SemaDecl.cpp revision 5ffe14ca96bd662de7820f6875d3f04789a640c1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous: {
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134  }
135
136  case LookupResult::Found:
137    IIDecl = Result.getFoundDecl();
138    break;
139  }
140
141  if (IIDecl) {
142    QualType T;
143
144    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
145      // Check whether we can use this type
146      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
147
148      if (getLangOptions().CPlusPlus) {
149        // C++ [temp.local]p2:
150        //   Within the scope of a class template specialization or
151        //   partial specialization, when the injected-class-name is
152        //   not followed by a <, it is equivalent to the
153        //   injected-class-name followed by the template-argument s
154        //   of the class template specialization or partial
155        //   specialization enclosed in <>.
156        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
157          if (RD->isInjectedClassName())
158            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
159              T = Template->getInjectedClassNameType(Context);
160      }
161
162      if (T.isNull())
163        T = Context.getTypeDeclType(TD);
164    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
165      // Check whether we can use this interface.
166      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
167
168      T = Context.getObjCInterfaceType(IDecl);
169    } else
170      return 0;
171
172    if (SS)
173      T = getQualifiedNameType(*SS, T);
174
175    return T.getAsOpaquePtr();
176  }
177
178  return 0;
179}
180
181/// isTagName() - This method is called *for error recovery purposes only*
182/// to determine if the specified name is a valid tag name ("struct foo").  If
183/// so, this returns the TST for the tag corresponding to it (TST_enum,
184/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
185/// where the user forgot to specify the tag.
186DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
187  // Do a tag name lookup in this scope.
188  LookupResult R;
189  LookupName(R, S, &II, LookupTagName, false, false);
190  if (R.getKind() == LookupResult::Found)
191    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
192      switch (TD->getTagKind()) {
193      case TagDecl::TK_struct: return DeclSpec::TST_struct;
194      case TagDecl::TK_union:  return DeclSpec::TST_union;
195      case TagDecl::TK_class:  return DeclSpec::TST_class;
196      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
197      }
198    }
199
200  return DeclSpec::TST_unspecified;
201}
202
203bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
204                                   SourceLocation IILoc,
205                                   Scope *S,
206                                   const CXXScopeSpec *SS,
207                                   TypeTy *&SuggestedType) {
208  // We don't have anything to suggest (yet).
209  SuggestedType = 0;
210
211  // FIXME: Should we move the logic that tries to recover from a missing tag
212  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
213
214  if (!SS)
215    Diag(IILoc, diag::err_unknown_typename) << &II;
216  else if (DeclContext *DC = computeDeclContext(*SS, false))
217    Diag(IILoc, diag::err_typename_nested_not_found)
218      << &II << DC << SS->getRange();
219  else if (isDependentScopeSpecifier(*SS)) {
220    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
221      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
222      << SourceRange(SS->getRange().getBegin(), IILoc)
223      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
224                                               "typename ");
225    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
226  } else {
227    assert(SS && SS->isInvalid() &&
228           "Invalid scope specifier has already been diagnosed");
229  }
230
231  return true;
232}
233
234// Determines the context to return to after temporarily entering a
235// context.  This depends in an unnecessarily complicated way on the
236// exact ordering of callbacks from the parser.
237DeclContext *Sema::getContainingDC(DeclContext *DC) {
238
239  // Functions defined inline within classes aren't parsed until we've
240  // finished parsing the top-level class, so the top-level class is
241  // the context we'll need to return to.
242  if (isa<FunctionDecl>(DC)) {
243    DC = DC->getLexicalParent();
244
245    // A function not defined within a class will always return to its
246    // lexical context.
247    if (!isa<CXXRecordDecl>(DC))
248      return DC;
249
250    // A C++ inline method/friend is parsed *after* the topmost class
251    // it was declared in is fully parsed ("complete");  the topmost
252    // class is the context we need to return to.
253    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
254      DC = RD;
255
256    // Return the declaration context of the topmost class the inline method is
257    // declared in.
258    return DC;
259  }
260
261  if (isa<ObjCMethodDecl>(DC))
262    return Context.getTranslationUnitDecl();
263
264  return DC->getLexicalParent();
265}
266
267void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
268  assert(getContainingDC(DC) == CurContext &&
269      "The next DeclContext should be lexically contained in the current one.");
270  CurContext = DC;
271  S->setEntity(DC);
272}
273
274void Sema::PopDeclContext() {
275  assert(CurContext && "DeclContext imbalance!");
276
277  CurContext = getContainingDC(CurContext);
278}
279
280/// EnterDeclaratorContext - Used when we must lookup names in the context
281/// of a declarator's nested name specifier.
282void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
283  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
284  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
285  CurContext = DC;
286  assert(CurContext && "No context?");
287  S->setEntity(CurContext);
288}
289
290void Sema::ExitDeclaratorContext(Scope *S) {
291  S->setEntity(PreDeclaratorDC);
292  PreDeclaratorDC = 0;
293
294  // Reset CurContext to the nearest enclosing context.
295  while (!S->getEntity() && S->getParent())
296    S = S->getParent();
297  CurContext = static_cast<DeclContext*>(S->getEntity());
298  assert(CurContext && "No context?");
299}
300
301/// \brief Determine whether we allow overloading of the function
302/// PrevDecl with another declaration.
303///
304/// This routine determines whether overloading is possible, not
305/// whether some new function is actually an overload. It will return
306/// true in C++ (where we can always provide overloads) or, as an
307/// extension, in C when the previous function is already an
308/// overloaded function declaration or has the "overloadable"
309/// attribute.
310static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
311  if (Context.getLangOptions().CPlusPlus)
312    return true;
313
314  if (isa<OverloadedFunctionDecl>(PrevDecl))
315    return true;
316
317  return PrevDecl->getAttr<OverloadableAttr>() != 0;
318}
319
320/// Add this decl to the scope shadowed decl chains.
321void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
322  // Move up the scope chain until we find the nearest enclosing
323  // non-transparent context. The declaration will be introduced into this
324  // scope.
325  while (S->getEntity() &&
326         ((DeclContext *)S->getEntity())->isTransparentContext())
327    S = S->getParent();
328
329  // Add scoped declarations into their context, so that they can be
330  // found later. Declarations without a context won't be inserted
331  // into any context.
332  if (AddToContext)
333    CurContext->addDecl(D);
334
335  // Out-of-line function and variable definitions should not be pushed into
336  // scope.
337  if ((isa<FunctionTemplateDecl>(D) &&
338       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
339      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
340      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
341    return;
342
343  // If this replaces anything in the current scope,
344  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
345                               IEnd = IdResolver.end();
346  for (; I != IEnd; ++I) {
347    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
348      S->RemoveDecl(DeclPtrTy::make(*I));
349      IdResolver.RemoveDecl(*I);
350
351      // Should only need to replace one decl.
352      break;
353    }
354  }
355
356  S->AddDecl(DeclPtrTy::make(D));
357  IdResolver.AddDecl(D);
358}
359
360bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
361  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
362    // Look inside the overload set to determine if any of the declarations
363    // are in scope. (Possibly) build a new overload set containing only
364    // those declarations that are in scope.
365    OverloadedFunctionDecl *NewOvl = 0;
366    bool FoundInScope = false;
367    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
368         FEnd = Ovl->function_end();
369         F != FEnd; ++F) {
370      NamedDecl *FD = F->get();
371      if (!isDeclInScope(FD, Ctx, S)) {
372        if (!NewOvl && F != Ovl->function_begin()) {
373          NewOvl = OverloadedFunctionDecl::Create(Context,
374                                                  F->get()->getDeclContext(),
375                                                  F->get()->getDeclName());
376          D = NewOvl;
377          for (OverloadedFunctionDecl::function_iterator
378               First = Ovl->function_begin();
379               First != F; ++First)
380            NewOvl->addOverload(*First);
381        }
382      } else {
383        FoundInScope = true;
384        if (NewOvl)
385          NewOvl->addOverload(*F);
386      }
387    }
388
389    return FoundInScope;
390  }
391
392  return IdResolver.isDeclInScope(D, Ctx, Context, S);
393}
394
395void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
396  if (S->decl_empty()) return;
397  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
398         "Scope shouldn't contain decls!");
399
400  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
401       I != E; ++I) {
402    Decl *TmpD = (*I).getAs<Decl>();
403    assert(TmpD && "This decl didn't get pushed??");
404
405    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
406    NamedDecl *D = cast<NamedDecl>(TmpD);
407
408    if (!D->getDeclName()) continue;
409
410    // Diagnose unused variables in this scope.
411    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
412        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
413        D->getDeclContext()->isFunctionOrMethod())
414	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
415
416    // Remove this name from our lexical scope.
417    IdResolver.RemoveDecl(D);
418  }
419}
420
421/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
422/// return 0 if one not found.
423ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
424  // The third "scope" argument is 0 since we aren't enabling lazy built-in
425  // creation from this context.
426  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
427
428  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
429}
430
431/// getNonFieldDeclScope - Retrieves the innermost scope, starting
432/// from S, where a non-field would be declared. This routine copes
433/// with the difference between C and C++ scoping rules in structs and
434/// unions. For example, the following code is well-formed in C but
435/// ill-formed in C++:
436/// @code
437/// struct S6 {
438///   enum { BAR } e;
439/// };
440///
441/// void test_S6() {
442///   struct S6 a;
443///   a.e = BAR;
444/// }
445/// @endcode
446/// For the declaration of BAR, this routine will return a different
447/// scope. The scope S will be the scope of the unnamed enumeration
448/// within S6. In C++, this routine will return the scope associated
449/// with S6, because the enumeration's scope is a transparent
450/// context but structures can contain non-field names. In C, this
451/// routine will return the translation unit scope, since the
452/// enumeration's scope is a transparent context and structures cannot
453/// contain non-field names.
454Scope *Sema::getNonFieldDeclScope(Scope *S) {
455  while (((S->getFlags() & Scope::DeclScope) == 0) ||
456         (S->getEntity() &&
457          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
458         (S->isClassScope() && !getLangOptions().CPlusPlus))
459    S = S->getParent();
460  return S;
461}
462
463void Sema::InitBuiltinVaListType() {
464  if (!Context.getBuiltinVaListType().isNull())
465    return;
466
467  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
468  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
469  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
470  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
471}
472
473/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
474/// file scope.  lazily create a decl for it. ForRedeclaration is true
475/// if we're creating this built-in in anticipation of redeclaring the
476/// built-in.
477NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
478                                     Scope *S, bool ForRedeclaration,
479                                     SourceLocation Loc) {
480  Builtin::ID BID = (Builtin::ID)bid;
481
482  if (Context.BuiltinInfo.hasVAListUse(BID))
483    InitBuiltinVaListType();
484
485  ASTContext::GetBuiltinTypeError Error;
486  QualType R = Context.GetBuiltinType(BID, Error);
487  switch (Error) {
488  case ASTContext::GE_None:
489    // Okay
490    break;
491
492  case ASTContext::GE_Missing_stdio:
493    if (ForRedeclaration)
494      Diag(Loc, diag::err_implicit_decl_requires_stdio)
495        << Context.BuiltinInfo.GetName(BID);
496    return 0;
497
498  case ASTContext::GE_Missing_setjmp:
499    if (ForRedeclaration)
500      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
501        << Context.BuiltinInfo.GetName(BID);
502    return 0;
503  }
504
505  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
506    Diag(Loc, diag::ext_implicit_lib_function_decl)
507      << Context.BuiltinInfo.GetName(BID)
508      << R;
509    if (Context.BuiltinInfo.getHeaderName(BID) &&
510        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
511          != Diagnostic::Ignored)
512      Diag(Loc, diag::note_please_include_header)
513        << Context.BuiltinInfo.getHeaderName(BID)
514        << Context.BuiltinInfo.GetName(BID);
515  }
516
517  FunctionDecl *New = FunctionDecl::Create(Context,
518                                           Context.getTranslationUnitDecl(),
519                                           Loc, II, R, /*DInfo=*/0,
520                                           FunctionDecl::Extern, false,
521                                           /*hasPrototype=*/true);
522  New->setImplicit();
523
524  // Create Decl objects for each parameter, adding them to the
525  // FunctionDecl.
526  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
527    llvm::SmallVector<ParmVarDecl*, 16> Params;
528    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
529      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
530                                           FT->getArgType(i), /*DInfo=*/0,
531                                           VarDecl::None, 0));
532    New->setParams(Context, Params.data(), Params.size());
533  }
534
535  AddKnownFunctionAttributes(New);
536
537  // TUScope is the translation-unit scope to insert this function into.
538  // FIXME: This is hideous. We need to teach PushOnScopeChains to
539  // relate Scopes to DeclContexts, and probably eliminate CurContext
540  // entirely, but we're not there yet.
541  DeclContext *SavedContext = CurContext;
542  CurContext = Context.getTranslationUnitDecl();
543  PushOnScopeChains(New, TUScope);
544  CurContext = SavedContext;
545  return New;
546}
547
548/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
549/// same name and scope as a previous declaration 'Old'.  Figure out
550/// how to resolve this situation, merging decls or emitting
551/// diagnostics as appropriate. If there was an error, set New to be invalid.
552///
553void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
554  // If either decl is known invalid already, set the new one to be invalid and
555  // don't bother doing any merging checks.
556  if (New->isInvalidDecl() || OldD->isInvalidDecl())
557    return New->setInvalidDecl();
558
559  // Allow multiple definitions for ObjC built-in typedefs.
560  // FIXME: Verify the underlying types are equivalent!
561  if (getLangOptions().ObjC1) {
562    const IdentifierInfo *TypeID = New->getIdentifier();
563    switch (TypeID->getLength()) {
564    default: break;
565    case 2:
566      if (!TypeID->isStr("id"))
567        break;
568      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
569      // Install the built-in type for 'id', ignoring the current definition.
570      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
571      return;
572    case 5:
573      if (!TypeID->isStr("Class"))
574        break;
575      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
576      // Install the built-in type for 'Class', ignoring the current definition.
577      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
578      return;
579    case 3:
580      if (!TypeID->isStr("SEL"))
581        break;
582      Context.setObjCSelType(Context.getTypeDeclType(New));
583      return;
584    case 8:
585      if (!TypeID->isStr("Protocol"))
586        break;
587      Context.setObjCProtoType(New->getUnderlyingType());
588      return;
589    }
590    // Fall through - the typedef name was not a builtin type.
591  }
592  // Verify the old decl was also a type.
593  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
594  if (!Old) {
595    Diag(New->getLocation(), diag::err_redefinition_different_kind)
596      << New->getDeclName();
597    if (OldD->getLocation().isValid())
598      Diag(OldD->getLocation(), diag::note_previous_definition);
599    return New->setInvalidDecl();
600  }
601
602  // Determine the "old" type we'll use for checking and diagnostics.
603  QualType OldType;
604  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
605    OldType = OldTypedef->getUnderlyingType();
606  else
607    OldType = Context.getTypeDeclType(Old);
608
609  // If the typedef types are not identical, reject them in all languages and
610  // with any extensions enabled.
611
612  if (OldType != New->getUnderlyingType() &&
613      Context.getCanonicalType(OldType) !=
614      Context.getCanonicalType(New->getUnderlyingType())) {
615    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
616      << New->getUnderlyingType() << OldType;
617    if (Old->getLocation().isValid())
618      Diag(Old->getLocation(), diag::note_previous_definition);
619    return New->setInvalidDecl();
620  }
621
622  if (getLangOptions().Microsoft)
623    return;
624
625  // C++ [dcl.typedef]p2:
626  //   In a given non-class scope, a typedef specifier can be used to
627  //   redefine the name of any type declared in that scope to refer
628  //   to the type to which it already refers.
629  if (getLangOptions().CPlusPlus) {
630    if (!isa<CXXRecordDecl>(CurContext))
631      return;
632    Diag(New->getLocation(), diag::err_redefinition)
633      << New->getDeclName();
634    Diag(Old->getLocation(), diag::note_previous_definition);
635    return New->setInvalidDecl();
636  }
637
638  // If we have a redefinition of a typedef in C, emit a warning.  This warning
639  // is normally mapped to an error, but can be controlled with
640  // -Wtypedef-redefinition.  If either the original or the redefinition is
641  // in a system header, don't emit this for compatibility with GCC.
642  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
643      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
644       Context.getSourceManager().isInSystemHeader(New->getLocation())))
645    return;
646
647  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
648    << New->getDeclName();
649  Diag(Old->getLocation(), diag::note_previous_definition);
650  return;
651}
652
653/// DeclhasAttr - returns true if decl Declaration already has the target
654/// attribute.
655static bool
656DeclHasAttr(const Decl *decl, const Attr *target) {
657  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
658    if (attr->getKind() == target->getKind())
659      return true;
660
661  return false;
662}
663
664/// MergeAttributes - append attributes from the Old decl to the New one.
665static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
666  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
667    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
668      Attr *NewAttr = attr->clone(C);
669      NewAttr->setInherited(true);
670      New->addAttr(NewAttr);
671    }
672  }
673}
674
675/// Used in MergeFunctionDecl to keep track of function parameters in
676/// C.
677struct GNUCompatibleParamWarning {
678  ParmVarDecl *OldParm;
679  ParmVarDecl *NewParm;
680  QualType PromotedType;
681};
682
683/// MergeFunctionDecl - We just parsed a function 'New' from
684/// declarator D which has the same name and scope as a previous
685/// declaration 'Old'.  Figure out how to resolve this situation,
686/// merging decls or emitting diagnostics as appropriate.
687///
688/// In C++, New and Old must be declarations that are not
689/// overloaded. Use IsOverload to determine whether New and Old are
690/// overloaded, and to select the Old declaration that New should be
691/// merged with.
692///
693/// Returns true if there was an error, false otherwise.
694bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
695  assert(!isa<OverloadedFunctionDecl>(OldD) &&
696         "Cannot merge with an overloaded function declaration");
697
698  // Verify the old decl was also a function.
699  FunctionDecl *Old = 0;
700  if (FunctionTemplateDecl *OldFunctionTemplate
701        = dyn_cast<FunctionTemplateDecl>(OldD))
702    Old = OldFunctionTemplate->getTemplatedDecl();
703  else
704    Old = dyn_cast<FunctionDecl>(OldD);
705  if (!Old) {
706    Diag(New->getLocation(), diag::err_redefinition_different_kind)
707      << New->getDeclName();
708    Diag(OldD->getLocation(), diag::note_previous_definition);
709    return true;
710  }
711
712  // Determine whether the previous declaration was a definition,
713  // implicit declaration, or a declaration.
714  diag::kind PrevDiag;
715  if (Old->isThisDeclarationADefinition())
716    PrevDiag = diag::note_previous_definition;
717  else if (Old->isImplicit())
718    PrevDiag = diag::note_previous_implicit_declaration;
719  else
720    PrevDiag = diag::note_previous_declaration;
721
722  QualType OldQType = Context.getCanonicalType(Old->getType());
723  QualType NewQType = Context.getCanonicalType(New->getType());
724
725  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
726      New->getStorageClass() == FunctionDecl::Static &&
727      Old->getStorageClass() != FunctionDecl::Static) {
728    Diag(New->getLocation(), diag::err_static_non_static)
729      << New;
730    Diag(Old->getLocation(), PrevDiag);
731    return true;
732  }
733
734  if (getLangOptions().CPlusPlus) {
735    // (C++98 13.1p2):
736    //   Certain function declarations cannot be overloaded:
737    //     -- Function declarations that differ only in the return type
738    //        cannot be overloaded.
739    QualType OldReturnType
740      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
741    QualType NewReturnType
742      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
743    if (OldReturnType != NewReturnType) {
744      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
745      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
746      return true;
747    }
748
749    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
750    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
751    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
752        NewMethod->getLexicalDeclContext()->isRecord()) {
753      //    -- Member function declarations with the same name and the
754      //       same parameter types cannot be overloaded if any of them
755      //       is a static member function declaration.
756      if (OldMethod->isStatic() || NewMethod->isStatic()) {
757        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
758        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
759        return true;
760      }
761
762      // C++ [class.mem]p1:
763      //   [...] A member shall not be declared twice in the
764      //   member-specification, except that a nested class or member
765      //   class template can be declared and then later defined.
766      unsigned NewDiag;
767      if (isa<CXXConstructorDecl>(OldMethod))
768        NewDiag = diag::err_constructor_redeclared;
769      else if (isa<CXXDestructorDecl>(NewMethod))
770        NewDiag = diag::err_destructor_redeclared;
771      else if (isa<CXXConversionDecl>(NewMethod))
772        NewDiag = diag::err_conv_function_redeclared;
773      else
774        NewDiag = diag::err_member_redeclared;
775
776      Diag(New->getLocation(), NewDiag);
777      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
778    }
779
780    // (C++98 8.3.5p3):
781    //   All declarations for a function shall agree exactly in both the
782    //   return type and the parameter-type-list.
783    if (OldQType == NewQType)
784      return MergeCompatibleFunctionDecls(New, Old);
785
786    // Fall through for conflicting redeclarations and redefinitions.
787  }
788
789  // C: Function types need to be compatible, not identical. This handles
790  // duplicate function decls like "void f(int); void f(enum X);" properly.
791  if (!getLangOptions().CPlusPlus &&
792      Context.typesAreCompatible(OldQType, NewQType)) {
793    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
794    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
795    const FunctionProtoType *OldProto = 0;
796    if (isa<FunctionNoProtoType>(NewFuncType) &&
797        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
798      // The old declaration provided a function prototype, but the
799      // new declaration does not. Merge in the prototype.
800      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
801      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
802                                                 OldProto->arg_type_end());
803      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
804                                         ParamTypes.data(), ParamTypes.size(),
805                                         OldProto->isVariadic(),
806                                         OldProto->getTypeQuals());
807      New->setType(NewQType);
808      New->setHasInheritedPrototype();
809
810      // Synthesize a parameter for each argument type.
811      llvm::SmallVector<ParmVarDecl*, 16> Params;
812      for (FunctionProtoType::arg_type_iterator
813             ParamType = OldProto->arg_type_begin(),
814             ParamEnd = OldProto->arg_type_end();
815           ParamType != ParamEnd; ++ParamType) {
816        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
817                                                 SourceLocation(), 0,
818                                                 *ParamType, /*DInfo=*/0,
819                                                 VarDecl::None, 0);
820        Param->setImplicit();
821        Params.push_back(Param);
822      }
823
824      New->setParams(Context, Params.data(), Params.size());
825    }
826
827    return MergeCompatibleFunctionDecls(New, Old);
828  }
829
830  // GNU C permits a K&R definition to follow a prototype declaration
831  // if the declared types of the parameters in the K&R definition
832  // match the types in the prototype declaration, even when the
833  // promoted types of the parameters from the K&R definition differ
834  // from the types in the prototype. GCC then keeps the types from
835  // the prototype.
836  //
837  // If a variadic prototype is followed by a non-variadic K&R definition,
838  // the K&R definition becomes variadic.  This is sort of an edge case, but
839  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
840  // C99 6.9.1p8.
841  if (!getLangOptions().CPlusPlus &&
842      Old->hasPrototype() && !New->hasPrototype() &&
843      New->getType()->getAs<FunctionProtoType>() &&
844      Old->getNumParams() == New->getNumParams()) {
845    llvm::SmallVector<QualType, 16> ArgTypes;
846    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
847    const FunctionProtoType *OldProto
848      = Old->getType()->getAs<FunctionProtoType>();
849    const FunctionProtoType *NewProto
850      = New->getType()->getAs<FunctionProtoType>();
851
852    // Determine whether this is the GNU C extension.
853    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
854                                               NewProto->getResultType());
855    bool LooseCompatible = !MergedReturn.isNull();
856    for (unsigned Idx = 0, End = Old->getNumParams();
857         LooseCompatible && Idx != End; ++Idx) {
858      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
859      ParmVarDecl *NewParm = New->getParamDecl(Idx);
860      if (Context.typesAreCompatible(OldParm->getType(),
861                                     NewProto->getArgType(Idx))) {
862        ArgTypes.push_back(NewParm->getType());
863      } else if (Context.typesAreCompatible(OldParm->getType(),
864                                            NewParm->getType())) {
865        GNUCompatibleParamWarning Warn
866          = { OldParm, NewParm, NewProto->getArgType(Idx) };
867        Warnings.push_back(Warn);
868        ArgTypes.push_back(NewParm->getType());
869      } else
870        LooseCompatible = false;
871    }
872
873    if (LooseCompatible) {
874      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
875        Diag(Warnings[Warn].NewParm->getLocation(),
876             diag::ext_param_promoted_not_compatible_with_prototype)
877          << Warnings[Warn].PromotedType
878          << Warnings[Warn].OldParm->getType();
879        Diag(Warnings[Warn].OldParm->getLocation(),
880             diag::note_previous_declaration);
881      }
882
883      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
884                                           ArgTypes.size(),
885                                           OldProto->isVariadic(), 0));
886      return MergeCompatibleFunctionDecls(New, Old);
887    }
888
889    // Fall through to diagnose conflicting types.
890  }
891
892  // A function that has already been declared has been redeclared or defined
893  // with a different type- show appropriate diagnostic
894  if (unsigned BuiltinID = Old->getBuiltinID()) {
895    // The user has declared a builtin function with an incompatible
896    // signature.
897    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
898      // The function the user is redeclaring is a library-defined
899      // function like 'malloc' or 'printf'. Warn about the
900      // redeclaration, then pretend that we don't know about this
901      // library built-in.
902      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
903      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
904        << Old << Old->getType();
905      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
906      Old->setInvalidDecl();
907      return false;
908    }
909
910    PrevDiag = diag::note_previous_builtin_declaration;
911  }
912
913  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
914  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
915  return true;
916}
917
918/// \brief Completes the merge of two function declarations that are
919/// known to be compatible.
920///
921/// This routine handles the merging of attributes and other
922/// properties of function declarations form the old declaration to
923/// the new declaration, once we know that New is in fact a
924/// redeclaration of Old.
925///
926/// \returns false
927bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
928  // Merge the attributes
929  MergeAttributes(New, Old, Context);
930
931  // Merge the storage class.
932  if (Old->getStorageClass() != FunctionDecl::Extern &&
933      Old->getStorageClass() != FunctionDecl::None)
934    New->setStorageClass(Old->getStorageClass());
935
936  // Merge "pure" flag.
937  if (Old->isPure())
938    New->setPure();
939
940  // Merge the "deleted" flag.
941  if (Old->isDeleted())
942    New->setDeleted();
943
944  if (getLangOptions().CPlusPlus)
945    return MergeCXXFunctionDecl(New, Old);
946
947  return false;
948}
949
950/// MergeVarDecl - We just parsed a variable 'New' which has the same name
951/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
952/// situation, merging decls or emitting diagnostics as appropriate.
953///
954/// Tentative definition rules (C99 6.9.2p2) are checked by
955/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
956/// definitions here, since the initializer hasn't been attached.
957///
958void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
959  // If either decl is invalid, make sure the new one is marked invalid and
960  // don't do any other checking.
961  if (New->isInvalidDecl() || OldD->isInvalidDecl())
962    return New->setInvalidDecl();
963
964  // Verify the old decl was also a variable.
965  VarDecl *Old = dyn_cast<VarDecl>(OldD);
966  if (!Old) {
967    Diag(New->getLocation(), diag::err_redefinition_different_kind)
968      << New->getDeclName();
969    Diag(OldD->getLocation(), diag::note_previous_definition);
970    return New->setInvalidDecl();
971  }
972
973  MergeAttributes(New, Old, Context);
974
975  // Merge the types
976  QualType MergedT;
977  if (getLangOptions().CPlusPlus) {
978    if (Context.hasSameType(New->getType(), Old->getType()))
979      MergedT = New->getType();
980    // C++ [basic.types]p7:
981    //   [...] The declared type of an array object might be an array of
982    //   unknown size and therefore be incomplete at one point in a
983    //   translation unit and complete later on; [...]
984    else if (Old->getType()->isIncompleteArrayType() &&
985             New->getType()->isArrayType()) {
986      CanQual<ArrayType> OldArray
987        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
988      CanQual<ArrayType> NewArray
989        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
990      if (OldArray->getElementType() == NewArray->getElementType())
991        MergedT = New->getType();
992    }
993  } else {
994    MergedT = Context.mergeTypes(New->getType(), Old->getType());
995  }
996  if (MergedT.isNull()) {
997    Diag(New->getLocation(), diag::err_redefinition_different_type)
998      << New->getDeclName();
999    Diag(Old->getLocation(), diag::note_previous_definition);
1000    return New->setInvalidDecl();
1001  }
1002  New->setType(MergedT);
1003
1004  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1005  if (New->getStorageClass() == VarDecl::Static &&
1006      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1007    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009    return New->setInvalidDecl();
1010  }
1011  // C99 6.2.2p4:
1012  //   For an identifier declared with the storage-class specifier
1013  //   extern in a scope in which a prior declaration of that
1014  //   identifier is visible,23) if the prior declaration specifies
1015  //   internal or external linkage, the linkage of the identifier at
1016  //   the later declaration is the same as the linkage specified at
1017  //   the prior declaration. If no prior declaration is visible, or
1018  //   if the prior declaration specifies no linkage, then the
1019  //   identifier has external linkage.
1020  if (New->hasExternalStorage() && Old->hasLinkage())
1021    /* Okay */;
1022  else if (New->getStorageClass() != VarDecl::Static &&
1023           Old->getStorageClass() == VarDecl::Static) {
1024    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1025    Diag(Old->getLocation(), diag::note_previous_definition);
1026    return New->setInvalidDecl();
1027  }
1028
1029  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1030
1031  // FIXME: The test for external storage here seems wrong? We still
1032  // need to check for mismatches.
1033  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1034      // Don't complain about out-of-line definitions of static members.
1035      !(Old->getLexicalDeclContext()->isRecord() &&
1036        !New->getLexicalDeclContext()->isRecord())) {
1037    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1038    Diag(Old->getLocation(), diag::note_previous_definition);
1039    return New->setInvalidDecl();
1040  }
1041
1042  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1043    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1044    Diag(Old->getLocation(), diag::note_previous_definition);
1045  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1046    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1047    Diag(Old->getLocation(), diag::note_previous_definition);
1048  }
1049
1050  // Keep a chain of previous declarations.
1051  New->setPreviousDeclaration(Old);
1052}
1053
1054/// CheckFallThrough - Check that we don't fall off the end of a
1055/// Statement that should return a value.
1056///
1057/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1058/// MaybeFallThrough iff we might or might not fall off the end and
1059/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1060/// that functions not marked noreturn will return.
1061Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1062  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1063
1064  // FIXME: They should never return 0, fix that, delete this code.
1065  if (cfg == 0)
1066    return NeverFallThrough;
1067  // The CFG leaves in dead things, and we don't want to dead code paths to
1068  // confuse us, so we mark all live things first.
1069  std::queue<CFGBlock*> workq;
1070  llvm::BitVector live(cfg->getNumBlockIDs());
1071  // Prep work queue
1072  workq.push(&cfg->getEntry());
1073  // Solve
1074  while (!workq.empty()) {
1075    CFGBlock *item = workq.front();
1076    workq.pop();
1077    live.set(item->getBlockID());
1078    for (CFGBlock::succ_iterator I=item->succ_begin(),
1079           E=item->succ_end();
1080         I != E;
1081         ++I) {
1082      if ((*I) && !live[(*I)->getBlockID()]) {
1083        live.set((*I)->getBlockID());
1084        workq.push(*I);
1085      }
1086    }
1087  }
1088
1089  // Now we know what is live, we check the live precessors of the exit block
1090  // and look for fall through paths, being careful to ignore normal returns,
1091  // and exceptional paths.
1092  bool HasLiveReturn = false;
1093  bool HasFakeEdge = false;
1094  bool HasPlainEdge = false;
1095  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1096         E = cfg->getExit().pred_end();
1097       I != E;
1098       ++I) {
1099    CFGBlock& B = **I;
1100    if (!live[B.getBlockID()])
1101      continue;
1102    if (B.size() == 0) {
1103      // A labeled empty statement, or the entry block...
1104      HasPlainEdge = true;
1105      continue;
1106    }
1107    Stmt *S = B[B.size()-1];
1108    if (isa<ReturnStmt>(S)) {
1109      HasLiveReturn = true;
1110      continue;
1111    }
1112    if (isa<ObjCAtThrowStmt>(S)) {
1113      HasFakeEdge = true;
1114      continue;
1115    }
1116    if (isa<CXXThrowExpr>(S)) {
1117      HasFakeEdge = true;
1118      continue;
1119    }
1120    bool NoReturnEdge = false;
1121    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1122      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1123      if (CEE->getType().getNoReturnAttr()) {
1124        NoReturnEdge = true;
1125        HasFakeEdge = true;
1126      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1127        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1128          if (FD->hasAttr<NoReturnAttr>()) {
1129            NoReturnEdge = true;
1130            HasFakeEdge = true;
1131          }
1132        }
1133      }
1134    }
1135    // FIXME: Add noreturn message sends.
1136    if (NoReturnEdge == false)
1137      HasPlainEdge = true;
1138  }
1139  if (!HasPlainEdge)
1140    return NeverFallThrough;
1141  if (HasFakeEdge || HasLiveReturn)
1142    return MaybeFallThrough;
1143  // This says AlwaysFallThrough for calls to functions that are not marked
1144  // noreturn, that don't return.  If people would like this warning to be more
1145  // accurate, such functions should be marked as noreturn.
1146  return AlwaysFallThrough;
1147}
1148
1149/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1150/// function that should return a value.  Check that we don't fall off the end
1151/// of a noreturn function.  We assume that functions and blocks not marked
1152/// noreturn will return.
1153void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1154  // FIXME: Would be nice if we had a better way to control cascading errors,
1155  // but for now, avoid them.  The problem is that when Parse sees:
1156  //   int foo() { return a; }
1157  // The return is eaten and the Sema code sees just:
1158  //   int foo() { }
1159  // which this code would then warn about.
1160  if (getDiagnostics().hasErrorOccurred())
1161    return;
1162  bool ReturnsVoid = false;
1163  bool HasNoReturn = false;
1164  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1165    // If the result type of the function is a dependent type, we don't know
1166    // whether it will be void or not, so don't
1167    if (FD->getResultType()->isDependentType())
1168      return;
1169    if (FD->getResultType()->isVoidType())
1170      ReturnsVoid = true;
1171    if (FD->hasAttr<NoReturnAttr>())
1172      HasNoReturn = true;
1173  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1174    if (MD->getResultType()->isVoidType())
1175      ReturnsVoid = true;
1176    if (MD->hasAttr<NoReturnAttr>())
1177      HasNoReturn = true;
1178  }
1179
1180  // Short circuit for compilation speed.
1181  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1182       == Diagnostic::Ignored || ReturnsVoid)
1183      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1184          == Diagnostic::Ignored || !HasNoReturn)
1185      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1186          == Diagnostic::Ignored || !ReturnsVoid))
1187    return;
1188  // FIXME: Function try block
1189  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1190    switch (CheckFallThrough(Body)) {
1191    case MaybeFallThrough:
1192      if (HasNoReturn)
1193        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1194      else if (!ReturnsVoid)
1195        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1196      break;
1197    case AlwaysFallThrough:
1198      if (HasNoReturn)
1199        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1200      else if (!ReturnsVoid)
1201        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1202      break;
1203    case NeverFallThrough:
1204      if (ReturnsVoid)
1205        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1206      break;
1207    }
1208  }
1209}
1210
1211/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1212/// that should return a value.  Check that we don't fall off the end of a
1213/// noreturn block.  We assume that functions and blocks not marked noreturn
1214/// will return.
1215void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1216  // FIXME: Would be nice if we had a better way to control cascading errors,
1217  // but for now, avoid them.  The problem is that when Parse sees:
1218  //   int foo() { return a; }
1219  // The return is eaten and the Sema code sees just:
1220  //   int foo() { }
1221  // which this code would then warn about.
1222  if (getDiagnostics().hasErrorOccurred())
1223    return;
1224  bool ReturnsVoid = false;
1225  bool HasNoReturn = false;
1226  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1227    if (FT->getResultType()->isVoidType())
1228      ReturnsVoid = true;
1229    if (FT->getNoReturnAttr())
1230      HasNoReturn = true;
1231  }
1232
1233  // Short circuit for compilation speed.
1234  if (ReturnsVoid
1235      && !HasNoReturn
1236      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1237          == Diagnostic::Ignored || !ReturnsVoid))
1238    return;
1239  // FIXME: Funtion try block
1240  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1241    switch (CheckFallThrough(Body)) {
1242    case MaybeFallThrough:
1243      if (HasNoReturn)
1244        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1245      else if (!ReturnsVoid)
1246        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1247      break;
1248    case AlwaysFallThrough:
1249      if (HasNoReturn)
1250        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1251      else if (!ReturnsVoid)
1252        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1253      break;
1254    case NeverFallThrough:
1255      if (ReturnsVoid)
1256        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1257      break;
1258    }
1259  }
1260}
1261
1262/// CheckParmsForFunctionDef - Check that the parameters of the given
1263/// function are appropriate for the definition of a function. This
1264/// takes care of any checks that cannot be performed on the
1265/// declaration itself, e.g., that the types of each of the function
1266/// parameters are complete.
1267bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1268  bool HasInvalidParm = false;
1269  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1270    ParmVarDecl *Param = FD->getParamDecl(p);
1271
1272    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1273    // function declarator that is part of a function definition of
1274    // that function shall not have incomplete type.
1275    //
1276    // This is also C++ [dcl.fct]p6.
1277    if (!Param->isInvalidDecl() &&
1278        RequireCompleteType(Param->getLocation(), Param->getType(),
1279                               diag::err_typecheck_decl_incomplete_type)) {
1280      Param->setInvalidDecl();
1281      HasInvalidParm = true;
1282    }
1283
1284    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1285    // declaration of each parameter shall include an identifier.
1286    if (Param->getIdentifier() == 0 &&
1287        !Param->isImplicit() &&
1288        !getLangOptions().CPlusPlus)
1289      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1290  }
1291
1292  return HasInvalidParm;
1293}
1294
1295/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1296/// no declarator (e.g. "struct foo;") is parsed.
1297Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1298  // FIXME: Error on auto/register at file scope
1299  // FIXME: Error on inline/virtual/explicit
1300  // FIXME: Error on invalid restrict
1301  // FIXME: Warn on useless __thread
1302  // FIXME: Warn on useless const/volatile
1303  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1304  // FIXME: Warn on useless attributes
1305  Decl *TagD = 0;
1306  TagDecl *Tag = 0;
1307  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1308      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1309      DS.getTypeSpecType() == DeclSpec::TST_union ||
1310      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1311    TagD = static_cast<Decl *>(DS.getTypeRep());
1312
1313    if (!TagD) // We probably had an error
1314      return DeclPtrTy();
1315
1316    // Note that the above type specs guarantee that the
1317    // type rep is a Decl, whereas in many of the others
1318    // it's a Type.
1319    Tag = dyn_cast<TagDecl>(TagD);
1320  }
1321
1322  if (DS.isFriendSpecified()) {
1323    // If we're dealing with a class template decl, assume that the
1324    // template routines are handling it.
1325    if (TagD && isa<ClassTemplateDecl>(TagD))
1326      return DeclPtrTy();
1327    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1328  }
1329
1330  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1331    if (!Record->getDeclName() && Record->isDefinition() &&
1332        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1333      if (getLangOptions().CPlusPlus ||
1334          Record->getDeclContext()->isRecord())
1335        return BuildAnonymousStructOrUnion(S, DS, Record);
1336
1337      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1338        << DS.getSourceRange();
1339    }
1340
1341    // Microsoft allows unnamed struct/union fields. Don't complain
1342    // about them.
1343    // FIXME: Should we support Microsoft's extensions in this area?
1344    if (Record->getDeclName() && getLangOptions().Microsoft)
1345      return DeclPtrTy::make(Tag);
1346  }
1347
1348  if (!DS.isMissingDeclaratorOk() &&
1349      DS.getTypeSpecType() != DeclSpec::TST_error) {
1350    // Warn about typedefs of enums without names, since this is an
1351    // extension in both Microsoft an GNU.
1352    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1353        Tag && isa<EnumDecl>(Tag)) {
1354      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1355        << DS.getSourceRange();
1356      return DeclPtrTy::make(Tag);
1357    }
1358
1359    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1360      << DS.getSourceRange();
1361    return DeclPtrTy();
1362  }
1363
1364  return DeclPtrTy::make(Tag);
1365}
1366
1367/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1368/// anonymous struct or union AnonRecord into the owning context Owner
1369/// and scope S. This routine will be invoked just after we realize
1370/// that an unnamed union or struct is actually an anonymous union or
1371/// struct, e.g.,
1372///
1373/// @code
1374/// union {
1375///   int i;
1376///   float f;
1377/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1378///    // f into the surrounding scope.x
1379/// @endcode
1380///
1381/// This routine is recursive, injecting the names of nested anonymous
1382/// structs/unions into the owning context and scope as well.
1383bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1384                                               RecordDecl *AnonRecord) {
1385  bool Invalid = false;
1386  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1387                               FEnd = AnonRecord->field_end();
1388       F != FEnd; ++F) {
1389    if ((*F)->getDeclName()) {
1390      LookupResult R;
1391      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1392                          LookupOrdinaryName, true);
1393      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1394      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1395        // C++ [class.union]p2:
1396        //   The names of the members of an anonymous union shall be
1397        //   distinct from the names of any other entity in the
1398        //   scope in which the anonymous union is declared.
1399        unsigned diagKind
1400          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1401                                 : diag::err_anonymous_struct_member_redecl;
1402        Diag((*F)->getLocation(), diagKind)
1403          << (*F)->getDeclName();
1404        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1405        Invalid = true;
1406      } else {
1407        // C++ [class.union]p2:
1408        //   For the purpose of name lookup, after the anonymous union
1409        //   definition, the members of the anonymous union are
1410        //   considered to have been defined in the scope in which the
1411        //   anonymous union is declared.
1412        Owner->makeDeclVisibleInContext(*F);
1413        S->AddDecl(DeclPtrTy::make(*F));
1414        IdResolver.AddDecl(*F);
1415      }
1416    } else if (const RecordType *InnerRecordType
1417                 = (*F)->getType()->getAs<RecordType>()) {
1418      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1419      if (InnerRecord->isAnonymousStructOrUnion())
1420        Invalid = Invalid ||
1421          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1422    }
1423  }
1424
1425  return Invalid;
1426}
1427
1428/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1429/// anonymous structure or union. Anonymous unions are a C++ feature
1430/// (C++ [class.union]) and a GNU C extension; anonymous structures
1431/// are a GNU C and GNU C++ extension.
1432Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1433                                                  RecordDecl *Record) {
1434  DeclContext *Owner = Record->getDeclContext();
1435
1436  // Diagnose whether this anonymous struct/union is an extension.
1437  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1438    Diag(Record->getLocation(), diag::ext_anonymous_union);
1439  else if (!Record->isUnion())
1440    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1441
1442  // C and C++ require different kinds of checks for anonymous
1443  // structs/unions.
1444  bool Invalid = false;
1445  if (getLangOptions().CPlusPlus) {
1446    const char* PrevSpec = 0;
1447    unsigned DiagID;
1448    // C++ [class.union]p3:
1449    //   Anonymous unions declared in a named namespace or in the
1450    //   global namespace shall be declared static.
1451    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1452        (isa<TranslationUnitDecl>(Owner) ||
1453         (isa<NamespaceDecl>(Owner) &&
1454          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1455      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1456      Invalid = true;
1457
1458      // Recover by adding 'static'.
1459      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1460                             PrevSpec, DiagID);
1461    }
1462    // C++ [class.union]p3:
1463    //   A storage class is not allowed in a declaration of an
1464    //   anonymous union in a class scope.
1465    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1466             isa<RecordDecl>(Owner)) {
1467      Diag(DS.getStorageClassSpecLoc(),
1468           diag::err_anonymous_union_with_storage_spec);
1469      Invalid = true;
1470
1471      // Recover by removing the storage specifier.
1472      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1473                             PrevSpec, DiagID);
1474    }
1475
1476    // C++ [class.union]p2:
1477    //   The member-specification of an anonymous union shall only
1478    //   define non-static data members. [Note: nested types and
1479    //   functions cannot be declared within an anonymous union. ]
1480    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1481                                 MemEnd = Record->decls_end();
1482         Mem != MemEnd; ++Mem) {
1483      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1484        // C++ [class.union]p3:
1485        //   An anonymous union shall not have private or protected
1486        //   members (clause 11).
1487        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1488          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1489            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1490          Invalid = true;
1491        }
1492      } else if ((*Mem)->isImplicit()) {
1493        // Any implicit members are fine.
1494      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1495        // This is a type that showed up in an
1496        // elaborated-type-specifier inside the anonymous struct or
1497        // union, but which actually declares a type outside of the
1498        // anonymous struct or union. It's okay.
1499      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1500        if (!MemRecord->isAnonymousStructOrUnion() &&
1501            MemRecord->getDeclName()) {
1502          // This is a nested type declaration.
1503          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1504            << (int)Record->isUnion();
1505          Invalid = true;
1506        }
1507      } else {
1508        // We have something that isn't a non-static data
1509        // member. Complain about it.
1510        unsigned DK = diag::err_anonymous_record_bad_member;
1511        if (isa<TypeDecl>(*Mem))
1512          DK = diag::err_anonymous_record_with_type;
1513        else if (isa<FunctionDecl>(*Mem))
1514          DK = diag::err_anonymous_record_with_function;
1515        else if (isa<VarDecl>(*Mem))
1516          DK = diag::err_anonymous_record_with_static;
1517        Diag((*Mem)->getLocation(), DK)
1518            << (int)Record->isUnion();
1519          Invalid = true;
1520      }
1521    }
1522  }
1523
1524  if (!Record->isUnion() && !Owner->isRecord()) {
1525    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1526      << (int)getLangOptions().CPlusPlus;
1527    Invalid = true;
1528  }
1529
1530  // Create a declaration for this anonymous struct/union.
1531  NamedDecl *Anon = 0;
1532  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1533    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1534                             /*IdentifierInfo=*/0,
1535                             Context.getTypeDeclType(Record),
1536                             // FIXME: Type source info.
1537                             /*DInfo=*/0,
1538                             /*BitWidth=*/0, /*Mutable=*/false);
1539    Anon->setAccess(AS_public);
1540    if (getLangOptions().CPlusPlus)
1541      FieldCollector->Add(cast<FieldDecl>(Anon));
1542  } else {
1543    VarDecl::StorageClass SC;
1544    switch (DS.getStorageClassSpec()) {
1545    default: assert(0 && "Unknown storage class!");
1546    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1547    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1548    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1549    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1550    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1551    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1552    case DeclSpec::SCS_mutable:
1553      // mutable can only appear on non-static class members, so it's always
1554      // an error here
1555      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1556      Invalid = true;
1557      SC = VarDecl::None;
1558      break;
1559    }
1560
1561    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1562                           /*IdentifierInfo=*/0,
1563                           Context.getTypeDeclType(Record),
1564                           // FIXME: Type source info.
1565                           /*DInfo=*/0,
1566                           SC);
1567  }
1568  Anon->setImplicit();
1569
1570  // Add the anonymous struct/union object to the current
1571  // context. We'll be referencing this object when we refer to one of
1572  // its members.
1573  Owner->addDecl(Anon);
1574
1575  // Inject the members of the anonymous struct/union into the owning
1576  // context and into the identifier resolver chain for name lookup
1577  // purposes.
1578  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1579    Invalid = true;
1580
1581  // Mark this as an anonymous struct/union type. Note that we do not
1582  // do this until after we have already checked and injected the
1583  // members of this anonymous struct/union type, because otherwise
1584  // the members could be injected twice: once by DeclContext when it
1585  // builds its lookup table, and once by
1586  // InjectAnonymousStructOrUnionMembers.
1587  Record->setAnonymousStructOrUnion(true);
1588
1589  if (Invalid)
1590    Anon->setInvalidDecl();
1591
1592  return DeclPtrTy::make(Anon);
1593}
1594
1595
1596/// GetNameForDeclarator - Determine the full declaration name for the
1597/// given Declarator.
1598DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1599  switch (D.getKind()) {
1600  case Declarator::DK_Abstract:
1601    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1602    return DeclarationName();
1603
1604  case Declarator::DK_Normal:
1605    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1606    return DeclarationName(D.getIdentifier());
1607
1608  case Declarator::DK_Constructor: {
1609    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1610    return Context.DeclarationNames.getCXXConstructorName(
1611                                                Context.getCanonicalType(Ty));
1612  }
1613
1614  case Declarator::DK_Destructor: {
1615    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1616    return Context.DeclarationNames.getCXXDestructorName(
1617                                                Context.getCanonicalType(Ty));
1618  }
1619
1620  case Declarator::DK_Conversion: {
1621    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1622    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1623    return Context.DeclarationNames.getCXXConversionFunctionName(
1624                                                Context.getCanonicalType(Ty));
1625  }
1626
1627  case Declarator::DK_Operator:
1628    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1629    return Context.DeclarationNames.getCXXOperatorName(
1630                                                D.getOverloadedOperator());
1631
1632  case Declarator::DK_TemplateId: {
1633    TemplateName Name
1634      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1635    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1636      return Template->getDeclName();
1637    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1638      return Ovl->getDeclName();
1639
1640    return DeclarationName();
1641  }
1642  }
1643
1644  assert(false && "Unknown name kind");
1645  return DeclarationName();
1646}
1647
1648/// isNearlyMatchingFunction - Determine whether the C++ functions
1649/// Declaration and Definition are "nearly" matching. This heuristic
1650/// is used to improve diagnostics in the case where an out-of-line
1651/// function definition doesn't match any declaration within
1652/// the class or namespace.
1653static bool isNearlyMatchingFunction(ASTContext &Context,
1654                                     FunctionDecl *Declaration,
1655                                     FunctionDecl *Definition) {
1656  if (Declaration->param_size() != Definition->param_size())
1657    return false;
1658  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1659    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1660    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1661
1662    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1663    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1664    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1665      return false;
1666  }
1667
1668  return true;
1669}
1670
1671Sema::DeclPtrTy
1672Sema::HandleDeclarator(Scope *S, Declarator &D,
1673                       MultiTemplateParamsArg TemplateParamLists,
1674                       bool IsFunctionDefinition) {
1675  DeclarationName Name = GetNameForDeclarator(D);
1676
1677  // All of these full declarators require an identifier.  If it doesn't have
1678  // one, the ParsedFreeStandingDeclSpec action should be used.
1679  if (!Name) {
1680    if (!D.isInvalidType())  // Reject this if we think it is valid.
1681      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1682           diag::err_declarator_need_ident)
1683        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1684    return DeclPtrTy();
1685  }
1686
1687  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1688  // we find one that is.
1689  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1690         (S->getFlags() & Scope::TemplateParamScope) != 0)
1691    S = S->getParent();
1692
1693  // If this is an out-of-line definition of a member of a class template
1694  // or class template partial specialization, we may need to rebuild the
1695  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1696  // for more information.
1697  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1698  // handle expressions properly.
1699  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1700  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1701      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1702      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1703       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1704       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1705       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1706    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1707      // FIXME: Preserve type source info.
1708      QualType T = GetTypeFromParser(DS.getTypeRep());
1709      EnterDeclaratorContext(S, DC);
1710      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1711      ExitDeclaratorContext(S);
1712      if (T.isNull())
1713        return DeclPtrTy();
1714      DS.UpdateTypeRep(T.getAsOpaquePtr());
1715    }
1716  }
1717
1718  DeclContext *DC;
1719  NamedDecl *PrevDecl;
1720  NamedDecl *New;
1721
1722  DeclaratorInfo *DInfo = 0;
1723  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1724
1725  // See if this is a redefinition of a variable in the same scope.
1726  if (D.getCXXScopeSpec().isInvalid()) {
1727    DC = CurContext;
1728    PrevDecl = 0;
1729    D.setInvalidType();
1730  } else if (!D.getCXXScopeSpec().isSet()) {
1731    LookupNameKind NameKind = LookupOrdinaryName;
1732
1733    // If the declaration we're planning to build will be a function
1734    // or object with linkage, then look for another declaration with
1735    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1736    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1737      /* Do nothing*/;
1738    else if (R->isFunctionType()) {
1739      if (CurContext->isFunctionOrMethod() ||
1740          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1741        NameKind = LookupRedeclarationWithLinkage;
1742    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1743      NameKind = LookupRedeclarationWithLinkage;
1744    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1745             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1746      NameKind = LookupRedeclarationWithLinkage;
1747
1748    DC = CurContext;
1749    LookupResult R;
1750    LookupName(R, S, Name, NameKind, true,
1751               NameKind == LookupRedeclarationWithLinkage,
1752               D.getIdentifierLoc());
1753    PrevDecl = R.getAsSingleDecl(Context);
1754  } else { // Something like "int foo::x;"
1755    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1756
1757    if (!DC) {
1758      // If we could not compute the declaration context, it's because the
1759      // declaration context is dependent but does not refer to a class,
1760      // class template, or class template partial specialization. Complain
1761      // and return early, to avoid the coming semantic disaster.
1762      Diag(D.getIdentifierLoc(),
1763           diag::err_template_qualified_declarator_no_match)
1764        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1765        << D.getCXXScopeSpec().getRange();
1766      return DeclPtrTy();
1767    }
1768
1769    if (!DC->isDependentContext() &&
1770        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1771      return DeclPtrTy();
1772
1773    LookupResult Res;
1774    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1775    PrevDecl = Res.getAsSingleDecl(Context);
1776
1777    // C++ 7.3.1.2p2:
1778    // Members (including explicit specializations of templates) of a named
1779    // namespace can also be defined outside that namespace by explicit
1780    // qualification of the name being defined, provided that the entity being
1781    // defined was already declared in the namespace and the definition appears
1782    // after the point of declaration in a namespace that encloses the
1783    // declarations namespace.
1784    //
1785    // Note that we only check the context at this point. We don't yet
1786    // have enough information to make sure that PrevDecl is actually
1787    // the declaration we want to match. For example, given:
1788    //
1789    //   class X {
1790    //     void f();
1791    //     void f(float);
1792    //   };
1793    //
1794    //   void X::f(int) { } // ill-formed
1795    //
1796    // In this case, PrevDecl will point to the overload set
1797    // containing the two f's declared in X, but neither of them
1798    // matches.
1799
1800    // First check whether we named the global scope.
1801    if (isa<TranslationUnitDecl>(DC)) {
1802      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1803        << Name << D.getCXXScopeSpec().getRange();
1804    } else if (!CurContext->Encloses(DC)) {
1805      // The qualifying scope doesn't enclose the original declaration.
1806      // Emit diagnostic based on current scope.
1807      SourceLocation L = D.getIdentifierLoc();
1808      SourceRange R = D.getCXXScopeSpec().getRange();
1809      if (isa<FunctionDecl>(CurContext))
1810        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1811      else
1812        Diag(L, diag::err_invalid_declarator_scope)
1813          << Name << cast<NamedDecl>(DC) << R;
1814      D.setInvalidType();
1815    }
1816  }
1817
1818  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1819    // Maybe we will complain about the shadowed template parameter.
1820    if (!D.isInvalidType())
1821      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1822        D.setInvalidType();
1823
1824    // Just pretend that we didn't see the previous declaration.
1825    PrevDecl = 0;
1826  }
1827
1828  // In C++, the previous declaration we find might be a tag type
1829  // (class or enum). In this case, the new declaration will hide the
1830  // tag type. Note that this does does not apply if we're declaring a
1831  // typedef (C++ [dcl.typedef]p4).
1832  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1833      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1834    PrevDecl = 0;
1835
1836  bool Redeclaration = false;
1837  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1838    if (TemplateParamLists.size()) {
1839      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1840      return DeclPtrTy();
1841    }
1842
1843    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1844  } else if (R->isFunctionType()) {
1845    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1846                                  move(TemplateParamLists),
1847                                  IsFunctionDefinition, Redeclaration);
1848  } else {
1849    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1850                                  move(TemplateParamLists),
1851                                  Redeclaration);
1852  }
1853
1854  if (New == 0)
1855    return DeclPtrTy();
1856
1857  // If this has an identifier and is not an invalid redeclaration or
1858  // function template specialization, add it to the scope stack.
1859  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1860      !(isa<FunctionDecl>(New) &&
1861        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1862    PushOnScopeChains(New, S);
1863
1864  return DeclPtrTy::make(New);
1865}
1866
1867/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1868/// types into constant array types in certain situations which would otherwise
1869/// be errors (for GCC compatibility).
1870static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1871                                                    ASTContext &Context,
1872                                                    bool &SizeIsNegative) {
1873  // This method tries to turn a variable array into a constant
1874  // array even when the size isn't an ICE.  This is necessary
1875  // for compatibility with code that depends on gcc's buggy
1876  // constant expression folding, like struct {char x[(int)(char*)2];}
1877  SizeIsNegative = false;
1878
1879  QualifierCollector Qs;
1880  const Type *Ty = Qs.strip(T);
1881
1882  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1883    QualType Pointee = PTy->getPointeeType();
1884    QualType FixedType =
1885        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1886    if (FixedType.isNull()) return FixedType;
1887    FixedType = Context.getPointerType(FixedType);
1888    return Qs.apply(FixedType);
1889  }
1890
1891  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1892  if (!VLATy)
1893    return QualType();
1894  // FIXME: We should probably handle this case
1895  if (VLATy->getElementType()->isVariablyModifiedType())
1896    return QualType();
1897
1898  Expr::EvalResult EvalResult;
1899  if (!VLATy->getSizeExpr() ||
1900      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1901      !EvalResult.Val.isInt())
1902    return QualType();
1903
1904  llvm::APSInt &Res = EvalResult.Val.getInt();
1905  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1906    // TODO: preserve the size expression in declarator info
1907    return Context.getConstantArrayType(VLATy->getElementType(),
1908                                        Res, ArrayType::Normal, 0);
1909  }
1910
1911  SizeIsNegative = true;
1912  return QualType();
1913}
1914
1915/// \brief Register the given locally-scoped external C declaration so
1916/// that it can be found later for redeclarations
1917void
1918Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1919                                       Scope *S) {
1920  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1921         "Decl is not a locally-scoped decl!");
1922  // Note that we have a locally-scoped external with this name.
1923  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1924
1925  if (!PrevDecl)
1926    return;
1927
1928  // If there was a previous declaration of this variable, it may be
1929  // in our identifier chain. Update the identifier chain with the new
1930  // declaration.
1931  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1932    // The previous declaration was found on the identifer resolver
1933    // chain, so remove it from its scope.
1934    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1935      S = S->getParent();
1936
1937    if (S)
1938      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1939  }
1940}
1941
1942/// \brief Diagnose function specifiers on a declaration of an identifier that
1943/// does not identify a function.
1944void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1945  // FIXME: We should probably indicate the identifier in question to avoid
1946  // confusion for constructs like "inline int a(), b;"
1947  if (D.getDeclSpec().isInlineSpecified())
1948    Diag(D.getDeclSpec().getInlineSpecLoc(),
1949         diag::err_inline_non_function);
1950
1951  if (D.getDeclSpec().isVirtualSpecified())
1952    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1953         diag::err_virtual_non_function);
1954
1955  if (D.getDeclSpec().isExplicitSpecified())
1956    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1957         diag::err_explicit_non_function);
1958}
1959
1960NamedDecl*
1961Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1962                             QualType R,  DeclaratorInfo *DInfo,
1963                             NamedDecl* PrevDecl, bool &Redeclaration) {
1964  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1965  if (D.getCXXScopeSpec().isSet()) {
1966    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1967      << D.getCXXScopeSpec().getRange();
1968    D.setInvalidType();
1969    // Pretend we didn't see the scope specifier.
1970    DC = 0;
1971  }
1972
1973  if (getLangOptions().CPlusPlus) {
1974    // Check that there are no default arguments (C++ only).
1975    CheckExtraCXXDefaultArguments(D);
1976  }
1977
1978  DiagnoseFunctionSpecifiers(D);
1979
1980  if (D.getDeclSpec().isThreadSpecified())
1981    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1982
1983  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1984  if (!NewTD) return 0;
1985
1986  if (D.isInvalidType())
1987    NewTD->setInvalidDecl();
1988
1989  // Handle attributes prior to checking for duplicates in MergeVarDecl
1990  ProcessDeclAttributes(S, NewTD, D);
1991  // Merge the decl with the existing one if appropriate. If the decl is
1992  // in an outer scope, it isn't the same thing.
1993  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1994    Redeclaration = true;
1995    MergeTypeDefDecl(NewTD, PrevDecl);
1996  }
1997
1998  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1999  // then it shall have block scope.
2000  QualType T = NewTD->getUnderlyingType();
2001  if (T->isVariablyModifiedType()) {
2002    CurFunctionNeedsScopeChecking = true;
2003
2004    if (S->getFnParent() == 0) {
2005      bool SizeIsNegative;
2006      QualType FixedTy =
2007          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2008      if (!FixedTy.isNull()) {
2009        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2010        NewTD->setUnderlyingType(FixedTy);
2011      } else {
2012        if (SizeIsNegative)
2013          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2014        else if (T->isVariableArrayType())
2015          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2016        else
2017          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2018        NewTD->setInvalidDecl();
2019      }
2020    }
2021  }
2022
2023  // If this is the C FILE type, notify the AST context.
2024  if (IdentifierInfo *II = NewTD->getIdentifier())
2025    if (!NewTD->isInvalidDecl() &&
2026        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2027      if (II->isStr("FILE"))
2028        Context.setFILEDecl(NewTD);
2029      else if (II->isStr("jmp_buf"))
2030        Context.setjmp_bufDecl(NewTD);
2031      else if (II->isStr("sigjmp_buf"))
2032        Context.setsigjmp_bufDecl(NewTD);
2033    }
2034
2035  return NewTD;
2036}
2037
2038/// \brief Determines whether the given declaration is an out-of-scope
2039/// previous declaration.
2040///
2041/// This routine should be invoked when name lookup has found a
2042/// previous declaration (PrevDecl) that is not in the scope where a
2043/// new declaration by the same name is being introduced. If the new
2044/// declaration occurs in a local scope, previous declarations with
2045/// linkage may still be considered previous declarations (C99
2046/// 6.2.2p4-5, C++ [basic.link]p6).
2047///
2048/// \param PrevDecl the previous declaration found by name
2049/// lookup
2050///
2051/// \param DC the context in which the new declaration is being
2052/// declared.
2053///
2054/// \returns true if PrevDecl is an out-of-scope previous declaration
2055/// for a new delcaration with the same name.
2056static bool
2057isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2058                                ASTContext &Context) {
2059  if (!PrevDecl)
2060    return 0;
2061
2062  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2063  // case we need to check each of the overloaded functions.
2064  if (!PrevDecl->hasLinkage())
2065    return false;
2066
2067  if (Context.getLangOptions().CPlusPlus) {
2068    // C++ [basic.link]p6:
2069    //   If there is a visible declaration of an entity with linkage
2070    //   having the same name and type, ignoring entities declared
2071    //   outside the innermost enclosing namespace scope, the block
2072    //   scope declaration declares that same entity and receives the
2073    //   linkage of the previous declaration.
2074    DeclContext *OuterContext = DC->getLookupContext();
2075    if (!OuterContext->isFunctionOrMethod())
2076      // This rule only applies to block-scope declarations.
2077      return false;
2078    else {
2079      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2080      if (PrevOuterContext->isRecord())
2081        // We found a member function: ignore it.
2082        return false;
2083      else {
2084        // Find the innermost enclosing namespace for the new and
2085        // previous declarations.
2086        while (!OuterContext->isFileContext())
2087          OuterContext = OuterContext->getParent();
2088        while (!PrevOuterContext->isFileContext())
2089          PrevOuterContext = PrevOuterContext->getParent();
2090
2091        // The previous declaration is in a different namespace, so it
2092        // isn't the same function.
2093        if (OuterContext->getPrimaryContext() !=
2094            PrevOuterContext->getPrimaryContext())
2095          return false;
2096      }
2097    }
2098  }
2099
2100  return true;
2101}
2102
2103NamedDecl*
2104Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2105                              QualType R, DeclaratorInfo *DInfo,
2106                              NamedDecl* PrevDecl,
2107                              MultiTemplateParamsArg TemplateParamLists,
2108                              bool &Redeclaration) {
2109  DeclarationName Name = GetNameForDeclarator(D);
2110
2111  // Check that there are no default arguments (C++ only).
2112  if (getLangOptions().CPlusPlus)
2113    CheckExtraCXXDefaultArguments(D);
2114
2115  VarDecl *NewVD;
2116  VarDecl::StorageClass SC;
2117  switch (D.getDeclSpec().getStorageClassSpec()) {
2118  default: assert(0 && "Unknown storage class!");
2119  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2120  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2121  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2122  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2123  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2124  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2125  case DeclSpec::SCS_mutable:
2126    // mutable can only appear on non-static class members, so it's always
2127    // an error here
2128    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2129    D.setInvalidType();
2130    SC = VarDecl::None;
2131    break;
2132  }
2133
2134  IdentifierInfo *II = Name.getAsIdentifierInfo();
2135  if (!II) {
2136    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2137      << Name.getAsString();
2138    return 0;
2139  }
2140
2141  DiagnoseFunctionSpecifiers(D);
2142
2143  if (!DC->isRecord() && S->getFnParent() == 0) {
2144    // C99 6.9p2: The storage-class specifiers auto and register shall not
2145    // appear in the declaration specifiers in an external declaration.
2146    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2147
2148      // If this is a register variable with an asm label specified, then this
2149      // is a GNU extension.
2150      if (SC == VarDecl::Register && D.getAsmLabel())
2151        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2152      else
2153        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2154      D.setInvalidType();
2155    }
2156  }
2157  if (DC->isRecord() && !CurContext->isRecord()) {
2158    // This is an out-of-line definition of a static data member.
2159    if (SC == VarDecl::Static) {
2160      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2161           diag::err_static_out_of_line)
2162        << CodeModificationHint::CreateRemoval(
2163                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2164    } else if (SC == VarDecl::None)
2165      SC = VarDecl::Static;
2166  }
2167  if (SC == VarDecl::Static) {
2168    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2169      if (RD->isLocalClass())
2170        Diag(D.getIdentifierLoc(),
2171             diag::err_static_data_member_not_allowed_in_local_class)
2172          << Name << RD->getDeclName();
2173    }
2174  }
2175
2176  // Match up the template parameter lists with the scope specifier, then
2177  // determine whether we have a template or a template specialization.
2178  bool isExplicitSpecialization = false;
2179  if (TemplateParameterList *TemplateParams
2180        = MatchTemplateParametersToScopeSpecifier(
2181                                  D.getDeclSpec().getSourceRange().getBegin(),
2182                                                  D.getCXXScopeSpec(),
2183                        (TemplateParameterList**)TemplateParamLists.get(),
2184                                                   TemplateParamLists.size(),
2185                                                  isExplicitSpecialization)) {
2186    if (TemplateParams->size() > 0) {
2187      // There is no such thing as a variable template.
2188      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2189        << II
2190        << SourceRange(TemplateParams->getTemplateLoc(),
2191                       TemplateParams->getRAngleLoc());
2192      return 0;
2193    } else {
2194      // There is an extraneous 'template<>' for this variable. Complain
2195      // about it, but allow the declaration of the variable.
2196      Diag(TemplateParams->getTemplateLoc(),
2197           diag::err_template_variable_noparams)
2198        << II
2199        << SourceRange(TemplateParams->getTemplateLoc(),
2200                       TemplateParams->getRAngleLoc());
2201
2202      isExplicitSpecialization = true;
2203    }
2204  }
2205
2206  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2207                          II, R, DInfo, SC);
2208
2209  if (D.isInvalidType())
2210    NewVD->setInvalidDecl();
2211
2212  if (D.getDeclSpec().isThreadSpecified()) {
2213    if (NewVD->hasLocalStorage())
2214      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2215    else if (!Context.Target.isTLSSupported())
2216      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2217    else
2218      NewVD->setThreadSpecified(true);
2219  }
2220
2221  // Set the lexical context. If the declarator has a C++ scope specifier, the
2222  // lexical context will be different from the semantic context.
2223  NewVD->setLexicalDeclContext(CurContext);
2224
2225  // Handle attributes prior to checking for duplicates in MergeVarDecl
2226  ProcessDeclAttributes(S, NewVD, D);
2227
2228  // Handle GNU asm-label extension (encoded as an attribute).
2229  if (Expr *E = (Expr*) D.getAsmLabel()) {
2230    // The parser guarantees this is a string.
2231    StringLiteral *SE = cast<StringLiteral>(E);
2232    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2233                                                        SE->getByteLength())));
2234  }
2235
2236  // If name lookup finds a previous declaration that is not in the
2237  // same scope as the new declaration, this may still be an
2238  // acceptable redeclaration.
2239  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2240      !(NewVD->hasLinkage() &&
2241        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2242    PrevDecl = 0;
2243
2244  // Merge the decl with the existing one if appropriate.
2245  if (PrevDecl) {
2246    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2247      // The user tried to define a non-static data member
2248      // out-of-line (C++ [dcl.meaning]p1).
2249      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2250        << D.getCXXScopeSpec().getRange();
2251      PrevDecl = 0;
2252      NewVD->setInvalidDecl();
2253    }
2254  } else if (D.getCXXScopeSpec().isSet()) {
2255    // No previous declaration in the qualifying scope.
2256    Diag(D.getIdentifierLoc(), diag::err_no_member)
2257      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2258      << D.getCXXScopeSpec().getRange();
2259    NewVD->setInvalidDecl();
2260  }
2261
2262  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2263
2264  // This is an explicit specialization of a static data member. Check it.
2265  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2266      CheckMemberSpecialization(NewVD, PrevDecl))
2267    NewVD->setInvalidDecl();
2268
2269  // attributes declared post-definition are currently ignored
2270  if (PrevDecl) {
2271    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2272    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2273      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2274      Diag(Def->getLocation(), diag::note_previous_definition);
2275    }
2276  }
2277
2278  // If this is a locally-scoped extern C variable, update the map of
2279  // such variables.
2280  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2281      !NewVD->isInvalidDecl())
2282    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2283
2284  return NewVD;
2285}
2286
2287/// \brief Perform semantic checking on a newly-created variable
2288/// declaration.
2289///
2290/// This routine performs all of the type-checking required for a
2291/// variable declaration once it has been built. It is used both to
2292/// check variables after they have been parsed and their declarators
2293/// have been translated into a declaration, and to check variables
2294/// that have been instantiated from a template.
2295///
2296/// Sets NewVD->isInvalidDecl() if an error was encountered.
2297void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2298                                    bool &Redeclaration) {
2299  // If the decl is already known invalid, don't check it.
2300  if (NewVD->isInvalidDecl())
2301    return;
2302
2303  QualType T = NewVD->getType();
2304
2305  if (T->isObjCInterfaceType()) {
2306    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2307    return NewVD->setInvalidDecl();
2308  }
2309
2310  // The variable can not have an abstract class type.
2311  if (RequireNonAbstractType(NewVD->getLocation(), T,
2312                             diag::err_abstract_type_in_decl,
2313                             AbstractVariableType))
2314    return NewVD->setInvalidDecl();
2315
2316  // Emit an error if an address space was applied to decl with local storage.
2317  // This includes arrays of objects with address space qualifiers, but not
2318  // automatic variables that point to other address spaces.
2319  // ISO/IEC TR 18037 S5.1.2
2320  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2321    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2322    return NewVD->setInvalidDecl();
2323  }
2324
2325  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2326      && !NewVD->hasAttr<BlocksAttr>())
2327    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2328
2329  bool isVM = T->isVariablyModifiedType();
2330  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2331      NewVD->hasAttr<BlocksAttr>())
2332    CurFunctionNeedsScopeChecking = true;
2333
2334  if ((isVM && NewVD->hasLinkage()) ||
2335      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2336    bool SizeIsNegative;
2337    QualType FixedTy =
2338        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2339
2340    if (FixedTy.isNull() && T->isVariableArrayType()) {
2341      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2342      // FIXME: This won't give the correct result for
2343      // int a[10][n];
2344      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2345
2346      if (NewVD->isFileVarDecl())
2347        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2348        << SizeRange;
2349      else if (NewVD->getStorageClass() == VarDecl::Static)
2350        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2351        << SizeRange;
2352      else
2353        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2354        << SizeRange;
2355      return NewVD->setInvalidDecl();
2356    }
2357
2358    if (FixedTy.isNull()) {
2359      if (NewVD->isFileVarDecl())
2360        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2361      else
2362        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2363      return NewVD->setInvalidDecl();
2364    }
2365
2366    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2367    NewVD->setType(FixedTy);
2368  }
2369
2370  if (!PrevDecl && NewVD->isExternC()) {
2371    // Since we did not find anything by this name and we're declaring
2372    // an extern "C" variable, look for a non-visible extern "C"
2373    // declaration with the same name.
2374    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2375      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2376    if (Pos != LocallyScopedExternalDecls.end())
2377      PrevDecl = Pos->second;
2378  }
2379
2380  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2381    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2382      << T;
2383    return NewVD->setInvalidDecl();
2384  }
2385
2386  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2387    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2388    return NewVD->setInvalidDecl();
2389  }
2390
2391  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2392    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2393    return NewVD->setInvalidDecl();
2394  }
2395
2396  if (PrevDecl) {
2397    Redeclaration = true;
2398    MergeVarDecl(NewVD, PrevDecl);
2399  }
2400}
2401
2402static bool isUsingDecl(Decl *D) {
2403  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2404}
2405
2406/// \brief Data used with FindOverriddenMethod
2407struct FindOverriddenMethodData {
2408  Sema *S;
2409  CXXMethodDecl *Method;
2410};
2411
2412/// \brief Member lookup function that determines whether a given C++
2413/// method overrides a method in a base class, to be used with
2414/// CXXRecordDecl::lookupInBases().
2415static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2416                                 CXXBasePath &Path,
2417                                 void *UserData) {
2418  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2419
2420  FindOverriddenMethodData *Data
2421    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2422  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2423       Path.Decls.first != Path.Decls.second;
2424       ++Path.Decls.first) {
2425    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2426      OverloadedFunctionDecl::function_iterator MatchedDecl;
2427      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2428        return true;
2429    }
2430  }
2431
2432  return false;
2433}
2434
2435NamedDecl*
2436Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2437                              QualType R, DeclaratorInfo *DInfo,
2438                              NamedDecl* PrevDecl,
2439                              MultiTemplateParamsArg TemplateParamLists,
2440                              bool IsFunctionDefinition, bool &Redeclaration) {
2441  assert(R.getTypePtr()->isFunctionType());
2442
2443  DeclarationName Name = GetNameForDeclarator(D);
2444  FunctionDecl::StorageClass SC = FunctionDecl::None;
2445  switch (D.getDeclSpec().getStorageClassSpec()) {
2446  default: assert(0 && "Unknown storage class!");
2447  case DeclSpec::SCS_auto:
2448  case DeclSpec::SCS_register:
2449  case DeclSpec::SCS_mutable:
2450    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2451         diag::err_typecheck_sclass_func);
2452    D.setInvalidType();
2453    break;
2454  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2455  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2456  case DeclSpec::SCS_static: {
2457    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2458      // C99 6.7.1p5:
2459      //   The declaration of an identifier for a function that has
2460      //   block scope shall have no explicit storage-class specifier
2461      //   other than extern
2462      // See also (C++ [dcl.stc]p4).
2463      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2464           diag::err_static_block_func);
2465      SC = FunctionDecl::None;
2466    } else
2467      SC = FunctionDecl::Static;
2468    break;
2469  }
2470  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2471  }
2472
2473  if (D.getDeclSpec().isThreadSpecified())
2474    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2475
2476  bool isFriend = D.getDeclSpec().isFriendSpecified();
2477  bool isInline = D.getDeclSpec().isInlineSpecified();
2478  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2479  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2480
2481  // Check that the return type is not an abstract class type.
2482  // For record types, this is done by the AbstractClassUsageDiagnoser once
2483  // the class has been completely parsed.
2484  if (!DC->isRecord() &&
2485      RequireNonAbstractType(D.getIdentifierLoc(),
2486                             R->getAs<FunctionType>()->getResultType(),
2487                             diag::err_abstract_type_in_decl,
2488                             AbstractReturnType))
2489    D.setInvalidType();
2490
2491  // Do not allow returning a objc interface by-value.
2492  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2493    Diag(D.getIdentifierLoc(),
2494         diag::err_object_cannot_be_passed_returned_by_value) << 0
2495      << R->getAs<FunctionType>()->getResultType();
2496    D.setInvalidType();
2497  }
2498
2499  bool isVirtualOkay = false;
2500  FunctionDecl *NewFD;
2501
2502  if (isFriend) {
2503    // DC is the namespace in which the function is being declared.
2504    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2505           "friend function being created in a non-namespace context");
2506
2507    // C++ [class.friend]p5
2508    //   A function can be defined in a friend declaration of a
2509    //   class . . . . Such a function is implicitly inline.
2510    isInline |= IsFunctionDefinition;
2511  }
2512
2513  if (D.getKind() == Declarator::DK_Constructor) {
2514    // This is a C++ constructor declaration.
2515    assert(DC->isRecord() &&
2516           "Constructors can only be declared in a member context");
2517
2518    R = CheckConstructorDeclarator(D, R, SC);
2519
2520    // Create the new declaration
2521    NewFD = CXXConstructorDecl::Create(Context,
2522                                       cast<CXXRecordDecl>(DC),
2523                                       D.getIdentifierLoc(), Name, R, DInfo,
2524                                       isExplicit, isInline,
2525                                       /*isImplicitlyDeclared=*/false);
2526  } else if (D.getKind() == Declarator::DK_Destructor) {
2527    // This is a C++ destructor declaration.
2528    if (DC->isRecord()) {
2529      R = CheckDestructorDeclarator(D, SC);
2530
2531      NewFD = CXXDestructorDecl::Create(Context,
2532                                        cast<CXXRecordDecl>(DC),
2533                                        D.getIdentifierLoc(), Name, R,
2534                                        isInline,
2535                                        /*isImplicitlyDeclared=*/false);
2536
2537      isVirtualOkay = true;
2538    } else {
2539      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2540
2541      // Create a FunctionDecl to satisfy the function definition parsing
2542      // code path.
2543      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2544                                   Name, R, DInfo, SC, isInline,
2545                                   /*hasPrototype=*/true);
2546      D.setInvalidType();
2547    }
2548  } else if (D.getKind() == Declarator::DK_Conversion) {
2549    if (!DC->isRecord()) {
2550      Diag(D.getIdentifierLoc(),
2551           diag::err_conv_function_not_member);
2552      return 0;
2553    }
2554
2555    CheckConversionDeclarator(D, R, SC);
2556    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2557                                      D.getIdentifierLoc(), Name, R, DInfo,
2558                                      isInline, isExplicit);
2559
2560    isVirtualOkay = true;
2561  } else if (DC->isRecord()) {
2562    // If the of the function is the same as the name of the record, then this
2563    // must be an invalid constructor that has a return type.
2564    // (The parser checks for a return type and makes the declarator a
2565    // constructor if it has no return type).
2566    // must have an invalid constructor that has a return type
2567    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2568      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2569        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2570        << SourceRange(D.getIdentifierLoc());
2571      return 0;
2572    }
2573
2574    // This is a C++ method declaration.
2575    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2576                                  D.getIdentifierLoc(), Name, R, DInfo,
2577                                  (SC == FunctionDecl::Static), isInline);
2578
2579    isVirtualOkay = (SC != FunctionDecl::Static);
2580  } else {
2581    // Determine whether the function was written with a
2582    // prototype. This true when:
2583    //   - we're in C++ (where every function has a prototype),
2584    //   - there is a prototype in the declarator, or
2585    //   - the type R of the function is some kind of typedef or other reference
2586    //     to a type name (which eventually refers to a function type).
2587    bool HasPrototype =
2588       getLangOptions().CPlusPlus ||
2589       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2590       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2591
2592    NewFD = FunctionDecl::Create(Context, DC,
2593                                 D.getIdentifierLoc(),
2594                                 Name, R, DInfo, SC, isInline, HasPrototype);
2595  }
2596
2597  if (D.isInvalidType())
2598    NewFD->setInvalidDecl();
2599
2600  // Set the lexical context. If the declarator has a C++
2601  // scope specifier, or is the object of a friend declaration, the
2602  // lexical context will be different from the semantic context.
2603  NewFD->setLexicalDeclContext(CurContext);
2604
2605  // Match up the template parameter lists with the scope specifier, then
2606  // determine whether we have a template or a template specialization.
2607  FunctionTemplateDecl *FunctionTemplate = 0;
2608  bool isExplicitSpecialization = false;
2609  bool isFunctionTemplateSpecialization = false;
2610  if (TemplateParameterList *TemplateParams
2611        = MatchTemplateParametersToScopeSpecifier(
2612                                  D.getDeclSpec().getSourceRange().getBegin(),
2613                                  D.getCXXScopeSpec(),
2614                           (TemplateParameterList**)TemplateParamLists.get(),
2615                                                  TemplateParamLists.size(),
2616                                                  isExplicitSpecialization)) {
2617    if (TemplateParams->size() > 0) {
2618      // This is a function template
2619
2620      // Check that we can declare a template here.
2621      if (CheckTemplateDeclScope(S, TemplateParams))
2622        return 0;
2623
2624      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2625                                                      NewFD->getLocation(),
2626                                                      Name, TemplateParams,
2627                                                      NewFD);
2628      FunctionTemplate->setLexicalDeclContext(CurContext);
2629      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2630    } else {
2631      // This is a function template specialization.
2632      isFunctionTemplateSpecialization = true;
2633    }
2634
2635    // FIXME: Free this memory properly.
2636    TemplateParamLists.release();
2637  }
2638
2639  // C++ [dcl.fct.spec]p5:
2640  //   The virtual specifier shall only be used in declarations of
2641  //   nonstatic class member functions that appear within a
2642  //   member-specification of a class declaration; see 10.3.
2643  //
2644  if (isVirtual && !NewFD->isInvalidDecl()) {
2645    if (!isVirtualOkay) {
2646       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2647           diag::err_virtual_non_function);
2648    } else if (!CurContext->isRecord()) {
2649      // 'virtual' was specified outside of the class.
2650      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2651        << CodeModificationHint::CreateRemoval(
2652                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2653    } else {
2654      // Okay: Add virtual to the method.
2655      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2656      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2657      CurClass->setAggregate(false);
2658      CurClass->setPOD(false);
2659      CurClass->setEmpty(false);
2660      CurClass->setPolymorphic(true);
2661      CurClass->setHasTrivialConstructor(false);
2662      CurClass->setHasTrivialCopyConstructor(false);
2663      CurClass->setHasTrivialCopyAssignment(false);
2664    }
2665  }
2666
2667  if (isFriend) {
2668    if (FunctionTemplate) {
2669      FunctionTemplate->setObjectOfFriendDecl(
2670                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2671      FunctionTemplate->setAccess(AS_public);
2672    }
2673    else
2674      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2675
2676    NewFD->setAccess(AS_public);
2677  }
2678
2679
2680  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2681    // Look for virtual methods in base classes that this method might override.
2682    CXXBasePaths Paths;
2683    FindOverriddenMethodData Data;
2684    Data.Method = NewMD;
2685    Data.S = this;
2686    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2687                                                Paths)) {
2688      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2689           E = Paths.found_decls_end(); I != E; ++I) {
2690        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2691          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2692              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2693            NewMD->addOverriddenMethod(OldMD);
2694        }
2695      }
2696    }
2697  }
2698
2699  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2700      !CurContext->isRecord()) {
2701    // C++ [class.static]p1:
2702    //   A data or function member of a class may be declared static
2703    //   in a class definition, in which case it is a static member of
2704    //   the class.
2705
2706    // Complain about the 'static' specifier if it's on an out-of-line
2707    // member function definition.
2708    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2709         diag::err_static_out_of_line)
2710      << CodeModificationHint::CreateRemoval(
2711                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2712  }
2713
2714  // Handle GNU asm-label extension (encoded as an attribute).
2715  if (Expr *E = (Expr*) D.getAsmLabel()) {
2716    // The parser guarantees this is a string.
2717    StringLiteral *SE = cast<StringLiteral>(E);
2718    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2719                                                        SE->getByteLength())));
2720  }
2721
2722  // Copy the parameter declarations from the declarator D to the function
2723  // declaration NewFD, if they are available.  First scavenge them into Params.
2724  llvm::SmallVector<ParmVarDecl*, 16> Params;
2725  if (D.getNumTypeObjects() > 0) {
2726    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2727
2728    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2729    // function that takes no arguments, not a function that takes a
2730    // single void argument.
2731    // We let through "const void" here because Sema::GetTypeForDeclarator
2732    // already checks for that case.
2733    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2734        FTI.ArgInfo[0].Param &&
2735        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2736      // Empty arg list, don't push any params.
2737      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2738
2739      // In C++, the empty parameter-type-list must be spelled "void"; a
2740      // typedef of void is not permitted.
2741      if (getLangOptions().CPlusPlus &&
2742          Param->getType().getUnqualifiedType() != Context.VoidTy)
2743        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2744      // FIXME: Leaks decl?
2745    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2746      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2747        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2748        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2749        Param->setDeclContext(NewFD);
2750        Params.push_back(Param);
2751      }
2752    }
2753
2754  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2755    // When we're declaring a function with a typedef, typeof, etc as in the
2756    // following example, we'll need to synthesize (unnamed)
2757    // parameters for use in the declaration.
2758    //
2759    // @code
2760    // typedef void fn(int);
2761    // fn f;
2762    // @endcode
2763
2764    // Synthesize a parameter for each argument type.
2765    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2766         AE = FT->arg_type_end(); AI != AE; ++AI) {
2767      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2768                                               SourceLocation(), 0,
2769                                               *AI, /*DInfo=*/0,
2770                                               VarDecl::None, 0);
2771      Param->setImplicit();
2772      Params.push_back(Param);
2773    }
2774  } else {
2775    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2776           "Should not need args for typedef of non-prototype fn");
2777  }
2778  // Finally, we know we have the right number of parameters, install them.
2779  NewFD->setParams(Context, Params.data(), Params.size());
2780
2781  // If name lookup finds a previous declaration that is not in the
2782  // same scope as the new declaration, this may still be an
2783  // acceptable redeclaration.
2784  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2785      !(NewFD->hasLinkage() &&
2786        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2787    PrevDecl = 0;
2788
2789  // If the declarator is a template-id, translate the parser's template
2790  // argument list into our AST format.
2791  bool HasExplicitTemplateArgs = false;
2792  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2793  SourceLocation LAngleLoc, RAngleLoc;
2794  if (D.getKind() == Declarator::DK_TemplateId) {
2795    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2796    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2797                                       TemplateId->getTemplateArgs(),
2798                                       TemplateId->getTemplateArgIsType(),
2799                                       TemplateId->NumArgs);
2800    translateTemplateArguments(TemplateArgsPtr,
2801                               TemplateId->getTemplateArgLocations(),
2802                               TemplateArgs);
2803    TemplateArgsPtr.release();
2804
2805    HasExplicitTemplateArgs = true;
2806    LAngleLoc = TemplateId->LAngleLoc;
2807    RAngleLoc = TemplateId->RAngleLoc;
2808
2809    if (FunctionTemplate) {
2810      // FIXME: Diagnose function template with explicit template
2811      // arguments.
2812      HasExplicitTemplateArgs = false;
2813    } else if (!isFunctionTemplateSpecialization &&
2814               !D.getDeclSpec().isFriendSpecified()) {
2815      // We have encountered something that the user meant to be a
2816      // specialization (because it has explicitly-specified template
2817      // arguments) but that was not introduced with a "template<>" (or had
2818      // too few of them).
2819      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2820        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2821        << CodeModificationHint::CreateInsertion(
2822                                   D.getDeclSpec().getSourceRange().getBegin(),
2823                                                 "template<> ");
2824      isFunctionTemplateSpecialization = true;
2825    }
2826  }
2827
2828  if (isFunctionTemplateSpecialization) {
2829      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2830                                              LAngleLoc, TemplateArgs.data(),
2831                                              TemplateArgs.size(), RAngleLoc,
2832                                              PrevDecl))
2833        NewFD->setInvalidDecl();
2834  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2835             CheckMemberSpecialization(NewFD, PrevDecl))
2836    NewFD->setInvalidDecl();
2837
2838  // Perform semantic checking on the function declaration.
2839  bool OverloadableAttrRequired = false; // FIXME: HACK!
2840  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2841                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2842
2843  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2844    // An out-of-line member function declaration must also be a
2845    // definition (C++ [dcl.meaning]p1).
2846    // Note that this is not the case for explicit specializations of
2847    // function templates or member functions of class templates, per
2848    // C++ [temp.expl.spec]p2.
2849    if (!IsFunctionDefinition && !isFriend &&
2850        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2851      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2852        << D.getCXXScopeSpec().getRange();
2853      NewFD->setInvalidDecl();
2854    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2855      // The user tried to provide an out-of-line definition for a
2856      // function that is a member of a class or namespace, but there
2857      // was no such member function declared (C++ [class.mfct]p2,
2858      // C++ [namespace.memdef]p2). For example:
2859      //
2860      // class X {
2861      //   void f() const;
2862      // };
2863      //
2864      // void X::f() { } // ill-formed
2865      //
2866      // Complain about this problem, and attempt to suggest close
2867      // matches (e.g., those that differ only in cv-qualifiers and
2868      // whether the parameter types are references).
2869      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2870        << Name << DC << D.getCXXScopeSpec().getRange();
2871      NewFD->setInvalidDecl();
2872
2873      LookupResult Prev;
2874      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2875      assert(!Prev.isAmbiguous() &&
2876             "Cannot have an ambiguity in previous-declaration lookup");
2877      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2878           Func != FuncEnd; ++Func) {
2879        if (isa<FunctionDecl>(*Func) &&
2880            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2881          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2882      }
2883
2884      PrevDecl = 0;
2885    }
2886  }
2887
2888  // Handle attributes. We need to have merged decls when handling attributes
2889  // (for example to check for conflicts, etc).
2890  // FIXME: This needs to happen before we merge declarations. Then,
2891  // let attribute merging cope with attribute conflicts.
2892  ProcessDeclAttributes(S, NewFD, D);
2893
2894  // attributes declared post-definition are currently ignored
2895  if (Redeclaration && PrevDecl) {
2896    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2897    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2898      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2899      Diag(Def->getLocation(), diag::note_previous_definition);
2900    }
2901  }
2902
2903  AddKnownFunctionAttributes(NewFD);
2904
2905  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2906    // If a function name is overloadable in C, then every function
2907    // with that name must be marked "overloadable".
2908    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2909      << Redeclaration << NewFD;
2910    if (PrevDecl)
2911      Diag(PrevDecl->getLocation(),
2912           diag::note_attribute_overloadable_prev_overload);
2913    NewFD->addAttr(::new (Context) OverloadableAttr());
2914  }
2915
2916  // If this is a locally-scoped extern C function, update the
2917  // map of such names.
2918  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2919      && !NewFD->isInvalidDecl())
2920    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2921
2922  // Set this FunctionDecl's range up to the right paren.
2923  NewFD->setLocEnd(D.getSourceRange().getEnd());
2924
2925  if (FunctionTemplate && NewFD->isInvalidDecl())
2926    FunctionTemplate->setInvalidDecl();
2927
2928  if (FunctionTemplate)
2929    return FunctionTemplate;
2930
2931  return NewFD;
2932}
2933
2934/// \brief Perform semantic checking of a new function declaration.
2935///
2936/// Performs semantic analysis of the new function declaration
2937/// NewFD. This routine performs all semantic checking that does not
2938/// require the actual declarator involved in the declaration, and is
2939/// used both for the declaration of functions as they are parsed
2940/// (called via ActOnDeclarator) and for the declaration of functions
2941/// that have been instantiated via C++ template instantiation (called
2942/// via InstantiateDecl).
2943///
2944/// \param IsExplicitSpecialiation whether this new function declaration is
2945/// an explicit specialization of the previous declaration.
2946///
2947/// This sets NewFD->isInvalidDecl() to true if there was an error.
2948void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2949                                    bool IsExplicitSpecialization,
2950                                    bool &Redeclaration,
2951                                    bool &OverloadableAttrRequired) {
2952  // If NewFD is already known erroneous, don't do any of this checking.
2953  if (NewFD->isInvalidDecl())
2954    return;
2955
2956  if (NewFD->getResultType()->isVariablyModifiedType()) {
2957    // Functions returning a variably modified type violate C99 6.7.5.2p2
2958    // because all functions have linkage.
2959    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2960    return NewFD->setInvalidDecl();
2961  }
2962
2963  if (NewFD->isMain())
2964    CheckMain(NewFD);
2965
2966  // Check for a previous declaration of this name.
2967  if (!PrevDecl && NewFD->isExternC()) {
2968    // Since we did not find anything by this name and we're declaring
2969    // an extern "C" function, look for a non-visible extern "C"
2970    // declaration with the same name.
2971    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2972      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2973    if (Pos != LocallyScopedExternalDecls.end())
2974      PrevDecl = Pos->second;
2975  }
2976
2977  // Merge or overload the declaration with an existing declaration of
2978  // the same name, if appropriate.
2979  if (PrevDecl) {
2980    // Determine whether NewFD is an overload of PrevDecl or
2981    // a declaration that requires merging. If it's an overload,
2982    // there's no more work to do here; we'll just add the new
2983    // function to the scope.
2984    OverloadedFunctionDecl::function_iterator MatchedDecl;
2985
2986    if (!getLangOptions().CPlusPlus &&
2987        AllowOverloadingOfFunction(PrevDecl, Context)) {
2988      OverloadableAttrRequired = true;
2989
2990      // Functions marked "overloadable" must have a prototype (that
2991      // we can't get through declaration merging).
2992      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2993        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2994          << NewFD;
2995        Redeclaration = true;
2996
2997        // Turn this into a variadic function with no parameters.
2998        QualType R = Context.getFunctionType(
2999                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3000                       0, 0, true, 0);
3001        NewFD->setType(R);
3002        return NewFD->setInvalidDecl();
3003      }
3004    }
3005
3006    if (PrevDecl &&
3007        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3008         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3009      Redeclaration = true;
3010      Decl *OldDecl = PrevDecl;
3011
3012      // If PrevDecl was an overloaded function, extract the
3013      // FunctionDecl that matched.
3014      if (isa<OverloadedFunctionDecl>(PrevDecl))
3015        OldDecl = *MatchedDecl;
3016
3017      // NewFD and OldDecl represent declarations that need to be
3018      // merged.
3019      if (MergeFunctionDecl(NewFD, OldDecl))
3020        return NewFD->setInvalidDecl();
3021
3022      if (FunctionTemplateDecl *OldTemplateDecl
3023                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3024        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3025        FunctionTemplateDecl *NewTemplateDecl
3026          = NewFD->getDescribedFunctionTemplate();
3027        assert(NewTemplateDecl && "Template/non-template mismatch");
3028        if (CXXMethodDecl *Method
3029              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3030          Method->setAccess(OldTemplateDecl->getAccess());
3031          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3032        }
3033
3034        // If this is an explicit specialization of a member that is a function
3035        // template, mark it as a member specialization.
3036        if (IsExplicitSpecialization &&
3037            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3038          NewTemplateDecl->setMemberSpecialization();
3039          assert(OldTemplateDecl->isMemberSpecialization());
3040        }
3041      } else {
3042        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3043          NewFD->setAccess(OldDecl->getAccess());
3044        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3045      }
3046    }
3047  }
3048
3049  // Semantic checking for this function declaration (in isolation).
3050  if (getLangOptions().CPlusPlus) {
3051    // C++-specific checks.
3052    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3053      CheckConstructor(Constructor);
3054    } else if (isa<CXXDestructorDecl>(NewFD)) {
3055      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3056      QualType ClassType = Context.getTypeDeclType(Record);
3057      if (!ClassType->isDependentType()) {
3058        DeclarationName Name
3059          = Context.DeclarationNames.getCXXDestructorName(
3060                                        Context.getCanonicalType(ClassType));
3061        if (NewFD->getDeclName() != Name) {
3062          Diag(NewFD->getLocation(), diag::err_destructor_name);
3063          return NewFD->setInvalidDecl();
3064        }
3065      }
3066      Record->setUserDeclaredDestructor(true);
3067      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3068      // user-defined destructor.
3069      Record->setPOD(false);
3070
3071      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3072      // declared destructor.
3073      // FIXME: C++0x: don't do this for "= default" destructors
3074      Record->setHasTrivialDestructor(false);
3075    } else if (CXXConversionDecl *Conversion
3076               = dyn_cast<CXXConversionDecl>(NewFD))
3077      ActOnConversionDeclarator(Conversion);
3078
3079    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3080    if (NewFD->isOverloadedOperator() &&
3081        CheckOverloadedOperatorDeclaration(NewFD))
3082      return NewFD->setInvalidDecl();
3083
3084    // In C++, check default arguments now that we have merged decls. Unless
3085    // the lexical context is the class, because in this case this is done
3086    // during delayed parsing anyway.
3087    if (!CurContext->isRecord())
3088      CheckCXXDefaultArguments(NewFD);
3089  }
3090}
3091
3092void Sema::CheckMain(FunctionDecl* FD) {
3093  // C++ [basic.start.main]p3:  A program that declares main to be inline
3094  //   or static is ill-formed.
3095  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3096  //   shall not appear in a declaration of main.
3097  // static main is not an error under C99, but we should warn about it.
3098  bool isInline = FD->isInline();
3099  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3100  if (isInline || isStatic) {
3101    unsigned diagID = diag::warn_unusual_main_decl;
3102    if (isInline || getLangOptions().CPlusPlus)
3103      diagID = diag::err_unusual_main_decl;
3104
3105    int which = isStatic + (isInline << 1) - 1;
3106    Diag(FD->getLocation(), diagID) << which;
3107  }
3108
3109  QualType T = FD->getType();
3110  assert(T->isFunctionType() && "function decl is not of function type");
3111  const FunctionType* FT = T->getAs<FunctionType>();
3112
3113  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3114    // TODO: add a replacement fixit to turn the return type into 'int'.
3115    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3116    FD->setInvalidDecl(true);
3117  }
3118
3119  // Treat protoless main() as nullary.
3120  if (isa<FunctionNoProtoType>(FT)) return;
3121
3122  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3123  unsigned nparams = FTP->getNumArgs();
3124  assert(FD->getNumParams() == nparams);
3125
3126  if (nparams > 3) {
3127    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3128    FD->setInvalidDecl(true);
3129    nparams = 3;
3130  }
3131
3132  // FIXME: a lot of the following diagnostics would be improved
3133  // if we had some location information about types.
3134
3135  QualType CharPP =
3136    Context.getPointerType(Context.getPointerType(Context.CharTy));
3137  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3138
3139  for (unsigned i = 0; i < nparams; ++i) {
3140    QualType AT = FTP->getArgType(i);
3141
3142    bool mismatch = true;
3143
3144    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3145      mismatch = false;
3146    else if (Expected[i] == CharPP) {
3147      // As an extension, the following forms are okay:
3148      //   char const **
3149      //   char const * const *
3150      //   char * const *
3151
3152      QualifierCollector qs;
3153      const PointerType* PT;
3154      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3155          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3156          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3157        qs.removeConst();
3158        mismatch = !qs.empty();
3159      }
3160    }
3161
3162    if (mismatch) {
3163      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3164      // TODO: suggest replacing given type with expected type
3165      FD->setInvalidDecl(true);
3166    }
3167  }
3168
3169  if (nparams == 1 && !FD->isInvalidDecl()) {
3170    Diag(FD->getLocation(), diag::warn_main_one_arg);
3171  }
3172}
3173
3174bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3175  // FIXME: Need strict checking.  In C89, we need to check for
3176  // any assignment, increment, decrement, function-calls, or
3177  // commas outside of a sizeof.  In C99, it's the same list,
3178  // except that the aforementioned are allowed in unevaluated
3179  // expressions.  Everything else falls under the
3180  // "may accept other forms of constant expressions" exception.
3181  // (We never end up here for C++, so the constant expression
3182  // rules there don't matter.)
3183  if (Init->isConstantInitializer(Context))
3184    return false;
3185  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3186    << Init->getSourceRange();
3187  return true;
3188}
3189
3190void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3191  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3192}
3193
3194/// AddInitializerToDecl - Adds the initializer Init to the
3195/// declaration dcl. If DirectInit is true, this is C++ direct
3196/// initialization rather than copy initialization.
3197void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3198  Decl *RealDecl = dcl.getAs<Decl>();
3199  // If there is no declaration, there was an error parsing it.  Just ignore
3200  // the initializer.
3201  if (RealDecl == 0)
3202    return;
3203
3204  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3205    // With declarators parsed the way they are, the parser cannot
3206    // distinguish between a normal initializer and a pure-specifier.
3207    // Thus this grotesque test.
3208    IntegerLiteral *IL;
3209    Expr *Init = static_cast<Expr *>(init.get());
3210    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3211        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3212      if (Method->isVirtualAsWritten()) {
3213        Method->setPure();
3214
3215        // A class is abstract if at least one function is pure virtual.
3216        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3217      } else if (!Method->isInvalidDecl()) {
3218        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3219          << Method->getDeclName() << Init->getSourceRange();
3220        Method->setInvalidDecl();
3221      }
3222    } else {
3223      Diag(Method->getLocation(), diag::err_member_function_initialization)
3224        << Method->getDeclName() << Init->getSourceRange();
3225      Method->setInvalidDecl();
3226    }
3227    return;
3228  }
3229
3230  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3231  if (!VDecl) {
3232    if (getLangOptions().CPlusPlus &&
3233        RealDecl->getLexicalDeclContext()->isRecord() &&
3234        isa<NamedDecl>(RealDecl))
3235      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3236        << cast<NamedDecl>(RealDecl)->getDeclName();
3237    else
3238      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3239    RealDecl->setInvalidDecl();
3240    return;
3241  }
3242
3243  if (!VDecl->getType()->isArrayType() &&
3244      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3245                          diag::err_typecheck_decl_incomplete_type)) {
3246    RealDecl->setInvalidDecl();
3247    return;
3248  }
3249
3250  const VarDecl *Def = 0;
3251  if (VDecl->getDefinition(Def)) {
3252    Diag(VDecl->getLocation(), diag::err_redefinition)
3253      << VDecl->getDeclName();
3254    Diag(Def->getLocation(), diag::note_previous_definition);
3255    VDecl->setInvalidDecl();
3256    return;
3257  }
3258
3259  // Take ownership of the expression, now that we're sure we have somewhere
3260  // to put it.
3261  Expr *Init = init.takeAs<Expr>();
3262  assert(Init && "missing initializer");
3263
3264  // Get the decls type and save a reference for later, since
3265  // CheckInitializerTypes may change it.
3266  QualType DclT = VDecl->getType(), SavT = DclT;
3267  if (VDecl->isBlockVarDecl()) {
3268    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3269      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3270      VDecl->setInvalidDecl();
3271    } else if (!VDecl->isInvalidDecl()) {
3272      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3273                                VDecl->getDeclName(), DirectInit))
3274        VDecl->setInvalidDecl();
3275
3276      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3277      // Don't check invalid declarations to avoid emitting useless diagnostics.
3278      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3279        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3280          CheckForConstantInitializer(Init, DclT);
3281      }
3282    }
3283  } else if (VDecl->isStaticDataMember() &&
3284             VDecl->getLexicalDeclContext()->isRecord()) {
3285    // This is an in-class initialization for a static data member, e.g.,
3286    //
3287    // struct S {
3288    //   static const int value = 17;
3289    // };
3290
3291    // Attach the initializer
3292    VDecl->setInit(Context, Init);
3293
3294    // C++ [class.mem]p4:
3295    //   A member-declarator can contain a constant-initializer only
3296    //   if it declares a static member (9.4) of const integral or
3297    //   const enumeration type, see 9.4.2.
3298    QualType T = VDecl->getType();
3299    if (!T->isDependentType() &&
3300        (!Context.getCanonicalType(T).isConstQualified() ||
3301         !T->isIntegralType())) {
3302      Diag(VDecl->getLocation(), diag::err_member_initialization)
3303        << VDecl->getDeclName() << Init->getSourceRange();
3304      VDecl->setInvalidDecl();
3305    } else {
3306      // C++ [class.static.data]p4:
3307      //   If a static data member is of const integral or const
3308      //   enumeration type, its declaration in the class definition
3309      //   can specify a constant-initializer which shall be an
3310      //   integral constant expression (5.19).
3311      if (!Init->isTypeDependent() &&
3312          !Init->getType()->isIntegralType()) {
3313        // We have a non-dependent, non-integral or enumeration type.
3314        Diag(Init->getSourceRange().getBegin(),
3315             diag::err_in_class_initializer_non_integral_type)
3316          << Init->getType() << Init->getSourceRange();
3317        VDecl->setInvalidDecl();
3318      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3319        // Check whether the expression is a constant expression.
3320        llvm::APSInt Value;
3321        SourceLocation Loc;
3322        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3323          Diag(Loc, diag::err_in_class_initializer_non_constant)
3324            << Init->getSourceRange();
3325          VDecl->setInvalidDecl();
3326        } else if (!VDecl->getType()->isDependentType())
3327          ImpCastExprToType(Init, VDecl->getType());
3328      }
3329    }
3330  } else if (VDecl->isFileVarDecl()) {
3331    if (VDecl->getStorageClass() == VarDecl::Extern)
3332      Diag(VDecl->getLocation(), diag::warn_extern_init);
3333    if (!VDecl->isInvalidDecl())
3334      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3335                                VDecl->getDeclName(), DirectInit))
3336        VDecl->setInvalidDecl();
3337
3338    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3339    // Don't check invalid declarations to avoid emitting useless diagnostics.
3340    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3341      // C99 6.7.8p4. All file scoped initializers need to be constant.
3342      CheckForConstantInitializer(Init, DclT);
3343    }
3344  }
3345  // If the type changed, it means we had an incomplete type that was
3346  // completed by the initializer. For example:
3347  //   int ary[] = { 1, 3, 5 };
3348  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3349  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3350    VDecl->setType(DclT);
3351    Init->setType(DclT);
3352  }
3353
3354  Init = MaybeCreateCXXExprWithTemporaries(Init,
3355                                           /*ShouldDestroyTemporaries=*/true);
3356  // Attach the initializer to the decl.
3357  VDecl->setInit(Context, Init);
3358
3359  // If the previous declaration of VDecl was a tentative definition,
3360  // remove it from the set of tentative definitions.
3361  if (VDecl->getPreviousDeclaration() &&
3362      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3363    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3364    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3365  }
3366
3367  return;
3368}
3369
3370void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3371                                  bool TypeContainsUndeducedAuto) {
3372  Decl *RealDecl = dcl.getAs<Decl>();
3373
3374  // If there is no declaration, there was an error parsing it. Just ignore it.
3375  if (RealDecl == 0)
3376    return;
3377
3378  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3379    QualType Type = Var->getType();
3380
3381    // Record tentative definitions.
3382    if (Var->isTentativeDefinition(Context)) {
3383      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3384        InsertPair =
3385           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3386
3387      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3388      // want the second one in the map.
3389      InsertPair.first->second = Var;
3390
3391      // However, for the list, we don't care about the order, just make sure
3392      // that there are no dupes for a given declaration name.
3393      if (InsertPair.second)
3394        TentativeDefinitionList.push_back(Var->getDeclName());
3395    }
3396
3397    // C++ [dcl.init.ref]p3:
3398    //   The initializer can be omitted for a reference only in a
3399    //   parameter declaration (8.3.5), in the declaration of a
3400    //   function return type, in the declaration of a class member
3401    //   within its class declaration (9.2), and where the extern
3402    //   specifier is explicitly used.
3403    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3404      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3405        << Var->getDeclName()
3406        << SourceRange(Var->getLocation(), Var->getLocation());
3407      Var->setInvalidDecl();
3408      return;
3409    }
3410
3411    // C++0x [dcl.spec.auto]p3
3412    if (TypeContainsUndeducedAuto) {
3413      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3414        << Var->getDeclName() << Type;
3415      Var->setInvalidDecl();
3416      return;
3417    }
3418
3419    // C++ [temp.expl.spec]p15:
3420    //   An explicit specialization of a static data member of a template is a
3421    //   definition if the declaration includes an initializer; otherwise, it
3422    //   is a declaration.
3423    if (Var->isStaticDataMember() &&
3424        Var->getInstantiatedFromStaticDataMember() &&
3425        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3426      return;
3427
3428    // C++ [dcl.init]p9:
3429    //   If no initializer is specified for an object, and the object
3430    //   is of (possibly cv-qualified) non-POD class type (or array
3431    //   thereof), the object shall be default-initialized; if the
3432    //   object is of const-qualified type, the underlying class type
3433    //   shall have a user-declared default constructor.
3434    //
3435    // FIXME: Diagnose the "user-declared default constructor" bit.
3436    if (getLangOptions().CPlusPlus) {
3437      QualType InitType = Type;
3438      if (const ArrayType *Array = Context.getAsArrayType(Type))
3439        InitType = Array->getElementType();
3440      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3441          InitType->isRecordType() && !InitType->isDependentType()) {
3442        if (!RequireCompleteType(Var->getLocation(), InitType,
3443                                 diag::err_invalid_incomplete_type_use)) {
3444          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3445
3446          CXXConstructorDecl *Constructor
3447            = PerformInitializationByConstructor(InitType,
3448                                                 MultiExprArg(*this, 0, 0),
3449                                                 Var->getLocation(),
3450                                               SourceRange(Var->getLocation(),
3451                                                           Var->getLocation()),
3452                                                 Var->getDeclName(),
3453                                                 IK_Default,
3454                                                 ConstructorArgs);
3455
3456          // FIXME: Location info for the variable initialization?
3457          if (!Constructor)
3458            Var->setInvalidDecl();
3459          else {
3460            // FIXME: Cope with initialization of arrays
3461            if (!Constructor->isTrivial() &&
3462                InitializeVarWithConstructor(Var, Constructor, InitType,
3463                                             move_arg(ConstructorArgs)))
3464              Var->setInvalidDecl();
3465
3466            FinalizeVarWithDestructor(Var, InitType);
3467          }
3468        } else {
3469          Var->setInvalidDecl();
3470        }
3471      }
3472    }
3473
3474#if 0
3475    // FIXME: Temporarily disabled because we are not properly parsing
3476    // linkage specifications on declarations, e.g.,
3477    //
3478    //   extern "C" const CGPoint CGPointerZero;
3479    //
3480    // C++ [dcl.init]p9:
3481    //
3482    //     If no initializer is specified for an object, and the
3483    //     object is of (possibly cv-qualified) non-POD class type (or
3484    //     array thereof), the object shall be default-initialized; if
3485    //     the object is of const-qualified type, the underlying class
3486    //     type shall have a user-declared default
3487    //     constructor. Otherwise, if no initializer is specified for
3488    //     an object, the object and its subobjects, if any, have an
3489    //     indeterminate initial value; if the object or any of its
3490    //     subobjects are of const-qualified type, the program is
3491    //     ill-formed.
3492    //
3493    // This isn't technically an error in C, so we don't diagnose it.
3494    //
3495    // FIXME: Actually perform the POD/user-defined default
3496    // constructor check.
3497    if (getLangOptions().CPlusPlus &&
3498        Context.getCanonicalType(Type).isConstQualified() &&
3499        !Var->hasExternalStorage())
3500      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3501        << Var->getName()
3502        << SourceRange(Var->getLocation(), Var->getLocation());
3503#endif
3504  }
3505}
3506
3507Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3508                                                   DeclPtrTy *Group,
3509                                                   unsigned NumDecls) {
3510  llvm::SmallVector<Decl*, 8> Decls;
3511
3512  if (DS.isTypeSpecOwned())
3513    Decls.push_back((Decl*)DS.getTypeRep());
3514
3515  for (unsigned i = 0; i != NumDecls; ++i)
3516    if (Decl *D = Group[i].getAs<Decl>())
3517      Decls.push_back(D);
3518
3519  // Perform semantic analysis that depends on having fully processed both
3520  // the declarator and initializer.
3521  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3522    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3523    if (!IDecl)
3524      continue;
3525    QualType T = IDecl->getType();
3526
3527    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3528    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3529    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3530      if (T->isDependentType()) {
3531        // If T is dependent, we should not require a complete type.
3532        // (RequireCompleteType shouldn't be called with dependent types.)
3533        // But we still can at least check if we've got an array of unspecified
3534        // size without an initializer.
3535        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3536            !IDecl->getInit()) {
3537          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3538            << T;
3539          IDecl->setInvalidDecl();
3540        }
3541      } else if (!IDecl->isInvalidDecl()) {
3542        // If T is an incomplete array type with an initializer list that is
3543        // dependent on something, its size has not been fixed. We could attempt
3544        // to fix the size for such arrays, but we would still have to check
3545        // here for initializers containing a C++0x vararg expansion, e.g.
3546        // template <typename... Args> void f(Args... args) {
3547        //   int vals[] = { args };
3548        // }
3549        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3550        Expr *Init = IDecl->getInit();
3551        if (IAT && Init &&
3552            (Init->isTypeDependent() || Init->isValueDependent())) {
3553          // Check that the member type of the array is complete, at least.
3554          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3555                                  diag::err_typecheck_decl_incomplete_type))
3556            IDecl->setInvalidDecl();
3557        } else if (RequireCompleteType(IDecl->getLocation(), T,
3558                                      diag::err_typecheck_decl_incomplete_type))
3559          IDecl->setInvalidDecl();
3560      }
3561    }
3562    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3563    // object that has file scope without an initializer, and without a
3564    // storage-class specifier or with the storage-class specifier "static",
3565    // constitutes a tentative definition. Note: A tentative definition with
3566    // external linkage is valid (C99 6.2.2p5).
3567    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3568      if (const IncompleteArrayType *ArrayT
3569          = Context.getAsIncompleteArrayType(T)) {
3570        if (RequireCompleteType(IDecl->getLocation(),
3571                                ArrayT->getElementType(),
3572                                diag::err_illegal_decl_array_incomplete_type))
3573          IDecl->setInvalidDecl();
3574      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3575        // C99 6.9.2p3: If the declaration of an identifier for an object is
3576        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3577        // declared type shall not be an incomplete type.
3578        // NOTE: code such as the following
3579        //     static struct s;
3580        //     struct s { int a; };
3581        // is accepted by gcc. Hence here we issue a warning instead of
3582        // an error and we do not invalidate the static declaration.
3583        // NOTE: to avoid multiple warnings, only check the first declaration.
3584        if (IDecl->getPreviousDeclaration() == 0)
3585          RequireCompleteType(IDecl->getLocation(), T,
3586                              diag::ext_typecheck_decl_incomplete_type);
3587      }
3588    }
3589  }
3590  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3591                                                   Decls.data(), Decls.size()));
3592}
3593
3594
3595/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3596/// to introduce parameters into function prototype scope.
3597Sema::DeclPtrTy
3598Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3599  const DeclSpec &DS = D.getDeclSpec();
3600
3601  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3602  VarDecl::StorageClass StorageClass = VarDecl::None;
3603  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3604    StorageClass = VarDecl::Register;
3605  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3606    Diag(DS.getStorageClassSpecLoc(),
3607         diag::err_invalid_storage_class_in_func_decl);
3608    D.getMutableDeclSpec().ClearStorageClassSpecs();
3609  }
3610
3611  if (D.getDeclSpec().isThreadSpecified())
3612    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3613
3614  DiagnoseFunctionSpecifiers(D);
3615
3616  // Check that there are no default arguments inside the type of this
3617  // parameter (C++ only).
3618  if (getLangOptions().CPlusPlus)
3619    CheckExtraCXXDefaultArguments(D);
3620
3621  DeclaratorInfo *DInfo = 0;
3622  TagDecl *OwnedDecl = 0;
3623  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3624                                               &OwnedDecl);
3625
3626  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3627    // C++ [dcl.fct]p6:
3628    //   Types shall not be defined in return or parameter types.
3629    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3630      << Context.getTypeDeclType(OwnedDecl);
3631  }
3632
3633  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3634  // Can this happen for params?  We already checked that they don't conflict
3635  // among each other.  Here they can only shadow globals, which is ok.
3636  IdentifierInfo *II = D.getIdentifier();
3637  if (II) {
3638    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3639      if (PrevDecl->isTemplateParameter()) {
3640        // Maybe we will complain about the shadowed template parameter.
3641        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3642        // Just pretend that we didn't see the previous declaration.
3643        PrevDecl = 0;
3644      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3645        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3646
3647        // Recover by removing the name
3648        II = 0;
3649        D.SetIdentifier(0, D.getIdentifierLoc());
3650      }
3651    }
3652  }
3653
3654  // Parameters can not be abstract class types.
3655  // For record types, this is done by the AbstractClassUsageDiagnoser once
3656  // the class has been completely parsed.
3657  if (!CurContext->isRecord() &&
3658      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3659                             diag::err_abstract_type_in_decl,
3660                             AbstractParamType))
3661    D.setInvalidType(true);
3662
3663  QualType T = adjustParameterType(parmDeclType);
3664
3665  ParmVarDecl *New;
3666  if (T == parmDeclType) // parameter type did not need adjustment
3667    New = ParmVarDecl::Create(Context, CurContext,
3668                              D.getIdentifierLoc(), II,
3669                              parmDeclType, DInfo, StorageClass,
3670                              0);
3671  else // keep track of both the adjusted and unadjusted types
3672    New = OriginalParmVarDecl::Create(Context, CurContext,
3673                                      D.getIdentifierLoc(), II, T, DInfo,
3674                                      parmDeclType, StorageClass, 0);
3675
3676  if (D.isInvalidType())
3677    New->setInvalidDecl();
3678
3679  // Parameter declarators cannot be interface types. All ObjC objects are
3680  // passed by reference.
3681  if (T->isObjCInterfaceType()) {
3682    Diag(D.getIdentifierLoc(),
3683         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3684    New->setInvalidDecl();
3685  }
3686
3687  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3688  if (D.getCXXScopeSpec().isSet()) {
3689    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3690      << D.getCXXScopeSpec().getRange();
3691    New->setInvalidDecl();
3692  }
3693
3694  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3695  // duration shall not be qualified by an address-space qualifier."
3696  // Since all parameters have automatic store duration, they can not have
3697  // an address space.
3698  if (T.getAddressSpace() != 0) {
3699    Diag(D.getIdentifierLoc(),
3700         diag::err_arg_with_address_space);
3701    New->setInvalidDecl();
3702  }
3703
3704
3705  // Add the parameter declaration into this scope.
3706  S->AddDecl(DeclPtrTy::make(New));
3707  if (II)
3708    IdResolver.AddDecl(New);
3709
3710  ProcessDeclAttributes(S, New, D);
3711
3712  if (New->hasAttr<BlocksAttr>()) {
3713    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3714  }
3715  return DeclPtrTy::make(New);
3716}
3717
3718void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3719                                           SourceLocation LocAfterDecls) {
3720  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3721         "Not a function declarator!");
3722  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3723
3724  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3725  // for a K&R function.
3726  if (!FTI.hasPrototype) {
3727    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3728      --i;
3729      if (FTI.ArgInfo[i].Param == 0) {
3730        llvm::SmallString<256> Code;
3731        llvm::raw_svector_ostream(Code) << "  int "
3732                                        << FTI.ArgInfo[i].Ident->getNameStr()
3733                                        << ";\n";
3734        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3735          << FTI.ArgInfo[i].Ident
3736          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3737
3738        // Implicitly declare the argument as type 'int' for lack of a better
3739        // type.
3740        DeclSpec DS;
3741        const char* PrevSpec; // unused
3742        unsigned DiagID; // unused
3743        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3744                           PrevSpec, DiagID);
3745        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3746        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3747        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3748      }
3749    }
3750  }
3751}
3752
3753Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3754                                              Declarator &D) {
3755  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3756  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3757         "Not a function declarator!");
3758  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3759
3760  if (FTI.hasPrototype) {
3761    // FIXME: Diagnose arguments without names in C.
3762  }
3763
3764  Scope *ParentScope = FnBodyScope->getParent();
3765
3766  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3767                                  MultiTemplateParamsArg(*this),
3768                                  /*IsFunctionDefinition=*/true);
3769  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3770}
3771
3772Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3773  if (!D)
3774    return D;
3775  FunctionDecl *FD = 0;
3776
3777  if (FunctionTemplateDecl *FunTmpl
3778        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3779    FD = FunTmpl->getTemplatedDecl();
3780  else
3781    FD = cast<FunctionDecl>(D.getAs<Decl>());
3782
3783  CurFunctionNeedsScopeChecking = false;
3784
3785  // See if this is a redefinition.
3786  const FunctionDecl *Definition;
3787  if (FD->getBody(Definition)) {
3788    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3789    Diag(Definition->getLocation(), diag::note_previous_definition);
3790  }
3791
3792  // Builtin functions cannot be defined.
3793  if (unsigned BuiltinID = FD->getBuiltinID()) {
3794    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3795      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3796      FD->setInvalidDecl();
3797    }
3798  }
3799
3800  // The return type of a function definition must be complete
3801  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3802  QualType ResultType = FD->getResultType();
3803  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3804      !FD->isInvalidDecl() &&
3805      RequireCompleteType(FD->getLocation(), ResultType,
3806                          diag::err_func_def_incomplete_result))
3807    FD->setInvalidDecl();
3808
3809  // GNU warning -Wmissing-prototypes:
3810  //   Warn if a global function is defined without a previous
3811  //   prototype declaration. This warning is issued even if the
3812  //   definition itself provides a prototype. The aim is to detect
3813  //   global functions that fail to be declared in header files.
3814  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3815      !FD->isMain()) {
3816    bool MissingPrototype = true;
3817    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3818         Prev; Prev = Prev->getPreviousDeclaration()) {
3819      // Ignore any declarations that occur in function or method
3820      // scope, because they aren't visible from the header.
3821      if (Prev->getDeclContext()->isFunctionOrMethod())
3822        continue;
3823
3824      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3825      break;
3826    }
3827
3828    if (MissingPrototype)
3829      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3830  }
3831
3832  if (FnBodyScope)
3833    PushDeclContext(FnBodyScope, FD);
3834
3835  // Check the validity of our function parameters
3836  CheckParmsForFunctionDef(FD);
3837
3838  // Introduce our parameters into the function scope
3839  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3840    ParmVarDecl *Param = FD->getParamDecl(p);
3841    Param->setOwningFunction(FD);
3842
3843    // If this has an identifier, add it to the scope stack.
3844    if (Param->getIdentifier() && FnBodyScope)
3845      PushOnScopeChains(Param, FnBodyScope);
3846  }
3847
3848  // Checking attributes of current function definition
3849  // dllimport attribute.
3850  if (FD->getAttr<DLLImportAttr>() &&
3851      (!FD->getAttr<DLLExportAttr>())) {
3852    // dllimport attribute cannot be applied to definition.
3853    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3854      Diag(FD->getLocation(),
3855           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3856        << "dllimport";
3857      FD->setInvalidDecl();
3858      return DeclPtrTy::make(FD);
3859    } else {
3860      // If a symbol previously declared dllimport is later defined, the
3861      // attribute is ignored in subsequent references, and a warning is
3862      // emitted.
3863      Diag(FD->getLocation(),
3864           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3865        << FD->getNameAsCString() << "dllimport";
3866    }
3867  }
3868  return DeclPtrTy::make(FD);
3869}
3870
3871Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3872  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3873}
3874
3875Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3876                                              bool IsInstantiation) {
3877  Decl *dcl = D.getAs<Decl>();
3878  Stmt *Body = BodyArg.takeAs<Stmt>();
3879
3880  FunctionDecl *FD = 0;
3881  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3882  if (FunTmpl)
3883    FD = FunTmpl->getTemplatedDecl();
3884  else
3885    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3886
3887  if (FD) {
3888    FD->setBody(Body);
3889    if (FD->isMain())
3890      // C and C++ allow for main to automagically return 0.
3891      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3892      FD->setHasImplicitReturnZero(true);
3893    else
3894      CheckFallThroughForFunctionDef(FD, Body);
3895
3896    if (!FD->isInvalidDecl())
3897      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3898
3899    // C++ [basic.def.odr]p2:
3900    //   [...] A virtual member function is used if it is not pure. [...]
3901    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3902      if (Method->isVirtual() && !Method->isPure())
3903        MarkDeclarationReferenced(Method->getLocation(), Method);
3904
3905    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3906  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3907    assert(MD == getCurMethodDecl() && "Method parsing confused");
3908    MD->setBody(Body);
3909    CheckFallThroughForFunctionDef(MD, Body);
3910    MD->setEndLoc(Body->getLocEnd());
3911
3912    if (!MD->isInvalidDecl())
3913      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3914  } else {
3915    Body->Destroy(Context);
3916    return DeclPtrTy();
3917  }
3918  if (!IsInstantiation)
3919    PopDeclContext();
3920
3921  // Verify and clean out per-function state.
3922
3923  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3924
3925  // Check goto/label use.
3926  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3927       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3928    LabelStmt *L = I->second;
3929
3930    // Verify that we have no forward references left.  If so, there was a goto
3931    // or address of a label taken, but no definition of it.  Label fwd
3932    // definitions are indicated with a null substmt.
3933    if (L->getSubStmt() != 0)
3934      continue;
3935
3936    // Emit error.
3937    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3938
3939    // At this point, we have gotos that use the bogus label.  Stitch it into
3940    // the function body so that they aren't leaked and that the AST is well
3941    // formed.
3942    if (Body == 0) {
3943      // The whole function wasn't parsed correctly, just delete this.
3944      L->Destroy(Context);
3945      continue;
3946    }
3947
3948    // Otherwise, the body is valid: we want to stitch the label decl into the
3949    // function somewhere so that it is properly owned and so that the goto
3950    // has a valid target.  Do this by creating a new compound stmt with the
3951    // label in it.
3952
3953    // Give the label a sub-statement.
3954    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3955
3956    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3957                               cast<CXXTryStmt>(Body)->getTryBlock() :
3958                               cast<CompoundStmt>(Body);
3959    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3960    Elements.push_back(L);
3961    Compound->setStmts(Context, &Elements[0], Elements.size());
3962  }
3963  FunctionLabelMap.clear();
3964
3965  if (!Body) return D;
3966
3967  // Verify that that gotos and switch cases don't jump into scopes illegally.
3968  if (CurFunctionNeedsScopeChecking)
3969    DiagnoseInvalidJumps(Body);
3970
3971  // C++ constructors that have function-try-blocks can't have return
3972  // statements in the handlers of that block. (C++ [except.handle]p14)
3973  // Verify this.
3974  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3975    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3976
3977  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3978    computeBaseOrMembersToDestroy(Destructor);
3979  return D;
3980}
3981
3982/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3983/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3984NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3985                                          IdentifierInfo &II, Scope *S) {
3986  // Before we produce a declaration for an implicitly defined
3987  // function, see whether there was a locally-scoped declaration of
3988  // this name as a function or variable. If so, use that
3989  // (non-visible) declaration, and complain about it.
3990  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3991    = LocallyScopedExternalDecls.find(&II);
3992  if (Pos != LocallyScopedExternalDecls.end()) {
3993    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3994    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3995    return Pos->second;
3996  }
3997
3998  // Extension in C99.  Legal in C90, but warn about it.
3999  if (II.getNameStr().startswith("__builtin_"))
4000    Diag(Loc, diag::warn_builtin_unknown) << &II;
4001  else if (getLangOptions().C99)
4002    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4003  else
4004    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4005
4006  // Set a Declarator for the implicit definition: int foo();
4007  const char *Dummy;
4008  DeclSpec DS;
4009  unsigned DiagID;
4010  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4011  Error = Error; // Silence warning.
4012  assert(!Error && "Error setting up implicit decl!");
4013  Declarator D(DS, Declarator::BlockContext);
4014  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4015                                             0, 0, false, SourceLocation(),
4016                                             false, 0,0,0, Loc, Loc, D),
4017                SourceLocation());
4018  D.SetIdentifier(&II, Loc);
4019
4020  // Insert this function into translation-unit scope.
4021
4022  DeclContext *PrevDC = CurContext;
4023  CurContext = Context.getTranslationUnitDecl();
4024
4025  FunctionDecl *FD =
4026 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4027  FD->setImplicit();
4028
4029  CurContext = PrevDC;
4030
4031  AddKnownFunctionAttributes(FD);
4032
4033  return FD;
4034}
4035
4036/// \brief Adds any function attributes that we know a priori based on
4037/// the declaration of this function.
4038///
4039/// These attributes can apply both to implicitly-declared builtins
4040/// (like __builtin___printf_chk) or to library-declared functions
4041/// like NSLog or printf.
4042void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4043  if (FD->isInvalidDecl())
4044    return;
4045
4046  // If this is a built-in function, map its builtin attributes to
4047  // actual attributes.
4048  if (unsigned BuiltinID = FD->getBuiltinID()) {
4049    // Handle printf-formatting attributes.
4050    unsigned FormatIdx;
4051    bool HasVAListArg;
4052    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4053      if (!FD->getAttr<FormatAttr>())
4054        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4055                                             HasVAListArg ? 0 : FormatIdx + 2));
4056    }
4057
4058    // Mark const if we don't care about errno and that is the only
4059    // thing preventing the function from being const. This allows
4060    // IRgen to use LLVM intrinsics for such functions.
4061    if (!getLangOptions().MathErrno &&
4062        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4063      if (!FD->getAttr<ConstAttr>())
4064        FD->addAttr(::new (Context) ConstAttr());
4065    }
4066
4067    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4068      FD->addAttr(::new (Context) NoReturnAttr());
4069  }
4070
4071  IdentifierInfo *Name = FD->getIdentifier();
4072  if (!Name)
4073    return;
4074  if ((!getLangOptions().CPlusPlus &&
4075       FD->getDeclContext()->isTranslationUnit()) ||
4076      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4077       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4078       LinkageSpecDecl::lang_c)) {
4079    // Okay: this could be a libc/libm/Objective-C function we know
4080    // about.
4081  } else
4082    return;
4083
4084  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4085    // FIXME: NSLog and NSLogv should be target specific
4086    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4087      // FIXME: We known better than our headers.
4088      const_cast<FormatAttr *>(Format)->setType("printf");
4089    } else
4090      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4091                                             Name->isStr("NSLogv") ? 0 : 2));
4092  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4093    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4094    // target-specific builtins, perhaps?
4095    if (!FD->getAttr<FormatAttr>())
4096      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4097                                             Name->isStr("vasprintf") ? 0 : 3));
4098  }
4099}
4100
4101TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4102  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4103  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4104
4105  // Scope manipulation handled by caller.
4106  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4107                                           D.getIdentifierLoc(),
4108                                           D.getIdentifier(),
4109                                           T);
4110
4111  if (const TagType *TT = T->getAs<TagType>()) {
4112    TagDecl *TD = TT->getDecl();
4113
4114    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4115    // keep track of the TypedefDecl.
4116    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4117      TD->setTypedefForAnonDecl(NewTD);
4118  }
4119
4120  if (D.isInvalidType())
4121    NewTD->setInvalidDecl();
4122  return NewTD;
4123}
4124
4125
4126/// \brief Determine whether a tag with a given kind is acceptable
4127/// as a redeclaration of the given tag declaration.
4128///
4129/// \returns true if the new tag kind is acceptable, false otherwise.
4130bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4131                                        TagDecl::TagKind NewTag,
4132                                        SourceLocation NewTagLoc,
4133                                        const IdentifierInfo &Name) {
4134  // C++ [dcl.type.elab]p3:
4135  //   The class-key or enum keyword present in the
4136  //   elaborated-type-specifier shall agree in kind with the
4137  //   declaration to which the name in theelaborated-type-specifier
4138  //   refers. This rule also applies to the form of
4139  //   elaborated-type-specifier that declares a class-name or
4140  //   friend class since it can be construed as referring to the
4141  //   definition of the class. Thus, in any
4142  //   elaborated-type-specifier, the enum keyword shall be used to
4143  //   refer to an enumeration (7.2), the union class-keyshall be
4144  //   used to refer to a union (clause 9), and either the class or
4145  //   struct class-key shall be used to refer to a class (clause 9)
4146  //   declared using the class or struct class-key.
4147  TagDecl::TagKind OldTag = Previous->getTagKind();
4148  if (OldTag == NewTag)
4149    return true;
4150
4151  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4152      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4153    // Warn about the struct/class tag mismatch.
4154    bool isTemplate = false;
4155    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4156      isTemplate = Record->getDescribedClassTemplate();
4157
4158    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4159      << (NewTag == TagDecl::TK_class)
4160      << isTemplate << &Name
4161      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4162                              OldTag == TagDecl::TK_class? "class" : "struct");
4163    Diag(Previous->getLocation(), diag::note_previous_use);
4164    return true;
4165  }
4166  return false;
4167}
4168
4169/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4170/// former case, Name will be non-null.  In the later case, Name will be null.
4171/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4172/// reference/declaration/definition of a tag.
4173Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4174                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4175                               IdentifierInfo *Name, SourceLocation NameLoc,
4176                               AttributeList *Attr, AccessSpecifier AS,
4177                               MultiTemplateParamsArg TemplateParameterLists,
4178                               bool &OwnedDecl, bool &IsDependent) {
4179  // If this is not a definition, it must have a name.
4180  assert((Name != 0 || TUK == TUK_Definition) &&
4181         "Nameless record must be a definition!");
4182
4183  OwnedDecl = false;
4184  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4185
4186  // FIXME: Check explicit specializations more carefully.
4187  bool isExplicitSpecialization = false;
4188  if (TUK != TUK_Reference) {
4189    if (TemplateParameterList *TemplateParams
4190          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4191                        (TemplateParameterList**)TemplateParameterLists.get(),
4192                                              TemplateParameterLists.size(),
4193                                                    isExplicitSpecialization)) {
4194      if (TemplateParams->size() > 0) {
4195        // This is a declaration or definition of a class template (which may
4196        // be a member of another template).
4197        OwnedDecl = false;
4198        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4199                                               SS, Name, NameLoc, Attr,
4200                                               TemplateParams,
4201                                               AS);
4202        TemplateParameterLists.release();
4203        return Result.get();
4204      } else {
4205        // The "template<>" header is extraneous.
4206        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4207          << ElaboratedType::getNameForTagKind(Kind) << Name;
4208        isExplicitSpecialization = true;
4209      }
4210    }
4211
4212    TemplateParameterLists.release();
4213  }
4214
4215  DeclContext *SearchDC = CurContext;
4216  DeclContext *DC = CurContext;
4217  NamedDecl *PrevDecl = 0;
4218  bool isStdBadAlloc = false;
4219  bool Invalid = false;
4220
4221  bool RedeclarationOnly = (TUK != TUK_Reference);
4222
4223  if (Name && SS.isNotEmpty()) {
4224    // We have a nested-name tag ('struct foo::bar').
4225
4226    // Check for invalid 'foo::'.
4227    if (SS.isInvalid()) {
4228      Name = 0;
4229      goto CreateNewDecl;
4230    }
4231
4232    // If this is a friend or a reference to a class in a dependent
4233    // context, don't try to make a decl for it.
4234    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4235      DC = computeDeclContext(SS, false);
4236      if (!DC) {
4237        IsDependent = true;
4238        return DeclPtrTy();
4239      }
4240    }
4241
4242    if (RequireCompleteDeclContext(SS))
4243      return DeclPtrTy::make((Decl *)0);
4244
4245    DC = computeDeclContext(SS, true);
4246    SearchDC = DC;
4247    // Look-up name inside 'foo::'.
4248    LookupResult R;
4249    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4250
4251    if (R.isAmbiguous()) {
4252      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4253      return DeclPtrTy();
4254    }
4255
4256    if (R.getKind() == LookupResult::Found)
4257      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4258
4259    // A tag 'foo::bar' must already exist.
4260    if (!PrevDecl) {
4261      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4262      Name = 0;
4263      Invalid = true;
4264      goto CreateNewDecl;
4265    }
4266  } else if (Name) {
4267    // If this is a named struct, check to see if there was a previous forward
4268    // declaration or definition.
4269    // FIXME: We're looking into outer scopes here, even when we
4270    // shouldn't be. Doing so can result in ambiguities that we
4271    // shouldn't be diagnosing.
4272    LookupResult R;
4273    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4274    if (R.isAmbiguous()) {
4275      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4276      // FIXME: This is not best way to recover from case like:
4277      //
4278      // struct S s;
4279      //
4280      // causes needless "incomplete type" error later.
4281      Name = 0;
4282      PrevDecl = 0;
4283      Invalid = true;
4284    } else
4285      PrevDecl = R.getAsSingleDecl(Context);
4286
4287    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4288      // FIXME: This makes sure that we ignore the contexts associated
4289      // with C structs, unions, and enums when looking for a matching
4290      // tag declaration or definition. See the similar lookup tweak
4291      // in Sema::LookupName; is there a better way to deal with this?
4292      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4293        SearchDC = SearchDC->getParent();
4294    }
4295  }
4296
4297  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4298    // Maybe we will complain about the shadowed template parameter.
4299    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4300    // Just pretend that we didn't see the previous declaration.
4301    PrevDecl = 0;
4302  }
4303
4304  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4305      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4306    // This is a declaration of or a reference to "std::bad_alloc".
4307    isStdBadAlloc = true;
4308
4309    if (!PrevDecl && StdBadAlloc) {
4310      // std::bad_alloc has been implicitly declared (but made invisible to
4311      // name lookup). Fill in this implicit declaration as the previous
4312      // declaration, so that the declarations get chained appropriately.
4313      PrevDecl = StdBadAlloc;
4314    }
4315  }
4316
4317  if (PrevDecl) {
4318    // Check whether the previous declaration is usable.
4319    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4320
4321    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4322      // If this is a use of a previous tag, or if the tag is already declared
4323      // in the same scope (so that the definition/declaration completes or
4324      // rementions the tag), reuse the decl.
4325      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4326          isDeclInScope(PrevDecl, SearchDC, S)) {
4327        // Make sure that this wasn't declared as an enum and now used as a
4328        // struct or something similar.
4329        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4330          bool SafeToContinue
4331            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4332               Kind != TagDecl::TK_enum);
4333          if (SafeToContinue)
4334            Diag(KWLoc, diag::err_use_with_wrong_tag)
4335              << Name
4336              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4337                                                  PrevTagDecl->getKindName());
4338          else
4339            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4340          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4341
4342          if (SafeToContinue)
4343            Kind = PrevTagDecl->getTagKind();
4344          else {
4345            // Recover by making this an anonymous redefinition.
4346            Name = 0;
4347            PrevDecl = 0;
4348            Invalid = true;
4349          }
4350        }
4351
4352        if (!Invalid) {
4353          // If this is a use, just return the declaration we found.
4354
4355          // FIXME: In the future, return a variant or some other clue
4356          // for the consumer of this Decl to know it doesn't own it.
4357          // For our current ASTs this shouldn't be a problem, but will
4358          // need to be changed with DeclGroups.
4359          if (TUK == TUK_Reference || TUK == TUK_Friend)
4360            return DeclPtrTy::make(PrevDecl);
4361
4362          // Diagnose attempts to redefine a tag.
4363          if (TUK == TUK_Definition) {
4364            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4365              // If we're defining a specialization and the previous definition
4366              // is from an implicit instantiation, don't emit an error
4367              // here; we'll catch this in the general case below.
4368              if (!isExplicitSpecialization ||
4369                  !isa<CXXRecordDecl>(Def) ||
4370                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4371                                               == TSK_ExplicitSpecialization) {
4372                Diag(NameLoc, diag::err_redefinition) << Name;
4373                Diag(Def->getLocation(), diag::note_previous_definition);
4374                // If this is a redefinition, recover by making this
4375                // struct be anonymous, which will make any later
4376                // references get the previous definition.
4377                Name = 0;
4378                PrevDecl = 0;
4379                Invalid = true;
4380              }
4381            } else {
4382              // If the type is currently being defined, complain
4383              // about a nested redefinition.
4384              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4385              if (Tag->isBeingDefined()) {
4386                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4387                Diag(PrevTagDecl->getLocation(),
4388                     diag::note_previous_definition);
4389                Name = 0;
4390                PrevDecl = 0;
4391                Invalid = true;
4392              }
4393            }
4394
4395            // Okay, this is definition of a previously declared or referenced
4396            // tag PrevDecl. We're going to create a new Decl for it.
4397          }
4398        }
4399        // If we get here we have (another) forward declaration or we
4400        // have a definition.  Just create a new decl.
4401
4402      } else {
4403        // If we get here, this is a definition of a new tag type in a nested
4404        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4405        // new decl/type.  We set PrevDecl to NULL so that the entities
4406        // have distinct types.
4407        PrevDecl = 0;
4408      }
4409      // If we get here, we're going to create a new Decl. If PrevDecl
4410      // is non-NULL, it's a definition of the tag declared by
4411      // PrevDecl. If it's NULL, we have a new definition.
4412    } else {
4413      // PrevDecl is a namespace, template, or anything else
4414      // that lives in the IDNS_Tag identifier namespace.
4415      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4416        // The tag name clashes with a namespace name, issue an error and
4417        // recover by making this tag be anonymous.
4418        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4419        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4420        Name = 0;
4421        PrevDecl = 0;
4422        Invalid = true;
4423      } else {
4424        // The existing declaration isn't relevant to us; we're in a
4425        // new scope, so clear out the previous declaration.
4426        PrevDecl = 0;
4427      }
4428    }
4429  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4430             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4431    // C++ [basic.scope.pdecl]p5:
4432    //   -- for an elaborated-type-specifier of the form
4433    //
4434    //          class-key identifier
4435    //
4436    //      if the elaborated-type-specifier is used in the
4437    //      decl-specifier-seq or parameter-declaration-clause of a
4438    //      function defined in namespace scope, the identifier is
4439    //      declared as a class-name in the namespace that contains
4440    //      the declaration; otherwise, except as a friend
4441    //      declaration, the identifier is declared in the smallest
4442    //      non-class, non-function-prototype scope that contains the
4443    //      declaration.
4444    //
4445    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4446    // C structs and unions.
4447    //
4448    // GNU C also supports this behavior as part of its incomplete
4449    // enum types extension, while GNU C++ does not.
4450    //
4451    // Find the context where we'll be declaring the tag.
4452    // FIXME: We would like to maintain the current DeclContext as the
4453    // lexical context,
4454    while (SearchDC->isRecord())
4455      SearchDC = SearchDC->getParent();
4456
4457    // Find the scope where we'll be declaring the tag.
4458    while (S->isClassScope() ||
4459           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4460           ((S->getFlags() & Scope::DeclScope) == 0) ||
4461           (S->getEntity() &&
4462            ((DeclContext *)S->getEntity())->isTransparentContext()))
4463      S = S->getParent();
4464
4465  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4466    // C++ [namespace.memdef]p3:
4467    //   If a friend declaration in a non-local class first declares a
4468    //   class or function, the friend class or function is a member of
4469    //   the innermost enclosing namespace.
4470    while (!SearchDC->isFileContext())
4471      SearchDC = SearchDC->getParent();
4472
4473    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4474    while (S->getEntity() != SearchDC)
4475      S = S->getParent();
4476  }
4477
4478CreateNewDecl:
4479
4480  // If there is an identifier, use the location of the identifier as the
4481  // location of the decl, otherwise use the location of the struct/union
4482  // keyword.
4483  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4484
4485  // Otherwise, create a new declaration. If there is a previous
4486  // declaration of the same entity, the two will be linked via
4487  // PrevDecl.
4488  TagDecl *New;
4489
4490  if (Kind == TagDecl::TK_enum) {
4491    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4492    // enum X { A, B, C } D;    D should chain to X.
4493    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4494                           cast_or_null<EnumDecl>(PrevDecl));
4495    // If this is an undefined enum, warn.
4496    if (TUK != TUK_Definition && !Invalid)  {
4497      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4498                                              : diag::ext_forward_ref_enum;
4499      Diag(Loc, DK);
4500    }
4501  } else {
4502    // struct/union/class
4503
4504    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4505    // struct X { int A; } D;    D should chain to X.
4506    if (getLangOptions().CPlusPlus) {
4507      // FIXME: Look for a way to use RecordDecl for simple structs.
4508      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4509                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4510
4511      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4512        StdBadAlloc = cast<CXXRecordDecl>(New);
4513    } else
4514      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4515                               cast_or_null<RecordDecl>(PrevDecl));
4516  }
4517
4518  if (Kind != TagDecl::TK_enum) {
4519    // Handle #pragma pack: if the #pragma pack stack has non-default
4520    // alignment, make up a packed attribute for this decl. These
4521    // attributes are checked when the ASTContext lays out the
4522    // structure.
4523    //
4524    // It is important for implementing the correct semantics that this
4525    // happen here (in act on tag decl). The #pragma pack stack is
4526    // maintained as a result of parser callbacks which can occur at
4527    // many points during the parsing of a struct declaration (because
4528    // the #pragma tokens are effectively skipped over during the
4529    // parsing of the struct).
4530    if (unsigned Alignment = getPragmaPackAlignment())
4531      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4532  }
4533
4534  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4535    // C++ [dcl.typedef]p3:
4536    //   [...] Similarly, in a given scope, a class or enumeration
4537    //   shall not be declared with the same name as a typedef-name
4538    //   that is declared in that scope and refers to a type other
4539    //   than the class or enumeration itself.
4540    LookupResult Lookup;
4541    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4542    TypedefDecl *PrevTypedef = 0;
4543    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4544      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4545
4546    NamedDecl *PrevTypedefNamed = PrevTypedef;
4547    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4548        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4549          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4550      Diag(Loc, diag::err_tag_definition_of_typedef)
4551        << Context.getTypeDeclType(New)
4552        << PrevTypedef->getUnderlyingType();
4553      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4554      Invalid = true;
4555    }
4556  }
4557
4558  // If this is a specialization of a member class (of a class template),
4559  // check the specialization.
4560  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4561    Invalid = true;
4562
4563  if (Invalid)
4564    New->setInvalidDecl();
4565
4566  if (Attr)
4567    ProcessDeclAttributeList(S, New, Attr);
4568
4569  // If we're declaring or defining a tag in function prototype scope
4570  // in C, note that this type can only be used within the function.
4571  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4572    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4573
4574  // Set the lexical context. If the tag has a C++ scope specifier, the
4575  // lexical context will be different from the semantic context.
4576  New->setLexicalDeclContext(CurContext);
4577
4578  // Mark this as a friend decl if applicable.
4579  if (TUK == TUK_Friend)
4580    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4581
4582  // Set the access specifier.
4583  if (!Invalid && TUK != TUK_Friend)
4584    SetMemberAccessSpecifier(New, PrevDecl, AS);
4585
4586  if (TUK == TUK_Definition)
4587    New->startDefinition();
4588
4589  // If this has an identifier, add it to the scope stack.
4590  if (TUK == TUK_Friend) {
4591    // We might be replacing an existing declaration in the lookup tables;
4592    // if so, borrow its access specifier.
4593    if (PrevDecl)
4594      New->setAccess(PrevDecl->getAccess());
4595
4596    // Friend tag decls are visible in fairly strange ways.
4597    if (!CurContext->isDependentContext()) {
4598      DeclContext *DC = New->getDeclContext()->getLookupContext();
4599      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4600      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4601        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4602    }
4603  } else if (Name) {
4604    S = getNonFieldDeclScope(S);
4605    PushOnScopeChains(New, S);
4606  } else {
4607    CurContext->addDecl(New);
4608  }
4609
4610  // If this is the C FILE type, notify the AST context.
4611  if (IdentifierInfo *II = New->getIdentifier())
4612    if (!New->isInvalidDecl() &&
4613        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4614        II->isStr("FILE"))
4615      Context.setFILEDecl(New);
4616
4617  OwnedDecl = true;
4618  return DeclPtrTy::make(New);
4619}
4620
4621void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4622  AdjustDeclIfTemplate(TagD);
4623  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4624
4625  // Enter the tag context.
4626  PushDeclContext(S, Tag);
4627
4628  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4629    FieldCollector->StartClass();
4630
4631    if (Record->getIdentifier()) {
4632      // C++ [class]p2:
4633      //   [...] The class-name is also inserted into the scope of the
4634      //   class itself; this is known as the injected-class-name. For
4635      //   purposes of access checking, the injected-class-name is treated
4636      //   as if it were a public member name.
4637      CXXRecordDecl *InjectedClassName
4638        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4639                                CurContext, Record->getLocation(),
4640                                Record->getIdentifier(),
4641                                Record->getTagKeywordLoc(),
4642                                Record);
4643      InjectedClassName->setImplicit();
4644      InjectedClassName->setAccess(AS_public);
4645      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4646        InjectedClassName->setDescribedClassTemplate(Template);
4647      PushOnScopeChains(InjectedClassName, S);
4648      assert(InjectedClassName->isInjectedClassName() &&
4649             "Broken injected-class-name");
4650    }
4651  }
4652}
4653
4654void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4655                                    SourceLocation RBraceLoc) {
4656  AdjustDeclIfTemplate(TagD);
4657  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4658  Tag->setRBraceLoc(RBraceLoc);
4659
4660  if (isa<CXXRecordDecl>(Tag))
4661    FieldCollector->FinishClass();
4662
4663  // Exit this scope of this tag's definition.
4664  PopDeclContext();
4665
4666  // Notify the consumer that we've defined a tag.
4667  Consumer.HandleTagDeclDefinition(Tag);
4668}
4669
4670// Note that FieldName may be null for anonymous bitfields.
4671bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4672                          QualType FieldTy, const Expr *BitWidth,
4673                          bool *ZeroWidth) {
4674  // Default to true; that shouldn't confuse checks for emptiness
4675  if (ZeroWidth)
4676    *ZeroWidth = true;
4677
4678  // C99 6.7.2.1p4 - verify the field type.
4679  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4680  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4681    // Handle incomplete types with specific error.
4682    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4683      return true;
4684    if (FieldName)
4685      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4686        << FieldName << FieldTy << BitWidth->getSourceRange();
4687    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4688      << FieldTy << BitWidth->getSourceRange();
4689  }
4690
4691  // If the bit-width is type- or value-dependent, don't try to check
4692  // it now.
4693  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4694    return false;
4695
4696  llvm::APSInt Value;
4697  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4698    return true;
4699
4700  if (Value != 0 && ZeroWidth)
4701    *ZeroWidth = false;
4702
4703  // Zero-width bitfield is ok for anonymous field.
4704  if (Value == 0 && FieldName)
4705    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4706
4707  if (Value.isSigned() && Value.isNegative()) {
4708    if (FieldName)
4709      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4710               << FieldName << Value.toString(10);
4711    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4712      << Value.toString(10);
4713  }
4714
4715  if (!FieldTy->isDependentType()) {
4716    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4717    if (Value.getZExtValue() > TypeSize) {
4718      if (FieldName)
4719        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4720          << FieldName << (unsigned)TypeSize;
4721      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4722        << (unsigned)TypeSize;
4723    }
4724  }
4725
4726  return false;
4727}
4728
4729/// ActOnField - Each field of a struct/union/class is passed into this in order
4730/// to create a FieldDecl object for it.
4731Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4732                                 SourceLocation DeclStart,
4733                                 Declarator &D, ExprTy *BitfieldWidth) {
4734  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4735                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4736                               AS_public);
4737  return DeclPtrTy::make(Res);
4738}
4739
4740/// HandleField - Analyze a field of a C struct or a C++ data member.
4741///
4742FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4743                             SourceLocation DeclStart,
4744                             Declarator &D, Expr *BitWidth,
4745                             AccessSpecifier AS) {
4746  IdentifierInfo *II = D.getIdentifier();
4747  SourceLocation Loc = DeclStart;
4748  if (II) Loc = D.getIdentifierLoc();
4749
4750  DeclaratorInfo *DInfo = 0;
4751  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4752  if (getLangOptions().CPlusPlus)
4753    CheckExtraCXXDefaultArguments(D);
4754
4755  DiagnoseFunctionSpecifiers(D);
4756
4757  if (D.getDeclSpec().isThreadSpecified())
4758    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4759
4760  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4761
4762  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4763    // Maybe we will complain about the shadowed template parameter.
4764    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4765    // Just pretend that we didn't see the previous declaration.
4766    PrevDecl = 0;
4767  }
4768
4769  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4770    PrevDecl = 0;
4771
4772  bool Mutable
4773    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4774  SourceLocation TSSL = D.getSourceRange().getBegin();
4775  FieldDecl *NewFD
4776    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4777                     AS, PrevDecl, &D);
4778  if (NewFD->isInvalidDecl() && PrevDecl) {
4779    // Don't introduce NewFD into scope; there's already something
4780    // with the same name in the same scope.
4781  } else if (II) {
4782    PushOnScopeChains(NewFD, S);
4783  } else
4784    Record->addDecl(NewFD);
4785
4786  return NewFD;
4787}
4788
4789/// \brief Build a new FieldDecl and check its well-formedness.
4790///
4791/// This routine builds a new FieldDecl given the fields name, type,
4792/// record, etc. \p PrevDecl should refer to any previous declaration
4793/// with the same name and in the same scope as the field to be
4794/// created.
4795///
4796/// \returns a new FieldDecl.
4797///
4798/// \todo The Declarator argument is a hack. It will be removed once
4799FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4800                                DeclaratorInfo *DInfo,
4801                                RecordDecl *Record, SourceLocation Loc,
4802                                bool Mutable, Expr *BitWidth,
4803                                SourceLocation TSSL,
4804                                AccessSpecifier AS, NamedDecl *PrevDecl,
4805                                Declarator *D) {
4806  IdentifierInfo *II = Name.getAsIdentifierInfo();
4807  bool InvalidDecl = false;
4808  if (D) InvalidDecl = D->isInvalidType();
4809
4810  // If we receive a broken type, recover by assuming 'int' and
4811  // marking this declaration as invalid.
4812  if (T.isNull()) {
4813    InvalidDecl = true;
4814    T = Context.IntTy;
4815  }
4816
4817  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4818  // than a variably modified type.
4819  if (T->isVariablyModifiedType()) {
4820    bool SizeIsNegative;
4821    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4822                                                           SizeIsNegative);
4823    if (!FixedTy.isNull()) {
4824      Diag(Loc, diag::warn_illegal_constant_array_size);
4825      T = FixedTy;
4826    } else {
4827      if (SizeIsNegative)
4828        Diag(Loc, diag::err_typecheck_negative_array_size);
4829      else
4830        Diag(Loc, diag::err_typecheck_field_variable_size);
4831      InvalidDecl = true;
4832    }
4833  }
4834
4835  // Fields can not have abstract class types
4836  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4837                             AbstractFieldType))
4838    InvalidDecl = true;
4839
4840  bool ZeroWidth = false;
4841  // If this is declared as a bit-field, check the bit-field.
4842  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4843    InvalidDecl = true;
4844    DeleteExpr(BitWidth);
4845    BitWidth = 0;
4846    ZeroWidth = false;
4847  }
4848
4849  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4850                                       BitWidth, Mutable);
4851  if (InvalidDecl)
4852    NewFD->setInvalidDecl();
4853
4854  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4855    Diag(Loc, diag::err_duplicate_member) << II;
4856    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4857    NewFD->setInvalidDecl();
4858  }
4859
4860  if (getLangOptions().CPlusPlus) {
4861    QualType EltTy = Context.getBaseElementType(T);
4862
4863    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4864
4865    if (!T->isPODType())
4866      CXXRecord->setPOD(false);
4867    if (!ZeroWidth)
4868      CXXRecord->setEmpty(false);
4869
4870    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4871      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4872
4873      if (!RDecl->hasTrivialConstructor())
4874        CXXRecord->setHasTrivialConstructor(false);
4875      if (!RDecl->hasTrivialCopyConstructor())
4876        CXXRecord->setHasTrivialCopyConstructor(false);
4877      if (!RDecl->hasTrivialCopyAssignment())
4878        CXXRecord->setHasTrivialCopyAssignment(false);
4879      if (!RDecl->hasTrivialDestructor())
4880        CXXRecord->setHasTrivialDestructor(false);
4881
4882      // C++ 9.5p1: An object of a class with a non-trivial
4883      // constructor, a non-trivial copy constructor, a non-trivial
4884      // destructor, or a non-trivial copy assignment operator
4885      // cannot be a member of a union, nor can an array of such
4886      // objects.
4887      // TODO: C++0x alters this restriction significantly.
4888      if (Record->isUnion()) {
4889        // We check for copy constructors before constructors
4890        // because otherwise we'll never get complaints about
4891        // copy constructors.
4892
4893        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4894
4895        CXXSpecialMember member;
4896        if (!RDecl->hasTrivialCopyConstructor())
4897          member = CXXCopyConstructor;
4898        else if (!RDecl->hasTrivialConstructor())
4899          member = CXXDefaultConstructor;
4900        else if (!RDecl->hasTrivialCopyAssignment())
4901          member = CXXCopyAssignment;
4902        else if (!RDecl->hasTrivialDestructor())
4903          member = CXXDestructor;
4904        else
4905          member = invalid;
4906
4907        if (member != invalid) {
4908          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4909          DiagnoseNontrivial(RT, member);
4910          NewFD->setInvalidDecl();
4911        }
4912      }
4913    }
4914  }
4915
4916  // FIXME: We need to pass in the attributes given an AST
4917  // representation, not a parser representation.
4918  if (D)
4919    // FIXME: What to pass instead of TUScope?
4920    ProcessDeclAttributes(TUScope, NewFD, *D);
4921
4922  if (T.isObjCGCWeak())
4923    Diag(Loc, diag::warn_attribute_weak_on_field);
4924
4925  NewFD->setAccess(AS);
4926
4927  // C++ [dcl.init.aggr]p1:
4928  //   An aggregate is an array or a class (clause 9) with [...] no
4929  //   private or protected non-static data members (clause 11).
4930  // A POD must be an aggregate.
4931  if (getLangOptions().CPlusPlus &&
4932      (AS == AS_private || AS == AS_protected)) {
4933    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4934    CXXRecord->setAggregate(false);
4935    CXXRecord->setPOD(false);
4936  }
4937
4938  return NewFD;
4939}
4940
4941/// DiagnoseNontrivial - Given that a class has a non-trivial
4942/// special member, figure out why.
4943void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4944  QualType QT(T, 0U);
4945  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4946
4947  // Check whether the member was user-declared.
4948  switch (member) {
4949  case CXXDefaultConstructor:
4950    if (RD->hasUserDeclaredConstructor()) {
4951      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4952      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4953        if (!ci->isImplicitlyDefined(Context)) {
4954          SourceLocation CtorLoc = ci->getLocation();
4955          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4956          return;
4957        }
4958
4959      assert(0 && "found no user-declared constructors");
4960      return;
4961    }
4962    break;
4963
4964  case CXXCopyConstructor:
4965    if (RD->hasUserDeclaredCopyConstructor()) {
4966      SourceLocation CtorLoc =
4967        RD->getCopyConstructor(Context, 0)->getLocation();
4968      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4969      return;
4970    }
4971    break;
4972
4973  case CXXCopyAssignment:
4974    if (RD->hasUserDeclaredCopyAssignment()) {
4975      // FIXME: this should use the location of the copy
4976      // assignment, not the type.
4977      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4978      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4979      return;
4980    }
4981    break;
4982
4983  case CXXDestructor:
4984    if (RD->hasUserDeclaredDestructor()) {
4985      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4986      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4987      return;
4988    }
4989    break;
4990  }
4991
4992  typedef CXXRecordDecl::base_class_iterator base_iter;
4993
4994  // Virtual bases and members inhibit trivial copying/construction,
4995  // but not trivial destruction.
4996  if (member != CXXDestructor) {
4997    // Check for virtual bases.  vbases includes indirect virtual bases,
4998    // so we just iterate through the direct bases.
4999    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5000      if (bi->isVirtual()) {
5001        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5002        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5003        return;
5004      }
5005
5006    // Check for virtual methods.
5007    typedef CXXRecordDecl::method_iterator meth_iter;
5008    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5009         ++mi) {
5010      if (mi->isVirtual()) {
5011        SourceLocation MLoc = mi->getSourceRange().getBegin();
5012        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5013        return;
5014      }
5015    }
5016  }
5017
5018  bool (CXXRecordDecl::*hasTrivial)() const;
5019  switch (member) {
5020  case CXXDefaultConstructor:
5021    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5022  case CXXCopyConstructor:
5023    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5024  case CXXCopyAssignment:
5025    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5026  case CXXDestructor:
5027    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5028  default:
5029    assert(0 && "unexpected special member"); return;
5030  }
5031
5032  // Check for nontrivial bases (and recurse).
5033  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5034    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5035    assert(BaseRT);
5036    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5037    if (!(BaseRecTy->*hasTrivial)()) {
5038      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5039      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5040      DiagnoseNontrivial(BaseRT, member);
5041      return;
5042    }
5043  }
5044
5045  // Check for nontrivial members (and recurse).
5046  typedef RecordDecl::field_iterator field_iter;
5047  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5048       ++fi) {
5049    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5050    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5051      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5052
5053      if (!(EltRD->*hasTrivial)()) {
5054        SourceLocation FLoc = (*fi)->getLocation();
5055        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5056        DiagnoseNontrivial(EltRT, member);
5057        return;
5058      }
5059    }
5060  }
5061
5062  assert(0 && "found no explanation for non-trivial member");
5063}
5064
5065/// TranslateIvarVisibility - Translate visibility from a token ID to an
5066///  AST enum value.
5067static ObjCIvarDecl::AccessControl
5068TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5069  switch (ivarVisibility) {
5070  default: assert(0 && "Unknown visitibility kind");
5071  case tok::objc_private: return ObjCIvarDecl::Private;
5072  case tok::objc_public: return ObjCIvarDecl::Public;
5073  case tok::objc_protected: return ObjCIvarDecl::Protected;
5074  case tok::objc_package: return ObjCIvarDecl::Package;
5075  }
5076}
5077
5078/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5079/// in order to create an IvarDecl object for it.
5080Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5081                                SourceLocation DeclStart,
5082                                DeclPtrTy IntfDecl,
5083                                Declarator &D, ExprTy *BitfieldWidth,
5084                                tok::ObjCKeywordKind Visibility) {
5085
5086  IdentifierInfo *II = D.getIdentifier();
5087  Expr *BitWidth = (Expr*)BitfieldWidth;
5088  SourceLocation Loc = DeclStart;
5089  if (II) Loc = D.getIdentifierLoc();
5090
5091  // FIXME: Unnamed fields can be handled in various different ways, for
5092  // example, unnamed unions inject all members into the struct namespace!
5093
5094  DeclaratorInfo *DInfo = 0;
5095  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5096
5097  if (BitWidth) {
5098    // 6.7.2.1p3, 6.7.2.1p4
5099    if (VerifyBitField(Loc, II, T, BitWidth)) {
5100      D.setInvalidType();
5101      DeleteExpr(BitWidth);
5102      BitWidth = 0;
5103    }
5104  } else {
5105    // Not a bitfield.
5106
5107    // validate II.
5108
5109  }
5110
5111  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5112  // than a variably modified type.
5113  if (T->isVariablyModifiedType()) {
5114    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5115    D.setInvalidType();
5116  }
5117
5118  // Get the visibility (access control) for this ivar.
5119  ObjCIvarDecl::AccessControl ac =
5120    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5121                                        : ObjCIvarDecl::None;
5122  // Must set ivar's DeclContext to its enclosing interface.
5123  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5124  DeclContext *EnclosingContext;
5125  if (ObjCImplementationDecl *IMPDecl =
5126      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5127    // Case of ivar declared in an implementation. Context is that of its class.
5128    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5129    assert(IDecl && "No class- ActOnIvar");
5130    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5131  } else
5132    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5133  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5134
5135  // Construct the decl.
5136  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5137                                             EnclosingContext, Loc, II, T,
5138                                             DInfo, ac, (Expr *)BitfieldWidth);
5139
5140  if (II) {
5141    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5142    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5143        && !isa<TagDecl>(PrevDecl)) {
5144      Diag(Loc, diag::err_duplicate_member) << II;
5145      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5146      NewID->setInvalidDecl();
5147    }
5148  }
5149
5150  // Process attributes attached to the ivar.
5151  ProcessDeclAttributes(S, NewID, D);
5152
5153  if (D.isInvalidType())
5154    NewID->setInvalidDecl();
5155
5156  if (II) {
5157    // FIXME: When interfaces are DeclContexts, we'll need to add
5158    // these to the interface.
5159    S->AddDecl(DeclPtrTy::make(NewID));
5160    IdResolver.AddDecl(NewID);
5161  }
5162
5163  return DeclPtrTy::make(NewID);
5164}
5165
5166void Sema::ActOnFields(Scope* S,
5167                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5168                       DeclPtrTy *Fields, unsigned NumFields,
5169                       SourceLocation LBrac, SourceLocation RBrac,
5170                       AttributeList *Attr) {
5171  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5172  assert(EnclosingDecl && "missing record or interface decl");
5173
5174  // If the decl this is being inserted into is invalid, then it may be a
5175  // redeclaration or some other bogus case.  Don't try to add fields to it.
5176  if (EnclosingDecl->isInvalidDecl()) {
5177    // FIXME: Deallocate fields?
5178    return;
5179  }
5180
5181
5182  // Verify that all the fields are okay.
5183  unsigned NumNamedMembers = 0;
5184  llvm::SmallVector<FieldDecl*, 32> RecFields;
5185
5186  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5187  for (unsigned i = 0; i != NumFields; ++i) {
5188    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5189
5190    // Get the type for the field.
5191    Type *FDTy = FD->getType().getTypePtr();
5192
5193    if (!FD->isAnonymousStructOrUnion()) {
5194      // Remember all fields written by the user.
5195      RecFields.push_back(FD);
5196    }
5197
5198    // If the field is already invalid for some reason, don't emit more
5199    // diagnostics about it.
5200    if (FD->isInvalidDecl())
5201      continue;
5202
5203    // C99 6.7.2.1p2:
5204    //   A structure or union shall not contain a member with
5205    //   incomplete or function type (hence, a structure shall not
5206    //   contain an instance of itself, but may contain a pointer to
5207    //   an instance of itself), except that the last member of a
5208    //   structure with more than one named member may have incomplete
5209    //   array type; such a structure (and any union containing,
5210    //   possibly recursively, a member that is such a structure)
5211    //   shall not be a member of a structure or an element of an
5212    //   array.
5213    if (FDTy->isFunctionType()) {
5214      // Field declared as a function.
5215      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5216        << FD->getDeclName();
5217      FD->setInvalidDecl();
5218      EnclosingDecl->setInvalidDecl();
5219      continue;
5220    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5221               Record && Record->isStruct()) {
5222      // Flexible array member.
5223      if (NumNamedMembers < 1) {
5224        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5225          << FD->getDeclName();
5226        FD->setInvalidDecl();
5227        EnclosingDecl->setInvalidDecl();
5228        continue;
5229      }
5230      // Okay, we have a legal flexible array member at the end of the struct.
5231      if (Record)
5232        Record->setHasFlexibleArrayMember(true);
5233    } else if (!FDTy->isDependentType() &&
5234               RequireCompleteType(FD->getLocation(), FD->getType(),
5235                                   diag::err_field_incomplete)) {
5236      // Incomplete type
5237      FD->setInvalidDecl();
5238      EnclosingDecl->setInvalidDecl();
5239      continue;
5240    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5241      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5242        // If this is a member of a union, then entire union becomes "flexible".
5243        if (Record && Record->isUnion()) {
5244          Record->setHasFlexibleArrayMember(true);
5245        } else {
5246          // If this is a struct/class and this is not the last element, reject
5247          // it.  Note that GCC supports variable sized arrays in the middle of
5248          // structures.
5249          if (i != NumFields-1)
5250            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5251              << FD->getDeclName() << FD->getType();
5252          else {
5253            // We support flexible arrays at the end of structs in
5254            // other structs as an extension.
5255            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5256              << FD->getDeclName();
5257            if (Record)
5258              Record->setHasFlexibleArrayMember(true);
5259          }
5260        }
5261      }
5262      if (Record && FDTTy->getDecl()->hasObjectMember())
5263        Record->setHasObjectMember(true);
5264    } else if (FDTy->isObjCInterfaceType()) {
5265      /// A field cannot be an Objective-c object
5266      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5267      FD->setInvalidDecl();
5268      EnclosingDecl->setInvalidDecl();
5269      continue;
5270    } else if (getLangOptions().ObjC1 &&
5271               getLangOptions().getGCMode() != LangOptions::NonGC &&
5272               Record &&
5273               (FD->getType()->isObjCObjectPointerType() ||
5274                FD->getType().isObjCGCStrong()))
5275      Record->setHasObjectMember(true);
5276    // Keep track of the number of named members.
5277    if (FD->getIdentifier())
5278      ++NumNamedMembers;
5279  }
5280
5281  // Okay, we successfully defined 'Record'.
5282  if (Record) {
5283    Record->completeDefinition(Context);
5284  } else {
5285    ObjCIvarDecl **ClsFields =
5286      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5287    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5288      ID->setIVarList(ClsFields, RecFields.size(), Context);
5289      ID->setLocEnd(RBrac);
5290      // Add ivar's to class's DeclContext.
5291      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5292        ClsFields[i]->setLexicalDeclContext(ID);
5293        ID->addDecl(ClsFields[i]);
5294      }
5295      // Must enforce the rule that ivars in the base classes may not be
5296      // duplicates.
5297      if (ID->getSuperClass()) {
5298        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5299             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5300          ObjCIvarDecl* Ivar = (*IVI);
5301
5302          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5303            ObjCIvarDecl* prevIvar =
5304              ID->getSuperClass()->lookupInstanceVariable(II);
5305            if (prevIvar) {
5306              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5307              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5308            }
5309          }
5310        }
5311      }
5312    } else if (ObjCImplementationDecl *IMPDecl =
5313                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5314      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5315      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5316        // Ivar declared in @implementation never belongs to the implementation.
5317        // Only it is in implementation's lexical context.
5318        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5319      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5320    }
5321  }
5322
5323  if (Attr)
5324    ProcessDeclAttributeList(S, Record, Attr);
5325}
5326
5327EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5328                                          EnumConstantDecl *LastEnumConst,
5329                                          SourceLocation IdLoc,
5330                                          IdentifierInfo *Id,
5331                                          ExprArg val) {
5332  Expr *Val = (Expr *)val.get();
5333
5334  llvm::APSInt EnumVal(32);
5335  QualType EltTy;
5336  if (Val && !Val->isTypeDependent()) {
5337    // Make sure to promote the operand type to int.
5338    UsualUnaryConversions(Val);
5339    if (Val != val.get()) {
5340      val.release();
5341      val = Val;
5342    }
5343
5344    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5345    SourceLocation ExpLoc;
5346    if (!Val->isValueDependent() &&
5347        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5348      Val = 0;
5349    } else {
5350      EltTy = Val->getType();
5351    }
5352  }
5353
5354  if (!Val) {
5355    if (LastEnumConst) {
5356      // Assign the last value + 1.
5357      EnumVal = LastEnumConst->getInitVal();
5358      ++EnumVal;
5359
5360      // Check for overflow on increment.
5361      if (EnumVal < LastEnumConst->getInitVal())
5362        Diag(IdLoc, diag::warn_enum_value_overflow);
5363
5364      EltTy = LastEnumConst->getType();
5365    } else {
5366      // First value, set to zero.
5367      EltTy = Context.IntTy;
5368      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5369    }
5370  }
5371
5372  val.release();
5373  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5374                                  Val, EnumVal);
5375}
5376
5377
5378Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5379                                        DeclPtrTy lastEnumConst,
5380                                        SourceLocation IdLoc,
5381                                        IdentifierInfo *Id,
5382                                        SourceLocation EqualLoc, ExprTy *val) {
5383  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5384  EnumConstantDecl *LastEnumConst =
5385    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5386  Expr *Val = static_cast<Expr*>(val);
5387
5388  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5389  // we find one that is.
5390  S = getNonFieldDeclScope(S);
5391
5392  // Verify that there isn't already something declared with this name in this
5393  // scope.
5394  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5395  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5396    // Maybe we will complain about the shadowed template parameter.
5397    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5398    // Just pretend that we didn't see the previous declaration.
5399    PrevDecl = 0;
5400  }
5401
5402  if (PrevDecl) {
5403    // When in C++, we may get a TagDecl with the same name; in this case the
5404    // enum constant will 'hide' the tag.
5405    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5406           "Received TagDecl when not in C++!");
5407    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5408      if (isa<EnumConstantDecl>(PrevDecl))
5409        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5410      else
5411        Diag(IdLoc, diag::err_redefinition) << Id;
5412      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5413      if (Val) Val->Destroy(Context);
5414      return DeclPtrTy();
5415    }
5416  }
5417
5418  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5419                                            IdLoc, Id, Owned(Val));
5420
5421  // Register this decl in the current scope stack.
5422  if (New)
5423    PushOnScopeChains(New, S);
5424
5425  return DeclPtrTy::make(New);
5426}
5427
5428void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5429                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5430                         DeclPtrTy *Elements, unsigned NumElements,
5431                         Scope *S, AttributeList *Attr) {
5432  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5433  QualType EnumType = Context.getTypeDeclType(Enum);
5434
5435  if (Attr)
5436    ProcessDeclAttributeList(S, Enum, Attr);
5437
5438  // TODO: If the result value doesn't fit in an int, it must be a long or long
5439  // long value.  ISO C does not support this, but GCC does as an extension,
5440  // emit a warning.
5441  unsigned IntWidth = Context.Target.getIntWidth();
5442  unsigned CharWidth = Context.Target.getCharWidth();
5443  unsigned ShortWidth = Context.Target.getShortWidth();
5444
5445  // Verify that all the values are okay, compute the size of the values, and
5446  // reverse the list.
5447  unsigned NumNegativeBits = 0;
5448  unsigned NumPositiveBits = 0;
5449
5450  // Keep track of whether all elements have type int.
5451  bool AllElementsInt = true;
5452
5453  for (unsigned i = 0; i != NumElements; ++i) {
5454    EnumConstantDecl *ECD =
5455      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5456    if (!ECD) continue;  // Already issued a diagnostic.
5457
5458    // If the enum value doesn't fit in an int, emit an extension warning.
5459    const llvm::APSInt &InitVal = ECD->getInitVal();
5460    assert(InitVal.getBitWidth() >= IntWidth &&
5461           "Should have promoted value to int");
5462    if (InitVal.getBitWidth() > IntWidth) {
5463      llvm::APSInt V(InitVal);
5464      V.trunc(IntWidth);
5465      V.extend(InitVal.getBitWidth());
5466      if (V != InitVal)
5467        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5468          << InitVal.toString(10);
5469    }
5470
5471    // Keep track of the size of positive and negative values.
5472    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5473      NumPositiveBits = std::max(NumPositiveBits,
5474                                 (unsigned)InitVal.getActiveBits());
5475    else
5476      NumNegativeBits = std::max(NumNegativeBits,
5477                                 (unsigned)InitVal.getMinSignedBits());
5478
5479    // Keep track of whether every enum element has type int (very commmon).
5480    if (AllElementsInt)
5481      AllElementsInt = ECD->getType() == Context.IntTy;
5482  }
5483
5484  // Figure out the type that should be used for this enum.
5485  // FIXME: Support -fshort-enums.
5486  QualType BestType;
5487  unsigned BestWidth;
5488
5489  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5490
5491  if (NumNegativeBits) {
5492    // If there is a negative value, figure out the smallest integer type (of
5493    // int/long/longlong) that fits.
5494    // If it's packed, check also if it fits a char or a short.
5495    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5496        BestType = Context.SignedCharTy;
5497        BestWidth = CharWidth;
5498    } else if (Packed && NumNegativeBits <= ShortWidth &&
5499               NumPositiveBits < ShortWidth) {
5500        BestType = Context.ShortTy;
5501        BestWidth = ShortWidth;
5502    }
5503    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5504      BestType = Context.IntTy;
5505      BestWidth = IntWidth;
5506    } else {
5507      BestWidth = Context.Target.getLongWidth();
5508
5509      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5510        BestType = Context.LongTy;
5511      else {
5512        BestWidth = Context.Target.getLongLongWidth();
5513
5514        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5515          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5516        BestType = Context.LongLongTy;
5517      }
5518    }
5519  } else {
5520    // If there is no negative value, figure out which of uint, ulong, ulonglong
5521    // fits.
5522    // If it's packed, check also if it fits a char or a short.
5523    if (Packed && NumPositiveBits <= CharWidth) {
5524        BestType = Context.UnsignedCharTy;
5525        BestWidth = CharWidth;
5526    } else if (Packed && NumPositiveBits <= ShortWidth) {
5527        BestType = Context.UnsignedShortTy;
5528        BestWidth = ShortWidth;
5529    }
5530    else if (NumPositiveBits <= IntWidth) {
5531      BestType = Context.UnsignedIntTy;
5532      BestWidth = IntWidth;
5533    } else if (NumPositiveBits <=
5534               (BestWidth = Context.Target.getLongWidth())) {
5535      BestType = Context.UnsignedLongTy;
5536    } else {
5537      BestWidth = Context.Target.getLongLongWidth();
5538      assert(NumPositiveBits <= BestWidth &&
5539             "How could an initializer get larger than ULL?");
5540      BestType = Context.UnsignedLongLongTy;
5541    }
5542  }
5543
5544  // Loop over all of the enumerator constants, changing their types to match
5545  // the type of the enum if needed.
5546  for (unsigned i = 0; i != NumElements; ++i) {
5547    EnumConstantDecl *ECD =
5548      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5549    if (!ECD) continue;  // Already issued a diagnostic.
5550
5551    // Standard C says the enumerators have int type, but we allow, as an
5552    // extension, the enumerators to be larger than int size.  If each
5553    // enumerator value fits in an int, type it as an int, otherwise type it the
5554    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5555    // that X has type 'int', not 'unsigned'.
5556    if (ECD->getType() == Context.IntTy) {
5557      // Make sure the init value is signed.
5558      llvm::APSInt IV = ECD->getInitVal();
5559      IV.setIsSigned(true);
5560      ECD->setInitVal(IV);
5561
5562      if (getLangOptions().CPlusPlus)
5563        // C++ [dcl.enum]p4: Following the closing brace of an
5564        // enum-specifier, each enumerator has the type of its
5565        // enumeration.
5566        ECD->setType(EnumType);
5567      continue;  // Already int type.
5568    }
5569
5570    // Determine whether the value fits into an int.
5571    llvm::APSInt InitVal = ECD->getInitVal();
5572    bool FitsInInt;
5573    if (InitVal.isUnsigned() || !InitVal.isNegative())
5574      FitsInInt = InitVal.getActiveBits() < IntWidth;
5575    else
5576      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5577
5578    // If it fits into an integer type, force it.  Otherwise force it to match
5579    // the enum decl type.
5580    QualType NewTy;
5581    unsigned NewWidth;
5582    bool NewSign;
5583    if (FitsInInt) {
5584      NewTy = Context.IntTy;
5585      NewWidth = IntWidth;
5586      NewSign = true;
5587    } else if (ECD->getType() == BestType) {
5588      // Already the right type!
5589      if (getLangOptions().CPlusPlus)
5590        // C++ [dcl.enum]p4: Following the closing brace of an
5591        // enum-specifier, each enumerator has the type of its
5592        // enumeration.
5593        ECD->setType(EnumType);
5594      continue;
5595    } else {
5596      NewTy = BestType;
5597      NewWidth = BestWidth;
5598      NewSign = BestType->isSignedIntegerType();
5599    }
5600
5601    // Adjust the APSInt value.
5602    InitVal.extOrTrunc(NewWidth);
5603    InitVal.setIsSigned(NewSign);
5604    ECD->setInitVal(InitVal);
5605
5606    // Adjust the Expr initializer and type.
5607    if (ECD->getInitExpr())
5608      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5609                                                      CastExpr::CK_Unknown,
5610                                                      ECD->getInitExpr(),
5611                                                      /*isLvalue=*/false));
5612    if (getLangOptions().CPlusPlus)
5613      // C++ [dcl.enum]p4: Following the closing brace of an
5614      // enum-specifier, each enumerator has the type of its
5615      // enumeration.
5616      ECD->setType(EnumType);
5617    else
5618      ECD->setType(NewTy);
5619  }
5620
5621  Enum->completeDefinition(Context, BestType);
5622}
5623
5624Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5625                                            ExprArg expr) {
5626  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5627
5628  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5629                                                   Loc, AsmString);
5630  CurContext->addDecl(New);
5631  return DeclPtrTy::make(New);
5632}
5633
5634void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5635                             SourceLocation PragmaLoc,
5636                             SourceLocation NameLoc) {
5637  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5638
5639  if (PrevDecl) {
5640    PrevDecl->addAttr(::new (Context) WeakAttr());
5641  } else {
5642    (void)WeakUndeclaredIdentifiers.insert(
5643      std::pair<IdentifierInfo*,WeakInfo>
5644        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5645  }
5646}
5647
5648void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5649                                IdentifierInfo* AliasName,
5650                                SourceLocation PragmaLoc,
5651                                SourceLocation NameLoc,
5652                                SourceLocation AliasNameLoc) {
5653  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5654  WeakInfo W = WeakInfo(Name, NameLoc);
5655
5656  if (PrevDecl) {
5657    if (!PrevDecl->hasAttr<AliasAttr>())
5658      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5659        DeclApplyPragmaWeak(TUScope, ND, W);
5660  } else {
5661    (void)WeakUndeclaredIdentifiers.insert(
5662      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5663  }
5664}
5665