SemaDecl.cpp revision 59a9afbb7ca63efd556d052b462feabecd8c6a3d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
36  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
37
38  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
39                 isa<ObjCInterfaceDecl>(IIDecl) ||
40                 isa<TagDecl>(IIDecl)))
41    return IIDecl;
42  return 0;
43}
44
45void Sema::PushDeclContext(DeclContext *DC) {
46  assert( ( (isa<ObjCMethodDecl>(DC) && isa<TranslationUnitDecl>(CurContext))
47            || DC->getParent() == CurContext ) &&
48      "The next DeclContext should be directly contained in the current one.");
49  CurContext = DC;
50}
51
52void Sema::PopDeclContext() {
53  assert(CurContext && "DeclContext imbalance!");
54  // If CurContext is a ObjC method, getParent() will return NULL.
55  CurContext = isa<ObjCMethodDecl>(CurContext)
56               ? Context.getTranslationUnitDecl()
57                 :  CurContext->getParent();
58}
59
60/// Add this decl to the scope shadowed decl chains.
61void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
62  S->AddDecl(D);
63
64  // C++ [basic.scope]p4:
65  //   -- exactly one declaration shall declare a class name or
66  //   enumeration name that is not a typedef name and the other
67  //   declarations shall all refer to the same object or
68  //   enumerator, or all refer to functions and function templates;
69  //   in this case the class name or enumeration name is hidden.
70  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
71    // We are pushing the name of a tag (enum or class).
72    IdentifierResolver::ctx_iterator
73      CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext());
74    if (CIT != IdResolver.ctx_end(TD->getIdentifier()) &&
75        IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) {
76      // There is already a declaration with the same name in the same
77      // scope. It must be found before we find the new declaration,
78      // so swap the order on the shadowed declaration chain.
79
80      IdResolver.AddShadowedDecl(TD, *CIT);
81      return;
82    }
83  }
84
85  IdResolver.AddDecl(D);
86}
87
88void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
89  if (S->decl_empty()) return;
90  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
91
92  // We only want to remove the decls from the identifier decl chains for local
93  // scopes, when inside a function/method.
94  if (S->getFnParent() == 0)
95    return;
96
97  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
98       I != E; ++I) {
99    Decl *TmpD = static_cast<Decl*>(*I);
100    assert(TmpD && "This decl didn't get pushed??");
101    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
102    assert(D && "This decl isn't a ScopedDecl?");
103
104    IdentifierInfo *II = D->getIdentifier();
105    if (!II) continue;
106
107    // Unlink this decl from the identifier.
108    IdResolver.RemoveDecl(D);
109
110    // This will have to be revisited for C++: there we want to nest stuff in
111    // namespace decls etc.  Even for C, we might want a top-level translation
112    // unit decl or something.
113    if (!CurFunctionDecl)
114      continue;
115
116    // Chain this decl to the containing function, it now owns the memory for
117    // the decl.
118    D->setNext(CurFunctionDecl->getDeclChain());
119    CurFunctionDecl->setDeclChain(D);
120  }
121}
122
123/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
124/// return 0 if one not found.
125ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
126  // The third "scope" argument is 0 since we aren't enabling lazy built-in
127  // creation from this context.
128  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
129
130  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
131}
132
133/// LookupDecl - Look up the inner-most declaration in the specified
134/// namespace.
135Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
136                       Scope *S, bool enableLazyBuiltinCreation) {
137  if (II == 0) return 0;
138  unsigned NS = NSI;
139  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
140    NS |= Decl::IDNS_Tag;
141
142  // Scan up the scope chain looking for a decl that matches this identifier
143  // that is in the appropriate namespace.  This search should not take long, as
144  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
145  for (IdentifierResolver::iterator
146       I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I)
147    if ((*I)->getIdentifierNamespace() & NS)
148      return *I;
149
150  // If we didn't find a use of this identifier, and if the identifier
151  // corresponds to a compiler builtin, create the decl object for the builtin
152  // now, injecting it into translation unit scope, and return it.
153  if (NS & Decl::IDNS_Ordinary) {
154    if (enableLazyBuiltinCreation) {
155      // If this is a builtin on this (or all) targets, create the decl.
156      if (unsigned BuiltinID = II->getBuiltinID())
157        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
158    }
159    if (getLangOptions().ObjC1) {
160      // @interface and @compatibility_alias introduce typedef-like names.
161      // Unlike typedef's, they can only be introduced at file-scope (and are
162      // therefore not scoped decls). They can, however, be shadowed by
163      // other names in IDNS_Ordinary.
164      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
165      if (IDI != ObjCInterfaceDecls.end())
166        return IDI->second;
167      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
168      if (I != ObjCAliasDecls.end())
169        return I->second->getClassInterface();
170    }
171  }
172  return 0;
173}
174
175void Sema::InitBuiltinVaListType() {
176  if (!Context.getBuiltinVaListType().isNull())
177    return;
178
179  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
180  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
181  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
182  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
183}
184
185/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
186/// lazily create a decl for it.
187ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
188                                      Scope *S) {
189  Builtin::ID BID = (Builtin::ID)bid;
190
191  if (BID == Builtin::BI__builtin_va_start ||
192      BID == Builtin::BI__builtin_va_copy ||
193      BID == Builtin::BI__builtin_va_end)
194    InitBuiltinVaListType();
195
196  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
197  FunctionDecl *New = FunctionDecl::Create(Context,
198                                           Context.getTranslationUnitDecl(),
199                                           SourceLocation(), II, R,
200                                           FunctionDecl::Extern, false, 0);
201
202  // Create Decl objects for each parameter, adding them to the
203  // FunctionDecl.
204  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
205    llvm::SmallVector<ParmVarDecl*, 16> Params;
206    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
207      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
208                                           FT->getArgType(i), VarDecl::None, 0,
209                                           0));
210    New->setParams(&Params[0], Params.size());
211  }
212
213
214
215  // TUScope is the translation-unit scope to insert this function into.
216  PushOnScopeChains(New, TUScope);
217  return New;
218}
219
220/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
221/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
222/// situation, merging decls or emitting diagnostics as appropriate.
223///
224TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
225  // Verify the old decl was also a typedef.
226  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
227  if (!Old) {
228    Diag(New->getLocation(), diag::err_redefinition_different_kind,
229         New->getName());
230    Diag(OldD->getLocation(), diag::err_previous_definition);
231    return New;
232  }
233
234  // Allow multiple definitions for ObjC built-in typedefs.
235  // FIXME: Verify the underlying types are equivalent!
236  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
237    return Old;
238
239  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
240  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
241  // *either* declaration is in a system header. The code below implements
242  // this adhoc compatibility rule. FIXME: The following code will not
243  // work properly when compiling ".i" files (containing preprocessed output).
244  SourceManager &SrcMgr = Context.getSourceManager();
245  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
246  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
247  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
248  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
249  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
250
251  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
252  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
253       NewDirType != DirectoryLookup::NormalHeaderDir) ||
254      getLangOptions().Microsoft)
255    return New;
256
257  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
258  // TODO: This is totally simplistic.  It should handle merging functions
259  // together etc, merging extern int X; int X; ...
260  Diag(New->getLocation(), diag::err_redefinition, New->getName());
261  Diag(Old->getLocation(), diag::err_previous_definition);
262  return New;
263}
264
265/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
266static bool DeclHasAttr(const Decl *decl, const Attr *target) {
267  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
268    if (attr->getKind() == target->getKind())
269      return true;
270
271  return false;
272}
273
274/// MergeAttributes - append attributes from the Old decl to the New one.
275static void MergeAttributes(Decl *New, Decl *Old) {
276  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
277
278// FIXME: fix this code to cleanup the Old attrs correctly
279  while (attr) {
280     tmp = attr;
281     attr = attr->getNext();
282
283    if (!DeclHasAttr(New, tmp)) {
284       New->addAttr(tmp);
285    } else {
286       tmp->setNext(0);
287       delete(tmp);
288    }
289  }
290}
291
292/// MergeFunctionDecl - We just parsed a function 'New' from
293/// declarator D which has the same name and scope as a previous
294/// declaration 'Old'.  Figure out how to resolve this situation,
295/// merging decls or emitting diagnostics as appropriate.
296/// Redeclaration will be set true if thisNew is a redeclaration OldD.
297FunctionDecl *
298Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
299  Redeclaration = false;
300  // Verify the old decl was also a function.
301  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
302  if (!Old) {
303    Diag(New->getLocation(), diag::err_redefinition_different_kind,
304         New->getName());
305    Diag(OldD->getLocation(), diag::err_previous_definition);
306    return New;
307  }
308
309  QualType OldQType = Context.getCanonicalType(Old->getType());
310  QualType NewQType = Context.getCanonicalType(New->getType());
311
312  // C++ [dcl.fct]p3:
313  //   All declarations for a function shall agree exactly in both the
314  //   return type and the parameter-type-list.
315  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
316    MergeAttributes(New, Old);
317    Redeclaration = true;
318    return MergeCXXFunctionDecl(New, Old);
319  }
320
321  // C: Function types need to be compatible, not identical. This handles
322  // duplicate function decls like "void f(int); void f(enum X);" properly.
323  if (!getLangOptions().CPlusPlus &&
324      Context.functionTypesAreCompatible(OldQType, NewQType)) {
325    MergeAttributes(New, Old);
326    Redeclaration = true;
327    return New;
328  }
329
330  // A function that has already been declared has been redeclared or defined
331  // with a different type- show appropriate diagnostic
332  diag::kind PrevDiag;
333  if (Old->isThisDeclarationADefinition())
334    PrevDiag = diag::err_previous_definition;
335  else if (Old->isImplicit())
336    PrevDiag = diag::err_previous_implicit_declaration;
337  else
338    PrevDiag = diag::err_previous_declaration;
339
340  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
341  // TODO: This is totally simplistic.  It should handle merging functions
342  // together etc, merging extern int X; int X; ...
343  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
344  Diag(Old->getLocation(), PrevDiag);
345  return New;
346}
347
348/// equivalentArrayTypes - Used to determine whether two array types are
349/// equivalent.
350/// We need to check this explicitly as an incomplete array definition is
351/// considered a VariableArrayType, so will not match a complete array
352/// definition that would be otherwise equivalent.
353static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
354  const ArrayType *NewAT = NewQType->getAsArrayType();
355  const ArrayType *OldAT = OldQType->getAsArrayType();
356
357  if (!NewAT || !OldAT)
358    return false;
359
360  // If either (or both) array types in incomplete we need to strip off the
361  // outer VariableArrayType.  Once the outer VAT is removed the remaining
362  // types must be identical if the array types are to be considered
363  // equivalent.
364  // eg. int[][1] and int[1][1] become
365  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
366  // removing the outermost VAT gives
367  //     CAT(1, int) and CAT(1, int)
368  // which are equal, therefore the array types are equivalent.
369  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
370    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
371      return false;
372    NewQType = NewAT->getElementType().getCanonicalType();
373    OldQType = OldAT->getElementType().getCanonicalType();
374  }
375
376  return NewQType == OldQType;
377}
378
379/// MergeVarDecl - We just parsed a variable 'New' which has the same name
380/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
381/// situation, merging decls or emitting diagnostics as appropriate.
382///
383/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
384/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
385///
386VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
387  // Verify the old decl was also a variable.
388  VarDecl *Old = dyn_cast<VarDecl>(OldD);
389  if (!Old) {
390    Diag(New->getLocation(), diag::err_redefinition_different_kind,
391         New->getName());
392    Diag(OldD->getLocation(), diag::err_previous_definition);
393    return New;
394  }
395
396  MergeAttributes(New, Old);
397
398  // Verify the types match.
399  QualType OldCType = Context.getCanonicalType(Old->getType());
400  QualType NewCType = Context.getCanonicalType(New->getType());
401  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
402    Diag(New->getLocation(), diag::err_redefinition, New->getName());
403    Diag(Old->getLocation(), diag::err_previous_definition);
404    return New;
405  }
406  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
407  if (New->getStorageClass() == VarDecl::Static &&
408      (Old->getStorageClass() == VarDecl::None ||
409       Old->getStorageClass() == VarDecl::Extern)) {
410    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
411    Diag(Old->getLocation(), diag::err_previous_definition);
412    return New;
413  }
414  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
415  if (New->getStorageClass() != VarDecl::Static &&
416      Old->getStorageClass() == VarDecl::Static) {
417    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
418    Diag(Old->getLocation(), diag::err_previous_definition);
419    return New;
420  }
421  // We've verified the types match, now handle "tentative" definitions.
422  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
423    // Handle C "tentative" external object definitions (C99 6.9.2).
424    bool OldIsTentative = false;
425    bool NewIsTentative = false;
426
427    if (!Old->getInit() &&
428        (Old->getStorageClass() == VarDecl::None ||
429         Old->getStorageClass() == VarDecl::Static))
430      OldIsTentative = true;
431
432    // FIXME: this check doesn't work (since the initializer hasn't been
433    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
434    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
435    // thrown out the old decl.
436    if (!New->getInit() &&
437        (New->getStorageClass() == VarDecl::None ||
438         New->getStorageClass() == VarDecl::Static))
439      ; // change to NewIsTentative = true; once the code is moved.
440
441    if (NewIsTentative || OldIsTentative)
442      return New;
443  }
444  if (Old->getStorageClass() != VarDecl::Extern &&
445      New->getStorageClass() != VarDecl::Extern) {
446    Diag(New->getLocation(), diag::err_redefinition, New->getName());
447    Diag(Old->getLocation(), diag::err_previous_definition);
448  }
449  return New;
450}
451
452/// CheckParmsForFunctionDef - Check that the parameters of the given
453/// function are appropriate for the definition of a function. This
454/// takes care of any checks that cannot be performed on the
455/// declaration itself, e.g., that the types of each of the function
456/// parameters are complete.
457bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
458  bool HasInvalidParm = false;
459  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
460    ParmVarDecl *Param = FD->getParamDecl(p);
461
462    // C99 6.7.5.3p4: the parameters in a parameter type list in a
463    // function declarator that is part of a function definition of
464    // that function shall not have incomplete type.
465    if (Param->getType()->isIncompleteType() &&
466        !Param->isInvalidDecl()) {
467      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
468           Param->getType().getAsString());
469      Param->setInvalidDecl();
470      HasInvalidParm = true;
471    }
472  }
473
474  return HasInvalidParm;
475}
476
477/// CreateImplicitParameter - Creates an implicit function parameter
478/// in the scope S and with the given type. This routine is used, for
479/// example, to create the implicit "self" parameter in an Objective-C
480/// method.
481ParmVarDecl *
482Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
483                              SourceLocation IdLoc, QualType Type) {
484  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
485                                         VarDecl::None, 0, 0);
486  if (Id)
487    PushOnScopeChains(New, S);
488
489  return New;
490}
491
492/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
493/// no declarator (e.g. "struct foo;") is parsed.
494Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
495  // TODO: emit error on 'int;' or 'const enum foo;'.
496  // TODO: emit error on 'typedef int;'
497  // if (!DS.isMissingDeclaratorOk()) Diag(...);
498
499  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
500}
501
502bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
503  // Get the type before calling CheckSingleAssignmentConstraints(), since
504  // it can promote the expression.
505  QualType InitType = Init->getType();
506
507  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
508  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
509                                  InitType, Init, "initializing");
510}
511
512bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
513                         QualType ElementType) {
514  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
515  if (CheckSingleInitializer(expr, ElementType))
516    return true; // types weren't compatible.
517
518  if (savExpr != expr) // The type was promoted, update initializer list.
519    IList->setInit(slot, expr);
520  return false;
521}
522
523bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
524  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
525    // C99 6.7.8p14. We have an array of character type with unknown size
526    // being initialized to a string literal.
527    llvm::APSInt ConstVal(32);
528    ConstVal = strLiteral->getByteLength() + 1;
529    // Return a new array type (C99 6.7.8p22).
530    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
531                                         ArrayType::Normal, 0);
532  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
533    // C99 6.7.8p14. We have an array of character type with known size.
534    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
535      Diag(strLiteral->getSourceRange().getBegin(),
536           diag::warn_initializer_string_for_char_array_too_long,
537           strLiteral->getSourceRange());
538  } else {
539    assert(0 && "HandleStringLiteralInit(): Invalid array type");
540  }
541  // Set type from "char *" to "constant array of char".
542  strLiteral->setType(DeclT);
543  // For now, we always return false (meaning success).
544  return false;
545}
546
547StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
548  const ArrayType *AT = DeclType->getAsArrayType();
549  if (AT && AT->getElementType()->isCharType()) {
550    return dyn_cast<StringLiteral>(Init);
551  }
552  return 0;
553}
554
555// CheckInitializerListTypes - Checks the types of elements of an initializer
556// list. This function is recursive: it calls itself to initialize subelements
557// of aggregate types.  Note that the topLevel parameter essentially refers to
558// whether this expression "owns" the initializer list passed in, or if this
559// initialization is taking elements out of a parent initializer.  Each
560// call to this function adds zero or more to startIndex, reports any errors,
561// and returns true if it found any inconsistent types.
562bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
563                                     bool topLevel, unsigned& startIndex) {
564  bool hadError = false;
565
566  if (DeclType->isScalarType()) {
567    // The simplest case: initializing a single scalar
568    if (topLevel) {
569      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
570           IList->getSourceRange());
571    }
572    if (startIndex < IList->getNumInits()) {
573      Expr* expr = IList->getInit(startIndex);
574      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
575        // FIXME: Should an error be reported here instead?
576        unsigned newIndex = 0;
577        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
578      } else {
579        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
580      }
581      ++startIndex;
582    }
583    // FIXME: Should an error be reported for empty initializer list + scalar?
584  } else if (DeclType->isVectorType()) {
585    if (startIndex < IList->getNumInits()) {
586      const VectorType *VT = DeclType->getAsVectorType();
587      int maxElements = VT->getNumElements();
588      QualType elementType = VT->getElementType();
589
590      for (int i = 0; i < maxElements; ++i) {
591        // Don't attempt to go past the end of the init list
592        if (startIndex >= IList->getNumInits())
593          break;
594        Expr* expr = IList->getInit(startIndex);
595        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
596          unsigned newIndex = 0;
597          hadError |= CheckInitializerListTypes(SubInitList, elementType,
598                                                true, newIndex);
599          ++startIndex;
600        } else {
601          hadError |= CheckInitializerListTypes(IList, elementType,
602                                                false, startIndex);
603        }
604      }
605    }
606  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
607    if (DeclType->isStructureType() || DeclType->isUnionType()) {
608      if (startIndex < IList->getNumInits() && !topLevel &&
609          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
610                                     DeclType)) {
611        // We found a compatible struct; per the standard, this initializes the
612        // struct.  (The C standard technically says that this only applies for
613        // initializers for declarations with automatic scope; however, this
614        // construct is unambiguous anyway because a struct cannot contain
615        // a type compatible with itself. We'll output an error when we check
616        // if the initializer is constant.)
617        // FIXME: Is a call to CheckSingleInitializer required here?
618        ++startIndex;
619      } else {
620        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
621
622        // If the record is invalid, some of it's members are invalid. To avoid
623        // confusion, we forgo checking the intializer for the entire record.
624        if (structDecl->isInvalidDecl())
625          return true;
626
627        // If structDecl is a forward declaration, this loop won't do anything;
628        // That's okay, because an error should get printed out elsewhere. It
629        // might be worthwhile to skip over the rest of the initializer, though.
630        int numMembers = structDecl->getNumMembers() -
631                         structDecl->hasFlexibleArrayMember();
632        for (int i = 0; i < numMembers; i++) {
633          // Don't attempt to go past the end of the init list
634          if (startIndex >= IList->getNumInits())
635            break;
636          FieldDecl * curField = structDecl->getMember(i);
637          if (!curField->getIdentifier()) {
638            // Don't initialize unnamed fields, e.g. "int : 20;"
639            continue;
640          }
641          QualType fieldType = curField->getType();
642          Expr* expr = IList->getInit(startIndex);
643          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
644            unsigned newStart = 0;
645            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
646                                                  true, newStart);
647            ++startIndex;
648          } else {
649            hadError |= CheckInitializerListTypes(IList, fieldType,
650                                                  false, startIndex);
651          }
652          if (DeclType->isUnionType())
653            break;
654        }
655        // FIXME: Implement flexible array initialization GCC extension (it's a
656        // really messy extension to implement, unfortunately...the necessary
657        // information isn't actually even here!)
658      }
659    } else if (DeclType->isArrayType()) {
660      // Check for the special-case of initializing an array with a string.
661      if (startIndex < IList->getNumInits()) {
662        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
663                                                     DeclType)) {
664          CheckStringLiteralInit(lit, DeclType);
665          ++startIndex;
666          if (topLevel && startIndex < IList->getNumInits()) {
667            // We have leftover initializers; warn
668            Diag(IList->getInit(startIndex)->getLocStart(),
669                 diag::err_excess_initializers_in_char_array_initializer,
670                 IList->getInit(startIndex)->getSourceRange());
671          }
672          return false;
673        }
674      }
675      int maxElements;
676      if (DeclType->isIncompleteArrayType()) {
677        // FIXME: use a proper constant
678        maxElements = 0x7FFFFFFF;
679      } else if (const VariableArrayType *VAT =
680                                DeclType->getAsVariableArrayType()) {
681        // Check for VLAs; in standard C it would be possible to check this
682        // earlier, but I don't know where clang accepts VLAs (gcc accepts
683        // them in all sorts of strange places).
684        Diag(VAT->getSizeExpr()->getLocStart(),
685             diag::err_variable_object_no_init,
686             VAT->getSizeExpr()->getSourceRange());
687        hadError = true;
688        maxElements = 0x7FFFFFFF;
689      } else {
690        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
691        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
692      }
693      QualType elementType = DeclType->getAsArrayType()->getElementType();
694      int numElements = 0;
695      for (int i = 0; i < maxElements; ++i, ++numElements) {
696        // Don't attempt to go past the end of the init list
697        if (startIndex >= IList->getNumInits())
698          break;
699        Expr* expr = IList->getInit(startIndex);
700        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
701          unsigned newIndex = 0;
702          hadError |= CheckInitializerListTypes(SubInitList, elementType,
703                                                true, newIndex);
704          ++startIndex;
705        } else {
706          hadError |= CheckInitializerListTypes(IList, elementType,
707                                                false, startIndex);
708        }
709      }
710      if (DeclType->isIncompleteArrayType()) {
711        // If this is an incomplete array type, the actual type needs to
712        // be calculated here
713        if (numElements == 0) {
714          // Sizing an array implicitly to zero is not allowed
715          // (It could in theory be allowed, but it doesn't really matter.)
716          Diag(IList->getLocStart(),
717               diag::err_at_least_one_initializer_needed_to_size_array);
718          hadError = true;
719        } else {
720          llvm::APSInt ConstVal(32);
721          ConstVal = numElements;
722          DeclType = Context.getConstantArrayType(elementType, ConstVal,
723                                                  ArrayType::Normal, 0);
724        }
725      }
726    } else {
727      assert(0 && "Aggregate that isn't a function or array?!");
728    }
729  } else {
730    // In C, all types are either scalars or aggregates, but
731    // additional handling is needed here for C++ (and possibly others?).
732    assert(0 && "Unsupported initializer type");
733  }
734
735  // If this init list is a base list, we set the type; an initializer doesn't
736  // fundamentally have a type, but this makes the ASTs a bit easier to read
737  if (topLevel)
738    IList->setType(DeclType);
739
740  if (topLevel && startIndex < IList->getNumInits()) {
741    // We have leftover initializers; warn
742    Diag(IList->getInit(startIndex)->getLocStart(),
743         diag::warn_excess_initializers,
744         IList->getInit(startIndex)->getSourceRange());
745  }
746  return hadError;
747}
748
749bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
750  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
751  // of unknown size ("[]") or an object type that is not a variable array type.
752  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
753    return Diag(VAT->getSizeExpr()->getLocStart(),
754                diag::err_variable_object_no_init,
755                VAT->getSizeExpr()->getSourceRange());
756
757  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
758  if (!InitList) {
759    // FIXME: Handle wide strings
760    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
761      return CheckStringLiteralInit(strLiteral, DeclType);
762
763    if (DeclType->isArrayType())
764      return Diag(Init->getLocStart(),
765                  diag::err_array_init_list_required,
766                  Init->getSourceRange());
767
768    return CheckSingleInitializer(Init, DeclType);
769  }
770#if 1
771  unsigned newIndex = 0;
772  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
773#else
774  InitListChecker CheckInitList(this, InitList, DeclType);
775  return CheckInitList.HadError();
776#endif
777}
778
779Sema::DeclTy *
780Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
781  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
782  IdentifierInfo *II = D.getIdentifier();
783
784  // All of these full declarators require an identifier.  If it doesn't have
785  // one, the ParsedFreeStandingDeclSpec action should be used.
786  if (II == 0) {
787    Diag(D.getDeclSpec().getSourceRange().getBegin(),
788         diag::err_declarator_need_ident,
789         D.getDeclSpec().getSourceRange(), D.getSourceRange());
790    return 0;
791  }
792
793  // The scope passed in may not be a decl scope.  Zip up the scope tree until
794  // we find one that is.
795  while ((S->getFlags() & Scope::DeclScope) == 0)
796    S = S->getParent();
797
798  // See if this is a redefinition of a variable in the same scope.
799  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
800  ScopedDecl *New;
801  bool InvalidDecl = false;
802
803  // In C++, the previous declaration we find might be a tag type
804  // (class or enum). In this case, the new declaration will hide the
805  // tag type.
806  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
807    PrevDecl = 0;
808
809  QualType R = GetTypeForDeclarator(D, S);
810  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
811
812  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
813    // Check that there are no default arguments (C++ only).
814    if (getLangOptions().CPlusPlus)
815      CheckExtraCXXDefaultArguments(D);
816
817    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
818    if (!NewTD) return 0;
819
820    // Handle attributes prior to checking for duplicates in MergeVarDecl
821    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
822                         D.getAttributes());
823    // Merge the decl with the existing one if appropriate. If the decl is
824    // in an outer scope, it isn't the same thing.
825    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
826      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
827      if (NewTD == 0) return 0;
828    }
829    New = NewTD;
830    if (S->getFnParent() == 0) {
831      // C99 6.7.7p2: If a typedef name specifies a variably modified type
832      // then it shall have block scope.
833      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
834        // FIXME: Diagnostic needs to be fixed.
835        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
836        InvalidDecl = true;
837      }
838    }
839  } else if (R.getTypePtr()->isFunctionType()) {
840    FunctionDecl::StorageClass SC = FunctionDecl::None;
841    switch (D.getDeclSpec().getStorageClassSpec()) {
842      default: assert(0 && "Unknown storage class!");
843      case DeclSpec::SCS_auto:
844      case DeclSpec::SCS_register:
845        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
846             R.getAsString());
847        InvalidDecl = true;
848        break;
849      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
850      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
851      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
852      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
853    }
854
855    bool isInline = D.getDeclSpec().isInlineSpecified();
856    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
857                                               D.getIdentifierLoc(),
858                                               II, R, SC, isInline,
859                                               LastDeclarator);
860    // Handle attributes.
861    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
862                         D.getAttributes());
863
864    // Copy the parameter declarations from the declarator D to
865    // the function declaration NewFD, if they are available.
866    if (D.getNumTypeObjects() > 0 &&
867        D.getTypeObject(0).Fun.hasPrototype) {
868      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
869
870      // Create Decl objects for each parameter, adding them to the
871      // FunctionDecl.
872      llvm::SmallVector<ParmVarDecl*, 16> Params;
873
874      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
875      // function that takes no arguments, not a function that takes a
876      // single void argument.
877      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
878          FTI.ArgInfo[0].Param &&
879          !((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
880          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
881        // empty arg list, don't push any params.
882        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
883
884        // In C++, the empty parameter-type-list must be spelled "void"; a
885        // typedef of void is not permitted.
886        if (getLangOptions().CPlusPlus &&
887            Param->getType() != Context.VoidTy) {
888          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
889        }
890
891      } else {
892        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
893          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
894      }
895
896      NewFD->setParams(&Params[0], Params.size());
897    }
898
899    // Merge the decl with the existing one if appropriate. Since C functions
900    // are in a flat namespace, make sure we consider decls in outer scopes.
901    if (PrevDecl &&
902        (!getLangOptions().CPlusPlus ||
903         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
904      bool Redeclaration = false;
905      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
906      if (NewFD == 0) return 0;
907      if (Redeclaration) {
908        // Note that the new declaration is a redeclaration of the
909        // older declaration. Then return the older declaration: the
910        // new one is only kept within the set of previous
911        // declarations for this function.
912        FunctionDecl *OldFD = (FunctionDecl *)PrevDecl;
913        OldFD->AddRedeclaration(NewFD);
914        return OldFD;
915      }
916    }
917    New = NewFD;
918
919    // In C++, check default arguments now that we have merged decls.
920    if (getLangOptions().CPlusPlus)
921      CheckCXXDefaultArguments(NewFD);
922  } else {
923    // Check that there are no default arguments (C++ only).
924    if (getLangOptions().CPlusPlus)
925      CheckExtraCXXDefaultArguments(D);
926
927    if (R.getTypePtr()->isObjCInterfaceType()) {
928      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
929           D.getIdentifier()->getName());
930      InvalidDecl = true;
931    }
932
933    VarDecl *NewVD;
934    VarDecl::StorageClass SC;
935    switch (D.getDeclSpec().getStorageClassSpec()) {
936    default: assert(0 && "Unknown storage class!");
937    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
938    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
939    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
940    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
941    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
942    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
943    }
944    if (S->getFnParent() == 0) {
945      // C99 6.9p2: The storage-class specifiers auto and register shall not
946      // appear in the declaration specifiers in an external declaration.
947      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
948        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
949             R.getAsString());
950        InvalidDecl = true;
951      }
952      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
953                              II, R, SC, LastDeclarator);
954    } else {
955      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
956                              II, R, SC, LastDeclarator);
957    }
958    // Handle attributes prior to checking for duplicates in MergeVarDecl
959    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
960                         D.getAttributes());
961
962    // Emit an error if an address space was applied to decl with local storage.
963    // This includes arrays of objects with address space qualifiers, but not
964    // automatic variables that point to other address spaces.
965    // ISO/IEC TR 18037 S5.1.2
966    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
967      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
968      InvalidDecl = true;
969    }
970    // Merge the decl with the existing one if appropriate. If the decl is
971    // in an outer scope, it isn't the same thing.
972    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
973      NewVD = MergeVarDecl(NewVD, PrevDecl);
974      if (NewVD == 0) return 0;
975    }
976    New = NewVD;
977  }
978
979  // If this has an identifier, add it to the scope stack.
980  if (II)
981    PushOnScopeChains(New, S);
982  // If any semantic error occurred, mark the decl as invalid.
983  if (D.getInvalidType() || InvalidDecl)
984    New->setInvalidDecl();
985
986  return New;
987}
988
989bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
990  SourceLocation loc;
991  // FIXME: Remove the isReference check and handle assignment to a reference.
992  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
993    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
994    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
995    return true;
996  }
997  return false;
998}
999
1000void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1001  Decl *RealDecl = static_cast<Decl *>(dcl);
1002  Expr *Init = static_cast<Expr *>(init);
1003  assert(Init && "missing initializer");
1004
1005  // If there is no declaration, there was an error parsing it.  Just ignore
1006  // the initializer.
1007  if (RealDecl == 0) {
1008    delete Init;
1009    return;
1010  }
1011
1012  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1013  if (!VDecl) {
1014    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1015         diag::err_illegal_initializer);
1016    RealDecl->setInvalidDecl();
1017    return;
1018  }
1019  // Get the decls type and save a reference for later, since
1020  // CheckInitializerTypes may change it.
1021  QualType DclT = VDecl->getType(), SavT = DclT;
1022  if (VDecl->isBlockVarDecl()) {
1023    VarDecl::StorageClass SC = VDecl->getStorageClass();
1024    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1025      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1026      VDecl->setInvalidDecl();
1027    } else if (!VDecl->isInvalidDecl()) {
1028      if (CheckInitializerTypes(Init, DclT))
1029        VDecl->setInvalidDecl();
1030      if (SC == VarDecl::Static) // C99 6.7.8p4.
1031        CheckForConstantInitializer(Init, DclT);
1032    }
1033  } else if (VDecl->isFileVarDecl()) {
1034    if (VDecl->getStorageClass() == VarDecl::Extern)
1035      Diag(VDecl->getLocation(), diag::warn_extern_init);
1036    if (!VDecl->isInvalidDecl())
1037      if (CheckInitializerTypes(Init, DclT))
1038        VDecl->setInvalidDecl();
1039
1040    // C99 6.7.8p4. All file scoped initializers need to be constant.
1041    CheckForConstantInitializer(Init, DclT);
1042  }
1043  // If the type changed, it means we had an incomplete type that was
1044  // completed by the initializer. For example:
1045  //   int ary[] = { 1, 3, 5 };
1046  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1047  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1048    VDecl->setType(DclT);
1049    Init->setType(DclT);
1050  }
1051
1052  // Attach the initializer to the decl.
1053  VDecl->setInit(Init);
1054  return;
1055}
1056
1057/// The declarators are chained together backwards, reverse the list.
1058Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1059  // Often we have single declarators, handle them quickly.
1060  Decl *GroupDecl = static_cast<Decl*>(group);
1061  if (GroupDecl == 0)
1062    return 0;
1063
1064  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1065  ScopedDecl *NewGroup = 0;
1066  if (Group->getNextDeclarator() == 0)
1067    NewGroup = Group;
1068  else { // reverse the list.
1069    while (Group) {
1070      ScopedDecl *Next = Group->getNextDeclarator();
1071      Group->setNextDeclarator(NewGroup);
1072      NewGroup = Group;
1073      Group = Next;
1074    }
1075  }
1076  // Perform semantic analysis that depends on having fully processed both
1077  // the declarator and initializer.
1078  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1079    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1080    if (!IDecl)
1081      continue;
1082    QualType T = IDecl->getType();
1083
1084    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1085    // static storage duration, it shall not have a variable length array.
1086    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1087        IDecl->getStorageClass() == VarDecl::Static) {
1088      if (T->getAsVariableArrayType()) {
1089        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1090        IDecl->setInvalidDecl();
1091      }
1092    }
1093    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1094    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1095    if (IDecl->isBlockVarDecl() &&
1096        IDecl->getStorageClass() != VarDecl::Extern) {
1097      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1098        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1099             T.getAsString());
1100        IDecl->setInvalidDecl();
1101      }
1102    }
1103    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1104    // object that has file scope without an initializer, and without a
1105    // storage-class specifier or with the storage-class specifier "static",
1106    // constitutes a tentative definition. Note: A tentative definition with
1107    // external linkage is valid (C99 6.2.2p5).
1108    if (IDecl && !IDecl->getInit() &&
1109        (IDecl->getStorageClass() == VarDecl::Static ||
1110         IDecl->getStorageClass() == VarDecl::None)) {
1111      if (T->isIncompleteArrayType()) {
1112        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1113        // array to be completed. Don't issue a diagnostic.
1114      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1115        // C99 6.9.2p3: If the declaration of an identifier for an object is
1116        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1117        // declared type shall not be an incomplete type.
1118        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1119             T.getAsString());
1120        IDecl->setInvalidDecl();
1121      }
1122    }
1123  }
1124  return NewGroup;
1125}
1126
1127/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1128/// to introduce parameters into function prototype scope.
1129Sema::DeclTy *
1130Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1131  DeclSpec &DS = D.getDeclSpec();
1132
1133  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1134  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1135      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1136    Diag(DS.getStorageClassSpecLoc(),
1137         diag::err_invalid_storage_class_in_func_decl);
1138    DS.ClearStorageClassSpecs();
1139  }
1140  if (DS.isThreadSpecified()) {
1141    Diag(DS.getThreadSpecLoc(),
1142         diag::err_invalid_storage_class_in_func_decl);
1143    DS.ClearStorageClassSpecs();
1144  }
1145
1146  // Check that there are no default arguments inside the type of this
1147  // parameter (C++ only).
1148  if (getLangOptions().CPlusPlus)
1149    CheckExtraCXXDefaultArguments(D);
1150
1151  // In this context, we *do not* check D.getInvalidType(). If the declarator
1152  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1153  // though it will not reflect the user specified type.
1154  QualType parmDeclType = GetTypeForDeclarator(D, S);
1155
1156  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1157
1158  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1159  // Can this happen for params?  We already checked that they don't conflict
1160  // among each other.  Here they can only shadow globals, which is ok.
1161  IdentifierInfo *II = D.getIdentifier();
1162  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1163    if (S->isDeclScope(PrevDecl)) {
1164      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1165           dyn_cast<NamedDecl>(PrevDecl)->getName());
1166
1167      // Recover by removing the name
1168      II = 0;
1169      D.SetIdentifier(0, D.getIdentifierLoc());
1170    }
1171  }
1172
1173  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1174  // Doing the promotion here has a win and a loss. The win is the type for
1175  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1176  // code generator). The loss is the orginal type isn't preserved. For example:
1177  //
1178  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1179  //    int blockvardecl[5];
1180  //    sizeof(parmvardecl);  // size == 4
1181  //    sizeof(blockvardecl); // size == 20
1182  // }
1183  //
1184  // For expressions, all implicit conversions are captured using the
1185  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1186  //
1187  // FIXME: If a source translation tool needs to see the original type, then
1188  // we need to consider storing both types (in ParmVarDecl)...
1189  //
1190  if (parmDeclType->isArrayType()) {
1191    // int x[restrict 4] ->  int *restrict
1192    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1193  } else if (parmDeclType->isFunctionType())
1194    parmDeclType = Context.getPointerType(parmDeclType);
1195
1196  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1197                                         D.getIdentifierLoc(), II,
1198                                         parmDeclType, VarDecl::None,
1199                                         0, 0);
1200
1201  if (D.getInvalidType())
1202    New->setInvalidDecl();
1203
1204  if (II)
1205    PushOnScopeChains(New, S);
1206
1207  HandleDeclAttributes(New, D.getDeclSpec().getAttributes(),
1208                       D.getAttributes());
1209  return New;
1210
1211}
1212
1213Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1214  assert(CurFunctionDecl == 0 && "Function parsing confused");
1215  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1216         "Not a function declarator!");
1217  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1218
1219  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1220  // for a K&R function.
1221  if (!FTI.hasPrototype) {
1222    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1223      if (FTI.ArgInfo[i].Param == 0) {
1224        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1225             FTI.ArgInfo[i].Ident->getName());
1226        // Implicitly declare the argument as type 'int' for lack of a better
1227        // type.
1228        DeclSpec DS;
1229        const char* PrevSpec; // unused
1230        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1231                           PrevSpec);
1232        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1233        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1234        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1235      }
1236    }
1237
1238    // Since this is a function definition, act as though we have information
1239    // about the arguments.
1240    if (FTI.NumArgs)
1241      FTI.hasPrototype = true;
1242  } else {
1243    // FIXME: Diagnose arguments without names in C.
1244  }
1245
1246  Scope *GlobalScope = FnBodyScope->getParent();
1247
1248  // See if this is a redefinition.
1249  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1250                             GlobalScope);
1251  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1252    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1253      const FunctionDecl *Definition;
1254      if (FD->getBody(Definition)) {
1255        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1256             D.getIdentifier()->getName());
1257        Diag(Definition->getLocation(), diag::err_previous_definition);
1258      }
1259    }
1260  }
1261  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1262  FunctionDecl *FD = cast<FunctionDecl>(decl);
1263  CurFunctionDecl = FD;
1264  PushDeclContext(FD);
1265
1266  // Check the validity of our function parameters
1267  CheckParmsForFunctionDef(FD);
1268
1269  // Introduce our parameters into the function scope
1270  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1271    ParmVarDecl *Param = FD->getParamDecl(p);
1272    // If this has an identifier, add it to the scope stack.
1273    if (Param->getIdentifier())
1274      PushOnScopeChains(Param, FnBodyScope);
1275  }
1276
1277  return FD;
1278}
1279
1280Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1281  Decl *dcl = static_cast<Decl *>(D);
1282  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1283    FD->setBody((Stmt*)Body);
1284    assert(FD == CurFunctionDecl && "Function parsing confused");
1285    CurFunctionDecl = 0;
1286  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1287    MD->setBody((Stmt*)Body);
1288    CurMethodDecl = 0;
1289  }
1290  PopDeclContext();
1291  // Verify and clean out per-function state.
1292
1293  // Check goto/label use.
1294  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1295       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1296    // Verify that we have no forward references left.  If so, there was a goto
1297    // or address of a label taken, but no definition of it.  Label fwd
1298    // definitions are indicated with a null substmt.
1299    if (I->second->getSubStmt() == 0) {
1300      LabelStmt *L = I->second;
1301      // Emit error.
1302      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1303
1304      // At this point, we have gotos that use the bogus label.  Stitch it into
1305      // the function body so that they aren't leaked and that the AST is well
1306      // formed.
1307      if (Body) {
1308        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1309        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1310      } else {
1311        // The whole function wasn't parsed correctly, just delete this.
1312        delete L;
1313      }
1314    }
1315  }
1316  LabelMap.clear();
1317
1318  return D;
1319}
1320
1321/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1322/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1323ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1324                                           IdentifierInfo &II, Scope *S) {
1325  // Extension in C99.  Legal in C90, but warn about it.
1326  if (getLangOptions().C99)
1327    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1328  else
1329    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1330
1331  // FIXME: handle stuff like:
1332  // void foo() { extern float X(); }
1333  // void bar() { X(); }  <-- implicit decl for X in another scope.
1334
1335  // Set a Declarator for the implicit definition: int foo();
1336  const char *Dummy;
1337  DeclSpec DS;
1338  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1339  Error = Error; // Silence warning.
1340  assert(!Error && "Error setting up implicit decl!");
1341  Declarator D(DS, Declarator::BlockContext);
1342  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1343  D.SetIdentifier(&II, Loc);
1344
1345  // Insert this function into translation-unit scope.
1346
1347  DeclContext *PrevDC = CurContext;
1348  CurContext = Context.getTranslationUnitDecl();
1349
1350  FunctionDecl *FD =
1351    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1352  FD->setImplicit();
1353
1354  CurContext = PrevDC;
1355
1356  return FD;
1357}
1358
1359
1360TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1361                                    ScopedDecl *LastDeclarator) {
1362  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1363  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1364
1365  // Scope manipulation handled by caller.
1366  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1367                                           D.getIdentifierLoc(),
1368                                           D.getIdentifier(),
1369                                           T, LastDeclarator);
1370  if (D.getInvalidType())
1371    NewTD->setInvalidDecl();
1372  return NewTD;
1373}
1374
1375/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1376/// former case, Name will be non-null.  In the later case, Name will be null.
1377/// TagType indicates what kind of tag this is. TK indicates whether this is a
1378/// reference/declaration/definition of a tag.
1379Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1380                             SourceLocation KWLoc, IdentifierInfo *Name,
1381                             SourceLocation NameLoc, AttributeList *Attr) {
1382  // If this is a use of an existing tag, it must have a name.
1383  assert((Name != 0 || TK == TK_Definition) &&
1384         "Nameless record must be a definition!");
1385
1386  Decl::Kind Kind;
1387  switch (TagType) {
1388  default: assert(0 && "Unknown tag type!");
1389  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1390  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1391  case DeclSpec::TST_class:  Kind = Decl::Class; break;
1392  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1393  }
1394
1395  // If this is a named struct, check to see if there was a previous forward
1396  // declaration or definition.
1397  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1398  if (ScopedDecl *PrevDecl =
1399          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1400
1401    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1402            "unexpected Decl type");
1403    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1404      // If this is a use of a previous tag, or if the tag is already declared in
1405      // the same scope (so that the definition/declaration completes or
1406      // rementions the tag), reuse the decl.
1407      if (TK == TK_Reference ||
1408          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1409        // Make sure that this wasn't declared as an enum and now used as a struct
1410        // or something similar.
1411        if (PrevDecl->getKind() != Kind) {
1412          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1413          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1414        }
1415
1416        // If this is a use or a forward declaration, we're good.
1417        if (TK != TK_Definition)
1418          return PrevDecl;
1419
1420        // Diagnose attempts to redefine a tag.
1421        if (PrevTagDecl->isDefinition()) {
1422          Diag(NameLoc, diag::err_redefinition, Name->getName());
1423          Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1424          // If this is a redefinition, recover by making this struct be
1425          // anonymous, which will make any later references get the previous
1426          // definition.
1427          Name = 0;
1428        } else {
1429          // Okay, this is definition of a previously declared or referenced tag.
1430          // Move the location of the decl to be the definition site.
1431          PrevDecl->setLocation(NameLoc);
1432          return PrevDecl;
1433        }
1434      }
1435      // If we get here, this is a definition of a new struct type in a nested
1436      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1437      // type.
1438    } else {
1439      // The tag name clashes with a namespace name, issue an error and recover
1440      // by making this tag be anonymous.
1441      Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1442      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1443      Name = 0;
1444    }
1445  }
1446
1447  // If there is an identifier, use the location of the identifier as the
1448  // location of the decl, otherwise use the location of the struct/union
1449  // keyword.
1450  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1451
1452  // Otherwise, if this is the first time we've seen this tag, create the decl.
1453  TagDecl *New;
1454  switch (Kind) {
1455  default: assert(0 && "Unknown tag kind!");
1456  case Decl::Enum:
1457    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1458    // enum X { A, B, C } D;    D should chain to X.
1459    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1460    // If this is an undefined enum, warn.
1461    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1462    break;
1463  case Decl::Union:
1464  case Decl::Struct:
1465  case Decl::Class:
1466    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1467    // struct X { int A; } D;    D should chain to X.
1468    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1469    break;
1470  }
1471
1472  // If this has an identifier, add it to the scope stack.
1473  if (Name) {
1474    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1475    // we find one that is.
1476    while ((S->getFlags() & Scope::DeclScope) == 0)
1477      S = S->getParent();
1478
1479    // Add it to the decl chain.
1480    PushOnScopeChains(New, S);
1481  }
1482
1483  HandleDeclAttributes(New, Attr, 0);
1484  return New;
1485}
1486
1487/// ActOnField - Each field of a struct/union/class is passed into this in order
1488/// to create a FieldDecl object for it.
1489Sema::DeclTy *Sema::ActOnField(Scope *S,
1490                               SourceLocation DeclStart,
1491                               Declarator &D, ExprTy *BitfieldWidth) {
1492  IdentifierInfo *II = D.getIdentifier();
1493  Expr *BitWidth = (Expr*)BitfieldWidth;
1494  SourceLocation Loc = DeclStart;
1495  if (II) Loc = D.getIdentifierLoc();
1496
1497  // FIXME: Unnamed fields can be handled in various different ways, for
1498  // example, unnamed unions inject all members into the struct namespace!
1499
1500
1501  if (BitWidth) {
1502    // TODO: Validate.
1503    //printf("WARNING: BITFIELDS IGNORED!\n");
1504
1505    // 6.7.2.1p3
1506    // 6.7.2.1p4
1507
1508  } else {
1509    // Not a bitfield.
1510
1511    // validate II.
1512
1513  }
1514
1515  QualType T = GetTypeForDeclarator(D, S);
1516  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1517  bool InvalidDecl = false;
1518
1519  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1520  // than a variably modified type.
1521  if (T->isVariablyModifiedType()) {
1522    // FIXME: This diagnostic needs work
1523    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1524    InvalidDecl = true;
1525  }
1526  // FIXME: Chain fielddecls together.
1527  FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1528
1529  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1530                       D.getAttributes());
1531
1532  if (D.getInvalidType() || InvalidDecl)
1533    NewFD->setInvalidDecl();
1534  return NewFD;
1535}
1536
1537/// TranslateIvarVisibility - Translate visibility from a token ID to an
1538///  AST enum value.
1539static ObjCIvarDecl::AccessControl
1540TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1541  switch (ivarVisibility) {
1542    case tok::objc_private: return ObjCIvarDecl::Private;
1543    case tok::objc_public: return ObjCIvarDecl::Public;
1544    case tok::objc_protected: return ObjCIvarDecl::Protected;
1545    case tok::objc_package: return ObjCIvarDecl::Package;
1546    default: assert(false && "Unknown visitibility kind");
1547  }
1548}
1549
1550/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1551/// in order to create an IvarDecl object for it.
1552Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1553                              SourceLocation DeclStart,
1554                              Declarator &D, ExprTy *BitfieldWidth,
1555                              tok::ObjCKeywordKind Visibility) {
1556  IdentifierInfo *II = D.getIdentifier();
1557  Expr *BitWidth = (Expr*)BitfieldWidth;
1558  SourceLocation Loc = DeclStart;
1559  if (II) Loc = D.getIdentifierLoc();
1560
1561  // FIXME: Unnamed fields can be handled in various different ways, for
1562  // example, unnamed unions inject all members into the struct namespace!
1563
1564
1565  if (BitWidth) {
1566    // TODO: Validate.
1567    //printf("WARNING: BITFIELDS IGNORED!\n");
1568
1569    // 6.7.2.1p3
1570    // 6.7.2.1p4
1571
1572  } else {
1573    // Not a bitfield.
1574
1575    // validate II.
1576
1577  }
1578
1579  QualType T = GetTypeForDeclarator(D, S);
1580  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1581  bool InvalidDecl = false;
1582
1583  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1584  // than a variably modified type.
1585  if (T->isVariablyModifiedType()) {
1586    // FIXME: This diagnostic needs work
1587    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1588    InvalidDecl = true;
1589  }
1590
1591  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1592
1593  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1594                       D.getAttributes());
1595
1596  if (D.getInvalidType() || InvalidDecl)
1597    NewID->setInvalidDecl();
1598  // If we have visibility info, make sure the AST is set accordingly.
1599  if (Visibility != tok::objc_not_keyword)
1600    NewID->setAccessControl(TranslateIvarVisibility(Visibility));
1601  return NewID;
1602}
1603
1604void Sema::ActOnFields(Scope* S,
1605                       SourceLocation RecLoc, DeclTy *RecDecl,
1606                       DeclTy **Fields, unsigned NumFields,
1607                       SourceLocation LBrac, SourceLocation RBrac) {
1608  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1609  assert(EnclosingDecl && "missing record or interface decl");
1610  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1611
1612  if (Record && Record->isDefinition()) {
1613    // Diagnose code like:
1614    //     struct S { struct S {} X; };
1615    // We discover this when we complete the outer S.  Reject and ignore the
1616    // outer S.
1617    Diag(Record->getLocation(), diag::err_nested_redefinition,
1618         Record->getKindName());
1619    Diag(RecLoc, diag::err_previous_definition);
1620    Record->setInvalidDecl();
1621    return;
1622  }
1623  // Verify that all the fields are okay.
1624  unsigned NumNamedMembers = 0;
1625  llvm::SmallVector<FieldDecl*, 32> RecFields;
1626  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1627
1628  for (unsigned i = 0; i != NumFields; ++i) {
1629
1630    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1631    assert(FD && "missing field decl");
1632
1633    // Remember all fields.
1634    RecFields.push_back(FD);
1635
1636    // Get the type for the field.
1637    Type *FDTy = FD->getType().getTypePtr();
1638
1639    // C99 6.7.2.1p2 - A field may not be a function type.
1640    if (FDTy->isFunctionType()) {
1641      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1642           FD->getName());
1643      FD->setInvalidDecl();
1644      EnclosingDecl->setInvalidDecl();
1645      continue;
1646    }
1647    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1648    if (FDTy->isIncompleteType()) {
1649      if (!Record) {  // Incomplete ivar type is always an error.
1650        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1651        FD->setInvalidDecl();
1652        EnclosingDecl->setInvalidDecl();
1653        continue;
1654      }
1655      if (i != NumFields-1 ||                   // ... that the last member ...
1656          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1657          !FDTy->isArrayType()) {         //... may have incomplete array type.
1658        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1659        FD->setInvalidDecl();
1660        EnclosingDecl->setInvalidDecl();
1661        continue;
1662      }
1663      if (NumNamedMembers < 1) {  //... must have more than named member ...
1664        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1665             FD->getName());
1666        FD->setInvalidDecl();
1667        EnclosingDecl->setInvalidDecl();
1668        continue;
1669      }
1670      // Okay, we have a legal flexible array member at the end of the struct.
1671      if (Record)
1672        Record->setHasFlexibleArrayMember(true);
1673    }
1674    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1675    /// field of another structure or the element of an array.
1676    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1677      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1678        // If this is a member of a union, then entire union becomes "flexible".
1679        if (Record && Record->getKind() == Decl::Union) {
1680          Record->setHasFlexibleArrayMember(true);
1681        } else {
1682          // If this is a struct/class and this is not the last element, reject
1683          // it.  Note that GCC supports variable sized arrays in the middle of
1684          // structures.
1685          if (i != NumFields-1) {
1686            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1687                 FD->getName());
1688            FD->setInvalidDecl();
1689            EnclosingDecl->setInvalidDecl();
1690            continue;
1691          }
1692          // We support flexible arrays at the end of structs in other structs
1693          // as an extension.
1694          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1695               FD->getName());
1696          if (Record)
1697            Record->setHasFlexibleArrayMember(true);
1698        }
1699      }
1700    }
1701    /// A field cannot be an Objective-c object
1702    if (FDTy->isObjCInterfaceType()) {
1703      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1704           FD->getName());
1705      FD->setInvalidDecl();
1706      EnclosingDecl->setInvalidDecl();
1707      continue;
1708    }
1709    // Keep track of the number of named members.
1710    if (IdentifierInfo *II = FD->getIdentifier()) {
1711      // Detect duplicate member names.
1712      if (!FieldIDs.insert(II)) {
1713        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1714        // Find the previous decl.
1715        SourceLocation PrevLoc;
1716        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1717          assert(i != e && "Didn't find previous def!");
1718          if (RecFields[i]->getIdentifier() == II) {
1719            PrevLoc = RecFields[i]->getLocation();
1720            break;
1721          }
1722        }
1723        Diag(PrevLoc, diag::err_previous_definition);
1724        FD->setInvalidDecl();
1725        EnclosingDecl->setInvalidDecl();
1726        continue;
1727      }
1728      ++NumNamedMembers;
1729    }
1730  }
1731
1732  // Okay, we successfully defined 'Record'.
1733  if (Record) {
1734    Record->defineBody(&RecFields[0], RecFields.size());
1735    Consumer.HandleTagDeclDefinition(Record);
1736  } else {
1737    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1738    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1739      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1740    else if (ObjCImplementationDecl *IMPDecl =
1741               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1742      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1743      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1744      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1745    }
1746  }
1747}
1748
1749Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1750                                      DeclTy *lastEnumConst,
1751                                      SourceLocation IdLoc, IdentifierInfo *Id,
1752                                      SourceLocation EqualLoc, ExprTy *val) {
1753  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
1754  EnumConstantDecl *LastEnumConst =
1755    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1756  Expr *Val = static_cast<Expr*>(val);
1757
1758  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1759  // we find one that is.
1760  while ((S->getFlags() & Scope::DeclScope) == 0)
1761    S = S->getParent();
1762
1763  // Verify that there isn't already something declared with this name in this
1764  // scope.
1765  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
1766    if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1767      if (isa<EnumConstantDecl>(PrevDecl))
1768        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1769      else
1770        Diag(IdLoc, diag::err_redefinition, Id->getName());
1771      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1772      delete Val;
1773      return 0;
1774    }
1775  }
1776
1777  llvm::APSInt EnumVal(32);
1778  QualType EltTy;
1779  if (Val) {
1780    // Make sure to promote the operand type to int.
1781    UsualUnaryConversions(Val);
1782
1783    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1784    SourceLocation ExpLoc;
1785    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1786      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1787           Id->getName());
1788      delete Val;
1789      Val = 0;  // Just forget about it.
1790    } else {
1791      EltTy = Val->getType();
1792    }
1793  }
1794
1795  if (!Val) {
1796    if (LastEnumConst) {
1797      // Assign the last value + 1.
1798      EnumVal = LastEnumConst->getInitVal();
1799      ++EnumVal;
1800
1801      // Check for overflow on increment.
1802      if (EnumVal < LastEnumConst->getInitVal())
1803        Diag(IdLoc, diag::warn_enum_value_overflow);
1804
1805      EltTy = LastEnumConst->getType();
1806    } else {
1807      // First value, set to zero.
1808      EltTy = Context.IntTy;
1809      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1810    }
1811  }
1812
1813  EnumConstantDecl *New =
1814    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
1815                             Val, EnumVal,
1816                             LastEnumConst);
1817
1818  // Register this decl in the current scope stack.
1819  PushOnScopeChains(New, S);
1820  return New;
1821}
1822
1823void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1824                         DeclTy **Elements, unsigned NumElements) {
1825  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1826  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1827
1828  // TODO: If the result value doesn't fit in an int, it must be a long or long
1829  // long value.  ISO C does not support this, but GCC does as an extension,
1830  // emit a warning.
1831  unsigned IntWidth = Context.Target.getIntWidth();
1832
1833  // Verify that all the values are okay, compute the size of the values, and
1834  // reverse the list.
1835  unsigned NumNegativeBits = 0;
1836  unsigned NumPositiveBits = 0;
1837
1838  // Keep track of whether all elements have type int.
1839  bool AllElementsInt = true;
1840
1841  EnumConstantDecl *EltList = 0;
1842  for (unsigned i = 0; i != NumElements; ++i) {
1843    EnumConstantDecl *ECD =
1844      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1845    if (!ECD) continue;  // Already issued a diagnostic.
1846
1847    // If the enum value doesn't fit in an int, emit an extension warning.
1848    const llvm::APSInt &InitVal = ECD->getInitVal();
1849    assert(InitVal.getBitWidth() >= IntWidth &&
1850           "Should have promoted value to int");
1851    if (InitVal.getBitWidth() > IntWidth) {
1852      llvm::APSInt V(InitVal);
1853      V.trunc(IntWidth);
1854      V.extend(InitVal.getBitWidth());
1855      if (V != InitVal)
1856        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1857             InitVal.toString());
1858    }
1859
1860    // Keep track of the size of positive and negative values.
1861    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1862      NumPositiveBits = std::max(NumPositiveBits,
1863                                 (unsigned)InitVal.getActiveBits());
1864    else
1865      NumNegativeBits = std::max(NumNegativeBits,
1866                                 (unsigned)InitVal.getMinSignedBits());
1867
1868    // Keep track of whether every enum element has type int (very commmon).
1869    if (AllElementsInt)
1870      AllElementsInt = ECD->getType() == Context.IntTy;
1871
1872    ECD->setNextDeclarator(EltList);
1873    EltList = ECD;
1874  }
1875
1876  // Figure out the type that should be used for this enum.
1877  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1878  QualType BestType;
1879  unsigned BestWidth;
1880
1881  if (NumNegativeBits) {
1882    // If there is a negative value, figure out the smallest integer type (of
1883    // int/long/longlong) that fits.
1884    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1885      BestType = Context.IntTy;
1886      BestWidth = IntWidth;
1887    } else {
1888      BestWidth = Context.Target.getLongWidth();
1889
1890      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1891        BestType = Context.LongTy;
1892      else {
1893        BestWidth = Context.Target.getLongLongWidth();
1894
1895        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1896          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1897        BestType = Context.LongLongTy;
1898      }
1899    }
1900  } else {
1901    // If there is no negative value, figure out which of uint, ulong, ulonglong
1902    // fits.
1903    if (NumPositiveBits <= IntWidth) {
1904      BestType = Context.UnsignedIntTy;
1905      BestWidth = IntWidth;
1906    } else if (NumPositiveBits <=
1907               (BestWidth = Context.Target.getLongWidth())) {
1908      BestType = Context.UnsignedLongTy;
1909    } else {
1910      BestWidth = Context.Target.getLongLongWidth();
1911      assert(NumPositiveBits <= BestWidth &&
1912             "How could an initializer get larger than ULL?");
1913      BestType = Context.UnsignedLongLongTy;
1914    }
1915  }
1916
1917  // Loop over all of the enumerator constants, changing their types to match
1918  // the type of the enum if needed.
1919  for (unsigned i = 0; i != NumElements; ++i) {
1920    EnumConstantDecl *ECD =
1921      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1922    if (!ECD) continue;  // Already issued a diagnostic.
1923
1924    // Standard C says the enumerators have int type, but we allow, as an
1925    // extension, the enumerators to be larger than int size.  If each
1926    // enumerator value fits in an int, type it as an int, otherwise type it the
1927    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1928    // that X has type 'int', not 'unsigned'.
1929    if (ECD->getType() == Context.IntTy) {
1930      // Make sure the init value is signed.
1931      llvm::APSInt IV = ECD->getInitVal();
1932      IV.setIsSigned(true);
1933      ECD->setInitVal(IV);
1934      continue;  // Already int type.
1935    }
1936
1937    // Determine whether the value fits into an int.
1938    llvm::APSInt InitVal = ECD->getInitVal();
1939    bool FitsInInt;
1940    if (InitVal.isUnsigned() || !InitVal.isNegative())
1941      FitsInInt = InitVal.getActiveBits() < IntWidth;
1942    else
1943      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1944
1945    // If it fits into an integer type, force it.  Otherwise force it to match
1946    // the enum decl type.
1947    QualType NewTy;
1948    unsigned NewWidth;
1949    bool NewSign;
1950    if (FitsInInt) {
1951      NewTy = Context.IntTy;
1952      NewWidth = IntWidth;
1953      NewSign = true;
1954    } else if (ECD->getType() == BestType) {
1955      // Already the right type!
1956      continue;
1957    } else {
1958      NewTy = BestType;
1959      NewWidth = BestWidth;
1960      NewSign = BestType->isSignedIntegerType();
1961    }
1962
1963    // Adjust the APSInt value.
1964    InitVal.extOrTrunc(NewWidth);
1965    InitVal.setIsSigned(NewSign);
1966    ECD->setInitVal(InitVal);
1967
1968    // Adjust the Expr initializer and type.
1969    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1970    ECD->setType(NewTy);
1971  }
1972
1973  Enum->defineElements(EltList, BestType);
1974  Consumer.HandleTagDeclDefinition(Enum);
1975}
1976
1977Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1978                                          ExprTy *expr) {
1979  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1980
1981  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
1982}
1983
1984Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1985                                     SourceLocation LBrace,
1986                                     SourceLocation RBrace,
1987                                     const char *Lang,
1988                                     unsigned StrSize,
1989                                     DeclTy *D) {
1990  LinkageSpecDecl::LanguageIDs Language;
1991  Decl *dcl = static_cast<Decl *>(D);
1992  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1993    Language = LinkageSpecDecl::lang_c;
1994  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1995    Language = LinkageSpecDecl::lang_cxx;
1996  else {
1997    Diag(Loc, diag::err_bad_language);
1998    return 0;
1999  }
2000
2001  // FIXME: Add all the various semantics of linkage specifications
2002  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2003}
2004
2005void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
2006
2007  switch (Attr->getKind()) {
2008  case AttributeList::AT_vector_size:
2009    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2010      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
2011      if (!newType.isNull()) // install the new vector type into the decl
2012        vDecl->setType(newType);
2013    }
2014    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2015      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
2016                                                   Attr);
2017      if (!newType.isNull()) // install the new vector type into the decl
2018        tDecl->setUnderlyingType(newType);
2019    }
2020    break;
2021  case AttributeList::AT_ext_vector_type:
2022    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
2023      HandleExtVectorTypeAttribute(tDecl, Attr);
2024    else
2025      Diag(Attr->getLoc(),
2026           diag::err_typecheck_ext_vector_not_typedef);
2027    break;
2028  case AttributeList::AT_address_space:
2029    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2030      QualType newType = HandleAddressSpaceTypeAttribute(
2031                                                  tDecl->getUnderlyingType(),
2032                                                  Attr);
2033      tDecl->setUnderlyingType(newType);
2034    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2035      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
2036                                                         Attr);
2037      // install the new addr spaced type into the decl
2038      vDecl->setType(newType);
2039    }
2040    break;
2041  case AttributeList::AT_deprecated:
2042    HandleDeprecatedAttribute(New, Attr);
2043    break;
2044  case AttributeList::AT_visibility:
2045    HandleVisibilityAttribute(New, Attr);
2046    break;
2047  case AttributeList::AT_weak:
2048    HandleWeakAttribute(New, Attr);
2049    break;
2050  case AttributeList::AT_dllimport:
2051    HandleDLLImportAttribute(New, Attr);
2052    break;
2053  case AttributeList::AT_dllexport:
2054    HandleDLLExportAttribute(New, Attr);
2055    break;
2056  case AttributeList::AT_nothrow:
2057    HandleNothrowAttribute(New, Attr);
2058    break;
2059  case AttributeList::AT_stdcall:
2060    HandleStdCallAttribute(New, Attr);
2061    break;
2062  case AttributeList::AT_fastcall:
2063    HandleFastCallAttribute(New, Attr);
2064    break;
2065  case AttributeList::AT_aligned:
2066    HandleAlignedAttribute(New, Attr);
2067    break;
2068  case AttributeList::AT_packed:
2069    HandlePackedAttribute(New, Attr);
2070    break;
2071  case AttributeList::AT_annotate:
2072    HandleAnnotateAttribute(New, Attr);
2073    break;
2074  case AttributeList::AT_noreturn:
2075    HandleNoReturnAttribute(New, Attr);
2076    break;
2077  case AttributeList::AT_format:
2078    HandleFormatAttribute(New, Attr);
2079    break;
2080  case AttributeList::AT_transparent_union:
2081    HandleTransparentUnionAttribute(New, Attr);
2082    break;
2083  default:
2084#if 0
2085    // TODO: when we have the full set of attributes, warn about unknown ones.
2086    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
2087         Attr->getName()->getName());
2088#endif
2089    break;
2090  }
2091}
2092
2093void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2094                                AttributeList *declarator_postfix) {
2095  while (declspec_prefix) {
2096    HandleDeclAttribute(New, declspec_prefix);
2097    declspec_prefix = declspec_prefix->getNext();
2098  }
2099  while (declarator_postfix) {
2100    HandleDeclAttribute(New, declarator_postfix);
2101    declarator_postfix = declarator_postfix->getNext();
2102  }
2103}
2104
2105void Sema::HandleExtVectorTypeAttribute(TypedefDecl *tDecl,
2106                                        AttributeList *rawAttr) {
2107  QualType curType = tDecl->getUnderlyingType();
2108  // check the attribute arguments.
2109  if (rawAttr->getNumArgs() != 1) {
2110    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2111         std::string("1"));
2112    return;
2113  }
2114  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2115  llvm::APSInt vecSize(32);
2116  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2117    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2118         "ext_vector_type", sizeExpr->getSourceRange());
2119    return;
2120  }
2121  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2122  // in conjunction with complex types (pointers, arrays, functions, etc.).
2123  Type *canonType = curType.getCanonicalType().getTypePtr();
2124  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2125    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2126         curType.getCanonicalType().getAsString());
2127    return;
2128  }
2129  // unlike gcc's vector_size attribute, the size is specified as the
2130  // number of elements, not the number of bytes.
2131  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2132
2133  if (vectorSize == 0) {
2134    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2135         sizeExpr->getSourceRange());
2136    return;
2137  }
2138  // Instantiate/Install the vector type, the number of elements is > 0.
2139  tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
2140  // Remember this typedef decl, we will need it later for diagnostics.
2141  ExtVectorDecls.push_back(tDecl);
2142}
2143
2144QualType Sema::HandleVectorTypeAttribute(QualType curType,
2145                                         AttributeList *rawAttr) {
2146  // check the attribute arugments.
2147  if (rawAttr->getNumArgs() != 1) {
2148    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2149         std::string("1"));
2150    return QualType();
2151  }
2152  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2153  llvm::APSInt vecSize(32);
2154  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2155    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2156         "vector_size", sizeExpr->getSourceRange());
2157    return QualType();
2158  }
2159  // navigate to the base type - we need to provide for vector pointers,
2160  // vector arrays, and functions returning vectors.
2161  Type *canonType = curType.getCanonicalType().getTypePtr();
2162
2163  if (canonType->isPointerType() || canonType->isArrayType() ||
2164      canonType->isFunctionType()) {
2165    assert(0 && "HandleVector(): Complex type construction unimplemented");
2166    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2167        do {
2168          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2169            canonType = PT->getPointeeType().getTypePtr();
2170          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2171            canonType = AT->getElementType().getTypePtr();
2172          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2173            canonType = FT->getResultType().getTypePtr();
2174        } while (canonType->isPointerType() || canonType->isArrayType() ||
2175                 canonType->isFunctionType());
2176    */
2177  }
2178  // the base type must be integer or float.
2179  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2180    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2181         curType.getCanonicalType().getAsString());
2182    return QualType();
2183  }
2184  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2185  // vecSize is specified in bytes - convert to bits.
2186  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2187
2188  // the vector size needs to be an integral multiple of the type size.
2189  if (vectorSize % typeSize) {
2190    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2191         sizeExpr->getSourceRange());
2192    return QualType();
2193  }
2194  if (vectorSize == 0) {
2195    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2196         sizeExpr->getSourceRange());
2197    return QualType();
2198  }
2199  // Instantiate the vector type, the number of elements is > 0, and not
2200  // required to be a power of 2, unlike GCC.
2201  return Context.getVectorType(curType, vectorSize/typeSize);
2202}
2203
2204void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2205  // check the attribute arguments.
2206  if (rawAttr->getNumArgs() > 0) {
2207    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2208         std::string("0"));
2209    return;
2210  }
2211
2212  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2213    TD->addAttr(new PackedAttr);
2214  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2215    // If the alignment is less than or equal to 8 bits, the packed attribute
2216    // has no effect.
2217    if (!FD->getType()->isIncompleteType() &&
2218        Context.getTypeAlign(FD->getType()) <= 8)
2219      Diag(rawAttr->getLoc(),
2220           diag::warn_attribute_ignored_for_field_of_type,
2221           rawAttr->getName()->getName(), FD->getType().getAsString());
2222    else
2223      FD->addAttr(new PackedAttr);
2224  } else
2225    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2226         rawAttr->getName()->getName());
2227}
2228
2229void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2230  // check the attribute arguments.
2231  if (rawAttr->getNumArgs() != 0) {
2232    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2233         std::string("0"));
2234    return;
2235  }
2236
2237  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2238
2239  if (!Fn) {
2240    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2241         "noreturn", "function");
2242    return;
2243  }
2244
2245  d->addAttr(new NoReturnAttr());
2246}
2247
2248void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2249  // check the attribute arguments.
2250  if (rawAttr->getNumArgs() != 0) {
2251    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2252         std::string("0"));
2253    return;
2254  }
2255
2256  d->addAttr(new DeprecatedAttr());
2257}
2258
2259void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2260  // check the attribute arguments.
2261  if (rawAttr->getNumArgs() != 1) {
2262    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2263         std::string("1"));
2264    return;
2265  }
2266
2267  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2268  Arg = Arg->IgnoreParenCasts();
2269  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2270
2271  if (Str == 0 || Str->isWide()) {
2272    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2273         "visibility", std::string("1"));
2274    return;
2275  }
2276
2277  const char *TypeStr = Str->getStrData();
2278  unsigned TypeLen = Str->getByteLength();
2279  llvm::GlobalValue::VisibilityTypes type;
2280
2281  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2282    type = llvm::GlobalValue::DefaultVisibility;
2283  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2284    type = llvm::GlobalValue::HiddenVisibility;
2285  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2286    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2287  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2288    type = llvm::GlobalValue::ProtectedVisibility;
2289  else {
2290    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2291           "visibility", TypeStr);
2292    return;
2293  }
2294
2295  d->addAttr(new VisibilityAttr(type));
2296}
2297
2298void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2299  // check the attribute arguments.
2300  if (rawAttr->getNumArgs() != 0) {
2301    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2302         std::string("0"));
2303    return;
2304  }
2305
2306  d->addAttr(new WeakAttr());
2307}
2308
2309void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2310  // check the attribute arguments.
2311  if (rawAttr->getNumArgs() != 0) {
2312    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2313         std::string("0"));
2314    return;
2315  }
2316
2317  d->addAttr(new DLLImportAttr());
2318}
2319
2320void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2321  // check the attribute arguments.
2322  if (rawAttr->getNumArgs() != 0) {
2323    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2324         std::string("0"));
2325    return;
2326  }
2327
2328  d->addAttr(new DLLExportAttr());
2329}
2330
2331void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2332  // check the attribute arguments.
2333  if (rawAttr->getNumArgs() != 0) {
2334    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2335         std::string("0"));
2336    return;
2337  }
2338
2339  d->addAttr(new StdCallAttr());
2340}
2341
2342void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2343  // check the attribute arguments.
2344  if (rawAttr->getNumArgs() != 0) {
2345    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2346         std::string("0"));
2347    return;
2348  }
2349
2350  d->addAttr(new FastCallAttr());
2351}
2352
2353void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2354  // check the attribute arguments.
2355  if (rawAttr->getNumArgs() != 0) {
2356    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2357         std::string("0"));
2358    return;
2359  }
2360
2361  d->addAttr(new NoThrowAttr());
2362}
2363
2364static const FunctionTypeProto *getFunctionProto(Decl *d) {
2365  QualType Ty;
2366
2367  if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
2368    Ty = decl->getType();
2369  else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
2370    Ty = decl->getType();
2371  else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
2372    Ty = decl->getUnderlyingType();
2373  else
2374    return 0;
2375
2376  if (Ty->isFunctionPointerType()) {
2377    const PointerType *PtrTy = Ty->getAsPointerType();
2378    Ty = PtrTy->getPointeeType();
2379  }
2380
2381  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2382    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2383
2384  return 0;
2385}
2386
2387static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
2388  if (!T->isPointerType())
2389    return false;
2390
2391  T = T->getAsPointerType()->getPointeeType().getCanonicalType();
2392  ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
2393
2394  if (!ClsT)
2395    return false;
2396
2397  IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
2398
2399  // FIXME: Should we walk the chain of classes?
2400  return ClsName == &Ctx.Idents.get("NSString") ||
2401         ClsName == &Ctx.Idents.get("NSMutableString");
2402}
2403
2404/// Handle __attribute__((format(type,idx,firstarg))) attributes
2405/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2406void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2407
2408  if (!rawAttr->getParameterName()) {
2409    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2410           "format", std::string("1"));
2411    return;
2412  }
2413
2414  if (rawAttr->getNumArgs() != 2) {
2415    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2416         std::string("3"));
2417    return;
2418  }
2419
2420  // GCC ignores the format attribute on K&R style function
2421  // prototypes, so we ignore it as well
2422  const FunctionTypeProto *proto = getFunctionProto(d);
2423
2424  if (!proto) {
2425    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2426           "format", "function");
2427    return;
2428  }
2429
2430  // FIXME: in C++ the implicit 'this' function parameter also counts.
2431  // this is needed in order to be compatible with GCC
2432  // the index must start in 1 and the limit is numargs+1
2433  unsigned NumArgs  = proto->getNumArgs();
2434  unsigned FirstIdx = 1;
2435
2436  const char *Format = rawAttr->getParameterName()->getName();
2437  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2438
2439  // Normalize the argument, __foo__ becomes foo.
2440  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2441      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2442    Format += 2;
2443    FormatLen -= 4;
2444  }
2445
2446  bool Supported = false;
2447  bool is_NSString = false;
2448  bool is_strftime = false;
2449
2450  switch (FormatLen) {
2451    default: break;
2452    case 5:
2453      Supported = !memcmp(Format, "scanf", 5);
2454      break;
2455    case 6:
2456      Supported = !memcmp(Format, "printf", 6);
2457      break;
2458    case 7:
2459      Supported = !memcmp(Format, "strfmon", 7);
2460      break;
2461    case 8:
2462      Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
2463                  (is_NSString = !memcmp(Format, "NSString", 8));
2464      break;
2465  }
2466
2467  if (!Supported) {
2468    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2469           "format", rawAttr->getParameterName()->getName());
2470    return;
2471  }
2472
2473  // checks for the 2nd argument
2474  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2475  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2476  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2477    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2478           "format", std::string("2"), IdxExpr->getSourceRange());
2479    return;
2480  }
2481
2482  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2483    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2484           "format", std::string("2"), IdxExpr->getSourceRange());
2485    return;
2486  }
2487
2488  // FIXME: Do we need to bounds check?
2489  unsigned ArgIdx = Idx.getZExtValue() - 1;
2490
2491  // make sure the format string is really a string
2492  QualType Ty = proto->getArgType(ArgIdx);
2493
2494  if (is_NSString) {
2495    // FIXME: do we need to check if the type is NSString*?  What are
2496    //  the semantics?
2497    if (!isNSStringType(Ty, Context)) {
2498      // FIXME: Should highlight the actual expression that has the
2499      // wrong type.
2500      Diag(rawAttr->getLoc(), diag::err_format_attribute_not_NSString,
2501           IdxExpr->getSourceRange());
2502      return;
2503    }
2504  }
2505  else if (!Ty->isPointerType() ||
2506      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2507    // FIXME: Should highlight the actual expression that has the
2508    // wrong type.
2509    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2510         IdxExpr->getSourceRange());
2511    return;
2512  }
2513
2514  // check the 3rd argument
2515  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2516  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2517  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2518    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2519           "format", std::string("3"), FirstArgExpr->getSourceRange());
2520    return;
2521  }
2522
2523  // check if the function is variadic if the 3rd argument non-zero
2524  if (FirstArg != 0) {
2525    if (proto->isVariadic()) {
2526      ++NumArgs; // +1 for ...
2527    } else {
2528      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2529      return;
2530    }
2531  }
2532
2533  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2534  // the input is just the current time + the format string
2535  if (is_strftime) {
2536    if (FirstArg != 0) {
2537      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2538             FirstArgExpr->getSourceRange());
2539      return;
2540    }
2541  // if 0 it disables parameter checking (to use with e.g. va_list)
2542  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2543    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2544           "format", std::string("3"), FirstArgExpr->getSourceRange());
2545    return;
2546  }
2547
2548  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2549                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2550}
2551
2552void Sema::HandleTransparentUnionAttribute(Decl *d, AttributeList *rawAttr) {
2553  // check the attribute arguments.
2554  if (rawAttr->getNumArgs() != 0) {
2555    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2556         std::string("0"));
2557    return;
2558  }
2559
2560  TypeDecl *decl = dyn_cast<TypeDecl>(d);
2561
2562  if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
2563    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2564         "transparent_union", "union");
2565    return;
2566  }
2567
2568  //QualType QTy = Context.getTypeDeclType(decl);
2569  //const RecordType *Ty = QTy->getAsUnionType();
2570
2571// FIXME
2572// Ty->addAttr(new TransparentUnionAttr());
2573}
2574
2575void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2576  // check the attribute arguments.
2577  if (rawAttr->getNumArgs() != 1) {
2578    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2579         std::string("1"));
2580    return;
2581  }
2582  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2583  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2584
2585  // Make sure that there is a string literal as the annotation's single
2586  // argument.
2587  if (!SE) {
2588    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2589    return;
2590  }
2591  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2592                                          SE->getByteLength())));
2593}
2594
2595void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2596{
2597  // check the attribute arguments.
2598  if (rawAttr->getNumArgs() > 1) {
2599    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2600         std::string("1"));
2601    return;
2602  }
2603
2604  unsigned Align = 0;
2605
2606  if (rawAttr->getNumArgs() == 0) {
2607    // FIXME: This should be the target specific maximum alignment.
2608    // (For now we just use 128 bits which is the maximum on X86.
2609    Align = 128;
2610    return;
2611  } else {
2612    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2613    llvm::APSInt alignment(32);
2614    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2615      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2616           "aligned", alignmentExpr->getSourceRange());
2617      return;
2618    }
2619
2620    Align = alignment.getZExtValue() * 8;
2621  }
2622
2623  d->addAttr(new AlignedAttr(Align));
2624}
2625