SemaDecl.cpp revision 5ebcb20b0331a6e64c213f0bb5f4bed9a9e8eb34
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->getLinkage() == ExternalLinkage)
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = (decl->getLinkage() == ExternalLinkage);
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825bool Sema::mergeDeclAttribute(NamedDecl *D, InheritableAttr *Attr,
1826                              bool Override) {
1827  InheritableAttr *NewAttr = NULL;
1828  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1829  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1830    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1831                                    AA->getIntroduced(), AA->getDeprecated(),
1832                                    AA->getObsoleted(), AA->getUnavailable(),
1833                                    AA->getMessage(), Override,
1834                                    AttrSpellingListIndex);
1835  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1836    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1837                                  AttrSpellingListIndex);
1838  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1839    NewAttr = mergeDLLImportAttr(D, ImportA->getRange(),
1840                                 AttrSpellingListIndex);
1841  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1842    NewAttr = mergeDLLExportAttr(D, ExportA->getRange(),
1843                                 AttrSpellingListIndex);
1844  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1845    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1846                              FA->getFormatIdx(), FA->getFirstArg(),
1847                              AttrSpellingListIndex);
1848  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1849    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName(),
1850                               AttrSpellingListIndex);
1851  else if (!DeclHasAttr(D, Attr))
1852    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1853
1854  if (NewAttr) {
1855    NewAttr->setInherited(true);
1856    D->addAttr(NewAttr);
1857    return true;
1858  }
1859
1860  return false;
1861}
1862
1863static const Decl *getDefinition(const Decl *D) {
1864  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1865    return TD->getDefinition();
1866  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1867    return VD->getDefinition();
1868  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1869    const FunctionDecl* Def;
1870    if (FD->hasBody(Def))
1871      return Def;
1872  }
1873  return NULL;
1874}
1875
1876static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1877  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1878       I != E; ++I) {
1879    Attr *Attribute = *I;
1880    if (Attribute->getKind() == Kind)
1881      return true;
1882  }
1883  return false;
1884}
1885
1886/// checkNewAttributesAfterDef - If we already have a definition, check that
1887/// there are no new attributes in this declaration.
1888static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1889  if (!New->hasAttrs())
1890    return;
1891
1892  const Decl *Def = getDefinition(Old);
1893  if (!Def || Def == New)
1894    return;
1895
1896  AttrVec &NewAttributes = New->getAttrs();
1897  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1898    const Attr *NewAttribute = NewAttributes[I];
1899    if (hasAttribute(Def, NewAttribute->getKind())) {
1900      ++I;
1901      continue; // regular attr merging will take care of validating this.
1902    }
1903    // C's _Noreturn is allowed to be added to a function after it is defined.
1904    if (isa<C11NoReturnAttr>(NewAttribute)) {
1905      ++I;
1906      continue;
1907    }
1908    S.Diag(NewAttribute->getLocation(),
1909           diag::warn_attribute_precede_definition);
1910    S.Diag(Def->getLocation(), diag::note_previous_definition);
1911    NewAttributes.erase(NewAttributes.begin() + I);
1912    --E;
1913  }
1914}
1915
1916/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1917void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
1918                               AvailabilityMergeKind AMK) {
1919  if (!Old->hasAttrs() && !New->hasAttrs())
1920    return;
1921
1922  // attributes declared post-definition are currently ignored
1923  checkNewAttributesAfterDef(*this, New, Old);
1924
1925  if (!Old->hasAttrs())
1926    return;
1927
1928  bool foundAny = New->hasAttrs();
1929
1930  // Ensure that any moving of objects within the allocated map is done before
1931  // we process them.
1932  if (!foundAny) New->setAttrs(AttrVec());
1933
1934  for (specific_attr_iterator<InheritableAttr>
1935         i = Old->specific_attr_begin<InheritableAttr>(),
1936         e = Old->specific_attr_end<InheritableAttr>();
1937       i != e; ++i) {
1938    bool Override = false;
1939    // Ignore deprecated/unavailable/availability attributes if requested.
1940    if (isa<DeprecatedAttr>(*i) ||
1941        isa<UnavailableAttr>(*i) ||
1942        isa<AvailabilityAttr>(*i)) {
1943      switch (AMK) {
1944      case AMK_None:
1945        continue;
1946
1947      case AMK_Redeclaration:
1948        break;
1949
1950      case AMK_Override:
1951        Override = true;
1952        break;
1953      }
1954    }
1955
1956    if (mergeDeclAttribute(New, *i, Override))
1957      foundAny = true;
1958  }
1959
1960  if (!foundAny) New->dropAttrs();
1961}
1962
1963/// mergeParamDeclAttributes - Copy attributes from the old parameter
1964/// to the new one.
1965static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1966                                     const ParmVarDecl *oldDecl,
1967                                     Sema &S) {
1968  // C++11 [dcl.attr.depend]p2:
1969  //   The first declaration of a function shall specify the
1970  //   carries_dependency attribute for its declarator-id if any declaration
1971  //   of the function specifies the carries_dependency attribute.
1972  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
1973      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
1974    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
1975           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
1976    // Find the first declaration of the parameter.
1977    // FIXME: Should we build redeclaration chains for function parameters?
1978    const FunctionDecl *FirstFD =
1979      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
1980    const ParmVarDecl *FirstVD =
1981      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
1982    S.Diag(FirstVD->getLocation(),
1983           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
1984  }
1985
1986  if (!oldDecl->hasAttrs())
1987    return;
1988
1989  bool foundAny = newDecl->hasAttrs();
1990
1991  // Ensure that any moving of objects within the allocated map is
1992  // done before we process them.
1993  if (!foundAny) newDecl->setAttrs(AttrVec());
1994
1995  for (specific_attr_iterator<InheritableParamAttr>
1996       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1997       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1998    if (!DeclHasAttr(newDecl, *i)) {
1999      InheritableAttr *newAttr =
2000        cast<InheritableParamAttr>((*i)->clone(S.Context));
2001      newAttr->setInherited(true);
2002      newDecl->addAttr(newAttr);
2003      foundAny = true;
2004    }
2005  }
2006
2007  if (!foundAny) newDecl->dropAttrs();
2008}
2009
2010namespace {
2011
2012/// Used in MergeFunctionDecl to keep track of function parameters in
2013/// C.
2014struct GNUCompatibleParamWarning {
2015  ParmVarDecl *OldParm;
2016  ParmVarDecl *NewParm;
2017  QualType PromotedType;
2018};
2019
2020}
2021
2022/// getSpecialMember - get the special member enum for a method.
2023Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2024  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2025    if (Ctor->isDefaultConstructor())
2026      return Sema::CXXDefaultConstructor;
2027
2028    if (Ctor->isCopyConstructor())
2029      return Sema::CXXCopyConstructor;
2030
2031    if (Ctor->isMoveConstructor())
2032      return Sema::CXXMoveConstructor;
2033  } else if (isa<CXXDestructorDecl>(MD)) {
2034    return Sema::CXXDestructor;
2035  } else if (MD->isCopyAssignmentOperator()) {
2036    return Sema::CXXCopyAssignment;
2037  } else if (MD->isMoveAssignmentOperator()) {
2038    return Sema::CXXMoveAssignment;
2039  }
2040
2041  return Sema::CXXInvalid;
2042}
2043
2044/// canRedefineFunction - checks if a function can be redefined. Currently,
2045/// only extern inline functions can be redefined, and even then only in
2046/// GNU89 mode.
2047static bool canRedefineFunction(const FunctionDecl *FD,
2048                                const LangOptions& LangOpts) {
2049  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2050          !LangOpts.CPlusPlus &&
2051          FD->isInlineSpecified() &&
2052          FD->getStorageClass() == SC_Extern);
2053}
2054
2055/// Is the given calling convention the ABI default for the given
2056/// declaration?
2057static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2058  CallingConv ABIDefaultCC;
2059  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2060    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2061  } else {
2062    // Free C function or a static method.
2063    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2064  }
2065  return ABIDefaultCC == CC;
2066}
2067
2068/// MergeFunctionDecl - We just parsed a function 'New' from
2069/// declarator D which has the same name and scope as a previous
2070/// declaration 'Old'.  Figure out how to resolve this situation,
2071/// merging decls or emitting diagnostics as appropriate.
2072///
2073/// In C++, New and Old must be declarations that are not
2074/// overloaded. Use IsOverload to determine whether New and Old are
2075/// overloaded, and to select the Old declaration that New should be
2076/// merged with.
2077///
2078/// Returns true if there was an error, false otherwise.
2079bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2080  // Verify the old decl was also a function.
2081  FunctionDecl *Old = 0;
2082  if (FunctionTemplateDecl *OldFunctionTemplate
2083        = dyn_cast<FunctionTemplateDecl>(OldD))
2084    Old = OldFunctionTemplate->getTemplatedDecl();
2085  else
2086    Old = dyn_cast<FunctionDecl>(OldD);
2087  if (!Old) {
2088    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2089      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2090      Diag(Shadow->getTargetDecl()->getLocation(),
2091           diag::note_using_decl_target);
2092      Diag(Shadow->getUsingDecl()->getLocation(),
2093           diag::note_using_decl) << 0;
2094      return true;
2095    }
2096
2097    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2098      << New->getDeclName();
2099    Diag(OldD->getLocation(), diag::note_previous_definition);
2100    return true;
2101  }
2102
2103  // Determine whether the previous declaration was a definition,
2104  // implicit declaration, or a declaration.
2105  diag::kind PrevDiag;
2106  if (Old->isThisDeclarationADefinition())
2107    PrevDiag = diag::note_previous_definition;
2108  else if (Old->isImplicit())
2109    PrevDiag = diag::note_previous_implicit_declaration;
2110  else
2111    PrevDiag = diag::note_previous_declaration;
2112
2113  QualType OldQType = Context.getCanonicalType(Old->getType());
2114  QualType NewQType = Context.getCanonicalType(New->getType());
2115
2116  // Don't complain about this if we're in GNU89 mode and the old function
2117  // is an extern inline function.
2118  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2119      New->getStorageClass() == SC_Static &&
2120      Old->getStorageClass() != SC_Static &&
2121      !canRedefineFunction(Old, getLangOpts())) {
2122    if (getLangOpts().MicrosoftExt) {
2123      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2124      Diag(Old->getLocation(), PrevDiag);
2125    } else {
2126      Diag(New->getLocation(), diag::err_static_non_static) << New;
2127      Diag(Old->getLocation(), PrevDiag);
2128      return true;
2129    }
2130  }
2131
2132  // If a function is first declared with a calling convention, but is
2133  // later declared or defined without one, the second decl assumes the
2134  // calling convention of the first.
2135  //
2136  // It's OK if a function is first declared without a calling convention,
2137  // but is later declared or defined with the default calling convention.
2138  //
2139  // For the new decl, we have to look at the NON-canonical type to tell the
2140  // difference between a function that really doesn't have a calling
2141  // convention and one that is declared cdecl. That's because in
2142  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2143  // because it is the default calling convention.
2144  //
2145  // Note also that we DO NOT return at this point, because we still have
2146  // other tests to run.
2147  const FunctionType *OldType = cast<FunctionType>(OldQType);
2148  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2149  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2150  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2151  bool RequiresAdjustment = false;
2152  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2153    // Fast path: nothing to do.
2154
2155  // Inherit the CC from the previous declaration if it was specified
2156  // there but not here.
2157  } else if (NewTypeInfo.getCC() == CC_Default) {
2158    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2159    RequiresAdjustment = true;
2160
2161  // Don't complain about mismatches when the default CC is
2162  // effectively the same as the explict one.
2163  } else if (OldTypeInfo.getCC() == CC_Default &&
2164             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2165    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2166    RequiresAdjustment = true;
2167
2168  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2169                                     NewTypeInfo.getCC())) {
2170    // Calling conventions really aren't compatible, so complain.
2171    Diag(New->getLocation(), diag::err_cconv_change)
2172      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2173      << (OldTypeInfo.getCC() == CC_Default)
2174      << (OldTypeInfo.getCC() == CC_Default ? "" :
2175          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2176    Diag(Old->getLocation(), diag::note_previous_declaration);
2177    return true;
2178  }
2179
2180  // FIXME: diagnose the other way around?
2181  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2182    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2183    RequiresAdjustment = true;
2184  }
2185
2186  // Merge regparm attribute.
2187  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2188      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2189    if (NewTypeInfo.getHasRegParm()) {
2190      Diag(New->getLocation(), diag::err_regparm_mismatch)
2191        << NewType->getRegParmType()
2192        << OldType->getRegParmType();
2193      Diag(Old->getLocation(), diag::note_previous_declaration);
2194      return true;
2195    }
2196
2197    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2198    RequiresAdjustment = true;
2199  }
2200
2201  // Merge ns_returns_retained attribute.
2202  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2203    if (NewTypeInfo.getProducesResult()) {
2204      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2205      Diag(Old->getLocation(), diag::note_previous_declaration);
2206      return true;
2207    }
2208
2209    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2210    RequiresAdjustment = true;
2211  }
2212
2213  if (RequiresAdjustment) {
2214    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2215    New->setType(QualType(NewType, 0));
2216    NewQType = Context.getCanonicalType(New->getType());
2217  }
2218
2219  // If this redeclaration makes the function inline, we may need to add it to
2220  // UndefinedButUsed.
2221  if (!Old->isInlined() && New->isInlined() &&
2222      !New->hasAttr<GNUInlineAttr>() &&
2223      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2224      Old->isUsed(false) &&
2225      !Old->isDefined() && !New->isThisDeclarationADefinition())
2226    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2227                                           SourceLocation()));
2228
2229  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2230  // about it.
2231  if (New->hasAttr<GNUInlineAttr>() &&
2232      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2233    UndefinedButUsed.erase(Old->getCanonicalDecl());
2234  }
2235
2236  if (getLangOpts().CPlusPlus) {
2237    // (C++98 13.1p2):
2238    //   Certain function declarations cannot be overloaded:
2239    //     -- Function declarations that differ only in the return type
2240    //        cannot be overloaded.
2241    QualType OldReturnType = OldType->getResultType();
2242    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2243    QualType ResQT;
2244    if (OldReturnType != NewReturnType) {
2245      if (NewReturnType->isObjCObjectPointerType()
2246          && OldReturnType->isObjCObjectPointerType())
2247        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2248      if (ResQT.isNull()) {
2249        if (New->isCXXClassMember() && New->isOutOfLine())
2250          Diag(New->getLocation(),
2251               diag::err_member_def_does_not_match_ret_type) << New;
2252        else
2253          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2254        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2255        return true;
2256      }
2257      else
2258        NewQType = ResQT;
2259    }
2260
2261    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2262    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2263    if (OldMethod && NewMethod) {
2264      // Preserve triviality.
2265      NewMethod->setTrivial(OldMethod->isTrivial());
2266
2267      // MSVC allows explicit template specialization at class scope:
2268      // 2 CXMethodDecls referring to the same function will be injected.
2269      // We don't want a redeclartion error.
2270      bool IsClassScopeExplicitSpecialization =
2271                              OldMethod->isFunctionTemplateSpecialization() &&
2272                              NewMethod->isFunctionTemplateSpecialization();
2273      bool isFriend = NewMethod->getFriendObjectKind();
2274
2275      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2276          !IsClassScopeExplicitSpecialization) {
2277        //    -- Member function declarations with the same name and the
2278        //       same parameter types cannot be overloaded if any of them
2279        //       is a static member function declaration.
2280        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2281          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2282          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2283          return true;
2284        }
2285
2286        // C++ [class.mem]p1:
2287        //   [...] A member shall not be declared twice in the
2288        //   member-specification, except that a nested class or member
2289        //   class template can be declared and then later defined.
2290        if (ActiveTemplateInstantiations.empty()) {
2291          unsigned NewDiag;
2292          if (isa<CXXConstructorDecl>(OldMethod))
2293            NewDiag = diag::err_constructor_redeclared;
2294          else if (isa<CXXDestructorDecl>(NewMethod))
2295            NewDiag = diag::err_destructor_redeclared;
2296          else if (isa<CXXConversionDecl>(NewMethod))
2297            NewDiag = diag::err_conv_function_redeclared;
2298          else
2299            NewDiag = diag::err_member_redeclared;
2300
2301          Diag(New->getLocation(), NewDiag);
2302        } else {
2303          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2304            << New << New->getType();
2305        }
2306        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2307
2308      // Complain if this is an explicit declaration of a special
2309      // member that was initially declared implicitly.
2310      //
2311      // As an exception, it's okay to befriend such methods in order
2312      // to permit the implicit constructor/destructor/operator calls.
2313      } else if (OldMethod->isImplicit()) {
2314        if (isFriend) {
2315          NewMethod->setImplicit();
2316        } else {
2317          Diag(NewMethod->getLocation(),
2318               diag::err_definition_of_implicitly_declared_member)
2319            << New << getSpecialMember(OldMethod);
2320          return true;
2321        }
2322      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2323        Diag(NewMethod->getLocation(),
2324             diag::err_definition_of_explicitly_defaulted_member)
2325          << getSpecialMember(OldMethod);
2326        return true;
2327      }
2328    }
2329
2330    // C++11 [dcl.attr.noreturn]p1:
2331    //   The first declaration of a function shall specify the noreturn
2332    //   attribute if any declaration of that function specifies the noreturn
2333    //   attribute.
2334    if (New->hasAttr<CXX11NoReturnAttr>() &&
2335        !Old->hasAttr<CXX11NoReturnAttr>()) {
2336      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2337           diag::err_noreturn_missing_on_first_decl);
2338      Diag(Old->getFirstDeclaration()->getLocation(),
2339           diag::note_noreturn_missing_first_decl);
2340    }
2341
2342    // C++11 [dcl.attr.depend]p2:
2343    //   The first declaration of a function shall specify the
2344    //   carries_dependency attribute for its declarator-id if any declaration
2345    //   of the function specifies the carries_dependency attribute.
2346    if (New->hasAttr<CarriesDependencyAttr>() &&
2347        !Old->hasAttr<CarriesDependencyAttr>()) {
2348      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2349           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2350      Diag(Old->getFirstDeclaration()->getLocation(),
2351           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2352    }
2353
2354    // (C++98 8.3.5p3):
2355    //   All declarations for a function shall agree exactly in both the
2356    //   return type and the parameter-type-list.
2357    // We also want to respect all the extended bits except noreturn.
2358
2359    // noreturn should now match unless the old type info didn't have it.
2360    QualType OldQTypeForComparison = OldQType;
2361    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2362      assert(OldQType == QualType(OldType, 0));
2363      const FunctionType *OldTypeForComparison
2364        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2365      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2366      assert(OldQTypeForComparison.isCanonical());
2367    }
2368
2369    if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2370      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2371      Diag(Old->getLocation(), PrevDiag);
2372      return true;
2373    }
2374
2375    if (OldQTypeForComparison == NewQType)
2376      return MergeCompatibleFunctionDecls(New, Old, S);
2377
2378    // Fall through for conflicting redeclarations and redefinitions.
2379  }
2380
2381  // C: Function types need to be compatible, not identical. This handles
2382  // duplicate function decls like "void f(int); void f(enum X);" properly.
2383  if (!getLangOpts().CPlusPlus &&
2384      Context.typesAreCompatible(OldQType, NewQType)) {
2385    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2386    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2387    const FunctionProtoType *OldProto = 0;
2388    if (isa<FunctionNoProtoType>(NewFuncType) &&
2389        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2390      // The old declaration provided a function prototype, but the
2391      // new declaration does not. Merge in the prototype.
2392      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2393      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2394                                                 OldProto->arg_type_end());
2395      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2396                                         ParamTypes.data(), ParamTypes.size(),
2397                                         OldProto->getExtProtoInfo());
2398      New->setType(NewQType);
2399      New->setHasInheritedPrototype();
2400
2401      // Synthesize a parameter for each argument type.
2402      SmallVector<ParmVarDecl*, 16> Params;
2403      for (FunctionProtoType::arg_type_iterator
2404             ParamType = OldProto->arg_type_begin(),
2405             ParamEnd = OldProto->arg_type_end();
2406           ParamType != ParamEnd; ++ParamType) {
2407        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2408                                                 SourceLocation(),
2409                                                 SourceLocation(), 0,
2410                                                 *ParamType, /*TInfo=*/0,
2411                                                 SC_None, SC_None,
2412                                                 0);
2413        Param->setScopeInfo(0, Params.size());
2414        Param->setImplicit();
2415        Params.push_back(Param);
2416      }
2417
2418      New->setParams(Params);
2419    }
2420
2421    return MergeCompatibleFunctionDecls(New, Old, S);
2422  }
2423
2424  // GNU C permits a K&R definition to follow a prototype declaration
2425  // if the declared types of the parameters in the K&R definition
2426  // match the types in the prototype declaration, even when the
2427  // promoted types of the parameters from the K&R definition differ
2428  // from the types in the prototype. GCC then keeps the types from
2429  // the prototype.
2430  //
2431  // If a variadic prototype is followed by a non-variadic K&R definition,
2432  // the K&R definition becomes variadic.  This is sort of an edge case, but
2433  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2434  // C99 6.9.1p8.
2435  if (!getLangOpts().CPlusPlus &&
2436      Old->hasPrototype() && !New->hasPrototype() &&
2437      New->getType()->getAs<FunctionProtoType>() &&
2438      Old->getNumParams() == New->getNumParams()) {
2439    SmallVector<QualType, 16> ArgTypes;
2440    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2441    const FunctionProtoType *OldProto
2442      = Old->getType()->getAs<FunctionProtoType>();
2443    const FunctionProtoType *NewProto
2444      = New->getType()->getAs<FunctionProtoType>();
2445
2446    // Determine whether this is the GNU C extension.
2447    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2448                                               NewProto->getResultType());
2449    bool LooseCompatible = !MergedReturn.isNull();
2450    for (unsigned Idx = 0, End = Old->getNumParams();
2451         LooseCompatible && Idx != End; ++Idx) {
2452      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2453      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2454      if (Context.typesAreCompatible(OldParm->getType(),
2455                                     NewProto->getArgType(Idx))) {
2456        ArgTypes.push_back(NewParm->getType());
2457      } else if (Context.typesAreCompatible(OldParm->getType(),
2458                                            NewParm->getType(),
2459                                            /*CompareUnqualified=*/true)) {
2460        GNUCompatibleParamWarning Warn
2461          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2462        Warnings.push_back(Warn);
2463        ArgTypes.push_back(NewParm->getType());
2464      } else
2465        LooseCompatible = false;
2466    }
2467
2468    if (LooseCompatible) {
2469      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2470        Diag(Warnings[Warn].NewParm->getLocation(),
2471             diag::ext_param_promoted_not_compatible_with_prototype)
2472          << Warnings[Warn].PromotedType
2473          << Warnings[Warn].OldParm->getType();
2474        if (Warnings[Warn].OldParm->getLocation().isValid())
2475          Diag(Warnings[Warn].OldParm->getLocation(),
2476               diag::note_previous_declaration);
2477      }
2478
2479      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2480                                           ArgTypes.size(),
2481                                           OldProto->getExtProtoInfo()));
2482      return MergeCompatibleFunctionDecls(New, Old, S);
2483    }
2484
2485    // Fall through to diagnose conflicting types.
2486  }
2487
2488  // A function that has already been declared has been redeclared or defined
2489  // with a different type- show appropriate diagnostic
2490  if (unsigned BuiltinID = Old->getBuiltinID()) {
2491    // The user has declared a builtin function with an incompatible
2492    // signature.
2493    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2494      // The function the user is redeclaring is a library-defined
2495      // function like 'malloc' or 'printf'. Warn about the
2496      // redeclaration, then pretend that we don't know about this
2497      // library built-in.
2498      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2499      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2500        << Old << Old->getType();
2501      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2502      Old->setInvalidDecl();
2503      return false;
2504    }
2505
2506    PrevDiag = diag::note_previous_builtin_declaration;
2507  }
2508
2509  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2510  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2511  return true;
2512}
2513
2514/// \brief Completes the merge of two function declarations that are
2515/// known to be compatible.
2516///
2517/// This routine handles the merging of attributes and other
2518/// properties of function declarations form the old declaration to
2519/// the new declaration, once we know that New is in fact a
2520/// redeclaration of Old.
2521///
2522/// \returns false
2523bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2524                                        Scope *S) {
2525  // Merge the attributes
2526  mergeDeclAttributes(New, Old);
2527
2528  // Merge the storage class.
2529  if (Old->getStorageClass() != SC_Extern &&
2530      Old->getStorageClass() != SC_None)
2531    New->setStorageClass(Old->getStorageClass());
2532
2533  // Merge "pure" flag.
2534  if (Old->isPure())
2535    New->setPure();
2536
2537  // Merge "used" flag.
2538  if (Old->isUsed(false))
2539    New->setUsed();
2540
2541  // Merge attributes from the parameters.  These can mismatch with K&R
2542  // declarations.
2543  if (New->getNumParams() == Old->getNumParams())
2544    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2545      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2546                               *this);
2547
2548  if (getLangOpts().CPlusPlus)
2549    return MergeCXXFunctionDecl(New, Old, S);
2550
2551  // Merge the function types so the we get the composite types for the return
2552  // and argument types.
2553  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2554  if (!Merged.isNull())
2555    New->setType(Merged);
2556
2557  return false;
2558}
2559
2560
2561void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2562                                ObjCMethodDecl *oldMethod) {
2563
2564  // Merge the attributes, including deprecated/unavailable
2565  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2566
2567  // Merge attributes from the parameters.
2568  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2569                                       oe = oldMethod->param_end();
2570  for (ObjCMethodDecl::param_iterator
2571         ni = newMethod->param_begin(), ne = newMethod->param_end();
2572       ni != ne && oi != oe; ++ni, ++oi)
2573    mergeParamDeclAttributes(*ni, *oi, *this);
2574
2575  CheckObjCMethodOverride(newMethod, oldMethod);
2576}
2577
2578/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2579/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2580/// emitting diagnostics as appropriate.
2581///
2582/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2583/// to here in AddInitializerToDecl. We can't check them before the initializer
2584/// is attached.
2585void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2586  if (New->isInvalidDecl() || Old->isInvalidDecl())
2587    return;
2588
2589  QualType MergedT;
2590  if (getLangOpts().CPlusPlus) {
2591    AutoType *AT = New->getType()->getContainedAutoType();
2592    if (AT && !AT->isDeduced()) {
2593      // We don't know what the new type is until the initializer is attached.
2594      return;
2595    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2596      // These could still be something that needs exception specs checked.
2597      return MergeVarDeclExceptionSpecs(New, Old);
2598    }
2599    // C++ [basic.link]p10:
2600    //   [...] the types specified by all declarations referring to a given
2601    //   object or function shall be identical, except that declarations for an
2602    //   array object can specify array types that differ by the presence or
2603    //   absence of a major array bound (8.3.4).
2604    else if (Old->getType()->isIncompleteArrayType() &&
2605             New->getType()->isArrayType()) {
2606      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2607      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2608      if (Context.hasSameType(OldArray->getElementType(),
2609                              NewArray->getElementType()))
2610        MergedT = New->getType();
2611    } else if (Old->getType()->isArrayType() &&
2612             New->getType()->isIncompleteArrayType()) {
2613      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2614      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2615      if (Context.hasSameType(OldArray->getElementType(),
2616                              NewArray->getElementType()))
2617        MergedT = Old->getType();
2618    } else if (New->getType()->isObjCObjectPointerType()
2619               && Old->getType()->isObjCObjectPointerType()) {
2620        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2621                                                        Old->getType());
2622    }
2623  } else {
2624    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2625  }
2626  if (MergedT.isNull()) {
2627    Diag(New->getLocation(), diag::err_redefinition_different_type)
2628      << New->getDeclName() << New->getType() << Old->getType();
2629    Diag(Old->getLocation(), diag::note_previous_definition);
2630    return New->setInvalidDecl();
2631  }
2632  New->setType(MergedT);
2633}
2634
2635/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2636/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2637/// situation, merging decls or emitting diagnostics as appropriate.
2638///
2639/// Tentative definition rules (C99 6.9.2p2) are checked by
2640/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2641/// definitions here, since the initializer hasn't been attached.
2642///
2643void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2644  // If the new decl is already invalid, don't do any other checking.
2645  if (New->isInvalidDecl())
2646    return;
2647
2648  // Verify the old decl was also a variable.
2649  VarDecl *Old = 0;
2650  if (!Previous.isSingleResult() ||
2651      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2652    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2653      << New->getDeclName();
2654    Diag(Previous.getRepresentativeDecl()->getLocation(),
2655         diag::note_previous_definition);
2656    return New->setInvalidDecl();
2657  }
2658
2659  // C++ [class.mem]p1:
2660  //   A member shall not be declared twice in the member-specification [...]
2661  //
2662  // Here, we need only consider static data members.
2663  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2664    Diag(New->getLocation(), diag::err_duplicate_member)
2665      << New->getIdentifier();
2666    Diag(Old->getLocation(), diag::note_previous_declaration);
2667    New->setInvalidDecl();
2668  }
2669
2670  mergeDeclAttributes(New, Old);
2671  // Warn if an already-declared variable is made a weak_import in a subsequent
2672  // declaration
2673  if (New->getAttr<WeakImportAttr>() &&
2674      Old->getStorageClass() == SC_None &&
2675      !Old->getAttr<WeakImportAttr>()) {
2676    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2677    Diag(Old->getLocation(), diag::note_previous_definition);
2678    // Remove weak_import attribute on new declaration.
2679    New->dropAttr<WeakImportAttr>();
2680  }
2681
2682  // Merge the types.
2683  MergeVarDeclTypes(New, Old);
2684  if (New->isInvalidDecl())
2685    return;
2686
2687  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2688  if (New->getStorageClass() == SC_Static &&
2689      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2690    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2691    Diag(Old->getLocation(), diag::note_previous_definition);
2692    return New->setInvalidDecl();
2693  }
2694  // C99 6.2.2p4:
2695  //   For an identifier declared with the storage-class specifier
2696  //   extern in a scope in which a prior declaration of that
2697  //   identifier is visible,23) if the prior declaration specifies
2698  //   internal or external linkage, the linkage of the identifier at
2699  //   the later declaration is the same as the linkage specified at
2700  //   the prior declaration. If no prior declaration is visible, or
2701  //   if the prior declaration specifies no linkage, then the
2702  //   identifier has external linkage.
2703  if (New->hasExternalStorage() && Old->hasLinkage())
2704    /* Okay */;
2705  else if (New->getStorageClass() != SC_Static &&
2706           Old->getStorageClass() == SC_Static) {
2707    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2708    Diag(Old->getLocation(), diag::note_previous_definition);
2709    return New->setInvalidDecl();
2710  }
2711
2712  // Check if extern is followed by non-extern and vice-versa.
2713  if (New->hasExternalStorage() &&
2714      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2715    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2716    Diag(Old->getLocation(), diag::note_previous_definition);
2717    return New->setInvalidDecl();
2718  }
2719  if (Old->hasExternalStorage() &&
2720      !New->hasLinkage() && New->isLocalVarDecl()) {
2721    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2722    Diag(Old->getLocation(), diag::note_previous_definition);
2723    return New->setInvalidDecl();
2724  }
2725
2726  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2727
2728  // FIXME: The test for external storage here seems wrong? We still
2729  // need to check for mismatches.
2730  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2731      // Don't complain about out-of-line definitions of static members.
2732      !(Old->getLexicalDeclContext()->isRecord() &&
2733        !New->getLexicalDeclContext()->isRecord())) {
2734    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2735    Diag(Old->getLocation(), diag::note_previous_definition);
2736    return New->setInvalidDecl();
2737  }
2738
2739  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2740    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2741    Diag(Old->getLocation(), diag::note_previous_definition);
2742  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2743    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2744    Diag(Old->getLocation(), diag::note_previous_definition);
2745  }
2746
2747  // C++ doesn't have tentative definitions, so go right ahead and check here.
2748  const VarDecl *Def;
2749  if (getLangOpts().CPlusPlus &&
2750      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2751      (Def = Old->getDefinition())) {
2752    Diag(New->getLocation(), diag::err_redefinition)
2753      << New->getDeclName();
2754    Diag(Def->getLocation(), diag::note_previous_definition);
2755    New->setInvalidDecl();
2756    return;
2757  }
2758
2759  if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2760    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2761    Diag(Old->getLocation(), diag::note_previous_definition);
2762    New->setInvalidDecl();
2763    return;
2764  }
2765
2766  // c99 6.2.2 P4.
2767  // For an identifier declared with the storage-class specifier extern in a
2768  // scope in which a prior declaration of that identifier is visible, if
2769  // the prior declaration specifies internal or external linkage, the linkage
2770  // of the identifier at the later declaration is the same as the linkage
2771  // specified at the prior declaration.
2772  // FIXME. revisit this code.
2773  if (New->hasExternalStorage() &&
2774      Old->getLinkage() == InternalLinkage)
2775    New->setStorageClass(Old->getStorageClass());
2776
2777  // Merge "used" flag.
2778  if (Old->isUsed(false))
2779    New->setUsed();
2780
2781  // Keep a chain of previous declarations.
2782  New->setPreviousDeclaration(Old);
2783
2784  // Inherit access appropriately.
2785  New->setAccess(Old->getAccess());
2786}
2787
2788/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2789/// no declarator (e.g. "struct foo;") is parsed.
2790Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2791                                       DeclSpec &DS) {
2792  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2793}
2794
2795/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2796/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2797/// parameters to cope with template friend declarations.
2798Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2799                                       DeclSpec &DS,
2800                                       MultiTemplateParamsArg TemplateParams) {
2801  Decl *TagD = 0;
2802  TagDecl *Tag = 0;
2803  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2804      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2805      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2806      DS.getTypeSpecType() == DeclSpec::TST_union ||
2807      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2808    TagD = DS.getRepAsDecl();
2809
2810    if (!TagD) // We probably had an error
2811      return 0;
2812
2813    // Note that the above type specs guarantee that the
2814    // type rep is a Decl, whereas in many of the others
2815    // it's a Type.
2816    if (isa<TagDecl>(TagD))
2817      Tag = cast<TagDecl>(TagD);
2818    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2819      Tag = CTD->getTemplatedDecl();
2820  }
2821
2822  if (Tag) {
2823    getASTContext().addUnnamedTag(Tag);
2824    Tag->setFreeStanding();
2825    if (Tag->isInvalidDecl())
2826      return Tag;
2827  }
2828
2829  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2830    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2831    // or incomplete types shall not be restrict-qualified."
2832    if (TypeQuals & DeclSpec::TQ_restrict)
2833      Diag(DS.getRestrictSpecLoc(),
2834           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2835           << DS.getSourceRange();
2836  }
2837
2838  if (DS.isConstexprSpecified()) {
2839    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2840    // and definitions of functions and variables.
2841    if (Tag)
2842      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2843        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2844            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2845            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2846            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2847    else
2848      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2849    // Don't emit warnings after this error.
2850    return TagD;
2851  }
2852
2853  if (DS.isFriendSpecified()) {
2854    // If we're dealing with a decl but not a TagDecl, assume that
2855    // whatever routines created it handled the friendship aspect.
2856    if (TagD && !Tag)
2857      return 0;
2858    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2859  }
2860
2861  // Track whether we warned about the fact that there aren't any
2862  // declarators.
2863  bool emittedWarning = false;
2864
2865  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2866    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2867        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2868      if (getLangOpts().CPlusPlus ||
2869          Record->getDeclContext()->isRecord())
2870        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2871
2872      Diag(DS.getLocStart(), diag::ext_no_declarators)
2873        << DS.getSourceRange();
2874      emittedWarning = true;
2875    }
2876  }
2877
2878  // Check for Microsoft C extension: anonymous struct.
2879  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2880      CurContext->isRecord() &&
2881      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2882    // Handle 2 kinds of anonymous struct:
2883    //   struct STRUCT;
2884    // and
2885    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2886    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2887    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2888        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2889         DS.getRepAsType().get()->isStructureType())) {
2890      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2891        << DS.getSourceRange();
2892      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2893    }
2894  }
2895
2896  if (getLangOpts().CPlusPlus &&
2897      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2898    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2899      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2900          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2901        Diag(Enum->getLocation(), diag::ext_no_declarators)
2902          << DS.getSourceRange();
2903        emittedWarning = true;
2904      }
2905
2906  // Skip all the checks below if we have a type error.
2907  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2908
2909  if (!DS.isMissingDeclaratorOk()) {
2910    // Warn about typedefs of enums without names, since this is an
2911    // extension in both Microsoft and GNU.
2912    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2913        Tag && isa<EnumDecl>(Tag)) {
2914      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2915        << DS.getSourceRange();
2916      return Tag;
2917    }
2918
2919    Diag(DS.getLocStart(), diag::ext_no_declarators)
2920      << DS.getSourceRange();
2921    emittedWarning = true;
2922  }
2923
2924  // We're going to complain about a bunch of spurious specifiers;
2925  // only do this if we're declaring a tag, because otherwise we
2926  // should be getting diag::ext_no_declarators.
2927  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2928    return TagD;
2929
2930  // Note that a linkage-specification sets a storage class, but
2931  // 'extern "C" struct foo;' is actually valid and not theoretically
2932  // useless.
2933  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2934    if (!DS.isExternInLinkageSpec())
2935      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2936        << DeclSpec::getSpecifierName(scs);
2937
2938  if (DS.isThreadSpecified())
2939    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2940  if (DS.getTypeQualifiers()) {
2941    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2942      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2943    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2944      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2945    // Restrict is covered above.
2946  }
2947  if (DS.isInlineSpecified())
2948    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2949  if (DS.isVirtualSpecified())
2950    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2951  if (DS.isExplicitSpecified())
2952    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2953
2954  if (DS.isModulePrivateSpecified() &&
2955      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2956    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2957      << Tag->getTagKind()
2958      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2959
2960  // Warn about ignored type attributes, for example:
2961  // __attribute__((aligned)) struct A;
2962  // Attributes should be placed after tag to apply to type declaration.
2963  if (!DS.getAttributes().empty()) {
2964    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2965    if (TypeSpecType == DeclSpec::TST_class ||
2966        TypeSpecType == DeclSpec::TST_struct ||
2967        TypeSpecType == DeclSpec::TST_interface ||
2968        TypeSpecType == DeclSpec::TST_union ||
2969        TypeSpecType == DeclSpec::TST_enum) {
2970      AttributeList* attrs = DS.getAttributes().getList();
2971      while (attrs) {
2972        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2973        << attrs->getName()
2974        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2975            TypeSpecType == DeclSpec::TST_struct ? 1 :
2976            TypeSpecType == DeclSpec::TST_union ? 2 :
2977            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2978        attrs = attrs->getNext();
2979      }
2980    }
2981  }
2982
2983  ActOnDocumentableDecl(TagD);
2984
2985  return TagD;
2986}
2987
2988/// We are trying to inject an anonymous member into the given scope;
2989/// check if there's an existing declaration that can't be overloaded.
2990///
2991/// \return true if this is a forbidden redeclaration
2992static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2993                                         Scope *S,
2994                                         DeclContext *Owner,
2995                                         DeclarationName Name,
2996                                         SourceLocation NameLoc,
2997                                         unsigned diagnostic) {
2998  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2999                 Sema::ForRedeclaration);
3000  if (!SemaRef.LookupName(R, S)) return false;
3001
3002  if (R.getAsSingle<TagDecl>())
3003    return false;
3004
3005  // Pick a representative declaration.
3006  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3007  assert(PrevDecl && "Expected a non-null Decl");
3008
3009  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3010    return false;
3011
3012  SemaRef.Diag(NameLoc, diagnostic) << Name;
3013  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3014
3015  return true;
3016}
3017
3018/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3019/// anonymous struct or union AnonRecord into the owning context Owner
3020/// and scope S. This routine will be invoked just after we realize
3021/// that an unnamed union or struct is actually an anonymous union or
3022/// struct, e.g.,
3023///
3024/// @code
3025/// union {
3026///   int i;
3027///   float f;
3028/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3029///    // f into the surrounding scope.x
3030/// @endcode
3031///
3032/// This routine is recursive, injecting the names of nested anonymous
3033/// structs/unions into the owning context and scope as well.
3034static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3035                                                DeclContext *Owner,
3036                                                RecordDecl *AnonRecord,
3037                                                AccessSpecifier AS,
3038                              SmallVector<NamedDecl*, 2> &Chaining,
3039                                                      bool MSAnonStruct) {
3040  unsigned diagKind
3041    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3042                            : diag::err_anonymous_struct_member_redecl;
3043
3044  bool Invalid = false;
3045
3046  // Look every FieldDecl and IndirectFieldDecl with a name.
3047  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3048                               DEnd = AnonRecord->decls_end();
3049       D != DEnd; ++D) {
3050    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3051        cast<NamedDecl>(*D)->getDeclName()) {
3052      ValueDecl *VD = cast<ValueDecl>(*D);
3053      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3054                                       VD->getLocation(), diagKind)) {
3055        // C++ [class.union]p2:
3056        //   The names of the members of an anonymous union shall be
3057        //   distinct from the names of any other entity in the
3058        //   scope in which the anonymous union is declared.
3059        Invalid = true;
3060      } else {
3061        // C++ [class.union]p2:
3062        //   For the purpose of name lookup, after the anonymous union
3063        //   definition, the members of the anonymous union are
3064        //   considered to have been defined in the scope in which the
3065        //   anonymous union is declared.
3066        unsigned OldChainingSize = Chaining.size();
3067        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3068          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3069               PE = IF->chain_end(); PI != PE; ++PI)
3070            Chaining.push_back(*PI);
3071        else
3072          Chaining.push_back(VD);
3073
3074        assert(Chaining.size() >= 2);
3075        NamedDecl **NamedChain =
3076          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3077        for (unsigned i = 0; i < Chaining.size(); i++)
3078          NamedChain[i] = Chaining[i];
3079
3080        IndirectFieldDecl* IndirectField =
3081          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3082                                    VD->getIdentifier(), VD->getType(),
3083                                    NamedChain, Chaining.size());
3084
3085        IndirectField->setAccess(AS);
3086        IndirectField->setImplicit();
3087        SemaRef.PushOnScopeChains(IndirectField, S);
3088
3089        // That includes picking up the appropriate access specifier.
3090        if (AS != AS_none) IndirectField->setAccess(AS);
3091
3092        Chaining.resize(OldChainingSize);
3093      }
3094    }
3095  }
3096
3097  return Invalid;
3098}
3099
3100/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3101/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3102/// illegal input values are mapped to SC_None.
3103static StorageClass
3104StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3105  switch (StorageClassSpec) {
3106  case DeclSpec::SCS_unspecified:    return SC_None;
3107  case DeclSpec::SCS_extern:         return SC_Extern;
3108  case DeclSpec::SCS_static:         return SC_Static;
3109  case DeclSpec::SCS_auto:           return SC_Auto;
3110  case DeclSpec::SCS_register:       return SC_Register;
3111  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3112    // Illegal SCSs map to None: error reporting is up to the caller.
3113  case DeclSpec::SCS_mutable:        // Fall through.
3114  case DeclSpec::SCS_typedef:        return SC_None;
3115  }
3116  llvm_unreachable("unknown storage class specifier");
3117}
3118
3119/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3120/// a StorageClass. Any error reporting is up to the caller:
3121/// illegal input values are mapped to SC_None.
3122static StorageClass
3123StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3124  switch (StorageClassSpec) {
3125  case DeclSpec::SCS_unspecified:    return SC_None;
3126  case DeclSpec::SCS_extern:         return SC_Extern;
3127  case DeclSpec::SCS_static:         return SC_Static;
3128  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3129    // Illegal SCSs map to None: error reporting is up to the caller.
3130  case DeclSpec::SCS_auto:           // Fall through.
3131  case DeclSpec::SCS_mutable:        // Fall through.
3132  case DeclSpec::SCS_register:       // Fall through.
3133  case DeclSpec::SCS_typedef:        return SC_None;
3134  }
3135  llvm_unreachable("unknown storage class specifier");
3136}
3137
3138/// BuildAnonymousStructOrUnion - Handle the declaration of an
3139/// anonymous structure or union. Anonymous unions are a C++ feature
3140/// (C++ [class.union]) and a C11 feature; anonymous structures
3141/// are a C11 feature and GNU C++ extension.
3142Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3143                                             AccessSpecifier AS,
3144                                             RecordDecl *Record) {
3145  DeclContext *Owner = Record->getDeclContext();
3146
3147  // Diagnose whether this anonymous struct/union is an extension.
3148  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3149    Diag(Record->getLocation(), diag::ext_anonymous_union);
3150  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3151    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3152  else if (!Record->isUnion() && !getLangOpts().C11)
3153    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3154
3155  // C and C++ require different kinds of checks for anonymous
3156  // structs/unions.
3157  bool Invalid = false;
3158  if (getLangOpts().CPlusPlus) {
3159    const char* PrevSpec = 0;
3160    unsigned DiagID;
3161    if (Record->isUnion()) {
3162      // C++ [class.union]p6:
3163      //   Anonymous unions declared in a named namespace or in the
3164      //   global namespace shall be declared static.
3165      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3166          (isa<TranslationUnitDecl>(Owner) ||
3167           (isa<NamespaceDecl>(Owner) &&
3168            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3169        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3170          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3171
3172        // Recover by adding 'static'.
3173        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3174                               PrevSpec, DiagID);
3175      }
3176      // C++ [class.union]p6:
3177      //   A storage class is not allowed in a declaration of an
3178      //   anonymous union in a class scope.
3179      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3180               isa<RecordDecl>(Owner)) {
3181        Diag(DS.getStorageClassSpecLoc(),
3182             diag::err_anonymous_union_with_storage_spec)
3183          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3184
3185        // Recover by removing the storage specifier.
3186        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3187                               SourceLocation(),
3188                               PrevSpec, DiagID);
3189      }
3190    }
3191
3192    // Ignore const/volatile/restrict qualifiers.
3193    if (DS.getTypeQualifiers()) {
3194      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3195        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3196          << Record->isUnion() << 0
3197          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3198      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3199        Diag(DS.getVolatileSpecLoc(),
3200             diag::ext_anonymous_struct_union_qualified)
3201          << Record->isUnion() << 1
3202          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3203      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3204        Diag(DS.getRestrictSpecLoc(),
3205             diag::ext_anonymous_struct_union_qualified)
3206          << Record->isUnion() << 2
3207          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3208
3209      DS.ClearTypeQualifiers();
3210    }
3211
3212    // C++ [class.union]p2:
3213    //   The member-specification of an anonymous union shall only
3214    //   define non-static data members. [Note: nested types and
3215    //   functions cannot be declared within an anonymous union. ]
3216    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3217                                 MemEnd = Record->decls_end();
3218         Mem != MemEnd; ++Mem) {
3219      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3220        // C++ [class.union]p3:
3221        //   An anonymous union shall not have private or protected
3222        //   members (clause 11).
3223        assert(FD->getAccess() != AS_none);
3224        if (FD->getAccess() != AS_public) {
3225          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3226            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3227          Invalid = true;
3228        }
3229
3230        // C++ [class.union]p1
3231        //   An object of a class with a non-trivial constructor, a non-trivial
3232        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3233        //   assignment operator cannot be a member of a union, nor can an
3234        //   array of such objects.
3235        if (CheckNontrivialField(FD))
3236          Invalid = true;
3237      } else if ((*Mem)->isImplicit()) {
3238        // Any implicit members are fine.
3239      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3240        // This is a type that showed up in an
3241        // elaborated-type-specifier inside the anonymous struct or
3242        // union, but which actually declares a type outside of the
3243        // anonymous struct or union. It's okay.
3244      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3245        if (!MemRecord->isAnonymousStructOrUnion() &&
3246            MemRecord->getDeclName()) {
3247          // Visual C++ allows type definition in anonymous struct or union.
3248          if (getLangOpts().MicrosoftExt)
3249            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3250              << (int)Record->isUnion();
3251          else {
3252            // This is a nested type declaration.
3253            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3254              << (int)Record->isUnion();
3255            Invalid = true;
3256          }
3257        } else {
3258          // This is an anonymous type definition within another anonymous type.
3259          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3260          // not part of standard C++.
3261          Diag(MemRecord->getLocation(),
3262               diag::ext_anonymous_record_with_anonymous_type)
3263            << (int)Record->isUnion();
3264        }
3265      } else if (isa<AccessSpecDecl>(*Mem)) {
3266        // Any access specifier is fine.
3267      } else {
3268        // We have something that isn't a non-static data
3269        // member. Complain about it.
3270        unsigned DK = diag::err_anonymous_record_bad_member;
3271        if (isa<TypeDecl>(*Mem))
3272          DK = diag::err_anonymous_record_with_type;
3273        else if (isa<FunctionDecl>(*Mem))
3274          DK = diag::err_anonymous_record_with_function;
3275        else if (isa<VarDecl>(*Mem))
3276          DK = diag::err_anonymous_record_with_static;
3277
3278        // Visual C++ allows type definition in anonymous struct or union.
3279        if (getLangOpts().MicrosoftExt &&
3280            DK == diag::err_anonymous_record_with_type)
3281          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3282            << (int)Record->isUnion();
3283        else {
3284          Diag((*Mem)->getLocation(), DK)
3285              << (int)Record->isUnion();
3286          Invalid = true;
3287        }
3288      }
3289    }
3290  }
3291
3292  if (!Record->isUnion() && !Owner->isRecord()) {
3293    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3294      << (int)getLangOpts().CPlusPlus;
3295    Invalid = true;
3296  }
3297
3298  // Mock up a declarator.
3299  Declarator Dc(DS, Declarator::MemberContext);
3300  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3301  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3302
3303  // Create a declaration for this anonymous struct/union.
3304  NamedDecl *Anon = 0;
3305  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3306    Anon = FieldDecl::Create(Context, OwningClass,
3307                             DS.getLocStart(),
3308                             Record->getLocation(),
3309                             /*IdentifierInfo=*/0,
3310                             Context.getTypeDeclType(Record),
3311                             TInfo,
3312                             /*BitWidth=*/0, /*Mutable=*/false,
3313                             /*InitStyle=*/ICIS_NoInit);
3314    Anon->setAccess(AS);
3315    if (getLangOpts().CPlusPlus)
3316      FieldCollector->Add(cast<FieldDecl>(Anon));
3317  } else {
3318    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3319    assert(SCSpec != DeclSpec::SCS_typedef &&
3320           "Parser allowed 'typedef' as storage class VarDecl.");
3321    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3322    if (SCSpec == DeclSpec::SCS_mutable) {
3323      // mutable can only appear on non-static class members, so it's always
3324      // an error here
3325      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3326      Invalid = true;
3327      SC = SC_None;
3328    }
3329    SCSpec = DS.getStorageClassSpecAsWritten();
3330    VarDecl::StorageClass SCAsWritten
3331      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3332
3333    Anon = VarDecl::Create(Context, Owner,
3334                           DS.getLocStart(),
3335                           Record->getLocation(), /*IdentifierInfo=*/0,
3336                           Context.getTypeDeclType(Record),
3337                           TInfo, SC, SCAsWritten);
3338
3339    // Default-initialize the implicit variable. This initialization will be
3340    // trivial in almost all cases, except if a union member has an in-class
3341    // initializer:
3342    //   union { int n = 0; };
3343    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3344  }
3345  Anon->setImplicit();
3346
3347  // Add the anonymous struct/union object to the current
3348  // context. We'll be referencing this object when we refer to one of
3349  // its members.
3350  Owner->addDecl(Anon);
3351
3352  // Inject the members of the anonymous struct/union into the owning
3353  // context and into the identifier resolver chain for name lookup
3354  // purposes.
3355  SmallVector<NamedDecl*, 2> Chain;
3356  Chain.push_back(Anon);
3357
3358  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3359                                          Chain, false))
3360    Invalid = true;
3361
3362  // Mark this as an anonymous struct/union type. Note that we do not
3363  // do this until after we have already checked and injected the
3364  // members of this anonymous struct/union type, because otherwise
3365  // the members could be injected twice: once by DeclContext when it
3366  // builds its lookup table, and once by
3367  // InjectAnonymousStructOrUnionMembers.
3368  Record->setAnonymousStructOrUnion(true);
3369
3370  if (Invalid)
3371    Anon->setInvalidDecl();
3372
3373  return Anon;
3374}
3375
3376/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3377/// Microsoft C anonymous structure.
3378/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3379/// Example:
3380///
3381/// struct A { int a; };
3382/// struct B { struct A; int b; };
3383///
3384/// void foo() {
3385///   B var;
3386///   var.a = 3;
3387/// }
3388///
3389Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3390                                           RecordDecl *Record) {
3391
3392  // If there is no Record, get the record via the typedef.
3393  if (!Record)
3394    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3395
3396  // Mock up a declarator.
3397  Declarator Dc(DS, Declarator::TypeNameContext);
3398  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3399  assert(TInfo && "couldn't build declarator info for anonymous struct");
3400
3401  // Create a declaration for this anonymous struct.
3402  NamedDecl* Anon = FieldDecl::Create(Context,
3403                             cast<RecordDecl>(CurContext),
3404                             DS.getLocStart(),
3405                             DS.getLocStart(),
3406                             /*IdentifierInfo=*/0,
3407                             Context.getTypeDeclType(Record),
3408                             TInfo,
3409                             /*BitWidth=*/0, /*Mutable=*/false,
3410                             /*InitStyle=*/ICIS_NoInit);
3411  Anon->setImplicit();
3412
3413  // Add the anonymous struct object to the current context.
3414  CurContext->addDecl(Anon);
3415
3416  // Inject the members of the anonymous struct into the current
3417  // context and into the identifier resolver chain for name lookup
3418  // purposes.
3419  SmallVector<NamedDecl*, 2> Chain;
3420  Chain.push_back(Anon);
3421
3422  RecordDecl *RecordDef = Record->getDefinition();
3423  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3424                                                        RecordDef, AS_none,
3425                                                        Chain, true))
3426    Anon->setInvalidDecl();
3427
3428  return Anon;
3429}
3430
3431/// GetNameForDeclarator - Determine the full declaration name for the
3432/// given Declarator.
3433DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3434  return GetNameFromUnqualifiedId(D.getName());
3435}
3436
3437/// \brief Retrieves the declaration name from a parsed unqualified-id.
3438DeclarationNameInfo
3439Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3440  DeclarationNameInfo NameInfo;
3441  NameInfo.setLoc(Name.StartLocation);
3442
3443  switch (Name.getKind()) {
3444
3445  case UnqualifiedId::IK_ImplicitSelfParam:
3446  case UnqualifiedId::IK_Identifier:
3447    NameInfo.setName(Name.Identifier);
3448    NameInfo.setLoc(Name.StartLocation);
3449    return NameInfo;
3450
3451  case UnqualifiedId::IK_OperatorFunctionId:
3452    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3453                                           Name.OperatorFunctionId.Operator));
3454    NameInfo.setLoc(Name.StartLocation);
3455    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3456      = Name.OperatorFunctionId.SymbolLocations[0];
3457    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3458      = Name.EndLocation.getRawEncoding();
3459    return NameInfo;
3460
3461  case UnqualifiedId::IK_LiteralOperatorId:
3462    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3463                                                           Name.Identifier));
3464    NameInfo.setLoc(Name.StartLocation);
3465    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3466    return NameInfo;
3467
3468  case UnqualifiedId::IK_ConversionFunctionId: {
3469    TypeSourceInfo *TInfo;
3470    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3471    if (Ty.isNull())
3472      return DeclarationNameInfo();
3473    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3474                                               Context.getCanonicalType(Ty)));
3475    NameInfo.setLoc(Name.StartLocation);
3476    NameInfo.setNamedTypeInfo(TInfo);
3477    return NameInfo;
3478  }
3479
3480  case UnqualifiedId::IK_ConstructorName: {
3481    TypeSourceInfo *TInfo;
3482    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3483    if (Ty.isNull())
3484      return DeclarationNameInfo();
3485    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3486                                              Context.getCanonicalType(Ty)));
3487    NameInfo.setLoc(Name.StartLocation);
3488    NameInfo.setNamedTypeInfo(TInfo);
3489    return NameInfo;
3490  }
3491
3492  case UnqualifiedId::IK_ConstructorTemplateId: {
3493    // In well-formed code, we can only have a constructor
3494    // template-id that refers to the current context, so go there
3495    // to find the actual type being constructed.
3496    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3497    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3498      return DeclarationNameInfo();
3499
3500    // Determine the type of the class being constructed.
3501    QualType CurClassType = Context.getTypeDeclType(CurClass);
3502
3503    // FIXME: Check two things: that the template-id names the same type as
3504    // CurClassType, and that the template-id does not occur when the name
3505    // was qualified.
3506
3507    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3508                                    Context.getCanonicalType(CurClassType)));
3509    NameInfo.setLoc(Name.StartLocation);
3510    // FIXME: should we retrieve TypeSourceInfo?
3511    NameInfo.setNamedTypeInfo(0);
3512    return NameInfo;
3513  }
3514
3515  case UnqualifiedId::IK_DestructorName: {
3516    TypeSourceInfo *TInfo;
3517    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3518    if (Ty.isNull())
3519      return DeclarationNameInfo();
3520    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3521                                              Context.getCanonicalType(Ty)));
3522    NameInfo.setLoc(Name.StartLocation);
3523    NameInfo.setNamedTypeInfo(TInfo);
3524    return NameInfo;
3525  }
3526
3527  case UnqualifiedId::IK_TemplateId: {
3528    TemplateName TName = Name.TemplateId->Template.get();
3529    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3530    return Context.getNameForTemplate(TName, TNameLoc);
3531  }
3532
3533  } // switch (Name.getKind())
3534
3535  llvm_unreachable("Unknown name kind");
3536}
3537
3538static QualType getCoreType(QualType Ty) {
3539  do {
3540    if (Ty->isPointerType() || Ty->isReferenceType())
3541      Ty = Ty->getPointeeType();
3542    else if (Ty->isArrayType())
3543      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3544    else
3545      return Ty.withoutLocalFastQualifiers();
3546  } while (true);
3547}
3548
3549/// hasSimilarParameters - Determine whether the C++ functions Declaration
3550/// and Definition have "nearly" matching parameters. This heuristic is
3551/// used to improve diagnostics in the case where an out-of-line function
3552/// definition doesn't match any declaration within the class or namespace.
3553/// Also sets Params to the list of indices to the parameters that differ
3554/// between the declaration and the definition. If hasSimilarParameters
3555/// returns true and Params is empty, then all of the parameters match.
3556static bool hasSimilarParameters(ASTContext &Context,
3557                                     FunctionDecl *Declaration,
3558                                     FunctionDecl *Definition,
3559                                     SmallVectorImpl<unsigned> &Params) {
3560  Params.clear();
3561  if (Declaration->param_size() != Definition->param_size())
3562    return false;
3563  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3564    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3565    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3566
3567    // The parameter types are identical
3568    if (Context.hasSameType(DefParamTy, DeclParamTy))
3569      continue;
3570
3571    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3572    QualType DefParamBaseTy = getCoreType(DefParamTy);
3573    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3574    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3575
3576    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3577        (DeclTyName && DeclTyName == DefTyName))
3578      Params.push_back(Idx);
3579    else  // The two parameters aren't even close
3580      return false;
3581  }
3582
3583  return true;
3584}
3585
3586/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3587/// declarator needs to be rebuilt in the current instantiation.
3588/// Any bits of declarator which appear before the name are valid for
3589/// consideration here.  That's specifically the type in the decl spec
3590/// and the base type in any member-pointer chunks.
3591static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3592                                                    DeclarationName Name) {
3593  // The types we specifically need to rebuild are:
3594  //   - typenames, typeofs, and decltypes
3595  //   - types which will become injected class names
3596  // Of course, we also need to rebuild any type referencing such a
3597  // type.  It's safest to just say "dependent", but we call out a
3598  // few cases here.
3599
3600  DeclSpec &DS = D.getMutableDeclSpec();
3601  switch (DS.getTypeSpecType()) {
3602  case DeclSpec::TST_typename:
3603  case DeclSpec::TST_typeofType:
3604  case DeclSpec::TST_underlyingType:
3605  case DeclSpec::TST_atomic: {
3606    // Grab the type from the parser.
3607    TypeSourceInfo *TSI = 0;
3608    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3609    if (T.isNull() || !T->isDependentType()) break;
3610
3611    // Make sure there's a type source info.  This isn't really much
3612    // of a waste; most dependent types should have type source info
3613    // attached already.
3614    if (!TSI)
3615      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3616
3617    // Rebuild the type in the current instantiation.
3618    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3619    if (!TSI) return true;
3620
3621    // Store the new type back in the decl spec.
3622    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3623    DS.UpdateTypeRep(LocType);
3624    break;
3625  }
3626
3627  case DeclSpec::TST_decltype:
3628  case DeclSpec::TST_typeofExpr: {
3629    Expr *E = DS.getRepAsExpr();
3630    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3631    if (Result.isInvalid()) return true;
3632    DS.UpdateExprRep(Result.get());
3633    break;
3634  }
3635
3636  default:
3637    // Nothing to do for these decl specs.
3638    break;
3639  }
3640
3641  // It doesn't matter what order we do this in.
3642  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3643    DeclaratorChunk &Chunk = D.getTypeObject(I);
3644
3645    // The only type information in the declarator which can come
3646    // before the declaration name is the base type of a member
3647    // pointer.
3648    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3649      continue;
3650
3651    // Rebuild the scope specifier in-place.
3652    CXXScopeSpec &SS = Chunk.Mem.Scope();
3653    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3654      return true;
3655  }
3656
3657  return false;
3658}
3659
3660Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3661  D.setFunctionDefinitionKind(FDK_Declaration);
3662  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3663
3664  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3665      Dcl && Dcl->getDeclContext()->isFileContext())
3666    Dcl->setTopLevelDeclInObjCContainer();
3667
3668  return Dcl;
3669}
3670
3671/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3672///   If T is the name of a class, then each of the following shall have a
3673///   name different from T:
3674///     - every static data member of class T;
3675///     - every member function of class T
3676///     - every member of class T that is itself a type;
3677/// \returns true if the declaration name violates these rules.
3678bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3679                                   DeclarationNameInfo NameInfo) {
3680  DeclarationName Name = NameInfo.getName();
3681
3682  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3683    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3684      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3685      return true;
3686    }
3687
3688  return false;
3689}
3690
3691/// \brief Diagnose a declaration whose declarator-id has the given
3692/// nested-name-specifier.
3693///
3694/// \param SS The nested-name-specifier of the declarator-id.
3695///
3696/// \param DC The declaration context to which the nested-name-specifier
3697/// resolves.
3698///
3699/// \param Name The name of the entity being declared.
3700///
3701/// \param Loc The location of the name of the entity being declared.
3702///
3703/// \returns true if we cannot safely recover from this error, false otherwise.
3704bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3705                                        DeclarationName Name,
3706                                      SourceLocation Loc) {
3707  DeclContext *Cur = CurContext;
3708  while (isa<LinkageSpecDecl>(Cur))
3709    Cur = Cur->getParent();
3710
3711  // C++ [dcl.meaning]p1:
3712  //   A declarator-id shall not be qualified except for the definition
3713  //   of a member function (9.3) or static data member (9.4) outside of
3714  //   its class, the definition or explicit instantiation of a function
3715  //   or variable member of a namespace outside of its namespace, or the
3716  //   definition of an explicit specialization outside of its namespace,
3717  //   or the declaration of a friend function that is a member of
3718  //   another class or namespace (11.3). [...]
3719
3720  // The user provided a superfluous scope specifier that refers back to the
3721  // class or namespaces in which the entity is already declared.
3722  //
3723  // class X {
3724  //   void X::f();
3725  // };
3726  if (Cur->Equals(DC)) {
3727    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3728                                   : diag::err_member_extra_qualification)
3729      << Name << FixItHint::CreateRemoval(SS.getRange());
3730    SS.clear();
3731    return false;
3732  }
3733
3734  // Check whether the qualifying scope encloses the scope of the original
3735  // declaration.
3736  if (!Cur->Encloses(DC)) {
3737    if (Cur->isRecord())
3738      Diag(Loc, diag::err_member_qualification)
3739        << Name << SS.getRange();
3740    else if (isa<TranslationUnitDecl>(DC))
3741      Diag(Loc, diag::err_invalid_declarator_global_scope)
3742        << Name << SS.getRange();
3743    else if (isa<FunctionDecl>(Cur))
3744      Diag(Loc, diag::err_invalid_declarator_in_function)
3745        << Name << SS.getRange();
3746    else
3747      Diag(Loc, diag::err_invalid_declarator_scope)
3748      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3749
3750    return true;
3751  }
3752
3753  if (Cur->isRecord()) {
3754    // Cannot qualify members within a class.
3755    Diag(Loc, diag::err_member_qualification)
3756      << Name << SS.getRange();
3757    SS.clear();
3758
3759    // C++ constructors and destructors with incorrect scopes can break
3760    // our AST invariants by having the wrong underlying types. If
3761    // that's the case, then drop this declaration entirely.
3762    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3763         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3764        !Context.hasSameType(Name.getCXXNameType(),
3765                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3766      return true;
3767
3768    return false;
3769  }
3770
3771  // C++11 [dcl.meaning]p1:
3772  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3773  //   not begin with a decltype-specifer"
3774  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3775  while (SpecLoc.getPrefix())
3776    SpecLoc = SpecLoc.getPrefix();
3777  if (dyn_cast_or_null<DecltypeType>(
3778        SpecLoc.getNestedNameSpecifier()->getAsType()))
3779    Diag(Loc, diag::err_decltype_in_declarator)
3780      << SpecLoc.getTypeLoc().getSourceRange();
3781
3782  return false;
3783}
3784
3785NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3786                                  MultiTemplateParamsArg TemplateParamLists) {
3787  // TODO: consider using NameInfo for diagnostic.
3788  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3789  DeclarationName Name = NameInfo.getName();
3790
3791  // All of these full declarators require an identifier.  If it doesn't have
3792  // one, the ParsedFreeStandingDeclSpec action should be used.
3793  if (!Name) {
3794    if (!D.isInvalidType())  // Reject this if we think it is valid.
3795      Diag(D.getDeclSpec().getLocStart(),
3796           diag::err_declarator_need_ident)
3797        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3798    return 0;
3799  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3800    return 0;
3801
3802  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3803  // we find one that is.
3804  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3805         (S->getFlags() & Scope::TemplateParamScope) != 0)
3806    S = S->getParent();
3807
3808  DeclContext *DC = CurContext;
3809  if (D.getCXXScopeSpec().isInvalid())
3810    D.setInvalidType();
3811  else if (D.getCXXScopeSpec().isSet()) {
3812    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3813                                        UPPC_DeclarationQualifier))
3814      return 0;
3815
3816    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3817    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3818    if (!DC) {
3819      // If we could not compute the declaration context, it's because the
3820      // declaration context is dependent but does not refer to a class,
3821      // class template, or class template partial specialization. Complain
3822      // and return early, to avoid the coming semantic disaster.
3823      Diag(D.getIdentifierLoc(),
3824           diag::err_template_qualified_declarator_no_match)
3825        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3826        << D.getCXXScopeSpec().getRange();
3827      return 0;
3828    }
3829    bool IsDependentContext = DC->isDependentContext();
3830
3831    if (!IsDependentContext &&
3832        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3833      return 0;
3834
3835    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3836      Diag(D.getIdentifierLoc(),
3837           diag::err_member_def_undefined_record)
3838        << Name << DC << D.getCXXScopeSpec().getRange();
3839      D.setInvalidType();
3840    } else if (!D.getDeclSpec().isFriendSpecified()) {
3841      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3842                                      Name, D.getIdentifierLoc())) {
3843        if (DC->isRecord())
3844          return 0;
3845
3846        D.setInvalidType();
3847      }
3848    }
3849
3850    // Check whether we need to rebuild the type of the given
3851    // declaration in the current instantiation.
3852    if (EnteringContext && IsDependentContext &&
3853        TemplateParamLists.size() != 0) {
3854      ContextRAII SavedContext(*this, DC);
3855      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3856        D.setInvalidType();
3857    }
3858  }
3859
3860  if (DiagnoseClassNameShadow(DC, NameInfo))
3861    // If this is a typedef, we'll end up spewing multiple diagnostics.
3862    // Just return early; it's safer.
3863    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3864      return 0;
3865
3866  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3867  QualType R = TInfo->getType();
3868
3869  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3870                                      UPPC_DeclarationType))
3871    D.setInvalidType();
3872
3873  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3874                        ForRedeclaration);
3875
3876  // See if this is a redefinition of a variable in the same scope.
3877  if (!D.getCXXScopeSpec().isSet()) {
3878    bool IsLinkageLookup = false;
3879
3880    // If the declaration we're planning to build will be a function
3881    // or object with linkage, then look for another declaration with
3882    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3883    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3884      /* Do nothing*/;
3885    else if (R->isFunctionType()) {
3886      if (CurContext->isFunctionOrMethod() ||
3887          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3888        IsLinkageLookup = true;
3889    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3890      IsLinkageLookup = true;
3891    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3892             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3893      IsLinkageLookup = true;
3894
3895    if (IsLinkageLookup)
3896      Previous.clear(LookupRedeclarationWithLinkage);
3897
3898    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3899  } else { // Something like "int foo::x;"
3900    LookupQualifiedName(Previous, DC);
3901
3902    // C++ [dcl.meaning]p1:
3903    //   When the declarator-id is qualified, the declaration shall refer to a
3904    //  previously declared member of the class or namespace to which the
3905    //  qualifier refers (or, in the case of a namespace, of an element of the
3906    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3907    //  thereof; [...]
3908    //
3909    // Note that we already checked the context above, and that we do not have
3910    // enough information to make sure that Previous contains the declaration
3911    // we want to match. For example, given:
3912    //
3913    //   class X {
3914    //     void f();
3915    //     void f(float);
3916    //   };
3917    //
3918    //   void X::f(int) { } // ill-formed
3919    //
3920    // In this case, Previous will point to the overload set
3921    // containing the two f's declared in X, but neither of them
3922    // matches.
3923
3924    // C++ [dcl.meaning]p1:
3925    //   [...] the member shall not merely have been introduced by a
3926    //   using-declaration in the scope of the class or namespace nominated by
3927    //   the nested-name-specifier of the declarator-id.
3928    RemoveUsingDecls(Previous);
3929  }
3930
3931  if (Previous.isSingleResult() &&
3932      Previous.getFoundDecl()->isTemplateParameter()) {
3933    // Maybe we will complain about the shadowed template parameter.
3934    if (!D.isInvalidType())
3935      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3936                                      Previous.getFoundDecl());
3937
3938    // Just pretend that we didn't see the previous declaration.
3939    Previous.clear();
3940  }
3941
3942  // In C++, the previous declaration we find might be a tag type
3943  // (class or enum). In this case, the new declaration will hide the
3944  // tag type. Note that this does does not apply if we're declaring a
3945  // typedef (C++ [dcl.typedef]p4).
3946  if (Previous.isSingleTagDecl() &&
3947      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3948    Previous.clear();
3949
3950  NamedDecl *New;
3951
3952  bool AddToScope = true;
3953  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3954    if (TemplateParamLists.size()) {
3955      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3956      return 0;
3957    }
3958
3959    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3960  } else if (R->isFunctionType()) {
3961    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3962                                  TemplateParamLists,
3963                                  AddToScope);
3964  } else {
3965    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3966                                  TemplateParamLists);
3967  }
3968
3969  if (New == 0)
3970    return 0;
3971
3972  // If this has an identifier and is not an invalid redeclaration or
3973  // function template specialization, add it to the scope stack.
3974  if (New->getDeclName() && AddToScope &&
3975       !(D.isRedeclaration() && New->isInvalidDecl()))
3976    PushOnScopeChains(New, S);
3977
3978  return New;
3979}
3980
3981/// Helper method to turn variable array types into constant array
3982/// types in certain situations which would otherwise be errors (for
3983/// GCC compatibility).
3984static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3985                                                    ASTContext &Context,
3986                                                    bool &SizeIsNegative,
3987                                                    llvm::APSInt &Oversized) {
3988  // This method tries to turn a variable array into a constant
3989  // array even when the size isn't an ICE.  This is necessary
3990  // for compatibility with code that depends on gcc's buggy
3991  // constant expression folding, like struct {char x[(int)(char*)2];}
3992  SizeIsNegative = false;
3993  Oversized = 0;
3994
3995  if (T->isDependentType())
3996    return QualType();
3997
3998  QualifierCollector Qs;
3999  const Type *Ty = Qs.strip(T);
4000
4001  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4002    QualType Pointee = PTy->getPointeeType();
4003    QualType FixedType =
4004        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4005                                            Oversized);
4006    if (FixedType.isNull()) return FixedType;
4007    FixedType = Context.getPointerType(FixedType);
4008    return Qs.apply(Context, FixedType);
4009  }
4010  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4011    QualType Inner = PTy->getInnerType();
4012    QualType FixedType =
4013        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4014                                            Oversized);
4015    if (FixedType.isNull()) return FixedType;
4016    FixedType = Context.getParenType(FixedType);
4017    return Qs.apply(Context, FixedType);
4018  }
4019
4020  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4021  if (!VLATy)
4022    return QualType();
4023  // FIXME: We should probably handle this case
4024  if (VLATy->getElementType()->isVariablyModifiedType())
4025    return QualType();
4026
4027  llvm::APSInt Res;
4028  if (!VLATy->getSizeExpr() ||
4029      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4030    return QualType();
4031
4032  // Check whether the array size is negative.
4033  if (Res.isSigned() && Res.isNegative()) {
4034    SizeIsNegative = true;
4035    return QualType();
4036  }
4037
4038  // Check whether the array is too large to be addressed.
4039  unsigned ActiveSizeBits
4040    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4041                                              Res);
4042  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4043    Oversized = Res;
4044    return QualType();
4045  }
4046
4047  return Context.getConstantArrayType(VLATy->getElementType(),
4048                                      Res, ArrayType::Normal, 0);
4049}
4050
4051static void
4052FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4053  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
4054    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
4055    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
4056                                      DstPTL->getPointeeLoc());
4057    DstPTL->setStarLoc(SrcPTL->getStarLoc());
4058    return;
4059  }
4060  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
4061    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
4062    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
4063                                      DstPTL->getInnerLoc());
4064    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
4065    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
4066    return;
4067  }
4068  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
4069  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
4070  TypeLoc SrcElemTL = SrcATL->getElementLoc();
4071  TypeLoc DstElemTL = DstATL->getElementLoc();
4072  DstElemTL.initializeFullCopy(SrcElemTL);
4073  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
4074  DstATL->setSizeExpr(SrcATL->getSizeExpr());
4075  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
4076}
4077
4078/// Helper method to turn variable array types into constant array
4079/// types in certain situations which would otherwise be errors (for
4080/// GCC compatibility).
4081static TypeSourceInfo*
4082TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4083                                              ASTContext &Context,
4084                                              bool &SizeIsNegative,
4085                                              llvm::APSInt &Oversized) {
4086  QualType FixedTy
4087    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4088                                          SizeIsNegative, Oversized);
4089  if (FixedTy.isNull())
4090    return 0;
4091  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4092  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4093                                    FixedTInfo->getTypeLoc());
4094  return FixedTInfo;
4095}
4096
4097/// \brief Register the given locally-scoped extern "C" declaration so
4098/// that it can be found later for redeclarations
4099void
4100Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4101                                       const LookupResult &Previous,
4102                                       Scope *S) {
4103  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4104         "Decl is not a locally-scoped decl!");
4105  // Note that we have a locally-scoped external with this name.
4106  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4107
4108  if (!Previous.isSingleResult())
4109    return;
4110
4111  NamedDecl *PrevDecl = Previous.getFoundDecl();
4112
4113  // If there was a previous declaration of this entity, it may be in
4114  // our identifier chain. Update the identifier chain with the new
4115  // declaration.
4116  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4117    // The previous declaration was found on the identifer resolver
4118    // chain, so remove it from its scope.
4119
4120    if (S->isDeclScope(PrevDecl)) {
4121      // Special case for redeclarations in the SAME scope.
4122      // Because this declaration is going to be added to the identifier chain
4123      // later, we should temporarily take it OFF the chain.
4124      IdResolver.RemoveDecl(ND);
4125
4126    } else {
4127      // Find the scope for the original declaration.
4128      while (S && !S->isDeclScope(PrevDecl))
4129        S = S->getParent();
4130    }
4131
4132    if (S)
4133      S->RemoveDecl(PrevDecl);
4134  }
4135}
4136
4137llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4138Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4139  if (ExternalSource) {
4140    // Load locally-scoped external decls from the external source.
4141    SmallVector<NamedDecl *, 4> Decls;
4142    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4143    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4144      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4145        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4146      if (Pos == LocallyScopedExternCDecls.end())
4147        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4148    }
4149  }
4150
4151  return LocallyScopedExternCDecls.find(Name);
4152}
4153
4154/// \brief Diagnose function specifiers on a declaration of an identifier that
4155/// does not identify a function.
4156void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4157  // FIXME: We should probably indicate the identifier in question to avoid
4158  // confusion for constructs like "inline int a(), b;"
4159  if (D.getDeclSpec().isInlineSpecified())
4160    Diag(D.getDeclSpec().getInlineSpecLoc(),
4161         diag::err_inline_non_function);
4162
4163  if (D.getDeclSpec().isVirtualSpecified())
4164    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4165         diag::err_virtual_non_function);
4166
4167  if (D.getDeclSpec().isExplicitSpecified())
4168    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4169         diag::err_explicit_non_function);
4170
4171  if (D.getDeclSpec().isNoreturnSpecified())
4172    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4173         diag::err_noreturn_non_function);
4174}
4175
4176NamedDecl*
4177Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4178                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4179  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4180  if (D.getCXXScopeSpec().isSet()) {
4181    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4182      << D.getCXXScopeSpec().getRange();
4183    D.setInvalidType();
4184    // Pretend we didn't see the scope specifier.
4185    DC = CurContext;
4186    Previous.clear();
4187  }
4188
4189  if (getLangOpts().CPlusPlus) {
4190    // Check that there are no default arguments (C++ only).
4191    CheckExtraCXXDefaultArguments(D);
4192  }
4193
4194  DiagnoseFunctionSpecifiers(D);
4195
4196  if (D.getDeclSpec().isThreadSpecified())
4197    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4198  if (D.getDeclSpec().isConstexprSpecified())
4199    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4200      << 1;
4201
4202  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4203    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4204      << D.getName().getSourceRange();
4205    return 0;
4206  }
4207
4208  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4209  if (!NewTD) return 0;
4210
4211  // Handle attributes prior to checking for duplicates in MergeVarDecl
4212  ProcessDeclAttributes(S, NewTD, D);
4213
4214  CheckTypedefForVariablyModifiedType(S, NewTD);
4215
4216  bool Redeclaration = D.isRedeclaration();
4217  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4218  D.setRedeclaration(Redeclaration);
4219  return ND;
4220}
4221
4222void
4223Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4224  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4225  // then it shall have block scope.
4226  // Note that variably modified types must be fixed before merging the decl so
4227  // that redeclarations will match.
4228  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4229  QualType T = TInfo->getType();
4230  if (T->isVariablyModifiedType()) {
4231    getCurFunction()->setHasBranchProtectedScope();
4232
4233    if (S->getFnParent() == 0) {
4234      bool SizeIsNegative;
4235      llvm::APSInt Oversized;
4236      TypeSourceInfo *FixedTInfo =
4237        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4238                                                      SizeIsNegative,
4239                                                      Oversized);
4240      if (FixedTInfo) {
4241        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4242        NewTD->setTypeSourceInfo(FixedTInfo);
4243      } else {
4244        if (SizeIsNegative)
4245          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4246        else if (T->isVariableArrayType())
4247          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4248        else if (Oversized.getBoolValue())
4249          Diag(NewTD->getLocation(), diag::err_array_too_large)
4250            << Oversized.toString(10);
4251        else
4252          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4253        NewTD->setInvalidDecl();
4254      }
4255    }
4256  }
4257}
4258
4259
4260/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4261/// declares a typedef-name, either using the 'typedef' type specifier or via
4262/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4263NamedDecl*
4264Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4265                           LookupResult &Previous, bool &Redeclaration) {
4266  // Merge the decl with the existing one if appropriate. If the decl is
4267  // in an outer scope, it isn't the same thing.
4268  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4269                       /*ExplicitInstantiationOrSpecialization=*/false);
4270  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4271  if (!Previous.empty()) {
4272    Redeclaration = true;
4273    MergeTypedefNameDecl(NewTD, Previous);
4274  }
4275
4276  // If this is the C FILE type, notify the AST context.
4277  if (IdentifierInfo *II = NewTD->getIdentifier())
4278    if (!NewTD->isInvalidDecl() &&
4279        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4280      if (II->isStr("FILE"))
4281        Context.setFILEDecl(NewTD);
4282      else if (II->isStr("jmp_buf"))
4283        Context.setjmp_bufDecl(NewTD);
4284      else if (II->isStr("sigjmp_buf"))
4285        Context.setsigjmp_bufDecl(NewTD);
4286      else if (II->isStr("ucontext_t"))
4287        Context.setucontext_tDecl(NewTD);
4288    }
4289
4290  return NewTD;
4291}
4292
4293/// \brief Determines whether the given declaration is an out-of-scope
4294/// previous declaration.
4295///
4296/// This routine should be invoked when name lookup has found a
4297/// previous declaration (PrevDecl) that is not in the scope where a
4298/// new declaration by the same name is being introduced. If the new
4299/// declaration occurs in a local scope, previous declarations with
4300/// linkage may still be considered previous declarations (C99
4301/// 6.2.2p4-5, C++ [basic.link]p6).
4302///
4303/// \param PrevDecl the previous declaration found by name
4304/// lookup
4305///
4306/// \param DC the context in which the new declaration is being
4307/// declared.
4308///
4309/// \returns true if PrevDecl is an out-of-scope previous declaration
4310/// for a new delcaration with the same name.
4311static bool
4312isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4313                                ASTContext &Context) {
4314  if (!PrevDecl)
4315    return false;
4316
4317  if (!PrevDecl->hasLinkage())
4318    return false;
4319
4320  if (Context.getLangOpts().CPlusPlus) {
4321    // C++ [basic.link]p6:
4322    //   If there is a visible declaration of an entity with linkage
4323    //   having the same name and type, ignoring entities declared
4324    //   outside the innermost enclosing namespace scope, the block
4325    //   scope declaration declares that same entity and receives the
4326    //   linkage of the previous declaration.
4327    DeclContext *OuterContext = DC->getRedeclContext();
4328    if (!OuterContext->isFunctionOrMethod())
4329      // This rule only applies to block-scope declarations.
4330      return false;
4331
4332    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4333    if (PrevOuterContext->isRecord())
4334      // We found a member function: ignore it.
4335      return false;
4336
4337    // Find the innermost enclosing namespace for the new and
4338    // previous declarations.
4339    OuterContext = OuterContext->getEnclosingNamespaceContext();
4340    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4341
4342    // The previous declaration is in a different namespace, so it
4343    // isn't the same function.
4344    if (!OuterContext->Equals(PrevOuterContext))
4345      return false;
4346  }
4347
4348  return true;
4349}
4350
4351static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4352  CXXScopeSpec &SS = D.getCXXScopeSpec();
4353  if (!SS.isSet()) return;
4354  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4355}
4356
4357bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4358  QualType type = decl->getType();
4359  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4360  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4361    // Various kinds of declaration aren't allowed to be __autoreleasing.
4362    unsigned kind = -1U;
4363    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4364      if (var->hasAttr<BlocksAttr>())
4365        kind = 0; // __block
4366      else if (!var->hasLocalStorage())
4367        kind = 1; // global
4368    } else if (isa<ObjCIvarDecl>(decl)) {
4369      kind = 3; // ivar
4370    } else if (isa<FieldDecl>(decl)) {
4371      kind = 2; // field
4372    }
4373
4374    if (kind != -1U) {
4375      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4376        << kind;
4377    }
4378  } else if (lifetime == Qualifiers::OCL_None) {
4379    // Try to infer lifetime.
4380    if (!type->isObjCLifetimeType())
4381      return false;
4382
4383    lifetime = type->getObjCARCImplicitLifetime();
4384    type = Context.getLifetimeQualifiedType(type, lifetime);
4385    decl->setType(type);
4386  }
4387
4388  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4389    // Thread-local variables cannot have lifetime.
4390    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4391        var->isThreadSpecified()) {
4392      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4393        << var->getType();
4394      return true;
4395    }
4396  }
4397
4398  return false;
4399}
4400
4401static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4402  // 'weak' only applies to declarations with external linkage.
4403  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4404    if (ND.getLinkage() != ExternalLinkage) {
4405      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4406      ND.dropAttr<WeakAttr>();
4407    }
4408  }
4409  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4410    if (ND.getLinkage() == ExternalLinkage) {
4411      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4412      ND.dropAttr<WeakRefAttr>();
4413    }
4414  }
4415}
4416
4417NamedDecl*
4418Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4419                              TypeSourceInfo *TInfo, LookupResult &Previous,
4420                              MultiTemplateParamsArg TemplateParamLists) {
4421  QualType R = TInfo->getType();
4422  DeclarationName Name = GetNameForDeclarator(D).getName();
4423
4424  // Check that there are no default arguments (C++ only).
4425  if (getLangOpts().CPlusPlus)
4426    CheckExtraCXXDefaultArguments(D);
4427
4428  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4429  assert(SCSpec != DeclSpec::SCS_typedef &&
4430         "Parser allowed 'typedef' as storage class VarDecl.");
4431  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4432
4433  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4434  {
4435    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4436    // half array type (unless the cl_khr_fp16 extension is enabled).
4437    if (Context.getBaseElementType(R)->isHalfType()) {
4438      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4439      D.setInvalidType();
4440    }
4441  }
4442
4443  if (SCSpec == DeclSpec::SCS_mutable) {
4444    // mutable can only appear on non-static class members, so it's always
4445    // an error here
4446    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4447    D.setInvalidType();
4448    SC = SC_None;
4449  }
4450  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4451  VarDecl::StorageClass SCAsWritten
4452    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4453
4454  IdentifierInfo *II = Name.getAsIdentifierInfo();
4455  if (!II) {
4456    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4457      << Name;
4458    return 0;
4459  }
4460
4461  DiagnoseFunctionSpecifiers(D);
4462
4463  if (!DC->isRecord() && S->getFnParent() == 0) {
4464    // C99 6.9p2: The storage-class specifiers auto and register shall not
4465    // appear in the declaration specifiers in an external declaration.
4466    if (SC == SC_Auto || SC == SC_Register) {
4467
4468      // If this is a register variable with an asm label specified, then this
4469      // is a GNU extension.
4470      if (SC == SC_Register && D.getAsmLabel())
4471        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4472      else
4473        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4474      D.setInvalidType();
4475    }
4476  }
4477
4478  if (getLangOpts().OpenCL) {
4479    // Set up the special work-group-local storage class for variables in the
4480    // OpenCL __local address space.
4481    if (R.getAddressSpace() == LangAS::opencl_local) {
4482      SC = SC_OpenCLWorkGroupLocal;
4483      SCAsWritten = SC_OpenCLWorkGroupLocal;
4484    }
4485
4486    // OpenCL 1.2 spec, p6.9 r:
4487    // The event type cannot be used to declare a program scope variable.
4488    // The event type cannot be used with the __local, __constant and __global
4489    // address space qualifiers.
4490    if (R->isEventT()) {
4491      if (S->getParent() == 0) {
4492        Diag(D.getLocStart(), diag::err_event_t_global_var);
4493        D.setInvalidType();
4494      }
4495
4496      if (R.getAddressSpace()) {
4497        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4498        D.setInvalidType();
4499      }
4500    }
4501  }
4502
4503  bool isExplicitSpecialization = false;
4504  VarDecl *NewVD;
4505  if (!getLangOpts().CPlusPlus) {
4506    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4507                            D.getIdentifierLoc(), II,
4508                            R, TInfo, SC, SCAsWritten);
4509
4510    if (D.isInvalidType())
4511      NewVD->setInvalidDecl();
4512  } else {
4513    if (DC->isRecord() && !CurContext->isRecord()) {
4514      // This is an out-of-line definition of a static data member.
4515      if (SC == SC_Static) {
4516        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4517             diag::err_static_out_of_line)
4518          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4519      } else if (SC == SC_None)
4520        SC = SC_Static;
4521    }
4522    if (SC == SC_Static && CurContext->isRecord()) {
4523      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4524        if (RD->isLocalClass())
4525          Diag(D.getIdentifierLoc(),
4526               diag::err_static_data_member_not_allowed_in_local_class)
4527            << Name << RD->getDeclName();
4528
4529        // C++98 [class.union]p1: If a union contains a static data member,
4530        // the program is ill-formed. C++11 drops this restriction.
4531        if (RD->isUnion())
4532          Diag(D.getIdentifierLoc(),
4533               getLangOpts().CPlusPlus11
4534                 ? diag::warn_cxx98_compat_static_data_member_in_union
4535                 : diag::ext_static_data_member_in_union) << Name;
4536        // We conservatively disallow static data members in anonymous structs.
4537        else if (!RD->getDeclName())
4538          Diag(D.getIdentifierLoc(),
4539               diag::err_static_data_member_not_allowed_in_anon_struct)
4540            << Name << RD->isUnion();
4541      }
4542    }
4543
4544    // Match up the template parameter lists with the scope specifier, then
4545    // determine whether we have a template or a template specialization.
4546    isExplicitSpecialization = false;
4547    bool Invalid = false;
4548    if (TemplateParameterList *TemplateParams
4549        = MatchTemplateParametersToScopeSpecifier(
4550                                  D.getDeclSpec().getLocStart(),
4551                                                  D.getIdentifierLoc(),
4552                                                  D.getCXXScopeSpec(),
4553                                                  TemplateParamLists.data(),
4554                                                  TemplateParamLists.size(),
4555                                                  /*never a friend*/ false,
4556                                                  isExplicitSpecialization,
4557                                                  Invalid)) {
4558      if (TemplateParams->size() > 0) {
4559        // There is no such thing as a variable template.
4560        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4561          << II
4562          << SourceRange(TemplateParams->getTemplateLoc(),
4563                         TemplateParams->getRAngleLoc());
4564        return 0;
4565      } else {
4566        // There is an extraneous 'template<>' for this variable. Complain
4567        // about it, but allow the declaration of the variable.
4568        Diag(TemplateParams->getTemplateLoc(),
4569             diag::err_template_variable_noparams)
4570          << II
4571          << SourceRange(TemplateParams->getTemplateLoc(),
4572                         TemplateParams->getRAngleLoc());
4573      }
4574    }
4575
4576    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4577                            D.getIdentifierLoc(), II,
4578                            R, TInfo, SC, SCAsWritten);
4579
4580    // If this decl has an auto type in need of deduction, make a note of the
4581    // Decl so we can diagnose uses of it in its own initializer.
4582    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4583        R->getContainedAutoType())
4584      ParsingInitForAutoVars.insert(NewVD);
4585
4586    if (D.isInvalidType() || Invalid)
4587      NewVD->setInvalidDecl();
4588
4589    SetNestedNameSpecifier(NewVD, D);
4590
4591    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4592      NewVD->setTemplateParameterListsInfo(Context,
4593                                           TemplateParamLists.size(),
4594                                           TemplateParamLists.data());
4595    }
4596
4597    if (D.getDeclSpec().isConstexprSpecified())
4598      NewVD->setConstexpr(true);
4599  }
4600
4601  // Set the lexical context. If the declarator has a C++ scope specifier, the
4602  // lexical context will be different from the semantic context.
4603  NewVD->setLexicalDeclContext(CurContext);
4604
4605  if (D.getDeclSpec().isThreadSpecified()) {
4606    if (NewVD->hasLocalStorage())
4607      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4608    else if (!Context.getTargetInfo().isTLSSupported())
4609      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4610    else
4611      NewVD->setThreadSpecified(true);
4612  }
4613
4614  if (D.getDeclSpec().isModulePrivateSpecified()) {
4615    if (isExplicitSpecialization)
4616      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4617        << 2
4618        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4619    else if (NewVD->hasLocalStorage())
4620      Diag(NewVD->getLocation(), diag::err_module_private_local)
4621        << 0 << NewVD->getDeclName()
4622        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4623        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4624    else
4625      NewVD->setModulePrivate();
4626  }
4627
4628  // Handle attributes prior to checking for duplicates in MergeVarDecl
4629  ProcessDeclAttributes(S, NewVD, D);
4630
4631  if (NewVD->hasAttrs())
4632    CheckAlignasUnderalignment(NewVD);
4633
4634  if (getLangOpts().CUDA) {
4635    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4636    // storage [duration]."
4637    if (SC == SC_None && S->getFnParent() != 0 &&
4638        (NewVD->hasAttr<CUDASharedAttr>() ||
4639         NewVD->hasAttr<CUDAConstantAttr>())) {
4640      NewVD->setStorageClass(SC_Static);
4641      NewVD->setStorageClassAsWritten(SC_Static);
4642    }
4643  }
4644
4645  // In auto-retain/release, infer strong retension for variables of
4646  // retainable type.
4647  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4648    NewVD->setInvalidDecl();
4649
4650  // Handle GNU asm-label extension (encoded as an attribute).
4651  if (Expr *E = (Expr*)D.getAsmLabel()) {
4652    // The parser guarantees this is a string.
4653    StringLiteral *SE = cast<StringLiteral>(E);
4654    StringRef Label = SE->getString();
4655    if (S->getFnParent() != 0) {
4656      switch (SC) {
4657      case SC_None:
4658      case SC_Auto:
4659        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4660        break;
4661      case SC_Register:
4662        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4663          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4664        break;
4665      case SC_Static:
4666      case SC_Extern:
4667      case SC_PrivateExtern:
4668      case SC_OpenCLWorkGroupLocal:
4669        break;
4670      }
4671    }
4672
4673    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4674                                                Context, Label));
4675  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4676    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4677      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4678    if (I != ExtnameUndeclaredIdentifiers.end()) {
4679      NewVD->addAttr(I->second);
4680      ExtnameUndeclaredIdentifiers.erase(I);
4681    }
4682  }
4683
4684  // Diagnose shadowed variables before filtering for scope.
4685  if (!D.getCXXScopeSpec().isSet())
4686    CheckShadow(S, NewVD, Previous);
4687
4688  // Don't consider existing declarations that are in a different
4689  // scope and are out-of-semantic-context declarations (if the new
4690  // declaration has linkage).
4691  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4692                       isExplicitSpecialization);
4693
4694  if (!getLangOpts().CPlusPlus) {
4695    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4696  } else {
4697    // Merge the decl with the existing one if appropriate.
4698    if (!Previous.empty()) {
4699      if (Previous.isSingleResult() &&
4700          isa<FieldDecl>(Previous.getFoundDecl()) &&
4701          D.getCXXScopeSpec().isSet()) {
4702        // The user tried to define a non-static data member
4703        // out-of-line (C++ [dcl.meaning]p1).
4704        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4705          << D.getCXXScopeSpec().getRange();
4706        Previous.clear();
4707        NewVD->setInvalidDecl();
4708      }
4709    } else if (D.getCXXScopeSpec().isSet()) {
4710      // No previous declaration in the qualifying scope.
4711      Diag(D.getIdentifierLoc(), diag::err_no_member)
4712        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4713        << D.getCXXScopeSpec().getRange();
4714      NewVD->setInvalidDecl();
4715    }
4716
4717    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4718
4719    // This is an explicit specialization of a static data member. Check it.
4720    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4721        CheckMemberSpecialization(NewVD, Previous))
4722      NewVD->setInvalidDecl();
4723  }
4724
4725  checkAttributesAfterMerging(*this, *NewVD);
4726
4727  // If this is a locally-scoped extern C variable, update the map of
4728  // such variables.
4729  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4730      !NewVD->isInvalidDecl())
4731    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4732
4733  // If there's a #pragma GCC visibility in scope, and this isn't a class
4734  // member, set the visibility of this variable.
4735  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4736    AddPushedVisibilityAttribute(NewVD);
4737
4738  return NewVD;
4739}
4740
4741/// \brief Diagnose variable or built-in function shadowing.  Implements
4742/// -Wshadow.
4743///
4744/// This method is called whenever a VarDecl is added to a "useful"
4745/// scope.
4746///
4747/// \param S the scope in which the shadowing name is being declared
4748/// \param R the lookup of the name
4749///
4750void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4751  // Return if warning is ignored.
4752  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4753        DiagnosticsEngine::Ignored)
4754    return;
4755
4756  // Don't diagnose declarations at file scope.
4757  if (D->hasGlobalStorage())
4758    return;
4759
4760  DeclContext *NewDC = D->getDeclContext();
4761
4762  // Only diagnose if we're shadowing an unambiguous field or variable.
4763  if (R.getResultKind() != LookupResult::Found)
4764    return;
4765
4766  NamedDecl* ShadowedDecl = R.getFoundDecl();
4767  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4768    return;
4769
4770  // Fields are not shadowed by variables in C++ static methods.
4771  if (isa<FieldDecl>(ShadowedDecl))
4772    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4773      if (MD->isStatic())
4774        return;
4775
4776  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4777    if (shadowedVar->isExternC()) {
4778      // For shadowing external vars, make sure that we point to the global
4779      // declaration, not a locally scoped extern declaration.
4780      for (VarDecl::redecl_iterator
4781             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4782           I != E; ++I)
4783        if (I->isFileVarDecl()) {
4784          ShadowedDecl = *I;
4785          break;
4786        }
4787    }
4788
4789  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4790
4791  // Only warn about certain kinds of shadowing for class members.
4792  if (NewDC && NewDC->isRecord()) {
4793    // In particular, don't warn about shadowing non-class members.
4794    if (!OldDC->isRecord())
4795      return;
4796
4797    // TODO: should we warn about static data members shadowing
4798    // static data members from base classes?
4799
4800    // TODO: don't diagnose for inaccessible shadowed members.
4801    // This is hard to do perfectly because we might friend the
4802    // shadowing context, but that's just a false negative.
4803  }
4804
4805  // Determine what kind of declaration we're shadowing.
4806  unsigned Kind;
4807  if (isa<RecordDecl>(OldDC)) {
4808    if (isa<FieldDecl>(ShadowedDecl))
4809      Kind = 3; // field
4810    else
4811      Kind = 2; // static data member
4812  } else if (OldDC->isFileContext())
4813    Kind = 1; // global
4814  else
4815    Kind = 0; // local
4816
4817  DeclarationName Name = R.getLookupName();
4818
4819  // Emit warning and note.
4820  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4821  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4822}
4823
4824/// \brief Check -Wshadow without the advantage of a previous lookup.
4825void Sema::CheckShadow(Scope *S, VarDecl *D) {
4826  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4827        DiagnosticsEngine::Ignored)
4828    return;
4829
4830  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4831                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4832  LookupName(R, S);
4833  CheckShadow(S, D, R);
4834}
4835
4836template<typename T>
4837static bool mayConflictWithNonVisibleExternC(const T *ND) {
4838  VarDecl::StorageClass SC = ND->getStorageClass();
4839  if (ND->hasCLanguageLinkage() && (SC == SC_Extern || SC == SC_PrivateExtern))
4840    return true;
4841  return ND->getDeclContext()->isTranslationUnit();
4842}
4843
4844/// \brief Perform semantic checking on a newly-created variable
4845/// declaration.
4846///
4847/// This routine performs all of the type-checking required for a
4848/// variable declaration once it has been built. It is used both to
4849/// check variables after they have been parsed and their declarators
4850/// have been translated into a declaration, and to check variables
4851/// that have been instantiated from a template.
4852///
4853/// Sets NewVD->isInvalidDecl() if an error was encountered.
4854///
4855/// Returns true if the variable declaration is a redeclaration.
4856bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4857                                    LookupResult &Previous) {
4858  // If the decl is already known invalid, don't check it.
4859  if (NewVD->isInvalidDecl())
4860    return false;
4861
4862  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4863  QualType T = TInfo->getType();
4864
4865  if (T->isObjCObjectType()) {
4866    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4867      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4868    T = Context.getObjCObjectPointerType(T);
4869    NewVD->setType(T);
4870  }
4871
4872  // Emit an error if an address space was applied to decl with local storage.
4873  // This includes arrays of objects with address space qualifiers, but not
4874  // automatic variables that point to other address spaces.
4875  // ISO/IEC TR 18037 S5.1.2
4876  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4877    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4878    NewVD->setInvalidDecl();
4879    return false;
4880  }
4881
4882  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4883  // scope.
4884  if ((getLangOpts().OpenCLVersion >= 120)
4885      && NewVD->isStaticLocal()) {
4886    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4887    NewVD->setInvalidDecl();
4888    return false;
4889  }
4890
4891  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4892      && !NewVD->hasAttr<BlocksAttr>()) {
4893    if (getLangOpts().getGC() != LangOptions::NonGC)
4894      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4895    else {
4896      assert(!getLangOpts().ObjCAutoRefCount);
4897      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4898    }
4899  }
4900
4901  bool isVM = T->isVariablyModifiedType();
4902  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4903      NewVD->hasAttr<BlocksAttr>())
4904    getCurFunction()->setHasBranchProtectedScope();
4905
4906  if ((isVM && NewVD->hasLinkage()) ||
4907      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4908    bool SizeIsNegative;
4909    llvm::APSInt Oversized;
4910    TypeSourceInfo *FixedTInfo =
4911      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4912                                                    SizeIsNegative, Oversized);
4913    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4914      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4915      // FIXME: This won't give the correct result for
4916      // int a[10][n];
4917      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4918
4919      if (NewVD->isFileVarDecl())
4920        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4921        << SizeRange;
4922      else if (NewVD->getStorageClass() == SC_Static)
4923        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4924        << SizeRange;
4925      else
4926        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4927        << SizeRange;
4928      NewVD->setInvalidDecl();
4929      return false;
4930    }
4931
4932    if (FixedTInfo == 0) {
4933      if (NewVD->isFileVarDecl())
4934        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4935      else
4936        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4937      NewVD->setInvalidDecl();
4938      return false;
4939    }
4940
4941    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4942    NewVD->setType(FixedTInfo->getType());
4943    NewVD->setTypeSourceInfo(FixedTInfo);
4944  }
4945
4946  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
4947    // Since we did not find anything by this name, look for a non-visible
4948    // extern "C" declaration with the same name.
4949    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4950      = findLocallyScopedExternCDecl(NewVD->getDeclName());
4951    if (Pos != LocallyScopedExternCDecls.end())
4952      Previous.addDecl(Pos->second);
4953  }
4954
4955  // Filter out any non-conflicting previous declarations.
4956  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
4957
4958  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4959    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4960      << T;
4961    NewVD->setInvalidDecl();
4962    return false;
4963  }
4964
4965  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4966    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4967    NewVD->setInvalidDecl();
4968    return false;
4969  }
4970
4971  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4972    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4973    NewVD->setInvalidDecl();
4974    return false;
4975  }
4976
4977  if (NewVD->isConstexpr() && !T->isDependentType() &&
4978      RequireLiteralType(NewVD->getLocation(), T,
4979                         diag::err_constexpr_var_non_literal)) {
4980    NewVD->setInvalidDecl();
4981    return false;
4982  }
4983
4984  if (!Previous.empty()) {
4985    MergeVarDecl(NewVD, Previous);
4986    return true;
4987  }
4988  return false;
4989}
4990
4991/// \brief Data used with FindOverriddenMethod
4992struct FindOverriddenMethodData {
4993  Sema *S;
4994  CXXMethodDecl *Method;
4995};
4996
4997/// \brief Member lookup function that determines whether a given C++
4998/// method overrides a method in a base class, to be used with
4999/// CXXRecordDecl::lookupInBases().
5000static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5001                                 CXXBasePath &Path,
5002                                 void *UserData) {
5003  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5004
5005  FindOverriddenMethodData *Data
5006    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5007
5008  DeclarationName Name = Data->Method->getDeclName();
5009
5010  // FIXME: Do we care about other names here too?
5011  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5012    // We really want to find the base class destructor here.
5013    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5014    CanQualType CT = Data->S->Context.getCanonicalType(T);
5015
5016    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5017  }
5018
5019  for (Path.Decls = BaseRecord->lookup(Name);
5020       !Path.Decls.empty();
5021       Path.Decls = Path.Decls.slice(1)) {
5022    NamedDecl *D = Path.Decls.front();
5023    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5024      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5025        return true;
5026    }
5027  }
5028
5029  return false;
5030}
5031
5032namespace {
5033  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5034}
5035/// \brief Report an error regarding overriding, along with any relevant
5036/// overriden methods.
5037///
5038/// \param DiagID the primary error to report.
5039/// \param MD the overriding method.
5040/// \param OEK which overrides to include as notes.
5041static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5042                            OverrideErrorKind OEK = OEK_All) {
5043  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5044  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5045                                      E = MD->end_overridden_methods();
5046       I != E; ++I) {
5047    // This check (& the OEK parameter) could be replaced by a predicate, but
5048    // without lambdas that would be overkill. This is still nicer than writing
5049    // out the diag loop 3 times.
5050    if ((OEK == OEK_All) ||
5051        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5052        (OEK == OEK_Deleted && (*I)->isDeleted()))
5053      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5054  }
5055}
5056
5057/// AddOverriddenMethods - See if a method overrides any in the base classes,
5058/// and if so, check that it's a valid override and remember it.
5059bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5060  // Look for virtual methods in base classes that this method might override.
5061  CXXBasePaths Paths;
5062  FindOverriddenMethodData Data;
5063  Data.Method = MD;
5064  Data.S = this;
5065  bool hasDeletedOverridenMethods = false;
5066  bool hasNonDeletedOverridenMethods = false;
5067  bool AddedAny = false;
5068  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5069    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5070         E = Paths.found_decls_end(); I != E; ++I) {
5071      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5072        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5073        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5074            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5075            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5076            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5077          hasDeletedOverridenMethods |= OldMD->isDeleted();
5078          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5079          AddedAny = true;
5080        }
5081      }
5082    }
5083  }
5084
5085  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5086    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5087  }
5088  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5089    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5090  }
5091
5092  return AddedAny;
5093}
5094
5095namespace {
5096  // Struct for holding all of the extra arguments needed by
5097  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5098  struct ActOnFDArgs {
5099    Scope *S;
5100    Declarator &D;
5101    MultiTemplateParamsArg TemplateParamLists;
5102    bool AddToScope;
5103  };
5104}
5105
5106namespace {
5107
5108// Callback to only accept typo corrections that have a non-zero edit distance.
5109// Also only accept corrections that have the same parent decl.
5110class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5111 public:
5112  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5113                            CXXRecordDecl *Parent)
5114      : Context(Context), OriginalFD(TypoFD),
5115        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5116
5117  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5118    if (candidate.getEditDistance() == 0)
5119      return false;
5120
5121    SmallVector<unsigned, 1> MismatchedParams;
5122    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5123                                          CDeclEnd = candidate.end();
5124         CDecl != CDeclEnd; ++CDecl) {
5125      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5126
5127      if (FD && !FD->hasBody() &&
5128          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5129        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5130          CXXRecordDecl *Parent = MD->getParent();
5131          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5132            return true;
5133        } else if (!ExpectedParent) {
5134          return true;
5135        }
5136      }
5137    }
5138
5139    return false;
5140  }
5141
5142 private:
5143  ASTContext &Context;
5144  FunctionDecl *OriginalFD;
5145  CXXRecordDecl *ExpectedParent;
5146};
5147
5148}
5149
5150/// \brief Generate diagnostics for an invalid function redeclaration.
5151///
5152/// This routine handles generating the diagnostic messages for an invalid
5153/// function redeclaration, including finding possible similar declarations
5154/// or performing typo correction if there are no previous declarations with
5155/// the same name.
5156///
5157/// Returns a NamedDecl iff typo correction was performed and substituting in
5158/// the new declaration name does not cause new errors.
5159static NamedDecl* DiagnoseInvalidRedeclaration(
5160    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5161    ActOnFDArgs &ExtraArgs) {
5162  NamedDecl *Result = NULL;
5163  DeclarationName Name = NewFD->getDeclName();
5164  DeclContext *NewDC = NewFD->getDeclContext();
5165  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5166                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5167  SmallVector<unsigned, 1> MismatchedParams;
5168  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5169  TypoCorrection Correction;
5170  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5171                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5172  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5173                                  : diag::err_member_def_does_not_match;
5174
5175  NewFD->setInvalidDecl();
5176  SemaRef.LookupQualifiedName(Prev, NewDC);
5177  assert(!Prev.isAmbiguous() &&
5178         "Cannot have an ambiguity in previous-declaration lookup");
5179  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5180  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5181                                      MD ? MD->getParent() : 0);
5182  if (!Prev.empty()) {
5183    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5184         Func != FuncEnd; ++Func) {
5185      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5186      if (FD &&
5187          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5188        // Add 1 to the index so that 0 can mean the mismatch didn't
5189        // involve a parameter
5190        unsigned ParamNum =
5191            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5192        NearMatches.push_back(std::make_pair(FD, ParamNum));
5193      }
5194    }
5195  // If the qualified name lookup yielded nothing, try typo correction
5196  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5197                                         Prev.getLookupKind(), 0, 0,
5198                                         Validator, NewDC))) {
5199    // Trap errors.
5200    Sema::SFINAETrap Trap(SemaRef);
5201
5202    // Set up everything for the call to ActOnFunctionDeclarator
5203    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5204                              ExtraArgs.D.getIdentifierLoc());
5205    Previous.clear();
5206    Previous.setLookupName(Correction.getCorrection());
5207    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5208                                    CDeclEnd = Correction.end();
5209         CDecl != CDeclEnd; ++CDecl) {
5210      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5211      if (FD && !FD->hasBody() &&
5212          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5213        Previous.addDecl(FD);
5214      }
5215    }
5216    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5217    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5218    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5219    // eliminate the need for the parameter pack ExtraArgs.
5220    Result = SemaRef.ActOnFunctionDeclarator(
5221        ExtraArgs.S, ExtraArgs.D,
5222        Correction.getCorrectionDecl()->getDeclContext(),
5223        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5224        ExtraArgs.AddToScope);
5225    if (Trap.hasErrorOccurred()) {
5226      // Pretend the typo correction never occurred
5227      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5228                                ExtraArgs.D.getIdentifierLoc());
5229      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5230      Previous.clear();
5231      Previous.setLookupName(Name);
5232      Result = NULL;
5233    } else {
5234      for (LookupResult::iterator Func = Previous.begin(),
5235                               FuncEnd = Previous.end();
5236           Func != FuncEnd; ++Func) {
5237        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5238          NearMatches.push_back(std::make_pair(FD, 0));
5239      }
5240    }
5241    if (NearMatches.empty()) {
5242      // Ignore the correction if it didn't yield any close FunctionDecl matches
5243      Correction = TypoCorrection();
5244    } else {
5245      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5246                             : diag::err_member_def_does_not_match_suggest;
5247    }
5248  }
5249
5250  if (Correction) {
5251    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5252    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5253    // turn causes the correction to fully qualify the name. If we fix
5254    // CorrectTypo to minimally qualify then this change should be good.
5255    SourceRange FixItLoc(NewFD->getLocation());
5256    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5257    if (Correction.getCorrectionSpecifier() && SS.isValid())
5258      FixItLoc.setBegin(SS.getBeginLoc());
5259    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5260        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5261        << FixItHint::CreateReplacement(
5262            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5263  } else {
5264    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5265        << Name << NewDC << NewFD->getLocation();
5266  }
5267
5268  bool NewFDisConst = false;
5269  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5270    NewFDisConst = NewMD->isConst();
5271
5272  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5273       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5274       NearMatch != NearMatchEnd; ++NearMatch) {
5275    FunctionDecl *FD = NearMatch->first;
5276    bool FDisConst = false;
5277    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5278      FDisConst = MD->isConst();
5279
5280    if (unsigned Idx = NearMatch->second) {
5281      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5282      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5283      if (Loc.isInvalid()) Loc = FD->getLocation();
5284      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5285          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5286    } else if (Correction) {
5287      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5288          << Correction.getQuoted(SemaRef.getLangOpts());
5289    } else if (FDisConst != NewFDisConst) {
5290      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5291          << NewFDisConst << FD->getSourceRange().getEnd();
5292    } else
5293      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5294  }
5295  return Result;
5296}
5297
5298static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5299                                                          Declarator &D) {
5300  switch (D.getDeclSpec().getStorageClassSpec()) {
5301  default: llvm_unreachable("Unknown storage class!");
5302  case DeclSpec::SCS_auto:
5303  case DeclSpec::SCS_register:
5304  case DeclSpec::SCS_mutable:
5305    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5306                 diag::err_typecheck_sclass_func);
5307    D.setInvalidType();
5308    break;
5309  case DeclSpec::SCS_unspecified: break;
5310  case DeclSpec::SCS_extern: return SC_Extern;
5311  case DeclSpec::SCS_static: {
5312    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5313      // C99 6.7.1p5:
5314      //   The declaration of an identifier for a function that has
5315      //   block scope shall have no explicit storage-class specifier
5316      //   other than extern
5317      // See also (C++ [dcl.stc]p4).
5318      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5319                   diag::err_static_block_func);
5320      break;
5321    } else
5322      return SC_Static;
5323  }
5324  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5325  }
5326
5327  // No explicit storage class has already been returned
5328  return SC_None;
5329}
5330
5331static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5332                                           DeclContext *DC, QualType &R,
5333                                           TypeSourceInfo *TInfo,
5334                                           FunctionDecl::StorageClass SC,
5335                                           bool &IsVirtualOkay) {
5336  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5337  DeclarationName Name = NameInfo.getName();
5338
5339  FunctionDecl *NewFD = 0;
5340  bool isInline = D.getDeclSpec().isInlineSpecified();
5341  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5342  FunctionDecl::StorageClass SCAsWritten
5343    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5344
5345  if (!SemaRef.getLangOpts().CPlusPlus) {
5346    // Determine whether the function was written with a
5347    // prototype. This true when:
5348    //   - there is a prototype in the declarator, or
5349    //   - the type R of the function is some kind of typedef or other reference
5350    //     to a type name (which eventually refers to a function type).
5351    bool HasPrototype =
5352      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5353      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5354
5355    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5356                                 D.getLocStart(), NameInfo, R,
5357                                 TInfo, SC, SCAsWritten, isInline,
5358                                 HasPrototype);
5359    if (D.isInvalidType())
5360      NewFD->setInvalidDecl();
5361
5362    // Set the lexical context.
5363    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5364
5365    return NewFD;
5366  }
5367
5368  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5369  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5370
5371  // Check that the return type is not an abstract class type.
5372  // For record types, this is done by the AbstractClassUsageDiagnoser once
5373  // the class has been completely parsed.
5374  if (!DC->isRecord() &&
5375      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5376                                     R->getAs<FunctionType>()->getResultType(),
5377                                     diag::err_abstract_type_in_decl,
5378                                     SemaRef.AbstractReturnType))
5379    D.setInvalidType();
5380
5381  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5382    // This is a C++ constructor declaration.
5383    assert(DC->isRecord() &&
5384           "Constructors can only be declared in a member context");
5385
5386    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5387    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5388                                      D.getLocStart(), NameInfo,
5389                                      R, TInfo, isExplicit, isInline,
5390                                      /*isImplicitlyDeclared=*/false,
5391                                      isConstexpr);
5392
5393  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5394    // This is a C++ destructor declaration.
5395    if (DC->isRecord()) {
5396      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5397      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5398      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5399                                        SemaRef.Context, Record,
5400                                        D.getLocStart(),
5401                                        NameInfo, R, TInfo, isInline,
5402                                        /*isImplicitlyDeclared=*/false);
5403
5404      // If the class is complete, then we now create the implicit exception
5405      // specification. If the class is incomplete or dependent, we can't do
5406      // it yet.
5407      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5408          Record->getDefinition() && !Record->isBeingDefined() &&
5409          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5410        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5411      }
5412
5413      IsVirtualOkay = true;
5414      return NewDD;
5415
5416    } else {
5417      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5418      D.setInvalidType();
5419
5420      // Create a FunctionDecl to satisfy the function definition parsing
5421      // code path.
5422      return FunctionDecl::Create(SemaRef.Context, DC,
5423                                  D.getLocStart(),
5424                                  D.getIdentifierLoc(), Name, R, TInfo,
5425                                  SC, SCAsWritten, isInline,
5426                                  /*hasPrototype=*/true, isConstexpr);
5427    }
5428
5429  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5430    if (!DC->isRecord()) {
5431      SemaRef.Diag(D.getIdentifierLoc(),
5432           diag::err_conv_function_not_member);
5433      return 0;
5434    }
5435
5436    SemaRef.CheckConversionDeclarator(D, R, SC);
5437    IsVirtualOkay = true;
5438    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5439                                     D.getLocStart(), NameInfo,
5440                                     R, TInfo, isInline, isExplicit,
5441                                     isConstexpr, SourceLocation());
5442
5443  } else if (DC->isRecord()) {
5444    // If the name of the function is the same as the name of the record,
5445    // then this must be an invalid constructor that has a return type.
5446    // (The parser checks for a return type and makes the declarator a
5447    // constructor if it has no return type).
5448    if (Name.getAsIdentifierInfo() &&
5449        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5450      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5451        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5452        << SourceRange(D.getIdentifierLoc());
5453      return 0;
5454    }
5455
5456    bool isStatic = SC == SC_Static;
5457
5458    // [class.free]p1:
5459    // Any allocation function for a class T is a static member
5460    // (even if not explicitly declared static).
5461    if (Name.getCXXOverloadedOperator() == OO_New ||
5462        Name.getCXXOverloadedOperator() == OO_Array_New)
5463      isStatic = true;
5464
5465    // [class.free]p6 Any deallocation function for a class X is a static member
5466    // (even if not explicitly declared static).
5467    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5468        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5469      isStatic = true;
5470
5471    IsVirtualOkay = !isStatic;
5472
5473    // This is a C++ method declaration.
5474    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5475                                 D.getLocStart(), NameInfo, R,
5476                                 TInfo, isStatic, SCAsWritten, isInline,
5477                                 isConstexpr, SourceLocation());
5478
5479  } else {
5480    // Determine whether the function was written with a
5481    // prototype. This true when:
5482    //   - we're in C++ (where every function has a prototype),
5483    return FunctionDecl::Create(SemaRef.Context, DC,
5484                                D.getLocStart(),
5485                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5486                                true/*HasPrototype*/, isConstexpr);
5487  }
5488}
5489
5490void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5491  // In C++, the empty parameter-type-list must be spelled "void"; a
5492  // typedef of void is not permitted.
5493  if (getLangOpts().CPlusPlus &&
5494      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5495    bool IsTypeAlias = false;
5496    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5497      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5498    else if (const TemplateSpecializationType *TST =
5499               Param->getType()->getAs<TemplateSpecializationType>())
5500      IsTypeAlias = TST->isTypeAlias();
5501    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5502      << IsTypeAlias;
5503  }
5504}
5505
5506NamedDecl*
5507Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5508                              TypeSourceInfo *TInfo, LookupResult &Previous,
5509                              MultiTemplateParamsArg TemplateParamLists,
5510                              bool &AddToScope) {
5511  QualType R = TInfo->getType();
5512
5513  assert(R.getTypePtr()->isFunctionType());
5514
5515  // TODO: consider using NameInfo for diagnostic.
5516  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5517  DeclarationName Name = NameInfo.getName();
5518  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5519
5520  if (D.getDeclSpec().isThreadSpecified())
5521    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5522
5523  // Do not allow returning a objc interface by-value.
5524  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5525    Diag(D.getIdentifierLoc(),
5526         diag::err_object_cannot_be_passed_returned_by_value) << 0
5527    << R->getAs<FunctionType>()->getResultType()
5528    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5529
5530    QualType T = R->getAs<FunctionType>()->getResultType();
5531    T = Context.getObjCObjectPointerType(T);
5532    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5533      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5534      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5535                                  FPT->getNumArgs(), EPI);
5536    }
5537    else if (isa<FunctionNoProtoType>(R))
5538      R = Context.getFunctionNoProtoType(T);
5539  }
5540
5541  bool isFriend = false;
5542  FunctionTemplateDecl *FunctionTemplate = 0;
5543  bool isExplicitSpecialization = false;
5544  bool isFunctionTemplateSpecialization = false;
5545
5546  bool isDependentClassScopeExplicitSpecialization = false;
5547  bool HasExplicitTemplateArgs = false;
5548  TemplateArgumentListInfo TemplateArgs;
5549
5550  bool isVirtualOkay = false;
5551
5552  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5553                                              isVirtualOkay);
5554  if (!NewFD) return 0;
5555
5556  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5557    NewFD->setTopLevelDeclInObjCContainer();
5558
5559  if (getLangOpts().CPlusPlus) {
5560    bool isInline = D.getDeclSpec().isInlineSpecified();
5561    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5562    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5563    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5564    isFriend = D.getDeclSpec().isFriendSpecified();
5565    if (isFriend && !isInline && D.isFunctionDefinition()) {
5566      // C++ [class.friend]p5
5567      //   A function can be defined in a friend declaration of a
5568      //   class . . . . Such a function is implicitly inline.
5569      NewFD->setImplicitlyInline();
5570    }
5571
5572    // If this is a method defined in an __interface, and is not a constructor
5573    // or an overloaded operator, then set the pure flag (isVirtual will already
5574    // return true).
5575    if (const CXXRecordDecl *Parent =
5576          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5577      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5578        NewFD->setPure(true);
5579    }
5580
5581    SetNestedNameSpecifier(NewFD, D);
5582    isExplicitSpecialization = false;
5583    isFunctionTemplateSpecialization = false;
5584    if (D.isInvalidType())
5585      NewFD->setInvalidDecl();
5586
5587    // Set the lexical context. If the declarator has a C++
5588    // scope specifier, or is the object of a friend declaration, the
5589    // lexical context will be different from the semantic context.
5590    NewFD->setLexicalDeclContext(CurContext);
5591
5592    // Match up the template parameter lists with the scope specifier, then
5593    // determine whether we have a template or a template specialization.
5594    bool Invalid = false;
5595    if (TemplateParameterList *TemplateParams
5596          = MatchTemplateParametersToScopeSpecifier(
5597                                  D.getDeclSpec().getLocStart(),
5598                                  D.getIdentifierLoc(),
5599                                  D.getCXXScopeSpec(),
5600                                  TemplateParamLists.data(),
5601                                  TemplateParamLists.size(),
5602                                  isFriend,
5603                                  isExplicitSpecialization,
5604                                  Invalid)) {
5605      if (TemplateParams->size() > 0) {
5606        // This is a function template
5607
5608        // Check that we can declare a template here.
5609        if (CheckTemplateDeclScope(S, TemplateParams))
5610          return 0;
5611
5612        // A destructor cannot be a template.
5613        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5614          Diag(NewFD->getLocation(), diag::err_destructor_template);
5615          return 0;
5616        }
5617
5618        // If we're adding a template to a dependent context, we may need to
5619        // rebuilding some of the types used within the template parameter list,
5620        // now that we know what the current instantiation is.
5621        if (DC->isDependentContext()) {
5622          ContextRAII SavedContext(*this, DC);
5623          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5624            Invalid = true;
5625        }
5626
5627
5628        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5629                                                        NewFD->getLocation(),
5630                                                        Name, TemplateParams,
5631                                                        NewFD);
5632        FunctionTemplate->setLexicalDeclContext(CurContext);
5633        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5634
5635        // For source fidelity, store the other template param lists.
5636        if (TemplateParamLists.size() > 1) {
5637          NewFD->setTemplateParameterListsInfo(Context,
5638                                               TemplateParamLists.size() - 1,
5639                                               TemplateParamLists.data());
5640        }
5641      } else {
5642        // This is a function template specialization.
5643        isFunctionTemplateSpecialization = true;
5644        // For source fidelity, store all the template param lists.
5645        NewFD->setTemplateParameterListsInfo(Context,
5646                                             TemplateParamLists.size(),
5647                                             TemplateParamLists.data());
5648
5649        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5650        if (isFriend) {
5651          // We want to remove the "template<>", found here.
5652          SourceRange RemoveRange = TemplateParams->getSourceRange();
5653
5654          // If we remove the template<> and the name is not a
5655          // template-id, we're actually silently creating a problem:
5656          // the friend declaration will refer to an untemplated decl,
5657          // and clearly the user wants a template specialization.  So
5658          // we need to insert '<>' after the name.
5659          SourceLocation InsertLoc;
5660          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5661            InsertLoc = D.getName().getSourceRange().getEnd();
5662            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5663          }
5664
5665          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5666            << Name << RemoveRange
5667            << FixItHint::CreateRemoval(RemoveRange)
5668            << FixItHint::CreateInsertion(InsertLoc, "<>");
5669        }
5670      }
5671    }
5672    else {
5673      // All template param lists were matched against the scope specifier:
5674      // this is NOT (an explicit specialization of) a template.
5675      if (TemplateParamLists.size() > 0)
5676        // For source fidelity, store all the template param lists.
5677        NewFD->setTemplateParameterListsInfo(Context,
5678                                             TemplateParamLists.size(),
5679                                             TemplateParamLists.data());
5680    }
5681
5682    if (Invalid) {
5683      NewFD->setInvalidDecl();
5684      if (FunctionTemplate)
5685        FunctionTemplate->setInvalidDecl();
5686    }
5687
5688    // C++ [dcl.fct.spec]p5:
5689    //   The virtual specifier shall only be used in declarations of
5690    //   nonstatic class member functions that appear within a
5691    //   member-specification of a class declaration; see 10.3.
5692    //
5693    if (isVirtual && !NewFD->isInvalidDecl()) {
5694      if (!isVirtualOkay) {
5695        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5696             diag::err_virtual_non_function);
5697      } else if (!CurContext->isRecord()) {
5698        // 'virtual' was specified outside of the class.
5699        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5700             diag::err_virtual_out_of_class)
5701          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5702      } else if (NewFD->getDescribedFunctionTemplate()) {
5703        // C++ [temp.mem]p3:
5704        //  A member function template shall not be virtual.
5705        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5706             diag::err_virtual_member_function_template)
5707          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5708      } else {
5709        // Okay: Add virtual to the method.
5710        NewFD->setVirtualAsWritten(true);
5711      }
5712    }
5713
5714    // C++ [dcl.fct.spec]p3:
5715    //  The inline specifier shall not appear on a block scope function
5716    //  declaration.
5717    if (isInline && !NewFD->isInvalidDecl()) {
5718      if (CurContext->isFunctionOrMethod()) {
5719        // 'inline' is not allowed on block scope function declaration.
5720        Diag(D.getDeclSpec().getInlineSpecLoc(),
5721             diag::err_inline_declaration_block_scope) << Name
5722          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5723      }
5724    }
5725
5726    // C++ [dcl.fct.spec]p6:
5727    //  The explicit specifier shall be used only in the declaration of a
5728    //  constructor or conversion function within its class definition;
5729    //  see 12.3.1 and 12.3.2.
5730    if (isExplicit && !NewFD->isInvalidDecl()) {
5731      if (!CurContext->isRecord()) {
5732        // 'explicit' was specified outside of the class.
5733        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5734             diag::err_explicit_out_of_class)
5735          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5736      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5737                 !isa<CXXConversionDecl>(NewFD)) {
5738        // 'explicit' was specified on a function that wasn't a constructor
5739        // or conversion function.
5740        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5741             diag::err_explicit_non_ctor_or_conv_function)
5742          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5743      }
5744    }
5745
5746    if (isConstexpr) {
5747      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5748      // are implicitly inline.
5749      NewFD->setImplicitlyInline();
5750
5751      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5752      // be either constructors or to return a literal type. Therefore,
5753      // destructors cannot be declared constexpr.
5754      if (isa<CXXDestructorDecl>(NewFD))
5755        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5756    }
5757
5758    // If __module_private__ was specified, mark the function accordingly.
5759    if (D.getDeclSpec().isModulePrivateSpecified()) {
5760      if (isFunctionTemplateSpecialization) {
5761        SourceLocation ModulePrivateLoc
5762          = D.getDeclSpec().getModulePrivateSpecLoc();
5763        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5764          << 0
5765          << FixItHint::CreateRemoval(ModulePrivateLoc);
5766      } else {
5767        NewFD->setModulePrivate();
5768        if (FunctionTemplate)
5769          FunctionTemplate->setModulePrivate();
5770      }
5771    }
5772
5773    if (isFriend) {
5774      // For now, claim that the objects have no previous declaration.
5775      if (FunctionTemplate) {
5776        FunctionTemplate->setObjectOfFriendDecl(false);
5777        FunctionTemplate->setAccess(AS_public);
5778      }
5779      NewFD->setObjectOfFriendDecl(false);
5780      NewFD->setAccess(AS_public);
5781    }
5782
5783    // If a function is defined as defaulted or deleted, mark it as such now.
5784    switch (D.getFunctionDefinitionKind()) {
5785      case FDK_Declaration:
5786      case FDK_Definition:
5787        break;
5788
5789      case FDK_Defaulted:
5790        NewFD->setDefaulted();
5791        break;
5792
5793      case FDK_Deleted:
5794        NewFD->setDeletedAsWritten();
5795        break;
5796    }
5797
5798    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5799        D.isFunctionDefinition()) {
5800      // C++ [class.mfct]p2:
5801      //   A member function may be defined (8.4) in its class definition, in
5802      //   which case it is an inline member function (7.1.2)
5803      NewFD->setImplicitlyInline();
5804    }
5805
5806    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5807        !CurContext->isRecord()) {
5808      // C++ [class.static]p1:
5809      //   A data or function member of a class may be declared static
5810      //   in a class definition, in which case it is a static member of
5811      //   the class.
5812
5813      // Complain about the 'static' specifier if it's on an out-of-line
5814      // member function definition.
5815      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5816           diag::err_static_out_of_line)
5817        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5818    }
5819
5820    // C++11 [except.spec]p15:
5821    //   A deallocation function with no exception-specification is treated
5822    //   as if it were specified with noexcept(true).
5823    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5824    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5825         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5826        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5827      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5828      EPI.ExceptionSpecType = EST_BasicNoexcept;
5829      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5830                                             FPT->arg_type_begin(),
5831                                             FPT->getNumArgs(), EPI));
5832    }
5833  }
5834
5835  // Filter out previous declarations that don't match the scope.
5836  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5837                       isExplicitSpecialization ||
5838                       isFunctionTemplateSpecialization);
5839
5840  // Handle GNU asm-label extension (encoded as an attribute).
5841  if (Expr *E = (Expr*) D.getAsmLabel()) {
5842    // The parser guarantees this is a string.
5843    StringLiteral *SE = cast<StringLiteral>(E);
5844    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5845                                                SE->getString()));
5846  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5847    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5848      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5849    if (I != ExtnameUndeclaredIdentifiers.end()) {
5850      NewFD->addAttr(I->second);
5851      ExtnameUndeclaredIdentifiers.erase(I);
5852    }
5853  }
5854
5855  // Copy the parameter declarations from the declarator D to the function
5856  // declaration NewFD, if they are available.  First scavenge them into Params.
5857  SmallVector<ParmVarDecl*, 16> Params;
5858  if (D.isFunctionDeclarator()) {
5859    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5860
5861    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5862    // function that takes no arguments, not a function that takes a
5863    // single void argument.
5864    // We let through "const void" here because Sema::GetTypeForDeclarator
5865    // already checks for that case.
5866    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5867        FTI.ArgInfo[0].Param &&
5868        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5869      // Empty arg list, don't push any params.
5870      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5871    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5872      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5873        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5874        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5875        Param->setDeclContext(NewFD);
5876        Params.push_back(Param);
5877
5878        if (Param->isInvalidDecl())
5879          NewFD->setInvalidDecl();
5880      }
5881    }
5882
5883  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5884    // When we're declaring a function with a typedef, typeof, etc as in the
5885    // following example, we'll need to synthesize (unnamed)
5886    // parameters for use in the declaration.
5887    //
5888    // @code
5889    // typedef void fn(int);
5890    // fn f;
5891    // @endcode
5892
5893    // Synthesize a parameter for each argument type.
5894    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5895         AE = FT->arg_type_end(); AI != AE; ++AI) {
5896      ParmVarDecl *Param =
5897        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5898      Param->setScopeInfo(0, Params.size());
5899      Params.push_back(Param);
5900    }
5901  } else {
5902    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5903           "Should not need args for typedef of non-prototype fn");
5904  }
5905
5906  // Finally, we know we have the right number of parameters, install them.
5907  NewFD->setParams(Params);
5908
5909  // Find all anonymous symbols defined during the declaration of this function
5910  // and add to NewFD. This lets us track decls such 'enum Y' in:
5911  //
5912  //   void f(enum Y {AA} x) {}
5913  //
5914  // which would otherwise incorrectly end up in the translation unit scope.
5915  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5916  DeclsInPrototypeScope.clear();
5917
5918  if (D.getDeclSpec().isNoreturnSpecified())
5919    NewFD->addAttr(
5920        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
5921                                       Context));
5922
5923  // Process the non-inheritable attributes on this declaration.
5924  ProcessDeclAttributes(S, NewFD, D,
5925                        /*NonInheritable=*/true, /*Inheritable=*/false);
5926
5927  // Functions returning a variably modified type violate C99 6.7.5.2p2
5928  // because all functions have linkage.
5929  if (!NewFD->isInvalidDecl() &&
5930      NewFD->getResultType()->isVariablyModifiedType()) {
5931    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5932    NewFD->setInvalidDecl();
5933  }
5934
5935  // Handle attributes.
5936  ProcessDeclAttributes(S, NewFD, D,
5937                        /*NonInheritable=*/false, /*Inheritable=*/true);
5938
5939  QualType RetType = NewFD->getResultType();
5940  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5941      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5942  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5943      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5944    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5945    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5946      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5947                                                        Context));
5948    }
5949  }
5950
5951  if (!getLangOpts().CPlusPlus) {
5952    // Perform semantic checking on the function declaration.
5953    bool isExplicitSpecialization=false;
5954    if (!NewFD->isInvalidDecl()) {
5955      if (NewFD->isMain())
5956        CheckMain(NewFD, D.getDeclSpec());
5957      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5958                                                  isExplicitSpecialization));
5959    }
5960    // Make graceful recovery from an invalid redeclaration.
5961    else if (!Previous.empty())
5962           D.setRedeclaration(true);
5963    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5964            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5965           "previous declaration set still overloaded");
5966  } else {
5967    // If the declarator is a template-id, translate the parser's template
5968    // argument list into our AST format.
5969    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5970      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5971      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5972      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5973      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5974                                         TemplateId->NumArgs);
5975      translateTemplateArguments(TemplateArgsPtr,
5976                                 TemplateArgs);
5977
5978      HasExplicitTemplateArgs = true;
5979
5980      if (NewFD->isInvalidDecl()) {
5981        HasExplicitTemplateArgs = false;
5982      } else if (FunctionTemplate) {
5983        // Function template with explicit template arguments.
5984        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5985          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5986
5987        HasExplicitTemplateArgs = false;
5988      } else if (!isFunctionTemplateSpecialization &&
5989                 !D.getDeclSpec().isFriendSpecified()) {
5990        // We have encountered something that the user meant to be a
5991        // specialization (because it has explicitly-specified template
5992        // arguments) but that was not introduced with a "template<>" (or had
5993        // too few of them).
5994        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5995          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5996          << FixItHint::CreateInsertion(
5997                                    D.getDeclSpec().getLocStart(),
5998                                        "template<> ");
5999        isFunctionTemplateSpecialization = true;
6000      } else {
6001        // "friend void foo<>(int);" is an implicit specialization decl.
6002        isFunctionTemplateSpecialization = true;
6003      }
6004    } else if (isFriend && isFunctionTemplateSpecialization) {
6005      // This combination is only possible in a recovery case;  the user
6006      // wrote something like:
6007      //   template <> friend void foo(int);
6008      // which we're recovering from as if the user had written:
6009      //   friend void foo<>(int);
6010      // Go ahead and fake up a template id.
6011      HasExplicitTemplateArgs = true;
6012        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6013      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6014    }
6015
6016    // If it's a friend (and only if it's a friend), it's possible
6017    // that either the specialized function type or the specialized
6018    // template is dependent, and therefore matching will fail.  In
6019    // this case, don't check the specialization yet.
6020    bool InstantiationDependent = false;
6021    if (isFunctionTemplateSpecialization && isFriend &&
6022        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6023         TemplateSpecializationType::anyDependentTemplateArguments(
6024            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6025            InstantiationDependent))) {
6026      assert(HasExplicitTemplateArgs &&
6027             "friend function specialization without template args");
6028      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6029                                                       Previous))
6030        NewFD->setInvalidDecl();
6031    } else if (isFunctionTemplateSpecialization) {
6032      if (CurContext->isDependentContext() && CurContext->isRecord()
6033          && !isFriend) {
6034        isDependentClassScopeExplicitSpecialization = true;
6035        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6036          diag::ext_function_specialization_in_class :
6037          diag::err_function_specialization_in_class)
6038          << NewFD->getDeclName();
6039      } else if (CheckFunctionTemplateSpecialization(NewFD,
6040                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6041                                                     Previous))
6042        NewFD->setInvalidDecl();
6043
6044      // C++ [dcl.stc]p1:
6045      //   A storage-class-specifier shall not be specified in an explicit
6046      //   specialization (14.7.3)
6047      if (SC != SC_None) {
6048        if (SC != NewFD->getStorageClass())
6049          Diag(NewFD->getLocation(),
6050               diag::err_explicit_specialization_inconsistent_storage_class)
6051            << SC
6052            << FixItHint::CreateRemoval(
6053                                      D.getDeclSpec().getStorageClassSpecLoc());
6054
6055        else
6056          Diag(NewFD->getLocation(),
6057               diag::ext_explicit_specialization_storage_class)
6058            << FixItHint::CreateRemoval(
6059                                      D.getDeclSpec().getStorageClassSpecLoc());
6060      }
6061
6062    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6063      if (CheckMemberSpecialization(NewFD, Previous))
6064          NewFD->setInvalidDecl();
6065    }
6066
6067    // Perform semantic checking on the function declaration.
6068    if (!isDependentClassScopeExplicitSpecialization) {
6069      if (NewFD->isInvalidDecl()) {
6070        // If this is a class member, mark the class invalid immediately.
6071        // This avoids some consistency errors later.
6072        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6073          methodDecl->getParent()->setInvalidDecl();
6074      } else {
6075        if (NewFD->isMain())
6076          CheckMain(NewFD, D.getDeclSpec());
6077        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6078                                                    isExplicitSpecialization));
6079      }
6080    }
6081
6082    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6083            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6084           "previous declaration set still overloaded");
6085
6086    NamedDecl *PrincipalDecl = (FunctionTemplate
6087                                ? cast<NamedDecl>(FunctionTemplate)
6088                                : NewFD);
6089
6090    if (isFriend && D.isRedeclaration()) {
6091      AccessSpecifier Access = AS_public;
6092      if (!NewFD->isInvalidDecl())
6093        Access = NewFD->getPreviousDecl()->getAccess();
6094
6095      NewFD->setAccess(Access);
6096      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6097
6098      PrincipalDecl->setObjectOfFriendDecl(true);
6099    }
6100
6101    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6102        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6103      PrincipalDecl->setNonMemberOperator();
6104
6105    // If we have a function template, check the template parameter
6106    // list. This will check and merge default template arguments.
6107    if (FunctionTemplate) {
6108      FunctionTemplateDecl *PrevTemplate =
6109                                     FunctionTemplate->getPreviousDecl();
6110      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6111                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6112                            D.getDeclSpec().isFriendSpecified()
6113                              ? (D.isFunctionDefinition()
6114                                   ? TPC_FriendFunctionTemplateDefinition
6115                                   : TPC_FriendFunctionTemplate)
6116                              : (D.getCXXScopeSpec().isSet() &&
6117                                 DC && DC->isRecord() &&
6118                                 DC->isDependentContext())
6119                                  ? TPC_ClassTemplateMember
6120                                  : TPC_FunctionTemplate);
6121    }
6122
6123    if (NewFD->isInvalidDecl()) {
6124      // Ignore all the rest of this.
6125    } else if (!D.isRedeclaration()) {
6126      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6127                                       AddToScope };
6128      // Fake up an access specifier if it's supposed to be a class member.
6129      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6130        NewFD->setAccess(AS_public);
6131
6132      // Qualified decls generally require a previous declaration.
6133      if (D.getCXXScopeSpec().isSet()) {
6134        // ...with the major exception of templated-scope or
6135        // dependent-scope friend declarations.
6136
6137        // TODO: we currently also suppress this check in dependent
6138        // contexts because (1) the parameter depth will be off when
6139        // matching friend templates and (2) we might actually be
6140        // selecting a friend based on a dependent factor.  But there
6141        // are situations where these conditions don't apply and we
6142        // can actually do this check immediately.
6143        if (isFriend &&
6144            (TemplateParamLists.size() ||
6145             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6146             CurContext->isDependentContext())) {
6147          // ignore these
6148        } else {
6149          // The user tried to provide an out-of-line definition for a
6150          // function that is a member of a class or namespace, but there
6151          // was no such member function declared (C++ [class.mfct]p2,
6152          // C++ [namespace.memdef]p2). For example:
6153          //
6154          // class X {
6155          //   void f() const;
6156          // };
6157          //
6158          // void X::f() { } // ill-formed
6159          //
6160          // Complain about this problem, and attempt to suggest close
6161          // matches (e.g., those that differ only in cv-qualifiers and
6162          // whether the parameter types are references).
6163
6164          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6165                                                               NewFD,
6166                                                               ExtraArgs)) {
6167            AddToScope = ExtraArgs.AddToScope;
6168            return Result;
6169          }
6170        }
6171
6172        // Unqualified local friend declarations are required to resolve
6173        // to something.
6174      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6175        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6176                                                             NewFD,
6177                                                             ExtraArgs)) {
6178          AddToScope = ExtraArgs.AddToScope;
6179          return Result;
6180        }
6181      }
6182
6183    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6184               !isFriend && !isFunctionTemplateSpecialization &&
6185               !isExplicitSpecialization) {
6186      // An out-of-line member function declaration must also be a
6187      // definition (C++ [dcl.meaning]p1).
6188      // Note that this is not the case for explicit specializations of
6189      // function templates or member functions of class templates, per
6190      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6191      // extension for compatibility with old SWIG code which likes to
6192      // generate them.
6193      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6194        << D.getCXXScopeSpec().getRange();
6195    }
6196  }
6197
6198  checkAttributesAfterMerging(*this, *NewFD);
6199
6200  AddKnownFunctionAttributes(NewFD);
6201
6202  if (NewFD->hasAttr<OverloadableAttr>() &&
6203      !NewFD->getType()->getAs<FunctionProtoType>()) {
6204    Diag(NewFD->getLocation(),
6205         diag::err_attribute_overloadable_no_prototype)
6206      << NewFD;
6207
6208    // Turn this into a variadic function with no parameters.
6209    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6210    FunctionProtoType::ExtProtoInfo EPI;
6211    EPI.Variadic = true;
6212    EPI.ExtInfo = FT->getExtInfo();
6213
6214    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
6215    NewFD->setType(R);
6216  }
6217
6218  // If there's a #pragma GCC visibility in scope, and this isn't a class
6219  // member, set the visibility of this function.
6220  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
6221    AddPushedVisibilityAttribute(NewFD);
6222
6223  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6224  // marking the function.
6225  AddCFAuditedAttribute(NewFD);
6226
6227  // If this is a locally-scoped extern C function, update the
6228  // map of such names.
6229  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6230      && !NewFD->isInvalidDecl())
6231    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6232
6233  // Set this FunctionDecl's range up to the right paren.
6234  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6235
6236  if (getLangOpts().CPlusPlus) {
6237    if (FunctionTemplate) {
6238      if (NewFD->isInvalidDecl())
6239        FunctionTemplate->setInvalidDecl();
6240      return FunctionTemplate;
6241    }
6242  }
6243
6244  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6245    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6246    if ((getLangOpts().OpenCLVersion >= 120)
6247        && (SC == SC_Static)) {
6248      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6249      D.setInvalidType();
6250    }
6251
6252    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6253    if (!NewFD->getResultType()->isVoidType()) {
6254      Diag(D.getIdentifierLoc(),
6255           diag::err_expected_kernel_void_return_type);
6256      D.setInvalidType();
6257    }
6258
6259    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6260         PE = NewFD->param_end(); PI != PE; ++PI) {
6261      ParmVarDecl *Param = *PI;
6262      QualType PT = Param->getType();
6263
6264      // OpenCL v1.2 s6.9.a:
6265      // A kernel function argument cannot be declared as a
6266      // pointer to a pointer type.
6267      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6268        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6269        D.setInvalidType();
6270      }
6271
6272      // OpenCL v1.2 s6.8 n:
6273      // A kernel function argument cannot be declared
6274      // of event_t type.
6275      if (PT->isEventT()) {
6276        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6277        D.setInvalidType();
6278      }
6279    }
6280  }
6281
6282  MarkUnusedFileScopedDecl(NewFD);
6283
6284  if (getLangOpts().CUDA)
6285    if (IdentifierInfo *II = NewFD->getIdentifier())
6286      if (!NewFD->isInvalidDecl() &&
6287          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6288        if (II->isStr("cudaConfigureCall")) {
6289          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6290            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6291
6292          Context.setcudaConfigureCallDecl(NewFD);
6293        }
6294      }
6295
6296  // Here we have an function template explicit specialization at class scope.
6297  // The actually specialization will be postponed to template instatiation
6298  // time via the ClassScopeFunctionSpecializationDecl node.
6299  if (isDependentClassScopeExplicitSpecialization) {
6300    ClassScopeFunctionSpecializationDecl *NewSpec =
6301                         ClassScopeFunctionSpecializationDecl::Create(
6302                                Context, CurContext, SourceLocation(),
6303                                cast<CXXMethodDecl>(NewFD),
6304                                HasExplicitTemplateArgs, TemplateArgs);
6305    CurContext->addDecl(NewSpec);
6306    AddToScope = false;
6307  }
6308
6309  return NewFD;
6310}
6311
6312/// \brief Perform semantic checking of a new function declaration.
6313///
6314/// Performs semantic analysis of the new function declaration
6315/// NewFD. This routine performs all semantic checking that does not
6316/// require the actual declarator involved in the declaration, and is
6317/// used both for the declaration of functions as they are parsed
6318/// (called via ActOnDeclarator) and for the declaration of functions
6319/// that have been instantiated via C++ template instantiation (called
6320/// via InstantiateDecl).
6321///
6322/// \param IsExplicitSpecialization whether this new function declaration is
6323/// an explicit specialization of the previous declaration.
6324///
6325/// This sets NewFD->isInvalidDecl() to true if there was an error.
6326///
6327/// \returns true if the function declaration is a redeclaration.
6328bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6329                                    LookupResult &Previous,
6330                                    bool IsExplicitSpecialization) {
6331  assert(!NewFD->getResultType()->isVariablyModifiedType()
6332         && "Variably modified return types are not handled here");
6333
6334  // Check for a previous declaration of this name.
6335  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6336    // Since we did not find anything by this name, look for a non-visible
6337    // extern "C" declaration with the same name.
6338    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6339      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6340    if (Pos != LocallyScopedExternCDecls.end())
6341      Previous.addDecl(Pos->second);
6342  }
6343
6344  // Filter out any non-conflicting previous declarations.
6345  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6346
6347  bool Redeclaration = false;
6348  NamedDecl *OldDecl = 0;
6349
6350  // Merge or overload the declaration with an existing declaration of
6351  // the same name, if appropriate.
6352  if (!Previous.empty()) {
6353    // Determine whether NewFD is an overload of PrevDecl or
6354    // a declaration that requires merging. If it's an overload,
6355    // there's no more work to do here; we'll just add the new
6356    // function to the scope.
6357    if (!AllowOverloadingOfFunction(Previous, Context)) {
6358      Redeclaration = true;
6359      OldDecl = Previous.getFoundDecl();
6360    } else {
6361      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6362                            /*NewIsUsingDecl*/ false)) {
6363      case Ovl_Match:
6364        Redeclaration = true;
6365        break;
6366
6367      case Ovl_NonFunction:
6368        Redeclaration = true;
6369        break;
6370
6371      case Ovl_Overload:
6372        Redeclaration = false;
6373        break;
6374      }
6375
6376      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6377        // If a function name is overloadable in C, then every function
6378        // with that name must be marked "overloadable".
6379        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6380          << Redeclaration << NewFD;
6381        NamedDecl *OverloadedDecl = 0;
6382        if (Redeclaration)
6383          OverloadedDecl = OldDecl;
6384        else if (!Previous.empty())
6385          OverloadedDecl = Previous.getRepresentativeDecl();
6386        if (OverloadedDecl)
6387          Diag(OverloadedDecl->getLocation(),
6388               diag::note_attribute_overloadable_prev_overload);
6389        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6390                                                        Context));
6391      }
6392    }
6393  }
6394
6395  // C++11 [dcl.constexpr]p8:
6396  //   A constexpr specifier for a non-static member function that is not
6397  //   a constructor declares that member function to be const.
6398  //
6399  // This needs to be delayed until we know whether this is an out-of-line
6400  // definition of a static member function.
6401  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6402  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6403      !isa<CXXConstructorDecl>(MD) &&
6404      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6405    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6406    if (FunctionTemplateDecl *OldTD =
6407          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6408      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6409    if (!OldMD || !OldMD->isStatic()) {
6410      const FunctionProtoType *FPT =
6411        MD->getType()->castAs<FunctionProtoType>();
6412      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6413      EPI.TypeQuals |= Qualifiers::Const;
6414      MD->setType(Context.getFunctionType(FPT->getResultType(),
6415                                          FPT->arg_type_begin(),
6416                                          FPT->getNumArgs(), EPI));
6417    }
6418  }
6419
6420  if (Redeclaration) {
6421    // NewFD and OldDecl represent declarations that need to be
6422    // merged.
6423    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6424      NewFD->setInvalidDecl();
6425      return Redeclaration;
6426    }
6427
6428    Previous.clear();
6429    Previous.addDecl(OldDecl);
6430
6431    if (FunctionTemplateDecl *OldTemplateDecl
6432                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6433      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6434      FunctionTemplateDecl *NewTemplateDecl
6435        = NewFD->getDescribedFunctionTemplate();
6436      assert(NewTemplateDecl && "Template/non-template mismatch");
6437      if (CXXMethodDecl *Method
6438            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6439        Method->setAccess(OldTemplateDecl->getAccess());
6440        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6441      }
6442
6443      // If this is an explicit specialization of a member that is a function
6444      // template, mark it as a member specialization.
6445      if (IsExplicitSpecialization &&
6446          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6447        NewTemplateDecl->setMemberSpecialization();
6448        assert(OldTemplateDecl->isMemberSpecialization());
6449      }
6450
6451    } else {
6452      // This needs to happen first so that 'inline' propagates.
6453      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6454
6455      if (isa<CXXMethodDecl>(NewFD)) {
6456        // A valid redeclaration of a C++ method must be out-of-line,
6457        // but (unfortunately) it's not necessarily a definition
6458        // because of templates, which means that the previous
6459        // declaration is not necessarily from the class definition.
6460
6461        // For just setting the access, that doesn't matter.
6462        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6463        NewFD->setAccess(oldMethod->getAccess());
6464
6465        // Update the key-function state if necessary for this ABI.
6466        if (NewFD->isInlined() &&
6467            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6468          // setNonKeyFunction needs to work with the original
6469          // declaration from the class definition, and isVirtual() is
6470          // just faster in that case, so map back to that now.
6471          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6472          if (oldMethod->isVirtual()) {
6473            Context.setNonKeyFunction(oldMethod);
6474          }
6475        }
6476      }
6477    }
6478  }
6479
6480  // Semantic checking for this function declaration (in isolation).
6481  if (getLangOpts().CPlusPlus) {
6482    // C++-specific checks.
6483    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6484      CheckConstructor(Constructor);
6485    } else if (CXXDestructorDecl *Destructor =
6486                dyn_cast<CXXDestructorDecl>(NewFD)) {
6487      CXXRecordDecl *Record = Destructor->getParent();
6488      QualType ClassType = Context.getTypeDeclType(Record);
6489
6490      // FIXME: Shouldn't we be able to perform this check even when the class
6491      // type is dependent? Both gcc and edg can handle that.
6492      if (!ClassType->isDependentType()) {
6493        DeclarationName Name
6494          = Context.DeclarationNames.getCXXDestructorName(
6495                                        Context.getCanonicalType(ClassType));
6496        if (NewFD->getDeclName() != Name) {
6497          Diag(NewFD->getLocation(), diag::err_destructor_name);
6498          NewFD->setInvalidDecl();
6499          return Redeclaration;
6500        }
6501      }
6502    } else if (CXXConversionDecl *Conversion
6503               = dyn_cast<CXXConversionDecl>(NewFD)) {
6504      ActOnConversionDeclarator(Conversion);
6505    }
6506
6507    // Find any virtual functions that this function overrides.
6508    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6509      if (!Method->isFunctionTemplateSpecialization() &&
6510          !Method->getDescribedFunctionTemplate() &&
6511          Method->isCanonicalDecl()) {
6512        if (AddOverriddenMethods(Method->getParent(), Method)) {
6513          // If the function was marked as "static", we have a problem.
6514          if (NewFD->getStorageClass() == SC_Static) {
6515            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6516          }
6517        }
6518      }
6519
6520      if (Method->isStatic())
6521        checkThisInStaticMemberFunctionType(Method);
6522    }
6523
6524    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6525    if (NewFD->isOverloadedOperator() &&
6526        CheckOverloadedOperatorDeclaration(NewFD)) {
6527      NewFD->setInvalidDecl();
6528      return Redeclaration;
6529    }
6530
6531    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6532    if (NewFD->getLiteralIdentifier() &&
6533        CheckLiteralOperatorDeclaration(NewFD)) {
6534      NewFD->setInvalidDecl();
6535      return Redeclaration;
6536    }
6537
6538    // In C++, check default arguments now that we have merged decls. Unless
6539    // the lexical context is the class, because in this case this is done
6540    // during delayed parsing anyway.
6541    if (!CurContext->isRecord())
6542      CheckCXXDefaultArguments(NewFD);
6543
6544    // If this function declares a builtin function, check the type of this
6545    // declaration against the expected type for the builtin.
6546    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6547      ASTContext::GetBuiltinTypeError Error;
6548      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6549      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6550      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6551        // The type of this function differs from the type of the builtin,
6552        // so forget about the builtin entirely.
6553        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6554      }
6555    }
6556
6557    // If this function is declared as being extern "C", then check to see if
6558    // the function returns a UDT (class, struct, or union type) that is not C
6559    // compatible, and if it does, warn the user.
6560    if (NewFD->hasCLanguageLinkage()) {
6561      QualType R = NewFD->getResultType();
6562      if (R->isIncompleteType() && !R->isVoidType())
6563        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6564            << NewFD << R;
6565      else if (!R.isPODType(Context) && !R->isVoidType() &&
6566               !R->isObjCObjectPointerType())
6567        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6568    }
6569  }
6570  return Redeclaration;
6571}
6572
6573static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6574  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6575  if (!TSI)
6576    return SourceRange();
6577
6578  TypeLoc TL = TSI->getTypeLoc();
6579  FunctionTypeLoc *FunctionTL = dyn_cast<FunctionTypeLoc>(&TL);
6580  if (!FunctionTL)
6581    return SourceRange();
6582
6583  TypeLoc ResultTL = FunctionTL->getResultLoc();
6584  if (isa<BuiltinTypeLoc>(ResultTL.getUnqualifiedLoc()))
6585    return ResultTL.getSourceRange();
6586
6587  return SourceRange();
6588}
6589
6590void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6591  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6592  //   static or constexpr is ill-formed.
6593  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6594  //   appear in a declaration of main.
6595  // static main is not an error under C99, but we should warn about it.
6596  // We accept _Noreturn main as an extension.
6597  if (FD->getStorageClass() == SC_Static)
6598    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6599         ? diag::err_static_main : diag::warn_static_main)
6600      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6601  if (FD->isInlineSpecified())
6602    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6603      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6604  if (DS.isNoreturnSpecified()) {
6605    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6606    SourceRange NoreturnRange(NoreturnLoc,
6607                              PP.getLocForEndOfToken(NoreturnLoc));
6608    Diag(NoreturnLoc, diag::ext_noreturn_main);
6609    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6610      << FixItHint::CreateRemoval(NoreturnRange);
6611  }
6612  if (FD->isConstexpr()) {
6613    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6614      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6615    FD->setConstexpr(false);
6616  }
6617
6618  QualType T = FD->getType();
6619  assert(T->isFunctionType() && "function decl is not of function type");
6620  const FunctionType* FT = T->castAs<FunctionType>();
6621
6622  // All the standards say that main() should should return 'int'.
6623  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6624    // In C and C++, main magically returns 0 if you fall off the end;
6625    // set the flag which tells us that.
6626    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6627    FD->setHasImplicitReturnZero(true);
6628
6629  // In C with GNU extensions we allow main() to have non-integer return
6630  // type, but we should warn about the extension, and we disable the
6631  // implicit-return-zero rule.
6632  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6633    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6634
6635    SourceRange ResultRange = getResultSourceRange(FD);
6636    if (ResultRange.isValid())
6637      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6638          << FixItHint::CreateReplacement(ResultRange, "int");
6639
6640  // Otherwise, this is just a flat-out error.
6641  } else {
6642    SourceRange ResultRange = getResultSourceRange(FD);
6643    if (ResultRange.isValid())
6644      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6645          << FixItHint::CreateReplacement(ResultRange, "int");
6646    else
6647      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6648
6649    FD->setInvalidDecl(true);
6650  }
6651
6652  // Treat protoless main() as nullary.
6653  if (isa<FunctionNoProtoType>(FT)) return;
6654
6655  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6656  unsigned nparams = FTP->getNumArgs();
6657  assert(FD->getNumParams() == nparams);
6658
6659  bool HasExtraParameters = (nparams > 3);
6660
6661  // Darwin passes an undocumented fourth argument of type char**.  If
6662  // other platforms start sprouting these, the logic below will start
6663  // getting shifty.
6664  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6665    HasExtraParameters = false;
6666
6667  if (HasExtraParameters) {
6668    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6669    FD->setInvalidDecl(true);
6670    nparams = 3;
6671  }
6672
6673  // FIXME: a lot of the following diagnostics would be improved
6674  // if we had some location information about types.
6675
6676  QualType CharPP =
6677    Context.getPointerType(Context.getPointerType(Context.CharTy));
6678  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6679
6680  for (unsigned i = 0; i < nparams; ++i) {
6681    QualType AT = FTP->getArgType(i);
6682
6683    bool mismatch = true;
6684
6685    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6686      mismatch = false;
6687    else if (Expected[i] == CharPP) {
6688      // As an extension, the following forms are okay:
6689      //   char const **
6690      //   char const * const *
6691      //   char * const *
6692
6693      QualifierCollector qs;
6694      const PointerType* PT;
6695      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6696          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6697          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6698                              Context.CharTy)) {
6699        qs.removeConst();
6700        mismatch = !qs.empty();
6701      }
6702    }
6703
6704    if (mismatch) {
6705      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6706      // TODO: suggest replacing given type with expected type
6707      FD->setInvalidDecl(true);
6708    }
6709  }
6710
6711  if (nparams == 1 && !FD->isInvalidDecl()) {
6712    Diag(FD->getLocation(), diag::warn_main_one_arg);
6713  }
6714
6715  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6716    Diag(FD->getLocation(), diag::err_main_template_decl);
6717    FD->setInvalidDecl();
6718  }
6719}
6720
6721bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6722  // FIXME: Need strict checking.  In C89, we need to check for
6723  // any assignment, increment, decrement, function-calls, or
6724  // commas outside of a sizeof.  In C99, it's the same list,
6725  // except that the aforementioned are allowed in unevaluated
6726  // expressions.  Everything else falls under the
6727  // "may accept other forms of constant expressions" exception.
6728  // (We never end up here for C++, so the constant expression
6729  // rules there don't matter.)
6730  if (Init->isConstantInitializer(Context, false))
6731    return false;
6732  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6733    << Init->getSourceRange();
6734  return true;
6735}
6736
6737namespace {
6738  // Visits an initialization expression to see if OrigDecl is evaluated in
6739  // its own initialization and throws a warning if it does.
6740  class SelfReferenceChecker
6741      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6742    Sema &S;
6743    Decl *OrigDecl;
6744    bool isRecordType;
6745    bool isPODType;
6746    bool isReferenceType;
6747
6748  public:
6749    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6750
6751    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6752                                                    S(S), OrigDecl(OrigDecl) {
6753      isPODType = false;
6754      isRecordType = false;
6755      isReferenceType = false;
6756      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6757        isPODType = VD->getType().isPODType(S.Context);
6758        isRecordType = VD->getType()->isRecordType();
6759        isReferenceType = VD->getType()->isReferenceType();
6760      }
6761    }
6762
6763    // For most expressions, the cast is directly above the DeclRefExpr.
6764    // For conditional operators, the cast can be outside the conditional
6765    // operator if both expressions are DeclRefExpr's.
6766    void HandleValue(Expr *E) {
6767      if (isReferenceType)
6768        return;
6769      E = E->IgnoreParenImpCasts();
6770      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6771        HandleDeclRefExpr(DRE);
6772        return;
6773      }
6774
6775      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6776        HandleValue(CO->getTrueExpr());
6777        HandleValue(CO->getFalseExpr());
6778        return;
6779      }
6780
6781      if (isa<MemberExpr>(E)) {
6782        Expr *Base = E->IgnoreParenImpCasts();
6783        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6784          // Check for static member variables and don't warn on them.
6785          if (!isa<FieldDecl>(ME->getMemberDecl()))
6786            return;
6787          Base = ME->getBase()->IgnoreParenImpCasts();
6788        }
6789        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6790          HandleDeclRefExpr(DRE);
6791        return;
6792      }
6793    }
6794
6795    // Reference types are handled here since all uses of references are
6796    // bad, not just r-value uses.
6797    void VisitDeclRefExpr(DeclRefExpr *E) {
6798      if (isReferenceType)
6799        HandleDeclRefExpr(E);
6800    }
6801
6802    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6803      if (E->getCastKind() == CK_LValueToRValue ||
6804          (isRecordType && E->getCastKind() == CK_NoOp))
6805        HandleValue(E->getSubExpr());
6806
6807      Inherited::VisitImplicitCastExpr(E);
6808    }
6809
6810    void VisitMemberExpr(MemberExpr *E) {
6811      // Don't warn on arrays since they can be treated as pointers.
6812      if (E->getType()->canDecayToPointerType()) return;
6813
6814      // Warn when a non-static method call is followed by non-static member
6815      // field accesses, which is followed by a DeclRefExpr.
6816      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6817      bool Warn = (MD && !MD->isStatic());
6818      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6819      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6820        if (!isa<FieldDecl>(ME->getMemberDecl()))
6821          Warn = false;
6822        Base = ME->getBase()->IgnoreParenImpCasts();
6823      }
6824
6825      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6826        if (Warn)
6827          HandleDeclRefExpr(DRE);
6828        return;
6829      }
6830
6831      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6832      // Visit that expression.
6833      Visit(Base);
6834    }
6835
6836    void VisitUnaryOperator(UnaryOperator *E) {
6837      // For POD record types, addresses of its own members are well-defined.
6838      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6839          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6840        if (!isPODType)
6841          HandleValue(E->getSubExpr());
6842        return;
6843      }
6844      Inherited::VisitUnaryOperator(E);
6845    }
6846
6847    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6848
6849    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6850      Decl* ReferenceDecl = DRE->getDecl();
6851      if (OrigDecl != ReferenceDecl) return;
6852      unsigned diag;
6853      if (isReferenceType) {
6854        diag = diag::warn_uninit_self_reference_in_reference_init;
6855      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
6856        diag = diag::warn_static_self_reference_in_init;
6857      } else {
6858        diag = diag::warn_uninit_self_reference_in_init;
6859      }
6860
6861      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6862                            S.PDiag(diag)
6863                              << DRE->getNameInfo().getName()
6864                              << OrigDecl->getLocation()
6865                              << DRE->getSourceRange());
6866    }
6867  };
6868
6869  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6870  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6871                                 bool DirectInit) {
6872    // Parameters arguments are occassionially constructed with itself,
6873    // for instance, in recursive functions.  Skip them.
6874    if (isa<ParmVarDecl>(OrigDecl))
6875      return;
6876
6877    E = E->IgnoreParens();
6878
6879    // Skip checking T a = a where T is not a record or reference type.
6880    // Doing so is a way to silence uninitialized warnings.
6881    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6882      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6883        if (ICE->getCastKind() == CK_LValueToRValue)
6884          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6885            if (DRE->getDecl() == OrigDecl)
6886              return;
6887
6888    SelfReferenceChecker(S, OrigDecl).Visit(E);
6889  }
6890}
6891
6892/// AddInitializerToDecl - Adds the initializer Init to the
6893/// declaration dcl. If DirectInit is true, this is C++ direct
6894/// initialization rather than copy initialization.
6895void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6896                                bool DirectInit, bool TypeMayContainAuto) {
6897  // If there is no declaration, there was an error parsing it.  Just ignore
6898  // the initializer.
6899  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6900    return;
6901
6902  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6903    // With declarators parsed the way they are, the parser cannot
6904    // distinguish between a normal initializer and a pure-specifier.
6905    // Thus this grotesque test.
6906    IntegerLiteral *IL;
6907    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6908        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6909      CheckPureMethod(Method, Init->getSourceRange());
6910    else {
6911      Diag(Method->getLocation(), diag::err_member_function_initialization)
6912        << Method->getDeclName() << Init->getSourceRange();
6913      Method->setInvalidDecl();
6914    }
6915    return;
6916  }
6917
6918  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6919  if (!VDecl) {
6920    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6921    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6922    RealDecl->setInvalidDecl();
6923    return;
6924  }
6925
6926  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6927
6928  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6929  AutoType *Auto = 0;
6930  if (TypeMayContainAuto &&
6931      (Auto = VDecl->getType()->getContainedAutoType()) &&
6932      !Auto->isDeduced()) {
6933    Expr *DeduceInit = Init;
6934    // Initializer could be a C++ direct-initializer. Deduction only works if it
6935    // contains exactly one expression.
6936    if (CXXDirectInit) {
6937      if (CXXDirectInit->getNumExprs() == 0) {
6938        // It isn't possible to write this directly, but it is possible to
6939        // end up in this situation with "auto x(some_pack...);"
6940        Diag(CXXDirectInit->getLocStart(),
6941             diag::err_auto_var_init_no_expression)
6942          << VDecl->getDeclName() << VDecl->getType()
6943          << VDecl->getSourceRange();
6944        RealDecl->setInvalidDecl();
6945        return;
6946      } else if (CXXDirectInit->getNumExprs() > 1) {
6947        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6948             diag::err_auto_var_init_multiple_expressions)
6949          << VDecl->getDeclName() << VDecl->getType()
6950          << VDecl->getSourceRange();
6951        RealDecl->setInvalidDecl();
6952        return;
6953      } else {
6954        DeduceInit = CXXDirectInit->getExpr(0);
6955      }
6956    }
6957    TypeSourceInfo *DeducedType = 0;
6958    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6959            DAR_Failed)
6960      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6961    if (!DeducedType) {
6962      RealDecl->setInvalidDecl();
6963      return;
6964    }
6965    VDecl->setTypeSourceInfo(DeducedType);
6966    VDecl->setType(DeducedType->getType());
6967    VDecl->ClearLinkageCache();
6968
6969    // In ARC, infer lifetime.
6970    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6971      VDecl->setInvalidDecl();
6972
6973    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6974    // 'id' instead of a specific object type prevents most of our usual checks.
6975    // We only want to warn outside of template instantiations, though:
6976    // inside a template, the 'id' could have come from a parameter.
6977    if (ActiveTemplateInstantiations.empty() &&
6978        DeducedType->getType()->isObjCIdType()) {
6979      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6980      Diag(Loc, diag::warn_auto_var_is_id)
6981        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6982    }
6983
6984    // If this is a redeclaration, check that the type we just deduced matches
6985    // the previously declared type.
6986    if (VarDecl *Old = VDecl->getPreviousDecl())
6987      MergeVarDeclTypes(VDecl, Old);
6988  }
6989
6990  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6991    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6992    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6993    VDecl->setInvalidDecl();
6994    return;
6995  }
6996
6997  if (!VDecl->getType()->isDependentType()) {
6998    // A definition must end up with a complete type, which means it must be
6999    // complete with the restriction that an array type might be completed by
7000    // the initializer; note that later code assumes this restriction.
7001    QualType BaseDeclType = VDecl->getType();
7002    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7003      BaseDeclType = Array->getElementType();
7004    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7005                            diag::err_typecheck_decl_incomplete_type)) {
7006      RealDecl->setInvalidDecl();
7007      return;
7008    }
7009
7010    // The variable can not have an abstract class type.
7011    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7012                               diag::err_abstract_type_in_decl,
7013                               AbstractVariableType))
7014      VDecl->setInvalidDecl();
7015  }
7016
7017  const VarDecl *Def;
7018  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7019    Diag(VDecl->getLocation(), diag::err_redefinition)
7020      << VDecl->getDeclName();
7021    Diag(Def->getLocation(), diag::note_previous_definition);
7022    VDecl->setInvalidDecl();
7023    return;
7024  }
7025
7026  const VarDecl* PrevInit = 0;
7027  if (getLangOpts().CPlusPlus) {
7028    // C++ [class.static.data]p4
7029    //   If a static data member is of const integral or const
7030    //   enumeration type, its declaration in the class definition can
7031    //   specify a constant-initializer which shall be an integral
7032    //   constant expression (5.19). In that case, the member can appear
7033    //   in integral constant expressions. The member shall still be
7034    //   defined in a namespace scope if it is used in the program and the
7035    //   namespace scope definition shall not contain an initializer.
7036    //
7037    // We already performed a redefinition check above, but for static
7038    // data members we also need to check whether there was an in-class
7039    // declaration with an initializer.
7040    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7041      Diag(VDecl->getLocation(), diag::err_redefinition)
7042        << VDecl->getDeclName();
7043      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7044      return;
7045    }
7046
7047    if (VDecl->hasLocalStorage())
7048      getCurFunction()->setHasBranchProtectedScope();
7049
7050    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7051      VDecl->setInvalidDecl();
7052      return;
7053    }
7054  }
7055
7056  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7057  // a kernel function cannot be initialized."
7058  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7059    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7060    VDecl->setInvalidDecl();
7061    return;
7062  }
7063
7064  // Get the decls type and save a reference for later, since
7065  // CheckInitializerTypes may change it.
7066  QualType DclT = VDecl->getType(), SavT = DclT;
7067
7068  // Top-level message sends default to 'id' when we're in a debugger
7069  // and we are assigning it to a variable of 'id' type.
7070  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
7071    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
7072      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7073      if (Result.isInvalid()) {
7074        VDecl->setInvalidDecl();
7075        return;
7076      }
7077      Init = Result.take();
7078    }
7079
7080  // Perform the initialization.
7081  if (!VDecl->isInvalidDecl()) {
7082    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7083    InitializationKind Kind
7084      = DirectInit ?
7085          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7086                                                           Init->getLocStart(),
7087                                                           Init->getLocEnd())
7088                        : InitializationKind::CreateDirectList(
7089                                                          VDecl->getLocation())
7090                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7091                                                    Init->getLocStart());
7092
7093    Expr **Args = &Init;
7094    unsigned NumArgs = 1;
7095    if (CXXDirectInit) {
7096      Args = CXXDirectInit->getExprs();
7097      NumArgs = CXXDirectInit->getNumExprs();
7098    }
7099    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7100    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7101                                        MultiExprArg(Args, NumArgs), &DclT);
7102    if (Result.isInvalid()) {
7103      VDecl->setInvalidDecl();
7104      return;
7105    }
7106
7107    Init = Result.takeAs<Expr>();
7108  }
7109
7110  // Check for self-references within variable initializers.
7111  // Variables declared within a function/method body (except for references)
7112  // are handled by a dataflow analysis.
7113  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7114      VDecl->getType()->isReferenceType()) {
7115    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7116  }
7117
7118  // If the type changed, it means we had an incomplete type that was
7119  // completed by the initializer. For example:
7120  //   int ary[] = { 1, 3, 5 };
7121  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7122  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7123    VDecl->setType(DclT);
7124
7125  if (!VDecl->isInvalidDecl()) {
7126    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7127
7128    if (VDecl->hasAttr<BlocksAttr>())
7129      checkRetainCycles(VDecl, Init);
7130
7131    // It is safe to assign a weak reference into a strong variable.
7132    // Although this code can still have problems:
7133    //   id x = self.weakProp;
7134    //   id y = self.weakProp;
7135    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7136    // paths through the function. This should be revisited if
7137    // -Wrepeated-use-of-weak is made flow-sensitive.
7138    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7139      DiagnosticsEngine::Level Level =
7140        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7141                                 Init->getLocStart());
7142      if (Level != DiagnosticsEngine::Ignored)
7143        getCurFunction()->markSafeWeakUse(Init);
7144    }
7145  }
7146
7147  // The initialization is usually a full-expression.
7148  //
7149  // FIXME: If this is a braced initialization of an aggregate, it is not
7150  // an expression, and each individual field initializer is a separate
7151  // full-expression. For instance, in:
7152  //
7153  //   struct Temp { ~Temp(); };
7154  //   struct S { S(Temp); };
7155  //   struct T { S a, b; } t = { Temp(), Temp() }
7156  //
7157  // we should destroy the first Temp before constructing the second.
7158  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7159                                          false,
7160                                          VDecl->isConstexpr());
7161  if (Result.isInvalid()) {
7162    VDecl->setInvalidDecl();
7163    return;
7164  }
7165  Init = Result.take();
7166
7167  // Attach the initializer to the decl.
7168  VDecl->setInit(Init);
7169
7170  if (VDecl->isLocalVarDecl()) {
7171    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7172    // static storage duration shall be constant expressions or string literals.
7173    // C++ does not have this restriction.
7174    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7175        VDecl->getStorageClass() == SC_Static)
7176      CheckForConstantInitializer(Init, DclT);
7177  } else if (VDecl->isStaticDataMember() &&
7178             VDecl->getLexicalDeclContext()->isRecord()) {
7179    // This is an in-class initialization for a static data member, e.g.,
7180    //
7181    // struct S {
7182    //   static const int value = 17;
7183    // };
7184
7185    // C++ [class.mem]p4:
7186    //   A member-declarator can contain a constant-initializer only
7187    //   if it declares a static member (9.4) of const integral or
7188    //   const enumeration type, see 9.4.2.
7189    //
7190    // C++11 [class.static.data]p3:
7191    //   If a non-volatile const static data member is of integral or
7192    //   enumeration type, its declaration in the class definition can
7193    //   specify a brace-or-equal-initializer in which every initalizer-clause
7194    //   that is an assignment-expression is a constant expression. A static
7195    //   data member of literal type can be declared in the class definition
7196    //   with the constexpr specifier; if so, its declaration shall specify a
7197    //   brace-or-equal-initializer in which every initializer-clause that is
7198    //   an assignment-expression is a constant expression.
7199
7200    // Do nothing on dependent types.
7201    if (DclT->isDependentType()) {
7202
7203    // Allow any 'static constexpr' members, whether or not they are of literal
7204    // type. We separately check that every constexpr variable is of literal
7205    // type.
7206    } else if (VDecl->isConstexpr()) {
7207
7208    // Require constness.
7209    } else if (!DclT.isConstQualified()) {
7210      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7211        << Init->getSourceRange();
7212      VDecl->setInvalidDecl();
7213
7214    // We allow integer constant expressions in all cases.
7215    } else if (DclT->isIntegralOrEnumerationType()) {
7216      // Check whether the expression is a constant expression.
7217      SourceLocation Loc;
7218      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7219        // In C++11, a non-constexpr const static data member with an
7220        // in-class initializer cannot be volatile.
7221        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7222      else if (Init->isValueDependent())
7223        ; // Nothing to check.
7224      else if (Init->isIntegerConstantExpr(Context, &Loc))
7225        ; // Ok, it's an ICE!
7226      else if (Init->isEvaluatable(Context)) {
7227        // If we can constant fold the initializer through heroics, accept it,
7228        // but report this as a use of an extension for -pedantic.
7229        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7230          << Init->getSourceRange();
7231      } else {
7232        // Otherwise, this is some crazy unknown case.  Report the issue at the
7233        // location provided by the isIntegerConstantExpr failed check.
7234        Diag(Loc, diag::err_in_class_initializer_non_constant)
7235          << Init->getSourceRange();
7236        VDecl->setInvalidDecl();
7237      }
7238
7239    // We allow foldable floating-point constants as an extension.
7240    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7241      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7242      // it anyway and provide a fixit to add the 'constexpr'.
7243      if (getLangOpts().CPlusPlus11) {
7244        Diag(VDecl->getLocation(),
7245             diag::ext_in_class_initializer_float_type_cxx11)
7246            << DclT << Init->getSourceRange();
7247        Diag(VDecl->getLocStart(),
7248             diag::note_in_class_initializer_float_type_cxx11)
7249            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7250      } else {
7251        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7252          << DclT << Init->getSourceRange();
7253
7254        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7255          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7256            << Init->getSourceRange();
7257          VDecl->setInvalidDecl();
7258        }
7259      }
7260
7261    // Suggest adding 'constexpr' in C++11 for literal types.
7262    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7263      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7264        << DclT << Init->getSourceRange()
7265        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7266      VDecl->setConstexpr(true);
7267
7268    } else {
7269      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7270        << DclT << Init->getSourceRange();
7271      VDecl->setInvalidDecl();
7272    }
7273  } else if (VDecl->isFileVarDecl()) {
7274    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7275        (!getLangOpts().CPlusPlus ||
7276         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7277      Diag(VDecl->getLocation(), diag::warn_extern_init);
7278
7279    // C99 6.7.8p4. All file scoped initializers need to be constant.
7280    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7281      CheckForConstantInitializer(Init, DclT);
7282  }
7283
7284  // We will represent direct-initialization similarly to copy-initialization:
7285  //    int x(1);  -as-> int x = 1;
7286  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7287  //
7288  // Clients that want to distinguish between the two forms, can check for
7289  // direct initializer using VarDecl::getInitStyle().
7290  // A major benefit is that clients that don't particularly care about which
7291  // exactly form was it (like the CodeGen) can handle both cases without
7292  // special case code.
7293
7294  // C++ 8.5p11:
7295  // The form of initialization (using parentheses or '=') is generally
7296  // insignificant, but does matter when the entity being initialized has a
7297  // class type.
7298  if (CXXDirectInit) {
7299    assert(DirectInit && "Call-style initializer must be direct init.");
7300    VDecl->setInitStyle(VarDecl::CallInit);
7301  } else if (DirectInit) {
7302    // This must be list-initialization. No other way is direct-initialization.
7303    VDecl->setInitStyle(VarDecl::ListInit);
7304  }
7305
7306  CheckCompleteVariableDeclaration(VDecl);
7307}
7308
7309/// ActOnInitializerError - Given that there was an error parsing an
7310/// initializer for the given declaration, try to return to some form
7311/// of sanity.
7312void Sema::ActOnInitializerError(Decl *D) {
7313  // Our main concern here is re-establishing invariants like "a
7314  // variable's type is either dependent or complete".
7315  if (!D || D->isInvalidDecl()) return;
7316
7317  VarDecl *VD = dyn_cast<VarDecl>(D);
7318  if (!VD) return;
7319
7320  // Auto types are meaningless if we can't make sense of the initializer.
7321  if (ParsingInitForAutoVars.count(D)) {
7322    D->setInvalidDecl();
7323    return;
7324  }
7325
7326  QualType Ty = VD->getType();
7327  if (Ty->isDependentType()) return;
7328
7329  // Require a complete type.
7330  if (RequireCompleteType(VD->getLocation(),
7331                          Context.getBaseElementType(Ty),
7332                          diag::err_typecheck_decl_incomplete_type)) {
7333    VD->setInvalidDecl();
7334    return;
7335  }
7336
7337  // Require an abstract type.
7338  if (RequireNonAbstractType(VD->getLocation(), Ty,
7339                             diag::err_abstract_type_in_decl,
7340                             AbstractVariableType)) {
7341    VD->setInvalidDecl();
7342    return;
7343  }
7344
7345  // Don't bother complaining about constructors or destructors,
7346  // though.
7347}
7348
7349void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7350                                  bool TypeMayContainAuto) {
7351  // If there is no declaration, there was an error parsing it. Just ignore it.
7352  if (RealDecl == 0)
7353    return;
7354
7355  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7356    QualType Type = Var->getType();
7357
7358    // C++11 [dcl.spec.auto]p3
7359    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7360      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7361        << Var->getDeclName() << Type;
7362      Var->setInvalidDecl();
7363      return;
7364    }
7365
7366    // C++11 [class.static.data]p3: A static data member can be declared with
7367    // the constexpr specifier; if so, its declaration shall specify
7368    // a brace-or-equal-initializer.
7369    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7370    // the definition of a variable [...] or the declaration of a static data
7371    // member.
7372    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7373      if (Var->isStaticDataMember())
7374        Diag(Var->getLocation(),
7375             diag::err_constexpr_static_mem_var_requires_init)
7376          << Var->getDeclName();
7377      else
7378        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7379      Var->setInvalidDecl();
7380      return;
7381    }
7382
7383    switch (Var->isThisDeclarationADefinition()) {
7384    case VarDecl::Definition:
7385      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7386        break;
7387
7388      // We have an out-of-line definition of a static data member
7389      // that has an in-class initializer, so we type-check this like
7390      // a declaration.
7391      //
7392      // Fall through
7393
7394    case VarDecl::DeclarationOnly:
7395      // It's only a declaration.
7396
7397      // Block scope. C99 6.7p7: If an identifier for an object is
7398      // declared with no linkage (C99 6.2.2p6), the type for the
7399      // object shall be complete.
7400      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7401          !Var->getLinkage() && !Var->isInvalidDecl() &&
7402          RequireCompleteType(Var->getLocation(), Type,
7403                              diag::err_typecheck_decl_incomplete_type))
7404        Var->setInvalidDecl();
7405
7406      // Make sure that the type is not abstract.
7407      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7408          RequireNonAbstractType(Var->getLocation(), Type,
7409                                 diag::err_abstract_type_in_decl,
7410                                 AbstractVariableType))
7411        Var->setInvalidDecl();
7412      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7413          Var->getStorageClass() == SC_PrivateExtern) {
7414        Diag(Var->getLocation(), diag::warn_private_extern);
7415        Diag(Var->getLocation(), diag::note_private_extern);
7416      }
7417
7418      return;
7419
7420    case VarDecl::TentativeDefinition:
7421      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7422      // object that has file scope without an initializer, and without a
7423      // storage-class specifier or with the storage-class specifier "static",
7424      // constitutes a tentative definition. Note: A tentative definition with
7425      // external linkage is valid (C99 6.2.2p5).
7426      if (!Var->isInvalidDecl()) {
7427        if (const IncompleteArrayType *ArrayT
7428                                    = Context.getAsIncompleteArrayType(Type)) {
7429          if (RequireCompleteType(Var->getLocation(),
7430                                  ArrayT->getElementType(),
7431                                  diag::err_illegal_decl_array_incomplete_type))
7432            Var->setInvalidDecl();
7433        } else if (Var->getStorageClass() == SC_Static) {
7434          // C99 6.9.2p3: If the declaration of an identifier for an object is
7435          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7436          // declared type shall not be an incomplete type.
7437          // NOTE: code such as the following
7438          //     static struct s;
7439          //     struct s { int a; };
7440          // is accepted by gcc. Hence here we issue a warning instead of
7441          // an error and we do not invalidate the static declaration.
7442          // NOTE: to avoid multiple warnings, only check the first declaration.
7443          if (Var->getPreviousDecl() == 0)
7444            RequireCompleteType(Var->getLocation(), Type,
7445                                diag::ext_typecheck_decl_incomplete_type);
7446        }
7447      }
7448
7449      // Record the tentative definition; we're done.
7450      if (!Var->isInvalidDecl())
7451        TentativeDefinitions.push_back(Var);
7452      return;
7453    }
7454
7455    // Provide a specific diagnostic for uninitialized variable
7456    // definitions with incomplete array type.
7457    if (Type->isIncompleteArrayType()) {
7458      Diag(Var->getLocation(),
7459           diag::err_typecheck_incomplete_array_needs_initializer);
7460      Var->setInvalidDecl();
7461      return;
7462    }
7463
7464    // Provide a specific diagnostic for uninitialized variable
7465    // definitions with reference type.
7466    if (Type->isReferenceType()) {
7467      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7468        << Var->getDeclName()
7469        << SourceRange(Var->getLocation(), Var->getLocation());
7470      Var->setInvalidDecl();
7471      return;
7472    }
7473
7474    // Do not attempt to type-check the default initializer for a
7475    // variable with dependent type.
7476    if (Type->isDependentType())
7477      return;
7478
7479    if (Var->isInvalidDecl())
7480      return;
7481
7482    if (RequireCompleteType(Var->getLocation(),
7483                            Context.getBaseElementType(Type),
7484                            diag::err_typecheck_decl_incomplete_type)) {
7485      Var->setInvalidDecl();
7486      return;
7487    }
7488
7489    // The variable can not have an abstract class type.
7490    if (RequireNonAbstractType(Var->getLocation(), Type,
7491                               diag::err_abstract_type_in_decl,
7492                               AbstractVariableType)) {
7493      Var->setInvalidDecl();
7494      return;
7495    }
7496
7497    // Check for jumps past the implicit initializer.  C++0x
7498    // clarifies that this applies to a "variable with automatic
7499    // storage duration", not a "local variable".
7500    // C++11 [stmt.dcl]p3
7501    //   A program that jumps from a point where a variable with automatic
7502    //   storage duration is not in scope to a point where it is in scope is
7503    //   ill-formed unless the variable has scalar type, class type with a
7504    //   trivial default constructor and a trivial destructor, a cv-qualified
7505    //   version of one of these types, or an array of one of the preceding
7506    //   types and is declared without an initializer.
7507    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7508      if (const RecordType *Record
7509            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7510        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7511        // Mark the function for further checking even if the looser rules of
7512        // C++11 do not require such checks, so that we can diagnose
7513        // incompatibilities with C++98.
7514        if (!CXXRecord->isPOD())
7515          getCurFunction()->setHasBranchProtectedScope();
7516      }
7517    }
7518
7519    // C++03 [dcl.init]p9:
7520    //   If no initializer is specified for an object, and the
7521    //   object is of (possibly cv-qualified) non-POD class type (or
7522    //   array thereof), the object shall be default-initialized; if
7523    //   the object is of const-qualified type, the underlying class
7524    //   type shall have a user-declared default
7525    //   constructor. Otherwise, if no initializer is specified for
7526    //   a non- static object, the object and its subobjects, if
7527    //   any, have an indeterminate initial value); if the object
7528    //   or any of its subobjects are of const-qualified type, the
7529    //   program is ill-formed.
7530    // C++0x [dcl.init]p11:
7531    //   If no initializer is specified for an object, the object is
7532    //   default-initialized; [...].
7533    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7534    InitializationKind Kind
7535      = InitializationKind::CreateDefault(Var->getLocation());
7536
7537    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7538    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7539    if (Init.isInvalid())
7540      Var->setInvalidDecl();
7541    else if (Init.get()) {
7542      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7543      // This is important for template substitution.
7544      Var->setInitStyle(VarDecl::CallInit);
7545    }
7546
7547    CheckCompleteVariableDeclaration(Var);
7548  }
7549}
7550
7551void Sema::ActOnCXXForRangeDecl(Decl *D) {
7552  VarDecl *VD = dyn_cast<VarDecl>(D);
7553  if (!VD) {
7554    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7555    D->setInvalidDecl();
7556    return;
7557  }
7558
7559  VD->setCXXForRangeDecl(true);
7560
7561  // for-range-declaration cannot be given a storage class specifier.
7562  int Error = -1;
7563  switch (VD->getStorageClassAsWritten()) {
7564  case SC_None:
7565    break;
7566  case SC_Extern:
7567    Error = 0;
7568    break;
7569  case SC_Static:
7570    Error = 1;
7571    break;
7572  case SC_PrivateExtern:
7573    Error = 2;
7574    break;
7575  case SC_Auto:
7576    Error = 3;
7577    break;
7578  case SC_Register:
7579    Error = 4;
7580    break;
7581  case SC_OpenCLWorkGroupLocal:
7582    llvm_unreachable("Unexpected storage class");
7583  }
7584  if (VD->isConstexpr())
7585    Error = 5;
7586  if (Error != -1) {
7587    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7588      << VD->getDeclName() << Error;
7589    D->setInvalidDecl();
7590  }
7591}
7592
7593void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7594  if (var->isInvalidDecl()) return;
7595
7596  // In ARC, don't allow jumps past the implicit initialization of a
7597  // local retaining variable.
7598  if (getLangOpts().ObjCAutoRefCount &&
7599      var->hasLocalStorage()) {
7600    switch (var->getType().getObjCLifetime()) {
7601    case Qualifiers::OCL_None:
7602    case Qualifiers::OCL_ExplicitNone:
7603    case Qualifiers::OCL_Autoreleasing:
7604      break;
7605
7606    case Qualifiers::OCL_Weak:
7607    case Qualifiers::OCL_Strong:
7608      getCurFunction()->setHasBranchProtectedScope();
7609      break;
7610    }
7611  }
7612
7613  if (var->isThisDeclarationADefinition() &&
7614      var->getLinkage() == ExternalLinkage &&
7615      getDiagnostics().getDiagnosticLevel(
7616                       diag::warn_missing_variable_declarations,
7617                       var->getLocation())) {
7618    // Find a previous declaration that's not a definition.
7619    VarDecl *prev = var->getPreviousDecl();
7620    while (prev && prev->isThisDeclarationADefinition())
7621      prev = prev->getPreviousDecl();
7622
7623    if (!prev)
7624      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7625  }
7626
7627  // All the following checks are C++ only.
7628  if (!getLangOpts().CPlusPlus) return;
7629
7630  QualType type = var->getType();
7631  if (type->isDependentType()) return;
7632
7633  // __block variables might require us to capture a copy-initializer.
7634  if (var->hasAttr<BlocksAttr>()) {
7635    // It's currently invalid to ever have a __block variable with an
7636    // array type; should we diagnose that here?
7637
7638    // Regardless, we don't want to ignore array nesting when
7639    // constructing this copy.
7640    if (type->isStructureOrClassType()) {
7641      SourceLocation poi = var->getLocation();
7642      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7643      ExprResult result =
7644        PerformCopyInitialization(
7645                        InitializedEntity::InitializeBlock(poi, type, false),
7646                                  poi, Owned(varRef));
7647      if (!result.isInvalid()) {
7648        result = MaybeCreateExprWithCleanups(result);
7649        Expr *init = result.takeAs<Expr>();
7650        Context.setBlockVarCopyInits(var, init);
7651      }
7652    }
7653  }
7654
7655  Expr *Init = var->getInit();
7656  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7657  QualType baseType = Context.getBaseElementType(type);
7658
7659  if (!var->getDeclContext()->isDependentContext() &&
7660      Init && !Init->isValueDependent()) {
7661    if (IsGlobal && !var->isConstexpr() &&
7662        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7663                                            var->getLocation())
7664          != DiagnosticsEngine::Ignored &&
7665        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7666      Diag(var->getLocation(), diag::warn_global_constructor)
7667        << Init->getSourceRange();
7668
7669    if (var->isConstexpr()) {
7670      SmallVector<PartialDiagnosticAt, 8> Notes;
7671      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7672        SourceLocation DiagLoc = var->getLocation();
7673        // If the note doesn't add any useful information other than a source
7674        // location, fold it into the primary diagnostic.
7675        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7676              diag::note_invalid_subexpr_in_const_expr) {
7677          DiagLoc = Notes[0].first;
7678          Notes.clear();
7679        }
7680        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7681          << var << Init->getSourceRange();
7682        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7683          Diag(Notes[I].first, Notes[I].second);
7684      }
7685    } else if (var->isUsableInConstantExpressions(Context)) {
7686      // Check whether the initializer of a const variable of integral or
7687      // enumeration type is an ICE now, since we can't tell whether it was
7688      // initialized by a constant expression if we check later.
7689      var->checkInitIsICE();
7690    }
7691  }
7692
7693  // Require the destructor.
7694  if (const RecordType *recordType = baseType->getAs<RecordType>())
7695    FinalizeVarWithDestructor(var, recordType);
7696}
7697
7698/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7699/// any semantic actions necessary after any initializer has been attached.
7700void
7701Sema::FinalizeDeclaration(Decl *ThisDecl) {
7702  // Note that we are no longer parsing the initializer for this declaration.
7703  ParsingInitForAutoVars.erase(ThisDecl);
7704
7705  const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7706  if (!VD)
7707    return;
7708
7709  if (VD->isFileVarDecl())
7710    MarkUnusedFileScopedDecl(VD);
7711
7712  // Now we have parsed the initializer and can update the table of magic
7713  // tag values.
7714  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7715      !VD->getType()->isIntegralOrEnumerationType())
7716    return;
7717
7718  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7719         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7720         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7721       I != E; ++I) {
7722    const Expr *MagicValueExpr = VD->getInit();
7723    if (!MagicValueExpr) {
7724      continue;
7725    }
7726    llvm::APSInt MagicValueInt;
7727    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7728      Diag(I->getRange().getBegin(),
7729           diag::err_type_tag_for_datatype_not_ice)
7730        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7731      continue;
7732    }
7733    if (MagicValueInt.getActiveBits() > 64) {
7734      Diag(I->getRange().getBegin(),
7735           diag::err_type_tag_for_datatype_too_large)
7736        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7737      continue;
7738    }
7739    uint64_t MagicValue = MagicValueInt.getZExtValue();
7740    RegisterTypeTagForDatatype(I->getArgumentKind(),
7741                               MagicValue,
7742                               I->getMatchingCType(),
7743                               I->getLayoutCompatible(),
7744                               I->getMustBeNull());
7745  }
7746}
7747
7748Sema::DeclGroupPtrTy
7749Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7750                              Decl **Group, unsigned NumDecls) {
7751  SmallVector<Decl*, 8> Decls;
7752
7753  if (DS.isTypeSpecOwned())
7754    Decls.push_back(DS.getRepAsDecl());
7755
7756  for (unsigned i = 0; i != NumDecls; ++i)
7757    if (Decl *D = Group[i])
7758      Decls.push_back(D);
7759
7760  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7761    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7762      getASTContext().addUnnamedTag(Tag);
7763
7764  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7765                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7766}
7767
7768/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7769/// group, performing any necessary semantic checking.
7770Sema::DeclGroupPtrTy
7771Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7772                           bool TypeMayContainAuto) {
7773  // C++0x [dcl.spec.auto]p7:
7774  //   If the type deduced for the template parameter U is not the same in each
7775  //   deduction, the program is ill-formed.
7776  // FIXME: When initializer-list support is added, a distinction is needed
7777  // between the deduced type U and the deduced type which 'auto' stands for.
7778  //   auto a = 0, b = { 1, 2, 3 };
7779  // is legal because the deduced type U is 'int' in both cases.
7780  if (TypeMayContainAuto && NumDecls > 1) {
7781    QualType Deduced;
7782    CanQualType DeducedCanon;
7783    VarDecl *DeducedDecl = 0;
7784    for (unsigned i = 0; i != NumDecls; ++i) {
7785      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7786        AutoType *AT = D->getType()->getContainedAutoType();
7787        // Don't reissue diagnostics when instantiating a template.
7788        if (AT && D->isInvalidDecl())
7789          break;
7790        if (AT && AT->isDeduced()) {
7791          QualType U = AT->getDeducedType();
7792          CanQualType UCanon = Context.getCanonicalType(U);
7793          if (Deduced.isNull()) {
7794            Deduced = U;
7795            DeducedCanon = UCanon;
7796            DeducedDecl = D;
7797          } else if (DeducedCanon != UCanon) {
7798            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7799                 diag::err_auto_different_deductions)
7800              << Deduced << DeducedDecl->getDeclName()
7801              << U << D->getDeclName()
7802              << DeducedDecl->getInit()->getSourceRange()
7803              << D->getInit()->getSourceRange();
7804            D->setInvalidDecl();
7805            break;
7806          }
7807        }
7808      }
7809    }
7810  }
7811
7812  ActOnDocumentableDecls(Group, NumDecls);
7813
7814  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7815}
7816
7817void Sema::ActOnDocumentableDecl(Decl *D) {
7818  ActOnDocumentableDecls(&D, 1);
7819}
7820
7821void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7822  // Don't parse the comment if Doxygen diagnostics are ignored.
7823  if (NumDecls == 0 || !Group[0])
7824   return;
7825
7826  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7827                               Group[0]->getLocation())
7828        == DiagnosticsEngine::Ignored)
7829    return;
7830
7831  if (NumDecls >= 2) {
7832    // This is a decl group.  Normally it will contain only declarations
7833    // procuded from declarator list.  But in case we have any definitions or
7834    // additional declaration references:
7835    //   'typedef struct S {} S;'
7836    //   'typedef struct S *S;'
7837    //   'struct S *pS;'
7838    // FinalizeDeclaratorGroup adds these as separate declarations.
7839    Decl *MaybeTagDecl = Group[0];
7840    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7841      Group++;
7842      NumDecls--;
7843    }
7844  }
7845
7846  // See if there are any new comments that are not attached to a decl.
7847  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7848  if (!Comments.empty() &&
7849      !Comments.back()->isAttached()) {
7850    // There is at least one comment that not attached to a decl.
7851    // Maybe it should be attached to one of these decls?
7852    //
7853    // Note that this way we pick up not only comments that precede the
7854    // declaration, but also comments that *follow* the declaration -- thanks to
7855    // the lookahead in the lexer: we've consumed the semicolon and looked
7856    // ahead through comments.
7857    for (unsigned i = 0; i != NumDecls; ++i)
7858      Context.getCommentForDecl(Group[i], &PP);
7859  }
7860}
7861
7862/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7863/// to introduce parameters into function prototype scope.
7864Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7865  const DeclSpec &DS = D.getDeclSpec();
7866
7867  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7868  // C++03 [dcl.stc]p2 also permits 'auto'.
7869  VarDecl::StorageClass StorageClass = SC_None;
7870  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7871  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7872    StorageClass = SC_Register;
7873    StorageClassAsWritten = SC_Register;
7874  } else if (getLangOpts().CPlusPlus &&
7875             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7876    StorageClass = SC_Auto;
7877    StorageClassAsWritten = SC_Auto;
7878  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7879    Diag(DS.getStorageClassSpecLoc(),
7880         diag::err_invalid_storage_class_in_func_decl);
7881    D.getMutableDeclSpec().ClearStorageClassSpecs();
7882  }
7883
7884  if (D.getDeclSpec().isThreadSpecified())
7885    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7886  if (D.getDeclSpec().isConstexprSpecified())
7887    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7888      << 0;
7889
7890  DiagnoseFunctionSpecifiers(D);
7891
7892  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7893  QualType parmDeclType = TInfo->getType();
7894
7895  if (getLangOpts().CPlusPlus) {
7896    // Check that there are no default arguments inside the type of this
7897    // parameter.
7898    CheckExtraCXXDefaultArguments(D);
7899
7900    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7901    if (D.getCXXScopeSpec().isSet()) {
7902      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7903        << D.getCXXScopeSpec().getRange();
7904      D.getCXXScopeSpec().clear();
7905    }
7906  }
7907
7908  // Ensure we have a valid name
7909  IdentifierInfo *II = 0;
7910  if (D.hasName()) {
7911    II = D.getIdentifier();
7912    if (!II) {
7913      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7914        << GetNameForDeclarator(D).getName().getAsString();
7915      D.setInvalidType(true);
7916    }
7917  }
7918
7919  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7920  if (II) {
7921    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7922                   ForRedeclaration);
7923    LookupName(R, S);
7924    if (R.isSingleResult()) {
7925      NamedDecl *PrevDecl = R.getFoundDecl();
7926      if (PrevDecl->isTemplateParameter()) {
7927        // Maybe we will complain about the shadowed template parameter.
7928        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7929        // Just pretend that we didn't see the previous declaration.
7930        PrevDecl = 0;
7931      } else if (S->isDeclScope(PrevDecl)) {
7932        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7933        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7934
7935        // Recover by removing the name
7936        II = 0;
7937        D.SetIdentifier(0, D.getIdentifierLoc());
7938        D.setInvalidType(true);
7939      }
7940    }
7941  }
7942
7943  // Temporarily put parameter variables in the translation unit, not
7944  // the enclosing context.  This prevents them from accidentally
7945  // looking like class members in C++.
7946  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7947                                    D.getLocStart(),
7948                                    D.getIdentifierLoc(), II,
7949                                    parmDeclType, TInfo,
7950                                    StorageClass, StorageClassAsWritten);
7951
7952  if (D.isInvalidType())
7953    New->setInvalidDecl();
7954
7955  assert(S->isFunctionPrototypeScope());
7956  assert(S->getFunctionPrototypeDepth() >= 1);
7957  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7958                    S->getNextFunctionPrototypeIndex());
7959
7960  // Add the parameter declaration into this scope.
7961  S->AddDecl(New);
7962  if (II)
7963    IdResolver.AddDecl(New);
7964
7965  ProcessDeclAttributes(S, New, D);
7966
7967  if (D.getDeclSpec().isModulePrivateSpecified())
7968    Diag(New->getLocation(), diag::err_module_private_local)
7969      << 1 << New->getDeclName()
7970      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7971      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7972
7973  if (New->hasAttr<BlocksAttr>()) {
7974    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7975  }
7976  return New;
7977}
7978
7979/// \brief Synthesizes a variable for a parameter arising from a
7980/// typedef.
7981ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7982                                              SourceLocation Loc,
7983                                              QualType T) {
7984  /* FIXME: setting StartLoc == Loc.
7985     Would it be worth to modify callers so as to provide proper source
7986     location for the unnamed parameters, embedding the parameter's type? */
7987  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7988                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7989                                           SC_None, SC_None, 0);
7990  Param->setImplicit();
7991  return Param;
7992}
7993
7994void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7995                                    ParmVarDecl * const *ParamEnd) {
7996  // Don't diagnose unused-parameter errors in template instantiations; we
7997  // will already have done so in the template itself.
7998  if (!ActiveTemplateInstantiations.empty())
7999    return;
8000
8001  for (; Param != ParamEnd; ++Param) {
8002    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8003        !(*Param)->hasAttr<UnusedAttr>()) {
8004      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8005        << (*Param)->getDeclName();
8006    }
8007  }
8008}
8009
8010void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8011                                                  ParmVarDecl * const *ParamEnd,
8012                                                  QualType ReturnTy,
8013                                                  NamedDecl *D) {
8014  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8015    return;
8016
8017  // Warn if the return value is pass-by-value and larger than the specified
8018  // threshold.
8019  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8020    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8021    if (Size > LangOpts.NumLargeByValueCopy)
8022      Diag(D->getLocation(), diag::warn_return_value_size)
8023          << D->getDeclName() << Size;
8024  }
8025
8026  // Warn if any parameter is pass-by-value and larger than the specified
8027  // threshold.
8028  for (; Param != ParamEnd; ++Param) {
8029    QualType T = (*Param)->getType();
8030    if (T->isDependentType() || !T.isPODType(Context))
8031      continue;
8032    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8033    if (Size > LangOpts.NumLargeByValueCopy)
8034      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8035          << (*Param)->getDeclName() << Size;
8036  }
8037}
8038
8039ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8040                                  SourceLocation NameLoc, IdentifierInfo *Name,
8041                                  QualType T, TypeSourceInfo *TSInfo,
8042                                  VarDecl::StorageClass StorageClass,
8043                                  VarDecl::StorageClass StorageClassAsWritten) {
8044  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8045  if (getLangOpts().ObjCAutoRefCount &&
8046      T.getObjCLifetime() == Qualifiers::OCL_None &&
8047      T->isObjCLifetimeType()) {
8048
8049    Qualifiers::ObjCLifetime lifetime;
8050
8051    // Special cases for arrays:
8052    //   - if it's const, use __unsafe_unretained
8053    //   - otherwise, it's an error
8054    if (T->isArrayType()) {
8055      if (!T.isConstQualified()) {
8056        DelayedDiagnostics.add(
8057            sema::DelayedDiagnostic::makeForbiddenType(
8058            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8059      }
8060      lifetime = Qualifiers::OCL_ExplicitNone;
8061    } else {
8062      lifetime = T->getObjCARCImplicitLifetime();
8063    }
8064    T = Context.getLifetimeQualifiedType(T, lifetime);
8065  }
8066
8067  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8068                                         Context.getAdjustedParameterType(T),
8069                                         TSInfo,
8070                                         StorageClass, StorageClassAsWritten,
8071                                         0);
8072
8073  // Parameters can not be abstract class types.
8074  // For record types, this is done by the AbstractClassUsageDiagnoser once
8075  // the class has been completely parsed.
8076  if (!CurContext->isRecord() &&
8077      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8078                             AbstractParamType))
8079    New->setInvalidDecl();
8080
8081  // Parameter declarators cannot be interface types. All ObjC objects are
8082  // passed by reference.
8083  if (T->isObjCObjectType()) {
8084    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8085    Diag(NameLoc,
8086         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8087      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8088    T = Context.getObjCObjectPointerType(T);
8089    New->setType(T);
8090  }
8091
8092  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8093  // duration shall not be qualified by an address-space qualifier."
8094  // Since all parameters have automatic store duration, they can not have
8095  // an address space.
8096  if (T.getAddressSpace() != 0) {
8097    Diag(NameLoc, diag::err_arg_with_address_space);
8098    New->setInvalidDecl();
8099  }
8100
8101  return New;
8102}
8103
8104void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8105                                           SourceLocation LocAfterDecls) {
8106  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8107
8108  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8109  // for a K&R function.
8110  if (!FTI.hasPrototype) {
8111    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8112      --i;
8113      if (FTI.ArgInfo[i].Param == 0) {
8114        SmallString<256> Code;
8115        llvm::raw_svector_ostream(Code) << "  int "
8116                                        << FTI.ArgInfo[i].Ident->getName()
8117                                        << ";\n";
8118        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8119          << FTI.ArgInfo[i].Ident
8120          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8121
8122        // Implicitly declare the argument as type 'int' for lack of a better
8123        // type.
8124        AttributeFactory attrs;
8125        DeclSpec DS(attrs);
8126        const char* PrevSpec; // unused
8127        unsigned DiagID; // unused
8128        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8129                           PrevSpec, DiagID);
8130        // Use the identifier location for the type source range.
8131        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8132        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8133        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8134        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8135        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8136      }
8137    }
8138  }
8139}
8140
8141Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8142  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8143  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8144  Scope *ParentScope = FnBodyScope->getParent();
8145
8146  D.setFunctionDefinitionKind(FDK_Definition);
8147  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8148  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8149}
8150
8151static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8152                             const FunctionDecl*& PossibleZeroParamPrototype) {
8153  // Don't warn about invalid declarations.
8154  if (FD->isInvalidDecl())
8155    return false;
8156
8157  // Or declarations that aren't global.
8158  if (!FD->isGlobal())
8159    return false;
8160
8161  // Don't warn about C++ member functions.
8162  if (isa<CXXMethodDecl>(FD))
8163    return false;
8164
8165  // Don't warn about 'main'.
8166  if (FD->isMain())
8167    return false;
8168
8169  // Don't warn about inline functions.
8170  if (FD->isInlined())
8171    return false;
8172
8173  // Don't warn about function templates.
8174  if (FD->getDescribedFunctionTemplate())
8175    return false;
8176
8177  // Don't warn about function template specializations.
8178  if (FD->isFunctionTemplateSpecialization())
8179    return false;
8180
8181  // Don't warn for OpenCL kernels.
8182  if (FD->hasAttr<OpenCLKernelAttr>())
8183    return false;
8184
8185  bool MissingPrototype = true;
8186  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8187       Prev; Prev = Prev->getPreviousDecl()) {
8188    // Ignore any declarations that occur in function or method
8189    // scope, because they aren't visible from the header.
8190    if (Prev->getDeclContext()->isFunctionOrMethod())
8191      continue;
8192
8193    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8194    if (FD->getNumParams() == 0)
8195      PossibleZeroParamPrototype = Prev;
8196    break;
8197  }
8198
8199  return MissingPrototype;
8200}
8201
8202void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8203  // Don't complain if we're in GNU89 mode and the previous definition
8204  // was an extern inline function.
8205  const FunctionDecl *Definition;
8206  if (FD->isDefined(Definition) &&
8207      !canRedefineFunction(Definition, getLangOpts())) {
8208    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8209        Definition->getStorageClass() == SC_Extern)
8210      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8211        << FD->getDeclName() << getLangOpts().CPlusPlus;
8212    else
8213      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8214    Diag(Definition->getLocation(), diag::note_previous_definition);
8215    FD->setInvalidDecl();
8216  }
8217}
8218
8219Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8220  // Clear the last template instantiation error context.
8221  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8222
8223  if (!D)
8224    return D;
8225  FunctionDecl *FD = 0;
8226
8227  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8228    FD = FunTmpl->getTemplatedDecl();
8229  else
8230    FD = cast<FunctionDecl>(D);
8231
8232  // Enter a new function scope
8233  PushFunctionScope();
8234
8235  // See if this is a redefinition.
8236  if (!FD->isLateTemplateParsed())
8237    CheckForFunctionRedefinition(FD);
8238
8239  // Builtin functions cannot be defined.
8240  if (unsigned BuiltinID = FD->getBuiltinID()) {
8241    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8242      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8243      FD->setInvalidDecl();
8244    }
8245  }
8246
8247  // The return type of a function definition must be complete
8248  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8249  QualType ResultType = FD->getResultType();
8250  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8251      !FD->isInvalidDecl() &&
8252      RequireCompleteType(FD->getLocation(), ResultType,
8253                          diag::err_func_def_incomplete_result))
8254    FD->setInvalidDecl();
8255
8256  // GNU warning -Wmissing-prototypes:
8257  //   Warn if a global function is defined without a previous
8258  //   prototype declaration. This warning is issued even if the
8259  //   definition itself provides a prototype. The aim is to detect
8260  //   global functions that fail to be declared in header files.
8261  const FunctionDecl *PossibleZeroParamPrototype = 0;
8262  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8263    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8264
8265    if (PossibleZeroParamPrototype) {
8266      // We found a declaration that is not a prototype,
8267      // but that could be a zero-parameter prototype
8268      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8269      TypeLoc TL = TI->getTypeLoc();
8270      if (FunctionNoProtoTypeLoc* FTL = dyn_cast<FunctionNoProtoTypeLoc>(&TL))
8271        Diag(PossibleZeroParamPrototype->getLocation(),
8272             diag::note_declaration_not_a_prototype)
8273          << PossibleZeroParamPrototype
8274          << FixItHint::CreateInsertion(FTL->getRParenLoc(), "void");
8275    }
8276  }
8277
8278  if (FnBodyScope)
8279    PushDeclContext(FnBodyScope, FD);
8280
8281  // Check the validity of our function parameters
8282  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8283                           /*CheckParameterNames=*/true);
8284
8285  // Introduce our parameters into the function scope
8286  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8287    ParmVarDecl *Param = FD->getParamDecl(p);
8288    Param->setOwningFunction(FD);
8289
8290    // If this has an identifier, add it to the scope stack.
8291    if (Param->getIdentifier() && FnBodyScope) {
8292      CheckShadow(FnBodyScope, Param);
8293
8294      PushOnScopeChains(Param, FnBodyScope);
8295    }
8296  }
8297
8298  // If we had any tags defined in the function prototype,
8299  // introduce them into the function scope.
8300  if (FnBodyScope) {
8301    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8302           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8303      NamedDecl *D = *I;
8304
8305      // Some of these decls (like enums) may have been pinned to the translation unit
8306      // for lack of a real context earlier. If so, remove from the translation unit
8307      // and reattach to the current context.
8308      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8309        // Is the decl actually in the context?
8310        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8311               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8312          if (*DI == D) {
8313            Context.getTranslationUnitDecl()->removeDecl(D);
8314            break;
8315          }
8316        }
8317        // Either way, reassign the lexical decl context to our FunctionDecl.
8318        D->setLexicalDeclContext(CurContext);
8319      }
8320
8321      // If the decl has a non-null name, make accessible in the current scope.
8322      if (!D->getName().empty())
8323        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8324
8325      // Similarly, dive into enums and fish their constants out, making them
8326      // accessible in this scope.
8327      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8328        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8329               EE = ED->enumerator_end(); EI != EE; ++EI)
8330          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8331      }
8332    }
8333  }
8334
8335  // Ensure that the function's exception specification is instantiated.
8336  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8337    ResolveExceptionSpec(D->getLocation(), FPT);
8338
8339  // Checking attributes of current function definition
8340  // dllimport attribute.
8341  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8342  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8343    // dllimport attribute cannot be directly applied to definition.
8344    // Microsoft accepts dllimport for functions defined within class scope.
8345    if (!DA->isInherited() &&
8346        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8347      Diag(FD->getLocation(),
8348           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8349        << "dllimport";
8350      FD->setInvalidDecl();
8351      return D;
8352    }
8353
8354    // Visual C++ appears to not think this is an issue, so only issue
8355    // a warning when Microsoft extensions are disabled.
8356    if (!LangOpts.MicrosoftExt) {
8357      // If a symbol previously declared dllimport is later defined, the
8358      // attribute is ignored in subsequent references, and a warning is
8359      // emitted.
8360      Diag(FD->getLocation(),
8361           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8362        << FD->getName() << "dllimport";
8363    }
8364  }
8365  // We want to attach documentation to original Decl (which might be
8366  // a function template).
8367  ActOnDocumentableDecl(D);
8368  return D;
8369}
8370
8371/// \brief Given the set of return statements within a function body,
8372/// compute the variables that are subject to the named return value
8373/// optimization.
8374///
8375/// Each of the variables that is subject to the named return value
8376/// optimization will be marked as NRVO variables in the AST, and any
8377/// return statement that has a marked NRVO variable as its NRVO candidate can
8378/// use the named return value optimization.
8379///
8380/// This function applies a very simplistic algorithm for NRVO: if every return
8381/// statement in the function has the same NRVO candidate, that candidate is
8382/// the NRVO variable.
8383///
8384/// FIXME: Employ a smarter algorithm that accounts for multiple return
8385/// statements and the lifetimes of the NRVO candidates. We should be able to
8386/// find a maximal set of NRVO variables.
8387void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8388  ReturnStmt **Returns = Scope->Returns.data();
8389
8390  const VarDecl *NRVOCandidate = 0;
8391  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8392    if (!Returns[I]->getNRVOCandidate())
8393      return;
8394
8395    if (!NRVOCandidate)
8396      NRVOCandidate = Returns[I]->getNRVOCandidate();
8397    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8398      return;
8399  }
8400
8401  if (NRVOCandidate)
8402    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8403}
8404
8405bool Sema::canSkipFunctionBody(Decl *D) {
8406  if (!Consumer.shouldSkipFunctionBody(D))
8407    return false;
8408
8409  if (isa<ObjCMethodDecl>(D))
8410    return true;
8411
8412  FunctionDecl *FD = 0;
8413  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8414    FD = FTD->getTemplatedDecl();
8415  else
8416    FD = cast<FunctionDecl>(D);
8417
8418  // We cannot skip the body of a function (or function template) which is
8419  // constexpr, since we may need to evaluate its body in order to parse the
8420  // rest of the file.
8421  return !FD->isConstexpr();
8422}
8423
8424Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8425  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
8426    FD->setHasSkippedBody();
8427  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
8428    MD->setHasSkippedBody();
8429  return ActOnFinishFunctionBody(Decl, 0);
8430}
8431
8432Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8433  return ActOnFinishFunctionBody(D, BodyArg, false);
8434}
8435
8436Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8437                                    bool IsInstantiation) {
8438  FunctionDecl *FD = 0;
8439  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8440  if (FunTmpl)
8441    FD = FunTmpl->getTemplatedDecl();
8442  else
8443    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8444
8445  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8446  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8447
8448  if (FD) {
8449    FD->setBody(Body);
8450
8451    // The only way to be included in UndefinedButUsed is if there is an
8452    // ODR use before the definition. Avoid the expensive map lookup if this
8453    // is the first declaration.
8454    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8455      if (FD->getLinkage() != ExternalLinkage)
8456        UndefinedButUsed.erase(FD);
8457      else if (FD->isInlined() &&
8458               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8459               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8460        UndefinedButUsed.erase(FD);
8461    }
8462
8463    // If the function implicitly returns zero (like 'main') or is naked,
8464    // don't complain about missing return statements.
8465    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8466      WP.disableCheckFallThrough();
8467
8468    // MSVC permits the use of pure specifier (=0) on function definition,
8469    // defined at class scope, warn about this non standard construct.
8470    if (getLangOpts().MicrosoftExt && FD->isPure())
8471      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8472
8473    if (!FD->isInvalidDecl()) {
8474      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8475      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8476                                             FD->getResultType(), FD);
8477
8478      // If this is a constructor, we need a vtable.
8479      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8480        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8481
8482      // Try to apply the named return value optimization. We have to check
8483      // if we can do this here because lambdas keep return statements around
8484      // to deduce an implicit return type.
8485      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8486          !FD->isDependentContext())
8487        computeNRVO(Body, getCurFunction());
8488    }
8489
8490    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8491           "Function parsing confused");
8492  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8493    assert(MD == getCurMethodDecl() && "Method parsing confused");
8494    MD->setBody(Body);
8495    if (!MD->isInvalidDecl()) {
8496      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8497      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8498                                             MD->getResultType(), MD);
8499
8500      if (Body)
8501        computeNRVO(Body, getCurFunction());
8502    }
8503    if (getCurFunction()->ObjCShouldCallSuper) {
8504      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8505        << MD->getSelector().getAsString();
8506      getCurFunction()->ObjCShouldCallSuper = false;
8507    }
8508  } else {
8509    return 0;
8510  }
8511
8512  assert(!getCurFunction()->ObjCShouldCallSuper &&
8513         "This should only be set for ObjC methods, which should have been "
8514         "handled in the block above.");
8515
8516  // Verify and clean out per-function state.
8517  if (Body) {
8518    // C++ constructors that have function-try-blocks can't have return
8519    // statements in the handlers of that block. (C++ [except.handle]p14)
8520    // Verify this.
8521    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8522      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8523
8524    // Verify that gotos and switch cases don't jump into scopes illegally.
8525    if (getCurFunction()->NeedsScopeChecking() &&
8526        !dcl->isInvalidDecl() &&
8527        !hasAnyUnrecoverableErrorsInThisFunction() &&
8528        !PP.isCodeCompletionEnabled())
8529      DiagnoseInvalidJumps(Body);
8530
8531    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8532      if (!Destructor->getParent()->isDependentType())
8533        CheckDestructor(Destructor);
8534
8535      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8536                                             Destructor->getParent());
8537    }
8538
8539    // If any errors have occurred, clear out any temporaries that may have
8540    // been leftover. This ensures that these temporaries won't be picked up for
8541    // deletion in some later function.
8542    if (PP.getDiagnostics().hasErrorOccurred() ||
8543        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8544      DiscardCleanupsInEvaluationContext();
8545    }
8546    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8547        !isa<FunctionTemplateDecl>(dcl)) {
8548      // Since the body is valid, issue any analysis-based warnings that are
8549      // enabled.
8550      ActivePolicy = &WP;
8551    }
8552
8553    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8554        (!CheckConstexprFunctionDecl(FD) ||
8555         !CheckConstexprFunctionBody(FD, Body)))
8556      FD->setInvalidDecl();
8557
8558    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8559    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8560    assert(MaybeODRUseExprs.empty() &&
8561           "Leftover expressions for odr-use checking");
8562  }
8563
8564  if (!IsInstantiation)
8565    PopDeclContext();
8566
8567  PopFunctionScopeInfo(ActivePolicy, dcl);
8568
8569  // If any errors have occurred, clear out any temporaries that may have
8570  // been leftover. This ensures that these temporaries won't be picked up for
8571  // deletion in some later function.
8572  if (getDiagnostics().hasErrorOccurred()) {
8573    DiscardCleanupsInEvaluationContext();
8574  }
8575
8576  return dcl;
8577}
8578
8579
8580/// When we finish delayed parsing of an attribute, we must attach it to the
8581/// relevant Decl.
8582void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8583                                       ParsedAttributes &Attrs) {
8584  // Always attach attributes to the underlying decl.
8585  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8586    D = TD->getTemplatedDecl();
8587  ProcessDeclAttributeList(S, D, Attrs.getList());
8588
8589  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8590    if (Method->isStatic())
8591      checkThisInStaticMemberFunctionAttributes(Method);
8592}
8593
8594
8595/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8596/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8597NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8598                                          IdentifierInfo &II, Scope *S) {
8599  // Before we produce a declaration for an implicitly defined
8600  // function, see whether there was a locally-scoped declaration of
8601  // this name as a function or variable. If so, use that
8602  // (non-visible) declaration, and complain about it.
8603  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8604    = findLocallyScopedExternCDecl(&II);
8605  if (Pos != LocallyScopedExternCDecls.end()) {
8606    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8607    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8608    return Pos->second;
8609  }
8610
8611  // Extension in C99.  Legal in C90, but warn about it.
8612  unsigned diag_id;
8613  if (II.getName().startswith("__builtin_"))
8614    diag_id = diag::warn_builtin_unknown;
8615  else if (getLangOpts().C99)
8616    diag_id = diag::ext_implicit_function_decl;
8617  else
8618    diag_id = diag::warn_implicit_function_decl;
8619  Diag(Loc, diag_id) << &II;
8620
8621  // Because typo correction is expensive, only do it if the implicit
8622  // function declaration is going to be treated as an error.
8623  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8624    TypoCorrection Corrected;
8625    DeclFilterCCC<FunctionDecl> Validator;
8626    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8627                                      LookupOrdinaryName, S, 0, Validator))) {
8628      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8629      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8630      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8631
8632      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8633          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8634
8635      if (Func->getLocation().isValid()
8636          && !II.getName().startswith("__builtin_"))
8637        Diag(Func->getLocation(), diag::note_previous_decl)
8638            << CorrectedQuotedStr;
8639    }
8640  }
8641
8642  // Set a Declarator for the implicit definition: int foo();
8643  const char *Dummy;
8644  AttributeFactory attrFactory;
8645  DeclSpec DS(attrFactory);
8646  unsigned DiagID;
8647  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8648  (void)Error; // Silence warning.
8649  assert(!Error && "Error setting up implicit decl!");
8650  SourceLocation NoLoc;
8651  Declarator D(DS, Declarator::BlockContext);
8652  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8653                                             /*IsAmbiguous=*/false,
8654                                             /*RParenLoc=*/NoLoc,
8655                                             /*ArgInfo=*/0,
8656                                             /*NumArgs=*/0,
8657                                             /*EllipsisLoc=*/NoLoc,
8658                                             /*RParenLoc=*/NoLoc,
8659                                             /*TypeQuals=*/0,
8660                                             /*RefQualifierIsLvalueRef=*/true,
8661                                             /*RefQualifierLoc=*/NoLoc,
8662                                             /*ConstQualifierLoc=*/NoLoc,
8663                                             /*VolatileQualifierLoc=*/NoLoc,
8664                                             /*MutableLoc=*/NoLoc,
8665                                             EST_None,
8666                                             /*ESpecLoc=*/NoLoc,
8667                                             /*Exceptions=*/0,
8668                                             /*ExceptionRanges=*/0,
8669                                             /*NumExceptions=*/0,
8670                                             /*NoexceptExpr=*/0,
8671                                             Loc, Loc, D),
8672                DS.getAttributes(),
8673                SourceLocation());
8674  D.SetIdentifier(&II, Loc);
8675
8676  // Insert this function into translation-unit scope.
8677
8678  DeclContext *PrevDC = CurContext;
8679  CurContext = Context.getTranslationUnitDecl();
8680
8681  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8682  FD->setImplicit();
8683
8684  CurContext = PrevDC;
8685
8686  AddKnownFunctionAttributes(FD);
8687
8688  return FD;
8689}
8690
8691/// \brief Adds any function attributes that we know a priori based on
8692/// the declaration of this function.
8693///
8694/// These attributes can apply both to implicitly-declared builtins
8695/// (like __builtin___printf_chk) or to library-declared functions
8696/// like NSLog or printf.
8697///
8698/// We need to check for duplicate attributes both here and where user-written
8699/// attributes are applied to declarations.
8700void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8701  if (FD->isInvalidDecl())
8702    return;
8703
8704  // If this is a built-in function, map its builtin attributes to
8705  // actual attributes.
8706  if (unsigned BuiltinID = FD->getBuiltinID()) {
8707    // Handle printf-formatting attributes.
8708    unsigned FormatIdx;
8709    bool HasVAListArg;
8710    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8711      if (!FD->getAttr<FormatAttr>()) {
8712        const char *fmt = "printf";
8713        unsigned int NumParams = FD->getNumParams();
8714        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8715            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8716          fmt = "NSString";
8717        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8718                                               fmt, FormatIdx+1,
8719                                               HasVAListArg ? 0 : FormatIdx+2));
8720      }
8721    }
8722    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8723                                             HasVAListArg)) {
8724     if (!FD->getAttr<FormatAttr>())
8725       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8726                                              "scanf", FormatIdx+1,
8727                                              HasVAListArg ? 0 : FormatIdx+2));
8728    }
8729
8730    // Mark const if we don't care about errno and that is the only
8731    // thing preventing the function from being const. This allows
8732    // IRgen to use LLVM intrinsics for such functions.
8733    if (!getLangOpts().MathErrno &&
8734        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8735      if (!FD->getAttr<ConstAttr>())
8736        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8737    }
8738
8739    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8740        !FD->getAttr<ReturnsTwiceAttr>())
8741      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8742    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8743      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8744    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8745      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8746  }
8747
8748  IdentifierInfo *Name = FD->getIdentifier();
8749  if (!Name)
8750    return;
8751  if ((!getLangOpts().CPlusPlus &&
8752       FD->getDeclContext()->isTranslationUnit()) ||
8753      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8754       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8755       LinkageSpecDecl::lang_c)) {
8756    // Okay: this could be a libc/libm/Objective-C function we know
8757    // about.
8758  } else
8759    return;
8760
8761  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8762    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8763    // target-specific builtins, perhaps?
8764    if (!FD->getAttr<FormatAttr>())
8765      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8766                                             "printf", 2,
8767                                             Name->isStr("vasprintf") ? 0 : 3));
8768  }
8769
8770  if (Name->isStr("__CFStringMakeConstantString")) {
8771    // We already have a __builtin___CFStringMakeConstantString,
8772    // but builds that use -fno-constant-cfstrings don't go through that.
8773    if (!FD->getAttr<FormatArgAttr>())
8774      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8775  }
8776}
8777
8778TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8779                                    TypeSourceInfo *TInfo) {
8780  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8781  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8782
8783  if (!TInfo) {
8784    assert(D.isInvalidType() && "no declarator info for valid type");
8785    TInfo = Context.getTrivialTypeSourceInfo(T);
8786  }
8787
8788  // Scope manipulation handled by caller.
8789  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8790                                           D.getLocStart(),
8791                                           D.getIdentifierLoc(),
8792                                           D.getIdentifier(),
8793                                           TInfo);
8794
8795  // Bail out immediately if we have an invalid declaration.
8796  if (D.isInvalidType()) {
8797    NewTD->setInvalidDecl();
8798    return NewTD;
8799  }
8800
8801  if (D.getDeclSpec().isModulePrivateSpecified()) {
8802    if (CurContext->isFunctionOrMethod())
8803      Diag(NewTD->getLocation(), diag::err_module_private_local)
8804        << 2 << NewTD->getDeclName()
8805        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8806        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8807    else
8808      NewTD->setModulePrivate();
8809  }
8810
8811  // C++ [dcl.typedef]p8:
8812  //   If the typedef declaration defines an unnamed class (or
8813  //   enum), the first typedef-name declared by the declaration
8814  //   to be that class type (or enum type) is used to denote the
8815  //   class type (or enum type) for linkage purposes only.
8816  // We need to check whether the type was declared in the declaration.
8817  switch (D.getDeclSpec().getTypeSpecType()) {
8818  case TST_enum:
8819  case TST_struct:
8820  case TST_interface:
8821  case TST_union:
8822  case TST_class: {
8823    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8824
8825    // Do nothing if the tag is not anonymous or already has an
8826    // associated typedef (from an earlier typedef in this decl group).
8827    if (tagFromDeclSpec->getIdentifier()) break;
8828    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8829
8830    // A well-formed anonymous tag must always be a TUK_Definition.
8831    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8832
8833    // The type must match the tag exactly;  no qualifiers allowed.
8834    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8835      break;
8836
8837    // Otherwise, set this is the anon-decl typedef for the tag.
8838    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8839    break;
8840  }
8841
8842  default:
8843    break;
8844  }
8845
8846  return NewTD;
8847}
8848
8849
8850/// \brief Check that this is a valid underlying type for an enum declaration.
8851bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8852  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8853  QualType T = TI->getType();
8854
8855  if (T->isDependentType())
8856    return false;
8857
8858  if (const BuiltinType *BT = T->getAs<BuiltinType>())
8859    if (BT->isInteger())
8860      return false;
8861
8862  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8863  return true;
8864}
8865
8866/// Check whether this is a valid redeclaration of a previous enumeration.
8867/// \return true if the redeclaration was invalid.
8868bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8869                                  QualType EnumUnderlyingTy,
8870                                  const EnumDecl *Prev) {
8871  bool IsFixed = !EnumUnderlyingTy.isNull();
8872
8873  if (IsScoped != Prev->isScoped()) {
8874    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8875      << Prev->isScoped();
8876    Diag(Prev->getLocation(), diag::note_previous_use);
8877    return true;
8878  }
8879
8880  if (IsFixed && Prev->isFixed()) {
8881    if (!EnumUnderlyingTy->isDependentType() &&
8882        !Prev->getIntegerType()->isDependentType() &&
8883        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8884                                        Prev->getIntegerType())) {
8885      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8886        << EnumUnderlyingTy << Prev->getIntegerType();
8887      Diag(Prev->getLocation(), diag::note_previous_use);
8888      return true;
8889    }
8890  } else if (IsFixed != Prev->isFixed()) {
8891    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8892      << Prev->isFixed();
8893    Diag(Prev->getLocation(), diag::note_previous_use);
8894    return true;
8895  }
8896
8897  return false;
8898}
8899
8900/// \brief Get diagnostic %select index for tag kind for
8901/// redeclaration diagnostic message.
8902/// WARNING: Indexes apply to particular diagnostics only!
8903///
8904/// \returns diagnostic %select index.
8905static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8906  switch (Tag) {
8907  case TTK_Struct: return 0;
8908  case TTK_Interface: return 1;
8909  case TTK_Class:  return 2;
8910  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8911  }
8912}
8913
8914/// \brief Determine if tag kind is a class-key compatible with
8915/// class for redeclaration (class, struct, or __interface).
8916///
8917/// \returns true iff the tag kind is compatible.
8918static bool isClassCompatTagKind(TagTypeKind Tag)
8919{
8920  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8921}
8922
8923/// \brief Determine whether a tag with a given kind is acceptable
8924/// as a redeclaration of the given tag declaration.
8925///
8926/// \returns true if the new tag kind is acceptable, false otherwise.
8927bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8928                                        TagTypeKind NewTag, bool isDefinition,
8929                                        SourceLocation NewTagLoc,
8930                                        const IdentifierInfo &Name) {
8931  // C++ [dcl.type.elab]p3:
8932  //   The class-key or enum keyword present in the
8933  //   elaborated-type-specifier shall agree in kind with the
8934  //   declaration to which the name in the elaborated-type-specifier
8935  //   refers. This rule also applies to the form of
8936  //   elaborated-type-specifier that declares a class-name or
8937  //   friend class since it can be construed as referring to the
8938  //   definition of the class. Thus, in any
8939  //   elaborated-type-specifier, the enum keyword shall be used to
8940  //   refer to an enumeration (7.2), the union class-key shall be
8941  //   used to refer to a union (clause 9), and either the class or
8942  //   struct class-key shall be used to refer to a class (clause 9)
8943  //   declared using the class or struct class-key.
8944  TagTypeKind OldTag = Previous->getTagKind();
8945  if (!isDefinition || !isClassCompatTagKind(NewTag))
8946    if (OldTag == NewTag)
8947      return true;
8948
8949  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8950    // Warn about the struct/class tag mismatch.
8951    bool isTemplate = false;
8952    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8953      isTemplate = Record->getDescribedClassTemplate();
8954
8955    if (!ActiveTemplateInstantiations.empty()) {
8956      // In a template instantiation, do not offer fix-its for tag mismatches
8957      // since they usually mess up the template instead of fixing the problem.
8958      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8959        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8960        << getRedeclDiagFromTagKind(OldTag);
8961      return true;
8962    }
8963
8964    if (isDefinition) {
8965      // On definitions, check previous tags and issue a fix-it for each
8966      // one that doesn't match the current tag.
8967      if (Previous->getDefinition()) {
8968        // Don't suggest fix-its for redefinitions.
8969        return true;
8970      }
8971
8972      bool previousMismatch = false;
8973      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8974           E(Previous->redecls_end()); I != E; ++I) {
8975        if (I->getTagKind() != NewTag) {
8976          if (!previousMismatch) {
8977            previousMismatch = true;
8978            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8979              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8980              << getRedeclDiagFromTagKind(I->getTagKind());
8981          }
8982          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8983            << getRedeclDiagFromTagKind(NewTag)
8984            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8985                 TypeWithKeyword::getTagTypeKindName(NewTag));
8986        }
8987      }
8988      return true;
8989    }
8990
8991    // Check for a previous definition.  If current tag and definition
8992    // are same type, do nothing.  If no definition, but disagree with
8993    // with previous tag type, give a warning, but no fix-it.
8994    const TagDecl *Redecl = Previous->getDefinition() ?
8995                            Previous->getDefinition() : Previous;
8996    if (Redecl->getTagKind() == NewTag) {
8997      return true;
8998    }
8999
9000    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9001      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9002      << getRedeclDiagFromTagKind(OldTag);
9003    Diag(Redecl->getLocation(), diag::note_previous_use);
9004
9005    // If there is a previous defintion, suggest a fix-it.
9006    if (Previous->getDefinition()) {
9007        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9008          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9009          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9010               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9011    }
9012
9013    return true;
9014  }
9015  return false;
9016}
9017
9018/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9019/// former case, Name will be non-null.  In the later case, Name will be null.
9020/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9021/// reference/declaration/definition of a tag.
9022Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9023                     SourceLocation KWLoc, CXXScopeSpec &SS,
9024                     IdentifierInfo *Name, SourceLocation NameLoc,
9025                     AttributeList *Attr, AccessSpecifier AS,
9026                     SourceLocation ModulePrivateLoc,
9027                     MultiTemplateParamsArg TemplateParameterLists,
9028                     bool &OwnedDecl, bool &IsDependent,
9029                     SourceLocation ScopedEnumKWLoc,
9030                     bool ScopedEnumUsesClassTag,
9031                     TypeResult UnderlyingType) {
9032  // If this is not a definition, it must have a name.
9033  IdentifierInfo *OrigName = Name;
9034  assert((Name != 0 || TUK == TUK_Definition) &&
9035         "Nameless record must be a definition!");
9036  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9037
9038  OwnedDecl = false;
9039  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9040  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9041
9042  // FIXME: Check explicit specializations more carefully.
9043  bool isExplicitSpecialization = false;
9044  bool Invalid = false;
9045
9046  // We only need to do this matching if we have template parameters
9047  // or a scope specifier, which also conveniently avoids this work
9048  // for non-C++ cases.
9049  if (TemplateParameterLists.size() > 0 ||
9050      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9051    if (TemplateParameterList *TemplateParams
9052          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9053                                                TemplateParameterLists.data(),
9054                                                TemplateParameterLists.size(),
9055                                                    TUK == TUK_Friend,
9056                                                    isExplicitSpecialization,
9057                                                    Invalid)) {
9058      if (TemplateParams->size() > 0) {
9059        // This is a declaration or definition of a class template (which may
9060        // be a member of another template).
9061
9062        if (Invalid)
9063          return 0;
9064
9065        OwnedDecl = false;
9066        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9067                                               SS, Name, NameLoc, Attr,
9068                                               TemplateParams, AS,
9069                                               ModulePrivateLoc,
9070                                               TemplateParameterLists.size()-1,
9071                                               TemplateParameterLists.data());
9072        return Result.get();
9073      } else {
9074        // The "template<>" header is extraneous.
9075        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9076          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9077        isExplicitSpecialization = true;
9078      }
9079    }
9080  }
9081
9082  // Figure out the underlying type if this a enum declaration. We need to do
9083  // this early, because it's needed to detect if this is an incompatible
9084  // redeclaration.
9085  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9086
9087  if (Kind == TTK_Enum) {
9088    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9089      // No underlying type explicitly specified, or we failed to parse the
9090      // type, default to int.
9091      EnumUnderlying = Context.IntTy.getTypePtr();
9092    else if (UnderlyingType.get()) {
9093      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9094      // integral type; any cv-qualification is ignored.
9095      TypeSourceInfo *TI = 0;
9096      GetTypeFromParser(UnderlyingType.get(), &TI);
9097      EnumUnderlying = TI;
9098
9099      if (CheckEnumUnderlyingType(TI))
9100        // Recover by falling back to int.
9101        EnumUnderlying = Context.IntTy.getTypePtr();
9102
9103      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9104                                          UPPC_FixedUnderlyingType))
9105        EnumUnderlying = Context.IntTy.getTypePtr();
9106
9107    } else if (getLangOpts().MicrosoftMode)
9108      // Microsoft enums are always of int type.
9109      EnumUnderlying = Context.IntTy.getTypePtr();
9110  }
9111
9112  DeclContext *SearchDC = CurContext;
9113  DeclContext *DC = CurContext;
9114  bool isStdBadAlloc = false;
9115
9116  RedeclarationKind Redecl = ForRedeclaration;
9117  if (TUK == TUK_Friend || TUK == TUK_Reference)
9118    Redecl = NotForRedeclaration;
9119
9120  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9121
9122  if (Name && SS.isNotEmpty()) {
9123    // We have a nested-name tag ('struct foo::bar').
9124
9125    // Check for invalid 'foo::'.
9126    if (SS.isInvalid()) {
9127      Name = 0;
9128      goto CreateNewDecl;
9129    }
9130
9131    // If this is a friend or a reference to a class in a dependent
9132    // context, don't try to make a decl for it.
9133    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9134      DC = computeDeclContext(SS, false);
9135      if (!DC) {
9136        IsDependent = true;
9137        return 0;
9138      }
9139    } else {
9140      DC = computeDeclContext(SS, true);
9141      if (!DC) {
9142        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9143          << SS.getRange();
9144        return 0;
9145      }
9146    }
9147
9148    if (RequireCompleteDeclContext(SS, DC))
9149      return 0;
9150
9151    SearchDC = DC;
9152    // Look-up name inside 'foo::'.
9153    LookupQualifiedName(Previous, DC);
9154
9155    if (Previous.isAmbiguous())
9156      return 0;
9157
9158    if (Previous.empty()) {
9159      // Name lookup did not find anything. However, if the
9160      // nested-name-specifier refers to the current instantiation,
9161      // and that current instantiation has any dependent base
9162      // classes, we might find something at instantiation time: treat
9163      // this as a dependent elaborated-type-specifier.
9164      // But this only makes any sense for reference-like lookups.
9165      if (Previous.wasNotFoundInCurrentInstantiation() &&
9166          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9167        IsDependent = true;
9168        return 0;
9169      }
9170
9171      // A tag 'foo::bar' must already exist.
9172      Diag(NameLoc, diag::err_not_tag_in_scope)
9173        << Kind << Name << DC << SS.getRange();
9174      Name = 0;
9175      Invalid = true;
9176      goto CreateNewDecl;
9177    }
9178  } else if (Name) {
9179    // If this is a named struct, check to see if there was a previous forward
9180    // declaration or definition.
9181    // FIXME: We're looking into outer scopes here, even when we
9182    // shouldn't be. Doing so can result in ambiguities that we
9183    // shouldn't be diagnosing.
9184    LookupName(Previous, S);
9185
9186    if (Previous.isAmbiguous() &&
9187        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9188      LookupResult::Filter F = Previous.makeFilter();
9189      while (F.hasNext()) {
9190        NamedDecl *ND = F.next();
9191        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9192          F.erase();
9193      }
9194      F.done();
9195    }
9196
9197    // Note:  there used to be some attempt at recovery here.
9198    if (Previous.isAmbiguous())
9199      return 0;
9200
9201    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9202      // FIXME: This makes sure that we ignore the contexts associated
9203      // with C structs, unions, and enums when looking for a matching
9204      // tag declaration or definition. See the similar lookup tweak
9205      // in Sema::LookupName; is there a better way to deal with this?
9206      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9207        SearchDC = SearchDC->getParent();
9208    }
9209  } else if (S->isFunctionPrototypeScope()) {
9210    // If this is an enum declaration in function prototype scope, set its
9211    // initial context to the translation unit.
9212    // FIXME: [citation needed]
9213    SearchDC = Context.getTranslationUnitDecl();
9214  }
9215
9216  if (Previous.isSingleResult() &&
9217      Previous.getFoundDecl()->isTemplateParameter()) {
9218    // Maybe we will complain about the shadowed template parameter.
9219    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9220    // Just pretend that we didn't see the previous declaration.
9221    Previous.clear();
9222  }
9223
9224  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9225      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9226    // This is a declaration of or a reference to "std::bad_alloc".
9227    isStdBadAlloc = true;
9228
9229    if (Previous.empty() && StdBadAlloc) {
9230      // std::bad_alloc has been implicitly declared (but made invisible to
9231      // name lookup). Fill in this implicit declaration as the previous
9232      // declaration, so that the declarations get chained appropriately.
9233      Previous.addDecl(getStdBadAlloc());
9234    }
9235  }
9236
9237  // If we didn't find a previous declaration, and this is a reference
9238  // (or friend reference), move to the correct scope.  In C++, we
9239  // also need to do a redeclaration lookup there, just in case
9240  // there's a shadow friend decl.
9241  if (Name && Previous.empty() &&
9242      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9243    if (Invalid) goto CreateNewDecl;
9244    assert(SS.isEmpty());
9245
9246    if (TUK == TUK_Reference) {
9247      // C++ [basic.scope.pdecl]p5:
9248      //   -- for an elaborated-type-specifier of the form
9249      //
9250      //          class-key identifier
9251      //
9252      //      if the elaborated-type-specifier is used in the
9253      //      decl-specifier-seq or parameter-declaration-clause of a
9254      //      function defined in namespace scope, the identifier is
9255      //      declared as a class-name in the namespace that contains
9256      //      the declaration; otherwise, except as a friend
9257      //      declaration, the identifier is declared in the smallest
9258      //      non-class, non-function-prototype scope that contains the
9259      //      declaration.
9260      //
9261      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9262      // C structs and unions.
9263      //
9264      // It is an error in C++ to declare (rather than define) an enum
9265      // type, including via an elaborated type specifier.  We'll
9266      // diagnose that later; for now, declare the enum in the same
9267      // scope as we would have picked for any other tag type.
9268      //
9269      // GNU C also supports this behavior as part of its incomplete
9270      // enum types extension, while GNU C++ does not.
9271      //
9272      // Find the context where we'll be declaring the tag.
9273      // FIXME: We would like to maintain the current DeclContext as the
9274      // lexical context,
9275      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9276        SearchDC = SearchDC->getParent();
9277
9278      // Find the scope where we'll be declaring the tag.
9279      while (S->isClassScope() ||
9280             (getLangOpts().CPlusPlus &&
9281              S->isFunctionPrototypeScope()) ||
9282             ((S->getFlags() & Scope::DeclScope) == 0) ||
9283             (S->getEntity() &&
9284              ((DeclContext *)S->getEntity())->isTransparentContext()))
9285        S = S->getParent();
9286    } else {
9287      assert(TUK == TUK_Friend);
9288      // C++ [namespace.memdef]p3:
9289      //   If a friend declaration in a non-local class first declares a
9290      //   class or function, the friend class or function is a member of
9291      //   the innermost enclosing namespace.
9292      SearchDC = SearchDC->getEnclosingNamespaceContext();
9293    }
9294
9295    // In C++, we need to do a redeclaration lookup to properly
9296    // diagnose some problems.
9297    if (getLangOpts().CPlusPlus) {
9298      Previous.setRedeclarationKind(ForRedeclaration);
9299      LookupQualifiedName(Previous, SearchDC);
9300    }
9301  }
9302
9303  if (!Previous.empty()) {
9304    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9305
9306    // It's okay to have a tag decl in the same scope as a typedef
9307    // which hides a tag decl in the same scope.  Finding this
9308    // insanity with a redeclaration lookup can only actually happen
9309    // in C++.
9310    //
9311    // This is also okay for elaborated-type-specifiers, which is
9312    // technically forbidden by the current standard but which is
9313    // okay according to the likely resolution of an open issue;
9314    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9315    if (getLangOpts().CPlusPlus) {
9316      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9317        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9318          TagDecl *Tag = TT->getDecl();
9319          if (Tag->getDeclName() == Name &&
9320              Tag->getDeclContext()->getRedeclContext()
9321                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9322            PrevDecl = Tag;
9323            Previous.clear();
9324            Previous.addDecl(Tag);
9325            Previous.resolveKind();
9326          }
9327        }
9328      }
9329    }
9330
9331    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9332      // If this is a use of a previous tag, or if the tag is already declared
9333      // in the same scope (so that the definition/declaration completes or
9334      // rementions the tag), reuse the decl.
9335      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9336          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9337        // Make sure that this wasn't declared as an enum and now used as a
9338        // struct or something similar.
9339        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9340                                          TUK == TUK_Definition, KWLoc,
9341                                          *Name)) {
9342          bool SafeToContinue
9343            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9344               Kind != TTK_Enum);
9345          if (SafeToContinue)
9346            Diag(KWLoc, diag::err_use_with_wrong_tag)
9347              << Name
9348              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9349                                              PrevTagDecl->getKindName());
9350          else
9351            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9352          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9353
9354          if (SafeToContinue)
9355            Kind = PrevTagDecl->getTagKind();
9356          else {
9357            // Recover by making this an anonymous redefinition.
9358            Name = 0;
9359            Previous.clear();
9360            Invalid = true;
9361          }
9362        }
9363
9364        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9365          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9366
9367          // If this is an elaborated-type-specifier for a scoped enumeration,
9368          // the 'class' keyword is not necessary and not permitted.
9369          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9370            if (ScopedEnum)
9371              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9372                << PrevEnum->isScoped()
9373                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9374            return PrevTagDecl;
9375          }
9376
9377          QualType EnumUnderlyingTy;
9378          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9379            EnumUnderlyingTy = TI->getType();
9380          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9381            EnumUnderlyingTy = QualType(T, 0);
9382
9383          // All conflicts with previous declarations are recovered by
9384          // returning the previous declaration, unless this is a definition,
9385          // in which case we want the caller to bail out.
9386          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9387                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9388            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9389        }
9390
9391        if (!Invalid) {
9392          // If this is a use, just return the declaration we found.
9393
9394          // FIXME: In the future, return a variant or some other clue
9395          // for the consumer of this Decl to know it doesn't own it.
9396          // For our current ASTs this shouldn't be a problem, but will
9397          // need to be changed with DeclGroups.
9398          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9399               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9400            return PrevTagDecl;
9401
9402          // Diagnose attempts to redefine a tag.
9403          if (TUK == TUK_Definition) {
9404            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9405              // If we're defining a specialization and the previous definition
9406              // is from an implicit instantiation, don't emit an error
9407              // here; we'll catch this in the general case below.
9408              bool IsExplicitSpecializationAfterInstantiation = false;
9409              if (isExplicitSpecialization) {
9410                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9411                  IsExplicitSpecializationAfterInstantiation =
9412                    RD->getTemplateSpecializationKind() !=
9413                    TSK_ExplicitSpecialization;
9414                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9415                  IsExplicitSpecializationAfterInstantiation =
9416                    ED->getTemplateSpecializationKind() !=
9417                    TSK_ExplicitSpecialization;
9418              }
9419
9420              if (!IsExplicitSpecializationAfterInstantiation) {
9421                // A redeclaration in function prototype scope in C isn't
9422                // visible elsewhere, so merely issue a warning.
9423                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9424                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9425                else
9426                  Diag(NameLoc, diag::err_redefinition) << Name;
9427                Diag(Def->getLocation(), diag::note_previous_definition);
9428                // If this is a redefinition, recover by making this
9429                // struct be anonymous, which will make any later
9430                // references get the previous definition.
9431                Name = 0;
9432                Previous.clear();
9433                Invalid = true;
9434              }
9435            } else {
9436              // If the type is currently being defined, complain
9437              // about a nested redefinition.
9438              const TagType *Tag
9439                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9440              if (Tag->isBeingDefined()) {
9441                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9442                Diag(PrevTagDecl->getLocation(),
9443                     diag::note_previous_definition);
9444                Name = 0;
9445                Previous.clear();
9446                Invalid = true;
9447              }
9448            }
9449
9450            // Okay, this is definition of a previously declared or referenced
9451            // tag PrevDecl. We're going to create a new Decl for it.
9452          }
9453        }
9454        // If we get here we have (another) forward declaration or we
9455        // have a definition.  Just create a new decl.
9456
9457      } else {
9458        // If we get here, this is a definition of a new tag type in a nested
9459        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9460        // new decl/type.  We set PrevDecl to NULL so that the entities
9461        // have distinct types.
9462        Previous.clear();
9463      }
9464      // If we get here, we're going to create a new Decl. If PrevDecl
9465      // is non-NULL, it's a definition of the tag declared by
9466      // PrevDecl. If it's NULL, we have a new definition.
9467
9468
9469    // Otherwise, PrevDecl is not a tag, but was found with tag
9470    // lookup.  This is only actually possible in C++, where a few
9471    // things like templates still live in the tag namespace.
9472    } else {
9473      // Use a better diagnostic if an elaborated-type-specifier
9474      // found the wrong kind of type on the first
9475      // (non-redeclaration) lookup.
9476      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9477          !Previous.isForRedeclaration()) {
9478        unsigned Kind = 0;
9479        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9480        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9481        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9482        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9483        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9484        Invalid = true;
9485
9486      // Otherwise, only diagnose if the declaration is in scope.
9487      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9488                                isExplicitSpecialization)) {
9489        // do nothing
9490
9491      // Diagnose implicit declarations introduced by elaborated types.
9492      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9493        unsigned Kind = 0;
9494        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9495        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9496        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9497        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9498        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9499        Invalid = true;
9500
9501      // Otherwise it's a declaration.  Call out a particularly common
9502      // case here.
9503      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9504        unsigned Kind = 0;
9505        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9506        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9507          << Name << Kind << TND->getUnderlyingType();
9508        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9509        Invalid = true;
9510
9511      // Otherwise, diagnose.
9512      } else {
9513        // The tag name clashes with something else in the target scope,
9514        // issue an error and recover by making this tag be anonymous.
9515        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9516        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9517        Name = 0;
9518        Invalid = true;
9519      }
9520
9521      // The existing declaration isn't relevant to us; we're in a
9522      // new scope, so clear out the previous declaration.
9523      Previous.clear();
9524    }
9525  }
9526
9527CreateNewDecl:
9528
9529  TagDecl *PrevDecl = 0;
9530  if (Previous.isSingleResult())
9531    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9532
9533  // If there is an identifier, use the location of the identifier as the
9534  // location of the decl, otherwise use the location of the struct/union
9535  // keyword.
9536  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9537
9538  // Otherwise, create a new declaration. If there is a previous
9539  // declaration of the same entity, the two will be linked via
9540  // PrevDecl.
9541  TagDecl *New;
9542
9543  bool IsForwardReference = false;
9544  if (Kind == TTK_Enum) {
9545    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9546    // enum X { A, B, C } D;    D should chain to X.
9547    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9548                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9549                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9550    // If this is an undefined enum, warn.
9551    if (TUK != TUK_Definition && !Invalid) {
9552      TagDecl *Def;
9553      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9554        // C++0x: 7.2p2: opaque-enum-declaration.
9555        // Conflicts are diagnosed above. Do nothing.
9556      }
9557      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9558        Diag(Loc, diag::ext_forward_ref_enum_def)
9559          << New;
9560        Diag(Def->getLocation(), diag::note_previous_definition);
9561      } else {
9562        unsigned DiagID = diag::ext_forward_ref_enum;
9563        if (getLangOpts().MicrosoftMode)
9564          DiagID = diag::ext_ms_forward_ref_enum;
9565        else if (getLangOpts().CPlusPlus)
9566          DiagID = diag::err_forward_ref_enum;
9567        Diag(Loc, DiagID);
9568
9569        // If this is a forward-declared reference to an enumeration, make a
9570        // note of it; we won't actually be introducing the declaration into
9571        // the declaration context.
9572        if (TUK == TUK_Reference)
9573          IsForwardReference = true;
9574      }
9575    }
9576
9577    if (EnumUnderlying) {
9578      EnumDecl *ED = cast<EnumDecl>(New);
9579      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9580        ED->setIntegerTypeSourceInfo(TI);
9581      else
9582        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9583      ED->setPromotionType(ED->getIntegerType());
9584    }
9585
9586  } else {
9587    // struct/union/class
9588
9589    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9590    // struct X { int A; } D;    D should chain to X.
9591    if (getLangOpts().CPlusPlus) {
9592      // FIXME: Look for a way to use RecordDecl for simple structs.
9593      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9594                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9595
9596      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9597        StdBadAlloc = cast<CXXRecordDecl>(New);
9598    } else
9599      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9600                               cast_or_null<RecordDecl>(PrevDecl));
9601  }
9602
9603  // Maybe add qualifier info.
9604  if (SS.isNotEmpty()) {
9605    if (SS.isSet()) {
9606      // If this is either a declaration or a definition, check the
9607      // nested-name-specifier against the current context. We don't do this
9608      // for explicit specializations, because they have similar checking
9609      // (with more specific diagnostics) in the call to
9610      // CheckMemberSpecialization, below.
9611      if (!isExplicitSpecialization &&
9612          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9613          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9614        Invalid = true;
9615
9616      New->setQualifierInfo(SS.getWithLocInContext(Context));
9617      if (TemplateParameterLists.size() > 0) {
9618        New->setTemplateParameterListsInfo(Context,
9619                                           TemplateParameterLists.size(),
9620                                           TemplateParameterLists.data());
9621      }
9622    }
9623    else
9624      Invalid = true;
9625  }
9626
9627  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9628    // Add alignment attributes if necessary; these attributes are checked when
9629    // the ASTContext lays out the structure.
9630    //
9631    // It is important for implementing the correct semantics that this
9632    // happen here (in act on tag decl). The #pragma pack stack is
9633    // maintained as a result of parser callbacks which can occur at
9634    // many points during the parsing of a struct declaration (because
9635    // the #pragma tokens are effectively skipped over during the
9636    // parsing of the struct).
9637    if (TUK == TUK_Definition) {
9638      AddAlignmentAttributesForRecord(RD);
9639      AddMsStructLayoutForRecord(RD);
9640    }
9641  }
9642
9643  if (ModulePrivateLoc.isValid()) {
9644    if (isExplicitSpecialization)
9645      Diag(New->getLocation(), diag::err_module_private_specialization)
9646        << 2
9647        << FixItHint::CreateRemoval(ModulePrivateLoc);
9648    // __module_private__ does not apply to local classes. However, we only
9649    // diagnose this as an error when the declaration specifiers are
9650    // freestanding. Here, we just ignore the __module_private__.
9651    else if (!SearchDC->isFunctionOrMethod())
9652      New->setModulePrivate();
9653  }
9654
9655  // If this is a specialization of a member class (of a class template),
9656  // check the specialization.
9657  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9658    Invalid = true;
9659
9660  if (Invalid)
9661    New->setInvalidDecl();
9662
9663  if (Attr)
9664    ProcessDeclAttributeList(S, New, Attr);
9665
9666  // If we're declaring or defining a tag in function prototype scope
9667  // in C, note that this type can only be used within the function.
9668  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9669    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9670
9671  // Set the lexical context. If the tag has a C++ scope specifier, the
9672  // lexical context will be different from the semantic context.
9673  New->setLexicalDeclContext(CurContext);
9674
9675  // Mark this as a friend decl if applicable.
9676  // In Microsoft mode, a friend declaration also acts as a forward
9677  // declaration so we always pass true to setObjectOfFriendDecl to make
9678  // the tag name visible.
9679  if (TUK == TUK_Friend)
9680    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9681                               getLangOpts().MicrosoftExt);
9682
9683  // Set the access specifier.
9684  if (!Invalid && SearchDC->isRecord())
9685    SetMemberAccessSpecifier(New, PrevDecl, AS);
9686
9687  if (TUK == TUK_Definition)
9688    New->startDefinition();
9689
9690  // If this has an identifier, add it to the scope stack.
9691  if (TUK == TUK_Friend) {
9692    // We might be replacing an existing declaration in the lookup tables;
9693    // if so, borrow its access specifier.
9694    if (PrevDecl)
9695      New->setAccess(PrevDecl->getAccess());
9696
9697    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9698    DC->makeDeclVisibleInContext(New);
9699    if (Name) // can be null along some error paths
9700      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9701        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9702  } else if (Name) {
9703    S = getNonFieldDeclScope(S);
9704    PushOnScopeChains(New, S, !IsForwardReference);
9705    if (IsForwardReference)
9706      SearchDC->makeDeclVisibleInContext(New);
9707
9708  } else {
9709    CurContext->addDecl(New);
9710  }
9711
9712  // If this is the C FILE type, notify the AST context.
9713  if (IdentifierInfo *II = New->getIdentifier())
9714    if (!New->isInvalidDecl() &&
9715        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9716        II->isStr("FILE"))
9717      Context.setFILEDecl(New);
9718
9719  // If we were in function prototype scope (and not in C++ mode), add this
9720  // tag to the list of decls to inject into the function definition scope.
9721  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9722      InFunctionDeclarator && Name)
9723    DeclsInPrototypeScope.push_back(New);
9724
9725  if (PrevDecl)
9726    mergeDeclAttributes(New, PrevDecl);
9727
9728  // If there's a #pragma GCC visibility in scope, set the visibility of this
9729  // record.
9730  AddPushedVisibilityAttribute(New);
9731
9732  OwnedDecl = true;
9733  // In C++, don't return an invalid declaration. We can't recover well from
9734  // the cases where we make the type anonymous.
9735  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9736}
9737
9738void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9739  AdjustDeclIfTemplate(TagD);
9740  TagDecl *Tag = cast<TagDecl>(TagD);
9741
9742  // Enter the tag context.
9743  PushDeclContext(S, Tag);
9744
9745  ActOnDocumentableDecl(TagD);
9746
9747  // If there's a #pragma GCC visibility in scope, set the visibility of this
9748  // record.
9749  AddPushedVisibilityAttribute(Tag);
9750}
9751
9752Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9753  assert(isa<ObjCContainerDecl>(IDecl) &&
9754         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9755  DeclContext *OCD = cast<DeclContext>(IDecl);
9756  assert(getContainingDC(OCD) == CurContext &&
9757      "The next DeclContext should be lexically contained in the current one.");
9758  CurContext = OCD;
9759  return IDecl;
9760}
9761
9762void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9763                                           SourceLocation FinalLoc,
9764                                           SourceLocation LBraceLoc) {
9765  AdjustDeclIfTemplate(TagD);
9766  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9767
9768  FieldCollector->StartClass();
9769
9770  if (!Record->getIdentifier())
9771    return;
9772
9773  if (FinalLoc.isValid())
9774    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9775
9776  // C++ [class]p2:
9777  //   [...] The class-name is also inserted into the scope of the
9778  //   class itself; this is known as the injected-class-name. For
9779  //   purposes of access checking, the injected-class-name is treated
9780  //   as if it were a public member name.
9781  CXXRecordDecl *InjectedClassName
9782    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9783                            Record->getLocStart(), Record->getLocation(),
9784                            Record->getIdentifier(),
9785                            /*PrevDecl=*/0,
9786                            /*DelayTypeCreation=*/true);
9787  Context.getTypeDeclType(InjectedClassName, Record);
9788  InjectedClassName->setImplicit();
9789  InjectedClassName->setAccess(AS_public);
9790  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9791      InjectedClassName->setDescribedClassTemplate(Template);
9792  PushOnScopeChains(InjectedClassName, S);
9793  assert(InjectedClassName->isInjectedClassName() &&
9794         "Broken injected-class-name");
9795}
9796
9797void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9798                                    SourceLocation RBraceLoc) {
9799  AdjustDeclIfTemplate(TagD);
9800  TagDecl *Tag = cast<TagDecl>(TagD);
9801  Tag->setRBraceLoc(RBraceLoc);
9802
9803  // Make sure we "complete" the definition even it is invalid.
9804  if (Tag->isBeingDefined()) {
9805    assert(Tag->isInvalidDecl() && "We should already have completed it");
9806    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9807      RD->completeDefinition();
9808  }
9809
9810  if (isa<CXXRecordDecl>(Tag))
9811    FieldCollector->FinishClass();
9812
9813  // Exit this scope of this tag's definition.
9814  PopDeclContext();
9815
9816  if (getCurLexicalContext()->isObjCContainer() &&
9817      Tag->getDeclContext()->isFileContext())
9818    Tag->setTopLevelDeclInObjCContainer();
9819
9820  // Notify the consumer that we've defined a tag.
9821  Consumer.HandleTagDeclDefinition(Tag);
9822}
9823
9824void Sema::ActOnObjCContainerFinishDefinition() {
9825  // Exit this scope of this interface definition.
9826  PopDeclContext();
9827}
9828
9829void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9830  assert(DC == CurContext && "Mismatch of container contexts");
9831  OriginalLexicalContext = DC;
9832  ActOnObjCContainerFinishDefinition();
9833}
9834
9835void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9836  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9837  OriginalLexicalContext = 0;
9838}
9839
9840void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9841  AdjustDeclIfTemplate(TagD);
9842  TagDecl *Tag = cast<TagDecl>(TagD);
9843  Tag->setInvalidDecl();
9844
9845  // Make sure we "complete" the definition even it is invalid.
9846  if (Tag->isBeingDefined()) {
9847    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9848      RD->completeDefinition();
9849  }
9850
9851  // We're undoing ActOnTagStartDefinition here, not
9852  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9853  // the FieldCollector.
9854
9855  PopDeclContext();
9856}
9857
9858// Note that FieldName may be null for anonymous bitfields.
9859ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9860                                IdentifierInfo *FieldName,
9861                                QualType FieldTy, Expr *BitWidth,
9862                                bool *ZeroWidth) {
9863  // Default to true; that shouldn't confuse checks for emptiness
9864  if (ZeroWidth)
9865    *ZeroWidth = true;
9866
9867  // C99 6.7.2.1p4 - verify the field type.
9868  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9869  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9870    // Handle incomplete types with specific error.
9871    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9872      return ExprError();
9873    if (FieldName)
9874      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9875        << FieldName << FieldTy << BitWidth->getSourceRange();
9876    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9877      << FieldTy << BitWidth->getSourceRange();
9878  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9879                                             UPPC_BitFieldWidth))
9880    return ExprError();
9881
9882  // If the bit-width is type- or value-dependent, don't try to check
9883  // it now.
9884  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9885    return Owned(BitWidth);
9886
9887  llvm::APSInt Value;
9888  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9889  if (ICE.isInvalid())
9890    return ICE;
9891  BitWidth = ICE.take();
9892
9893  if (Value != 0 && ZeroWidth)
9894    *ZeroWidth = false;
9895
9896  // Zero-width bitfield is ok for anonymous field.
9897  if (Value == 0 && FieldName)
9898    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9899
9900  if (Value.isSigned() && Value.isNegative()) {
9901    if (FieldName)
9902      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9903               << FieldName << Value.toString(10);
9904    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9905      << Value.toString(10);
9906  }
9907
9908  if (!FieldTy->isDependentType()) {
9909    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9910    if (Value.getZExtValue() > TypeSize) {
9911      if (!getLangOpts().CPlusPlus) {
9912        if (FieldName)
9913          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9914            << FieldName << (unsigned)Value.getZExtValue()
9915            << (unsigned)TypeSize;
9916
9917        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9918          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9919      }
9920
9921      if (FieldName)
9922        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9923          << FieldName << (unsigned)Value.getZExtValue()
9924          << (unsigned)TypeSize;
9925      else
9926        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9927          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9928    }
9929  }
9930
9931  return Owned(BitWidth);
9932}
9933
9934/// ActOnField - Each field of a C struct/union is passed into this in order
9935/// to create a FieldDecl object for it.
9936Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9937                       Declarator &D, Expr *BitfieldWidth) {
9938  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9939                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9940                               /*InitStyle=*/ICIS_NoInit, AS_public);
9941  return Res;
9942}
9943
9944/// HandleField - Analyze a field of a C struct or a C++ data member.
9945///
9946FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9947                             SourceLocation DeclStart,
9948                             Declarator &D, Expr *BitWidth,
9949                             InClassInitStyle InitStyle,
9950                             AccessSpecifier AS) {
9951  IdentifierInfo *II = D.getIdentifier();
9952  SourceLocation Loc = DeclStart;
9953  if (II) Loc = D.getIdentifierLoc();
9954
9955  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9956  QualType T = TInfo->getType();
9957  if (getLangOpts().CPlusPlus) {
9958    CheckExtraCXXDefaultArguments(D);
9959
9960    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9961                                        UPPC_DataMemberType)) {
9962      D.setInvalidType();
9963      T = Context.IntTy;
9964      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9965    }
9966  }
9967
9968  // OpenCL 1.2 spec, s6.9 r:
9969  // The event type cannot be used to declare a structure or union field.
9970  if (LangOpts.OpenCL && T->isEventT()) {
9971    Diag(Loc, diag::err_event_t_struct_field);
9972    D.setInvalidType();
9973  }
9974
9975
9976  DiagnoseFunctionSpecifiers(D);
9977
9978  if (D.getDeclSpec().isThreadSpecified())
9979    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9980
9981  // Check to see if this name was declared as a member previously
9982  NamedDecl *PrevDecl = 0;
9983  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9984  LookupName(Previous, S);
9985  switch (Previous.getResultKind()) {
9986    case LookupResult::Found:
9987    case LookupResult::FoundUnresolvedValue:
9988      PrevDecl = Previous.getAsSingle<NamedDecl>();
9989      break;
9990
9991    case LookupResult::FoundOverloaded:
9992      PrevDecl = Previous.getRepresentativeDecl();
9993      break;
9994
9995    case LookupResult::NotFound:
9996    case LookupResult::NotFoundInCurrentInstantiation:
9997    case LookupResult::Ambiguous:
9998      break;
9999  }
10000  Previous.suppressDiagnostics();
10001
10002  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10003    // Maybe we will complain about the shadowed template parameter.
10004    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10005    // Just pretend that we didn't see the previous declaration.
10006    PrevDecl = 0;
10007  }
10008
10009  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10010    PrevDecl = 0;
10011
10012  bool Mutable
10013    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10014  SourceLocation TSSL = D.getLocStart();
10015  FieldDecl *NewFD
10016    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10017                     TSSL, AS, PrevDecl, &D);
10018
10019  if (NewFD->isInvalidDecl())
10020    Record->setInvalidDecl();
10021
10022  if (D.getDeclSpec().isModulePrivateSpecified())
10023    NewFD->setModulePrivate();
10024
10025  if (NewFD->isInvalidDecl() && PrevDecl) {
10026    // Don't introduce NewFD into scope; there's already something
10027    // with the same name in the same scope.
10028  } else if (II) {
10029    PushOnScopeChains(NewFD, S);
10030  } else
10031    Record->addDecl(NewFD);
10032
10033  return NewFD;
10034}
10035
10036/// \brief Build a new FieldDecl and check its well-formedness.
10037///
10038/// This routine builds a new FieldDecl given the fields name, type,
10039/// record, etc. \p PrevDecl should refer to any previous declaration
10040/// with the same name and in the same scope as the field to be
10041/// created.
10042///
10043/// \returns a new FieldDecl.
10044///
10045/// \todo The Declarator argument is a hack. It will be removed once
10046FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10047                                TypeSourceInfo *TInfo,
10048                                RecordDecl *Record, SourceLocation Loc,
10049                                bool Mutable, Expr *BitWidth,
10050                                InClassInitStyle InitStyle,
10051                                SourceLocation TSSL,
10052                                AccessSpecifier AS, NamedDecl *PrevDecl,
10053                                Declarator *D) {
10054  IdentifierInfo *II = Name.getAsIdentifierInfo();
10055  bool InvalidDecl = false;
10056  if (D) InvalidDecl = D->isInvalidType();
10057
10058  // If we receive a broken type, recover by assuming 'int' and
10059  // marking this declaration as invalid.
10060  if (T.isNull()) {
10061    InvalidDecl = true;
10062    T = Context.IntTy;
10063  }
10064
10065  QualType EltTy = Context.getBaseElementType(T);
10066  if (!EltTy->isDependentType()) {
10067    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10068      // Fields of incomplete type force their record to be invalid.
10069      Record->setInvalidDecl();
10070      InvalidDecl = true;
10071    } else {
10072      NamedDecl *Def;
10073      EltTy->isIncompleteType(&Def);
10074      if (Def && Def->isInvalidDecl()) {
10075        Record->setInvalidDecl();
10076        InvalidDecl = true;
10077      }
10078    }
10079  }
10080
10081  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10082  if (BitWidth && getLangOpts().OpenCL) {
10083    Diag(Loc, diag::err_opencl_bitfields);
10084    InvalidDecl = true;
10085  }
10086
10087  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10088  // than a variably modified type.
10089  if (!InvalidDecl && T->isVariablyModifiedType()) {
10090    bool SizeIsNegative;
10091    llvm::APSInt Oversized;
10092
10093    TypeSourceInfo *FixedTInfo =
10094      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10095                                                    SizeIsNegative,
10096                                                    Oversized);
10097    if (FixedTInfo) {
10098      Diag(Loc, diag::warn_illegal_constant_array_size);
10099      TInfo = FixedTInfo;
10100      T = FixedTInfo->getType();
10101    } else {
10102      if (SizeIsNegative)
10103        Diag(Loc, diag::err_typecheck_negative_array_size);
10104      else if (Oversized.getBoolValue())
10105        Diag(Loc, diag::err_array_too_large)
10106          << Oversized.toString(10);
10107      else
10108        Diag(Loc, diag::err_typecheck_field_variable_size);
10109      InvalidDecl = true;
10110    }
10111  }
10112
10113  // Fields can not have abstract class types
10114  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10115                                             diag::err_abstract_type_in_decl,
10116                                             AbstractFieldType))
10117    InvalidDecl = true;
10118
10119  bool ZeroWidth = false;
10120  // If this is declared as a bit-field, check the bit-field.
10121  if (!InvalidDecl && BitWidth) {
10122    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10123    if (!BitWidth) {
10124      InvalidDecl = true;
10125      BitWidth = 0;
10126      ZeroWidth = false;
10127    }
10128  }
10129
10130  // Check that 'mutable' is consistent with the type of the declaration.
10131  if (!InvalidDecl && Mutable) {
10132    unsigned DiagID = 0;
10133    if (T->isReferenceType())
10134      DiagID = diag::err_mutable_reference;
10135    else if (T.isConstQualified())
10136      DiagID = diag::err_mutable_const;
10137
10138    if (DiagID) {
10139      SourceLocation ErrLoc = Loc;
10140      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10141        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10142      Diag(ErrLoc, DiagID);
10143      Mutable = false;
10144      InvalidDecl = true;
10145    }
10146  }
10147
10148  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10149                                       BitWidth, Mutable, InitStyle);
10150  if (InvalidDecl)
10151    NewFD->setInvalidDecl();
10152
10153  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10154    Diag(Loc, diag::err_duplicate_member) << II;
10155    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10156    NewFD->setInvalidDecl();
10157  }
10158
10159  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10160    if (Record->isUnion()) {
10161      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10162        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10163        if (RDecl->getDefinition()) {
10164          // C++ [class.union]p1: An object of a class with a non-trivial
10165          // constructor, a non-trivial copy constructor, a non-trivial
10166          // destructor, or a non-trivial copy assignment operator
10167          // cannot be a member of a union, nor can an array of such
10168          // objects.
10169          if (CheckNontrivialField(NewFD))
10170            NewFD->setInvalidDecl();
10171        }
10172      }
10173
10174      // C++ [class.union]p1: If a union contains a member of reference type,
10175      // the program is ill-formed.
10176      if (EltTy->isReferenceType()) {
10177        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10178          << NewFD->getDeclName() << EltTy;
10179        NewFD->setInvalidDecl();
10180      }
10181    }
10182  }
10183
10184  // FIXME: We need to pass in the attributes given an AST
10185  // representation, not a parser representation.
10186  if (D) {
10187    // FIXME: What to pass instead of TUScope?
10188    ProcessDeclAttributes(TUScope, NewFD, *D);
10189
10190    if (NewFD->hasAttrs())
10191      CheckAlignasUnderalignment(NewFD);
10192  }
10193
10194  // In auto-retain/release, infer strong retension for fields of
10195  // retainable type.
10196  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10197    NewFD->setInvalidDecl();
10198
10199  if (T.isObjCGCWeak())
10200    Diag(Loc, diag::warn_attribute_weak_on_field);
10201
10202  NewFD->setAccess(AS);
10203  return NewFD;
10204}
10205
10206bool Sema::CheckNontrivialField(FieldDecl *FD) {
10207  assert(FD);
10208  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10209
10210  if (FD->isInvalidDecl())
10211    return true;
10212
10213  QualType EltTy = Context.getBaseElementType(FD->getType());
10214  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10215    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10216    if (RDecl->getDefinition()) {
10217      // We check for copy constructors before constructors
10218      // because otherwise we'll never get complaints about
10219      // copy constructors.
10220
10221      CXXSpecialMember member = CXXInvalid;
10222      // We're required to check for any non-trivial constructors. Since the
10223      // implicit default constructor is suppressed if there are any
10224      // user-declared constructors, we just need to check that there is a
10225      // trivial default constructor and a trivial copy constructor. (We don't
10226      // worry about move constructors here, since this is a C++98 check.)
10227      if (RDecl->hasNonTrivialCopyConstructor())
10228        member = CXXCopyConstructor;
10229      else if (!RDecl->hasTrivialDefaultConstructor())
10230        member = CXXDefaultConstructor;
10231      else if (RDecl->hasNonTrivialCopyAssignment())
10232        member = CXXCopyAssignment;
10233      else if (RDecl->hasNonTrivialDestructor())
10234        member = CXXDestructor;
10235
10236      if (member != CXXInvalid) {
10237        if (!getLangOpts().CPlusPlus11 &&
10238            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10239          // Objective-C++ ARC: it is an error to have a non-trivial field of
10240          // a union. However, system headers in Objective-C programs
10241          // occasionally have Objective-C lifetime objects within unions,
10242          // and rather than cause the program to fail, we make those
10243          // members unavailable.
10244          SourceLocation Loc = FD->getLocation();
10245          if (getSourceManager().isInSystemHeader(Loc)) {
10246            if (!FD->hasAttr<UnavailableAttr>())
10247              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10248                                  "this system field has retaining ownership"));
10249            return false;
10250          }
10251        }
10252
10253        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10254               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10255               diag::err_illegal_union_or_anon_struct_member)
10256          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10257        DiagnoseNontrivial(RDecl, member);
10258        return !getLangOpts().CPlusPlus11;
10259      }
10260    }
10261  }
10262
10263  return false;
10264}
10265
10266/// TranslateIvarVisibility - Translate visibility from a token ID to an
10267///  AST enum value.
10268static ObjCIvarDecl::AccessControl
10269TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10270  switch (ivarVisibility) {
10271  default: llvm_unreachable("Unknown visitibility kind");
10272  case tok::objc_private: return ObjCIvarDecl::Private;
10273  case tok::objc_public: return ObjCIvarDecl::Public;
10274  case tok::objc_protected: return ObjCIvarDecl::Protected;
10275  case tok::objc_package: return ObjCIvarDecl::Package;
10276  }
10277}
10278
10279/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10280/// in order to create an IvarDecl object for it.
10281Decl *Sema::ActOnIvar(Scope *S,
10282                                SourceLocation DeclStart,
10283                                Declarator &D, Expr *BitfieldWidth,
10284                                tok::ObjCKeywordKind Visibility) {
10285
10286  IdentifierInfo *II = D.getIdentifier();
10287  Expr *BitWidth = (Expr*)BitfieldWidth;
10288  SourceLocation Loc = DeclStart;
10289  if (II) Loc = D.getIdentifierLoc();
10290
10291  // FIXME: Unnamed fields can be handled in various different ways, for
10292  // example, unnamed unions inject all members into the struct namespace!
10293
10294  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10295  QualType T = TInfo->getType();
10296
10297  if (BitWidth) {
10298    // 6.7.2.1p3, 6.7.2.1p4
10299    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10300    if (!BitWidth)
10301      D.setInvalidType();
10302  } else {
10303    // Not a bitfield.
10304
10305    // validate II.
10306
10307  }
10308  if (T->isReferenceType()) {
10309    Diag(Loc, diag::err_ivar_reference_type);
10310    D.setInvalidType();
10311  }
10312  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10313  // than a variably modified type.
10314  else if (T->isVariablyModifiedType()) {
10315    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10316    D.setInvalidType();
10317  }
10318
10319  // Get the visibility (access control) for this ivar.
10320  ObjCIvarDecl::AccessControl ac =
10321    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10322                                        : ObjCIvarDecl::None;
10323  // Must set ivar's DeclContext to its enclosing interface.
10324  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10325  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10326    return 0;
10327  ObjCContainerDecl *EnclosingContext;
10328  if (ObjCImplementationDecl *IMPDecl =
10329      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10330    if (LangOpts.ObjCRuntime.isFragile()) {
10331    // Case of ivar declared in an implementation. Context is that of its class.
10332      EnclosingContext = IMPDecl->getClassInterface();
10333      assert(EnclosingContext && "Implementation has no class interface!");
10334    }
10335    else
10336      EnclosingContext = EnclosingDecl;
10337  } else {
10338    if (ObjCCategoryDecl *CDecl =
10339        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10340      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10341        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10342        return 0;
10343      }
10344    }
10345    EnclosingContext = EnclosingDecl;
10346  }
10347
10348  // Construct the decl.
10349  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10350                                             DeclStart, Loc, II, T,
10351                                             TInfo, ac, (Expr *)BitfieldWidth);
10352
10353  if (II) {
10354    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10355                                           ForRedeclaration);
10356    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10357        && !isa<TagDecl>(PrevDecl)) {
10358      Diag(Loc, diag::err_duplicate_member) << II;
10359      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10360      NewID->setInvalidDecl();
10361    }
10362  }
10363
10364  // Process attributes attached to the ivar.
10365  ProcessDeclAttributes(S, NewID, D);
10366
10367  if (D.isInvalidType())
10368    NewID->setInvalidDecl();
10369
10370  // In ARC, infer 'retaining' for ivars of retainable type.
10371  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10372    NewID->setInvalidDecl();
10373
10374  if (D.getDeclSpec().isModulePrivateSpecified())
10375    NewID->setModulePrivate();
10376
10377  if (II) {
10378    // FIXME: When interfaces are DeclContexts, we'll need to add
10379    // these to the interface.
10380    S->AddDecl(NewID);
10381    IdResolver.AddDecl(NewID);
10382  }
10383
10384  if (LangOpts.ObjCRuntime.isNonFragile() &&
10385      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10386    Diag(Loc, diag::warn_ivars_in_interface);
10387
10388  return NewID;
10389}
10390
10391/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10392/// class and class extensions. For every class @interface and class
10393/// extension @interface, if the last ivar is a bitfield of any type,
10394/// then add an implicit `char :0` ivar to the end of that interface.
10395void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10396                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10397  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10398    return;
10399
10400  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10401  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10402
10403  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10404    return;
10405  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10406  if (!ID) {
10407    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10408      if (!CD->IsClassExtension())
10409        return;
10410    }
10411    // No need to add this to end of @implementation.
10412    else
10413      return;
10414  }
10415  // All conditions are met. Add a new bitfield to the tail end of ivars.
10416  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10417  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10418
10419  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10420                              DeclLoc, DeclLoc, 0,
10421                              Context.CharTy,
10422                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10423                                                               DeclLoc),
10424                              ObjCIvarDecl::Private, BW,
10425                              true);
10426  AllIvarDecls.push_back(Ivar);
10427}
10428
10429void Sema::ActOnFields(Scope* S,
10430                       SourceLocation RecLoc, Decl *EnclosingDecl,
10431                       llvm::ArrayRef<Decl *> Fields,
10432                       SourceLocation LBrac, SourceLocation RBrac,
10433                       AttributeList *Attr) {
10434  assert(EnclosingDecl && "missing record or interface decl");
10435
10436  // If this is an Objective-C @implementation or category and we have
10437  // new fields here we should reset the layout of the interface since
10438  // it will now change.
10439  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10440    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10441    switch (DC->getKind()) {
10442    default: break;
10443    case Decl::ObjCCategory:
10444      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10445      break;
10446    case Decl::ObjCImplementation:
10447      Context.
10448        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10449      break;
10450    }
10451  }
10452
10453  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10454
10455  // Start counting up the number of named members; make sure to include
10456  // members of anonymous structs and unions in the total.
10457  unsigned NumNamedMembers = 0;
10458  if (Record) {
10459    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10460                                   e = Record->decls_end(); i != e; i++) {
10461      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10462        if (IFD->getDeclName())
10463          ++NumNamedMembers;
10464    }
10465  }
10466
10467  // Verify that all the fields are okay.
10468  SmallVector<FieldDecl*, 32> RecFields;
10469
10470  bool ARCErrReported = false;
10471  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10472       i != end; ++i) {
10473    FieldDecl *FD = cast<FieldDecl>(*i);
10474
10475    // Get the type for the field.
10476    const Type *FDTy = FD->getType().getTypePtr();
10477
10478    if (!FD->isAnonymousStructOrUnion()) {
10479      // Remember all fields written by the user.
10480      RecFields.push_back(FD);
10481    }
10482
10483    // If the field is already invalid for some reason, don't emit more
10484    // diagnostics about it.
10485    if (FD->isInvalidDecl()) {
10486      EnclosingDecl->setInvalidDecl();
10487      continue;
10488    }
10489
10490    // C99 6.7.2.1p2:
10491    //   A structure or union shall not contain a member with
10492    //   incomplete or function type (hence, a structure shall not
10493    //   contain an instance of itself, but may contain a pointer to
10494    //   an instance of itself), except that the last member of a
10495    //   structure with more than one named member may have incomplete
10496    //   array type; such a structure (and any union containing,
10497    //   possibly recursively, a member that is such a structure)
10498    //   shall not be a member of a structure or an element of an
10499    //   array.
10500    if (FDTy->isFunctionType()) {
10501      // Field declared as a function.
10502      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10503        << FD->getDeclName();
10504      FD->setInvalidDecl();
10505      EnclosingDecl->setInvalidDecl();
10506      continue;
10507    } else if (FDTy->isIncompleteArrayType() && Record &&
10508               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10509                ((getLangOpts().MicrosoftExt ||
10510                  getLangOpts().CPlusPlus) &&
10511                 (i + 1 == Fields.end() || Record->isUnion())))) {
10512      // Flexible array member.
10513      // Microsoft and g++ is more permissive regarding flexible array.
10514      // It will accept flexible array in union and also
10515      // as the sole element of a struct/class.
10516      if (getLangOpts().MicrosoftExt) {
10517        if (Record->isUnion())
10518          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10519            << FD->getDeclName();
10520        else if (Fields.size() == 1)
10521          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10522            << FD->getDeclName() << Record->getTagKind();
10523      } else if (getLangOpts().CPlusPlus) {
10524        if (Record->isUnion())
10525          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10526            << FD->getDeclName();
10527        else if (Fields.size() == 1)
10528          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10529            << FD->getDeclName() << Record->getTagKind();
10530      } else if (!getLangOpts().C99) {
10531      if (Record->isUnion())
10532        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10533          << FD->getDeclName();
10534      else
10535        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10536          << FD->getDeclName() << Record->getTagKind();
10537      } else if (NumNamedMembers < 1) {
10538        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10539          << FD->getDeclName();
10540        FD->setInvalidDecl();
10541        EnclosingDecl->setInvalidDecl();
10542        continue;
10543      }
10544      if (!FD->getType()->isDependentType() &&
10545          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10546        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10547          << FD->getDeclName() << FD->getType();
10548        FD->setInvalidDecl();
10549        EnclosingDecl->setInvalidDecl();
10550        continue;
10551      }
10552      // Okay, we have a legal flexible array member at the end of the struct.
10553      if (Record)
10554        Record->setHasFlexibleArrayMember(true);
10555    } else if (!FDTy->isDependentType() &&
10556               RequireCompleteType(FD->getLocation(), FD->getType(),
10557                                   diag::err_field_incomplete)) {
10558      // Incomplete type
10559      FD->setInvalidDecl();
10560      EnclosingDecl->setInvalidDecl();
10561      continue;
10562    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10563      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10564        // If this is a member of a union, then entire union becomes "flexible".
10565        if (Record && Record->isUnion()) {
10566          Record->setHasFlexibleArrayMember(true);
10567        } else {
10568          // If this is a struct/class and this is not the last element, reject
10569          // it.  Note that GCC supports variable sized arrays in the middle of
10570          // structures.
10571          if (i + 1 != Fields.end())
10572            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10573              << FD->getDeclName() << FD->getType();
10574          else {
10575            // We support flexible arrays at the end of structs in
10576            // other structs as an extension.
10577            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10578              << FD->getDeclName();
10579            if (Record)
10580              Record->setHasFlexibleArrayMember(true);
10581          }
10582        }
10583      }
10584      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10585          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10586                                 diag::err_abstract_type_in_decl,
10587                                 AbstractIvarType)) {
10588        // Ivars can not have abstract class types
10589        FD->setInvalidDecl();
10590      }
10591      if (Record && FDTTy->getDecl()->hasObjectMember())
10592        Record->setHasObjectMember(true);
10593      if (Record && FDTTy->getDecl()->hasVolatileMember())
10594        Record->setHasVolatileMember(true);
10595    } else if (FDTy->isObjCObjectType()) {
10596      /// A field cannot be an Objective-c object
10597      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10598        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10599      QualType T = Context.getObjCObjectPointerType(FD->getType());
10600      FD->setType(T);
10601    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10602               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10603      // It's an error in ARC if a field has lifetime.
10604      // We don't want to report this in a system header, though,
10605      // so we just make the field unavailable.
10606      // FIXME: that's really not sufficient; we need to make the type
10607      // itself invalid to, say, initialize or copy.
10608      QualType T = FD->getType();
10609      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10610      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10611        SourceLocation loc = FD->getLocation();
10612        if (getSourceManager().isInSystemHeader(loc)) {
10613          if (!FD->hasAttr<UnavailableAttr>()) {
10614            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10615                              "this system field has retaining ownership"));
10616          }
10617        } else {
10618          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10619            << T->isBlockPointerType() << Record->getTagKind();
10620        }
10621        ARCErrReported = true;
10622      }
10623    } else if (getLangOpts().ObjC1 &&
10624               getLangOpts().getGC() != LangOptions::NonGC &&
10625               Record && !Record->hasObjectMember()) {
10626      if (FD->getType()->isObjCObjectPointerType() ||
10627          FD->getType().isObjCGCStrong())
10628        Record->setHasObjectMember(true);
10629      else if (Context.getAsArrayType(FD->getType())) {
10630        QualType BaseType = Context.getBaseElementType(FD->getType());
10631        if (BaseType->isRecordType() &&
10632            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10633          Record->setHasObjectMember(true);
10634        else if (BaseType->isObjCObjectPointerType() ||
10635                 BaseType.isObjCGCStrong())
10636               Record->setHasObjectMember(true);
10637      }
10638    }
10639    if (Record && FD->getType().isVolatileQualified())
10640      Record->setHasVolatileMember(true);
10641    // Keep track of the number of named members.
10642    if (FD->getIdentifier())
10643      ++NumNamedMembers;
10644  }
10645
10646  // Okay, we successfully defined 'Record'.
10647  if (Record) {
10648    bool Completed = false;
10649    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10650      if (!CXXRecord->isInvalidDecl()) {
10651        // Set access bits correctly on the directly-declared conversions.
10652        for (CXXRecordDecl::conversion_iterator
10653               I = CXXRecord->conversion_begin(),
10654               E = CXXRecord->conversion_end(); I != E; ++I)
10655          I.setAccess((*I)->getAccess());
10656
10657        if (!CXXRecord->isDependentType()) {
10658          // Adjust user-defined destructor exception spec.
10659          if (getLangOpts().CPlusPlus11 &&
10660              CXXRecord->hasUserDeclaredDestructor())
10661            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10662
10663          // Add any implicitly-declared members to this class.
10664          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10665
10666          // If we have virtual base classes, we may end up finding multiple
10667          // final overriders for a given virtual function. Check for this
10668          // problem now.
10669          if (CXXRecord->getNumVBases()) {
10670            CXXFinalOverriderMap FinalOverriders;
10671            CXXRecord->getFinalOverriders(FinalOverriders);
10672
10673            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10674                                             MEnd = FinalOverriders.end();
10675                 M != MEnd; ++M) {
10676              for (OverridingMethods::iterator SO = M->second.begin(),
10677                                            SOEnd = M->second.end();
10678                   SO != SOEnd; ++SO) {
10679                assert(SO->second.size() > 0 &&
10680                       "Virtual function without overridding functions?");
10681                if (SO->second.size() == 1)
10682                  continue;
10683
10684                // C++ [class.virtual]p2:
10685                //   In a derived class, if a virtual member function of a base
10686                //   class subobject has more than one final overrider the
10687                //   program is ill-formed.
10688                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10689                  << (const NamedDecl *)M->first << Record;
10690                Diag(M->first->getLocation(),
10691                     diag::note_overridden_virtual_function);
10692                for (OverridingMethods::overriding_iterator
10693                          OM = SO->second.begin(),
10694                       OMEnd = SO->second.end();
10695                     OM != OMEnd; ++OM)
10696                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10697                    << (const NamedDecl *)M->first << OM->Method->getParent();
10698
10699                Record->setInvalidDecl();
10700              }
10701            }
10702            CXXRecord->completeDefinition(&FinalOverriders);
10703            Completed = true;
10704          }
10705        }
10706      }
10707    }
10708
10709    if (!Completed)
10710      Record->completeDefinition();
10711
10712    if (Record->hasAttrs())
10713      CheckAlignasUnderalignment(Record);
10714  } else {
10715    ObjCIvarDecl **ClsFields =
10716      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10717    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10718      ID->setEndOfDefinitionLoc(RBrac);
10719      // Add ivar's to class's DeclContext.
10720      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10721        ClsFields[i]->setLexicalDeclContext(ID);
10722        ID->addDecl(ClsFields[i]);
10723      }
10724      // Must enforce the rule that ivars in the base classes may not be
10725      // duplicates.
10726      if (ID->getSuperClass())
10727        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10728    } else if (ObjCImplementationDecl *IMPDecl =
10729                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10730      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10731      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10732        // Ivar declared in @implementation never belongs to the implementation.
10733        // Only it is in implementation's lexical context.
10734        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10735      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10736      IMPDecl->setIvarLBraceLoc(LBrac);
10737      IMPDecl->setIvarRBraceLoc(RBrac);
10738    } else if (ObjCCategoryDecl *CDecl =
10739                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10740      // case of ivars in class extension; all other cases have been
10741      // reported as errors elsewhere.
10742      // FIXME. Class extension does not have a LocEnd field.
10743      // CDecl->setLocEnd(RBrac);
10744      // Add ivar's to class extension's DeclContext.
10745      // Diagnose redeclaration of private ivars.
10746      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10747      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10748        if (IDecl) {
10749          if (const ObjCIvarDecl *ClsIvar =
10750              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10751            Diag(ClsFields[i]->getLocation(),
10752                 diag::err_duplicate_ivar_declaration);
10753            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10754            continue;
10755          }
10756          for (ObjCInterfaceDecl::known_extensions_iterator
10757                 Ext = IDecl->known_extensions_begin(),
10758                 ExtEnd = IDecl->known_extensions_end();
10759               Ext != ExtEnd; ++Ext) {
10760            if (const ObjCIvarDecl *ClsExtIvar
10761                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
10762              Diag(ClsFields[i]->getLocation(),
10763                   diag::err_duplicate_ivar_declaration);
10764              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10765              continue;
10766            }
10767          }
10768        }
10769        ClsFields[i]->setLexicalDeclContext(CDecl);
10770        CDecl->addDecl(ClsFields[i]);
10771      }
10772      CDecl->setIvarLBraceLoc(LBrac);
10773      CDecl->setIvarRBraceLoc(RBrac);
10774    }
10775  }
10776
10777  if (Attr)
10778    ProcessDeclAttributeList(S, Record, Attr);
10779}
10780
10781/// \brief Determine whether the given integral value is representable within
10782/// the given type T.
10783static bool isRepresentableIntegerValue(ASTContext &Context,
10784                                        llvm::APSInt &Value,
10785                                        QualType T) {
10786  assert(T->isIntegralType(Context) && "Integral type required!");
10787  unsigned BitWidth = Context.getIntWidth(T);
10788
10789  if (Value.isUnsigned() || Value.isNonNegative()) {
10790    if (T->isSignedIntegerOrEnumerationType())
10791      --BitWidth;
10792    return Value.getActiveBits() <= BitWidth;
10793  }
10794  return Value.getMinSignedBits() <= BitWidth;
10795}
10796
10797// \brief Given an integral type, return the next larger integral type
10798// (or a NULL type of no such type exists).
10799static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10800  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10801  // enum checking below.
10802  assert(T->isIntegralType(Context) && "Integral type required!");
10803  const unsigned NumTypes = 4;
10804  QualType SignedIntegralTypes[NumTypes] = {
10805    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10806  };
10807  QualType UnsignedIntegralTypes[NumTypes] = {
10808    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10809    Context.UnsignedLongLongTy
10810  };
10811
10812  unsigned BitWidth = Context.getTypeSize(T);
10813  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10814                                                        : UnsignedIntegralTypes;
10815  for (unsigned I = 0; I != NumTypes; ++I)
10816    if (Context.getTypeSize(Types[I]) > BitWidth)
10817      return Types[I];
10818
10819  return QualType();
10820}
10821
10822EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10823                                          EnumConstantDecl *LastEnumConst,
10824                                          SourceLocation IdLoc,
10825                                          IdentifierInfo *Id,
10826                                          Expr *Val) {
10827  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10828  llvm::APSInt EnumVal(IntWidth);
10829  QualType EltTy;
10830
10831  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10832    Val = 0;
10833
10834  if (Val)
10835    Val = DefaultLvalueConversion(Val).take();
10836
10837  if (Val) {
10838    if (Enum->isDependentType() || Val->isTypeDependent())
10839      EltTy = Context.DependentTy;
10840    else {
10841      SourceLocation ExpLoc;
10842      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
10843          !getLangOpts().MicrosoftMode) {
10844        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10845        // constant-expression in the enumerator-definition shall be a converted
10846        // constant expression of the underlying type.
10847        EltTy = Enum->getIntegerType();
10848        ExprResult Converted =
10849          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10850                                           CCEK_Enumerator);
10851        if (Converted.isInvalid())
10852          Val = 0;
10853        else
10854          Val = Converted.take();
10855      } else if (!Val->isValueDependent() &&
10856                 !(Val = VerifyIntegerConstantExpression(Val,
10857                                                         &EnumVal).take())) {
10858        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10859      } else {
10860        if (Enum->isFixed()) {
10861          EltTy = Enum->getIntegerType();
10862
10863          // In Obj-C and Microsoft mode, require the enumeration value to be
10864          // representable in the underlying type of the enumeration. In C++11,
10865          // we perform a non-narrowing conversion as part of converted constant
10866          // expression checking.
10867          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10868            if (getLangOpts().MicrosoftMode) {
10869              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10870              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10871            } else
10872              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10873          } else
10874            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10875        } else if (getLangOpts().CPlusPlus) {
10876          // C++11 [dcl.enum]p5:
10877          //   If the underlying type is not fixed, the type of each enumerator
10878          //   is the type of its initializing value:
10879          //     - If an initializer is specified for an enumerator, the
10880          //       initializing value has the same type as the expression.
10881          EltTy = Val->getType();
10882        } else {
10883          // C99 6.7.2.2p2:
10884          //   The expression that defines the value of an enumeration constant
10885          //   shall be an integer constant expression that has a value
10886          //   representable as an int.
10887
10888          // Complain if the value is not representable in an int.
10889          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10890            Diag(IdLoc, diag::ext_enum_value_not_int)
10891              << EnumVal.toString(10) << Val->getSourceRange()
10892              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10893          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10894            // Force the type of the expression to 'int'.
10895            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10896          }
10897          EltTy = Val->getType();
10898        }
10899      }
10900    }
10901  }
10902
10903  if (!Val) {
10904    if (Enum->isDependentType())
10905      EltTy = Context.DependentTy;
10906    else if (!LastEnumConst) {
10907      // C++0x [dcl.enum]p5:
10908      //   If the underlying type is not fixed, the type of each enumerator
10909      //   is the type of its initializing value:
10910      //     - If no initializer is specified for the first enumerator, the
10911      //       initializing value has an unspecified integral type.
10912      //
10913      // GCC uses 'int' for its unspecified integral type, as does
10914      // C99 6.7.2.2p3.
10915      if (Enum->isFixed()) {
10916        EltTy = Enum->getIntegerType();
10917      }
10918      else {
10919        EltTy = Context.IntTy;
10920      }
10921    } else {
10922      // Assign the last value + 1.
10923      EnumVal = LastEnumConst->getInitVal();
10924      ++EnumVal;
10925      EltTy = LastEnumConst->getType();
10926
10927      // Check for overflow on increment.
10928      if (EnumVal < LastEnumConst->getInitVal()) {
10929        // C++0x [dcl.enum]p5:
10930        //   If the underlying type is not fixed, the type of each enumerator
10931        //   is the type of its initializing value:
10932        //
10933        //     - Otherwise the type of the initializing value is the same as
10934        //       the type of the initializing value of the preceding enumerator
10935        //       unless the incremented value is not representable in that type,
10936        //       in which case the type is an unspecified integral type
10937        //       sufficient to contain the incremented value. If no such type
10938        //       exists, the program is ill-formed.
10939        QualType T = getNextLargerIntegralType(Context, EltTy);
10940        if (T.isNull() || Enum->isFixed()) {
10941          // There is no integral type larger enough to represent this
10942          // value. Complain, then allow the value to wrap around.
10943          EnumVal = LastEnumConst->getInitVal();
10944          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10945          ++EnumVal;
10946          if (Enum->isFixed())
10947            // When the underlying type is fixed, this is ill-formed.
10948            Diag(IdLoc, diag::err_enumerator_wrapped)
10949              << EnumVal.toString(10)
10950              << EltTy;
10951          else
10952            Diag(IdLoc, diag::warn_enumerator_too_large)
10953              << EnumVal.toString(10);
10954        } else {
10955          EltTy = T;
10956        }
10957
10958        // Retrieve the last enumerator's value, extent that type to the
10959        // type that is supposed to be large enough to represent the incremented
10960        // value, then increment.
10961        EnumVal = LastEnumConst->getInitVal();
10962        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10963        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10964        ++EnumVal;
10965
10966        // If we're not in C++, diagnose the overflow of enumerator values,
10967        // which in C99 means that the enumerator value is not representable in
10968        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10969        // permits enumerator values that are representable in some larger
10970        // integral type.
10971        if (!getLangOpts().CPlusPlus && !T.isNull())
10972          Diag(IdLoc, diag::warn_enum_value_overflow);
10973      } else if (!getLangOpts().CPlusPlus &&
10974                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10975        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10976        Diag(IdLoc, diag::ext_enum_value_not_int)
10977          << EnumVal.toString(10) << 1;
10978      }
10979    }
10980  }
10981
10982  if (!EltTy->isDependentType()) {
10983    // Make the enumerator value match the signedness and size of the
10984    // enumerator's type.
10985    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10986    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10987  }
10988
10989  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10990                                  Val, EnumVal);
10991}
10992
10993
10994Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10995                              SourceLocation IdLoc, IdentifierInfo *Id,
10996                              AttributeList *Attr,
10997                              SourceLocation EqualLoc, Expr *Val) {
10998  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10999  EnumConstantDecl *LastEnumConst =
11000    cast_or_null<EnumConstantDecl>(lastEnumConst);
11001
11002  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11003  // we find one that is.
11004  S = getNonFieldDeclScope(S);
11005
11006  // Verify that there isn't already something declared with this name in this
11007  // scope.
11008  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11009                                         ForRedeclaration);
11010  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11011    // Maybe we will complain about the shadowed template parameter.
11012    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11013    // Just pretend that we didn't see the previous declaration.
11014    PrevDecl = 0;
11015  }
11016
11017  if (PrevDecl) {
11018    // When in C++, we may get a TagDecl with the same name; in this case the
11019    // enum constant will 'hide' the tag.
11020    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11021           "Received TagDecl when not in C++!");
11022    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11023      if (isa<EnumConstantDecl>(PrevDecl))
11024        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11025      else
11026        Diag(IdLoc, diag::err_redefinition) << Id;
11027      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11028      return 0;
11029    }
11030  }
11031
11032  // C++ [class.mem]p15:
11033  // If T is the name of a class, then each of the following shall have a name
11034  // different from T:
11035  // - every enumerator of every member of class T that is an unscoped
11036  // enumerated type
11037  if (CXXRecordDecl *Record
11038                      = dyn_cast<CXXRecordDecl>(
11039                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11040    if (!TheEnumDecl->isScoped() &&
11041        Record->getIdentifier() && Record->getIdentifier() == Id)
11042      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11043
11044  EnumConstantDecl *New =
11045    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11046
11047  if (New) {
11048    // Process attributes.
11049    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11050
11051    // Register this decl in the current scope stack.
11052    New->setAccess(TheEnumDecl->getAccess());
11053    PushOnScopeChains(New, S);
11054  }
11055
11056  ActOnDocumentableDecl(New);
11057
11058  return New;
11059}
11060
11061// Returns true when the enum initial expression does not trigger the
11062// duplicate enum warning.  A few common cases are exempted as follows:
11063// Element2 = Element1
11064// Element2 = Element1 + 1
11065// Element2 = Element1 - 1
11066// Where Element2 and Element1 are from the same enum.
11067static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11068  Expr *InitExpr = ECD->getInitExpr();
11069  if (!InitExpr)
11070    return true;
11071  InitExpr = InitExpr->IgnoreImpCasts();
11072
11073  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11074    if (!BO->isAdditiveOp())
11075      return true;
11076    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11077    if (!IL)
11078      return true;
11079    if (IL->getValue() != 1)
11080      return true;
11081
11082    InitExpr = BO->getLHS();
11083  }
11084
11085  // This checks if the elements are from the same enum.
11086  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11087  if (!DRE)
11088    return true;
11089
11090  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11091  if (!EnumConstant)
11092    return true;
11093
11094  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11095      Enum)
11096    return true;
11097
11098  return false;
11099}
11100
11101struct DupKey {
11102  int64_t val;
11103  bool isTombstoneOrEmptyKey;
11104  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11105    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11106};
11107
11108static DupKey GetDupKey(const llvm::APSInt& Val) {
11109  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11110                false);
11111}
11112
11113struct DenseMapInfoDupKey {
11114  static DupKey getEmptyKey() { return DupKey(0, true); }
11115  static DupKey getTombstoneKey() { return DupKey(1, true); }
11116  static unsigned getHashValue(const DupKey Key) {
11117    return (unsigned)(Key.val * 37);
11118  }
11119  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11120    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11121           LHS.val == RHS.val;
11122  }
11123};
11124
11125// Emits a warning when an element is implicitly set a value that
11126// a previous element has already been set to.
11127static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11128                                        unsigned NumElements, EnumDecl *Enum,
11129                                        QualType EnumType) {
11130  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11131                                 Enum->getLocation()) ==
11132      DiagnosticsEngine::Ignored)
11133    return;
11134  // Avoid anonymous enums
11135  if (!Enum->getIdentifier())
11136    return;
11137
11138  // Only check for small enums.
11139  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11140    return;
11141
11142  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11143  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11144
11145  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11146  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11147          ValueToVectorMap;
11148
11149  DuplicatesVector DupVector;
11150  ValueToVectorMap EnumMap;
11151
11152  // Populate the EnumMap with all values represented by enum constants without
11153  // an initialier.
11154  for (unsigned i = 0; i < NumElements; ++i) {
11155    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11156
11157    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11158    // this constant.  Skip this enum since it may be ill-formed.
11159    if (!ECD) {
11160      return;
11161    }
11162
11163    if (ECD->getInitExpr())
11164      continue;
11165
11166    DupKey Key = GetDupKey(ECD->getInitVal());
11167    DeclOrVector &Entry = EnumMap[Key];
11168
11169    // First time encountering this value.
11170    if (Entry.isNull())
11171      Entry = ECD;
11172  }
11173
11174  // Create vectors for any values that has duplicates.
11175  for (unsigned i = 0; i < NumElements; ++i) {
11176    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11177    if (!ValidDuplicateEnum(ECD, Enum))
11178      continue;
11179
11180    DupKey Key = GetDupKey(ECD->getInitVal());
11181
11182    DeclOrVector& Entry = EnumMap[Key];
11183    if (Entry.isNull())
11184      continue;
11185
11186    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11187      // Ensure constants are different.
11188      if (D == ECD)
11189        continue;
11190
11191      // Create new vector and push values onto it.
11192      ECDVector *Vec = new ECDVector();
11193      Vec->push_back(D);
11194      Vec->push_back(ECD);
11195
11196      // Update entry to point to the duplicates vector.
11197      Entry = Vec;
11198
11199      // Store the vector somewhere we can consult later for quick emission of
11200      // diagnostics.
11201      DupVector.push_back(Vec);
11202      continue;
11203    }
11204
11205    ECDVector *Vec = Entry.get<ECDVector*>();
11206    // Make sure constants are not added more than once.
11207    if (*Vec->begin() == ECD)
11208      continue;
11209
11210    Vec->push_back(ECD);
11211  }
11212
11213  // Emit diagnostics.
11214  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11215                                  DupVectorEnd = DupVector.end();
11216       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11217    ECDVector *Vec = *DupVectorIter;
11218    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11219
11220    // Emit warning for one enum constant.
11221    ECDVector::iterator I = Vec->begin();
11222    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11223      << (*I)->getName() << (*I)->getInitVal().toString(10)
11224      << (*I)->getSourceRange();
11225    ++I;
11226
11227    // Emit one note for each of the remaining enum constants with
11228    // the same value.
11229    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11230      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11231        << (*I)->getName() << (*I)->getInitVal().toString(10)
11232        << (*I)->getSourceRange();
11233    delete Vec;
11234  }
11235}
11236
11237void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11238                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11239                         Decl **Elements, unsigned NumElements,
11240                         Scope *S, AttributeList *Attr) {
11241  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11242  QualType EnumType = Context.getTypeDeclType(Enum);
11243
11244  if (Attr)
11245    ProcessDeclAttributeList(S, Enum, Attr);
11246
11247  if (Enum->isDependentType()) {
11248    for (unsigned i = 0; i != NumElements; ++i) {
11249      EnumConstantDecl *ECD =
11250        cast_or_null<EnumConstantDecl>(Elements[i]);
11251      if (!ECD) continue;
11252
11253      ECD->setType(EnumType);
11254    }
11255
11256    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11257    return;
11258  }
11259
11260  // TODO: If the result value doesn't fit in an int, it must be a long or long
11261  // long value.  ISO C does not support this, but GCC does as an extension,
11262  // emit a warning.
11263  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11264  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11265  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11266
11267  // Verify that all the values are okay, compute the size of the values, and
11268  // reverse the list.
11269  unsigned NumNegativeBits = 0;
11270  unsigned NumPositiveBits = 0;
11271
11272  // Keep track of whether all elements have type int.
11273  bool AllElementsInt = true;
11274
11275  for (unsigned i = 0; i != NumElements; ++i) {
11276    EnumConstantDecl *ECD =
11277      cast_or_null<EnumConstantDecl>(Elements[i]);
11278    if (!ECD) continue;  // Already issued a diagnostic.
11279
11280    const llvm::APSInt &InitVal = ECD->getInitVal();
11281
11282    // Keep track of the size of positive and negative values.
11283    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11284      NumPositiveBits = std::max(NumPositiveBits,
11285                                 (unsigned)InitVal.getActiveBits());
11286    else
11287      NumNegativeBits = std::max(NumNegativeBits,
11288                                 (unsigned)InitVal.getMinSignedBits());
11289
11290    // Keep track of whether every enum element has type int (very commmon).
11291    if (AllElementsInt)
11292      AllElementsInt = ECD->getType() == Context.IntTy;
11293  }
11294
11295  // Figure out the type that should be used for this enum.
11296  QualType BestType;
11297  unsigned BestWidth;
11298
11299  // C++0x N3000 [conv.prom]p3:
11300  //   An rvalue of an unscoped enumeration type whose underlying
11301  //   type is not fixed can be converted to an rvalue of the first
11302  //   of the following types that can represent all the values of
11303  //   the enumeration: int, unsigned int, long int, unsigned long
11304  //   int, long long int, or unsigned long long int.
11305  // C99 6.4.4.3p2:
11306  //   An identifier declared as an enumeration constant has type int.
11307  // The C99 rule is modified by a gcc extension
11308  QualType BestPromotionType;
11309
11310  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11311  // -fshort-enums is the equivalent to specifying the packed attribute on all
11312  // enum definitions.
11313  if (LangOpts.ShortEnums)
11314    Packed = true;
11315
11316  if (Enum->isFixed()) {
11317    BestType = Enum->getIntegerType();
11318    if (BestType->isPromotableIntegerType())
11319      BestPromotionType = Context.getPromotedIntegerType(BestType);
11320    else
11321      BestPromotionType = BestType;
11322    // We don't need to set BestWidth, because BestType is going to be the type
11323    // of the enumerators, but we do anyway because otherwise some compilers
11324    // warn that it might be used uninitialized.
11325    BestWidth = CharWidth;
11326  }
11327  else if (NumNegativeBits) {
11328    // If there is a negative value, figure out the smallest integer type (of
11329    // int/long/longlong) that fits.
11330    // If it's packed, check also if it fits a char or a short.
11331    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11332      BestType = Context.SignedCharTy;
11333      BestWidth = CharWidth;
11334    } else if (Packed && NumNegativeBits <= ShortWidth &&
11335               NumPositiveBits < ShortWidth) {
11336      BestType = Context.ShortTy;
11337      BestWidth = ShortWidth;
11338    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11339      BestType = Context.IntTy;
11340      BestWidth = IntWidth;
11341    } else {
11342      BestWidth = Context.getTargetInfo().getLongWidth();
11343
11344      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11345        BestType = Context.LongTy;
11346      } else {
11347        BestWidth = Context.getTargetInfo().getLongLongWidth();
11348
11349        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11350          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11351        BestType = Context.LongLongTy;
11352      }
11353    }
11354    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11355  } else {
11356    // If there is no negative value, figure out the smallest type that fits
11357    // all of the enumerator values.
11358    // If it's packed, check also if it fits a char or a short.
11359    if (Packed && NumPositiveBits <= CharWidth) {
11360      BestType = Context.UnsignedCharTy;
11361      BestPromotionType = Context.IntTy;
11362      BestWidth = CharWidth;
11363    } else if (Packed && NumPositiveBits <= ShortWidth) {
11364      BestType = Context.UnsignedShortTy;
11365      BestPromotionType = Context.IntTy;
11366      BestWidth = ShortWidth;
11367    } else if (NumPositiveBits <= IntWidth) {
11368      BestType = Context.UnsignedIntTy;
11369      BestWidth = IntWidth;
11370      BestPromotionType
11371        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11372                           ? Context.UnsignedIntTy : Context.IntTy;
11373    } else if (NumPositiveBits <=
11374               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11375      BestType = Context.UnsignedLongTy;
11376      BestPromotionType
11377        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11378                           ? Context.UnsignedLongTy : Context.LongTy;
11379    } else {
11380      BestWidth = Context.getTargetInfo().getLongLongWidth();
11381      assert(NumPositiveBits <= BestWidth &&
11382             "How could an initializer get larger than ULL?");
11383      BestType = Context.UnsignedLongLongTy;
11384      BestPromotionType
11385        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11386                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11387    }
11388  }
11389
11390  // Loop over all of the enumerator constants, changing their types to match
11391  // the type of the enum if needed.
11392  for (unsigned i = 0; i != NumElements; ++i) {
11393    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11394    if (!ECD) continue;  // Already issued a diagnostic.
11395
11396    // Standard C says the enumerators have int type, but we allow, as an
11397    // extension, the enumerators to be larger than int size.  If each
11398    // enumerator value fits in an int, type it as an int, otherwise type it the
11399    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11400    // that X has type 'int', not 'unsigned'.
11401
11402    // Determine whether the value fits into an int.
11403    llvm::APSInt InitVal = ECD->getInitVal();
11404
11405    // If it fits into an integer type, force it.  Otherwise force it to match
11406    // the enum decl type.
11407    QualType NewTy;
11408    unsigned NewWidth;
11409    bool NewSign;
11410    if (!getLangOpts().CPlusPlus &&
11411        !Enum->isFixed() &&
11412        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11413      NewTy = Context.IntTy;
11414      NewWidth = IntWidth;
11415      NewSign = true;
11416    } else if (ECD->getType() == BestType) {
11417      // Already the right type!
11418      if (getLangOpts().CPlusPlus)
11419        // C++ [dcl.enum]p4: Following the closing brace of an
11420        // enum-specifier, each enumerator has the type of its
11421        // enumeration.
11422        ECD->setType(EnumType);
11423      continue;
11424    } else {
11425      NewTy = BestType;
11426      NewWidth = BestWidth;
11427      NewSign = BestType->isSignedIntegerOrEnumerationType();
11428    }
11429
11430    // Adjust the APSInt value.
11431    InitVal = InitVal.extOrTrunc(NewWidth);
11432    InitVal.setIsSigned(NewSign);
11433    ECD->setInitVal(InitVal);
11434
11435    // Adjust the Expr initializer and type.
11436    if (ECD->getInitExpr() &&
11437        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11438      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11439                                                CK_IntegralCast,
11440                                                ECD->getInitExpr(),
11441                                                /*base paths*/ 0,
11442                                                VK_RValue));
11443    if (getLangOpts().CPlusPlus)
11444      // C++ [dcl.enum]p4: Following the closing brace of an
11445      // enum-specifier, each enumerator has the type of its
11446      // enumeration.
11447      ECD->setType(EnumType);
11448    else
11449      ECD->setType(NewTy);
11450  }
11451
11452  Enum->completeDefinition(BestType, BestPromotionType,
11453                           NumPositiveBits, NumNegativeBits);
11454
11455  // If we're declaring a function, ensure this decl isn't forgotten about -
11456  // it needs to go into the function scope.
11457  if (InFunctionDeclarator)
11458    DeclsInPrototypeScope.push_back(Enum);
11459
11460  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11461
11462  // Now that the enum type is defined, ensure it's not been underaligned.
11463  if (Enum->hasAttrs())
11464    CheckAlignasUnderalignment(Enum);
11465}
11466
11467Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11468                                  SourceLocation StartLoc,
11469                                  SourceLocation EndLoc) {
11470  StringLiteral *AsmString = cast<StringLiteral>(expr);
11471
11472  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11473                                                   AsmString, StartLoc,
11474                                                   EndLoc);
11475  CurContext->addDecl(New);
11476  return New;
11477}
11478
11479DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11480                                   SourceLocation ImportLoc,
11481                                   ModuleIdPath Path) {
11482  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11483                                                Module::AllVisible,
11484                                                /*IsIncludeDirective=*/false);
11485  if (!Mod)
11486    return true;
11487
11488  SmallVector<SourceLocation, 2> IdentifierLocs;
11489  Module *ModCheck = Mod;
11490  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11491    // If we've run out of module parents, just drop the remaining identifiers.
11492    // We need the length to be consistent.
11493    if (!ModCheck)
11494      break;
11495    ModCheck = ModCheck->Parent;
11496
11497    IdentifierLocs.push_back(Path[I].second);
11498  }
11499
11500  ImportDecl *Import = ImportDecl::Create(Context,
11501                                          Context.getTranslationUnitDecl(),
11502                                          AtLoc.isValid()? AtLoc : ImportLoc,
11503                                          Mod, IdentifierLocs);
11504  Context.getTranslationUnitDecl()->addDecl(Import);
11505  return Import;
11506}
11507
11508void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11509  // Create the implicit import declaration.
11510  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11511  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11512                                                   Loc, Mod, Loc);
11513  TU->addDecl(ImportD);
11514  Consumer.HandleImplicitImportDecl(ImportD);
11515
11516  // Make the module visible.
11517  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
11518}
11519
11520void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11521                                      IdentifierInfo* AliasName,
11522                                      SourceLocation PragmaLoc,
11523                                      SourceLocation NameLoc,
11524                                      SourceLocation AliasNameLoc) {
11525  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11526                                    LookupOrdinaryName);
11527  AsmLabelAttr *Attr =
11528     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11529
11530  if (PrevDecl)
11531    PrevDecl->addAttr(Attr);
11532  else
11533    (void)ExtnameUndeclaredIdentifiers.insert(
11534      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11535}
11536
11537void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11538                             SourceLocation PragmaLoc,
11539                             SourceLocation NameLoc) {
11540  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11541
11542  if (PrevDecl) {
11543    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11544  } else {
11545    (void)WeakUndeclaredIdentifiers.insert(
11546      std::pair<IdentifierInfo*,WeakInfo>
11547        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11548  }
11549}
11550
11551void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11552                                IdentifierInfo* AliasName,
11553                                SourceLocation PragmaLoc,
11554                                SourceLocation NameLoc,
11555                                SourceLocation AliasNameLoc) {
11556  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11557                                    LookupOrdinaryName);
11558  WeakInfo W = WeakInfo(Name, NameLoc);
11559
11560  if (PrevDecl) {
11561    if (!PrevDecl->hasAttr<AliasAttr>())
11562      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11563        DeclApplyPragmaWeak(TUScope, ND, W);
11564  } else {
11565    (void)WeakUndeclaredIdentifiers.insert(
11566      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11567  }
11568}
11569
11570Decl *Sema::getObjCDeclContext() const {
11571  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11572}
11573
11574AvailabilityResult Sema::getCurContextAvailability() const {
11575  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11576  return D->getAvailability();
11577}
11578