747      }
4748      NewFD->setObjectOfFriendDecl(false);
4749      NewFD->setAccess(AS_public);
4750    }
4751
4752    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4753      // A method is implicitly inline if it's defined in its class
4754      // definition.
4755      NewFD->setImplicitlyInline();
4756    }
4757
4758    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4759        !CurContext->isRecord()) {
4760      // C++ [class.static]p1:
4761      //   A data or function member of a class may be declared static
4762      //   in a class definition, in which case it is a static member of
4763      //   the class.
4764
4765      // Complain about the 'static' specifier if it's on an out-of-line
4766      // member function definition.
4767      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4768           diag::err_static_out_of_line)
4769        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4770    }
4771  }
4772
4773  // Handle GNU asm-label extension (encoded as an attribute).
4774  if (Expr *E = (Expr*) D.getAsmLabel()) {
4775    // The parser guarantees this is a string.
4776    StringLiteral *SE = cast<StringLiteral>(E);
4777    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4778                                                SE->getString()));
4779  }
4780
4781  // Copy the parameter declarations from the declarator D to the function
4782  // declaration NewFD, if they are available.  First scavenge them into Params.
4783  SmallVector<ParmVarDecl*, 16> Params;
4784  if (D.isFunctionDeclarator()) {
4785    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4786
4787    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4788    // function that takes no arguments, not a function that takes a
4789    // single void argument.
4790    // We let through "const void" here because Sema::GetTypeForDeclarator
4791    // already checks for that case.
4792    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4793        FTI.ArgInfo[0].Param &&
4794        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4795      // Empty arg list, don't push any params.
4796      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4797
4798      // In C++, the empty parameter-type-list must be spelled "void"; a
4799      // typedef of void is not permitted.
4800      if (getLangOptions().CPlusPlus &&
4801          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4802        bool IsTypeAlias = false;
4803        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4804          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4805        else if (const TemplateSpecializationType *TST =
4806                   Param->getType()->getAs<TemplateSpecializationType>())
4807          IsTypeAlias = TST->isTypeAlias();
4808        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4809          << IsTypeAlias;
4810      }
4811    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4812      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4813        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4814        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4815        Param->setDeclContext(NewFD);
4816        Params.push_back(Param);
4817
4818        if (Param->isInvalidDecl())
4819          NewFD->setInvalidDecl();
4820      }
4821    }
4822
4823  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4824    // When we're declaring a function with a typedef, typeof, etc as in the
4825    // following example, we'll need to synthesize (unnamed)
4826    // parameters for use in the declaration.
4827    //
4828    // @code
4829    // typedef void fn(int);
4830    // fn f;
4831    // @endcode
4832
4833    // Synthesize a parameter for each argument type.
4834    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4835         AE = FT->arg_type_end(); AI != AE; ++AI) {
4836      ParmVarDecl *Param =
4837        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4838      Param->setScopeInfo(0, Params.size());
4839      Params.push_back(Param);
4840    }
4841  } else {
4842    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4843           "Should not need args for typedef of non-prototype fn");
4844  }
4845  // Finally, we know we have the right number of parameters, install them.
4846  NewFD->setParams(Params.data(), Params.size());
4847
4848  // Process the non-inheritable attributes on this declaration.
4849  ProcessDeclAttributes(S, NewFD, D,
4850                        /*NonInheritable=*/true, /*Inheritable=*/false);
4851
4852  if (!getLangOptions().CPlusPlus) {
4853    // Perform semantic checking on the function declaration.
4854    bool isExplicitSpecialization=false;
4855    if (!NewFD->isInvalidDecl()) {
4856      if (NewFD->getResultType()->isVariablyModifiedType()) {
4857        // Functions returning a variably modified type violate C99 6.7.5.2p2
4858        // because all functions have linkage.
4859        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4860        NewFD->setInvalidDecl();
4861      } else {
4862        if (NewFD->isMain())
4863          CheckMain(NewFD, D.getDeclSpec());
4864        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4865                                 Redeclaration);
4866      }
4867    }
4868    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4869            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4870           "previous declaration set still overloaded");
4871  } else {
4872    // If the declarator is a template-id, translate the parser's template
4873    // argument list into our AST format.
4874    bool HasExplicitTemplateArgs = false;
4875    TemplateArgumentListInfo TemplateArgs;
4876    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4877      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4878      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4879      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4880      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4881                                         TemplateId->getTemplateArgs(),
4882                                         TemplateId->NumArgs);
4883      translateTemplateArguments(TemplateArgsPtr,
4884                                 TemplateArgs);
4885      TemplateArgsPtr.release();
4886
4887      HasExplicitTemplateArgs = true;
4888
4889      if (NewFD->isInvalidDecl()) {
4890        HasExplicitTemplateArgs = false;
4891      } else if (FunctionTemplate) {
4892        // Function template with explicit template arguments.
4893        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4894          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4895
4896        HasExplicitTemplateArgs = false;
4897      } else if (!isFunctionTemplateSpecialization &&
4898                 !D.getDeclSpec().isFriendSpecified()) {
4899        // We have encountered something that the user meant to be a
4900        // specialization (because it has explicitly-specified template
4901        // arguments) but that was not introduced with a "template<>" (or had
4902        // too few of them).
4903        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4904          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4905          << FixItHint::CreateInsertion(
4906                                        D.getDeclSpec().getSourceRange().getBegin(),
4907                                                  "template<> ");
4908        isFunctionTemplateSpecialization = true;
4909      } else {
4910        // "friend void foo<>(int);" is an implicit specialization decl.
4911        isFunctionTemplateSpecialization = true;
4912      }
4913    } else if (isFriend && isFunctionTemplateSpecialization) {
4914      // This combination is only possible in a recovery case;  the user
4915      // wrote something like:
4916      //   template <> friend void foo(int);
4917      // which we're recovering from as if the user had written:
4918      //   friend void foo<>(int);
4919      // Go ahead and fake up a template id.
4920      HasExplicitTemplateArgs = true;
4921        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4922      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4923    }
4924
4925    // If it's a friend (and only if it's a friend), it's possible
4926    // that either the specialized function type or the specialized
4927    // template is dependent, and therefore matching will fail.  In
4928    // this case, don't check the specialization yet.
4929    if (isFunctionTemplateSpecialization && isFriend &&
4930        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4931      assert(HasExplicitTemplateArgs &&
4932             "friend function specialization without template args");
4933      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4934                                                       Previous))
4935        NewFD->setInvalidDecl();
4936    } else if (isFunctionTemplateSpecialization) {
4937      if (CurContext->isDependentContext() && CurContext->isRecord()
4938          && !isFriend) {
4939        isDependentClassScopeExplicitSpecialization = true;
4940        Diag(NewFD->getLocation(), getLangOptions().Microsoft ?
4941          diag::ext_function_specialization_in_class :
4942          diag::err_function_specialization_in_class)
4943          << NewFD->getDeclName();
4944      } else if (CheckFunctionTemplateSpecialization(NewFD,
4945                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4946                                                     Previous))
4947        NewFD->setInvalidDecl();
4948
4949      // C++ [dcl.stc]p1:
4950      //   A storage-class-specifier shall not be specified in an explicit
4951      //   specialization (14.7.3)
4952      if (SC != SC_None) {
4953        if (SC != NewFD->getStorageClass())
4954          Diag(NewFD->getLocation(),
4955               diag::err_explicit_specialization_inconsistent_storage_class)
4956            << SC
4957            << FixItHint::CreateRemoval(
4958                                      D.getDeclSpec().getStorageClassSpecLoc());
4959
4960        else
4961          Diag(NewFD->getLocation(),
4962               diag::ext_explicit_specialization_storage_class)
4963            << FixItHint::CreateRemoval(
4964                                      D.getDeclSpec().getStorageClassSpecLoc());
4965      }
4966
4967    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4968      if (CheckMemberSpecialization(NewFD, Previous))
4969          NewFD->setInvalidDecl();
4970    }
4971
4972    // Perform semantic checking on the function declaration.
4973    if (!isDependentClassScopeExplicitSpecialization) {
4974      if (NewFD->isInvalidDecl()) {
4975        // If this is a class member, mark the class invalid immediately.
4976        // This avoids some consistency errors later.
4977        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
4978          methodDecl->getParent()->setInvalidDecl();
4979      } else {
4980        if (NewFD->isMain())
4981          CheckMain(NewFD, D.getDeclSpec());
4982        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4983                                 Redeclaration);
4984      }
4985    }
4986
4987    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4988            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4989           "previous declaration set still overloaded");
4990
4991    NamedDecl *PrincipalDecl = (FunctionTemplate
4992                                ? cast<NamedDecl>(FunctionTemplate)
4993                                : NewFD);
4994
4995    if (isFriend && Redeclaration) {
4996      AccessSpecifier Access = AS_public;
4997      if (!NewFD->isInvalidDecl())
4998        Access = NewFD->getPreviousDeclaration()->getAccess();
4999
5000      NewFD->setAccess(Access);
5001      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5002
5003      PrincipalDecl->setObjectOfFriendDecl(true);
5004    }
5005
5006    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5007        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5008      PrincipalDecl->setNonMemberOperator();
5009
5010    // If we have a function template, check the template parameter
5011    // list. This will check and merge default template arguments.
5012    if (FunctionTemplate) {
5013      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5014      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5015                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5016                            D.getDeclSpec().isFriendSpecified()
5017                              ? (IsFunctionDefinition
5018                                   ? TPC_FriendFunctionTemplateDefinition
5019                                   : TPC_FriendFunctionTemplate)
5020                              : (D.getCXXScopeSpec().isSet() &&
5021                                 DC && DC->isRecord() &&
5022                                 DC->isDependentContext())
5023                                  ? TPC_ClassTemplateMember
5024                                  : TPC_FunctionTemplate);
5025    }
5026
5027    if (NewFD->isInvalidDecl()) {
5028      // Ignore all the rest of this.
5029    } else if (!Redeclaration) {
5030      // Fake up an access specifier if it's supposed to be a class member.
5031      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5032        NewFD->setAccess(AS_public);
5033
5034      // Qualified decls generally require a previous declaration.
5035      if (D.getCXXScopeSpec().isSet()) {
5036        // ...with the major exception of templated-scope or
5037        // dependent-scope friend declarations.
5038
5039        // TODO: we currently also suppress this check in dependent
5040        // contexts because (1) the parameter depth will be off when
5041        // matching friend templates and (2) we might actually be
5042        // selecting a friend based on a dependent factor.  But there
5043        // are situations where these conditions don't apply and we
5044        // can actually do this check immediately.
5045        if (isFriend &&
5046            (TemplateParamLists.size() ||
5047             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5048             CurContext->isDependentContext())) {
5049          // ignore these
5050        } else {
5051          // The user tried to provide an out-of-line definition for a
5052          // function that is a member of a class or namespace, but there
5053          // was no such member function declared (C++ [class.mfct]p2,
5054          // C++ [namespace.memdef]p2). For example:
5055          //
5056          // class X {
5057          //   void f() const;
5058          // };
5059          //
5060          // void X::f() { } // ill-formed
5061          //
5062          // Complain about this problem, and attempt to suggest close
5063          // matches (e.g., those that differ only in cv-qualifiers and
5064          // whether the parameter types are references).
5065
5066          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5067        }
5068
5069        // Unqualified local friend declarations are required to resolve
5070        // to something.
5071      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5072        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5073      }
5074
5075    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5076               !isFriend && !isFunctionTemplateSpecialization &&
5077               !isExplicitSpecialization) {
5078      // An out-of-line member function declaration must also be a
5079      // definition (C++ [dcl.meaning]p1).
5080      // Note that this is not the case for explicit specializations of
5081      // function templates or member functions of class templates, per
5082      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5083      // for compatibility with old SWIG code which likes to generate them.
5084      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5085        << D.getCXXScopeSpec().getRange();
5086    }
5087  }
5088
5089
5090  // Handle attributes. We need to have merged decls when handling attributes
5091  // (for example to check for conflicts, etc).
5092  // FIXME: This needs to happen before we merge declarations. Then,
5093  // let attribute merging cope with attribute conflicts.
5094  ProcessDeclAttributes(S, NewFD, D,
5095                        /*NonInheritable=*/false, /*Inheritable=*/true);
5096
5097  // attributes declared post-definition are currently ignored
5098  // FIXME: This should happen during attribute merging
5099  if (Redeclaration && Previous.isSingleResult()) {
5100    const FunctionDecl *Def;
5101    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5102    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5103      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5104      Diag(Def->getLocation(), diag::note_previous_definition);
5105    }
5106  }
5107
5108  AddKnownFunctionAttributes(NewFD);
5109
5110  if (NewFD->hasAttr<OverloadableAttr>() &&
5111      !NewFD->getType()->getAs<FunctionProtoType>()) {
5112    Diag(NewFD->getLocation(),
5113         diag::err_attribute_overloadable_no_prototype)
5114      << NewFD;
5115
5116    // Turn this into a variadic function with no parameters.
5117    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5118    FunctionProtoType::ExtProtoInfo EPI;
5119    EPI.Variadic = true;
5120    EPI.ExtInfo = FT->getExtInfo();
5121
5122    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5123    NewFD->setType(R);
5124  }
5125
5126  // If there's a #pragma GCC visibility in scope, and this isn't a class
5127  // member, set the visibility of this function.
5128  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5129    AddPushedVisibilityAttribute(NewFD);
5130
5131  // If this is a locally-scoped extern C function, update the
5132  // map of such names.
5133  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5134      && !NewFD->isInvalidDecl())
5135    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5136
5137  // Set this FunctionDecl's range up to the right paren.
5138  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5139
5140  if (getLangOptions().CPlusPlus) {
5141    if (FunctionTemplate) {
5142      if (NewFD->isInvalidDecl())
5143        FunctionTemplate->setInvalidDecl();
5144      return FunctionTemplate;
5145    }
5146  }
5147
5148  MarkUnusedFileScopedDecl(NewFD);
5149
5150  if (getLangOptions().CUDA)
5151    if (IdentifierInfo *II = NewFD->getIdentifier())
5152      if (!NewFD->isInvalidDecl() &&
5153          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5154        if (II->isStr("cudaConfigureCall")) {
5155          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5156            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5157
5158          Context.setcudaConfigureCallDecl(NewFD);
5159        }
5160      }
5161
5162  // Here we have an function template explicit specialization at class scope.
5163  // The actually specialization will be postponed to template instatiation
5164  // time via the ClassScopeFunctionSpecializationDecl node.
5165  if (isDependentClassScopeExplicitSpecialization) {
5166    ClassScopeFunctionSpecializationDecl *NewSpec =
5167                         ClassScopeFunctionSpecializationDecl::Create(
5168                                Context, CurContext,  SourceLocation(),
5169                                cast<CXXMethodDecl>(NewFD));
5170    CurContext->addDecl(NewSpec);
5171    AddToScope = false;
5172  }
5173
5174  return NewFD;
5175}
5176
5177/// \brief Perform semantic checking of a new function declaration.
5178///
5179/// Performs semantic analysis of the new function declaration
5180/// NewFD. This routine performs all semantic checking that does not
5181/// require the actual declarator involved in the declaration, and is
5182/// used both for the declaration of functions as they are parsed
5183/// (called via ActOnDeclarator) and for the declaration of functions
5184/// that have been instantiated via C++ template instantiation (called
5185/// via InstantiateDecl).
5186///
5187/// \param IsExplicitSpecialiation whether this new function declaration is
5188/// an explicit specialization of the previous declaration.
5189///
5190/// This sets NewFD->isInvalidDecl() to true if there was an error.
5191void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5192                                    LookupResult &Previous,
5193                                    bool IsExplicitSpecialization,
5194                                    bool &Redeclaration) {
5195  assert(!NewFD->getResultType()->isVariablyModifiedType()
5196         && "Variably modified return types are not handled here");
5197
5198  // Check for a previous declaration of this name.
5199  if (Previous.empty() && NewFD->isExternC()) {
5200    // Since we did not find anything by this name and we're declaring
5201    // an extern "C" function, look for a non-visible extern "C"
5202    // declaration with the same name.
5203    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5204      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5205    if (Pos != LocallyScopedExternalDecls.end())
5206      Previous.addDecl(Pos->second);
5207  }
5208
5209  // Merge or overload the declaration with an existing declaration of
5210  // the same name, if appropriate.
5211  if (!Previous.empty()) {
5212    // Determine whether NewFD is an overload of PrevDecl or
5213    // a declaration that requires merging. If it's an overload,
5214    // there's no more work to do here; we'll just add the new
5215    // function to the scope.
5216
5217    NamedDecl *OldDecl = 0;
5218    if (!AllowOverloadingOfFunction(Previous, Context)) {
5219      Redeclaration = true;
5220      OldDecl = Previous.getFoundDecl();
5221    } else {
5222      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5223                            /*NewIsUsingDecl*/ false)) {
5224      case Ovl_Match:
5225        Redeclaration = true;
5226        break;
5227
5228      case Ovl_NonFunction:
5229        Redeclaration = true;
5230        break;
5231
5232      case Ovl_Overload:
5233        Redeclaration = false;
5234        break;
5235      }
5236
5237      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5238        // If a function name is overloadable in C, then every function
5239        // with that name must be marked "overloadable".
5240        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5241          << Redeclaration << NewFD;
5242        NamedDecl *OverloadedDecl = 0;
5243        if (Redeclaration)
5244          OverloadedDecl = OldDecl;
5245        else if (!Previous.empty())
5246          OverloadedDecl = Previous.getRepresentativeDecl();
5247        if (OverloadedDecl)
5248          Diag(OverloadedDecl->getLocation(),
5249               diag::note_attribute_overloadable_prev_overload);
5250        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5251                                                        Context));
5252      }
5253    }
5254
5255    if (Redeclaration) {
5256      // NewFD and OldDecl represent declarations that need to be
5257      // merged.
5258      if (MergeFunctionDecl(NewFD, OldDecl))
5259        return NewFD->setInvalidDecl();
5260
5261      Previous.clear();
5262      Previous.addDecl(OldDecl);
5263
5264      if (FunctionTemplateDecl *OldTemplateDecl
5265                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5266        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5267        FunctionTemplateDecl *NewTemplateDecl
5268          = NewFD->getDescribedFunctionTemplate();
5269        assert(NewTemplateDecl && "Template/non-template mismatch");
5270        if (CXXMethodDecl *Method
5271              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5272          Method->setAccess(OldTemplateDecl->getAccess());
5273          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5274        }
5275
5276        // If this is an explicit specialization of a member that is a function
5277        // template, mark it as a member specialization.
5278        if (IsExplicitSpecialization &&
5279            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5280          NewTemplateDecl->setMemberSpecialization();
5281          assert(OldTemplateDecl->isMemberSpecialization());
5282        }
5283
5284        if (OldTemplateDecl->isModulePrivate())
5285          NewTemplateDecl->setModulePrivate();
5286
5287      } else {
5288        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5289          NewFD->setAccess(OldDecl->getAccess());
5290        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5291      }
5292    }
5293  }
5294
5295  // Semantic checking for this function declaration (in isolation).
5296  if (getLangOptions().CPlusPlus) {
5297    // C++-specific checks.
5298    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5299      CheckConstructor(Constructor);
5300    } else if (CXXDestructorDecl *Destructor =
5301                dyn_cast<CXXDestructorDecl>(NewFD)) {
5302      CXXRecordDecl *Record = Destructor->getParent();
5303      QualType ClassType = Context.getTypeDeclType(Record);
5304
5305      // FIXME: Shouldn't we be able to perform this check even when the class
5306      // type is dependent? Both gcc and edg can handle that.
5307      if (!ClassType->isDependentType()) {
5308        DeclarationName Name
5309          = Context.DeclarationNames.getCXXDestructorName(
5310                                        Context.getCanonicalType(ClassType));
5311        if (NewFD->getDeclName() != Name) {
5312          Diag(NewFD->getLocation(), diag::err_destructor_name);
5313          return NewFD->setInvalidDecl();
5314        }
5315      }
5316    } else if (CXXConversionDecl *Conversion
5317               = dyn_cast<CXXConversionDecl>(NewFD)) {
5318      ActOnConversionDeclarator(Conversion);
5319    }
5320
5321    // Find any virtual functions that this function overrides.
5322    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5323      if (!Method->isFunctionTemplateSpecialization() &&
5324          !Method->getDescribedFunctionTemplate()) {
5325        if (AddOverriddenMethods(Method->getParent(), Method)) {
5326          // If the function was marked as "static", we have a problem.
5327          if (NewFD->getStorageClass() == SC_Static) {
5328            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5329              << NewFD->getDeclName();
5330            for (CXXMethodDecl::method_iterator
5331                      Overridden = Method->begin_overridden_methods(),
5332                   OverriddenEnd = Method->end_overridden_methods();
5333                 Overridden != OverriddenEnd;
5334                 ++Overridden) {
5335              Diag((*Overridden)->getLocation(),
5336                   diag::note_overridden_virtual_function);
5337            }
5338          }
5339        }
5340      }
5341    }
5342
5343    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5344    if (NewFD->isOverloadedOperator() &&
5345        CheckOverloadedOperatorDeclaration(NewFD))
5346      return NewFD->setInvalidDecl();
5347
5348    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5349    if (NewFD->getLiteralIdentifier() &&
5350        CheckLiteralOperatorDeclaration(NewFD))
5351      return NewFD->setInvalidDecl();
5352
5353    // In C++, check default arguments now that we have merged decls. Unless
5354    // the lexical context is the class, because in this case this is done
5355    // during delayed parsing anyway.
5356    if (!CurContext->isRecord())
5357      CheckCXXDefaultArguments(NewFD);
5358
5359    // If this function declares a builtin function, check the type of this
5360    // declaration against the expected type for the builtin.
5361    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5362      ASTContext::GetBuiltinTypeError Error;
5363      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5364      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5365        // The type of this function differs from the type of the builtin,
5366        // so forget about the builtin entirely.
5367        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5368      }
5369    }
5370  }
5371}
5372
5373void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5374  // C++ [basic.start.main]p3:  A program that declares main to be inline
5375  //   or static is ill-formed.
5376  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5377  //   shall not appear in a declaration of main.
5378  // static main is not an error under C99, but we should warn about it.
5379  if (FD->getStorageClass() == SC_Static)
5380    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5381         ? diag::err_static_main : diag::warn_static_main)
5382      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5383  if (FD->isInlineSpecified())
5384    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5385      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5386
5387  QualType T = FD->getType();
5388  assert(T->isFunctionType() && "function decl is not of function type");
5389  const FunctionType* FT = T->getAs<FunctionType>();
5390
5391  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5392    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5393    FD->setInvalidDecl(true);
5394  }
5395
5396  // Treat protoless main() as nullary.
5397  if (isa<FunctionNoProtoType>(FT)) return;
5398
5399  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5400  unsigned nparams = FTP->getNumArgs();
5401  assert(FD->getNumParams() == nparams);
5402
5403  bool HasExtraParameters = (nparams > 3);
5404
5405  // Darwin passes an undocumented fourth argument of type char**.  If
5406  // other platforms start sprouting these, the logic below will start
5407  // getting shifty.
5408  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5409    HasExtraParameters = false;
5410
5411  if (HasExtraParameters) {
5412    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5413    FD->setInvalidDecl(true);
5414    nparams = 3;
5415  }
5416
5417  // FIXME: a lot of the following diagnostics would be improved
5418  // if we had some location information about types.
5419
5420  QualType CharPP =
5421    Context.getPointerType(Context.getPointerType(Context.CharTy));
5422  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5423
5424  for (unsigned i = 0; i < nparams; ++i) {
5425    QualType AT = FTP->getArgType(i);
5426
5427    bool mismatch = true;
5428
5429    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5430      mismatch = false;
5431    else if (Expected[i] == CharPP) {
5432      // As an extension, the following forms are okay:
5433      //   char const **
5434      //   char const * const *
5435      //   char * const *
5436
5437      QualifierCollector qs;
5438      const PointerType* PT;
5439      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5440          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5441          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5442        qs.removeConst();
5443        mismatch = !qs.empty();
5444      }
5445    }
5446
5447    if (mismatch) {
5448      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5449      // TODO: suggest replacing given type with expected type
5450      FD->setInvalidDecl(true);
5451    }
5452  }
5453
5454  if (nparams == 1 && !FD->isInvalidDecl()) {
5455    Diag(FD->getLocation(), diag::warn_main_one_arg);
5456  }
5457
5458  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5459    Diag(FD->getLocation(), diag::err_main_template_decl);
5460    FD->setInvalidDecl();
5461  }
5462}
5463
5464bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5465  // FIXME: Need strict checking.  In C89, we need to check for
5466  // any assignment, increment, decrement, function-calls, or
5467  // commas outside of a sizeof.  In C99, it's the same list,
5468  // except that the aforementioned are allowed in unevaluated
5469  // expressions.  Everything else falls under the
5470  // "may accept other forms of constant expressions" exception.
5471  // (We never end up here for C++, so the constant expression
5472  // rules there don't matter.)
5473  if (Init->isConstantInitializer(Context, false))
5474    return false;
5475  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5476    << Init->getSourceRange();
5477  return true;
5478}
5479
5480namespace {
5481  // Visits an initialization expression to see if OrigDecl is evaluated in
5482  // its own initialization and throws a warning if it does.
5483  class SelfReferenceChecker
5484      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5485    Sema &S;
5486    Decl *OrigDecl;
5487    bool isRecordType;
5488    bool isPODType;
5489
5490  public:
5491    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5492
5493    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5494                                                    S(S), OrigDecl(OrigDecl) {
5495      isPODType = false;
5496      isRecordType = false;
5497      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5498        isPODType = VD->getType().isPODType(S.Context);
5499        isRecordType = VD->getType()->isRecordType();
5500      }
5501    }
5502
5503    void VisitExpr(Expr *E) {
5504      if (isa<ObjCMessageExpr>(*E)) return;
5505      if (isRecordType) {
5506        Expr *expr = E;
5507        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5508          ValueDecl *VD = ME->getMemberDecl();
5509          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5510          expr = ME->getBase();
5511        }
5512        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5513          HandleDeclRefExpr(DRE);
5514          return;
5515        }
5516      }
5517      Inherited::VisitExpr(E);
5518    }
5519
5520    void VisitMemberExpr(MemberExpr *E) {
5521      if (E->getType()->canDecayToPointerType()) return;
5522      if (isa<FieldDecl>(E->getMemberDecl()))
5523        if (DeclRefExpr *DRE
5524              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5525          HandleDeclRefExpr(DRE);
5526          return;
5527        }
5528      Inherited::VisitMemberExpr(E);
5529    }
5530
5531    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5532      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5533          (isRecordType && E->getCastKind() == CK_NoOp)) {
5534        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5535        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5536          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5537        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5538          HandleDeclRefExpr(DRE);
5539          return;
5540        }
5541      }
5542      Inherited::VisitImplicitCastExpr(E);
5543    }
5544
5545    void VisitUnaryOperator(UnaryOperator *E) {
5546      // For POD record types, addresses of its own members are well-defined.
5547      if (isRecordType && isPODType) return;
5548      Inherited::VisitUnaryOperator(E);
5549    }
5550
5551    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5552      Decl* ReferenceDecl = DRE->getDecl();
5553      if (OrigDecl != ReferenceDecl) return;
5554      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5555                          Sema::NotForRedeclaration);
5556      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5557                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5558                              << Result.getLookupName()
5559                              << OrigDecl->getLocation()
5560                              << DRE->getSourceRange());
5561    }
5562  };
5563}
5564
5565/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5566void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5567  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5568}
5569
5570/// AddInitializerToDecl - Adds the initializer Init to the
5571/// declaration dcl. If DirectInit is true, this is C++ direct
5572/// initialization rather than copy initialization.
5573void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5574                                bool DirectInit, bool TypeMayContainAuto) {
5575  // If there is no declaration, there was an error parsing it.  Just ignore
5576  // the initializer.
5577  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5578    return;
5579
5580  // Check for self-references within variable initializers.
5581  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5582    // Variables declared within a function/method body are handled
5583    // by a dataflow analysis.
5584    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5585      CheckSelfReference(RealDecl, Init);
5586  }
5587  else {
5588    CheckSelfReference(RealDecl, Init);
5589  }
5590
5591  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5592    // With declarators parsed the way they are, the parser cannot
5593    // distinguish between a normal initializer and a pure-specifier.
5594    // Thus this grotesque test.
5595    IntegerLiteral *IL;
5596    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5597        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5598      CheckPureMethod(Method, Init->getSourceRange());
5599    else {
5600      Diag(Method->getLocation(), diag::err_member_function_initialization)
5601        << Method->getDeclName() << Init->getSourceRange();
5602      Method->setInvalidDecl();
5603    }
5604    return;
5605  }
5606
5607  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5608  if (!VDecl) {
5609    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5610    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5611    RealDecl->setInvalidDecl();
5612    return;
5613  }
5614
5615  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5616  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5617    TypeSourceInfo *DeducedType = 0;
5618    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5619      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5620        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5621        << Init->getSourceRange();
5622    if (!DeducedType) {
5623      RealDecl->setInvalidDecl();
5624      return;
5625    }
5626    VDecl->setTypeSourceInfo(DeducedType);
5627    VDecl->setType(DeducedType->getType());
5628
5629    // In ARC, infer lifetime.
5630    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5631      VDecl->setInvalidDecl();
5632
5633    // If this is a redeclaration, check that the type we just deduced matches
5634    // the previously declared type.
5635    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5636      MergeVarDeclTypes(VDecl, Old);
5637  }
5638
5639
5640  // A definition must end up with a complete type, which means it must be
5641  // complete with the restriction that an array type might be completed by the
5642  // initializer; note that later code assumes this restriction.
5643  QualType BaseDeclType = VDecl->getType();
5644  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5645    BaseDeclType = Array->getElementType();
5646  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5647                          diag::err_typecheck_decl_incomplete_type)) {
5648    RealDecl->setInvalidDecl();
5649    return;
5650  }
5651
5652  // The variable can not have an abstract class type.
5653  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5654                             diag::err_abstract_type_in_decl,
5655                             AbstractVariableType))
5656    VDecl->setInvalidDecl();
5657
5658  const VarDecl *Def;
5659  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5660    Diag(VDecl->getLocation(), diag::err_redefinition)
5661      << VDecl->getDeclName();
5662    Diag(Def->getLocation(), diag::note_previous_definition);
5663    VDecl->setInvalidDecl();
5664    return;
5665  }
5666
5667  const VarDecl* PrevInit = 0;
5668  if (getLangOptions().CPlusPlus) {
5669    // C++ [class.static.data]p4
5670    //   If a static data member is of const integral or const
5671    //   enumeration type, its declaration in the class definition can
5672    //   specify a constant-initializer which shall be an integral
5673    //   constant expression (5.19). In that case, the member can appear
5674    //   in integral constant expressions. The member shall still be
5675    //   defined in a namespace scope if it is used in the program and the
5676    //   namespace scope definition shall not contain an initializer.
5677    //
5678    // We already performed a redefinition check above, but for static
5679    // data members we also need to check whether there was an in-class
5680    // declaration with an initializer.
5681    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5682      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5683      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5684      return;
5685    }
5686
5687    if (VDecl->hasLocalStorage())
5688      getCurFunction()->setHasBranchProtectedScope();
5689
5690    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5691      VDecl->setInvalidDecl();
5692      return;
5693    }
5694  }
5695
5696  // Capture the variable that is being initialized and the style of
5697  // initialization.
5698  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5699
5700  // FIXME: Poor source location information.
5701  InitializationKind Kind
5702    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5703                                                   Init->getLocStart(),
5704                                                   Init->getLocEnd())
5705                : InitializationKind::CreateCopy(VDecl->getLocation(),
5706                                                 Init->getLocStart());
5707
5708  // Get the decls type and save a reference for later, since
5709  // CheckInitializerTypes may change it.
5710  QualType DclT = VDecl->getType(), SavT = DclT;
5711  if (VDecl->isLocalVarDecl()) {
5712    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5713      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5714      VDecl->setInvalidDecl();
5715    } else if (!VDecl->isInvalidDecl()) {
5716      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5717      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5718                                                MultiExprArg(*this, &Init, 1),
5719                                                &DclT);
5720      if (Result.isInvalid()) {
5721        VDecl->setInvalidDecl();
5722        return;
5723      }
5724
5725      Init = Result.takeAs<Expr>();
5726
5727      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5728      // Don't check invalid declarations to avoid emitting useless diagnostics.
5729      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5730        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5731          CheckForConstantInitializer(Init, DclT);
5732      }
5733    }
5734  } else if (VDecl->isStaticDataMember() &&
5735             VDecl->getLexicalDeclContext()->isRecord()) {
5736    // This is an in-class initialization for a static data member, e.g.,
5737    //
5738    // struct S {
5739    //   static const int value = 17;
5740    // };
5741
5742    // Try to perform the initialization regardless.
5743    if (!VDecl->isInvalidDecl()) {
5744      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5745      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5746                                          MultiExprArg(*this, &Init, 1),
5747                                          &DclT);
5748      if (Result.isInvalid()) {
5749        VDecl->setInvalidDecl();
5750        return;
5751      }
5752
5753      Init = Result.takeAs<Expr>();
5754    }
5755
5756    // C++ [class.mem]p4:
5757    //   A member-declarator can contain a constant-initializer only
5758    //   if it declares a static member (9.4) of const integral or
5759    //   const enumeration type, see 9.4.2.
5760    QualType T = VDecl->getType();
5761
5762    // Do nothing on dependent types.
5763    if (T->isDependentType()) {
5764
5765    // Require constness.
5766    } else if (!T.isConstQualified()) {
5767      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5768        << Init->getSourceRange();
5769      VDecl->setInvalidDecl();
5770
5771    // We allow integer constant expressions in all cases.
5772    } else if (T->isIntegralOrEnumerationType()) {
5773      // Check whether the expression is a constant expression.
5774      SourceLocation Loc;
5775      if (Init->isValueDependent())
5776        ; // Nothing to check.
5777      else if (Init->isIntegerConstantExpr(Context, &Loc))
5778        ; // Ok, it's an ICE!
5779      else if (Init->isEvaluatable(Context)) {
5780        // If we can constant fold the initializer through heroics, accept it,
5781        // but report this as a use of an extension for -pedantic.
5782        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5783          << Init->getSourceRange();
5784      } else {
5785        // Otherwise, this is some crazy unknown case.  Report the issue at the
5786        // location provided by the isIntegerConstantExpr failed check.
5787        Diag(Loc, diag::err_in_class_initializer_non_constant)
5788          << Init->getSourceRange();
5789        VDecl->setInvalidDecl();
5790      }
5791
5792    // We allow floating-point constants as an extension in C++03, and
5793    // C++0x has far more complicated rules that we don't really
5794    // implement fully.
5795    } else {
5796      bool Allowed = false;
5797      if (getLangOptions().CPlusPlus0x) {
5798        Allowed = T->isLiteralType();
5799      } else if (T->isFloatingType()) { // also permits complex, which is ok
5800        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5801          << T << Init->getSourceRange();
5802        Allowed = true;
5803      }
5804
5805      if (!Allowed) {
5806        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5807          << T << Init->getSourceRange();
5808        VDecl->setInvalidDecl();
5809
5810      // TODO: there are probably expressions that pass here that shouldn't.
5811      } else if (!Init->isValueDependent() &&
5812                 !Init->isConstantInitializer(Context, false)) {
5813        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5814          << Init->getSourceRange();
5815        VDecl->setInvalidDecl();
5816      }
5817    }
5818  } else if (VDecl->isFileVarDecl()) {
5819    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5820        (!getLangOptions().CPlusPlus ||
5821         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5822      Diag(VDecl->getLocation(), diag::warn_extern_init);
5823    if (!VDecl->isInvalidDecl()) {
5824      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5825      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5826                                                MultiExprArg(*this, &Init, 1),
5827                                                &DclT);
5828      if (Result.isInvalid()) {
5829        VDecl->setInvalidDecl();
5830        return;
5831      }
5832
5833      Init = Result.takeAs<Expr>();
5834    }
5835
5836    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5837    // Don't check invalid declarations to avoid emitting useless diagnostics.
5838    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5839      // C99 6.7.8p4. All file scoped initializers need to be constant.
5840      CheckForConstantInitializer(Init, DclT);
5841    }
5842  }
5843  // If the type changed, it means we had an incomplete type that was
5844  // completed by the initializer. For example:
5845  //   int ary[] = { 1, 3, 5 };
5846  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5847  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5848    VDecl->setType(DclT);
5849    Init->setType(DclT);
5850  }
5851
5852  // Check any implicit conversions within the expression.
5853  CheckImplicitConversions(Init, VDecl->getLocation());
5854
5855  if (!VDecl->isInvalidDecl())
5856    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5857
5858  Init = MaybeCreateExprWithCleanups(Init);
5859  // Attach the initializer to the decl.
5860  VDecl->setInit(Init);
5861
5862  CheckCompleteVariableDeclaration(VDecl);
5863}
5864
5865/// ActOnInitializerError - Given that there was an error parsing an
5866/// initializer for the given declaration, try to return to some form
5867/// of sanity.
5868void Sema::ActOnInitializerError(Decl *D) {
5869  // Our main concern here is re-establishing invariants like "a
5870  // variable's type is either dependent or complete".
5871  if (!D || D->isInvalidDecl()) return;
5872
5873  VarDecl *VD = dyn_cast<VarDecl>(D);
5874  if (!VD) return;
5875
5876  // Auto types are meaningless if we can't make sense of the initializer.
5877  if (ParsingInitForAutoVars.count(D)) {
5878    D->setInvalidDecl();
5879    return;
5880  }
5881
5882  QualType Ty = VD->getType();
5883  if (Ty->isDependentType()) return;
5884
5885  // Require a complete type.
5886  if (RequireCompleteType(VD->getLocation(),
5887                          Context.getBaseElementType(Ty),
5888                          diag::err_typecheck_decl_incomplete_type)) {
5889    VD->setInvalidDecl();
5890    return;
5891  }
5892
5893  // Require an abstract type.
5894  if (RequireNonAbstractType(VD->getLocation(), Ty,
5895                             diag::err_abstract_type_in_decl,
5896                             AbstractVariableType)) {
5897    VD->setInvalidDecl();
5898    return;
5899  }
5900
5901  // Don't bother complaining about constructors or destructors,
5902  // though.
5903}
5904
5905void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5906                                  bool TypeMayContainAuto) {
5907  // If there is no declaration, there was an error parsing it. Just ignore it.
5908  if (RealDecl == 0)
5909    return;
5910
5911  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5912    QualType Type = Var->getType();
5913
5914    // C++0x [dcl.spec.auto]p3
5915    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5916      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5917        << Var->getDeclName() << Type;
5918      Var->setInvalidDecl();
5919      return;
5920    }
5921
5922    switch (Var->isThisDeclarationADefinition()) {
5923    case VarDecl::Definition:
5924      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5925        break;
5926
5927      // We have an out-of-line definition of a static data member
5928      // that has an in-class initializer, so we type-check this like
5929      // a declaration.
5930      //
5931      // Fall through
5932
5933    case VarDecl::DeclarationOnly:
5934      // It's only a declaration.
5935
5936      // Block scope. C99 6.7p7: If an identifier for an object is
5937      // declared with no linkage (C99 6.2.2p6), the type for the
5938      // object shall be complete.
5939      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5940          !Var->getLinkage() && !Var->isInvalidDecl() &&
5941          RequireCompleteType(Var->getLocation(), Type,
5942                              diag::err_typecheck_decl_incomplete_type))
5943        Var->setInvalidDecl();
5944
5945      // Make sure that the type is not abstract.
5946      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5947          RequireNonAbstractType(Var->getLocation(), Type,
5948                                 diag::err_abstract_type_in_decl,
5949                                 AbstractVariableType))
5950        Var->setInvalidDecl();
5951      return;
5952
5953    case VarDecl::TentativeDefinition:
5954      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5955      // object that has file scope without an initializer, and without a
5956      // storage-class specifier or with the storage-class specifier "static",
5957      // constitutes a tentative definition. Note: A tentative definition with
5958      // external linkage is valid (C99 6.2.2p5).
5959      if (!Var->isInvalidDecl()) {
5960        if (const IncompleteArrayType *ArrayT
5961                                    = Context.getAsIncompleteArrayType(Type)) {
5962          if (RequireCompleteType(Var->getLocation(),
5963                                  ArrayT->getElementType(),
5964                                  diag::err_illegal_decl_array_incomplete_type))
5965            Var->setInvalidDecl();
5966        } else if (Var->getStorageClass() == SC_Static) {
5967          // C99 6.9.2p3: If the declaration of an identifier for an object is
5968          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5969          // declared type shall not be an incomplete type.
5970          // NOTE: code such as the following
5971          //     static struct s;
5972          //     struct s { int a; };
5973          // is accepted by gcc. Hence here we issue a warning instead of
5974          // an error and we do not invalidate the static declaration.
5975          // NOTE: to avoid multiple warnings, only check the first declaration.
5976          if (Var->getPreviousDeclaration() == 0)
5977            RequireCompleteType(Var->getLocation(), Type,
5978                                diag::ext_typecheck_decl_incomplete_type);
5979        }
5980      }
5981
5982      // Record the tentative definition; we're done.
5983      if (!Var->isInvalidDecl())
5984        TentativeDefinitions.push_back(Var);
5985      return;
5986    }
5987
5988    // Provide a specific diagnostic for uninitialized variable
5989    // definitions with incomplete array type.
5990    if (Type->isIncompleteArrayType()) {
5991      Diag(Var->getLocation(),
5992           diag::err_typecheck_incomplete_array_needs_initializer);
5993      Var->setInvalidDecl();
5994      return;
5995    }
5996
5997    // Provide a specific diagnostic for uninitialized variable
5998    // definitions with reference type.
5999    if (Type->isReferenceType()) {
6000      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6001        << Var->getDeclName()
6002        << SourceRange(Var->getLocation(), Var->getLocation());
6003      Var->setInvalidDecl();
6004      return;
6005    }
6006
6007    // Do not attempt to type-check the default initializer for a
6008    // variable with dependent type.
6009    if (Type->isDependentType())
6010      return;
6011
6012    if (Var->isInvalidDecl())
6013      return;
6014
6015    if (RequireCompleteType(Var->getLocation(),
6016                            Context.getBaseElementType(Type),
6017                            diag::err_typecheck_decl_incomplete_type)) {
6018      Var->setInvalidDecl();
6019      return;
6020    }
6021
6022    // The variable can not have an abstract class type.
6023    if (RequireNonAbstractType(Var->getLocation(), Type,
6024                               diag::err_abstract_type_in_decl,
6025                               AbstractVariableType)) {
6026      Var->setInvalidDecl();
6027      return;
6028    }
6029
6030    // Check for jumps past the implicit initializer.  C++0x
6031    // clarifies that this applies to a "variable with automatic
6032    // storage duration", not a "local variable".
6033    // C++0x [stmt.dcl]p3
6034    //   A program that jumps from a point where a variable with automatic
6035    //   storage duration is not in scope to a point where it is in scope is
6036    //   ill-formed unless the variable has scalar type, class type with a
6037    //   trivial default constructor and a trivial destructor, a cv-qualified
6038    //   version of one of these types, or an array of one of the preceding
6039    //   types and is declared without an initializer.
6040    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6041      if (const RecordType *Record
6042            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6043        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6044        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6045            (getLangOptions().CPlusPlus0x &&
6046             (!CXXRecord->hasTrivialDefaultConstructor() ||
6047              !CXXRecord->hasTrivialDestructor())))
6048          getCurFunction()->setHasBranchProtectedScope();
6049      }
6050    }
6051
6052    // C++03 [dcl.init]p9:
6053    //   If no initializer is specified for an object, and the
6054    //   object is of (possibly cv-qualified) non-POD class type (or
6055    //   array thereof), the object shall be default-initialized; if
6056    //   the object is of const-qualified type, the underlying class
6057    //   type shall have a user-declared default
6058    //   constructor. Otherwise, if no initializer is specified for
6059    //   a non- static object, the object and its subobjects, if
6060    //   any, have an indeterminate initial value); if the object
6061    //   or any of its subobjects are of const-qualified type, the
6062    //   program is ill-formed.
6063    // C++0x [dcl.init]p11:
6064    //   If no initializer is specified for an object, the object is
6065    //   default-initialized; [...].
6066    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6067    InitializationKind Kind
6068      = InitializationKind::CreateDefault(Var->getLocation());
6069
6070    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6071    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6072                                      MultiExprArg(*this, 0, 0));
6073    if (Init.isInvalid())
6074      Var->setInvalidDecl();
6075    else if (Init.get())
6076      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6077
6078    CheckCompleteVariableDeclaration(Var);
6079  }
6080}
6081
6082void Sema::ActOnCXXForRangeDecl(Decl *D) {
6083  VarDecl *VD = dyn_cast<VarDecl>(D);
6084  if (!VD) {
6085    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6086    D->setInvalidDecl();
6087    return;
6088  }
6089
6090  VD->setCXXForRangeDecl(true);
6091
6092  // for-range-declaration cannot be given a storage class specifier.
6093  int Error = -1;
6094  switch (VD->getStorageClassAsWritten()) {
6095  case SC_None:
6096    break;
6097  case SC_Extern:
6098    Error = 0;
6099    break;
6100  case SC_Static:
6101    Error = 1;
6102    break;
6103  case SC_PrivateExtern:
6104    Error = 2;
6105    break;
6106  case SC_Auto:
6107    Error = 3;
6108    break;
6109  case SC_Register:
6110    Error = 4;
6111    break;
6112  }
6113  // FIXME: constexpr isn't allowed here.
6114  //if (DS.isConstexprSpecified())
6115  //  Error = 5;
6116  if (Error != -1) {
6117    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6118      << VD->getDeclName() << Error;
6119    D->setInvalidDecl();
6120  }
6121}
6122
6123void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6124  if (var->isInvalidDecl()) return;
6125
6126  // In ARC, don't allow jumps past the implicit initialization of a
6127  // local retaining variable.
6128  if (getLangOptions().ObjCAutoRefCount &&
6129      var->hasLocalStorage()) {
6130    switch (var->getType().getObjCLifetime()) {
6131    case Qualifiers::OCL_None:
6132    case Qualifiers::OCL_ExplicitNone:
6133    case Qualifiers::OCL_Autoreleasing:
6134      break;
6135
6136    case Qualifiers::OCL_Weak:
6137    case Qualifiers::OCL_Strong:
6138      getCurFunction()->setHasBranchProtectedScope();
6139      break;
6140    }
6141  }
6142
6143  // All the following checks are C++ only.
6144  if (!getLangOptions().CPlusPlus) return;
6145
6146  QualType baseType = Context.getBaseElementType(var->getType());
6147  if (baseType->isDependentType()) return;
6148
6149  // __block variables might require us to capture a copy-initializer.
6150  if (var->hasAttr<BlocksAttr>()) {
6151    // It's currently invalid to ever have a __block variable with an
6152    // array type; should we diagnose that here?
6153
6154    // Regardless, we don't want to ignore array nesting when
6155    // constructing this copy.
6156    QualType type = var->getType();
6157
6158    if (type->isStructureOrClassType()) {
6159      SourceLocation poi = var->getLocation();
6160      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6161      ExprResult result =
6162        PerformCopyInitialization(
6163                        InitializedEntity::InitializeBlock(poi, type, false),
6164                                  poi, Owned(varRef));
6165      if (!result.isInvalid()) {
6166        result = MaybeCreateExprWithCleanups(result);
6167        Expr *init = result.takeAs<Expr>();
6168        Context.setBlockVarCopyInits(var, init);
6169      }
6170    }
6171  }
6172
6173  // Check for global constructors.
6174  if (!var->getDeclContext()->isDependentContext() &&
6175      var->hasGlobalStorage() &&
6176      !var->isStaticLocal() &&
6177      var->getInit() &&
6178      !var->getInit()->isConstantInitializer(Context,
6179                                             baseType->isReferenceType()))
6180    Diag(var->getLocation(), diag::warn_global_constructor)
6181      << var->getInit()->getSourceRange();
6182
6183  // Require the destructor.
6184  if (const RecordType *recordType = baseType->getAs<RecordType>())
6185    FinalizeVarWithDestructor(var, recordType);
6186}
6187
6188/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6189/// any semantic actions necessary after any initializer has been attached.
6190void
6191Sema::FinalizeDeclaration(Decl *ThisDecl) {
6192  // Note that we are no longer parsing the initializer for this declaration.
6193  ParsingInitForAutoVars.erase(ThisDecl);
6194}
6195
6196Sema::DeclGroupPtrTy
6197Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6198                              Decl **Group, unsigned NumDecls) {
6199  SmallVector<Decl*, 8> Decls;
6200
6201  if (DS.isTypeSpecOwned())
6202    Decls.push_back(DS.getRepAsDecl());
6203
6204  for (unsigned i = 0; i != NumDecls; ++i)
6205    if (Decl *D = Group[i])
6206      Decls.push_back(D);
6207
6208  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6209                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6210}
6211
6212/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6213/// group, performing any necessary semantic checking.
6214Sema::DeclGroupPtrTy
6215Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6216                           bool TypeMayContainAuto) {
6217  // C++0x [dcl.spec.auto]p7:
6218  //   If the type deduced for the template parameter U is not the same in each
6219  //   deduction, the program is ill-formed.
6220  // FIXME: When initializer-list support is added, a distinction is needed
6221  // between the deduced type U and the deduced type which 'auto' stands for.
6222  //   auto a = 0, b = { 1, 2, 3 };
6223  // is legal because the deduced type U is 'int' in both cases.
6224  if (TypeMayContainAuto && NumDecls > 1) {
6225    QualType Deduced;
6226    CanQualType DeducedCanon;
6227    VarDecl *DeducedDecl = 0;
6228    for (unsigned i = 0; i != NumDecls; ++i) {
6229      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6230        AutoType *AT = D->getType()->getContainedAutoType();
6231        // Don't reissue diagnostics when instantiating a template.
6232        if (AT && D->isInvalidDecl())
6233          break;
6234        if (AT && AT->isDeduced()) {
6235          QualType U = AT->getDeducedType();
6236          CanQualType UCanon = Context.getCanonicalType(U);
6237          if (Deduced.isNull()) {
6238            Deduced = U;
6239            DeducedCanon = UCanon;
6240            DeducedDecl = D;
6241          } else if (DeducedCanon != UCanon) {
6242            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6243                 diag::err_auto_different_deductions)
6244              << Deduced << DeducedDecl->getDeclName()
6245              << U << D->getDeclName()
6246              << DeducedDecl->getInit()->getSourceRange()
6247              << D->getInit()->getSourceRange();
6248            D->setInvalidDecl();
6249            break;
6250          }
6251        }
6252      }
6253    }
6254  }
6255
6256  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6257}
6258
6259
6260/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6261/// to introduce parameters into function prototype scope.
6262Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6263  const DeclSpec &DS = D.getDeclSpec();
6264
6265  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6266  VarDecl::StorageClass StorageClass = SC_None;
6267  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6268  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6269    StorageClass = SC_Register;
6270    StorageClassAsWritten = SC_Register;
6271  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6272    Diag(DS.getStorageClassSpecLoc(),
6273         diag::err_invalid_storage_class_in_func_decl);
6274    D.getMutableDeclSpec().ClearStorageClassSpecs();
6275  }
6276
6277  if (D.getDeclSpec().isThreadSpecified())
6278    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6279  if (D.getDeclSpec().isConstexprSpecified())
6280    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6281      << 0;
6282
6283  DiagnoseFunctionSpecifiers(D);
6284
6285  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6286  QualType parmDeclType = TInfo->getType();
6287
6288  if (getLangOptions().CPlusPlus) {
6289    // Check that there are no default arguments inside the type of this
6290    // parameter.
6291    CheckExtraCXXDefaultArguments(D);
6292
6293    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6294    if (D.getCXXScopeSpec().isSet()) {
6295      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6296        << D.getCXXScopeSpec().getRange();
6297      D.getCXXScopeSpec().clear();
6298    }
6299  }
6300
6301  // Ensure we have a valid name
6302  IdentifierInfo *II = 0;
6303  if (D.hasName()) {
6304    II = D.getIdentifier();
6305    if (!II) {
6306      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6307        << GetNameForDeclarator(D).getName().getAsString();
6308      D.setInvalidType(true);
6309    }
6310  }
6311
6312  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6313  if (II) {
6314    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6315                   ForRedeclaration);
6316    LookupName(R, S);
6317    if (R.isSingleResult()) {
6318      NamedDecl *PrevDecl = R.getFoundDecl();
6319      if (PrevDecl->isTemplateParameter()) {
6320        // Maybe we will complain about the shadowed template parameter.
6321        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6322        // Just pretend that we didn't see the previous declaration.
6323        PrevDecl = 0;
6324      } else if (S->isDeclScope(PrevDecl)) {
6325        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6326        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6327
6328        // Recover by removing the name
6329        II = 0;
6330        D.SetIdentifier(0, D.getIdentifierLoc());
6331        D.setInvalidType(true);
6332      }
6333    }
6334  }
6335
6336  // Temporarily put parameter variables in the translation unit, not
6337  // the enclosing context.  This prevents them from accidentally
6338  // looking like class members in C++.
6339  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6340                                    D.getSourceRange().getBegin(),
6341                                    D.getIdentifierLoc(), II,
6342                                    parmDeclType, TInfo,
6343                                    StorageClass, StorageClassAsWritten);
6344
6345  if (D.isInvalidType())
6346    New->setInvalidDecl();
6347
6348  assert(S->isFunctionPrototypeScope());
6349  assert(S->getFunctionPrototypeDepth() >= 1);
6350  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6351                    S->getNextFunctionPrototypeIndex());
6352
6353  // Add the parameter declaration into this scope.
6354  S->AddDecl(New);
6355  if (II)
6356    IdResolver.AddDecl(New);
6357
6358  ProcessDeclAttributes(S, New, D);
6359
6360  if (New->hasAttr<BlocksAttr>()) {
6361    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6362  }
6363  return New;
6364}
6365
6366/// \brief Synthesizes a variable for a parameter arising from a
6367/// typedef.
6368ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6369                                              SourceLocation Loc,
6370                                              QualType T) {
6371  /* FIXME: setting StartLoc == Loc.
6372     Would it be worth to modify callers so as to provide proper source
6373     location for the unnamed parameters, embedding the parameter's type? */
6374  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6375                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6376                                           SC_None, SC_None, 0);
6377  Param->setImplicit();
6378  return Param;
6379}
6380
6381void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6382                                    ParmVarDecl * const *ParamEnd) {
6383  // Don't diagnose unused-parameter errors in template instantiations; we
6384  // will already have done so in the template itself.
6385  if (!ActiveTemplateInstantiations.empty())
6386    return;
6387
6388  for (; Param != ParamEnd; ++Param) {
6389    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6390        !(*Param)->hasAttr<UnusedAttr>()) {
6391      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6392        << (*Param)->getDeclName();
6393    }
6394  }
6395}
6396
6397void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6398                                                  ParmVarDecl * const *ParamEnd,
6399                                                  QualType ReturnTy,
6400                                                  NamedDecl *D) {
6401  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6402    return;
6403
6404  // Warn if the return value is pass-by-value and larger than the specified
6405  // threshold.
6406  if (ReturnTy.isPODType(Context)) {
6407    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6408    if (Size > LangOpts.NumLargeByValueCopy)
6409      Diag(D->getLocation(), diag::warn_return_value_size)
6410          << D->getDeclName() << Size;
6411  }
6412
6413  // Warn if any parameter is pass-by-value and larger than the specified
6414  // threshold.
6415  for (; Param != ParamEnd; ++Param) {
6416    QualType T = (*Param)->getType();
6417    if (!T.isPODType(Context))
6418      continue;
6419    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6420    if (Size > LangOpts.NumLargeByValueCopy)
6421      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6422          << (*Param)->getDeclName() << Size;
6423  }
6424}
6425
6426ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6427                                  SourceLocation NameLoc, IdentifierInfo *Name,
6428                                  QualType T, TypeSourceInfo *TSInfo,
6429                                  VarDecl::StorageClass StorageClass,
6430                                  VarDecl::StorageClass StorageClassAsWritten) {
6431  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6432  if (getLangOptions().ObjCAutoRefCount &&
6433      T.getObjCLifetime() == Qualifiers::OCL_None &&
6434      T->isObjCLifetimeType()) {
6435
6436    Qualifiers::ObjCLifetime lifetime;
6437
6438    // Special cases for arrays:
6439    //   - if it's const, use __unsafe_unretained
6440    //   - otherwise, it's an error
6441    if (T->isArrayType()) {
6442      if (!T.isConstQualified()) {
6443        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6444          << TSInfo->getTypeLoc().getSourceRange();
6445      }
6446      lifetime = Qualifiers::OCL_ExplicitNone;
6447    } else {
6448      lifetime = T->getObjCARCImplicitLifetime();
6449    }
6450    T = Context.getLifetimeQualifiedType(T, lifetime);
6451  }
6452
6453  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6454                                         Context.getAdjustedParameterType(T),
6455                                         TSInfo,
6456                                         StorageClass, StorageClassAsWritten,
6457                                         0);
6458
6459  // Parameters can not be abstract class types.
6460  // For record types, this is done by the AbstractClassUsageDiagnoser once
6461  // the class has been completely parsed.
6462  if (!CurContext->isRecord() &&
6463      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6464                             AbstractParamType))
6465    New->setInvalidDecl();
6466
6467  // Parameter declarators cannot be interface types. All ObjC objects are
6468  // passed by reference.
6469  if (T->isObjCObjectType()) {
6470    Diag(NameLoc,
6471         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6472      << FixItHint::CreateInsertion(NameLoc, "*");
6473    T = Context.getObjCObjectPointerType(T);
6474    New->setType(T);
6475  }
6476
6477  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6478  // duration shall not be qualified by an address-space qualifier."
6479  // Since all parameters have automatic store duration, they can not have
6480  // an address space.
6481  if (T.getAddressSpace() != 0) {
6482    Diag(NameLoc, diag::err_arg_with_address_space);
6483    New->setInvalidDecl();
6484  }
6485
6486  return New;
6487}
6488
6489void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6490                                           SourceLocation LocAfterDecls) {
6491  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6492
6493  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6494  // for a K&R function.
6495  if (!FTI.hasPrototype) {
6496    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6497      --i;
6498      if (FTI.ArgInfo[i].Param == 0) {
6499        llvm::SmallString<256> Code;
6500        llvm::raw_svector_ostream(Code) << "  int "
6501                                        << FTI.ArgInfo[i].Ident->getName()
6502                                        << ";\n";
6503        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6504          << FTI.ArgInfo[i].Ident
6505          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6506
6507        // Implicitly declare the argument as type 'int' for lack of a better
6508        // type.
6509        AttributeFactory attrs;
6510        DeclSpec DS(attrs);
6511        const char* PrevSpec; // unused
6512        unsigned DiagID; // unused
6513        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6514                           PrevSpec, DiagID);
6515        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6516        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6517        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6518      }
6519    }
6520  }
6521}
6522
6523Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6524                                         Declarator &D) {
6525  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6526  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6527  Scope *ParentScope = FnBodyScope->getParent();
6528
6529  Decl *DP = HandleDeclarator(ParentScope, D,
6530                              MultiTemplateParamsArg(*this),
6531                              /*IsFunctionDefinition=*/true);
6532  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6533}
6534
6535static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6536  // Don't warn about invalid declarations.
6537  if (FD->isInvalidDecl())
6538    return false;
6539
6540  // Or declarations that aren't global.
6541  if (!FD->isGlobal())
6542    return false;
6543
6544  // Don't warn about C++ member functions.
6545  if (isa<CXXMethodDecl>(FD))
6546    return false;
6547
6548  // Don't warn about 'main'.
6549  if (FD->isMain())
6550    return false;
6551
6552  // Don't warn about inline functions.
6553  if (FD->isInlined())
6554    return false;
6555
6556  // Don't warn about function templates.
6557  if (FD->getDescribedFunctionTemplate())
6558    return false;
6559
6560  // Don't warn about function template specializations.
6561  if (FD->isFunctionTemplateSpecialization())
6562    return false;
6563
6564  bool MissingPrototype = true;
6565  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6566       Prev; Prev = Prev->getPreviousDeclaration()) {
6567    // Ignore any declarations that occur in function or method
6568    // scope, because they aren't visible from the header.
6569    if (Prev->getDeclContext()->isFunctionOrMethod())
6570      continue;
6571
6572    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6573    break;
6574  }
6575
6576  return MissingPrototype;
6577}
6578
6579void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6580  // Don't complain if we're in GNU89 mode and the previous definition
6581  // was an extern inline function.
6582  const FunctionDecl *Definition;
6583  if (FD->isDefined(Definition) &&
6584      !canRedefineFunction(Definition, getLangOptions())) {
6585    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6586        Definition->getStorageClass() == SC_Extern)
6587      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6588        << FD->getDeclName() << getLangOptions().CPlusPlus;
6589    else
6590      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6591    Diag(Definition->getLocation(), diag::note_previous_definition);
6592  }
6593}
6594
6595Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6596  // Clear the last template instantiation error context.
6597  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6598
6599  if (!D)
6600    return D;
6601  FunctionDecl *FD = 0;
6602
6603  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6604    FD = FunTmpl->getTemplatedDecl();
6605  else
6606    FD = cast<FunctionDecl>(D);
6607
6608  // Enter a new function scope
6609  PushFunctionScope();
6610
6611  // See if this is a redefinition.
6612  if (!FD->isLateTemplateParsed())
6613    CheckForFunctionRedefinition(FD);
6614
6615  // Builtin functions cannot be defined.
6616  if (unsigned BuiltinID = FD->getBuiltinID()) {
6617    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6618      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6619      FD->setInvalidDecl();
6620    }
6621  }
6622
6623  // The return type of a function definition must be complete
6624  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6625  QualType ResultType = FD->getResultType();
6626  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6627      !FD->isInvalidDecl() &&
6628      RequireCompleteType(FD->getLocation(), ResultType,
6629                          diag::err_func_def_incomplete_result))
6630    FD->setInvalidDecl();
6631
6632  // GNU warning -Wmissing-prototypes:
6633  //   Warn if a global function is defined without a previous
6634  //   prototype declaration. This warning is issued even if the
6635  //   definition itself provides a prototype. The aim is to detect
6636  //   global functions that fail to be declared in header files.
6637  if (ShouldWarnAboutMissingPrototype(FD))
6638    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6639
6640  if (FnBodyScope)
6641    PushDeclContext(FnBodyScope, FD);
6642
6643  // Check the validity of our function parameters
6644  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6645                           /*CheckParameterNames=*/true);
6646
6647  // Introduce our parameters into the function scope
6648  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6649    ParmVarDecl *Param = FD->getParamDecl(p);
6650    Param->setOwningFunction(FD);
6651
6652    // If this has an identifier, add it to the scope stack.
6653    if (Param->getIdentifier() && FnBodyScope) {
6654      CheckShadow(FnBodyScope, Param);
6655
6656      PushOnScopeChains(Param, FnBodyScope);
6657    }
6658  }
6659
6660  // Checking attributes of current function definition
6661  // dllimport attribute.
6662  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6663  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6664    // dllimport attribute cannot be directly applied to definition.
6665    // Microsoft accepts dllimport for functions defined within class scope.
6666    if (!DA->isInherited() &&
6667        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6668      Diag(FD->getLocation(),
6669           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6670        << "dllimport";
6671      FD->setInvalidDecl();
6672      return FD;
6673    }
6674
6675    // Visual C++ appears to not think this is an issue, so only issue
6676    // a warning when Microsoft extensions are disabled.
6677    if (!LangOpts.Microsoft) {
6678      // If a symbol previously declared dllimport is later defined, the
6679      // attribute is ignored in subsequent references, and a warning is
6680      // emitted.
6681      Diag(FD->getLocation(),
6682           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6683        << FD->getName() << "dllimport";
6684    }
6685  }
6686  return FD;
6687}
6688
6689/// \brief Given the set of return statements within a function body,
6690/// compute the variables that are subject to the named return value
6691/// optimization.
6692///
6693/// Each of the variables that is subject to the named return value
6694/// optimization will be marked as NRVO variables in the AST, and any
6695/// return statement that has a marked NRVO variable as its NRVO candidate can
6696/// use the named return value optimization.
6697///
6698/// This function applies a very simplistic algorithm for NRVO: if every return
6699/// statement in the function has the same NRVO candidate, that candidate is
6700/// the NRVO variable.
6701///
6702/// FIXME: Employ a smarter algorithm that accounts for multiple return
6703/// statements and the lifetimes of the NRVO candidates. We should be able to
6704/// find a maximal set of NRVO variables.
6705void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6706  ReturnStmt **Returns = Scope->Returns.data();
6707
6708  const VarDecl *NRVOCandidate = 0;
6709  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6710    if (!Returns[I]->getNRVOCandidate())
6711      return;
6712
6713    if (!NRVOCandidate)
6714      NRVOCandidate = Returns[I]->getNRVOCandidate();
6715    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6716      return;
6717  }
6718
6719  if (NRVOCandidate)
6720    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6721}
6722
6723Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6724  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6725}
6726
6727Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6728                                    bool IsInstantiation) {
6729  FunctionDecl *FD = 0;
6730  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6731  if (FunTmpl)
6732    FD = FunTmpl->getTemplatedDecl();
6733  else
6734    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6735
6736  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6737  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6738
6739  if (FD) {
6740    FD->setBody(Body);
6741    if (FD->isMain()) {
6742      // C and C++ allow for main to automagically return 0.
6743      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6744      FD->setHasImplicitReturnZero(true);
6745      WP.disableCheckFallThrough();
6746    } else if (FD->hasAttr<NakedAttr>()) {
6747      // If the function is marked 'naked', don't complain about missing return
6748      // statements.
6749      WP.disableCheckFallThrough();
6750    }
6751
6752    // MSVC permits the use of pure specifier (=0) on function definition,
6753    // defined at class scope, warn about this non standard construct.
6754    if (getLangOptions().Microsoft && FD->isPure())
6755      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6756
6757    if (!FD->isInvalidDecl()) {
6758      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6759      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6760                                             FD->getResultType(), FD);
6761
6762      // If this is a constructor, we need a vtable.
6763      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6764        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6765
6766      computeNRVO(Body, getCurFunction());
6767    }
6768
6769    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6770  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6771    assert(MD == getCurMethodDecl() && "Method parsing confused");
6772    MD->setBody(Body);
6773    if (Body)
6774      MD->setEndLoc(Body->getLocEnd());
6775    if (!MD->isInvalidDecl()) {
6776      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6777      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6778                                             MD->getResultType(), MD);
6779
6780      if (Body)
6781        computeNRVO(Body, getCurFunction());
6782    }
6783    if (ObjCShouldCallSuperDealloc) {
6784      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6785      ObjCShouldCallSuperDealloc = false;
6786    }
6787    if (ObjCShouldCallSuperFinalize) {
6788      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6789      ObjCShouldCallSuperFinalize = false;
6790    }
6791  } else {
6792    return 0;
6793  }
6794
6795  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6796         "ObjC methods, which should have been handled in the block above.");
6797  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6798         "ObjC methods, which should have been handled in the block above.");
6799
6800  // Verify and clean out per-function state.
6801  if (Body) {
6802    // C++ constructors that have function-try-blocks can't have return
6803    // statements in the handlers of that block. (C++ [except.handle]p14)
6804    // Verify this.
6805    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6806      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6807
6808    // Verify that gotos and switch cases don't jump into scopes illegally.
6809    if (getCurFunction()->NeedsScopeChecking() &&
6810        !dcl->isInvalidDecl() &&
6811        !hasAnyUnrecoverableErrorsInThisFunction())
6812      DiagnoseInvalidJumps(Body);
6813
6814    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6815      if (!Destructor->getParent()->isDependentType())
6816        CheckDestructor(Destructor);
6817
6818      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6819                                             Destructor->getParent());
6820    }
6821
6822    // If any errors have occurred, clear out any temporaries that may have
6823    // been leftover. This ensures that these temporaries won't be picked up for
6824    // deletion in some later function.
6825    if (PP.getDiagnostics().hasErrorOccurred() ||
6826        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6827      ExprTemporaries.clear();
6828      ExprNeedsCleanups = false;
6829    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6830      // Since the body is valid, issue any analysis-based warnings that are
6831      // enabled.
6832      ActivePolicy = &WP;
6833    }
6834
6835    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6836    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6837  }
6838
6839  if (!IsInstantiation)
6840    PopDeclContext();
6841
6842  PopFunctionOrBlockScope(ActivePolicy, dcl);
6843
6844  // If any errors have occurred, clear out any temporaries that may have
6845  // been leftover. This ensures that these temporaries won't be picked up for
6846  // deletion in some later function.
6847  if (getDiagnostics().hasErrorOccurred()) {
6848    ExprTemporaries.clear();
6849    ExprNeedsCleanups = false;
6850  }
6851
6852  return dcl;
6853}
6854
6855
6856/// When we finish delayed parsing of an attribute, we must attach it to the
6857/// relevant Decl.
6858void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6859                                       ParsedAttributes &Attrs) {
6860  ProcessDeclAttributeList(S, D, Attrs.getList());
6861}
6862
6863
6864/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6865/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6866NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6867                                          IdentifierInfo &II, Scope *S) {
6868  // Before we produce a declaration for an implicitly defined
6869  // function, see whether there was a locally-scoped declaration of
6870  // this name as a function or variable. If so, use that
6871  // (non-visible) declaration, and complain about it.
6872  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6873    = findLocallyScopedExternalDecl(&II);
6874  if (Pos != LocallyScopedExternalDecls.end()) {
6875    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6876    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6877    return Pos->second;
6878  }
6879
6880  // Extension in C99.  Legal in C90, but warn about it.
6881  if (II.getName().startswith("__builtin_"))
6882    Diag(Loc, diag::warn_builtin_unknown) << &II;
6883  else if (getLangOptions().C99)
6884    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6885  else
6886    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6887
6888  // Set a Declarator for the implicit definition: int foo();
6889  const char *Dummy;
6890  AttributeFactory attrFactory;
6891  DeclSpec DS(attrFactory);
6892  unsigned DiagID;
6893  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6894  (void)Error; // Silence warning.
6895  assert(!Error && "Error setting up implicit decl!");
6896  Declarator D(DS, Declarator::BlockContext);
6897  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6898                                             0, 0, true, SourceLocation(),
6899                                             SourceLocation(),
6900                                             EST_None, SourceLocation(),
6901                                             0, 0, 0, 0, Loc, Loc, D),
6902                DS.getAttributes(),
6903                SourceLocation());
6904  D.SetIdentifier(&II, Loc);
6905
6906  // Insert this function into translation-unit scope.
6907
6908  DeclContext *PrevDC = CurContext;
6909  CurContext = Context.getTranslationUnitDecl();
6910
6911  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6912  FD->setImplicit();
6913
6914  CurContext = PrevDC;
6915
6916  AddKnownFunctionAttributes(FD);
6917
6918  return FD;
6919}
6920
6921/// \brief Adds any function attributes that we know a priori based on
6922/// the declaration of this function.
6923///
6924/// These attributes can apply both to implicitly-declared builtins
6925/// (like __builtin___printf_chk) or to library-declared functions
6926/// like NSLog or printf.
6927///
6928/// We need to check for duplicate attributes both here and where user-written
6929/// attributes are applied to declarations.
6930void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6931  if (FD->isInvalidDecl())
6932    return;
6933
6934  // If this is a built-in function, map its builtin attributes to
6935  // actual attributes.
6936  if (unsigned BuiltinID = FD->getBuiltinID()) {
6937    // Handle printf-formatting attributes.
6938    unsigned FormatIdx;
6939    bool HasVAListArg;
6940    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6941      if (!FD->getAttr<FormatAttr>())
6942        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6943                                                "printf", FormatIdx+1,
6944                                               HasVAListArg ? 0 : FormatIdx+2));
6945    }
6946    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6947                                             HasVAListArg)) {
6948     if (!FD->getAttr<FormatAttr>())
6949       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6950                                              "scanf", FormatIdx+1,
6951                                              HasVAListArg ? 0 : FormatIdx+2));
6952    }
6953
6954    // Mark const if we don't care about errno and that is the only
6955    // thing preventing the function from being const. This allows
6956    // IRgen to use LLVM intrinsics for such functions.
6957    if (!getLangOptions().MathErrno &&
6958        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6959      if (!FD->getAttr<ConstAttr>())
6960        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6961    }
6962
6963    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6964      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6965    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6966      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6967  }
6968
6969  IdentifierInfo *Name = FD->getIdentifier();
6970  if (!Name)
6971    return;
6972  if ((!getLangOptions().CPlusPlus &&
6973       FD->getDeclContext()->isTranslationUnit()) ||
6974      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6975       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6976       LinkageSpecDecl::lang_c)) {
6977    // Okay: this could be a libc/libm/Objective-C function we know
6978    // about.
6979  } else
6980    return;
6981
6982  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6983    // FIXME: NSLog and NSLogv should be target specific
6984    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6985      // FIXME: We known better than our headers.
6986      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6987    } else
6988      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6989                                             "printf", 1,
6990                                             Name->isStr("NSLogv") ? 0 : 2));
6991  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6992    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6993    // target-specific builtins, perhaps?
6994    if (!FD->getAttr<FormatAttr>())
6995      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6996                                             "printf", 2,
6997                                             Name->isStr("vasprintf") ? 0 : 3));
6998  }
6999}
7000
7001TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7002                                    TypeSourceInfo *TInfo) {
7003  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7004  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7005
7006  if (!TInfo) {
7007    assert(D.isInvalidType() && "no declarator info for valid type");
7008    TInfo = Context.getTrivialTypeSourceInfo(T);
7009  }
7010
7011  // Scope manipulation handled by caller.
7012  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7013                                           D.getSourceRange().getBegin(),
7014                                           D.getIdentifierLoc(),
7015                                           D.getIdentifier(),
7016                                           TInfo);
7017
7018  // Bail out immediately if we have an invalid declaration.
7019  if (D.isInvalidType()) {
7020    NewTD->setInvalidDecl();
7021    return NewTD;
7022  }
7023
7024  if (D.getDeclSpec().isModulePrivateSpecified())
7025    NewTD->setModulePrivate();
7026
7027  // C++ [dcl.typedef]p8:
7028  //   If the typedef declaration defines an unnamed class (or
7029  //   enum), the first typedef-name declared by the declaration
7030  //   to be that class type (or enum type) is used to denote the
7031  //   class type (or enum type) for linkage purposes only.
7032  // We need to check whether the type was declared in the declaration.
7033  switch (D.getDeclSpec().getTypeSpecType()) {
7034  case TST_enum:
7035  case TST_struct:
7036  case TST_union:
7037  case TST_class: {
7038    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7039
7040    // Do nothing if the tag is not anonymous or already has an
7041    // associated typedef (from an earlier typedef in this decl group).
7042    if (tagFromDeclSpec->getIdentifier()) break;
7043    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7044
7045    // A well-formed anonymous tag must always be a TUK_Definition.
7046    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7047
7048    // The type must match the tag exactly;  no qualifiers allowed.
7049    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7050      break;
7051
7052    // Otherwise, set this is the anon-decl typedef for the tag.
7053    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7054    break;
7055  }
7056
7057  default:
7058    break;
7059  }
7060
7061  return NewTD;
7062}
7063
7064
7065/// \brief Determine whether a tag with a given kind is acceptable
7066/// as a redeclaration of the given tag declaration.
7067///
7068/// \returns true if the new tag kind is acceptable, false otherwise.
7069bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7070                                        TagTypeKind NewTag, bool isDefinition,
7071                                        SourceLocation NewTagLoc,
7072                                        const IdentifierInfo &Name) {
7073  // C++ [dcl.type.elab]p3:
7074  //   The class-key or enum keyword present in the
7075  //   elaborated-type-specifier shall agree in kind with the
7076  //   declaration to which the name in the elaborated-type-specifier
7077  //   refers. This rule also applies to the form of
7078  //   elaborated-type-specifier that declares a class-name or
7079  //   friend class since it can be construed as referring to the
7080  //   definition of the class. Thus, in any
7081  //   elaborated-type-specifier, the enum keyword shall be used to
7082  //   refer to an enumeration (7.2), the union class-key shall be
7083  //   used to refer to a union (clause 9), and either the class or
7084  //   struct class-key shall be used to refer to a class (clause 9)
7085  //   declared using the class or struct class-key.
7086  TagTypeKind OldTag = Previous->getTagKind();
7087  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7088    if (OldTag == NewTag)
7089      return true;
7090
7091  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7092      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7093    // Warn about the struct/class tag mismatch.
7094    bool isTemplate = false;
7095    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7096      isTemplate = Record->getDescribedClassTemplate();
7097
7098    if (!ActiveTemplateInstantiations.empty()) {
7099      // In a template instantiation, do not offer fix-its for tag mismatches
7100      // since they usually mess up the template instead of fixing the problem.
7101      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7102        << (NewTag == TTK_Class) << isTemplate << &Name;
7103      return true;
7104    }
7105
7106    if (isDefinition) {
7107      // On definitions, check previous tags and issue a fix-it for each
7108      // one that doesn't match the current tag.
7109      if (Previous->getDefinition()) {
7110        // Don't suggest fix-its for redefinitions.
7111        return true;
7112      }
7113
7114      bool previousMismatch = false;
7115      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7116           E(Previous->redecls_end()); I != E; ++I) {
7117        if (I->getTagKind() != NewTag) {
7118          if (!previousMismatch) {
7119            previousMismatch = true;
7120            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7121              << (NewTag == TTK_Class) << isTemplate << &Name;
7122          }
7123          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7124            << (NewTag == TTK_Class)
7125            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7126                                            NewTag == TTK_Class?
7127                                            "class" : "struct");
7128        }
7129      }
7130      return true;
7131    }
7132
7133    // Check for a previous definition.  If current tag and definition
7134    // are same type, do nothing.  If no definition, but disagree with
7135    // with previous tag type, give a warning, but no fix-it.
7136    const TagDecl *Redecl = Previous->getDefinition() ?
7137                            Previous->getDefinition() : Previous;
7138    if (Redecl->getTagKind() == NewTag) {
7139      return true;
7140    }
7141
7142    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7143      << (NewTag == TTK_Class)
7144      << isTemplate << &Name;
7145    Diag(Redecl->getLocation(), diag::note_previous_use);
7146
7147    // If there is a previous defintion, suggest a fix-it.
7148    if (Previous->getDefinition()) {
7149        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7150          << (Redecl->getTagKind() == TTK_Class)
7151          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7152                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7153    }
7154
7155    return true;
7156  }
7157  return false;
7158}
7159
7160/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7161/// former case, Name will be non-null.  In the later case, Name will be null.
7162/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7163/// reference/declaration/definition of a tag.
7164Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7165                     SourceLocation KWLoc, CXXScopeSpec &SS,
7166                     IdentifierInfo *Name, SourceLocation NameLoc,
7167                     AttributeList *Attr, AccessSpecifier AS,
7168                     SourceLocation ModulePrivateLoc,
7169                     MultiTemplateParamsArg TemplateParameterLists,
7170                     bool &OwnedDecl, bool &IsDependent,
7171                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7172                     TypeResult UnderlyingType) {
7173  // If this is not a definition, it must have a name.
7174  assert((Name != 0 || TUK == TUK_Definition) &&
7175         "Nameless record must be a definition!");
7176  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7177
7178  OwnedDecl = false;
7179  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7180
7181  // FIXME: Check explicit specializations more carefully.
7182  bool isExplicitSpecialization = false;
7183  bool Invalid = false;
7184
7185  // We only need to do this matching if we have template parameters
7186  // or a scope specifier, which also conveniently avoids this work
7187  // for non-C++ cases.
7188  if (TemplateParameterLists.size() > 0 ||
7189      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7190    if (TemplateParameterList *TemplateParams
7191          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7192                                                TemplateParameterLists.get(),
7193                                                TemplateParameterLists.size(),
7194                                                    TUK == TUK_Friend,
7195                                                    isExplicitSpecialization,
7196                                                    Invalid)) {
7197      if (TemplateParams->size() > 0) {
7198        // This is a declaration or definition of a class template (which may
7199        // be a member of another template).
7200
7201        if (Invalid)
7202          return 0;
7203
7204        OwnedDecl = false;
7205        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7206                                               SS, Name, NameLoc, Attr,
7207                                               TemplateParams, AS,
7208                                               ModulePrivateLoc,
7209                                           TemplateParameterLists.size() - 1,
7210                 (TemplateParameterList**) TemplateParameterLists.release());
7211        return Result.get();
7212      } else {
7213        // The "template<>" header is extraneous.
7214        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7215          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7216        isExplicitSpecialization = true;
7217      }
7218    }
7219  }
7220
7221  // Figure out the underlying type if this a enum declaration. We need to do
7222  // this early, because it's needed to detect if this is an incompatible
7223  // redeclaration.
7224  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7225
7226  if (Kind == TTK_Enum) {
7227    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7228      // No underlying type explicitly specified, or we failed to parse the
7229      // type, default to int.
7230      EnumUnderlying = Context.IntTy.getTypePtr();
7231    else if (UnderlyingType.get()) {
7232      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7233      // integral type; any cv-qualification is ignored.
7234      TypeSourceInfo *TI = 0;
7235      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7236      EnumUnderlying = TI;
7237
7238      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7239
7240      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7241        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7242          << T;
7243        // Recover by falling back to int.
7244        EnumUnderlying = Context.IntTy.getTypePtr();
7245      }
7246
7247      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7248                                          UPPC_FixedUnderlyingType))
7249        EnumUnderlying = Context.IntTy.getTypePtr();
7250
7251    } else if (getLangOptions().Microsoft)
7252      // Microsoft enums are always of int type.
7253      EnumUnderlying = Context.IntTy.getTypePtr();
7254  }
7255
7256  DeclContext *SearchDC = CurContext;
7257  DeclContext *DC = CurContext;
7258  bool isStdBadAlloc = false;
7259
7260  RedeclarationKind Redecl = ForRedeclaration;
7261  if (TUK == TUK_Friend || TUK == TUK_Reference)
7262    Redecl = NotForRedeclaration;
7263
7264  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7265
7266  if (Name && SS.isNotEmpty()) {
7267    // We have a nested-name tag ('struct foo::bar').
7268
7269    // Check for invalid 'foo::'.
7270    if (SS.isInvalid()) {
7271      Name = 0;
7272      goto CreateNewDecl;
7273    }
7274
7275    // If this is a friend or a reference to a class in a dependent
7276    // context, don't try to make a decl for it.
7277    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7278      DC = computeDeclContext(SS, false);
7279      if (!DC) {
7280        IsDependent = true;
7281        return 0;
7282      }
7283    } else {
7284      DC = computeDeclContext(SS, true);
7285      if (!DC) {
7286        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7287          << SS.getRange();
7288        return 0;
7289      }
7290    }
7291
7292    if (RequireCompleteDeclContext(SS, DC))
7293      return 0;
7294
7295    SearchDC = DC;
7296    // Look-up name inside 'foo::'.
7297    LookupQualifiedName(Previous, DC);
7298
7299    if (Previous.isAmbiguous())
7300      return 0;
7301
7302    if (Previous.empty()) {
7303      // Name lookup did not find anything. However, if the
7304      // nested-name-specifier refers to the current instantiation,
7305      // and that current instantiation has any dependent base
7306      // classes, we might find something at instantiation time: treat
7307      // this as a dependent elaborated-type-specifier.
7308      // But this only makes any sense for reference-like lookups.
7309      if (Previous.wasNotFoundInCurrentInstantiation() &&
7310          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7311        IsDependent = true;
7312        return 0;
7313      }
7314
7315      // A tag 'foo::bar' must already exist.
7316      Diag(NameLoc, diag::err_not_tag_in_scope)
7317        << Kind << Name << DC << SS.getRange();
7318      Name = 0;
7319      Invalid = true;
7320      goto CreateNewDecl;
7321    }
7322  } else if (Name) {
7323    // If this is a named struct, check to see if there was a previous forward
7324    // declaration or definition.
7325    // FIXME: We're looking into outer scopes here, even when we
7326    // shouldn't be. Doing so can result in ambiguities that we
7327    // shouldn't be diagnosing.
7328    LookupName(Previous, S);
7329
7330    if (Previous.isAmbiguous() &&
7331        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7332      LookupResult::Filter F = Previous.makeFilter();
7333      while (F.hasNext()) {
7334        NamedDecl *ND = F.next();
7335        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7336          F.erase();
7337      }
7338      F.done();
7339    }
7340
7341    // Note:  there used to be some attempt at recovery here.
7342    if (Previous.isAmbiguous())
7343      return 0;
7344
7345    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7346      // FIXME: This makes sure that we ignore the contexts associated
7347      // with C structs, unions, and enums when looking for a matching
7348      // tag declaration or definition. See the similar lookup tweak
7349      // in Sema::LookupName; is there a better way to deal with this?
7350      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7351        SearchDC = SearchDC->getParent();
7352    }
7353  } else if (S->isFunctionPrototypeScope()) {
7354    // If this is an enum declaration in function prototype scope, set its
7355    // initial context to the translation unit.
7356    SearchDC = Context.getTranslationUnitDecl();
7357  }
7358
7359  if (Previous.isSingleResult() &&
7360      Previous.getFoundDecl()->isTemplateParameter()) {
7361    // Maybe we will complain about the shadowed template parameter.
7362    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7363    // Just pretend that we didn't see the previous declaration.
7364    Previous.clear();
7365  }
7366
7367  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7368      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7369    // This is a declaration of or a reference to "std::bad_alloc".
7370    isStdBadAlloc = true;
7371
7372    if (Previous.empty() && StdBadAlloc) {
7373      // std::bad_alloc has been implicitly declared (but made invisible to
7374      // name lookup). Fill in this implicit declaration as the previous
7375      // declaration, so that the declarations get chained appropriately.
7376      Previous.addDecl(getStdBadAlloc());
7377    }
7378  }
7379
7380  // If we didn't find a previous declaration, and this is a reference
7381  // (or friend reference), move to the correct scope.  In C++, we
7382  // also need to do a redeclaration lookup there, just in case
7383  // there's a shadow friend decl.
7384  if (Name && Previous.empty() &&
7385      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7386    if (Invalid) goto CreateNewDecl;
7387    assert(SS.isEmpty());
7388
7389    if (TUK == TUK_Reference) {
7390      // C++ [basic.scope.pdecl]p5:
7391      //   -- for an elaborated-type-specifier of the form
7392      //
7393      //          class-key identifier
7394      //
7395      //      if the elaborated-type-specifier is used in the
7396      //      decl-specifier-seq or parameter-declaration-clause of a
7397      //      function defined in namespace scope, the identifier is
7398      //      declared as a class-name in the namespace that contains
7399      //      the declaration; otherwise, except as a friend
7400      //      declaration, the identifier is declared in the smallest
7401      //      non-class, non-function-prototype scope that contains the
7402      //      declaration.
7403      //
7404      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7405      // C structs and unions.
7406      //
7407      // It is an error in C++ to declare (rather than define) an enum
7408      // type, including via an elaborated type specifier.  We'll
7409      // diagnose that later; for now, declare the enum in the same
7410      // scope as we would have picked for any other tag type.
7411      //
7412      // GNU C also supports this behavior as part of its incomplete
7413      // enum types extension, while GNU C++ does not.
7414      //
7415      // Find the context where we'll be declaring the tag.
7416      // FIXME: We would like to maintain the current DeclContext as the
7417      // lexical context,
7418      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7419        SearchDC = SearchDC->getParent();
7420
7421      // Find the scope where we'll be declaring the tag.
7422      while (S->isClassScope() ||
7423             (getLangOptions().CPlusPlus &&
7424              S->isFunctionPrototypeScope()) ||
7425             ((S->getFlags() & Scope::DeclScope) == 0) ||
7426             (S->getEntity() &&
7427              ((DeclContext *)S->getEntity())->isTransparentContext()))
7428        S = S->getParent();
7429    } else {
7430      assert(TUK == TUK_Friend);
7431      // C++ [namespace.memdef]p3:
7432      //   If a friend declaration in a non-local class first declares a
7433      //   class or function, the friend class or function is a member of
7434      //   the innermost enclosing namespace.
7435      SearchDC = SearchDC->getEnclosingNamespaceContext();
7436    }
7437
7438    // In C++, we need to do a redeclaration lookup to properly
7439    // diagnose some problems.
7440    if (getLangOptions().CPlusPlus) {
7441      Previous.setRedeclarationKind(ForRedeclaration);
7442      LookupQualifiedName(Previous, SearchDC);
7443    }
7444  }
7445
7446  if (!Previous.empty()) {
7447    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7448
7449    // It's okay to have a tag decl in the same scope as a typedef
7450    // which hides a tag decl in the same scope.  Finding this
7451    // insanity with a redeclaration lookup can only actually happen
7452    // in C++.
7453    //
7454    // This is also okay for elaborated-type-specifiers, which is
7455    // technically forbidden by the current standard but which is
7456    // okay according to the likely resolution of an open issue;
7457    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7458    if (getLangOptions().CPlusPlus) {
7459      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7460        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7461          TagDecl *Tag = TT->getDecl();
7462          if (Tag->getDeclName() == Name &&
7463              Tag->getDeclContext()->getRedeclContext()
7464                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7465            PrevDecl = Tag;
7466            Previous.clear();
7467            Previous.addDecl(Tag);
7468            Previous.resolveKind();
7469          }
7470        }
7471      }
7472    }
7473
7474    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7475      // If this is a use of a previous tag, or if the tag is already declared
7476      // in the same scope (so that the definition/declaration completes or
7477      // rementions the tag), reuse the decl.
7478      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7479          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7480        // Make sure that this wasn't declared as an enum and now used as a
7481        // struct or something similar.
7482        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7483                                          TUK == TUK_Definition, KWLoc,
7484                                          *Name)) {
7485          bool SafeToContinue
7486            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7487               Kind != TTK_Enum);
7488          if (SafeToContinue)
7489            Diag(KWLoc, diag::err_use_with_wrong_tag)
7490              << Name
7491              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7492                                              PrevTagDecl->getKindName());
7493          else
7494            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7495          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7496
7497          if (SafeToContinue)
7498            Kind = PrevTagDecl->getTagKind();
7499          else {
7500            // Recover by making this an anonymous redefinition.
7501            Name = 0;
7502            Previous.clear();
7503            Invalid = true;
7504          }
7505        }
7506
7507        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7508          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7509
7510          // All conflicts with previous declarations are recovered by
7511          // returning the previous declaration.
7512          if (ScopedEnum != PrevEnum->isScoped()) {
7513            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7514              << PrevEnum->isScoped();
7515            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7516            return PrevTagDecl;
7517          }
7518          else if (EnumUnderlying && PrevEnum->isFixed()) {
7519            QualType T;
7520            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7521                T = TI->getType();
7522            else
7523                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7524
7525            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7526              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7527                   diag::err_enum_redeclare_type_mismatch)
7528                << T
7529                << PrevEnum->getIntegerType();
7530              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7531              return PrevTagDecl;
7532            }
7533          }
7534          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7535            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7536              << PrevEnum->isFixed();
7537            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7538            return PrevTagDecl;
7539          }
7540        }
7541
7542        if (!Invalid) {
7543          // If this is a use, just return the declaration we found.
7544
7545          // FIXME: In the future, return a variant or some other clue
7546          // for the consumer of this Decl to know it doesn't own it.
7547          // For our current ASTs this shouldn't be a problem, but will
7548          // need to be changed with DeclGroups.
7549          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7550               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7551            return PrevTagDecl;
7552
7553          // Diagnose attempts to redefine a tag.
7554          if (TUK == TUK_Definition) {
7555            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7556              // If we're defining a specialization and the previous definition
7557              // is from an implicit instantiation, don't emit an error
7558              // here; we'll catch this in the general case below.
7559              if (!isExplicitSpecialization ||
7560                  !isa<CXXRecordDecl>(Def) ||
7561                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7562                                               == TSK_ExplicitSpecialization) {
7563                Diag(NameLoc, diag::err_redefinition) << Name;
7564                Diag(Def->getLocation(), diag::note_previous_definition);
7565                // If this is a redefinition, recover by making this
7566                // struct be anonymous, which will make any later
7567                // references get the previous definition.
7568                Name = 0;
7569                Previous.clear();
7570                Invalid = true;
7571              }
7572            } else {
7573              // If the type is currently being defined, complain
7574              // about a nested redefinition.
7575              const TagType *Tag
7576                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7577              if (Tag->isBeingDefined()) {
7578                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7579                Diag(PrevTagDecl->getLocation(),
7580                     diag::note_previous_definition);
7581                Name = 0;
7582                Previous.clear();
7583                Invalid = true;
7584              }
7585            }
7586
7587            // Okay, this is definition of a previously declared or referenced
7588            // tag PrevDecl. We're going to create a new Decl for it.
7589          }
7590        }
7591        // If we get here we have (another) forward declaration or we
7592        // have a definition.  Just create a new decl.
7593
7594      } else {
7595        // If we get here, this is a definition of a new tag type in a nested
7596        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7597        // new decl/type.  We set PrevDecl to NULL so that the entities
7598        // have distinct types.
7599        Previous.clear();
7600      }
7601      // If we get here, we're going to create a new Decl. If PrevDecl
7602      // is non-NULL, it's a definition of the tag declared by
7603      // PrevDecl. If it's NULL, we have a new definition.
7604
7605
7606    // Otherwise, PrevDecl is not a tag, but was found with tag
7607    // lookup.  This is only actually possible in C++, where a few
7608    // things like templates still live in the tag namespace.
7609    } else {
7610      assert(getLangOptions().CPlusPlus);
7611
7612      // Use a better diagnostic if an elaborated-type-specifier
7613      // found the wrong kind of type on the first
7614      // (non-redeclaration) lookup.
7615      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7616          !Previous.isForRedeclaration()) {
7617        unsigned Kind = 0;
7618        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7619        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7620        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7621        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7622        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7623        Invalid = true;
7624
7625      // Otherwise, only diagnose if the declaration is in scope.
7626      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7627                                isExplicitSpecialization)) {
7628        // do nothing
7629
7630      // Diagnose implicit declarations introduced by elaborated types.
7631      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7632        unsigned Kind = 0;
7633        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7634        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7635        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7636        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7637        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7638        Invalid = true;
7639
7640      // Otherwise it's a declaration.  Call out a particularly common
7641      // case here.
7642      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7643        unsigned Kind = 0;
7644        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7645        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7646          << Name << Kind << TND->getUnderlyingType();
7647        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7648        Invalid = true;
7649
7650      // Otherwise, diagnose.
7651      } else {
7652        // The tag name clashes with something else in the target scope,
7653        // issue an error and recover by making this tag be anonymous.
7654        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7655        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7656        Name = 0;
7657        Invalid = true;
7658      }
7659
7660      // The existing declaration isn't relevant to us; we're in a
7661      // new scope, so clear out the previous declaration.
7662      Previous.clear();
7663    }
7664  }
7665
7666CreateNewDecl:
7667
7668  TagDecl *PrevDecl = 0;
7669  if (Previous.isSingleResult())
7670    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7671
7672  // If there is an identifier, use the location of the identifier as the
7673  // location of the decl, otherwise use the location of the struct/union
7674  // keyword.
7675  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7676
7677  // Otherwise, create a new declaration. If there is a previous
7678  // declaration of the same entity, the two will be linked via
7679  // PrevDecl.
7680  TagDecl *New;
7681
7682  bool IsForwardReference = false;
7683  if (Kind == TTK_Enum) {
7684    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7685    // enum X { A, B, C } D;    D should chain to X.
7686    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7687                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7688                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7689    // If this is an undefined enum, warn.
7690    if (TUK != TUK_Definition && !Invalid) {
7691      TagDecl *Def;
7692      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7693        // C++0x: 7.2p2: opaque-enum-declaration.
7694        // Conflicts are diagnosed above. Do nothing.
7695      }
7696      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7697        Diag(Loc, diag::ext_forward_ref_enum_def)
7698          << New;
7699        Diag(Def->getLocation(), diag::note_previous_definition);
7700      } else {
7701        unsigned DiagID = diag::ext_forward_ref_enum;
7702        if (getLangOptions().Microsoft)
7703          DiagID = diag::ext_ms_forward_ref_enum;
7704        else if (getLangOptions().CPlusPlus)
7705          DiagID = diag::err_forward_ref_enum;
7706        Diag(Loc, DiagID);
7707
7708        // If this is a forward-declared reference to an enumeration, make a
7709        // note of it; we won't actually be introducing the declaration into
7710        // the declaration context.
7711        if (TUK == TUK_Reference)
7712          IsForwardReference = true;
7713      }
7714    }
7715
7716    if (EnumUnderlying) {
7717      EnumDecl *ED = cast<EnumDecl>(New);
7718      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7719        ED->setIntegerTypeSourceInfo(TI);
7720      else
7721        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7722      ED->setPromotionType(ED->getIntegerType());
7723    }
7724
7725  } else {
7726    // struct/union/class
7727
7728    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7729    // struct X { int A; } D;    D should chain to X.
7730    if (getLangOptions().CPlusPlus) {
7731      // FIXME: Look for a way to use RecordDecl for simple structs.
7732      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7733                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7734
7735      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7736        StdBadAlloc = cast<CXXRecordDecl>(New);
7737    } else
7738      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7739                               cast_or_null<RecordDecl>(PrevDecl));
7740  }
7741
7742  // Maybe add qualifier info.
7743  if (SS.isNotEmpty()) {
7744    if (SS.isSet()) {
7745      New->setQualifierInfo(SS.getWithLocInContext(Context));
7746      if (TemplateParameterLists.size() > 0) {
7747        New->setTemplateParameterListsInfo(Context,
7748                                           TemplateParameterLists.size(),
7749                    (TemplateParameterList**) TemplateParameterLists.release());
7750      }
7751    }
7752    else
7753      Invalid = true;
7754  }
7755
7756  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7757    // Add alignment attributes if necessary; these attributes are checked when
7758    // the ASTContext lays out the structure.
7759    //
7760    // It is important for implementing the correct semantics that this
7761    // happen here (in act on tag decl). The #pragma pack stack is
7762    // maintained as a result of parser callbacks which can occur at
7763    // many points during the parsing of a struct declaration (because
7764    // the #pragma tokens are effectively skipped over during the
7765    // parsing of the struct).
7766    AddAlignmentAttributesForRecord(RD);
7767
7768    AddMsStructLayoutForRecord(RD);
7769  }
7770
7771  if (PrevDecl && PrevDecl->isModulePrivate())
7772    New->setModulePrivate();
7773  else if (ModulePrivateLoc.isValid()) {
7774    if (isExplicitSpecialization)
7775      Diag(New->getLocation(), diag::err_module_private_specialization)
7776        << 2
7777        << FixItHint::CreateRemoval(ModulePrivateLoc);
7778    else if (PrevDecl && !PrevDecl->isModulePrivate())
7779      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7780    else
7781      New->setModulePrivate();
7782  }
7783
7784  // If this is a specialization of a member class (of a class template),
7785  // check the specialization.
7786  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7787    Invalid = true;
7788
7789  if (Invalid)
7790    New->setInvalidDecl();
7791
7792  if (Attr)
7793    ProcessDeclAttributeList(S, New, Attr);
7794
7795  // If we're declaring or defining a tag in function prototype scope
7796  // in C, note that this type can only be used within the function.
7797  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7798    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7799
7800  // Set the lexical context. If the tag has a C++ scope specifier, the
7801  // lexical context will be different from the semantic context.
7802  New->setLexicalDeclContext(CurContext);
7803
7804  // Mark this as a friend decl if applicable.
7805  // In Microsoft mode, a friend declaration also acts as a forward
7806  // declaration so we always pass true to setObjectOfFriendDecl to make
7807  // the tag name visible.
7808  if (TUK == TUK_Friend)
7809    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7810                               getLangOptions().Microsoft);
7811
7812  // Set the access specifier.
7813  if (!Invalid && SearchDC->isRecord())
7814    SetMemberAccessSpecifier(New, PrevDecl, AS);
7815
7816  if (TUK == TUK_Definition)
7817    New->startDefinition();
7818
7819  // If this has an identifier, add it to the scope stack.
7820  if (TUK == TUK_Friend) {
7821    // We might be replacing an existing declaration in the lookup tables;
7822    // if so, borrow its access specifier.
7823    if (PrevDecl)
7824      New->setAccess(PrevDecl->getAccess());
7825
7826    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7827    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7828    if (Name) // can be null along some error paths
7829      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7830        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7831  } else if (Name) {
7832    S = getNonFieldDeclScope(S);
7833    PushOnScopeChains(New, S, !IsForwardReference);
7834    if (IsForwardReference)
7835      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7836
7837  } else {
7838    CurContext->addDecl(New);
7839  }
7840
7841  // If this is the C FILE type, notify the AST context.
7842  if (IdentifierInfo *II = New->getIdentifier())
7843    if (!New->isInvalidDecl() &&
7844        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7845        II->isStr("FILE"))
7846      Context.setFILEDecl(New);
7847
7848  OwnedDecl = true;
7849  return New;
7850}
7851
7852void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7853  AdjustDeclIfTemplate(TagD);
7854  TagDecl *Tag = cast<TagDecl>(TagD);
7855
7856  // Enter the tag context.
7857  PushDeclContext(S, Tag);
7858}
7859
7860void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7861  assert(isa<ObjCContainerDecl>(IDecl) &&
7862         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7863  DeclContext *OCD = cast<DeclContext>(IDecl);
7864  assert(getContainingDC(OCD) == CurContext &&
7865      "The next DeclContext should be lexically contained in the current one.");
7866  CurContext = OCD;
7867}
7868
7869void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7870                                           SourceLocation FinalLoc,
7871                                           SourceLocation LBraceLoc) {
7872  AdjustDeclIfTemplate(TagD);
7873  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7874
7875  FieldCollector->StartClass();
7876
7877  if (!Record->getIdentifier())
7878    return;
7879
7880  if (FinalLoc.isValid())
7881    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7882
7883  // C++ [class]p2:
7884  //   [...] The class-name is also inserted into the scope of the
7885  //   class itself; this is known as the injected-class-name. For
7886  //   purposes of access checking, the injected-class-name is treated
7887  //   as if it were a public member name.
7888  CXXRecordDecl *InjectedClassName
7889    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7890                            Record->getLocStart(), Record->getLocation(),
7891                            Record->getIdentifier(),
7892                            /*PrevDecl=*/0,
7893                            /*DelayTypeCreation=*/true);
7894  Context.getTypeDeclType(InjectedClassName, Record);
7895  InjectedClassName->setImplicit();
7896  InjectedClassName->setAccess(AS_public);
7897  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7898      InjectedClassName->setDescribedClassTemplate(Template);
7899  PushOnScopeChains(InjectedClassName, S);
7900  assert(InjectedClassName->isInjectedClassName() &&
7901         "Broken injected-class-name");
7902}
7903
7904void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7905                                    SourceLocation RBraceLoc) {
7906  AdjustDeclIfTemplate(TagD);
7907  TagDecl *Tag = cast<TagDecl>(TagD);
7908  Tag->setRBraceLoc(RBraceLoc);
7909
7910  if (isa<CXXRecordDecl>(Tag))
7911    FieldCollector->FinishClass();
7912
7913  // Exit this scope of this tag's definition.
7914  PopDeclContext();
7915
7916  // Notify the consumer that we've defined a tag.
7917  Consumer.HandleTagDeclDefinition(Tag);
7918}
7919
7920void Sema::ActOnObjCContainerFinishDefinition() {
7921  // Exit this scope of this interface definition.
7922  PopDeclContext();
7923}
7924
7925void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7926  AdjustDeclIfTemplate(TagD);
7927  TagDecl *Tag = cast<TagDecl>(TagD);
7928  Tag->setInvalidDecl();
7929
7930  // We're undoing ActOnTagStartDefinition here, not
7931  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7932  // the FieldCollector.
7933
7934  PopDeclContext();
7935}
7936
7937// Note that FieldName may be null for anonymous bitfields.
7938bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7939                          QualType FieldTy, const Expr *BitWidth,
7940                          bool *ZeroWidth) {
7941  // Default to true; that shouldn't confuse checks for emptiness
7942  if (ZeroWidth)
7943    *ZeroWidth = true;
7944
7945  // C99 6.7.2.1p4 - verify the field type.
7946  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7947  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7948    // Handle incomplete types with specific error.
7949    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7950      return true;
7951    if (FieldName)
7952      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7953        << FieldName << FieldTy << BitWidth->getSourceRange();
7954    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7955      << FieldTy << BitWidth->getSourceRange();
7956  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7957                                             UPPC_BitFieldWidth))
7958    return true;
7959
7960  // If the bit-width is type- or value-dependent, don't try to check
7961  // it now.
7962  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7963    return false;
7964
7965  llvm::APSInt Value;
7966  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7967    return true;
7968
7969  if (Value != 0 && ZeroWidth)
7970    *ZeroWidth = false;
7971
7972  // Zero-width bitfield is ok for anonymous field.
7973  if (Value == 0 && FieldName)
7974    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7975
7976  if (Value.isSigned() && Value.isNegative()) {
7977    if (FieldName)
7978      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7979               << FieldName << Value.toString(10);
7980    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7981      << Value.toString(10);
7982  }
7983
7984  if (!FieldTy->isDependentType()) {
7985    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7986    if (Value.getZExtValue() > TypeSize) {
7987      if (!getLangOptions().CPlusPlus) {
7988        if (FieldName)
7989          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7990            << FieldName << (unsigned)Value.getZExtValue()
7991            << (unsigned)TypeSize;
7992
7993        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7994          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7995      }
7996
7997      if (FieldName)
7998        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7999          << FieldName << (unsigned)Value.getZExtValue()
8000          << (unsigned)TypeSize;
8001      else
8002        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8003          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8004    }
8005  }
8006
8007  return false;
8008}
8009
8010/// ActOnField - Each field of a C struct/union is passed into this in order
8011/// to create a FieldDecl object for it.
8012Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8013                       Declarator &D, Expr *BitfieldWidth) {
8014  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8015                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8016                               /*HasInit=*/false, AS_public);
8017  return Res;
8018}
8019
8020/// HandleField - Analyze a field of a C struct or a C++ data member.
8021///
8022FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8023                             SourceLocation DeclStart,
8024                             Declarator &D, Expr *BitWidth, bool HasInit,
8025                             AccessSpecifier AS) {
8026  IdentifierInfo *II = D.getIdentifier();
8027  SourceLocation Loc = DeclStart;
8028  if (II) Loc = D.getIdentifierLoc();
8029
8030  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8031  QualType T = TInfo->getType();
8032  if (getLangOptions().CPlusPlus) {
8033    CheckExtraCXXDefaultArguments(D);
8034
8035    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8036                                        UPPC_DataMemberType)) {
8037      D.setInvalidType();
8038      T = Context.IntTy;
8039      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8040    }
8041  }
8042
8043  DiagnoseFunctionSpecifiers(D);
8044
8045  if (D.getDeclSpec().isThreadSpecified())
8046    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8047  if (D.getDeclSpec().isConstexprSpecified())
8048    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8049      << 2;
8050
8051  // Check to see if this name was declared as a member previously
8052  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8053  LookupName(Previous, S);
8054  assert((Previous.empty() || Previous.isOverloadedResult() ||
8055          Previous.isSingleResult())
8056    && "Lookup of member name should be either overloaded, single or null");
8057
8058  // If the name is overloaded then get any declaration else get the single result
8059  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8060    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8061
8062  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8063    // Maybe we will complain about the shadowed template parameter.
8064    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8065    // Just pretend that we didn't see the previous declaration.
8066    PrevDecl = 0;
8067  }
8068
8069  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8070    PrevDecl = 0;
8071
8072  bool Mutable
8073    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8074  SourceLocation TSSL = D.getSourceRange().getBegin();
8075  FieldDecl *NewFD
8076    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8077                     TSSL, AS, PrevDecl, &D);
8078
8079  if (NewFD->isInvalidDecl())
8080    Record->setInvalidDecl();
8081
8082  if (D.getDeclSpec().isModulePrivateSpecified())
8083    NewFD->setModulePrivate();
8084
8085  if (NewFD->isInvalidDecl() && PrevDecl) {
8086    // Don't introduce NewFD into scope; there's already something
8087    // with the same name in the same scope.
8088  } else if (II) {
8089    PushOnScopeChains(NewFD, S);
8090  } else
8091    Record->addDecl(NewFD);
8092
8093  return NewFD;
8094}
8095
8096/// \brief Build a new FieldDecl and check its well-formedness.
8097///
8098/// This routine builds a new FieldDecl given the fields name, type,
8099/// record, etc. \p PrevDecl should refer to any previous declaration
8100/// with the same name and in the same scope as the field to be
8101/// created.
8102///
8103/// \returns a new FieldDecl.
8104///
8105/// \todo The Declarator argument is a hack. It will be removed once
8106FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8107                                TypeSourceInfo *TInfo,
8108                                RecordDecl *Record, SourceLocation Loc,
8109                                bool Mutable, Expr *BitWidth, bool HasInit,
8110                                SourceLocation TSSL,
8111                                AccessSpecifier AS, NamedDecl *PrevDecl,
8112                                Declarator *D) {
8113  IdentifierInfo *II = Name.getAsIdentifierInfo();
8114  bool InvalidDecl = false;
8115  if (D) InvalidDecl = D->isInvalidType();
8116
8117  // If we receive a broken type, recover by assuming 'int' and
8118  // marking this declaration as invalid.
8119  if (T.isNull()) {
8120    InvalidDecl = true;
8121    T = Context.IntTy;
8122  }
8123
8124  QualType EltTy = Context.getBaseElementType(T);
8125  if (!EltTy->isDependentType() &&
8126      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8127    // Fields of incomplete type force their record to be invalid.
8128    Record->setInvalidDecl();
8129    InvalidDecl = true;
8130  }
8131
8132  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8133  // than a variably modified type.
8134  if (!InvalidDecl && T->isVariablyModifiedType()) {
8135    bool SizeIsNegative;
8136    llvm::APSInt Oversized;
8137    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8138                                                           SizeIsNegative,
8139                                                           Oversized);
8140    if (!FixedTy.isNull()) {
8141      Diag(Loc, diag::warn_illegal_constant_array_size);
8142      T = FixedTy;
8143    } else {
8144      if (SizeIsNegative)
8145        Diag(Loc, diag::err_typecheck_negative_array_size);
8146      else if (Oversized.getBoolValue())
8147        Diag(Loc, diag::err_array_too_large)
8148          << Oversized.toString(10);
8149      else
8150        Diag(Loc, diag::err_typecheck_field_variable_size);
8151      InvalidDecl = true;
8152    }
8153  }
8154
8155  // Fields can not have abstract class types
8156  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8157                                             diag::err_abstract_type_in_decl,
8158                                             AbstractFieldType))
8159    InvalidDecl = true;
8160
8161  bool ZeroWidth = false;
8162  // If this is declared as a bit-field, check the bit-field.
8163  if (!InvalidDecl && BitWidth &&
8164      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8165    InvalidDecl = true;
8166    BitWidth = 0;
8167    ZeroWidth = false;
8168  }
8169
8170  // Check that 'mutable' is consistent with the type of the declaration.
8171  if (!InvalidDecl && Mutable) {
8172    unsigned DiagID = 0;
8173    if (T->isReferenceType())
8174      DiagID = diag::err_mutable_reference;
8175    else if (T.isConstQualified())
8176      DiagID = diag::err_mutable_const;
8177
8178    if (DiagID) {
8179      SourceLocation ErrLoc = Loc;
8180      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8181        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8182      Diag(ErrLoc, DiagID);
8183      Mutable = false;
8184      InvalidDecl = true;
8185    }
8186  }
8187
8188  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8189                                       BitWidth, Mutable, HasInit);
8190  if (InvalidDecl)
8191    NewFD->setInvalidDecl();
8192
8193  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8194    Diag(Loc, diag::err_duplicate_member) << II;
8195    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8196    NewFD->setInvalidDecl();
8197  }
8198
8199  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8200    if (Record->isUnion()) {
8201      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8202        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8203        if (RDecl->getDefinition()) {
8204          // C++ [class.union]p1: An object of a class with a non-trivial
8205          // constructor, a non-trivial copy constructor, a non-trivial
8206          // destructor, or a non-trivial copy assignment operator
8207          // cannot be a member of a union, nor can an array of such
8208          // objects.
8209          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8210            NewFD->setInvalidDecl();
8211        }
8212      }
8213
8214      // C++ [class.union]p1: If a union contains a member of reference type,
8215      // the program is ill-formed.
8216      if (EltTy->isReferenceType()) {
8217        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8218          << NewFD->getDeclName() << EltTy;
8219        NewFD->setInvalidDecl();
8220      }
8221    }
8222  }
8223
8224  // FIXME: We need to pass in the attributes given an AST
8225  // representation, not a parser representation.
8226  if (D)
8227    // FIXME: What to pass instead of TUScope?
8228    ProcessDeclAttributes(TUScope, NewFD, *D);
8229
8230  // In auto-retain/release, infer strong retension for fields of
8231  // retainable type.
8232  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8233    NewFD->setInvalidDecl();
8234
8235  if (T.isObjCGCWeak())
8236    Diag(Loc, diag::warn_attribute_weak_on_field);
8237
8238  NewFD->setAccess(AS);
8239  return NewFD;
8240}
8241
8242bool Sema::CheckNontrivialField(FieldDecl *FD) {
8243  assert(FD);
8244  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8245
8246  if (FD->isInvalidDecl())
8247    return true;
8248
8249  QualType EltTy = Context.getBaseElementType(FD->getType());
8250  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8251    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8252    if (RDecl->getDefinition()) {
8253      // We check for copy constructors before constructors
8254      // because otherwise we'll never get complaints about
8255      // copy constructors.
8256
8257      CXXSpecialMember member = CXXInvalid;
8258      if (!RDecl->hasTrivialCopyConstructor())
8259        member = CXXCopyConstructor;
8260      else if (!RDecl->hasTrivialDefaultConstructor())
8261        member = CXXDefaultConstructor;
8262      else if (!RDecl->hasTrivialCopyAssignment())
8263        member = CXXCopyAssignment;
8264      else if (!RDecl->hasTrivialDestructor())
8265        member = CXXDestructor;
8266
8267      if (member != CXXInvalid) {
8268        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8269          // Objective-C++ ARC: it is an error to have a non-trivial field of
8270          // a union. However, system headers in Objective-C programs
8271          // occasionally have Objective-C lifetime objects within unions,
8272          // and rather than cause the program to fail, we make those
8273          // members unavailable.
8274          SourceLocation Loc = FD->getLocation();
8275          if (getSourceManager().isInSystemHeader(Loc)) {
8276            if (!FD->hasAttr<UnavailableAttr>())
8277              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8278                                  "this system field has retaining ownership"));
8279            return false;
8280          }
8281        }
8282
8283        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8284              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8285        DiagnoseNontrivial(RT, member);
8286        return true;
8287      }
8288    }
8289  }
8290
8291  return false;
8292}
8293
8294/// DiagnoseNontrivial - Given that a class has a non-trivial
8295/// special member, figure out why.
8296void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8297  QualType QT(T, 0U);
8298  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8299
8300  // Check whether the member was user-declared.
8301  switch (member) {
8302  case CXXInvalid:
8303    break;
8304
8305  case CXXDefaultConstructor:
8306    if (RD->hasUserDeclaredConstructor()) {
8307      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8308      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8309        const FunctionDecl *body = 0;
8310        ci->hasBody(body);
8311        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8312          SourceLocation CtorLoc = ci->getLocation();
8313          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8314          return;
8315        }
8316      }
8317
8318      assert(0 && "found no user-declared constructors");
8319      return;
8320    }
8321    break;
8322
8323  case CXXCopyConstructor:
8324    if (RD->hasUserDeclaredCopyConstructor()) {
8325      SourceLocation CtorLoc =
8326        RD->getCopyConstructor(0)->getLocation();
8327      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8328      return;
8329    }
8330    break;
8331
8332  case CXXMoveConstructor:
8333    if (RD->hasUserDeclaredMoveConstructor()) {
8334      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8335      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8336      return;
8337    }
8338    break;
8339
8340  case CXXCopyAssignment:
8341    if (RD->hasUserDeclaredCopyAssignment()) {
8342      // FIXME: this should use the location of the copy
8343      // assignment, not the type.
8344      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8345      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8346      return;
8347    }
8348    break;
8349
8350  case CXXMoveAssignment:
8351    if (RD->hasUserDeclaredMoveAssignment()) {
8352      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8353      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8354      return;
8355    }
8356    break;
8357
8358  case CXXDestructor:
8359    if (RD->hasUserDeclaredDestructor()) {
8360      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8361      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8362      return;
8363    }
8364    break;
8365  }
8366
8367  typedef CXXRecordDecl::base_class_iterator base_iter;
8368
8369  // Virtual bases and members inhibit trivial copying/construction,
8370  // but not trivial destruction.
8371  if (member != CXXDestructor) {
8372    // Check for virtual bases.  vbases includes indirect virtual bases,
8373    // so we just iterate through the direct bases.
8374    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8375      if (bi->isVirtual()) {
8376        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8377        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8378        return;
8379      }
8380
8381    // Check for virtual methods.
8382    typedef CXXRecordDecl::method_iterator meth_iter;
8383    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8384         ++mi) {
8385      if (mi->isVirtual()) {
8386        SourceLocation MLoc = mi->getSourceRange().getBegin();
8387        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8388        return;
8389      }
8390    }
8391  }
8392
8393  bool (CXXRecordDecl::*hasTrivial)() const;
8394  switch (member) {
8395  case CXXDefaultConstructor:
8396    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8397  case CXXCopyConstructor:
8398    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8399  case CXXCopyAssignment:
8400    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8401  case CXXDestructor:
8402    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8403  default:
8404    assert(0 && "unexpected special member"); return;
8405  }
8406
8407  // Check for nontrivial bases (and recurse).
8408  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8409    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8410    assert(BaseRT && "Don't know how to handle dependent bases");
8411    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8412    if (!(BaseRecTy->*hasTrivial)()) {
8413      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8414      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8415      DiagnoseNontrivial(BaseRT, member);
8416      return;
8417    }
8418  }
8419
8420  // Check for nontrivial members (and recurse).
8421  typedef RecordDecl::field_iterator field_iter;
8422  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8423       ++fi) {
8424    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8425    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8426      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8427
8428      if (!(EltRD->*hasTrivial)()) {
8429        SourceLocation FLoc = (*fi)->getLocation();
8430        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8431        DiagnoseNontrivial(EltRT, member);
8432        return;
8433      }
8434    }
8435
8436    if (EltTy->isObjCLifetimeType()) {
8437      switch (EltTy.getObjCLifetime()) {
8438      case Qualifiers::OCL_None:
8439      case Qualifiers::OCL_ExplicitNone:
8440        break;
8441
8442      case Qualifiers::OCL_Autoreleasing:
8443      case Qualifiers::OCL_Weak:
8444      case Qualifiers::OCL_Strong:
8445        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8446          << QT << EltTy.getObjCLifetime();
8447        return;
8448      }
8449    }
8450  }
8451
8452  assert(0 && "found no explanation for non-trivial member");
8453}
8454
8455/// TranslateIvarVisibility - Translate visibility from a token ID to an
8456///  AST enum value.
8457static ObjCIvarDecl::AccessControl
8458TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8459  switch (ivarVisibility) {
8460  default: assert(0 && "Unknown visitibility kind");
8461  case tok::objc_private: return ObjCIvarDecl::Private;
8462  case tok::objc_public: return ObjCIvarDecl::Public;
8463  case tok::objc_protected: return ObjCIvarDecl::Protected;
8464  case tok::objc_package: return ObjCIvarDecl::Package;
8465  }
8466}
8467
8468/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8469/// in order to create an IvarDecl object for it.
8470Decl *Sema::ActOnIvar(Scope *S,
8471                                SourceLocation DeclStart,
8472                                Declarator &D, Expr *BitfieldWidth,
8473                                tok::ObjCKeywordKind Visibility) {
8474
8475  IdentifierInfo *II = D.getIdentifier();
8476  Expr *BitWidth = (Expr*)BitfieldWidth;
8477  SourceLocation Loc = DeclStart;
8478  if (II) Loc = D.getIdentifierLoc();
8479
8480  // FIXME: Unnamed fields can be handled in various different ways, for
8481  // example, unnamed unions inject all members into the struct namespace!
8482
8483  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8484  QualType T = TInfo->getType();
8485
8486  if (BitWidth) {
8487    // 6.7.2.1p3, 6.7.2.1p4
8488    if (VerifyBitField(Loc, II, T, BitWidth)) {
8489      D.setInvalidType();
8490      BitWidth = 0;
8491    }
8492  } else {
8493    // Not a bitfield.
8494
8495    // validate II.
8496
8497  }
8498  if (T->isReferenceType()) {
8499    Diag(Loc, diag::err_ivar_reference_type);
8500    D.setInvalidType();
8501  }
8502  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8503  // than a variably modified type.
8504  else if (T->isVariablyModifiedType()) {
8505    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8506    D.setInvalidType();
8507  }
8508
8509  // Get the visibility (access control) for this ivar.
8510  ObjCIvarDecl::AccessControl ac =
8511    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8512                                        : ObjCIvarDecl::None;
8513  // Must set ivar's DeclContext to its enclosing interface.
8514  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8515  ObjCContainerDecl *EnclosingContext;
8516  if (ObjCImplementationDecl *IMPDecl =
8517      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8518    if (!LangOpts.ObjCNonFragileABI2) {
8519    // Case of ivar declared in an implementation. Context is that of its class.
8520      EnclosingContext = IMPDecl->getClassInterface();
8521      assert(EnclosingContext && "Implementation has no class interface!");
8522    }
8523    else
8524      EnclosingContext = EnclosingDecl;
8525  } else {
8526    if (ObjCCategoryDecl *CDecl =
8527        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8528      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8529        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8530        return 0;
8531      }
8532    }
8533    EnclosingContext = EnclosingDecl;
8534  }
8535
8536  // Construct the decl.
8537  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8538                                             DeclStart, Loc, II, T,
8539                                             TInfo, ac, (Expr *)BitfieldWidth);
8540
8541  if (II) {
8542    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8543                                           ForRedeclaration);
8544    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8545        && !isa<TagDecl>(PrevDecl)) {
8546      Diag(Loc, diag::err_duplicate_member) << II;
8547      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8548      NewID->setInvalidDecl();
8549    }
8550  }
8551
8552  // Process attributes attached to the ivar.
8553  ProcessDeclAttributes(S, NewID, D);
8554
8555  if (D.isInvalidType())
8556    NewID->setInvalidDecl();
8557
8558  // In ARC, infer 'retaining' for ivars of retainable type.
8559  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8560    NewID->setInvalidDecl();
8561
8562  if (D.getDeclSpec().isModulePrivateSpecified())
8563    NewID->setModulePrivate();
8564
8565  if (II) {
8566    // FIXME: When interfaces are DeclContexts, we'll need to add
8567    // these to the interface.
8568    S->AddDecl(NewID);
8569    IdResolver.AddDecl(NewID);
8570  }
8571
8572  return NewID;
8573}
8574
8575/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8576/// class and class extensions. For every class @interface and class
8577/// extension @interface, if the last ivar is a bitfield of any type,
8578/// then add an implicit `char :0` ivar to the end of that interface.
8579void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8580                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8581  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8582    return;
8583
8584  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8585  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8586
8587  if (!Ivar->isBitField())
8588    return;
8589  uint64_t BitFieldSize =
8590    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8591  if (BitFieldSize == 0)
8592    return;
8593  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8594  if (!ID) {
8595    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8596      if (!CD->IsClassExtension())
8597        return;
8598    }
8599    // No need to add this to end of @implementation.
8600    else
8601      return;
8602  }
8603  // All conditions are met. Add a new bitfield to the tail end of ivars.
8604  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8605  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8606
8607  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8608                              DeclLoc, DeclLoc, 0,
8609                              Context.CharTy,
8610                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8611                                                               DeclLoc),
8612                              ObjCIvarDecl::Private, BW,
8613                              true);
8614  AllIvarDecls.push_back(Ivar);
8615}
8616
8617void Sema::ActOnFields(Scope* S,
8618                       SourceLocation RecLoc, Decl *EnclosingDecl,
8619                       Decl **Fields, unsigned NumFields,
8620                       SourceLocation LBrac, SourceLocation RBrac,
8621                       AttributeList *Attr) {
8622  assert(EnclosingDecl && "missing record or interface decl");
8623
8624  // If the decl this is being inserted into is invalid, then it may be a
8625  // redeclaration or some other bogus case.  Don't try to add fields to it.
8626  if (EnclosingDecl->isInvalidDecl()) {
8627    // FIXME: Deallocate fields?
8628    return;
8629  }
8630
8631
8632  // Verify that all the fields are okay.
8633  unsigned NumNamedMembers = 0;
8634  SmallVector<FieldDecl*, 32> RecFields;
8635
8636  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8637  bool ARCErrReported = false;
8638  for (unsigned i = 0; i != NumFields; ++i) {
8639    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8640
8641    // Get the type for the field.
8642    const Type *FDTy = FD->getType().getTypePtr();
8643
8644    if (!FD->isAnonymousStructOrUnion()) {
8645      // Remember all fields written by the user.
8646      RecFields.push_back(FD);
8647    }
8648
8649    // If the field is already invalid for some reason, don't emit more
8650    // diagnostics about it.
8651    if (FD->isInvalidDecl()) {
8652      EnclosingDecl->setInvalidDecl();
8653      continue;
8654    }
8655
8656    // C99 6.7.2.1p2:
8657    //   A structure or union shall not contain a member with
8658    //   incomplete or function type (hence, a structure shall not
8659    //   contain an instance of itself, but may contain a pointer to
8660    //   an instance of itself), except that the last member of a
8661    //   structure with more than one named member may have incomplete
8662    //   array type; such a structure (and any union containing,
8663    //   possibly recursively, a member that is such a structure)
8664    //   shall not be a member of a structure or an element of an
8665    //   array.
8666    if (FDTy->isFunctionType()) {
8667      // Field declared as a function.
8668      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8669        << FD->getDeclName();
8670      FD->setInvalidDecl();
8671      EnclosingDecl->setInvalidDecl();
8672      continue;
8673    } else if (FDTy->isIncompleteArrayType() && Record &&
8674               ((i == NumFields - 1 && !Record->isUnion()) ||
8675                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8676                 (i == NumFields - 1 || Record->isUnion())))) {
8677      // Flexible array member.
8678      // Microsoft and g++ is more permissive regarding flexible array.
8679      // It will accept flexible array in union and also
8680      // as the sole element of a struct/class.
8681      if (getLangOptions().Microsoft) {
8682        if (Record->isUnion())
8683          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8684            << FD->getDeclName();
8685        else if (NumFields == 1)
8686          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8687            << FD->getDeclName() << Record->getTagKind();
8688      } else if (getLangOptions().CPlusPlus) {
8689        if (Record->isUnion())
8690          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8691            << FD->getDeclName();
8692        else if (NumFields == 1)
8693          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8694            << FD->getDeclName() << Record->getTagKind();
8695      } else if (NumNamedMembers < 1) {
8696        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8697          << FD->getDeclName();
8698        FD->setInvalidDecl();
8699        EnclosingDecl->setInvalidDecl();
8700        continue;
8701      }
8702      if (!FD->getType()->isDependentType() &&
8703          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8704        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8705          << FD->getDeclName() << FD->getType();
8706        FD->setInvalidDecl();
8707        EnclosingDecl->setInvalidDecl();
8708        continue;
8709      }
8710      // Okay, we have a legal flexible array member at the end of the struct.
8711      if (Record)
8712        Record->setHasFlexibleArrayMember(true);
8713    } else if (!FDTy->isDependentType() &&
8714               RequireCompleteType(FD->getLocation(), FD->getType(),
8715                                   diag::err_field_incomplete)) {
8716      // Incomplete type
8717      FD->setInvalidDecl();
8718      EnclosingDecl->setInvalidDecl();
8719      continue;
8720    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8721      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8722        // If this is a member of a union, then entire union becomes "flexible".
8723        if (Record && Record->isUnion()) {
8724          Record->setHasFlexibleArrayMember(true);
8725        } else {
8726          // If this is a struct/class and this is not the last element, reject
8727          // it.  Note that GCC supports variable sized arrays in the middle of
8728          // structures.
8729          if (i != NumFields-1)
8730            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8731              << FD->getDeclName() << FD->getType();
8732          else {
8733            // We support flexible arrays at the end of structs in
8734            // other structs as an extension.
8735            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8736              << FD->getDeclName();
8737            if (Record)
8738              Record->setHasFlexibleArrayMember(true);
8739          }
8740        }
8741      }
8742      if (Record && FDTTy->getDecl()->hasObjectMember())
8743        Record->setHasObjectMember(true);
8744    } else if (FDTy->isObjCObjectType()) {
8745      /// A field cannot be an Objective-c object
8746      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8747        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8748      QualType T = Context.getObjCObjectPointerType(FD->getType());
8749      FD->setType(T);
8750    }
8751    else if (!getLangOptions().CPlusPlus) {
8752      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8753        // It's an error in ARC if a field has lifetime.
8754        // We don't want to report this in a system header, though,
8755        // so we just make the field unavailable.
8756        // FIXME: that's really not sufficient; we need to make the type
8757        // itself invalid to, say, initialize or copy.
8758        QualType T = FD->getType();
8759        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8760        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8761          SourceLocation loc = FD->getLocation();
8762          if (getSourceManager().isInSystemHeader(loc)) {
8763            if (!FD->hasAttr<UnavailableAttr>()) {
8764              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8765                                "this system field has retaining ownership"));
8766            }
8767          } else {
8768            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8769          }
8770          ARCErrReported = true;
8771        }
8772      }
8773      else if (getLangOptions().ObjC1 &&
8774               getLangOptions().getGCMode() != LangOptions::NonGC &&
8775               Record && !Record->hasObjectMember()) {
8776        if (FD->getType()->isObjCObjectPointerType() ||
8777            FD->getType().isObjCGCStrong())
8778          Record->setHasObjectMember(true);
8779        else if (Context.getAsArrayType(FD->getType())) {
8780          QualType BaseType = Context.getBaseElementType(FD->getType());
8781          if (BaseType->isRecordType() &&
8782              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8783            Record->setHasObjectMember(true);
8784          else if (BaseType->isObjCObjectPointerType() ||
8785                   BaseType.isObjCGCStrong())
8786                 Record->setHasObjectMember(true);
8787        }
8788      }
8789    }
8790    // Keep track of the number of named members.
8791    if (FD->getIdentifier())
8792      ++NumNamedMembers;
8793  }
8794
8795  // Okay, we successfully defined 'Record'.
8796  if (Record) {
8797    bool Completed = false;
8798    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8799      if (!CXXRecord->isInvalidDecl()) {
8800        // Set access bits correctly on the directly-declared conversions.
8801        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8802        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8803             I != E; ++I)
8804          Convs->setAccess(I, (*I)->getAccess());
8805
8806        if (!CXXRecord->isDependentType()) {
8807          // Objective-C Automatic Reference Counting:
8808          //   If a class has a non-static data member of Objective-C pointer
8809          //   type (or array thereof), it is a non-POD type and its
8810          //   default constructor (if any), copy constructor, copy assignment
8811          //   operator, and destructor are non-trivial.
8812          //
8813          // This rule is also handled by CXXRecordDecl::completeDefinition().
8814          // However, here we check whether this particular class is only
8815          // non-POD because of the presence of an Objective-C pointer member.
8816          // If so, objects of this type cannot be shared between code compiled
8817          // with instant objects and code compiled with manual retain/release.
8818          if (getLangOptions().ObjCAutoRefCount &&
8819              CXXRecord->hasObjectMember() &&
8820              CXXRecord->getLinkage() == ExternalLinkage) {
8821            if (CXXRecord->isPOD()) {
8822              Diag(CXXRecord->getLocation(),
8823                   diag::warn_arc_non_pod_class_with_object_member)
8824               << CXXRecord;
8825            } else {
8826              // FIXME: Fix-Its would be nice here, but finding a good location
8827              // for them is going to be tricky.
8828              if (CXXRecord->hasTrivialCopyConstructor())
8829                Diag(CXXRecord->getLocation(),
8830                     diag::warn_arc_trivial_member_function_with_object_member)
8831                  << CXXRecord << 0;
8832              if (CXXRecord->hasTrivialCopyAssignment())
8833                Diag(CXXRecord->getLocation(),
8834                     diag::warn_arc_trivial_member_function_with_object_member)
8835                << CXXRecord << 1;
8836              if (CXXRecord->hasTrivialDestructor())
8837                Diag(CXXRecord->getLocation(),
8838                     diag::warn_arc_trivial_member_function_with_object_member)
8839                << CXXRecord << 2;
8840            }
8841          }
8842
8843          // Adjust user-defined destructor exception spec.
8844          if (getLangOptions().CPlusPlus0x &&
8845              CXXRecord->hasUserDeclaredDestructor())
8846            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8847
8848          // Add any implicitly-declared members to this class.
8849          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8850
8851          // If we have virtual base classes, we may end up finding multiple
8852          // final overriders for a given virtual function. Check for this
8853          // problem now.
8854          if (CXXRecord->getNumVBases()) {
8855            CXXFinalOverriderMap FinalOverriders;
8856            CXXRecord->getFinalOverriders(FinalOverriders);
8857
8858            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8859                                             MEnd = FinalOverriders.end();
8860                 M != MEnd; ++M) {
8861              for (OverridingMethods::iterator SO = M->second.begin(),
8862                                            SOEnd = M->second.end();
8863                   SO != SOEnd; ++SO) {
8864                assert(SO->second.size() > 0 &&
8865                       "Virtual function without overridding functions?");
8866                if (SO->second.size() == 1)
8867                  continue;
8868
8869                // C++ [class.virtual]p2:
8870                //   In a derived class, if a virtual member function of a base
8871                //   class subobject has more than one final overrider the
8872                //   program is ill-formed.
8873                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8874                  << (NamedDecl *)M->first << Record;
8875                Diag(M->first->getLocation(),
8876                     diag::note_overridden_virtual_function);
8877                for (OverridingMethods::overriding_iterator
8878                          OM = SO->second.begin(),
8879                       OMEnd = SO->second.end();
8880                     OM != OMEnd; ++OM)
8881                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8882                    << (NamedDecl *)M->first << OM->Method->getParent();
8883
8884                Record->setInvalidDecl();
8885              }
8886            }
8887            CXXRecord->completeDefinition(&FinalOverriders);
8888            Completed = true;
8889          }
8890        }
8891      }
8892    }
8893
8894    if (!Completed)
8895      Record->completeDefinition();
8896
8897    // Now that the record is complete, do any delayed exception spec checks
8898    // we were missing.
8899    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8900      const CXXDestructorDecl *Dtor =
8901              DelayedDestructorExceptionSpecChecks.back().first;
8902      if (Dtor->getParent() != Record)
8903        break;
8904
8905      assert(!Dtor->getParent()->isDependentType() &&
8906          "Should not ever add destructors of templates into the list.");
8907      CheckOverridingFunctionExceptionSpec(Dtor,
8908          DelayedDestructorExceptionSpecChecks.back().second);
8909      DelayedDestructorExceptionSpecChecks.pop_back();
8910    }
8911
8912  } else {
8913    ObjCIvarDecl **ClsFields =
8914      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8915    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8916      ID->setLocEnd(RBrac);
8917      // Add ivar's to class's DeclContext.
8918      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8919        ClsFields[i]->setLexicalDeclContext(ID);
8920        ID->addDecl(ClsFields[i]);
8921      }
8922      // Must enforce the rule that ivars in the base classes may not be
8923      // duplicates.
8924      if (ID->getSuperClass())
8925        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8926    } else if (ObjCImplementationDecl *IMPDecl =
8927                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8928      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8929      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8930        // Ivar declared in @implementation never belongs to the implementation.
8931        // Only it is in implementation's lexical context.
8932        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8933      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8934    } else if (ObjCCategoryDecl *CDecl =
8935                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8936      // case of ivars in class extension; all other cases have been
8937      // reported as errors elsewhere.
8938      // FIXME. Class extension does not have a LocEnd field.
8939      // CDecl->setLocEnd(RBrac);
8940      // Add ivar's to class extension's DeclContext.
8941      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8942        ClsFields[i]->setLexicalDeclContext(CDecl);
8943        CDecl->addDecl(ClsFields[i]);
8944      }
8945    }
8946  }
8947
8948  if (Attr)
8949    ProcessDeclAttributeList(S, Record, Attr);
8950
8951  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8952  // set the visibility of this record.
8953  if (Record && !Record->getDeclContext()->isRecord())
8954    AddPushedVisibilityAttribute(Record);
8955}
8956
8957/// \brief Determine whether the given integral value is representable within
8958/// the given type T.
8959static bool isRepresentableIntegerValue(ASTContext &Context,
8960                                        llvm::APSInt &Value,
8961                                        QualType T) {
8962  assert(T->isIntegralType(Context) && "Integral type required!");
8963  unsigned BitWidth = Context.getIntWidth(T);
8964
8965  if (Value.isUnsigned() || Value.isNonNegative()) {
8966    if (T->isSignedIntegerOrEnumerationType())
8967      --BitWidth;
8968    return Value.getActiveBits() <= BitWidth;
8969  }
8970  return Value.getMinSignedBits() <= BitWidth;
8971}
8972
8973// \brief Given an integral type, return the next larger integral type
8974// (or a NULL type of no such type exists).
8975static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8976  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8977  // enum checking below.
8978  assert(T->isIntegralType(Context) && "Integral type required!");
8979  const unsigned NumTypes = 4;
8980  QualType SignedIntegralTypes[NumTypes] = {
8981    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8982  };
8983  QualType UnsignedIntegralTypes[NumTypes] = {
8984    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8985    Context.UnsignedLongLongTy
8986  };
8987
8988  unsigned BitWidth = Context.getTypeSize(T);
8989  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8990                                                        : UnsignedIntegralTypes;
8991  for (unsigned I = 0; I != NumTypes; ++I)
8992    if (Context.getTypeSize(Types[I]) > BitWidth)
8993      return Types[I];
8994
8995  return QualType();
8996}
8997
8998EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8999                                          EnumConstantDecl *LastEnumConst,
9000                                          SourceLocation IdLoc,
9001                                          IdentifierInfo *Id,
9002                                          Expr *Val) {
9003  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9004  llvm::APSInt EnumVal(IntWidth);
9005  QualType EltTy;
9006
9007  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9008    Val = 0;
9009
9010  if (Val) {
9011    if (Enum->isDependentType() || Val->isTypeDependent())
9012      EltTy = Context.DependentTy;
9013    else {
9014      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9015      SourceLocation ExpLoc;
9016      if (!Val->isValueDependent() &&
9017          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9018        Val = 0;
9019      } else {
9020        if (!getLangOptions().CPlusPlus) {
9021          // C99 6.7.2.2p2:
9022          //   The expression that defines the value of an enumeration constant
9023          //   shall be an integer constant expression that has a value
9024          //   representable as an int.
9025
9026          // Complain if the value is not representable in an int.
9027          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9028            Diag(IdLoc, diag::ext_enum_value_not_int)
9029              << EnumVal.toString(10) << Val->getSourceRange()
9030              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9031          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9032            // Force the type of the expression to 'int'.
9033            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9034          }
9035        }
9036
9037        if (Enum->isFixed()) {
9038          EltTy = Enum->getIntegerType();
9039
9040          // C++0x [dcl.enum]p5:
9041          //   ... if the initializing value of an enumerator cannot be
9042          //   represented by the underlying type, the program is ill-formed.
9043          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9044            if (getLangOptions().Microsoft) {
9045              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9046              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9047            } else
9048              Diag(IdLoc, diag::err_enumerator_too_large)
9049                << EltTy;
9050          } else
9051            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9052        }
9053        else {
9054          // C++0x [dcl.enum]p5:
9055          //   If the underlying type is not fixed, the type of each enumerator
9056          //   is the type of its initializing value:
9057          //     - If an initializer is specified for an enumerator, the
9058          //       initializing value has the same type as the expression.
9059          EltTy = Val->getType();
9060        }
9061      }
9062    }
9063  }
9064
9065  if (!Val) {
9066    if (Enum->isDependentType())
9067      EltTy = Context.DependentTy;
9068    else if (!LastEnumConst) {
9069      // C++0x [dcl.enum]p5:
9070      //   If the underlying type is not fixed, the type of each enumerator
9071      //   is the type of its initializing value:
9072      //     - If no initializer is specified for the first enumerator, the
9073      //       initializing value has an unspecified integral type.
9074      //
9075      // GCC uses 'int' for its unspecified integral type, as does
9076      // C99 6.7.2.2p3.
9077      if (Enum->isFixed()) {
9078        EltTy = Enum->getIntegerType();
9079      }
9080      else {
9081        EltTy = Context.IntTy;
9082      }
9083    } else {
9084      // Assign the last value + 1.
9085      EnumVal = LastEnumConst->getInitVal();
9086      ++EnumVal;
9087      EltTy = LastEnumConst->getType();
9088
9089      // Check for overflow on increment.
9090      if (EnumVal < LastEnumConst->getInitVal()) {
9091        // C++0x [dcl.enum]p5:
9092        //   If the underlying type is not fixed, the type of each enumerator
9093        //   is the type of its initializing value:
9094        //
9095        //     - Otherwise the type of the initializing value is the same as
9096        //       the type of the initializing value of the preceding enumerator
9097        //       unless the incremented value is not representable in that type,
9098        //       in which case the type is an unspecified integral type
9099        //       sufficient to contain the incremented value. If no such type
9100        //       exists, the program is ill-formed.
9101        QualType T = getNextLargerIntegralType(Context, EltTy);
9102        if (T.isNull() || Enum->isFixed()) {
9103          // There is no integral type larger enough to represent this
9104          // value. Complain, then allow the value to wrap around.
9105          EnumVal = LastEnumConst->getInitVal();
9106          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9107          ++EnumVal;
9108          if (Enum->isFixed())
9109            // When the underlying type is fixed, this is ill-formed.
9110            Diag(IdLoc, diag::err_enumerator_wrapped)
9111              << EnumVal.toString(10)
9112              << EltTy;
9113          else
9114            Diag(IdLoc, diag::warn_enumerator_too_large)
9115              << EnumVal.toString(10);
9116        } else {
9117          EltTy = T;
9118        }
9119
9120        // Retrieve the last enumerator's value, extent that type to the
9121        // type that is supposed to be large enough to represent the incremented
9122        // value, then increment.
9123        EnumVal = LastEnumConst->getInitVal();
9124        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9125        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9126        ++EnumVal;
9127
9128        // If we're not in C++, diagnose the overflow of enumerator values,
9129        // which in C99 means that the enumerator value is not representable in
9130        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9131        // permits enumerator values that are representable in some larger
9132        // integral type.
9133        if (!getLangOptions().CPlusPlus && !T.isNull())
9134          Diag(IdLoc, diag::warn_enum_value_overflow);
9135      } else if (!getLangOptions().CPlusPlus &&
9136                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9137        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9138        Diag(IdLoc, diag::ext_enum_value_not_int)
9139          << EnumVal.toString(10) << 1;
9140      }
9141    }
9142  }
9143
9144  if (!EltTy->isDependentType()) {
9145    // Make the enumerator value match the signedness and size of the
9146    // enumerator's type.
9147    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9148    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9149  }
9150
9151  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9152                                  Val, EnumVal);
9153}
9154
9155
9156Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9157                              SourceLocation IdLoc, IdentifierInfo *Id,
9158                              AttributeList *Attr,
9159                              SourceLocation EqualLoc, Expr *val) {
9160  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9161  EnumConstantDecl *LastEnumConst =
9162    cast_or_null<EnumConstantDecl>(lastEnumConst);
9163  Expr *Val = static_cast<Expr*>(val);
9164
9165  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9166  // we find one that is.
9167  S = getNonFieldDeclScope(S);
9168
9169  // Verify that there isn't already something declared with this name in this
9170  // scope.
9171  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9172                                         ForRedeclaration);
9173  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9174    // Maybe we will complain about the shadowed template parameter.
9175    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9176    // Just pretend that we didn't see the previous declaration.
9177    PrevDecl = 0;
9178  }
9179
9180  if (PrevDecl) {
9181    // When in C++, we may get a TagDecl with the same name; in this case the
9182    // enum constant will 'hide' the tag.
9183    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9184           "Received TagDecl when not in C++!");
9185    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9186      if (isa<EnumConstantDecl>(PrevDecl))
9187        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9188      else
9189        Diag(IdLoc, diag::err_redefinition) << Id;
9190      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9191      return 0;
9192    }
9193  }
9194
9195  // C++ [class.mem]p13:
9196  //   If T is the name of a class, then each of the following shall have a
9197  //   name different from T:
9198  //     - every enumerator of every member of class T that is an enumerated
9199  //       type
9200  if (CXXRecordDecl *Record
9201                      = dyn_cast<CXXRecordDecl>(
9202                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9203    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9204      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9205
9206  EnumConstantDecl *New =
9207    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9208
9209  if (New) {
9210    // Process attributes.
9211    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9212
9213    // Register this decl in the current scope stack.
9214    New->setAccess(TheEnumDecl->getAccess());
9215    PushOnScopeChains(New, S);
9216  }
9217
9218  return New;
9219}
9220
9221void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9222                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9223                         Decl **Elements, unsigned NumElements,
9224                         Scope *S, AttributeList *Attr) {
9225  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9226  QualType EnumType = Context.getTypeDeclType(Enum);
9227
9228  if (Attr)
9229    ProcessDeclAttributeList(S, Enum, Attr);
9230
9231  if (Enum->isDependentType()) {
9232    for (unsigned i = 0; i != NumElements; ++i) {
9233      EnumConstantDecl *ECD =
9234        cast_or_null<EnumConstantDecl>(Elements[i]);
9235      if (!ECD) continue;
9236
9237      ECD->setType(EnumType);
9238    }
9239
9240    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9241    return;
9242  }
9243
9244  // TODO: If the result value doesn't fit in an int, it must be a long or long
9245  // long value.  ISO C does not support this, but GCC does as an extension,
9246  // emit a warning.
9247  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9248  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9249  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9250
9251  // Verify that all the values are okay, compute the size of the values, and
9252  // reverse the list.
9253  unsigned NumNegativeBits = 0;
9254  unsigned NumPositiveBits = 0;
9255
9256  // Keep track of whether all elements have type int.
9257  bool AllElementsInt = true;
9258
9259  for (unsigned i = 0; i != NumElements; ++i) {
9260    EnumConstantDecl *ECD =
9261      cast_or_null<EnumConstantDecl>(Elements[i]);
9262    if (!ECD) continue;  // Already issued a diagnostic.
9263
9264    const llvm::APSInt &InitVal = ECD->getInitVal();
9265
9266    // Keep track of the size of positive and negative values.
9267    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9268      NumPositiveBits = std::max(NumPositiveBits,
9269                                 (unsigned)InitVal.getActiveBits());
9270    else
9271      NumNegativeBits = std::max(NumNegativeBits,
9272                                 (unsigned)InitVal.getMinSignedBits());
9273
9274    // Keep track of whether every enum element has type int (very commmon).
9275    if (AllElementsInt)
9276      AllElementsInt = ECD->getType() == Context.IntTy;
9277  }
9278
9279  // Figure out the type that should be used for this enum.
9280  QualType BestType;
9281  unsigned BestWidth;
9282
9283  // C++0x N3000 [conv.prom]p3:
9284  //   An rvalue of an unscoped enumeration type whose underlying
9285  //   type is not fixed can be converted to an rvalue of the first
9286  //   of the following types that can represent all the values of
9287  //   the enumeration: int, unsigned int, long int, unsigned long
9288  //   int, long long int, or unsigned long long int.
9289  // C99 6.4.4.3p2:
9290  //   An identifier declared as an enumeration constant has type int.
9291  // The C99 rule is modified by a gcc extension
9292  QualType BestPromotionType;
9293
9294  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9295  // -fshort-enums is the equivalent to specifying the packed attribute on all
9296  // enum definitions.
9297  if (LangOpts.ShortEnums)
9298    Packed = true;
9299
9300  if (Enum->isFixed()) {
9301    BestType = BestPromotionType = Enum->getIntegerType();
9302    // We don't need to set BestWidth, because BestType is going to be the type
9303    // of the enumerators, but we do anyway because otherwise some compilers
9304    // warn that it might be used uninitialized.
9305    BestWidth = CharWidth;
9306  }
9307  else if (NumNegativeBits) {
9308    // If there is a negative value, figure out the smallest integer type (of
9309    // int/long/longlong) that fits.
9310    // If it's packed, check also if it fits a char or a short.
9311    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9312      BestType = Context.SignedCharTy;
9313      BestWidth = CharWidth;
9314    } else if (Packed && NumNegativeBits <= ShortWidth &&
9315               NumPositiveBits < ShortWidth) {
9316      BestType = Context.ShortTy;
9317      BestWidth = ShortWidth;
9318    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9319      BestType = Context.IntTy;
9320      BestWidth = IntWidth;
9321    } else {
9322      BestWidth = Context.getTargetInfo().getLongWidth();
9323
9324      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9325        BestType = Context.LongTy;
9326      } else {
9327        BestWidth = Context.getTargetInfo().getLongLongWidth();
9328
9329        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9330          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9331        BestType = Context.LongLongTy;
9332      }
9333    }
9334    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9335  } else {
9336    // If there is no negative value, figure out the smallest type that fits
9337    // all of the enumerator values.
9338    // If it's packed, check also if it fits a char or a short.
9339    if (Packed && NumPositiveBits <= CharWidth) {
9340      BestType = Context.UnsignedCharTy;
9341      BestPromotionType = Context.IntTy;
9342      BestWidth = CharWidth;
9343    } else if (Packed && NumPositiveBits <= ShortWidth) {
9344      BestType = Context.UnsignedShortTy;
9345      BestPromotionType = Context.IntTy;
9346      BestWidth = ShortWidth;
9347    } else if (NumPositiveBits <= IntWidth) {
9348      BestType = Context.UnsignedIntTy;
9349      BestWidth = IntWidth;
9350      BestPromotionType
9351        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9352                           ? Context.UnsignedIntTy : Context.IntTy;
9353    } else if (NumPositiveBits <=
9354               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9355      BestType = Context.UnsignedLongTy;
9356      BestPromotionType
9357        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9358                           ? Context.UnsignedLongTy : Context.LongTy;
9359    } else {
9360      BestWidth = Context.getTargetInfo().getLongLongWidth();
9361      assert(NumPositiveBits <= BestWidth &&
9362             "How could an initializer get larger than ULL?");
9363      BestType = Context.UnsignedLongLongTy;
9364      BestPromotionType
9365        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9366                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9367    }
9368  }
9369
9370  // Loop over all of the enumerator constants, changing their types to match
9371  // the type of the enum if needed.
9372  for (unsigned i = 0; i != NumElements; ++i) {
9373    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9374    if (!ECD) continue;  // Already issued a diagnostic.
9375
9376    // Standard C says the enumerators have int type, but we allow, as an
9377    // extension, the enumerators to be larger than int size.  If each
9378    // enumerator value fits in an int, type it as an int, otherwise type it the
9379    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9380    // that X has type 'int', not 'unsigned'.
9381
9382    // Determine whether the value fits into an int.
9383    llvm::APSInt InitVal = ECD->getInitVal();
9384
9385    // If it fits into an integer type, force it.  Otherwise force it to match
9386    // the enum decl type.
9387    QualType NewTy;
9388    unsigned NewWidth;
9389    bool NewSign;
9390    if (!getLangOptions().CPlusPlus &&
9391        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9392      NewTy = Context.IntTy;
9393      NewWidth = IntWidth;
9394      NewSign = true;
9395    } else if (ECD->getType() == BestType) {
9396      // Already the right type!
9397      if (getLangOptions().CPlusPlus)
9398        // C++ [dcl.enum]p4: Following the closing brace of an
9399        // enum-specifier, each enumerator has the type of its
9400        // enumeration.
9401        ECD->setType(EnumType);
9402      continue;
9403    } else {
9404      NewTy = BestType;
9405      NewWidth = BestWidth;
9406      NewSign = BestType->isSignedIntegerOrEnumerationType();
9407    }
9408
9409    // Adjust the APSInt value.
9410    InitVal = InitVal.extOrTrunc(NewWidth);
9411    InitVal.setIsSigned(NewSign);
9412    ECD->setInitVal(InitVal);
9413
9414    // Adjust the Expr initializer and type.
9415    if (ECD->getInitExpr() &&
9416        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9417      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9418                                                CK_IntegralCast,
9419                                                ECD->getInitExpr(),
9420                                                /*base paths*/ 0,
9421                                                VK_RValue));
9422    if (getLangOptions().CPlusPlus)
9423      // C++ [dcl.enum]p4: Following the closing brace of an
9424      // enum-specifier, each enumerator has the type of its
9425      // enumeration.
9426      ECD->setType(EnumType);
9427    else
9428      ECD->setType(NewTy);
9429  }
9430
9431  Enum->completeDefinition(BestType, BestPromotionType,
9432                           NumPositiveBits, NumNegativeBits);
9433}
9434
9435Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9436                                  SourceLocation StartLoc,
9437                                  SourceLocation EndLoc) {
9438  StringLiteral *AsmString = cast<StringLiteral>(expr);
9439
9440  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9441                                                   AsmString, StartLoc,
9442                                                   EndLoc);
9443  CurContext->addDecl(New);
9444  return New;
9445}
9446
9447DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9448                                   IdentifierInfo &ModuleName,
9449                                   SourceLocation ModuleNameLoc) {
9450  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9451                                                     ModuleName, ModuleNameLoc);
9452  if (!Module)
9453    return true;
9454
9455  // FIXME: Actually create a declaration to describe the module import.
9456  (void)Module;
9457  return DeclResult((Decl *)0);
9458}
9459
9460void
9461Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9462                                         SourceLocation ModulePrivateKeyword) {
9463  assert(!Old->isModulePrivate() && "Old is module-private!");
9464
9465  Diag(New->getLocation(), diag::err_module_private_follows_public)
9466    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9467  Diag(Old->getLocation(), diag::note_previous_declaration)
9468    << Old->getDeclName();
9469
9470  // Drop the __module_private__ from the new declaration, since it's invalid.
9471  New->setModulePrivate(false);
9472}
9473
9474void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9475                             SourceLocation PragmaLoc,
9476                             SourceLocation NameLoc) {
9477  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9478
9479  if (PrevDecl) {
9480    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9481  } else {
9482    (void)WeakUndeclaredIdentifiers.insert(
9483      std::pair<IdentifierInfo*,WeakInfo>
9484        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9485  }
9486}
9487
9488void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9489                                IdentifierInfo* AliasName,
9490                                SourceLocation PragmaLoc,
9491                                SourceLocation NameLoc,
9492                                SourceLocation AliasNameLoc) {
9493  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9494                                    LookupOrdinaryName);
9495  WeakInfo W = WeakInfo(Name, NameLoc);
9496
9497  if (PrevDecl) {
9498    if (!PrevDecl->hasAttr<AliasAttr>())
9499      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9500        DeclApplyPragmaWeak(TUScope, ND, W);
9501  } else {
9502    (void)WeakUndeclaredIdentifiers.insert(
9503      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9504  }
9505}
9506
9507Decl *Sema::getObjCDeclContext() const {
9508  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9509}
9510