SemaDecl.cpp revision 61c6c4415d0f73bd033128ac85f054a0211e7c42
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
895                                 DeclContext *Ctx, Scope *S,
896                                 bool ConsiderLinkage,
897                                 bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->isThisDeclarationADefinition())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->isThisDeclarationADefinition() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979
980  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
981    if (!VD->isFileVarDecl() ||
982        VD->getType().isConstant(Context) ||
983        Context.DeclMustBeEmitted(VD))
984      return false;
985
986    if (VD->isStaticDataMember() &&
987        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
988      return false;
989
990  } else {
991    return false;
992  }
993
994  // Only warn for unused decls internal to the translation unit.
995  if (D->getLinkage() == ExternalLinkage)
996    return false;
997
998  return true;
999}
1000
1001void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1002  if (!D)
1003    return;
1004
1005  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1006    const FunctionDecl *First = FD->getFirstDeclaration();
1007    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1008      return; // First should already be in the vector.
1009  }
1010
1011  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1012    const VarDecl *First = VD->getFirstDeclaration();
1013    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1014      return; // First should already be in the vector.
1015  }
1016
1017   if (ShouldWarnIfUnusedFileScopedDecl(D))
1018     UnusedFileScopedDecls.push_back(D);
1019 }
1020
1021static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1022  if (D->isInvalidDecl())
1023    return false;
1024
1025  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1026    return false;
1027
1028  if (isa<LabelDecl>(D))
1029    return true;
1030
1031  // White-list anything that isn't a local variable.
1032  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1033      !D->getDeclContext()->isFunctionOrMethod())
1034    return false;
1035
1036  // Types of valid local variables should be complete, so this should succeed.
1037  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1038
1039    // White-list anything with an __attribute__((unused)) type.
1040    QualType Ty = VD->getType();
1041
1042    // Only look at the outermost level of typedef.
1043    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1044      if (TT->getDecl()->hasAttr<UnusedAttr>())
1045        return false;
1046    }
1047
1048    // If we failed to complete the type for some reason, or if the type is
1049    // dependent, don't diagnose the variable.
1050    if (Ty->isIncompleteType() || Ty->isDependentType())
1051      return false;
1052
1053    if (const TagType *TT = Ty->getAs<TagType>()) {
1054      const TagDecl *Tag = TT->getDecl();
1055      if (Tag->hasAttr<UnusedAttr>())
1056        return false;
1057
1058      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1059        // FIXME: Checking for the presence of a user-declared constructor
1060        // isn't completely accurate; we'd prefer to check that the initializer
1061        // has no side effects.
1062        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1063          return false;
1064      }
1065    }
1066
1067    // TODO: __attribute__((unused)) templates?
1068  }
1069
1070  return true;
1071}
1072
1073/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1074/// unless they are marked attr(unused).
1075void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1076  if (!ShouldDiagnoseUnusedDecl(D))
1077    return;
1078
1079  unsigned DiagID;
1080  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1081    DiagID = diag::warn_unused_exception_param;
1082  else if (isa<LabelDecl>(D))
1083    DiagID = diag::warn_unused_label;
1084  else
1085    DiagID = diag::warn_unused_variable;
1086
1087  Diag(D->getLocation(), DiagID) << D->getDeclName();
1088}
1089
1090static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1091  // Verify that we have no forward references left.  If so, there was a goto
1092  // or address of a label taken, but no definition of it.  Label fwd
1093  // definitions are indicated with a null substmt.
1094  if (L->getStmt() == 0)
1095    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1096}
1097
1098void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1099  if (S->decl_empty()) return;
1100  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1101         "Scope shouldn't contain decls!");
1102
1103  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1104       I != E; ++I) {
1105    Decl *TmpD = (*I);
1106    assert(TmpD && "This decl didn't get pushed??");
1107
1108    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1109    NamedDecl *D = cast<NamedDecl>(TmpD);
1110
1111    if (!D->getDeclName()) continue;
1112
1113    // Diagnose unused variables in this scope.
1114    if (!S->hasErrorOccurred())
1115      DiagnoseUnusedDecl(D);
1116
1117    // If this was a forward reference to a label, verify it was defined.
1118    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1119      CheckPoppedLabel(LD, *this);
1120
1121    // Remove this name from our lexical scope.
1122    IdResolver.RemoveDecl(D);
1123  }
1124}
1125
1126/// \brief Look for an Objective-C class in the translation unit.
1127///
1128/// \param Id The name of the Objective-C class we're looking for. If
1129/// typo-correction fixes this name, the Id will be updated
1130/// to the fixed name.
1131///
1132/// \param IdLoc The location of the name in the translation unit.
1133///
1134/// \param TypoCorrection If true, this routine will attempt typo correction
1135/// if there is no class with the given name.
1136///
1137/// \returns The declaration of the named Objective-C class, or NULL if the
1138/// class could not be found.
1139ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1140                                              SourceLocation IdLoc,
1141                                              bool TypoCorrection) {
1142  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1143  // creation from this context.
1144  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1145
1146  if (!IDecl && TypoCorrection) {
1147    // Perform typo correction at the given location, but only if we
1148    // find an Objective-C class name.
1149    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1150    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1151        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1152      Diag(IdLoc, diag::err_undef_interface_suggest)
1153        << Id << IDecl->getDeclName()
1154        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1155      Diag(IDecl->getLocation(), diag::note_previous_decl)
1156        << IDecl->getDeclName();
1157
1158      Id = IDecl->getIdentifier();
1159    }
1160  }
1161
1162  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1163}
1164
1165/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1166/// from S, where a non-field would be declared. This routine copes
1167/// with the difference between C and C++ scoping rules in structs and
1168/// unions. For example, the following code is well-formed in C but
1169/// ill-formed in C++:
1170/// @code
1171/// struct S6 {
1172///   enum { BAR } e;
1173/// };
1174///
1175/// void test_S6() {
1176///   struct S6 a;
1177///   a.e = BAR;
1178/// }
1179/// @endcode
1180/// For the declaration of BAR, this routine will return a different
1181/// scope. The scope S will be the scope of the unnamed enumeration
1182/// within S6. In C++, this routine will return the scope associated
1183/// with S6, because the enumeration's scope is a transparent
1184/// context but structures can contain non-field names. In C, this
1185/// routine will return the translation unit scope, since the
1186/// enumeration's scope is a transparent context and structures cannot
1187/// contain non-field names.
1188Scope *Sema::getNonFieldDeclScope(Scope *S) {
1189  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1190         (S->getEntity() &&
1191          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1192         (S->isClassScope() && !getLangOptions().CPlusPlus))
1193    S = S->getParent();
1194  return S;
1195}
1196
1197/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1198/// file scope.  lazily create a decl for it. ForRedeclaration is true
1199/// if we're creating this built-in in anticipation of redeclaring the
1200/// built-in.
1201NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1202                                     Scope *S, bool ForRedeclaration,
1203                                     SourceLocation Loc) {
1204  Builtin::ID BID = (Builtin::ID)bid;
1205
1206  ASTContext::GetBuiltinTypeError Error;
1207  QualType R = Context.GetBuiltinType(BID, Error);
1208  switch (Error) {
1209  case ASTContext::GE_None:
1210    // Okay
1211    break;
1212
1213  case ASTContext::GE_Missing_stdio:
1214    if (ForRedeclaration)
1215      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1216        << Context.BuiltinInfo.GetName(BID);
1217    return 0;
1218
1219  case ASTContext::GE_Missing_setjmp:
1220    if (ForRedeclaration)
1221      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1222        << Context.BuiltinInfo.GetName(BID);
1223    return 0;
1224  }
1225
1226  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1227    Diag(Loc, diag::ext_implicit_lib_function_decl)
1228      << Context.BuiltinInfo.GetName(BID)
1229      << R;
1230    if (Context.BuiltinInfo.getHeaderName(BID) &&
1231        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1232          != Diagnostic::Ignored)
1233      Diag(Loc, diag::note_please_include_header)
1234        << Context.BuiltinInfo.getHeaderName(BID)
1235        << Context.BuiltinInfo.GetName(BID);
1236  }
1237
1238  FunctionDecl *New = FunctionDecl::Create(Context,
1239                                           Context.getTranslationUnitDecl(),
1240                                           Loc, Loc, II, R, /*TInfo=*/0,
1241                                           SC_Extern,
1242                                           SC_None, false,
1243                                           /*hasPrototype=*/true);
1244  New->setImplicit();
1245
1246  // Create Decl objects for each parameter, adding them to the
1247  // FunctionDecl.
1248  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1249    llvm::SmallVector<ParmVarDecl*, 16> Params;
1250    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1251      ParmVarDecl *parm =
1252        ParmVarDecl::Create(Context, New, SourceLocation(),
1253                            SourceLocation(), 0,
1254                            FT->getArgType(i), /*TInfo=*/0,
1255                            SC_None, SC_None, 0);
1256      parm->setScopeInfo(0, i);
1257      Params.push_back(parm);
1258    }
1259    New->setParams(Params.data(), Params.size());
1260  }
1261
1262  AddKnownFunctionAttributes(New);
1263
1264  // TUScope is the translation-unit scope to insert this function into.
1265  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1266  // relate Scopes to DeclContexts, and probably eliminate CurContext
1267  // entirely, but we're not there yet.
1268  DeclContext *SavedContext = CurContext;
1269  CurContext = Context.getTranslationUnitDecl();
1270  PushOnScopeChains(New, TUScope);
1271  CurContext = SavedContext;
1272  return New;
1273}
1274
1275/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1276/// same name and scope as a previous declaration 'Old'.  Figure out
1277/// how to resolve this situation, merging decls or emitting
1278/// diagnostics as appropriate. If there was an error, set New to be invalid.
1279///
1280void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1281  // If the new decl is known invalid already, don't bother doing any
1282  // merging checks.
1283  if (New->isInvalidDecl()) return;
1284
1285  // Allow multiple definitions for ObjC built-in typedefs.
1286  // FIXME: Verify the underlying types are equivalent!
1287  if (getLangOptions().ObjC1) {
1288    const IdentifierInfo *TypeID = New->getIdentifier();
1289    switch (TypeID->getLength()) {
1290    default: break;
1291    case 2:
1292      if (!TypeID->isStr("id"))
1293        break;
1294      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1295      // Install the built-in type for 'id', ignoring the current definition.
1296      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1297      return;
1298    case 5:
1299      if (!TypeID->isStr("Class"))
1300        break;
1301      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1302      // Install the built-in type for 'Class', ignoring the current definition.
1303      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1304      return;
1305    case 3:
1306      if (!TypeID->isStr("SEL"))
1307        break;
1308      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1309      // Install the built-in type for 'SEL', ignoring the current definition.
1310      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1311      return;
1312    case 8:
1313      if (!TypeID->isStr("Protocol"))
1314        break;
1315      Context.setObjCProtoType(New->getUnderlyingType());
1316      return;
1317    }
1318    // Fall through - the typedef name was not a builtin type.
1319  }
1320
1321  // Verify the old decl was also a type.
1322  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1323  if (!Old) {
1324    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1325      << New->getDeclName();
1326
1327    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1328    if (OldD->getLocation().isValid())
1329      Diag(OldD->getLocation(), diag::note_previous_definition);
1330
1331    return New->setInvalidDecl();
1332  }
1333
1334  // If the old declaration is invalid, just give up here.
1335  if (Old->isInvalidDecl())
1336    return New->setInvalidDecl();
1337
1338  // Determine the "old" type we'll use for checking and diagnostics.
1339  QualType OldType;
1340  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1341    OldType = OldTypedef->getUnderlyingType();
1342  else
1343    OldType = Context.getTypeDeclType(Old);
1344
1345  // If the typedef types are not identical, reject them in all languages and
1346  // with any extensions enabled.
1347
1348  if (OldType != New->getUnderlyingType() &&
1349      Context.getCanonicalType(OldType) !=
1350      Context.getCanonicalType(New->getUnderlyingType())) {
1351    int Kind = 0;
1352    if (isa<TypeAliasDecl>(Old))
1353      Kind = 1;
1354    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1355      << Kind << New->getUnderlyingType() << OldType;
1356    if (Old->getLocation().isValid())
1357      Diag(Old->getLocation(), diag::note_previous_definition);
1358    return New->setInvalidDecl();
1359  }
1360
1361  // The types match.  Link up the redeclaration chain if the old
1362  // declaration was a typedef.
1363  // FIXME: this is a potential source of wierdness if the type
1364  // spellings don't match exactly.
1365  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1366    New->setPreviousDeclaration(Typedef);
1367
1368  if (getLangOptions().Microsoft)
1369    return;
1370
1371  if (getLangOptions().CPlusPlus) {
1372    // C++ [dcl.typedef]p2:
1373    //   In a given non-class scope, a typedef specifier can be used to
1374    //   redefine the name of any type declared in that scope to refer
1375    //   to the type to which it already refers.
1376    if (!isa<CXXRecordDecl>(CurContext))
1377      return;
1378
1379    // C++0x [dcl.typedef]p4:
1380    //   In a given class scope, a typedef specifier can be used to redefine
1381    //   any class-name declared in that scope that is not also a typedef-name
1382    //   to refer to the type to which it already refers.
1383    //
1384    // This wording came in via DR424, which was a correction to the
1385    // wording in DR56, which accidentally banned code like:
1386    //
1387    //   struct S {
1388    //     typedef struct A { } A;
1389    //   };
1390    //
1391    // in the C++03 standard. We implement the C++0x semantics, which
1392    // allow the above but disallow
1393    //
1394    //   struct S {
1395    //     typedef int I;
1396    //     typedef int I;
1397    //   };
1398    //
1399    // since that was the intent of DR56.
1400    if (!isa<TypedefNameDecl>(Old))
1401      return;
1402
1403    Diag(New->getLocation(), diag::err_redefinition)
1404      << New->getDeclName();
1405    Diag(Old->getLocation(), diag::note_previous_definition);
1406    return New->setInvalidDecl();
1407  }
1408
1409  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1410  // is normally mapped to an error, but can be controlled with
1411  // -Wtypedef-redefinition.  If either the original or the redefinition is
1412  // in a system header, don't emit this for compatibility with GCC.
1413  if (getDiagnostics().getSuppressSystemWarnings() &&
1414      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1415       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1416    return;
1417
1418  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1419    << New->getDeclName();
1420  Diag(Old->getLocation(), diag::note_previous_definition);
1421  return;
1422}
1423
1424/// DeclhasAttr - returns true if decl Declaration already has the target
1425/// attribute.
1426static bool
1427DeclHasAttr(const Decl *D, const Attr *A) {
1428  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1429  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1430    if ((*i)->getKind() == A->getKind()) {
1431      // FIXME: Don't hardcode this check
1432      if (OA && isa<OwnershipAttr>(*i))
1433        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1434      return true;
1435    }
1436
1437  return false;
1438}
1439
1440/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1441static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1442                                ASTContext &C) {
1443  if (!oldDecl->hasAttrs())
1444    return;
1445
1446  bool foundAny = newDecl->hasAttrs();
1447
1448  // Ensure that any moving of objects within the allocated map is done before
1449  // we process them.
1450  if (!foundAny) newDecl->setAttrs(AttrVec());
1451
1452  for (specific_attr_iterator<InheritableAttr>
1453       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1454       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1455    if (!DeclHasAttr(newDecl, *i)) {
1456      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1457      newAttr->setInherited(true);
1458      newDecl->addAttr(newAttr);
1459      foundAny = true;
1460    }
1461  }
1462
1463  if (!foundAny) newDecl->dropAttrs();
1464}
1465
1466/// mergeParamDeclAttributes - Copy attributes from the old parameter
1467/// to the new one.
1468static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1469                                     const ParmVarDecl *oldDecl,
1470                                     ASTContext &C) {
1471  if (!oldDecl->hasAttrs())
1472    return;
1473
1474  bool foundAny = newDecl->hasAttrs();
1475
1476  // Ensure that any moving of objects within the allocated map is
1477  // done before we process them.
1478  if (!foundAny) newDecl->setAttrs(AttrVec());
1479
1480  for (specific_attr_iterator<InheritableParamAttr>
1481       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1482       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1483    if (!DeclHasAttr(newDecl, *i)) {
1484      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1485      newAttr->setInherited(true);
1486      newDecl->addAttr(newAttr);
1487      foundAny = true;
1488    }
1489  }
1490
1491  if (!foundAny) newDecl->dropAttrs();
1492}
1493
1494namespace {
1495
1496/// Used in MergeFunctionDecl to keep track of function parameters in
1497/// C.
1498struct GNUCompatibleParamWarning {
1499  ParmVarDecl *OldParm;
1500  ParmVarDecl *NewParm;
1501  QualType PromotedType;
1502};
1503
1504}
1505
1506/// getSpecialMember - get the special member enum for a method.
1507Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1508  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1509    if (Ctor->isCopyConstructor())
1510      return Sema::CXXCopyConstructor;
1511
1512    return Sema::CXXConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  assert(MD->isCopyAssignmentOperator() &&
1519         "Must have copy assignment operator");
1520  return Sema::CXXCopyAssignment;
1521}
1522
1523/// canRedefineFunction - checks if a function can be redefined. Currently,
1524/// only extern inline functions can be redefined, and even then only in
1525/// GNU89 mode.
1526static bool canRedefineFunction(const FunctionDecl *FD,
1527                                const LangOptions& LangOpts) {
1528  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1529          FD->isInlineSpecified() &&
1530          FD->getStorageClass() == SC_Extern);
1531}
1532
1533/// MergeFunctionDecl - We just parsed a function 'New' from
1534/// declarator D which has the same name and scope as a previous
1535/// declaration 'Old'.  Figure out how to resolve this situation,
1536/// merging decls or emitting diagnostics as appropriate.
1537///
1538/// In C++, New and Old must be declarations that are not
1539/// overloaded. Use IsOverload to determine whether New and Old are
1540/// overloaded, and to select the Old declaration that New should be
1541/// merged with.
1542///
1543/// Returns true if there was an error, false otherwise.
1544bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1545  // Verify the old decl was also a function.
1546  FunctionDecl *Old = 0;
1547  if (FunctionTemplateDecl *OldFunctionTemplate
1548        = dyn_cast<FunctionTemplateDecl>(OldD))
1549    Old = OldFunctionTemplate->getTemplatedDecl();
1550  else
1551    Old = dyn_cast<FunctionDecl>(OldD);
1552  if (!Old) {
1553    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1554      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1555      Diag(Shadow->getTargetDecl()->getLocation(),
1556           diag::note_using_decl_target);
1557      Diag(Shadow->getUsingDecl()->getLocation(),
1558           diag::note_using_decl) << 0;
1559      return true;
1560    }
1561
1562    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1563      << New->getDeclName();
1564    Diag(OldD->getLocation(), diag::note_previous_definition);
1565    return true;
1566  }
1567
1568  // Determine whether the previous declaration was a definition,
1569  // implicit declaration, or a declaration.
1570  diag::kind PrevDiag;
1571  if (Old->isThisDeclarationADefinition())
1572    PrevDiag = diag::note_previous_definition;
1573  else if (Old->isImplicit())
1574    PrevDiag = diag::note_previous_implicit_declaration;
1575  else
1576    PrevDiag = diag::note_previous_declaration;
1577
1578  QualType OldQType = Context.getCanonicalType(Old->getType());
1579  QualType NewQType = Context.getCanonicalType(New->getType());
1580
1581  // Don't complain about this if we're in GNU89 mode and the old function
1582  // is an extern inline function.
1583  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1584      New->getStorageClass() == SC_Static &&
1585      Old->getStorageClass() != SC_Static &&
1586      !canRedefineFunction(Old, getLangOptions())) {
1587    if (getLangOptions().Microsoft) {
1588      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1589      Diag(Old->getLocation(), PrevDiag);
1590    } else {
1591      Diag(New->getLocation(), diag::err_static_non_static) << New;
1592      Diag(Old->getLocation(), PrevDiag);
1593      return true;
1594    }
1595  }
1596
1597  // If a function is first declared with a calling convention, but is
1598  // later declared or defined without one, the second decl assumes the
1599  // calling convention of the first.
1600  //
1601  // For the new decl, we have to look at the NON-canonical type to tell the
1602  // difference between a function that really doesn't have a calling
1603  // convention and one that is declared cdecl. That's because in
1604  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1605  // because it is the default calling convention.
1606  //
1607  // Note also that we DO NOT return at this point, because we still have
1608  // other tests to run.
1609  const FunctionType *OldType = cast<FunctionType>(OldQType);
1610  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1611  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1612  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1613  bool RequiresAdjustment = false;
1614  if (OldTypeInfo.getCC() != CC_Default &&
1615      NewTypeInfo.getCC() == CC_Default) {
1616    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1617    RequiresAdjustment = true;
1618  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1619                                     NewTypeInfo.getCC())) {
1620    // Calling conventions really aren't compatible, so complain.
1621    Diag(New->getLocation(), diag::err_cconv_change)
1622      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1623      << (OldTypeInfo.getCC() == CC_Default)
1624      << (OldTypeInfo.getCC() == CC_Default ? "" :
1625          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1626    Diag(Old->getLocation(), diag::note_previous_declaration);
1627    return true;
1628  }
1629
1630  // FIXME: diagnose the other way around?
1631  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1632    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1633    RequiresAdjustment = true;
1634  }
1635
1636  // Merge regparm attribute.
1637  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1638      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1639    if (NewTypeInfo.getHasRegParm()) {
1640      Diag(New->getLocation(), diag::err_regparm_mismatch)
1641        << NewType->getRegParmType()
1642        << OldType->getRegParmType();
1643      Diag(Old->getLocation(), diag::note_previous_declaration);
1644      return true;
1645    }
1646
1647    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1648    RequiresAdjustment = true;
1649  }
1650
1651  if (RequiresAdjustment) {
1652    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1653    New->setType(QualType(NewType, 0));
1654    NewQType = Context.getCanonicalType(New->getType());
1655  }
1656
1657  if (getLangOptions().CPlusPlus) {
1658    // (C++98 13.1p2):
1659    //   Certain function declarations cannot be overloaded:
1660    //     -- Function declarations that differ only in the return type
1661    //        cannot be overloaded.
1662    QualType OldReturnType = OldType->getResultType();
1663    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1664    QualType ResQT;
1665    if (OldReturnType != NewReturnType) {
1666      if (NewReturnType->isObjCObjectPointerType()
1667          && OldReturnType->isObjCObjectPointerType())
1668        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1669      if (ResQT.isNull()) {
1670        if (New->isCXXClassMember() && New->isOutOfLine())
1671          Diag(New->getLocation(),
1672               diag::err_member_def_does_not_match_ret_type) << New;
1673        else
1674          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1675        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1676        return true;
1677      }
1678      else
1679        NewQType = ResQT;
1680    }
1681
1682    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1683    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1684    if (OldMethod && NewMethod) {
1685      // Preserve triviality.
1686      NewMethod->setTrivial(OldMethod->isTrivial());
1687
1688      bool isFriend = NewMethod->getFriendObjectKind();
1689
1690      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1691        //    -- Member function declarations with the same name and the
1692        //       same parameter types cannot be overloaded if any of them
1693        //       is a static member function declaration.
1694        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1695          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1696          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1697          return true;
1698        }
1699
1700        // C++ [class.mem]p1:
1701        //   [...] A member shall not be declared twice in the
1702        //   member-specification, except that a nested class or member
1703        //   class template can be declared and then later defined.
1704        unsigned NewDiag;
1705        if (isa<CXXConstructorDecl>(OldMethod))
1706          NewDiag = diag::err_constructor_redeclared;
1707        else if (isa<CXXDestructorDecl>(NewMethod))
1708          NewDiag = diag::err_destructor_redeclared;
1709        else if (isa<CXXConversionDecl>(NewMethod))
1710          NewDiag = diag::err_conv_function_redeclared;
1711        else
1712          NewDiag = diag::err_member_redeclared;
1713
1714        Diag(New->getLocation(), NewDiag);
1715        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1716
1717      // Complain if this is an explicit declaration of a special
1718      // member that was initially declared implicitly.
1719      //
1720      // As an exception, it's okay to befriend such methods in order
1721      // to permit the implicit constructor/destructor/operator calls.
1722      } else if (OldMethod->isImplicit()) {
1723        if (isFriend) {
1724          NewMethod->setImplicit();
1725        } else {
1726          Diag(NewMethod->getLocation(),
1727               diag::err_definition_of_implicitly_declared_member)
1728            << New << getSpecialMember(OldMethod);
1729          return true;
1730        }
1731      }
1732    }
1733
1734    // (C++98 8.3.5p3):
1735    //   All declarations for a function shall agree exactly in both the
1736    //   return type and the parameter-type-list.
1737    // We also want to respect all the extended bits except noreturn.
1738
1739    // noreturn should now match unless the old type info didn't have it.
1740    QualType OldQTypeForComparison = OldQType;
1741    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1742      assert(OldQType == QualType(OldType, 0));
1743      const FunctionType *OldTypeForComparison
1744        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1745      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1746      assert(OldQTypeForComparison.isCanonical());
1747    }
1748
1749    if (OldQTypeForComparison == NewQType)
1750      return MergeCompatibleFunctionDecls(New, Old);
1751
1752    // Fall through for conflicting redeclarations and redefinitions.
1753  }
1754
1755  // C: Function types need to be compatible, not identical. This handles
1756  // duplicate function decls like "void f(int); void f(enum X);" properly.
1757  if (!getLangOptions().CPlusPlus &&
1758      Context.typesAreCompatible(OldQType, NewQType)) {
1759    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1760    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1761    const FunctionProtoType *OldProto = 0;
1762    if (isa<FunctionNoProtoType>(NewFuncType) &&
1763        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1764      // The old declaration provided a function prototype, but the
1765      // new declaration does not. Merge in the prototype.
1766      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1767      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1768                                                 OldProto->arg_type_end());
1769      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1770                                         ParamTypes.data(), ParamTypes.size(),
1771                                         OldProto->getExtProtoInfo());
1772      New->setType(NewQType);
1773      New->setHasInheritedPrototype();
1774
1775      // Synthesize a parameter for each argument type.
1776      llvm::SmallVector<ParmVarDecl*, 16> Params;
1777      for (FunctionProtoType::arg_type_iterator
1778             ParamType = OldProto->arg_type_begin(),
1779             ParamEnd = OldProto->arg_type_end();
1780           ParamType != ParamEnd; ++ParamType) {
1781        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1782                                                 SourceLocation(),
1783                                                 SourceLocation(), 0,
1784                                                 *ParamType, /*TInfo=*/0,
1785                                                 SC_None, SC_None,
1786                                                 0);
1787        Param->setScopeInfo(0, Params.size());
1788        Param->setImplicit();
1789        Params.push_back(Param);
1790      }
1791
1792      New->setParams(Params.data(), Params.size());
1793    }
1794
1795    return MergeCompatibleFunctionDecls(New, Old);
1796  }
1797
1798  // GNU C permits a K&R definition to follow a prototype declaration
1799  // if the declared types of the parameters in the K&R definition
1800  // match the types in the prototype declaration, even when the
1801  // promoted types of the parameters from the K&R definition differ
1802  // from the types in the prototype. GCC then keeps the types from
1803  // the prototype.
1804  //
1805  // If a variadic prototype is followed by a non-variadic K&R definition,
1806  // the K&R definition becomes variadic.  This is sort of an edge case, but
1807  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1808  // C99 6.9.1p8.
1809  if (!getLangOptions().CPlusPlus &&
1810      Old->hasPrototype() && !New->hasPrototype() &&
1811      New->getType()->getAs<FunctionProtoType>() &&
1812      Old->getNumParams() == New->getNumParams()) {
1813    llvm::SmallVector<QualType, 16> ArgTypes;
1814    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1815    const FunctionProtoType *OldProto
1816      = Old->getType()->getAs<FunctionProtoType>();
1817    const FunctionProtoType *NewProto
1818      = New->getType()->getAs<FunctionProtoType>();
1819
1820    // Determine whether this is the GNU C extension.
1821    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1822                                               NewProto->getResultType());
1823    bool LooseCompatible = !MergedReturn.isNull();
1824    for (unsigned Idx = 0, End = Old->getNumParams();
1825         LooseCompatible && Idx != End; ++Idx) {
1826      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1827      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1828      if (Context.typesAreCompatible(OldParm->getType(),
1829                                     NewProto->getArgType(Idx))) {
1830        ArgTypes.push_back(NewParm->getType());
1831      } else if (Context.typesAreCompatible(OldParm->getType(),
1832                                            NewParm->getType(),
1833                                            /*CompareUnqualified=*/true)) {
1834        GNUCompatibleParamWarning Warn
1835          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1836        Warnings.push_back(Warn);
1837        ArgTypes.push_back(NewParm->getType());
1838      } else
1839        LooseCompatible = false;
1840    }
1841
1842    if (LooseCompatible) {
1843      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1844        Diag(Warnings[Warn].NewParm->getLocation(),
1845             diag::ext_param_promoted_not_compatible_with_prototype)
1846          << Warnings[Warn].PromotedType
1847          << Warnings[Warn].OldParm->getType();
1848        if (Warnings[Warn].OldParm->getLocation().isValid())
1849          Diag(Warnings[Warn].OldParm->getLocation(),
1850               diag::note_previous_declaration);
1851      }
1852
1853      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1854                                           ArgTypes.size(),
1855                                           OldProto->getExtProtoInfo()));
1856      return MergeCompatibleFunctionDecls(New, Old);
1857    }
1858
1859    // Fall through to diagnose conflicting types.
1860  }
1861
1862  // A function that has already been declared has been redeclared or defined
1863  // with a different type- show appropriate diagnostic
1864  if (unsigned BuiltinID = Old->getBuiltinID()) {
1865    // The user has declared a builtin function with an incompatible
1866    // signature.
1867    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1868      // The function the user is redeclaring is a library-defined
1869      // function like 'malloc' or 'printf'. Warn about the
1870      // redeclaration, then pretend that we don't know about this
1871      // library built-in.
1872      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1873      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1874        << Old << Old->getType();
1875      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1876      Old->setInvalidDecl();
1877      return false;
1878    }
1879
1880    PrevDiag = diag::note_previous_builtin_declaration;
1881  }
1882
1883  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1884  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1885  return true;
1886}
1887
1888/// \brief Completes the merge of two function declarations that are
1889/// known to be compatible.
1890///
1891/// This routine handles the merging of attributes and other
1892/// properties of function declarations form the old declaration to
1893/// the new declaration, once we know that New is in fact a
1894/// redeclaration of Old.
1895///
1896/// \returns false
1897bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1898  // Merge the attributes
1899  mergeDeclAttributes(New, Old, Context);
1900
1901  // Merge the storage class.
1902  if (Old->getStorageClass() != SC_Extern &&
1903      Old->getStorageClass() != SC_None)
1904    New->setStorageClass(Old->getStorageClass());
1905
1906  // Merge "pure" flag.
1907  if (Old->isPure())
1908    New->setPure();
1909
1910  // Merge the "deleted" flag.
1911  if (Old->isDeleted())
1912    New->setDeleted();
1913
1914  // Merge attributes from the parameters.  These can mismatch with K&R
1915  // declarations.
1916  if (New->getNumParams() == Old->getNumParams())
1917    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1918      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1919                               Context);
1920
1921  if (getLangOptions().CPlusPlus)
1922    return MergeCXXFunctionDecl(New, Old);
1923
1924  return false;
1925}
1926
1927void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1928                                const ObjCMethodDecl *oldMethod) {
1929  // Merge the attributes.
1930  mergeDeclAttributes(newMethod, oldMethod, Context);
1931
1932  // Merge attributes from the parameters.
1933  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1934         ni = newMethod->param_begin(), ne = newMethod->param_end();
1935       ni != ne; ++ni, ++oi)
1936    mergeParamDeclAttributes(*ni, *oi, Context);
1937}
1938
1939/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1940/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1941/// emitting diagnostics as appropriate.
1942///
1943/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1944/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1945/// check them before the initializer is attached.
1946///
1947void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1948  if (New->isInvalidDecl() || Old->isInvalidDecl())
1949    return;
1950
1951  QualType MergedT;
1952  if (getLangOptions().CPlusPlus) {
1953    AutoType *AT = New->getType()->getContainedAutoType();
1954    if (AT && !AT->isDeduced()) {
1955      // We don't know what the new type is until the initializer is attached.
1956      return;
1957    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1958      // These could still be something that needs exception specs checked.
1959      return MergeVarDeclExceptionSpecs(New, Old);
1960    }
1961    // C++ [basic.link]p10:
1962    //   [...] the types specified by all declarations referring to a given
1963    //   object or function shall be identical, except that declarations for an
1964    //   array object can specify array types that differ by the presence or
1965    //   absence of a major array bound (8.3.4).
1966    else if (Old->getType()->isIncompleteArrayType() &&
1967             New->getType()->isArrayType()) {
1968      CanQual<ArrayType> OldArray
1969        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1970      CanQual<ArrayType> NewArray
1971        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1972      if (OldArray->getElementType() == NewArray->getElementType())
1973        MergedT = New->getType();
1974    } else if (Old->getType()->isArrayType() &&
1975             New->getType()->isIncompleteArrayType()) {
1976      CanQual<ArrayType> OldArray
1977        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1978      CanQual<ArrayType> NewArray
1979        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1980      if (OldArray->getElementType() == NewArray->getElementType())
1981        MergedT = Old->getType();
1982    } else if (New->getType()->isObjCObjectPointerType()
1983               && Old->getType()->isObjCObjectPointerType()) {
1984        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1985                                                        Old->getType());
1986    }
1987  } else {
1988    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1989  }
1990  if (MergedT.isNull()) {
1991    Diag(New->getLocation(), diag::err_redefinition_different_type)
1992      << New->getDeclName();
1993    Diag(Old->getLocation(), diag::note_previous_definition);
1994    return New->setInvalidDecl();
1995  }
1996  New->setType(MergedT);
1997}
1998
1999/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2000/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2001/// situation, merging decls or emitting diagnostics as appropriate.
2002///
2003/// Tentative definition rules (C99 6.9.2p2) are checked by
2004/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2005/// definitions here, since the initializer hasn't been attached.
2006///
2007void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2008  // If the new decl is already invalid, don't do any other checking.
2009  if (New->isInvalidDecl())
2010    return;
2011
2012  // Verify the old decl was also a variable.
2013  VarDecl *Old = 0;
2014  if (!Previous.isSingleResult() ||
2015      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2016    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2017      << New->getDeclName();
2018    Diag(Previous.getRepresentativeDecl()->getLocation(),
2019         diag::note_previous_definition);
2020    return New->setInvalidDecl();
2021  }
2022
2023  // C++ [class.mem]p1:
2024  //   A member shall not be declared twice in the member-specification [...]
2025  //
2026  // Here, we need only consider static data members.
2027  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2028    Diag(New->getLocation(), diag::err_duplicate_member)
2029      << New->getIdentifier();
2030    Diag(Old->getLocation(), diag::note_previous_declaration);
2031    New->setInvalidDecl();
2032  }
2033
2034  mergeDeclAttributes(New, Old, Context);
2035
2036  // Merge the types.
2037  MergeVarDeclTypes(New, Old);
2038  if (New->isInvalidDecl())
2039    return;
2040
2041  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2042  if (New->getStorageClass() == SC_Static &&
2043      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2044    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2045    Diag(Old->getLocation(), diag::note_previous_definition);
2046    return New->setInvalidDecl();
2047  }
2048  // C99 6.2.2p4:
2049  //   For an identifier declared with the storage-class specifier
2050  //   extern in a scope in which a prior declaration of that
2051  //   identifier is visible,23) if the prior declaration specifies
2052  //   internal or external linkage, the linkage of the identifier at
2053  //   the later declaration is the same as the linkage specified at
2054  //   the prior declaration. If no prior declaration is visible, or
2055  //   if the prior declaration specifies no linkage, then the
2056  //   identifier has external linkage.
2057  if (New->hasExternalStorage() && Old->hasLinkage())
2058    /* Okay */;
2059  else if (New->getStorageClass() != SC_Static &&
2060           Old->getStorageClass() == SC_Static) {
2061    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2062    Diag(Old->getLocation(), diag::note_previous_definition);
2063    return New->setInvalidDecl();
2064  }
2065
2066  // Check if extern is followed by non-extern and vice-versa.
2067  if (New->hasExternalStorage() &&
2068      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2069    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2070    Diag(Old->getLocation(), diag::note_previous_definition);
2071    return New->setInvalidDecl();
2072  }
2073  if (Old->hasExternalStorage() &&
2074      !New->hasLinkage() && New->isLocalVarDecl()) {
2075    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2076    Diag(Old->getLocation(), diag::note_previous_definition);
2077    return New->setInvalidDecl();
2078  }
2079
2080  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2081
2082  // FIXME: The test for external storage here seems wrong? We still
2083  // need to check for mismatches.
2084  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2085      // Don't complain about out-of-line definitions of static members.
2086      !(Old->getLexicalDeclContext()->isRecord() &&
2087        !New->getLexicalDeclContext()->isRecord())) {
2088    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2089    Diag(Old->getLocation(), diag::note_previous_definition);
2090    return New->setInvalidDecl();
2091  }
2092
2093  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2094    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2095    Diag(Old->getLocation(), diag::note_previous_definition);
2096  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2097    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2098    Diag(Old->getLocation(), diag::note_previous_definition);
2099  }
2100
2101  // C++ doesn't have tentative definitions, so go right ahead and check here.
2102  const VarDecl *Def;
2103  if (getLangOptions().CPlusPlus &&
2104      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2105      (Def = Old->getDefinition())) {
2106    Diag(New->getLocation(), diag::err_redefinition)
2107      << New->getDeclName();
2108    Diag(Def->getLocation(), diag::note_previous_definition);
2109    New->setInvalidDecl();
2110    return;
2111  }
2112  // c99 6.2.2 P4.
2113  // For an identifier declared with the storage-class specifier extern in a
2114  // scope in which a prior declaration of that identifier is visible, if
2115  // the prior declaration specifies internal or external linkage, the linkage
2116  // of the identifier at the later declaration is the same as the linkage
2117  // specified at the prior declaration.
2118  // FIXME. revisit this code.
2119  if (New->hasExternalStorage() &&
2120      Old->getLinkage() == InternalLinkage &&
2121      New->getDeclContext() == Old->getDeclContext())
2122    New->setStorageClass(Old->getStorageClass());
2123
2124  // Keep a chain of previous declarations.
2125  New->setPreviousDeclaration(Old);
2126
2127  // Inherit access appropriately.
2128  New->setAccess(Old->getAccess());
2129}
2130
2131/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2132/// no declarator (e.g. "struct foo;") is parsed.
2133Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2134                                       DeclSpec &DS) {
2135  return ParsedFreeStandingDeclSpec(S, AS, DS,
2136                                    MultiTemplateParamsArg(*this, 0, 0));
2137}
2138
2139/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2140/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2141/// parameters to cope with template friend declarations.
2142Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2143                                       DeclSpec &DS,
2144                                       MultiTemplateParamsArg TemplateParams) {
2145  Decl *TagD = 0;
2146  TagDecl *Tag = 0;
2147  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2148      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2149      DS.getTypeSpecType() == DeclSpec::TST_union ||
2150      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2151    TagD = DS.getRepAsDecl();
2152
2153    if (!TagD) // We probably had an error
2154      return 0;
2155
2156    // Note that the above type specs guarantee that the
2157    // type rep is a Decl, whereas in many of the others
2158    // it's a Type.
2159    Tag = dyn_cast<TagDecl>(TagD);
2160  }
2161
2162  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2163    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2164    // or incomplete types shall not be restrict-qualified."
2165    if (TypeQuals & DeclSpec::TQ_restrict)
2166      Diag(DS.getRestrictSpecLoc(),
2167           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2168           << DS.getSourceRange();
2169  }
2170
2171  if (DS.isFriendSpecified()) {
2172    // If we're dealing with a decl but not a TagDecl, assume that
2173    // whatever routines created it handled the friendship aspect.
2174    if (TagD && !Tag)
2175      return 0;
2176    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2177  }
2178
2179  // Track whether we warned about the fact that there aren't any
2180  // declarators.
2181  bool emittedWarning = false;
2182
2183  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2184    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2185
2186    if (!Record->getDeclName() && Record->isDefinition() &&
2187        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2188      if (getLangOptions().CPlusPlus ||
2189          Record->getDeclContext()->isRecord())
2190        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2191
2192      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2193        << DS.getSourceRange();
2194      emittedWarning = true;
2195    }
2196  }
2197
2198  // Check for Microsoft C extension: anonymous struct.
2199  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2200      CurContext->isRecord() &&
2201      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2202    // Handle 2 kinds of anonymous struct:
2203    //   struct STRUCT;
2204    // and
2205    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2206    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2207    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2208        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2209         DS.getRepAsType().get()->isStructureType())) {
2210      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2211        << DS.getSourceRange();
2212      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2213    }
2214  }
2215
2216  if (getLangOptions().CPlusPlus &&
2217      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2218    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2219      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2220          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2221        Diag(Enum->getLocation(), diag::ext_no_declarators)
2222          << DS.getSourceRange();
2223        emittedWarning = true;
2224      }
2225
2226  // Skip all the checks below if we have a type error.
2227  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2228
2229  if (!DS.isMissingDeclaratorOk()) {
2230    // Warn about typedefs of enums without names, since this is an
2231    // extension in both Microsoft and GNU.
2232    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2233        Tag && isa<EnumDecl>(Tag)) {
2234      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2235        << DS.getSourceRange();
2236      return Tag;
2237    }
2238
2239    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2240      << DS.getSourceRange();
2241    emittedWarning = true;
2242  }
2243
2244  // We're going to complain about a bunch of spurious specifiers;
2245  // only do this if we're declaring a tag, because otherwise we
2246  // should be getting diag::ext_no_declarators.
2247  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2248    return TagD;
2249
2250  // Note that a linkage-specification sets a storage class, but
2251  // 'extern "C" struct foo;' is actually valid and not theoretically
2252  // useless.
2253  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2254    if (!DS.isExternInLinkageSpec())
2255      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2256        << DeclSpec::getSpecifierName(scs);
2257
2258  if (DS.isThreadSpecified())
2259    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2260  if (DS.getTypeQualifiers()) {
2261    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2262      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2263    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2264      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2265    // Restrict is covered above.
2266  }
2267  if (DS.isInlineSpecified())
2268    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2269  if (DS.isVirtualSpecified())
2270    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2271  if (DS.isExplicitSpecified())
2272    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2273
2274  // FIXME: Warn on useless attributes
2275
2276  return TagD;
2277}
2278
2279/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2280/// builds a statement for it and returns it so it is evaluated.
2281StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2282  StmtResult R;
2283  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2284    Expr *Exp = DS.getRepAsExpr();
2285    QualType Ty = Exp->getType();
2286    if (Ty->isPointerType()) {
2287      do
2288        Ty = Ty->getAs<PointerType>()->getPointeeType();
2289      while (Ty->isPointerType());
2290    }
2291    if (Ty->isVariableArrayType()) {
2292      R = ActOnExprStmt(MakeFullExpr(Exp));
2293    }
2294  }
2295  return R;
2296}
2297
2298/// We are trying to inject an anonymous member into the given scope;
2299/// check if there's an existing declaration that can't be overloaded.
2300///
2301/// \return true if this is a forbidden redeclaration
2302static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2303                                         Scope *S,
2304                                         DeclContext *Owner,
2305                                         DeclarationName Name,
2306                                         SourceLocation NameLoc,
2307                                         unsigned diagnostic) {
2308  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2309                 Sema::ForRedeclaration);
2310  if (!SemaRef.LookupName(R, S)) return false;
2311
2312  if (R.getAsSingle<TagDecl>())
2313    return false;
2314
2315  // Pick a representative declaration.
2316  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2317  assert(PrevDecl && "Expected a non-null Decl");
2318
2319  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2320    return false;
2321
2322  SemaRef.Diag(NameLoc, diagnostic) << Name;
2323  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2324
2325  return true;
2326}
2327
2328/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2329/// anonymous struct or union AnonRecord into the owning context Owner
2330/// and scope S. This routine will be invoked just after we realize
2331/// that an unnamed union or struct is actually an anonymous union or
2332/// struct, e.g.,
2333///
2334/// @code
2335/// union {
2336///   int i;
2337///   float f;
2338/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2339///    // f into the surrounding scope.x
2340/// @endcode
2341///
2342/// This routine is recursive, injecting the names of nested anonymous
2343/// structs/unions into the owning context and scope as well.
2344static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2345                                                DeclContext *Owner,
2346                                                RecordDecl *AnonRecord,
2347                                                AccessSpecifier AS,
2348                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2349                                                      bool MSAnonStruct) {
2350  unsigned diagKind
2351    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2352                            : diag::err_anonymous_struct_member_redecl;
2353
2354  bool Invalid = false;
2355
2356  // Look every FieldDecl and IndirectFieldDecl with a name.
2357  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2358                               DEnd = AnonRecord->decls_end();
2359       D != DEnd; ++D) {
2360    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2361        cast<NamedDecl>(*D)->getDeclName()) {
2362      ValueDecl *VD = cast<ValueDecl>(*D);
2363      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2364                                       VD->getLocation(), diagKind)) {
2365        // C++ [class.union]p2:
2366        //   The names of the members of an anonymous union shall be
2367        //   distinct from the names of any other entity in the
2368        //   scope in which the anonymous union is declared.
2369        Invalid = true;
2370      } else {
2371        // C++ [class.union]p2:
2372        //   For the purpose of name lookup, after the anonymous union
2373        //   definition, the members of the anonymous union are
2374        //   considered to have been defined in the scope in which the
2375        //   anonymous union is declared.
2376        unsigned OldChainingSize = Chaining.size();
2377        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2378          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2379               PE = IF->chain_end(); PI != PE; ++PI)
2380            Chaining.push_back(*PI);
2381        else
2382          Chaining.push_back(VD);
2383
2384        assert(Chaining.size() >= 2);
2385        NamedDecl **NamedChain =
2386          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2387        for (unsigned i = 0; i < Chaining.size(); i++)
2388          NamedChain[i] = Chaining[i];
2389
2390        IndirectFieldDecl* IndirectField =
2391          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2392                                    VD->getIdentifier(), VD->getType(),
2393                                    NamedChain, Chaining.size());
2394
2395        IndirectField->setAccess(AS);
2396        IndirectField->setImplicit();
2397        SemaRef.PushOnScopeChains(IndirectField, S);
2398
2399        // That includes picking up the appropriate access specifier.
2400        if (AS != AS_none) IndirectField->setAccess(AS);
2401
2402        Chaining.resize(OldChainingSize);
2403      }
2404    }
2405  }
2406
2407  return Invalid;
2408}
2409
2410/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2411/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2412/// illegal input values are mapped to SC_None.
2413static StorageClass
2414StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2415  switch (StorageClassSpec) {
2416  case DeclSpec::SCS_unspecified:    return SC_None;
2417  case DeclSpec::SCS_extern:         return SC_Extern;
2418  case DeclSpec::SCS_static:         return SC_Static;
2419  case DeclSpec::SCS_auto:           return SC_Auto;
2420  case DeclSpec::SCS_register:       return SC_Register;
2421  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2422    // Illegal SCSs map to None: error reporting is up to the caller.
2423  case DeclSpec::SCS_mutable:        // Fall through.
2424  case DeclSpec::SCS_typedef:        return SC_None;
2425  }
2426  llvm_unreachable("unknown storage class specifier");
2427}
2428
2429/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2430/// a StorageClass. Any error reporting is up to the caller:
2431/// illegal input values are mapped to SC_None.
2432static StorageClass
2433StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2434  switch (StorageClassSpec) {
2435  case DeclSpec::SCS_unspecified:    return SC_None;
2436  case DeclSpec::SCS_extern:         return SC_Extern;
2437  case DeclSpec::SCS_static:         return SC_Static;
2438  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2439    // Illegal SCSs map to None: error reporting is up to the caller.
2440  case DeclSpec::SCS_auto:           // Fall through.
2441  case DeclSpec::SCS_mutable:        // Fall through.
2442  case DeclSpec::SCS_register:       // Fall through.
2443  case DeclSpec::SCS_typedef:        return SC_None;
2444  }
2445  llvm_unreachable("unknown storage class specifier");
2446}
2447
2448/// BuildAnonymousStructOrUnion - Handle the declaration of an
2449/// anonymous structure or union. Anonymous unions are a C++ feature
2450/// (C++ [class.union]) and a GNU C extension; anonymous structures
2451/// are a GNU C and GNU C++ extension.
2452Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2453                                             AccessSpecifier AS,
2454                                             RecordDecl *Record) {
2455  DeclContext *Owner = Record->getDeclContext();
2456
2457  // Diagnose whether this anonymous struct/union is an extension.
2458  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2459    Diag(Record->getLocation(), diag::ext_anonymous_union);
2460  else if (!Record->isUnion())
2461    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2462
2463  // C and C++ require different kinds of checks for anonymous
2464  // structs/unions.
2465  bool Invalid = false;
2466  if (getLangOptions().CPlusPlus) {
2467    const char* PrevSpec = 0;
2468    unsigned DiagID;
2469    // C++ [class.union]p3:
2470    //   Anonymous unions declared in a named namespace or in the
2471    //   global namespace shall be declared static.
2472    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2473        (isa<TranslationUnitDecl>(Owner) ||
2474         (isa<NamespaceDecl>(Owner) &&
2475          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2476      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2477      Invalid = true;
2478
2479      // Recover by adding 'static'.
2480      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2481                             PrevSpec, DiagID, getLangOptions());
2482    }
2483    // C++ [class.union]p3:
2484    //   A storage class is not allowed in a declaration of an
2485    //   anonymous union in a class scope.
2486    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2487             isa<RecordDecl>(Owner)) {
2488      Diag(DS.getStorageClassSpecLoc(),
2489           diag::err_anonymous_union_with_storage_spec);
2490      Invalid = true;
2491
2492      // Recover by removing the storage specifier.
2493      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2494                             PrevSpec, DiagID, getLangOptions());
2495    }
2496
2497    // C++ [class.union]p2:
2498    //   The member-specification of an anonymous union shall only
2499    //   define non-static data members. [Note: nested types and
2500    //   functions cannot be declared within an anonymous union. ]
2501    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2502                                 MemEnd = Record->decls_end();
2503         Mem != MemEnd; ++Mem) {
2504      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2505        // C++ [class.union]p3:
2506        //   An anonymous union shall not have private or protected
2507        //   members (clause 11).
2508        assert(FD->getAccess() != AS_none);
2509        if (FD->getAccess() != AS_public) {
2510          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2511            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2512          Invalid = true;
2513        }
2514
2515        if (CheckNontrivialField(FD))
2516          Invalid = true;
2517      } else if ((*Mem)->isImplicit()) {
2518        // Any implicit members are fine.
2519      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2520        // This is a type that showed up in an
2521        // elaborated-type-specifier inside the anonymous struct or
2522        // union, but which actually declares a type outside of the
2523        // anonymous struct or union. It's okay.
2524      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2525        if (!MemRecord->isAnonymousStructOrUnion() &&
2526            MemRecord->getDeclName()) {
2527          // Visual C++ allows type definition in anonymous struct or union.
2528          if (getLangOptions().Microsoft)
2529            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2530              << (int)Record->isUnion();
2531          else {
2532            // This is a nested type declaration.
2533            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2534              << (int)Record->isUnion();
2535            Invalid = true;
2536          }
2537        }
2538      } else if (isa<AccessSpecDecl>(*Mem)) {
2539        // Any access specifier is fine.
2540      } else {
2541        // We have something that isn't a non-static data
2542        // member. Complain about it.
2543        unsigned DK = diag::err_anonymous_record_bad_member;
2544        if (isa<TypeDecl>(*Mem))
2545          DK = diag::err_anonymous_record_with_type;
2546        else if (isa<FunctionDecl>(*Mem))
2547          DK = diag::err_anonymous_record_with_function;
2548        else if (isa<VarDecl>(*Mem))
2549          DK = diag::err_anonymous_record_with_static;
2550
2551        // Visual C++ allows type definition in anonymous struct or union.
2552        if (getLangOptions().Microsoft &&
2553            DK == diag::err_anonymous_record_with_type)
2554          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2555            << (int)Record->isUnion();
2556        else {
2557          Diag((*Mem)->getLocation(), DK)
2558              << (int)Record->isUnion();
2559          Invalid = true;
2560        }
2561      }
2562    }
2563  }
2564
2565  if (!Record->isUnion() && !Owner->isRecord()) {
2566    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2567      << (int)getLangOptions().CPlusPlus;
2568    Invalid = true;
2569  }
2570
2571  // Mock up a declarator.
2572  Declarator Dc(DS, Declarator::TypeNameContext);
2573  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2574  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2575
2576  // Create a declaration for this anonymous struct/union.
2577  NamedDecl *Anon = 0;
2578  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2579    Anon = FieldDecl::Create(Context, OwningClass,
2580                             DS.getSourceRange().getBegin(),
2581                             Record->getLocation(),
2582                             /*IdentifierInfo=*/0,
2583                             Context.getTypeDeclType(Record),
2584                             TInfo,
2585                             /*BitWidth=*/0, /*Mutable=*/false);
2586    Anon->setAccess(AS);
2587    if (getLangOptions().CPlusPlus)
2588      FieldCollector->Add(cast<FieldDecl>(Anon));
2589  } else {
2590    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2591    assert(SCSpec != DeclSpec::SCS_typedef &&
2592           "Parser allowed 'typedef' as storage class VarDecl.");
2593    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2594    if (SCSpec == DeclSpec::SCS_mutable) {
2595      // mutable can only appear on non-static class members, so it's always
2596      // an error here
2597      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2598      Invalid = true;
2599      SC = SC_None;
2600    }
2601    SCSpec = DS.getStorageClassSpecAsWritten();
2602    VarDecl::StorageClass SCAsWritten
2603      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2604
2605    Anon = VarDecl::Create(Context, Owner,
2606                           DS.getSourceRange().getBegin(),
2607                           Record->getLocation(), /*IdentifierInfo=*/0,
2608                           Context.getTypeDeclType(Record),
2609                           TInfo, SC, SCAsWritten);
2610  }
2611  Anon->setImplicit();
2612
2613  // Add the anonymous struct/union object to the current
2614  // context. We'll be referencing this object when we refer to one of
2615  // its members.
2616  Owner->addDecl(Anon);
2617
2618  // Inject the members of the anonymous struct/union into the owning
2619  // context and into the identifier resolver chain for name lookup
2620  // purposes.
2621  llvm::SmallVector<NamedDecl*, 2> Chain;
2622  Chain.push_back(Anon);
2623
2624  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2625                                          Chain, false))
2626    Invalid = true;
2627
2628  // Mark this as an anonymous struct/union type. Note that we do not
2629  // do this until after we have already checked and injected the
2630  // members of this anonymous struct/union type, because otherwise
2631  // the members could be injected twice: once by DeclContext when it
2632  // builds its lookup table, and once by
2633  // InjectAnonymousStructOrUnionMembers.
2634  Record->setAnonymousStructOrUnion(true);
2635
2636  if (Invalid)
2637    Anon->setInvalidDecl();
2638
2639  return Anon;
2640}
2641
2642/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2643/// Microsoft C anonymous structure.
2644/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2645/// Example:
2646///
2647/// struct A { int a; };
2648/// struct B { struct A; int b; };
2649///
2650/// void foo() {
2651///   B var;
2652///   var.a = 3;
2653/// }
2654///
2655Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2656                                           RecordDecl *Record) {
2657
2658  // If there is no Record, get the record via the typedef.
2659  if (!Record)
2660    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2661
2662  // Mock up a declarator.
2663  Declarator Dc(DS, Declarator::TypeNameContext);
2664  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2665  assert(TInfo && "couldn't build declarator info for anonymous struct");
2666
2667  // Create a declaration for this anonymous struct.
2668  NamedDecl* Anon = FieldDecl::Create(Context,
2669                             cast<RecordDecl>(CurContext),
2670                             DS.getSourceRange().getBegin(),
2671                             DS.getSourceRange().getBegin(),
2672                             /*IdentifierInfo=*/0,
2673                             Context.getTypeDeclType(Record),
2674                             TInfo,
2675                             /*BitWidth=*/0, /*Mutable=*/false);
2676  Anon->setImplicit();
2677
2678  // Add the anonymous struct object to the current context.
2679  CurContext->addDecl(Anon);
2680
2681  // Inject the members of the anonymous struct into the current
2682  // context and into the identifier resolver chain for name lookup
2683  // purposes.
2684  llvm::SmallVector<NamedDecl*, 2> Chain;
2685  Chain.push_back(Anon);
2686
2687  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2688                                          Record->getDefinition(),
2689                                          AS_none, Chain, true))
2690    Anon->setInvalidDecl();
2691
2692  return Anon;
2693}
2694
2695/// GetNameForDeclarator - Determine the full declaration name for the
2696/// given Declarator.
2697DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2698  return GetNameFromUnqualifiedId(D.getName());
2699}
2700
2701/// \brief Retrieves the declaration name from a parsed unqualified-id.
2702DeclarationNameInfo
2703Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2704  DeclarationNameInfo NameInfo;
2705  NameInfo.setLoc(Name.StartLocation);
2706
2707  switch (Name.getKind()) {
2708
2709  case UnqualifiedId::IK_Identifier:
2710    NameInfo.setName(Name.Identifier);
2711    NameInfo.setLoc(Name.StartLocation);
2712    return NameInfo;
2713
2714  case UnqualifiedId::IK_OperatorFunctionId:
2715    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2716                                           Name.OperatorFunctionId.Operator));
2717    NameInfo.setLoc(Name.StartLocation);
2718    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2719      = Name.OperatorFunctionId.SymbolLocations[0];
2720    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2721      = Name.EndLocation.getRawEncoding();
2722    return NameInfo;
2723
2724  case UnqualifiedId::IK_LiteralOperatorId:
2725    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2726                                                           Name.Identifier));
2727    NameInfo.setLoc(Name.StartLocation);
2728    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2729    return NameInfo;
2730
2731  case UnqualifiedId::IK_ConversionFunctionId: {
2732    TypeSourceInfo *TInfo;
2733    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2734    if (Ty.isNull())
2735      return DeclarationNameInfo();
2736    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2737                                               Context.getCanonicalType(Ty)));
2738    NameInfo.setLoc(Name.StartLocation);
2739    NameInfo.setNamedTypeInfo(TInfo);
2740    return NameInfo;
2741  }
2742
2743  case UnqualifiedId::IK_ConstructorName: {
2744    TypeSourceInfo *TInfo;
2745    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2746    if (Ty.isNull())
2747      return DeclarationNameInfo();
2748    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2749                                              Context.getCanonicalType(Ty)));
2750    NameInfo.setLoc(Name.StartLocation);
2751    NameInfo.setNamedTypeInfo(TInfo);
2752    return NameInfo;
2753  }
2754
2755  case UnqualifiedId::IK_ConstructorTemplateId: {
2756    // In well-formed code, we can only have a constructor
2757    // template-id that refers to the current context, so go there
2758    // to find the actual type being constructed.
2759    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2760    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2761      return DeclarationNameInfo();
2762
2763    // Determine the type of the class being constructed.
2764    QualType CurClassType = Context.getTypeDeclType(CurClass);
2765
2766    // FIXME: Check two things: that the template-id names the same type as
2767    // CurClassType, and that the template-id does not occur when the name
2768    // was qualified.
2769
2770    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2771                                    Context.getCanonicalType(CurClassType)));
2772    NameInfo.setLoc(Name.StartLocation);
2773    // FIXME: should we retrieve TypeSourceInfo?
2774    NameInfo.setNamedTypeInfo(0);
2775    return NameInfo;
2776  }
2777
2778  case UnqualifiedId::IK_DestructorName: {
2779    TypeSourceInfo *TInfo;
2780    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2781    if (Ty.isNull())
2782      return DeclarationNameInfo();
2783    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2784                                              Context.getCanonicalType(Ty)));
2785    NameInfo.setLoc(Name.StartLocation);
2786    NameInfo.setNamedTypeInfo(TInfo);
2787    return NameInfo;
2788  }
2789
2790  case UnqualifiedId::IK_TemplateId: {
2791    TemplateName TName = Name.TemplateId->Template.get();
2792    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2793    return Context.getNameForTemplate(TName, TNameLoc);
2794  }
2795
2796  } // switch (Name.getKind())
2797
2798  assert(false && "Unknown name kind");
2799  return DeclarationNameInfo();
2800}
2801
2802/// isNearlyMatchingFunction - Determine whether the C++ functions
2803/// Declaration and Definition are "nearly" matching. This heuristic
2804/// is used to improve diagnostics in the case where an out-of-line
2805/// function definition doesn't match any declaration within
2806/// the class or namespace.
2807static bool isNearlyMatchingFunction(ASTContext &Context,
2808                                     FunctionDecl *Declaration,
2809                                     FunctionDecl *Definition) {
2810  if (Declaration->param_size() != Definition->param_size())
2811    return false;
2812  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2813    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2814    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2815
2816    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2817                                        DefParamTy.getNonReferenceType()))
2818      return false;
2819  }
2820
2821  return true;
2822}
2823
2824/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2825/// declarator needs to be rebuilt in the current instantiation.
2826/// Any bits of declarator which appear before the name are valid for
2827/// consideration here.  That's specifically the type in the decl spec
2828/// and the base type in any member-pointer chunks.
2829static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2830                                                    DeclarationName Name) {
2831  // The types we specifically need to rebuild are:
2832  //   - typenames, typeofs, and decltypes
2833  //   - types which will become injected class names
2834  // Of course, we also need to rebuild any type referencing such a
2835  // type.  It's safest to just say "dependent", but we call out a
2836  // few cases here.
2837
2838  DeclSpec &DS = D.getMutableDeclSpec();
2839  switch (DS.getTypeSpecType()) {
2840  case DeclSpec::TST_typename:
2841  case DeclSpec::TST_typeofType:
2842  case DeclSpec::TST_decltype: {
2843    // Grab the type from the parser.
2844    TypeSourceInfo *TSI = 0;
2845    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2846    if (T.isNull() || !T->isDependentType()) break;
2847
2848    // Make sure there's a type source info.  This isn't really much
2849    // of a waste; most dependent types should have type source info
2850    // attached already.
2851    if (!TSI)
2852      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2853
2854    // Rebuild the type in the current instantiation.
2855    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2856    if (!TSI) return true;
2857
2858    // Store the new type back in the decl spec.
2859    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2860    DS.UpdateTypeRep(LocType);
2861    break;
2862  }
2863
2864  case DeclSpec::TST_typeofExpr: {
2865    Expr *E = DS.getRepAsExpr();
2866    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2867    if (Result.isInvalid()) return true;
2868    DS.UpdateExprRep(Result.get());
2869    break;
2870  }
2871
2872  default:
2873    // Nothing to do for these decl specs.
2874    break;
2875  }
2876
2877  // It doesn't matter what order we do this in.
2878  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2879    DeclaratorChunk &Chunk = D.getTypeObject(I);
2880
2881    // The only type information in the declarator which can come
2882    // before the declaration name is the base type of a member
2883    // pointer.
2884    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2885      continue;
2886
2887    // Rebuild the scope specifier in-place.
2888    CXXScopeSpec &SS = Chunk.Mem.Scope();
2889    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2890      return true;
2891  }
2892
2893  return false;
2894}
2895
2896Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2897  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2898}
2899
2900/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2901///   If T is the name of a class, then each of the following shall have a
2902///   name different from T:
2903///     - every static data member of class T;
2904///     - every member function of class T
2905///     - every member of class T that is itself a type;
2906/// \returns true if the declaration name violates these rules.
2907bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2908                                   DeclarationNameInfo NameInfo) {
2909  DeclarationName Name = NameInfo.getName();
2910
2911  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2912    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2913      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2914      return true;
2915    }
2916
2917  return false;
2918}
2919
2920Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2921                             MultiTemplateParamsArg TemplateParamLists,
2922                             bool IsFunctionDefinition) {
2923  // TODO: consider using NameInfo for diagnostic.
2924  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2925  DeclarationName Name = NameInfo.getName();
2926
2927  // All of these full declarators require an identifier.  If it doesn't have
2928  // one, the ParsedFreeStandingDeclSpec action should be used.
2929  if (!Name) {
2930    if (!D.isInvalidType())  // Reject this if we think it is valid.
2931      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2932           diag::err_declarator_need_ident)
2933        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2934    return 0;
2935  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2936    return 0;
2937
2938  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2939  // we find one that is.
2940  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2941         (S->getFlags() & Scope::TemplateParamScope) != 0)
2942    S = S->getParent();
2943
2944  DeclContext *DC = CurContext;
2945  if (D.getCXXScopeSpec().isInvalid())
2946    D.setInvalidType();
2947  else if (D.getCXXScopeSpec().isSet()) {
2948    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2949                                        UPPC_DeclarationQualifier))
2950      return 0;
2951
2952    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2953    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2954    if (!DC) {
2955      // If we could not compute the declaration context, it's because the
2956      // declaration context is dependent but does not refer to a class,
2957      // class template, or class template partial specialization. Complain
2958      // and return early, to avoid the coming semantic disaster.
2959      Diag(D.getIdentifierLoc(),
2960           diag::err_template_qualified_declarator_no_match)
2961        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2962        << D.getCXXScopeSpec().getRange();
2963      return 0;
2964    }
2965
2966    bool IsDependentContext = DC->isDependentContext();
2967
2968    if (!IsDependentContext &&
2969        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2970      return 0;
2971
2972    if (isa<CXXRecordDecl>(DC)) {
2973      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2974        Diag(D.getIdentifierLoc(),
2975             diag::err_member_def_undefined_record)
2976          << Name << DC << D.getCXXScopeSpec().getRange();
2977        D.setInvalidType();
2978      } else if (isa<CXXRecordDecl>(CurContext) &&
2979                 !D.getDeclSpec().isFriendSpecified()) {
2980        // The user provided a superfluous scope specifier inside a class
2981        // definition:
2982        //
2983        // class X {
2984        //   void X::f();
2985        // };
2986        if (CurContext->Equals(DC))
2987          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2988            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2989        else
2990          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2991            << Name << D.getCXXScopeSpec().getRange();
2992
2993        // Pretend that this qualifier was not here.
2994        D.getCXXScopeSpec().clear();
2995      }
2996    }
2997
2998    // Check whether we need to rebuild the type of the given
2999    // declaration in the current instantiation.
3000    if (EnteringContext && IsDependentContext &&
3001        TemplateParamLists.size() != 0) {
3002      ContextRAII SavedContext(*this, DC);
3003      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3004        D.setInvalidType();
3005    }
3006  }
3007
3008  if (DiagnoseClassNameShadow(DC, NameInfo))
3009    // If this is a typedef, we'll end up spewing multiple diagnostics.
3010    // Just return early; it's safer.
3011    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3012      return 0;
3013
3014  NamedDecl *New;
3015
3016  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3017  QualType R = TInfo->getType();
3018
3019  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3020                                      UPPC_DeclarationType))
3021    D.setInvalidType();
3022
3023  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3024                        ForRedeclaration);
3025
3026  // See if this is a redefinition of a variable in the same scope.
3027  if (!D.getCXXScopeSpec().isSet()) {
3028    bool IsLinkageLookup = false;
3029
3030    // If the declaration we're planning to build will be a function
3031    // or object with linkage, then look for another declaration with
3032    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3033    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3034      /* Do nothing*/;
3035    else if (R->isFunctionType()) {
3036      if (CurContext->isFunctionOrMethod() ||
3037          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3038        IsLinkageLookup = true;
3039    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3040      IsLinkageLookup = true;
3041    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3042             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3043      IsLinkageLookup = true;
3044
3045    if (IsLinkageLookup)
3046      Previous.clear(LookupRedeclarationWithLinkage);
3047
3048    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3049  } else { // Something like "int foo::x;"
3050    LookupQualifiedName(Previous, DC);
3051
3052    // Don't consider using declarations as previous declarations for
3053    // out-of-line members.
3054    RemoveUsingDecls(Previous);
3055
3056    // C++ 7.3.1.2p2:
3057    // Members (including explicit specializations of templates) of a named
3058    // namespace can also be defined outside that namespace by explicit
3059    // qualification of the name being defined, provided that the entity being
3060    // defined was already declared in the namespace and the definition appears
3061    // after the point of declaration in a namespace that encloses the
3062    // declarations namespace.
3063    //
3064    // Note that we only check the context at this point. We don't yet
3065    // have enough information to make sure that PrevDecl is actually
3066    // the declaration we want to match. For example, given:
3067    //
3068    //   class X {
3069    //     void f();
3070    //     void f(float);
3071    //   };
3072    //
3073    //   void X::f(int) { } // ill-formed
3074    //
3075    // In this case, PrevDecl will point to the overload set
3076    // containing the two f's declared in X, but neither of them
3077    // matches.
3078
3079    // First check whether we named the global scope.
3080    if (isa<TranslationUnitDecl>(DC)) {
3081      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3082        << Name << D.getCXXScopeSpec().getRange();
3083    } else {
3084      DeclContext *Cur = CurContext;
3085      while (isa<LinkageSpecDecl>(Cur))
3086        Cur = Cur->getParent();
3087      if (!Cur->Encloses(DC)) {
3088        // The qualifying scope doesn't enclose the original declaration.
3089        // Emit diagnostic based on current scope.
3090        SourceLocation L = D.getIdentifierLoc();
3091        SourceRange R = D.getCXXScopeSpec().getRange();
3092        if (isa<FunctionDecl>(Cur))
3093          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3094        else
3095          Diag(L, diag::err_invalid_declarator_scope)
3096            << Name << cast<NamedDecl>(DC) << R;
3097        D.setInvalidType();
3098      }
3099    }
3100  }
3101
3102  if (Previous.isSingleResult() &&
3103      Previous.getFoundDecl()->isTemplateParameter()) {
3104    // Maybe we will complain about the shadowed template parameter.
3105    if (!D.isInvalidType())
3106      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3107                                          Previous.getFoundDecl()))
3108        D.setInvalidType();
3109
3110    // Just pretend that we didn't see the previous declaration.
3111    Previous.clear();
3112  }
3113
3114  // In C++, the previous declaration we find might be a tag type
3115  // (class or enum). In this case, the new declaration will hide the
3116  // tag type. Note that this does does not apply if we're declaring a
3117  // typedef (C++ [dcl.typedef]p4).
3118  if (Previous.isSingleTagDecl() &&
3119      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3120    Previous.clear();
3121
3122  bool Redeclaration = false;
3123  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3124    if (TemplateParamLists.size()) {
3125      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3126      return 0;
3127    }
3128
3129    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3130  } else if (R->isFunctionType()) {
3131    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3132                                  move(TemplateParamLists),
3133                                  IsFunctionDefinition, Redeclaration);
3134  } else {
3135    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3136                                  move(TemplateParamLists),
3137                                  Redeclaration);
3138  }
3139
3140  if (New == 0)
3141    return 0;
3142
3143  // If this has an identifier and is not an invalid redeclaration or
3144  // function template specialization, add it to the scope stack.
3145  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3146    PushOnScopeChains(New, S);
3147
3148  return New;
3149}
3150
3151/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3152/// types into constant array types in certain situations which would otherwise
3153/// be errors (for GCC compatibility).
3154static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3155                                                    ASTContext &Context,
3156                                                    bool &SizeIsNegative,
3157                                                    llvm::APSInt &Oversized) {
3158  // This method tries to turn a variable array into a constant
3159  // array even when the size isn't an ICE.  This is necessary
3160  // for compatibility with code that depends on gcc's buggy
3161  // constant expression folding, like struct {char x[(int)(char*)2];}
3162  SizeIsNegative = false;
3163  Oversized = 0;
3164
3165  if (T->isDependentType())
3166    return QualType();
3167
3168  QualifierCollector Qs;
3169  const Type *Ty = Qs.strip(T);
3170
3171  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3172    QualType Pointee = PTy->getPointeeType();
3173    QualType FixedType =
3174        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3175                                            Oversized);
3176    if (FixedType.isNull()) return FixedType;
3177    FixedType = Context.getPointerType(FixedType);
3178    return Qs.apply(Context, FixedType);
3179  }
3180  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3181    QualType Inner = PTy->getInnerType();
3182    QualType FixedType =
3183        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3184                                            Oversized);
3185    if (FixedType.isNull()) return FixedType;
3186    FixedType = Context.getParenType(FixedType);
3187    return Qs.apply(Context, FixedType);
3188  }
3189
3190  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3191  if (!VLATy)
3192    return QualType();
3193  // FIXME: We should probably handle this case
3194  if (VLATy->getElementType()->isVariablyModifiedType())
3195    return QualType();
3196
3197  Expr::EvalResult EvalResult;
3198  if (!VLATy->getSizeExpr() ||
3199      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3200      !EvalResult.Val.isInt())
3201    return QualType();
3202
3203  // Check whether the array size is negative.
3204  llvm::APSInt &Res = EvalResult.Val.getInt();
3205  if (Res.isSigned() && Res.isNegative()) {
3206    SizeIsNegative = true;
3207    return QualType();
3208  }
3209
3210  // Check whether the array is too large to be addressed.
3211  unsigned ActiveSizeBits
3212    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3213                                              Res);
3214  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3215    Oversized = Res;
3216    return QualType();
3217  }
3218
3219  return Context.getConstantArrayType(VLATy->getElementType(),
3220                                      Res, ArrayType::Normal, 0);
3221}
3222
3223/// \brief Register the given locally-scoped external C declaration so
3224/// that it can be found later for redeclarations
3225void
3226Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3227                                       const LookupResult &Previous,
3228                                       Scope *S) {
3229  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3230         "Decl is not a locally-scoped decl!");
3231  // Note that we have a locally-scoped external with this name.
3232  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3233
3234  if (!Previous.isSingleResult())
3235    return;
3236
3237  NamedDecl *PrevDecl = Previous.getFoundDecl();
3238
3239  // If there was a previous declaration of this variable, it may be
3240  // in our identifier chain. Update the identifier chain with the new
3241  // declaration.
3242  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3243    // The previous declaration was found on the identifer resolver
3244    // chain, so remove it from its scope.
3245    while (S && !S->isDeclScope(PrevDecl))
3246      S = S->getParent();
3247
3248    if (S)
3249      S->RemoveDecl(PrevDecl);
3250  }
3251}
3252
3253/// \brief Diagnose function specifiers on a declaration of an identifier that
3254/// does not identify a function.
3255void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3256  // FIXME: We should probably indicate the identifier in question to avoid
3257  // confusion for constructs like "inline int a(), b;"
3258  if (D.getDeclSpec().isInlineSpecified())
3259    Diag(D.getDeclSpec().getInlineSpecLoc(),
3260         diag::err_inline_non_function);
3261
3262  if (D.getDeclSpec().isVirtualSpecified())
3263    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3264         diag::err_virtual_non_function);
3265
3266  if (D.getDeclSpec().isExplicitSpecified())
3267    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3268         diag::err_explicit_non_function);
3269}
3270
3271NamedDecl*
3272Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3273                             QualType R,  TypeSourceInfo *TInfo,
3274                             LookupResult &Previous, bool &Redeclaration) {
3275  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3276  if (D.getCXXScopeSpec().isSet()) {
3277    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3278      << D.getCXXScopeSpec().getRange();
3279    D.setInvalidType();
3280    // Pretend we didn't see the scope specifier.
3281    DC = CurContext;
3282    Previous.clear();
3283  }
3284
3285  if (getLangOptions().CPlusPlus) {
3286    // Check that there are no default arguments (C++ only).
3287    CheckExtraCXXDefaultArguments(D);
3288  }
3289
3290  DiagnoseFunctionSpecifiers(D);
3291
3292  if (D.getDeclSpec().isThreadSpecified())
3293    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3294
3295  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3296    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3297      << D.getName().getSourceRange();
3298    return 0;
3299  }
3300
3301  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3302  if (!NewTD) return 0;
3303
3304  // Handle attributes prior to checking for duplicates in MergeVarDecl
3305  ProcessDeclAttributes(S, NewTD, D);
3306
3307  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3308}
3309
3310/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3311/// declares a typedef-name, either using the 'typedef' type specifier or via
3312/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3313NamedDecl*
3314Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3315                           LookupResult &Previous, bool &Redeclaration) {
3316  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3317  // then it shall have block scope.
3318  // Note that variably modified types must be fixed before merging the decl so
3319  // that redeclarations will match.
3320  QualType T = NewTD->getUnderlyingType();
3321  if (T->isVariablyModifiedType()) {
3322    getCurFunction()->setHasBranchProtectedScope();
3323
3324    if (S->getFnParent() == 0) {
3325      bool SizeIsNegative;
3326      llvm::APSInt Oversized;
3327      QualType FixedTy =
3328          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3329                                              Oversized);
3330      if (!FixedTy.isNull()) {
3331        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3332        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3333      } else {
3334        if (SizeIsNegative)
3335          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3336        else if (T->isVariableArrayType())
3337          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3338        else if (Oversized.getBoolValue())
3339          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3340        else
3341          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3342        NewTD->setInvalidDecl();
3343      }
3344    }
3345  }
3346
3347  // Merge the decl with the existing one if appropriate. If the decl is
3348  // in an outer scope, it isn't the same thing.
3349  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
3350                       /*ExplicitInstantiationOrSpecialization=*/false);
3351  if (!Previous.empty()) {
3352    Redeclaration = true;
3353    MergeTypedefNameDecl(NewTD, Previous);
3354  }
3355
3356  // If this is the C FILE type, notify the AST context.
3357  if (IdentifierInfo *II = NewTD->getIdentifier())
3358    if (!NewTD->isInvalidDecl() &&
3359        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3360      if (II->isStr("FILE"))
3361        Context.setFILEDecl(NewTD);
3362      else if (II->isStr("jmp_buf"))
3363        Context.setjmp_bufDecl(NewTD);
3364      else if (II->isStr("sigjmp_buf"))
3365        Context.setsigjmp_bufDecl(NewTD);
3366      else if (II->isStr("__builtin_va_list"))
3367        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3368    }
3369
3370  return NewTD;
3371}
3372
3373/// \brief Determines whether the given declaration is an out-of-scope
3374/// previous declaration.
3375///
3376/// This routine should be invoked when name lookup has found a
3377/// previous declaration (PrevDecl) that is not in the scope where a
3378/// new declaration by the same name is being introduced. If the new
3379/// declaration occurs in a local scope, previous declarations with
3380/// linkage may still be considered previous declarations (C99
3381/// 6.2.2p4-5, C++ [basic.link]p6).
3382///
3383/// \param PrevDecl the previous declaration found by name
3384/// lookup
3385///
3386/// \param DC the context in which the new declaration is being
3387/// declared.
3388///
3389/// \returns true if PrevDecl is an out-of-scope previous declaration
3390/// for a new delcaration with the same name.
3391static bool
3392isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3393                                ASTContext &Context) {
3394  if (!PrevDecl)
3395    return false;
3396
3397  if (!PrevDecl->hasLinkage())
3398    return false;
3399
3400  if (Context.getLangOptions().CPlusPlus) {
3401    // C++ [basic.link]p6:
3402    //   If there is a visible declaration of an entity with linkage
3403    //   having the same name and type, ignoring entities declared
3404    //   outside the innermost enclosing namespace scope, the block
3405    //   scope declaration declares that same entity and receives the
3406    //   linkage of the previous declaration.
3407    DeclContext *OuterContext = DC->getRedeclContext();
3408    if (!OuterContext->isFunctionOrMethod())
3409      // This rule only applies to block-scope declarations.
3410      return false;
3411
3412    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3413    if (PrevOuterContext->isRecord())
3414      // We found a member function: ignore it.
3415      return false;
3416
3417    // Find the innermost enclosing namespace for the new and
3418    // previous declarations.
3419    OuterContext = OuterContext->getEnclosingNamespaceContext();
3420    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3421
3422    // The previous declaration is in a different namespace, so it
3423    // isn't the same function.
3424    if (!OuterContext->Equals(PrevOuterContext))
3425      return false;
3426  }
3427
3428  return true;
3429}
3430
3431static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3432  CXXScopeSpec &SS = D.getCXXScopeSpec();
3433  if (!SS.isSet()) return;
3434  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3435}
3436
3437NamedDecl*
3438Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3439                              QualType R, TypeSourceInfo *TInfo,
3440                              LookupResult &Previous,
3441                              MultiTemplateParamsArg TemplateParamLists,
3442                              bool &Redeclaration) {
3443  DeclarationName Name = GetNameForDeclarator(D).getName();
3444
3445  // Check that there are no default arguments (C++ only).
3446  if (getLangOptions().CPlusPlus)
3447    CheckExtraCXXDefaultArguments(D);
3448
3449  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3450  assert(SCSpec != DeclSpec::SCS_typedef &&
3451         "Parser allowed 'typedef' as storage class VarDecl.");
3452  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3453  if (SCSpec == DeclSpec::SCS_mutable) {
3454    // mutable can only appear on non-static class members, so it's always
3455    // an error here
3456    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3457    D.setInvalidType();
3458    SC = SC_None;
3459  }
3460  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3461  VarDecl::StorageClass SCAsWritten
3462    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3463
3464  IdentifierInfo *II = Name.getAsIdentifierInfo();
3465  if (!II) {
3466    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3467      << Name.getAsString();
3468    return 0;
3469  }
3470
3471  DiagnoseFunctionSpecifiers(D);
3472
3473  if (!DC->isRecord() && S->getFnParent() == 0) {
3474    // C99 6.9p2: The storage-class specifiers auto and register shall not
3475    // appear in the declaration specifiers in an external declaration.
3476    if (SC == SC_Auto || SC == SC_Register) {
3477
3478      // If this is a register variable with an asm label specified, then this
3479      // is a GNU extension.
3480      if (SC == SC_Register && D.getAsmLabel())
3481        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3482      else
3483        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3484      D.setInvalidType();
3485    }
3486  }
3487
3488  bool isExplicitSpecialization = false;
3489  VarDecl *NewVD;
3490  if (!getLangOptions().CPlusPlus) {
3491    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3492                            D.getIdentifierLoc(), II,
3493                            R, TInfo, SC, SCAsWritten);
3494
3495    if (D.isInvalidType())
3496      NewVD->setInvalidDecl();
3497  } else {
3498    if (DC->isRecord() && !CurContext->isRecord()) {
3499      // This is an out-of-line definition of a static data member.
3500      if (SC == SC_Static) {
3501        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3502             diag::err_static_out_of_line)
3503          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3504      } else if (SC == SC_None)
3505        SC = SC_Static;
3506    }
3507    if (SC == SC_Static) {
3508      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3509        if (RD->isLocalClass())
3510          Diag(D.getIdentifierLoc(),
3511               diag::err_static_data_member_not_allowed_in_local_class)
3512            << Name << RD->getDeclName();
3513
3514        // C++ [class.union]p1: If a union contains a static data member,
3515        // the program is ill-formed.
3516        //
3517        // We also disallow static data members in anonymous structs.
3518        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3519          Diag(D.getIdentifierLoc(),
3520               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3521            << Name << RD->isUnion();
3522      }
3523    }
3524
3525    // Match up the template parameter lists with the scope specifier, then
3526    // determine whether we have a template or a template specialization.
3527    isExplicitSpecialization = false;
3528    bool Invalid = false;
3529    if (TemplateParameterList *TemplateParams
3530        = MatchTemplateParametersToScopeSpecifier(
3531                                                  D.getDeclSpec().getSourceRange().getBegin(),
3532                                                  D.getCXXScopeSpec(),
3533                                                  TemplateParamLists.get(),
3534                                                  TemplateParamLists.size(),
3535                                                  /*never a friend*/ false,
3536                                                  isExplicitSpecialization,
3537                                                  Invalid)) {
3538      if (TemplateParams->size() > 0) {
3539        // There is no such thing as a variable template.
3540        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3541          << II
3542          << SourceRange(TemplateParams->getTemplateLoc(),
3543                         TemplateParams->getRAngleLoc());
3544        return 0;
3545      } else {
3546        // There is an extraneous 'template<>' for this variable. Complain
3547        // about it, but allow the declaration of the variable.
3548        Diag(TemplateParams->getTemplateLoc(),
3549             diag::err_template_variable_noparams)
3550          << II
3551          << SourceRange(TemplateParams->getTemplateLoc(),
3552                         TemplateParams->getRAngleLoc());
3553        isExplicitSpecialization = true;
3554      }
3555    }
3556
3557    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3558                            D.getIdentifierLoc(), II,
3559                            R, TInfo, SC, SCAsWritten);
3560
3561    // If this decl has an auto type in need of deduction, make a note of the
3562    // Decl so we can diagnose uses of it in its own initializer.
3563    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3564        R->getContainedAutoType())
3565      ParsingInitForAutoVars.insert(NewVD);
3566
3567    if (D.isInvalidType() || Invalid)
3568      NewVD->setInvalidDecl();
3569
3570    SetNestedNameSpecifier(NewVD, D);
3571
3572    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3573      NewVD->setTemplateParameterListsInfo(Context,
3574                                           TemplateParamLists.size(),
3575                                           TemplateParamLists.release());
3576    }
3577  }
3578
3579  if (D.getDeclSpec().isThreadSpecified()) {
3580    if (NewVD->hasLocalStorage())
3581      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3582    else if (!Context.Target.isTLSSupported())
3583      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3584    else
3585      NewVD->setThreadSpecified(true);
3586  }
3587
3588  // Set the lexical context. If the declarator has a C++ scope specifier, the
3589  // lexical context will be different from the semantic context.
3590  NewVD->setLexicalDeclContext(CurContext);
3591
3592  // Handle attributes prior to checking for duplicates in MergeVarDecl
3593  ProcessDeclAttributes(S, NewVD, D);
3594
3595  // Handle GNU asm-label extension (encoded as an attribute).
3596  if (Expr *E = (Expr*)D.getAsmLabel()) {
3597    // The parser guarantees this is a string.
3598    StringLiteral *SE = cast<StringLiteral>(E);
3599    llvm::StringRef Label = SE->getString();
3600    if (S->getFnParent() != 0) {
3601      switch (SC) {
3602      case SC_None:
3603      case SC_Auto:
3604        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3605        break;
3606      case SC_Register:
3607        if (!Context.Target.isValidGCCRegisterName(Label))
3608          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3609        break;
3610      case SC_Static:
3611      case SC_Extern:
3612      case SC_PrivateExtern:
3613        break;
3614      }
3615    }
3616
3617    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3618                                                Context, Label));
3619  }
3620
3621  // Diagnose shadowed variables before filtering for scope.
3622  if (!D.getCXXScopeSpec().isSet())
3623    CheckShadow(S, NewVD, Previous);
3624
3625  // Don't consider existing declarations that are in a different
3626  // scope and are out-of-semantic-context declarations (if the new
3627  // declaration has linkage).
3628  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3629                       isExplicitSpecialization);
3630
3631  if (!getLangOptions().CPlusPlus)
3632    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3633  else {
3634    // Merge the decl with the existing one if appropriate.
3635    if (!Previous.empty()) {
3636      if (Previous.isSingleResult() &&
3637          isa<FieldDecl>(Previous.getFoundDecl()) &&
3638          D.getCXXScopeSpec().isSet()) {
3639        // The user tried to define a non-static data member
3640        // out-of-line (C++ [dcl.meaning]p1).
3641        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3642          << D.getCXXScopeSpec().getRange();
3643        Previous.clear();
3644        NewVD->setInvalidDecl();
3645      }
3646    } else if (D.getCXXScopeSpec().isSet()) {
3647      // No previous declaration in the qualifying scope.
3648      Diag(D.getIdentifierLoc(), diag::err_no_member)
3649        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3650        << D.getCXXScopeSpec().getRange();
3651      NewVD->setInvalidDecl();
3652    }
3653
3654    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3655
3656    // This is an explicit specialization of a static data member. Check it.
3657    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3658        CheckMemberSpecialization(NewVD, Previous))
3659      NewVD->setInvalidDecl();
3660  }
3661
3662  // attributes declared post-definition are currently ignored
3663  // FIXME: This should be handled in attribute merging, not
3664  // here.
3665  if (Previous.isSingleResult()) {
3666    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3667    if (Def && (Def = Def->getDefinition()) &&
3668        Def != NewVD && D.hasAttributes()) {
3669      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3670      Diag(Def->getLocation(), diag::note_previous_definition);
3671    }
3672  }
3673
3674  // If this is a locally-scoped extern C variable, update the map of
3675  // such variables.
3676  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3677      !NewVD->isInvalidDecl())
3678    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3679
3680  // If there's a #pragma GCC visibility in scope, and this isn't a class
3681  // member, set the visibility of this variable.
3682  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3683    AddPushedVisibilityAttribute(NewVD);
3684
3685  MarkUnusedFileScopedDecl(NewVD);
3686
3687  return NewVD;
3688}
3689
3690/// \brief Diagnose variable or built-in function shadowing.  Implements
3691/// -Wshadow.
3692///
3693/// This method is called whenever a VarDecl is added to a "useful"
3694/// scope.
3695///
3696/// \param S the scope in which the shadowing name is being declared
3697/// \param R the lookup of the name
3698///
3699void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3700  // Return if warning is ignored.
3701  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3702        Diagnostic::Ignored)
3703    return;
3704
3705  // Don't diagnose declarations at file scope.
3706  if (D->hasGlobalStorage())
3707    return;
3708
3709  DeclContext *NewDC = D->getDeclContext();
3710
3711  // Only diagnose if we're shadowing an unambiguous field or variable.
3712  if (R.getResultKind() != LookupResult::Found)
3713    return;
3714
3715  NamedDecl* ShadowedDecl = R.getFoundDecl();
3716  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3717    return;
3718
3719  // Fields are not shadowed by variables in C++ static methods.
3720  if (isa<FieldDecl>(ShadowedDecl))
3721    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3722      if (MD->isStatic())
3723        return;
3724
3725  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3726    if (shadowedVar->isExternC()) {
3727      // For shadowing external vars, make sure that we point to the global
3728      // declaration, not a locally scoped extern declaration.
3729      for (VarDecl::redecl_iterator
3730             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3731           I != E; ++I)
3732        if (I->isFileVarDecl()) {
3733          ShadowedDecl = *I;
3734          break;
3735        }
3736    }
3737
3738  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3739
3740  // Only warn about certain kinds of shadowing for class members.
3741  if (NewDC && NewDC->isRecord()) {
3742    // In particular, don't warn about shadowing non-class members.
3743    if (!OldDC->isRecord())
3744      return;
3745
3746    // TODO: should we warn about static data members shadowing
3747    // static data members from base classes?
3748
3749    // TODO: don't diagnose for inaccessible shadowed members.
3750    // This is hard to do perfectly because we might friend the
3751    // shadowing context, but that's just a false negative.
3752  }
3753
3754  // Determine what kind of declaration we're shadowing.
3755  unsigned Kind;
3756  if (isa<RecordDecl>(OldDC)) {
3757    if (isa<FieldDecl>(ShadowedDecl))
3758      Kind = 3; // field
3759    else
3760      Kind = 2; // static data member
3761  } else if (OldDC->isFileContext())
3762    Kind = 1; // global
3763  else
3764    Kind = 0; // local
3765
3766  DeclarationName Name = R.getLookupName();
3767
3768  // Emit warning and note.
3769  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3770  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3771}
3772
3773/// \brief Check -Wshadow without the advantage of a previous lookup.
3774void Sema::CheckShadow(Scope *S, VarDecl *D) {
3775  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3776        Diagnostic::Ignored)
3777    return;
3778
3779  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3780                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3781  LookupName(R, S);
3782  CheckShadow(S, D, R);
3783}
3784
3785/// \brief Perform semantic checking on a newly-created variable
3786/// declaration.
3787///
3788/// This routine performs all of the type-checking required for a
3789/// variable declaration once it has been built. It is used both to
3790/// check variables after they have been parsed and their declarators
3791/// have been translated into a declaration, and to check variables
3792/// that have been instantiated from a template.
3793///
3794/// Sets NewVD->isInvalidDecl() if an error was encountered.
3795void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3796                                    LookupResult &Previous,
3797                                    bool &Redeclaration) {
3798  // If the decl is already known invalid, don't check it.
3799  if (NewVD->isInvalidDecl())
3800    return;
3801
3802  QualType T = NewVD->getType();
3803
3804  if (T->isObjCObjectType()) {
3805    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3806    return NewVD->setInvalidDecl();
3807  }
3808
3809  // Emit an error if an address space was applied to decl with local storage.
3810  // This includes arrays of objects with address space qualifiers, but not
3811  // automatic variables that point to other address spaces.
3812  // ISO/IEC TR 18037 S5.1.2
3813  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3814    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3815    return NewVD->setInvalidDecl();
3816  }
3817
3818  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3819      && !NewVD->hasAttr<BlocksAttr>())
3820    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3821
3822  bool isVM = T->isVariablyModifiedType();
3823  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3824      NewVD->hasAttr<BlocksAttr>())
3825    getCurFunction()->setHasBranchProtectedScope();
3826
3827  if ((isVM && NewVD->hasLinkage()) ||
3828      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3829    bool SizeIsNegative;
3830    llvm::APSInt Oversized;
3831    QualType FixedTy =
3832        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3833                                            Oversized);
3834
3835    if (FixedTy.isNull() && T->isVariableArrayType()) {
3836      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3837      // FIXME: This won't give the correct result for
3838      // int a[10][n];
3839      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3840
3841      if (NewVD->isFileVarDecl())
3842        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3843        << SizeRange;
3844      else if (NewVD->getStorageClass() == SC_Static)
3845        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3846        << SizeRange;
3847      else
3848        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3849        << SizeRange;
3850      return NewVD->setInvalidDecl();
3851    }
3852
3853    if (FixedTy.isNull()) {
3854      if (NewVD->isFileVarDecl())
3855        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3856      else
3857        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3858      return NewVD->setInvalidDecl();
3859    }
3860
3861    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3862    NewVD->setType(FixedTy);
3863  }
3864
3865  if (Previous.empty() && NewVD->isExternC()) {
3866    // Since we did not find anything by this name and we're declaring
3867    // an extern "C" variable, look for a non-visible extern "C"
3868    // declaration with the same name.
3869    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3870      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3871    if (Pos != LocallyScopedExternalDecls.end())
3872      Previous.addDecl(Pos->second);
3873  }
3874
3875  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3876    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3877      << T;
3878    return NewVD->setInvalidDecl();
3879  }
3880
3881  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3882    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3883    return NewVD->setInvalidDecl();
3884  }
3885
3886  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3887    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3888    return NewVD->setInvalidDecl();
3889  }
3890
3891  // Function pointers and references cannot have qualified function type, only
3892  // function pointer-to-members can do that.
3893  QualType Pointee;
3894  unsigned PtrOrRef = 0;
3895  if (const PointerType *Ptr = T->getAs<PointerType>())
3896    Pointee = Ptr->getPointeeType();
3897  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3898    Pointee = Ref->getPointeeType();
3899    PtrOrRef = 1;
3900  }
3901  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3902      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3903    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3904        << PtrOrRef;
3905    return NewVD->setInvalidDecl();
3906  }
3907
3908  if (!Previous.empty()) {
3909    Redeclaration = true;
3910    MergeVarDecl(NewVD, Previous);
3911  }
3912}
3913
3914/// \brief Data used with FindOverriddenMethod
3915struct FindOverriddenMethodData {
3916  Sema *S;
3917  CXXMethodDecl *Method;
3918};
3919
3920/// \brief Member lookup function that determines whether a given C++
3921/// method overrides a method in a base class, to be used with
3922/// CXXRecordDecl::lookupInBases().
3923static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3924                                 CXXBasePath &Path,
3925                                 void *UserData) {
3926  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3927
3928  FindOverriddenMethodData *Data
3929    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3930
3931  DeclarationName Name = Data->Method->getDeclName();
3932
3933  // FIXME: Do we care about other names here too?
3934  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3935    // We really want to find the base class destructor here.
3936    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3937    CanQualType CT = Data->S->Context.getCanonicalType(T);
3938
3939    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3940  }
3941
3942  for (Path.Decls = BaseRecord->lookup(Name);
3943       Path.Decls.first != Path.Decls.second;
3944       ++Path.Decls.first) {
3945    NamedDecl *D = *Path.Decls.first;
3946    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3947      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3948        return true;
3949    }
3950  }
3951
3952  return false;
3953}
3954
3955/// AddOverriddenMethods - See if a method overrides any in the base classes,
3956/// and if so, check that it's a valid override and remember it.
3957bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3958  // Look for virtual methods in base classes that this method might override.
3959  CXXBasePaths Paths;
3960  FindOverriddenMethodData Data;
3961  Data.Method = MD;
3962  Data.S = this;
3963  bool AddedAny = false;
3964  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3965    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3966         E = Paths.found_decls_end(); I != E; ++I) {
3967      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3968        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3969            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3970            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3971          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3972          AddedAny = true;
3973        }
3974      }
3975    }
3976  }
3977
3978  return AddedAny;
3979}
3980
3981static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3982  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3983                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3984  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3985  assert(!Prev.isAmbiguous() &&
3986         "Cannot have an ambiguity in previous-declaration lookup");
3987  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3988       Func != FuncEnd; ++Func) {
3989    if (isa<FunctionDecl>(*Func) &&
3990        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3991      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3992  }
3993}
3994
3995NamedDecl*
3996Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3997                              QualType R, TypeSourceInfo *TInfo,
3998                              LookupResult &Previous,
3999                              MultiTemplateParamsArg TemplateParamLists,
4000                              bool IsFunctionDefinition, bool &Redeclaration) {
4001  assert(R.getTypePtr()->isFunctionType());
4002
4003  // TODO: consider using NameInfo for diagnostic.
4004  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4005  DeclarationName Name = NameInfo.getName();
4006  FunctionDecl::StorageClass SC = SC_None;
4007  switch (D.getDeclSpec().getStorageClassSpec()) {
4008  default: assert(0 && "Unknown storage class!");
4009  case DeclSpec::SCS_auto:
4010  case DeclSpec::SCS_register:
4011  case DeclSpec::SCS_mutable:
4012    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4013         diag::err_typecheck_sclass_func);
4014    D.setInvalidType();
4015    break;
4016  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4017  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4018  case DeclSpec::SCS_static: {
4019    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4020      // C99 6.7.1p5:
4021      //   The declaration of an identifier for a function that has
4022      //   block scope shall have no explicit storage-class specifier
4023      //   other than extern
4024      // See also (C++ [dcl.stc]p4).
4025      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4026           diag::err_static_block_func);
4027      SC = SC_None;
4028    } else
4029      SC = SC_Static;
4030    break;
4031  }
4032  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4033  }
4034
4035  if (D.getDeclSpec().isThreadSpecified())
4036    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4037
4038  // Do not allow returning a objc interface by-value.
4039  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4040    Diag(D.getIdentifierLoc(),
4041         diag::err_object_cannot_be_passed_returned_by_value) << 0
4042    << R->getAs<FunctionType>()->getResultType();
4043    D.setInvalidType();
4044  }
4045
4046  FunctionDecl *NewFD;
4047  bool isInline = D.getDeclSpec().isInlineSpecified();
4048  bool isFriend = false;
4049  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4050  FunctionDecl::StorageClass SCAsWritten
4051    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4052  FunctionTemplateDecl *FunctionTemplate = 0;
4053  bool isExplicitSpecialization = false;
4054  bool isFunctionTemplateSpecialization = false;
4055
4056  if (!getLangOptions().CPlusPlus) {
4057    // Determine whether the function was written with a
4058    // prototype. This true when:
4059    //   - there is a prototype in the declarator, or
4060    //   - the type R of the function is some kind of typedef or other reference
4061    //     to a type name (which eventually refers to a function type).
4062    bool HasPrototype =
4063    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4064    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4065
4066    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4067                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4068                                 HasPrototype);
4069    if (D.isInvalidType())
4070      NewFD->setInvalidDecl();
4071
4072    // Set the lexical context.
4073    NewFD->setLexicalDeclContext(CurContext);
4074    // Filter out previous declarations that don't match the scope.
4075    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4076                         /*ExplicitInstantiationOrSpecialization=*/false);
4077  } else {
4078    isFriend = D.getDeclSpec().isFriendSpecified();
4079    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4080    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4081    bool isVirtualOkay = false;
4082
4083    // Check that the return type is not an abstract class type.
4084    // For record types, this is done by the AbstractClassUsageDiagnoser once
4085    // the class has been completely parsed.
4086    if (!DC->isRecord() &&
4087      RequireNonAbstractType(D.getIdentifierLoc(),
4088                             R->getAs<FunctionType>()->getResultType(),
4089                             diag::err_abstract_type_in_decl,
4090                             AbstractReturnType))
4091      D.setInvalidType();
4092
4093    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4094      // This is a C++ constructor declaration.
4095      assert(DC->isRecord() &&
4096             "Constructors can only be declared in a member context");
4097
4098      R = CheckConstructorDeclarator(D, R, SC);
4099
4100      // Create the new declaration
4101      NewFD = CXXConstructorDecl::Create(Context,
4102                                         cast<CXXRecordDecl>(DC),
4103                                         D.getSourceRange().getBegin(),
4104                                         NameInfo, R, TInfo,
4105                                         isExplicit, isInline,
4106                                         /*isImplicitlyDeclared=*/false);
4107    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4108      // This is a C++ destructor declaration.
4109      if (DC->isRecord()) {
4110        R = CheckDestructorDeclarator(D, R, SC);
4111
4112        NewFD = CXXDestructorDecl::Create(Context,
4113                                          cast<CXXRecordDecl>(DC),
4114                                          D.getSourceRange().getBegin(),
4115                                          NameInfo, R, TInfo,
4116                                          isInline,
4117                                          /*isImplicitlyDeclared=*/false);
4118        isVirtualOkay = true;
4119      } else {
4120        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4121
4122        // Create a FunctionDecl to satisfy the function definition parsing
4123        // code path.
4124        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4125                                     D.getIdentifierLoc(), Name, R, TInfo,
4126                                     SC, SCAsWritten, isInline,
4127                                     /*hasPrototype=*/true);
4128        D.setInvalidType();
4129      }
4130    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4131      if (!DC->isRecord()) {
4132        Diag(D.getIdentifierLoc(),
4133             diag::err_conv_function_not_member);
4134        return 0;
4135      }
4136
4137      CheckConversionDeclarator(D, R, SC);
4138      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4139                                        D.getSourceRange().getBegin(),
4140                                        NameInfo, R, TInfo,
4141                                        isInline, isExplicit,
4142                                        SourceLocation());
4143
4144      isVirtualOkay = true;
4145    } else if (DC->isRecord()) {
4146      // If the of the function is the same as the name of the record, then this
4147      // must be an invalid constructor that has a return type.
4148      // (The parser checks for a return type and makes the declarator a
4149      // constructor if it has no return type).
4150      // must have an invalid constructor that has a return type
4151      if (Name.getAsIdentifierInfo() &&
4152          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4153        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4154          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4155          << SourceRange(D.getIdentifierLoc());
4156        return 0;
4157      }
4158
4159      bool isStatic = SC == SC_Static;
4160
4161      // [class.free]p1:
4162      // Any allocation function for a class T is a static member
4163      // (even if not explicitly declared static).
4164      if (Name.getCXXOverloadedOperator() == OO_New ||
4165          Name.getCXXOverloadedOperator() == OO_Array_New)
4166        isStatic = true;
4167
4168      // [class.free]p6 Any deallocation function for a class X is a static member
4169      // (even if not explicitly declared static).
4170      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4171          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4172        isStatic = true;
4173
4174      // This is a C++ method declaration.
4175      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
4176                                    D.getSourceRange().getBegin(),
4177                                    NameInfo, R, TInfo,
4178                                    isStatic, SCAsWritten, isInline,
4179                                    SourceLocation());
4180
4181      isVirtualOkay = !isStatic;
4182    } else {
4183      // Determine whether the function was written with a
4184      // prototype. This true when:
4185      //   - we're in C++ (where every function has a prototype),
4186      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4187                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4188                                   true/*HasPrototype*/);
4189    }
4190
4191    if (isFriend && !isInline && IsFunctionDefinition) {
4192      // C++ [class.friend]p5
4193      //   A function can be defined in a friend declaration of a
4194      //   class . . . . Such a function is implicitly inline.
4195      NewFD->setImplicitlyInline();
4196    }
4197
4198    SetNestedNameSpecifier(NewFD, D);
4199    isExplicitSpecialization = false;
4200    isFunctionTemplateSpecialization = false;
4201    if (D.isInvalidType())
4202      NewFD->setInvalidDecl();
4203
4204    // Set the lexical context. If the declarator has a C++
4205    // scope specifier, or is the object of a friend declaration, the
4206    // lexical context will be different from the semantic context.
4207    NewFD->setLexicalDeclContext(CurContext);
4208
4209    // Match up the template parameter lists with the scope specifier, then
4210    // determine whether we have a template or a template specialization.
4211    bool Invalid = false;
4212    if (TemplateParameterList *TemplateParams
4213          = MatchTemplateParametersToScopeSpecifier(
4214                                  D.getDeclSpec().getSourceRange().getBegin(),
4215                                  D.getCXXScopeSpec(),
4216                                  TemplateParamLists.get(),
4217                                  TemplateParamLists.size(),
4218                                  isFriend,
4219                                  isExplicitSpecialization,
4220                                  Invalid)) {
4221      if (TemplateParams->size() > 0) {
4222        // This is a function template
4223
4224        // Check that we can declare a template here.
4225        if (CheckTemplateDeclScope(S, TemplateParams))
4226          return 0;
4227
4228        // A destructor cannot be a template.
4229        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4230          Diag(NewFD->getLocation(), diag::err_destructor_template);
4231          return 0;
4232        }
4233
4234        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4235                                                        NewFD->getLocation(),
4236                                                        Name, TemplateParams,
4237                                                        NewFD);
4238        FunctionTemplate->setLexicalDeclContext(CurContext);
4239        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4240
4241        // For source fidelity, store the other template param lists.
4242        if (TemplateParamLists.size() > 1) {
4243          NewFD->setTemplateParameterListsInfo(Context,
4244                                               TemplateParamLists.size() - 1,
4245                                               TemplateParamLists.release());
4246        }
4247      } else {
4248        // This is a function template specialization.
4249        isFunctionTemplateSpecialization = true;
4250        // For source fidelity, store all the template param lists.
4251        NewFD->setTemplateParameterListsInfo(Context,
4252                                             TemplateParamLists.size(),
4253                                             TemplateParamLists.release());
4254
4255        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4256        if (isFriend) {
4257          // We want to remove the "template<>", found here.
4258          SourceRange RemoveRange = TemplateParams->getSourceRange();
4259
4260          // If we remove the template<> and the name is not a
4261          // template-id, we're actually silently creating a problem:
4262          // the friend declaration will refer to an untemplated decl,
4263          // and clearly the user wants a template specialization.  So
4264          // we need to insert '<>' after the name.
4265          SourceLocation InsertLoc;
4266          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4267            InsertLoc = D.getName().getSourceRange().getEnd();
4268            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4269          }
4270
4271          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4272            << Name << RemoveRange
4273            << FixItHint::CreateRemoval(RemoveRange)
4274            << FixItHint::CreateInsertion(InsertLoc, "<>");
4275        }
4276      }
4277    }
4278    else {
4279      // All template param lists were matched against the scope specifier:
4280      // this is NOT (an explicit specialization of) a template.
4281      if (TemplateParamLists.size() > 0)
4282        // For source fidelity, store all the template param lists.
4283        NewFD->setTemplateParameterListsInfo(Context,
4284                                             TemplateParamLists.size(),
4285                                             TemplateParamLists.release());
4286    }
4287
4288    if (Invalid) {
4289      NewFD->setInvalidDecl();
4290      if (FunctionTemplate)
4291        FunctionTemplate->setInvalidDecl();
4292    }
4293
4294    // C++ [dcl.fct.spec]p5:
4295    //   The virtual specifier shall only be used in declarations of
4296    //   nonstatic class member functions that appear within a
4297    //   member-specification of a class declaration; see 10.3.
4298    //
4299    if (isVirtual && !NewFD->isInvalidDecl()) {
4300      if (!isVirtualOkay) {
4301        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4302             diag::err_virtual_non_function);
4303      } else if (!CurContext->isRecord()) {
4304        // 'virtual' was specified outside of the class.
4305        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4306             diag::err_virtual_out_of_class)
4307          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4308      } else if (NewFD->getDescribedFunctionTemplate()) {
4309        // C++ [temp.mem]p3:
4310        //  A member function template shall not be virtual.
4311        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4312             diag::err_virtual_member_function_template)
4313          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4314      } else {
4315        // Okay: Add virtual to the method.
4316        NewFD->setVirtualAsWritten(true);
4317      }
4318    }
4319
4320    // C++ [dcl.fct.spec]p3:
4321    //  The inline specifier shall not appear on a block scope function declaration.
4322    if (isInline && !NewFD->isInvalidDecl()) {
4323      if (CurContext->isFunctionOrMethod()) {
4324        // 'inline' is not allowed on block scope function declaration.
4325        Diag(D.getDeclSpec().getInlineSpecLoc(),
4326             diag::err_inline_declaration_block_scope) << Name
4327          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4328      }
4329    }
4330
4331    // C++ [dcl.fct.spec]p6:
4332    //  The explicit specifier shall be used only in the declaration of a
4333    //  constructor or conversion function within its class definition; see 12.3.1
4334    //  and 12.3.2.
4335    if (isExplicit && !NewFD->isInvalidDecl()) {
4336      if (!CurContext->isRecord()) {
4337        // 'explicit' was specified outside of the class.
4338        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4339             diag::err_explicit_out_of_class)
4340          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4341      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4342                 !isa<CXXConversionDecl>(NewFD)) {
4343        // 'explicit' was specified on a function that wasn't a constructor
4344        // or conversion function.
4345        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4346             diag::err_explicit_non_ctor_or_conv_function)
4347          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4348      }
4349    }
4350
4351    // Filter out previous declarations that don't match the scope.
4352    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4353                         isExplicitSpecialization ||
4354                         isFunctionTemplateSpecialization);
4355
4356    if (isFriend) {
4357      // For now, claim that the objects have no previous declaration.
4358      if (FunctionTemplate) {
4359        FunctionTemplate->setObjectOfFriendDecl(false);
4360        FunctionTemplate->setAccess(AS_public);
4361      }
4362      NewFD->setObjectOfFriendDecl(false);
4363      NewFD->setAccess(AS_public);
4364    }
4365
4366    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4367      // A method is implicitly inline if it's defined in its class
4368      // definition.
4369      NewFD->setImplicitlyInline();
4370    }
4371
4372    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4373        !CurContext->isRecord()) {
4374      // C++ [class.static]p1:
4375      //   A data or function member of a class may be declared static
4376      //   in a class definition, in which case it is a static member of
4377      //   the class.
4378
4379      // Complain about the 'static' specifier if it's on an out-of-line
4380      // member function definition.
4381      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4382           diag::err_static_out_of_line)
4383        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4384    }
4385  }
4386
4387  // Handle GNU asm-label extension (encoded as an attribute).
4388  if (Expr *E = (Expr*) D.getAsmLabel()) {
4389    // The parser guarantees this is a string.
4390    StringLiteral *SE = cast<StringLiteral>(E);
4391    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4392                                                SE->getString()));
4393  }
4394
4395  // Copy the parameter declarations from the declarator D to the function
4396  // declaration NewFD, if they are available.  First scavenge them into Params.
4397  llvm::SmallVector<ParmVarDecl*, 16> Params;
4398  if (D.isFunctionDeclarator()) {
4399    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4400
4401    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4402    // function that takes no arguments, not a function that takes a
4403    // single void argument.
4404    // We let through "const void" here because Sema::GetTypeForDeclarator
4405    // already checks for that case.
4406    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4407        FTI.ArgInfo[0].Param &&
4408        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4409      // Empty arg list, don't push any params.
4410      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4411
4412      // In C++, the empty parameter-type-list must be spelled "void"; a
4413      // typedef of void is not permitted.
4414      if (getLangOptions().CPlusPlus &&
4415          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4416        bool IsTypeAlias = false;
4417        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4418          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4419        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4420          << IsTypeAlias;
4421      }
4422    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4423      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4424        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4425        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4426        Param->setDeclContext(NewFD);
4427        Params.push_back(Param);
4428
4429        if (Param->isInvalidDecl())
4430          NewFD->setInvalidDecl();
4431      }
4432    }
4433
4434  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4435    // When we're declaring a function with a typedef, typeof, etc as in the
4436    // following example, we'll need to synthesize (unnamed)
4437    // parameters for use in the declaration.
4438    //
4439    // @code
4440    // typedef void fn(int);
4441    // fn f;
4442    // @endcode
4443
4444    // Synthesize a parameter for each argument type.
4445    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4446         AE = FT->arg_type_end(); AI != AE; ++AI) {
4447      ParmVarDecl *Param =
4448        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4449      Param->setScopeInfo(0, Params.size());
4450      Params.push_back(Param);
4451    }
4452  } else {
4453    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4454           "Should not need args for typedef of non-prototype fn");
4455  }
4456  // Finally, we know we have the right number of parameters, install them.
4457  NewFD->setParams(Params.data(), Params.size());
4458
4459  // Process the non-inheritable attributes on this declaration.
4460  ProcessDeclAttributes(S, NewFD, D,
4461                        /*NonInheritable=*/true, /*Inheritable=*/false);
4462
4463  if (!getLangOptions().CPlusPlus) {
4464    // Perform semantic checking on the function declaration.
4465    bool isExplctSpecialization=false;
4466    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4467                             Redeclaration);
4468    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4469            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4470           "previous declaration set still overloaded");
4471  } else {
4472    // If the declarator is a template-id, translate the parser's template
4473    // argument list into our AST format.
4474    bool HasExplicitTemplateArgs = false;
4475    TemplateArgumentListInfo TemplateArgs;
4476    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4477      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4478      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4479      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4480      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4481                                         TemplateId->getTemplateArgs(),
4482                                         TemplateId->NumArgs);
4483      translateTemplateArguments(TemplateArgsPtr,
4484                                 TemplateArgs);
4485      TemplateArgsPtr.release();
4486
4487      HasExplicitTemplateArgs = true;
4488
4489      if (FunctionTemplate) {
4490        // Function template with explicit template arguments.
4491        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4492          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4493
4494        HasExplicitTemplateArgs = false;
4495      } else if (!isFunctionTemplateSpecialization &&
4496                 !D.getDeclSpec().isFriendSpecified()) {
4497        // We have encountered something that the user meant to be a
4498        // specialization (because it has explicitly-specified template
4499        // arguments) but that was not introduced with a "template<>" (or had
4500        // too few of them).
4501        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4502          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4503          << FixItHint::CreateInsertion(
4504                                        D.getDeclSpec().getSourceRange().getBegin(),
4505                                                  "template<> ");
4506        isFunctionTemplateSpecialization = true;
4507      } else {
4508        // "friend void foo<>(int);" is an implicit specialization decl.
4509        isFunctionTemplateSpecialization = true;
4510      }
4511    } else if (isFriend && isFunctionTemplateSpecialization) {
4512      // This combination is only possible in a recovery case;  the user
4513      // wrote something like:
4514      //   template <> friend void foo(int);
4515      // which we're recovering from as if the user had written:
4516      //   friend void foo<>(int);
4517      // Go ahead and fake up a template id.
4518      HasExplicitTemplateArgs = true;
4519        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4520      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4521    }
4522
4523    // If it's a friend (and only if it's a friend), it's possible
4524    // that either the specialized function type or the specialized
4525    // template is dependent, and therefore matching will fail.  In
4526    // this case, don't check the specialization yet.
4527    if (isFunctionTemplateSpecialization && isFriend &&
4528        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4529      assert(HasExplicitTemplateArgs &&
4530             "friend function specialization without template args");
4531      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4532                                                       Previous))
4533        NewFD->setInvalidDecl();
4534    } else if (isFunctionTemplateSpecialization) {
4535      if (CurContext->isDependentContext() && CurContext->isRecord()
4536          && !isFriend) {
4537        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4538          << NewFD->getDeclName();
4539        NewFD->setInvalidDecl();
4540        return 0;
4541      } else if (CheckFunctionTemplateSpecialization(NewFD,
4542                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4543                                                     Previous))
4544        NewFD->setInvalidDecl();
4545    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4546      if (CheckMemberSpecialization(NewFD, Previous))
4547          NewFD->setInvalidDecl();
4548    }
4549
4550    // Perform semantic checking on the function declaration.
4551    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4552                             Redeclaration);
4553
4554    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4555            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4556           "previous declaration set still overloaded");
4557
4558    NamedDecl *PrincipalDecl = (FunctionTemplate
4559                                ? cast<NamedDecl>(FunctionTemplate)
4560                                : NewFD);
4561
4562    if (isFriend && Redeclaration) {
4563      AccessSpecifier Access = AS_public;
4564      if (!NewFD->isInvalidDecl())
4565        Access = NewFD->getPreviousDeclaration()->getAccess();
4566
4567      NewFD->setAccess(Access);
4568      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4569
4570      PrincipalDecl->setObjectOfFriendDecl(true);
4571    }
4572
4573    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4574        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4575      PrincipalDecl->setNonMemberOperator();
4576
4577    // If we have a function template, check the template parameter
4578    // list. This will check and merge default template arguments.
4579    if (FunctionTemplate) {
4580      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4581      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4582                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4583                            D.getDeclSpec().isFriendSpecified()
4584                              ? (IsFunctionDefinition
4585                                   ? TPC_FriendFunctionTemplateDefinition
4586                                   : TPC_FriendFunctionTemplate)
4587                              : (D.getCXXScopeSpec().isSet() &&
4588                                 DC && DC->isRecord() &&
4589                                 DC->isDependentContext())
4590                                  ? TPC_ClassTemplateMember
4591                                  : TPC_FunctionTemplate);
4592    }
4593
4594    if (NewFD->isInvalidDecl()) {
4595      // Ignore all the rest of this.
4596    } else if (!Redeclaration) {
4597      // Fake up an access specifier if it's supposed to be a class member.
4598      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4599        NewFD->setAccess(AS_public);
4600
4601      // Qualified decls generally require a previous declaration.
4602      if (D.getCXXScopeSpec().isSet()) {
4603        // ...with the major exception of templated-scope or
4604        // dependent-scope friend declarations.
4605
4606        // TODO: we currently also suppress this check in dependent
4607        // contexts because (1) the parameter depth will be off when
4608        // matching friend templates and (2) we might actually be
4609        // selecting a friend based on a dependent factor.  But there
4610        // are situations where these conditions don't apply and we
4611        // can actually do this check immediately.
4612        if (isFriend &&
4613            (TemplateParamLists.size() ||
4614             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4615             CurContext->isDependentContext())) {
4616              // ignore these
4617            } else {
4618              // The user tried to provide an out-of-line definition for a
4619              // function that is a member of a class or namespace, but there
4620              // was no such member function declared (C++ [class.mfct]p2,
4621              // C++ [namespace.memdef]p2). For example:
4622              //
4623              // class X {
4624              //   void f() const;
4625              // };
4626              //
4627              // void X::f() { } // ill-formed
4628              //
4629              // Complain about this problem, and attempt to suggest close
4630              // matches (e.g., those that differ only in cv-qualifiers and
4631              // whether the parameter types are references).
4632              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4633              << Name << DC << D.getCXXScopeSpec().getRange();
4634              NewFD->setInvalidDecl();
4635
4636              DiagnoseInvalidRedeclaration(*this, NewFD);
4637            }
4638
4639        // Unqualified local friend declarations are required to resolve
4640        // to something.
4641        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4642          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4643          NewFD->setInvalidDecl();
4644          DiagnoseInvalidRedeclaration(*this, NewFD);
4645        }
4646
4647    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4648               !isFriend && !isFunctionTemplateSpecialization &&
4649               !isExplicitSpecialization) {
4650      // An out-of-line member function declaration must also be a
4651      // definition (C++ [dcl.meaning]p1).
4652      // Note that this is not the case for explicit specializations of
4653      // function templates or member functions of class templates, per
4654      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4655      // for compatibility with old SWIG code which likes to generate them.
4656      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4657        << D.getCXXScopeSpec().getRange();
4658    }
4659  }
4660
4661
4662  // Handle attributes. We need to have merged decls when handling attributes
4663  // (for example to check for conflicts, etc).
4664  // FIXME: This needs to happen before we merge declarations. Then,
4665  // let attribute merging cope with attribute conflicts.
4666  ProcessDeclAttributes(S, NewFD, D,
4667                        /*NonInheritable=*/false, /*Inheritable=*/true);
4668
4669  // attributes declared post-definition are currently ignored
4670  // FIXME: This should happen during attribute merging
4671  if (Redeclaration && Previous.isSingleResult()) {
4672    const FunctionDecl *Def;
4673    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4674    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4675      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4676      Diag(Def->getLocation(), diag::note_previous_definition);
4677    }
4678  }
4679
4680  AddKnownFunctionAttributes(NewFD);
4681
4682  if (NewFD->hasAttr<OverloadableAttr>() &&
4683      !NewFD->getType()->getAs<FunctionProtoType>()) {
4684    Diag(NewFD->getLocation(),
4685         diag::err_attribute_overloadable_no_prototype)
4686      << NewFD;
4687
4688    // Turn this into a variadic function with no parameters.
4689    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4690    FunctionProtoType::ExtProtoInfo EPI;
4691    EPI.Variadic = true;
4692    EPI.ExtInfo = FT->getExtInfo();
4693
4694    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4695    NewFD->setType(R);
4696  }
4697
4698  // If there's a #pragma GCC visibility in scope, and this isn't a class
4699  // member, set the visibility of this function.
4700  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4701    AddPushedVisibilityAttribute(NewFD);
4702
4703  // If this is a locally-scoped extern C function, update the
4704  // map of such names.
4705  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4706      && !NewFD->isInvalidDecl())
4707    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4708
4709  // Set this FunctionDecl's range up to the right paren.
4710  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4711
4712  if (getLangOptions().CPlusPlus) {
4713    if (FunctionTemplate) {
4714      if (NewFD->isInvalidDecl())
4715        FunctionTemplate->setInvalidDecl();
4716      return FunctionTemplate;
4717    }
4718  }
4719
4720  MarkUnusedFileScopedDecl(NewFD);
4721
4722  if (getLangOptions().CUDA)
4723    if (IdentifierInfo *II = NewFD->getIdentifier())
4724      if (!NewFD->isInvalidDecl() &&
4725          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4726        if (II->isStr("cudaConfigureCall")) {
4727          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4728            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4729
4730          Context.setcudaConfigureCallDecl(NewFD);
4731        }
4732      }
4733
4734  return NewFD;
4735}
4736
4737/// \brief Perform semantic checking of a new function declaration.
4738///
4739/// Performs semantic analysis of the new function declaration
4740/// NewFD. This routine performs all semantic checking that does not
4741/// require the actual declarator involved in the declaration, and is
4742/// used both for the declaration of functions as they are parsed
4743/// (called via ActOnDeclarator) and for the declaration of functions
4744/// that have been instantiated via C++ template instantiation (called
4745/// via InstantiateDecl).
4746///
4747/// \param IsExplicitSpecialiation whether this new function declaration is
4748/// an explicit specialization of the previous declaration.
4749///
4750/// This sets NewFD->isInvalidDecl() to true if there was an error.
4751void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4752                                    LookupResult &Previous,
4753                                    bool IsExplicitSpecialization,
4754                                    bool &Redeclaration) {
4755  // If NewFD is already known erroneous, don't do any of this checking.
4756  if (NewFD->isInvalidDecl()) {
4757    // If this is a class member, mark the class invalid immediately.
4758    // This avoids some consistency errors later.
4759    if (isa<CXXMethodDecl>(NewFD))
4760      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4761
4762    return;
4763  }
4764
4765  if (NewFD->getResultType()->isVariablyModifiedType()) {
4766    // Functions returning a variably modified type violate C99 6.7.5.2p2
4767    // because all functions have linkage.
4768    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4769    return NewFD->setInvalidDecl();
4770  }
4771
4772  if (NewFD->isMain())
4773    CheckMain(NewFD);
4774
4775  // Check for a previous declaration of this name.
4776  if (Previous.empty() && NewFD->isExternC()) {
4777    // Since we did not find anything by this name and we're declaring
4778    // an extern "C" function, look for a non-visible extern "C"
4779    // declaration with the same name.
4780    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4781      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4782    if (Pos != LocallyScopedExternalDecls.end())
4783      Previous.addDecl(Pos->second);
4784  }
4785
4786  // Merge or overload the declaration with an existing declaration of
4787  // the same name, if appropriate.
4788  if (!Previous.empty()) {
4789    // Determine whether NewFD is an overload of PrevDecl or
4790    // a declaration that requires merging. If it's an overload,
4791    // there's no more work to do here; we'll just add the new
4792    // function to the scope.
4793
4794    NamedDecl *OldDecl = 0;
4795    if (!AllowOverloadingOfFunction(Previous, Context)) {
4796      Redeclaration = true;
4797      OldDecl = Previous.getFoundDecl();
4798    } else {
4799      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4800                            /*NewIsUsingDecl*/ false)) {
4801      case Ovl_Match:
4802        Redeclaration = true;
4803        break;
4804
4805      case Ovl_NonFunction:
4806        Redeclaration = true;
4807        break;
4808
4809      case Ovl_Overload:
4810        Redeclaration = false;
4811        break;
4812      }
4813
4814      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4815        // If a function name is overloadable in C, then every function
4816        // with that name must be marked "overloadable".
4817        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4818          << Redeclaration << NewFD;
4819        NamedDecl *OverloadedDecl = 0;
4820        if (Redeclaration)
4821          OverloadedDecl = OldDecl;
4822        else if (!Previous.empty())
4823          OverloadedDecl = Previous.getRepresentativeDecl();
4824        if (OverloadedDecl)
4825          Diag(OverloadedDecl->getLocation(),
4826               diag::note_attribute_overloadable_prev_overload);
4827        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4828                                                        Context));
4829      }
4830    }
4831
4832    if (Redeclaration) {
4833      // NewFD and OldDecl represent declarations that need to be
4834      // merged.
4835      if (MergeFunctionDecl(NewFD, OldDecl))
4836        return NewFD->setInvalidDecl();
4837
4838      Previous.clear();
4839      Previous.addDecl(OldDecl);
4840
4841      if (FunctionTemplateDecl *OldTemplateDecl
4842                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4843        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4844        FunctionTemplateDecl *NewTemplateDecl
4845          = NewFD->getDescribedFunctionTemplate();
4846        assert(NewTemplateDecl && "Template/non-template mismatch");
4847        if (CXXMethodDecl *Method
4848              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4849          Method->setAccess(OldTemplateDecl->getAccess());
4850          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4851        }
4852
4853        // If this is an explicit specialization of a member that is a function
4854        // template, mark it as a member specialization.
4855        if (IsExplicitSpecialization &&
4856            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4857          NewTemplateDecl->setMemberSpecialization();
4858          assert(OldTemplateDecl->isMemberSpecialization());
4859        }
4860      } else {
4861        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4862          NewFD->setAccess(OldDecl->getAccess());
4863        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4864      }
4865    }
4866  }
4867
4868  // Semantic checking for this function declaration (in isolation).
4869  if (getLangOptions().CPlusPlus) {
4870    // C++-specific checks.
4871    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4872      CheckConstructor(Constructor);
4873    } else if (CXXDestructorDecl *Destructor =
4874                dyn_cast<CXXDestructorDecl>(NewFD)) {
4875      CXXRecordDecl *Record = Destructor->getParent();
4876      QualType ClassType = Context.getTypeDeclType(Record);
4877
4878      // FIXME: Shouldn't we be able to perform this check even when the class
4879      // type is dependent? Both gcc and edg can handle that.
4880      if (!ClassType->isDependentType()) {
4881        DeclarationName Name
4882          = Context.DeclarationNames.getCXXDestructorName(
4883                                        Context.getCanonicalType(ClassType));
4884        if (NewFD->getDeclName() != Name) {
4885          Diag(NewFD->getLocation(), diag::err_destructor_name);
4886          return NewFD->setInvalidDecl();
4887        }
4888      }
4889    } else if (CXXConversionDecl *Conversion
4890               = dyn_cast<CXXConversionDecl>(NewFD)) {
4891      ActOnConversionDeclarator(Conversion);
4892    }
4893
4894    // Find any virtual functions that this function overrides.
4895    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4896      if (!Method->isFunctionTemplateSpecialization() &&
4897          !Method->getDescribedFunctionTemplate()) {
4898        if (AddOverriddenMethods(Method->getParent(), Method)) {
4899          // If the function was marked as "static", we have a problem.
4900          if (NewFD->getStorageClass() == SC_Static) {
4901            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4902              << NewFD->getDeclName();
4903            for (CXXMethodDecl::method_iterator
4904                      Overridden = Method->begin_overridden_methods(),
4905                   OverriddenEnd = Method->end_overridden_methods();
4906                 Overridden != OverriddenEnd;
4907                 ++Overridden) {
4908              Diag((*Overridden)->getLocation(),
4909                   diag::note_overridden_virtual_function);
4910            }
4911          }
4912        }
4913      }
4914    }
4915
4916    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4917    if (NewFD->isOverloadedOperator() &&
4918        CheckOverloadedOperatorDeclaration(NewFD))
4919      return NewFD->setInvalidDecl();
4920
4921    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4922    if (NewFD->getLiteralIdentifier() &&
4923        CheckLiteralOperatorDeclaration(NewFD))
4924      return NewFD->setInvalidDecl();
4925
4926    // In C++, check default arguments now that we have merged decls. Unless
4927    // the lexical context is the class, because in this case this is done
4928    // during delayed parsing anyway.
4929    if (!CurContext->isRecord())
4930      CheckCXXDefaultArguments(NewFD);
4931
4932    // If this function declares a builtin function, check the type of this
4933    // declaration against the expected type for the builtin.
4934    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4935      ASTContext::GetBuiltinTypeError Error;
4936      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4937      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4938        // The type of this function differs from the type of the builtin,
4939        // so forget about the builtin entirely.
4940        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4941      }
4942    }
4943  }
4944}
4945
4946void Sema::CheckMain(FunctionDecl* FD) {
4947  // C++ [basic.start.main]p3:  A program that declares main to be inline
4948  //   or static is ill-formed.
4949  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4950  //   shall not appear in a declaration of main.
4951  // static main is not an error under C99, but we should warn about it.
4952  bool isInline = FD->isInlineSpecified();
4953  bool isStatic = FD->getStorageClass() == SC_Static;
4954  if (isInline || isStatic) {
4955    unsigned diagID = diag::warn_unusual_main_decl;
4956    if (isInline || getLangOptions().CPlusPlus)
4957      diagID = diag::err_unusual_main_decl;
4958
4959    int which = isStatic + (isInline << 1) - 1;
4960    Diag(FD->getLocation(), diagID) << which;
4961  }
4962
4963  QualType T = FD->getType();
4964  assert(T->isFunctionType() && "function decl is not of function type");
4965  const FunctionType* FT = T->getAs<FunctionType>();
4966
4967  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4968    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4969    FD->setInvalidDecl(true);
4970  }
4971
4972  // Treat protoless main() as nullary.
4973  if (isa<FunctionNoProtoType>(FT)) return;
4974
4975  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4976  unsigned nparams = FTP->getNumArgs();
4977  assert(FD->getNumParams() == nparams);
4978
4979  bool HasExtraParameters = (nparams > 3);
4980
4981  // Darwin passes an undocumented fourth argument of type char**.  If
4982  // other platforms start sprouting these, the logic below will start
4983  // getting shifty.
4984  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
4985    HasExtraParameters = false;
4986
4987  if (HasExtraParameters) {
4988    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4989    FD->setInvalidDecl(true);
4990    nparams = 3;
4991  }
4992
4993  // FIXME: a lot of the following diagnostics would be improved
4994  // if we had some location information about types.
4995
4996  QualType CharPP =
4997    Context.getPointerType(Context.getPointerType(Context.CharTy));
4998  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4999
5000  for (unsigned i = 0; i < nparams; ++i) {
5001    QualType AT = FTP->getArgType(i);
5002
5003    bool mismatch = true;
5004
5005    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5006      mismatch = false;
5007    else if (Expected[i] == CharPP) {
5008      // As an extension, the following forms are okay:
5009      //   char const **
5010      //   char const * const *
5011      //   char * const *
5012
5013      QualifierCollector qs;
5014      const PointerType* PT;
5015      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5016          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5017          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5018        qs.removeConst();
5019        mismatch = !qs.empty();
5020      }
5021    }
5022
5023    if (mismatch) {
5024      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5025      // TODO: suggest replacing given type with expected type
5026      FD->setInvalidDecl(true);
5027    }
5028  }
5029
5030  if (nparams == 1 && !FD->isInvalidDecl()) {
5031    Diag(FD->getLocation(), diag::warn_main_one_arg);
5032  }
5033
5034  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5035    Diag(FD->getLocation(), diag::err_main_template_decl);
5036    FD->setInvalidDecl();
5037  }
5038}
5039
5040bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5041  // FIXME: Need strict checking.  In C89, we need to check for
5042  // any assignment, increment, decrement, function-calls, or
5043  // commas outside of a sizeof.  In C99, it's the same list,
5044  // except that the aforementioned are allowed in unevaluated
5045  // expressions.  Everything else falls under the
5046  // "may accept other forms of constant expressions" exception.
5047  // (We never end up here for C++, so the constant expression
5048  // rules there don't matter.)
5049  if (Init->isConstantInitializer(Context, false))
5050    return false;
5051  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5052    << Init->getSourceRange();
5053  return true;
5054}
5055
5056namespace {
5057  // Visits an initialization expression to see if OrigDecl is evaluated in
5058  // its own initialization and throws a warning if it does.
5059  class SelfReferenceChecker
5060      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5061    Sema &S;
5062    Decl *OrigDecl;
5063
5064  public:
5065    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5066
5067    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5068                                                    S(S), OrigDecl(OrigDecl) { }
5069
5070    void VisitExpr(Expr *E) {
5071      if (isa<ObjCMessageExpr>(*E)) return;
5072      Inherited::VisitExpr(E);
5073    }
5074
5075    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5076      CheckForSelfReference(E);
5077      Inherited::VisitImplicitCastExpr(E);
5078    }
5079
5080    void CheckForSelfReference(ImplicitCastExpr *E) {
5081      if (E->getCastKind() != CK_LValueToRValue) return;
5082      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5083      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5084      if (!DRE) return;
5085      Decl* ReferenceDecl = DRE->getDecl();
5086      if (OrigDecl != ReferenceDecl) return;
5087      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5088                          Sema::NotForRedeclaration);
5089      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5090        << Result.getLookupName() << OrigDecl->getLocation()
5091        << SubExpr->getSourceRange();
5092    }
5093  };
5094}
5095
5096/// AddInitializerToDecl - Adds the initializer Init to the
5097/// declaration dcl. If DirectInit is true, this is C++ direct
5098/// initialization rather than copy initialization.
5099void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5100                                bool DirectInit, bool TypeMayContainAuto) {
5101  // If there is no declaration, there was an error parsing it.  Just ignore
5102  // the initializer.
5103  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5104    return;
5105
5106  // Check for self-references within variable initializers.
5107  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5108    // Variables declared within a function/method body are handled
5109    // by a dataflow analysis.
5110    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5111      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5112  }
5113  else {
5114    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5115  }
5116
5117  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5118    // With declarators parsed the way they are, the parser cannot
5119    // distinguish between a normal initializer and a pure-specifier.
5120    // Thus this grotesque test.
5121    IntegerLiteral *IL;
5122    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5123        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5124      CheckPureMethod(Method, Init->getSourceRange());
5125    else {
5126      Diag(Method->getLocation(), diag::err_member_function_initialization)
5127        << Method->getDeclName() << Init->getSourceRange();
5128      Method->setInvalidDecl();
5129    }
5130    return;
5131  }
5132
5133  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5134  if (!VDecl) {
5135    if (getLangOptions().CPlusPlus &&
5136        RealDecl->getLexicalDeclContext()->isRecord() &&
5137        isa<NamedDecl>(RealDecl))
5138      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5139    else
5140      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5141    RealDecl->setInvalidDecl();
5142    return;
5143  }
5144
5145  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5146  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5147    TypeSourceInfo *DeducedType = 0;
5148    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5149      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5150        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5151        << Init->getSourceRange();
5152    if (!DeducedType) {
5153      RealDecl->setInvalidDecl();
5154      return;
5155    }
5156    VDecl->setTypeSourceInfo(DeducedType);
5157    VDecl->setType(DeducedType->getType());
5158
5159    // If this is a redeclaration, check that the type we just deduced matches
5160    // the previously declared type.
5161    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5162      MergeVarDeclTypes(VDecl, Old);
5163  }
5164
5165
5166  // A definition must end up with a complete type, which means it must be
5167  // complete with the restriction that an array type might be completed by the
5168  // initializer; note that later code assumes this restriction.
5169  QualType BaseDeclType = VDecl->getType();
5170  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5171    BaseDeclType = Array->getElementType();
5172  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5173                          diag::err_typecheck_decl_incomplete_type)) {
5174    RealDecl->setInvalidDecl();
5175    return;
5176  }
5177
5178  // The variable can not have an abstract class type.
5179  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5180                             diag::err_abstract_type_in_decl,
5181                             AbstractVariableType))
5182    VDecl->setInvalidDecl();
5183
5184  const VarDecl *Def;
5185  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5186    Diag(VDecl->getLocation(), diag::err_redefinition)
5187      << VDecl->getDeclName();
5188    Diag(Def->getLocation(), diag::note_previous_definition);
5189    VDecl->setInvalidDecl();
5190    return;
5191  }
5192
5193  const VarDecl* PrevInit = 0;
5194  if (getLangOptions().CPlusPlus) {
5195    // C++ [class.static.data]p4
5196    //   If a static data member is of const integral or const
5197    //   enumeration type, its declaration in the class definition can
5198    //   specify a constant-initializer which shall be an integral
5199    //   constant expression (5.19). In that case, the member can appear
5200    //   in integral constant expressions. The member shall still be
5201    //   defined in a namespace scope if it is used in the program and the
5202    //   namespace scope definition shall not contain an initializer.
5203    //
5204    // We already performed a redefinition check above, but for static
5205    // data members we also need to check whether there was an in-class
5206    // declaration with an initializer.
5207    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5208      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5209      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5210      return;
5211    }
5212
5213    if (VDecl->hasLocalStorage())
5214      getCurFunction()->setHasBranchProtectedScope();
5215
5216    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5217      VDecl->setInvalidDecl();
5218      return;
5219    }
5220  }
5221
5222  // Capture the variable that is being initialized and the style of
5223  // initialization.
5224  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5225
5226  // FIXME: Poor source location information.
5227  InitializationKind Kind
5228    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5229                                                   Init->getLocStart(),
5230                                                   Init->getLocEnd())
5231                : InitializationKind::CreateCopy(VDecl->getLocation(),
5232                                                 Init->getLocStart());
5233
5234  // Get the decls type and save a reference for later, since
5235  // CheckInitializerTypes may change it.
5236  QualType DclT = VDecl->getType(), SavT = DclT;
5237  if (VDecl->isLocalVarDecl()) {
5238    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5239      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5240      VDecl->setInvalidDecl();
5241    } else if (!VDecl->isInvalidDecl()) {
5242      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5243      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5244                                                MultiExprArg(*this, &Init, 1),
5245                                                &DclT);
5246      if (Result.isInvalid()) {
5247        VDecl->setInvalidDecl();
5248        return;
5249      }
5250
5251      Init = Result.takeAs<Expr>();
5252
5253      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5254      // Don't check invalid declarations to avoid emitting useless diagnostics.
5255      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5256        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5257          CheckForConstantInitializer(Init, DclT);
5258      }
5259    }
5260  } else if (VDecl->isStaticDataMember() &&
5261             VDecl->getLexicalDeclContext()->isRecord()) {
5262    // This is an in-class initialization for a static data member, e.g.,
5263    //
5264    // struct S {
5265    //   static const int value = 17;
5266    // };
5267
5268    // Try to perform the initialization regardless.
5269    if (!VDecl->isInvalidDecl()) {
5270      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5271      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5272                                          MultiExprArg(*this, &Init, 1),
5273                                          &DclT);
5274      if (Result.isInvalid()) {
5275        VDecl->setInvalidDecl();
5276        return;
5277      }
5278
5279      Init = Result.takeAs<Expr>();
5280    }
5281
5282    // C++ [class.mem]p4:
5283    //   A member-declarator can contain a constant-initializer only
5284    //   if it declares a static member (9.4) of const integral or
5285    //   const enumeration type, see 9.4.2.
5286    QualType T = VDecl->getType();
5287
5288    // Do nothing on dependent types.
5289    if (T->isDependentType()) {
5290
5291    // Require constness.
5292    } else if (!T.isConstQualified()) {
5293      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5294        << Init->getSourceRange();
5295      VDecl->setInvalidDecl();
5296
5297    // We allow integer constant expressions in all cases.
5298    } else if (T->isIntegralOrEnumerationType()) {
5299      if (!Init->isValueDependent()) {
5300        // Check whether the expression is a constant expression.
5301        llvm::APSInt Value;
5302        SourceLocation Loc;
5303        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5304          Diag(Loc, diag::err_in_class_initializer_non_constant)
5305            << Init->getSourceRange();
5306          VDecl->setInvalidDecl();
5307        }
5308      }
5309
5310    // We allow floating-point constants as an extension in C++03, and
5311    // C++0x has far more complicated rules that we don't really
5312    // implement fully.
5313    } else {
5314      bool Allowed = false;
5315      if (getLangOptions().CPlusPlus0x) {
5316        Allowed = T->isLiteralType();
5317      } else if (T->isFloatingType()) { // also permits complex, which is ok
5318        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5319          << T << Init->getSourceRange();
5320        Allowed = true;
5321      }
5322
5323      if (!Allowed) {
5324        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5325          << T << Init->getSourceRange();
5326        VDecl->setInvalidDecl();
5327
5328      // TODO: there are probably expressions that pass here that shouldn't.
5329      } else if (!Init->isValueDependent() &&
5330                 !Init->isConstantInitializer(Context, false)) {
5331        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5332          << Init->getSourceRange();
5333        VDecl->setInvalidDecl();
5334      }
5335    }
5336  } else if (VDecl->isFileVarDecl()) {
5337    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5338        (!getLangOptions().CPlusPlus ||
5339         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5340      Diag(VDecl->getLocation(), diag::warn_extern_init);
5341    if (!VDecl->isInvalidDecl()) {
5342      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5343      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5344                                                MultiExprArg(*this, &Init, 1),
5345                                                &DclT);
5346      if (Result.isInvalid()) {
5347        VDecl->setInvalidDecl();
5348        return;
5349      }
5350
5351      Init = Result.takeAs<Expr>();
5352    }
5353
5354    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5355    // Don't check invalid declarations to avoid emitting useless diagnostics.
5356    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5357      // C99 6.7.8p4. All file scoped initializers need to be constant.
5358      CheckForConstantInitializer(Init, DclT);
5359    }
5360  }
5361  // If the type changed, it means we had an incomplete type that was
5362  // completed by the initializer. For example:
5363  //   int ary[] = { 1, 3, 5 };
5364  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5365  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5366    VDecl->setType(DclT);
5367    Init->setType(DclT);
5368  }
5369
5370
5371  // If this variable is a local declaration with record type, make sure it
5372  // doesn't have a flexible member initialization.  We only support this as a
5373  // global/static definition.
5374  if (VDecl->hasLocalStorage())
5375    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5376      if (RT->getDecl()->hasFlexibleArrayMember()) {
5377        // Check whether the initializer tries to initialize the flexible
5378        // array member itself to anything other than an empty initializer list.
5379        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5380          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5381                                         RT->getDecl()->field_end()) - 1;
5382          if (Index < ILE->getNumInits() &&
5383              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5384                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5385            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5386            VDecl->setInvalidDecl();
5387          }
5388        }
5389      }
5390
5391  // Check any implicit conversions within the expression.
5392  CheckImplicitConversions(Init, VDecl->getLocation());
5393
5394  Init = MaybeCreateExprWithCleanups(Init);
5395  // Attach the initializer to the decl.
5396  VDecl->setInit(Init);
5397
5398  CheckCompleteVariableDeclaration(VDecl);
5399}
5400
5401/// ActOnInitializerError - Given that there was an error parsing an
5402/// initializer for the given declaration, try to return to some form
5403/// of sanity.
5404void Sema::ActOnInitializerError(Decl *D) {
5405  // Our main concern here is re-establishing invariants like "a
5406  // variable's type is either dependent or complete".
5407  if (!D || D->isInvalidDecl()) return;
5408
5409  VarDecl *VD = dyn_cast<VarDecl>(D);
5410  if (!VD) return;
5411
5412  // Auto types are meaningless if we can't make sense of the initializer.
5413  if (ParsingInitForAutoVars.count(D)) {
5414    D->setInvalidDecl();
5415    return;
5416  }
5417
5418  QualType Ty = VD->getType();
5419  if (Ty->isDependentType()) return;
5420
5421  // Require a complete type.
5422  if (RequireCompleteType(VD->getLocation(),
5423                          Context.getBaseElementType(Ty),
5424                          diag::err_typecheck_decl_incomplete_type)) {
5425    VD->setInvalidDecl();
5426    return;
5427  }
5428
5429  // Require an abstract type.
5430  if (RequireNonAbstractType(VD->getLocation(), Ty,
5431                             diag::err_abstract_type_in_decl,
5432                             AbstractVariableType)) {
5433    VD->setInvalidDecl();
5434    return;
5435  }
5436
5437  // Don't bother complaining about constructors or destructors,
5438  // though.
5439}
5440
5441void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5442                                  bool TypeMayContainAuto) {
5443  // If there is no declaration, there was an error parsing it. Just ignore it.
5444  if (RealDecl == 0)
5445    return;
5446
5447  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5448    QualType Type = Var->getType();
5449
5450    // C++0x [dcl.spec.auto]p3
5451    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5452      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5453        << Var->getDeclName() << Type;
5454      Var->setInvalidDecl();
5455      return;
5456    }
5457
5458    switch (Var->isThisDeclarationADefinition()) {
5459    case VarDecl::Definition:
5460      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5461        break;
5462
5463      // We have an out-of-line definition of a static data member
5464      // that has an in-class initializer, so we type-check this like
5465      // a declaration.
5466      //
5467      // Fall through
5468
5469    case VarDecl::DeclarationOnly:
5470      // It's only a declaration.
5471
5472      // Block scope. C99 6.7p7: If an identifier for an object is
5473      // declared with no linkage (C99 6.2.2p6), the type for the
5474      // object shall be complete.
5475      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5476          !Var->getLinkage() && !Var->isInvalidDecl() &&
5477          RequireCompleteType(Var->getLocation(), Type,
5478                              diag::err_typecheck_decl_incomplete_type))
5479        Var->setInvalidDecl();
5480
5481      // Make sure that the type is not abstract.
5482      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5483          RequireNonAbstractType(Var->getLocation(), Type,
5484                                 diag::err_abstract_type_in_decl,
5485                                 AbstractVariableType))
5486        Var->setInvalidDecl();
5487      return;
5488
5489    case VarDecl::TentativeDefinition:
5490      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5491      // object that has file scope without an initializer, and without a
5492      // storage-class specifier or with the storage-class specifier "static",
5493      // constitutes a tentative definition. Note: A tentative definition with
5494      // external linkage is valid (C99 6.2.2p5).
5495      if (!Var->isInvalidDecl()) {
5496        if (const IncompleteArrayType *ArrayT
5497                                    = Context.getAsIncompleteArrayType(Type)) {
5498          if (RequireCompleteType(Var->getLocation(),
5499                                  ArrayT->getElementType(),
5500                                  diag::err_illegal_decl_array_incomplete_type))
5501            Var->setInvalidDecl();
5502        } else if (Var->getStorageClass() == SC_Static) {
5503          // C99 6.9.2p3: If the declaration of an identifier for an object is
5504          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5505          // declared type shall not be an incomplete type.
5506          // NOTE: code such as the following
5507          //     static struct s;
5508          //     struct s { int a; };
5509          // is accepted by gcc. Hence here we issue a warning instead of
5510          // an error and we do not invalidate the static declaration.
5511          // NOTE: to avoid multiple warnings, only check the first declaration.
5512          if (Var->getPreviousDeclaration() == 0)
5513            RequireCompleteType(Var->getLocation(), Type,
5514                                diag::ext_typecheck_decl_incomplete_type);
5515        }
5516      }
5517
5518      // Record the tentative definition; we're done.
5519      if (!Var->isInvalidDecl())
5520        TentativeDefinitions.push_back(Var);
5521      return;
5522    }
5523
5524    // Provide a specific diagnostic for uninitialized variable
5525    // definitions with incomplete array type.
5526    if (Type->isIncompleteArrayType()) {
5527      Diag(Var->getLocation(),
5528           diag::err_typecheck_incomplete_array_needs_initializer);
5529      Var->setInvalidDecl();
5530      return;
5531    }
5532
5533    // Provide a specific diagnostic for uninitialized variable
5534    // definitions with reference type.
5535    if (Type->isReferenceType()) {
5536      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5537        << Var->getDeclName()
5538        << SourceRange(Var->getLocation(), Var->getLocation());
5539      Var->setInvalidDecl();
5540      return;
5541    }
5542
5543    // Do not attempt to type-check the default initializer for a
5544    // variable with dependent type.
5545    if (Type->isDependentType())
5546      return;
5547
5548    if (Var->isInvalidDecl())
5549      return;
5550
5551    if (RequireCompleteType(Var->getLocation(),
5552                            Context.getBaseElementType(Type),
5553                            diag::err_typecheck_decl_incomplete_type)) {
5554      Var->setInvalidDecl();
5555      return;
5556    }
5557
5558    // The variable can not have an abstract class type.
5559    if (RequireNonAbstractType(Var->getLocation(), Type,
5560                               diag::err_abstract_type_in_decl,
5561                               AbstractVariableType)) {
5562      Var->setInvalidDecl();
5563      return;
5564    }
5565
5566    const RecordType *Record
5567      = Context.getBaseElementType(Type)->getAs<RecordType>();
5568    if (Record && getLangOptions().CPlusPlus &&
5569        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5570      // C++03 [dcl.init]p9:
5571      //   If no initializer is specified for an object, and the
5572      //   object is of (possibly cv-qualified) non-POD class type (or
5573      //   array thereof), the object shall be default-initialized; if
5574      //   the object is of const-qualified type, the underlying class
5575      //   type shall have a user-declared default
5576      //   constructor. Otherwise, if no initializer is specified for
5577      //   a non- static object, the object and its subobjects, if
5578      //   any, have an indeterminate initial value); if the object
5579      //   or any of its subobjects are of const-qualified type, the
5580      //   program is ill-formed.
5581    } else {
5582      // Check for jumps past the implicit initializer.  C++0x
5583      // clarifies that this applies to a "variable with automatic
5584      // storage duration", not a "local variable".
5585      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5586        getCurFunction()->setHasBranchProtectedScope();
5587
5588      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5589      InitializationKind Kind
5590        = InitializationKind::CreateDefault(Var->getLocation());
5591
5592      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5593      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5594                                        MultiExprArg(*this, 0, 0));
5595      if (Init.isInvalid())
5596        Var->setInvalidDecl();
5597      else if (Init.get())
5598        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5599    }
5600
5601    CheckCompleteVariableDeclaration(Var);
5602  }
5603}
5604
5605void Sema::ActOnCXXForRangeDecl(Decl *D) {
5606  VarDecl *VD = dyn_cast<VarDecl>(D);
5607  if (!VD) {
5608    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5609    D->setInvalidDecl();
5610    return;
5611  }
5612
5613  VD->setCXXForRangeDecl(true);
5614
5615  // for-range-declaration cannot be given a storage class specifier.
5616  int Error = -1;
5617  switch (VD->getStorageClassAsWritten()) {
5618  case SC_None:
5619    break;
5620  case SC_Extern:
5621    Error = 0;
5622    break;
5623  case SC_Static:
5624    Error = 1;
5625    break;
5626  case SC_PrivateExtern:
5627    Error = 2;
5628    break;
5629  case SC_Auto:
5630    Error = 3;
5631    break;
5632  case SC_Register:
5633    Error = 4;
5634    break;
5635  }
5636  // FIXME: constexpr isn't allowed here.
5637  //if (DS.isConstexprSpecified())
5638  //  Error = 5;
5639  if (Error != -1) {
5640    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5641      << VD->getDeclName() << Error;
5642    D->setInvalidDecl();
5643  }
5644}
5645
5646void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5647  if (var->isInvalidDecl()) return;
5648
5649  // All the following checks are C++ only.
5650  if (!getLangOptions().CPlusPlus) return;
5651
5652  QualType baseType = Context.getBaseElementType(var->getType());
5653  if (baseType->isDependentType()) return;
5654
5655  // __block variables might require us to capture a copy-initializer.
5656  if (var->hasAttr<BlocksAttr>()) {
5657    // It's currently invalid to ever have a __block variable with an
5658    // array type; should we diagnose that here?
5659
5660    // Regardless, we don't want to ignore array nesting when
5661    // constructing this copy.
5662    QualType type = var->getType();
5663
5664    if (type->isStructureOrClassType()) {
5665      SourceLocation poi = var->getLocation();
5666      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5667      ExprResult result =
5668        PerformCopyInitialization(
5669                        InitializedEntity::InitializeBlock(poi, type, false),
5670                                  poi, Owned(varRef));
5671      if (!result.isInvalid()) {
5672        result = MaybeCreateExprWithCleanups(result);
5673        Expr *init = result.takeAs<Expr>();
5674        Context.setBlockVarCopyInits(var, init);
5675      }
5676    }
5677  }
5678
5679  // Check for global constructors.
5680  if (!var->getDeclContext()->isDependentContext() &&
5681      var->hasGlobalStorage() &&
5682      !var->isStaticLocal() &&
5683      var->getInit() &&
5684      !var->getInit()->isConstantInitializer(Context,
5685                                             baseType->isReferenceType()))
5686    Diag(var->getLocation(), diag::warn_global_constructor)
5687      << var->getInit()->getSourceRange();
5688
5689  // Require the destructor.
5690  if (const RecordType *recordType = baseType->getAs<RecordType>())
5691    FinalizeVarWithDestructor(var, recordType);
5692}
5693
5694/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5695/// any semantic actions necessary after any initializer has been attached.
5696void
5697Sema::FinalizeDeclaration(Decl *ThisDecl) {
5698  // Note that we are no longer parsing the initializer for this declaration.
5699  ParsingInitForAutoVars.erase(ThisDecl);
5700}
5701
5702Sema::DeclGroupPtrTy
5703Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5704                              Decl **Group, unsigned NumDecls) {
5705  llvm::SmallVector<Decl*, 8> Decls;
5706
5707  if (DS.isTypeSpecOwned())
5708    Decls.push_back(DS.getRepAsDecl());
5709
5710  for (unsigned i = 0; i != NumDecls; ++i)
5711    if (Decl *D = Group[i])
5712      Decls.push_back(D);
5713
5714  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5715                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5716}
5717
5718/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5719/// group, performing any necessary semantic checking.
5720Sema::DeclGroupPtrTy
5721Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5722                           bool TypeMayContainAuto) {
5723  // C++0x [dcl.spec.auto]p7:
5724  //   If the type deduced for the template parameter U is not the same in each
5725  //   deduction, the program is ill-formed.
5726  // FIXME: When initializer-list support is added, a distinction is needed
5727  // between the deduced type U and the deduced type which 'auto' stands for.
5728  //   auto a = 0, b = { 1, 2, 3 };
5729  // is legal because the deduced type U is 'int' in both cases.
5730  if (TypeMayContainAuto && NumDecls > 1) {
5731    QualType Deduced;
5732    CanQualType DeducedCanon;
5733    VarDecl *DeducedDecl = 0;
5734    for (unsigned i = 0; i != NumDecls; ++i) {
5735      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5736        AutoType *AT = D->getType()->getContainedAutoType();
5737        // Don't reissue diagnostics when instantiating a template.
5738        if (AT && D->isInvalidDecl())
5739          break;
5740        if (AT && AT->isDeduced()) {
5741          QualType U = AT->getDeducedType();
5742          CanQualType UCanon = Context.getCanonicalType(U);
5743          if (Deduced.isNull()) {
5744            Deduced = U;
5745            DeducedCanon = UCanon;
5746            DeducedDecl = D;
5747          } else if (DeducedCanon != UCanon) {
5748            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5749                 diag::err_auto_different_deductions)
5750              << Deduced << DeducedDecl->getDeclName()
5751              << U << D->getDeclName()
5752              << DeducedDecl->getInit()->getSourceRange()
5753              << D->getInit()->getSourceRange();
5754            D->setInvalidDecl();
5755            break;
5756          }
5757        }
5758      }
5759    }
5760  }
5761
5762  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5763}
5764
5765
5766/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5767/// to introduce parameters into function prototype scope.
5768Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5769  const DeclSpec &DS = D.getDeclSpec();
5770
5771  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5772  VarDecl::StorageClass StorageClass = SC_None;
5773  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5774  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5775    StorageClass = SC_Register;
5776    StorageClassAsWritten = SC_Register;
5777  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5778    Diag(DS.getStorageClassSpecLoc(),
5779         diag::err_invalid_storage_class_in_func_decl);
5780    D.getMutableDeclSpec().ClearStorageClassSpecs();
5781  }
5782
5783  if (D.getDeclSpec().isThreadSpecified())
5784    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5785
5786  DiagnoseFunctionSpecifiers(D);
5787
5788  TagDecl *OwnedDecl = 0;
5789  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5790  QualType parmDeclType = TInfo->getType();
5791
5792  if (getLangOptions().CPlusPlus) {
5793    // Check that there are no default arguments inside the type of this
5794    // parameter.
5795    CheckExtraCXXDefaultArguments(D);
5796
5797    if (OwnedDecl && OwnedDecl->isDefinition()) {
5798      // C++ [dcl.fct]p6:
5799      //   Types shall not be defined in return or parameter types.
5800      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5801        << Context.getTypeDeclType(OwnedDecl);
5802    }
5803
5804    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5805    if (D.getCXXScopeSpec().isSet()) {
5806      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5807        << D.getCXXScopeSpec().getRange();
5808      D.getCXXScopeSpec().clear();
5809    }
5810  }
5811
5812  // Ensure we have a valid name
5813  IdentifierInfo *II = 0;
5814  if (D.hasName()) {
5815    II = D.getIdentifier();
5816    if (!II) {
5817      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5818        << GetNameForDeclarator(D).getName().getAsString();
5819      D.setInvalidType(true);
5820    }
5821  }
5822
5823  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5824  if (II) {
5825    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5826                   ForRedeclaration);
5827    LookupName(R, S);
5828    if (R.isSingleResult()) {
5829      NamedDecl *PrevDecl = R.getFoundDecl();
5830      if (PrevDecl->isTemplateParameter()) {
5831        // Maybe we will complain about the shadowed template parameter.
5832        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5833        // Just pretend that we didn't see the previous declaration.
5834        PrevDecl = 0;
5835      } else if (S->isDeclScope(PrevDecl)) {
5836        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5837        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5838
5839        // Recover by removing the name
5840        II = 0;
5841        D.SetIdentifier(0, D.getIdentifierLoc());
5842        D.setInvalidType(true);
5843      }
5844    }
5845  }
5846
5847  // Temporarily put parameter variables in the translation unit, not
5848  // the enclosing context.  This prevents them from accidentally
5849  // looking like class members in C++.
5850  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5851                                    D.getSourceRange().getBegin(),
5852                                    D.getIdentifierLoc(), II,
5853                                    parmDeclType, TInfo,
5854                                    StorageClass, StorageClassAsWritten);
5855
5856  if (D.isInvalidType())
5857    New->setInvalidDecl();
5858
5859  assert(S->isFunctionPrototypeScope());
5860  assert(S->getFunctionPrototypeDepth() >= 1);
5861  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5862                    S->getNextFunctionPrototypeIndex());
5863
5864  // Add the parameter declaration into this scope.
5865  S->AddDecl(New);
5866  if (II)
5867    IdResolver.AddDecl(New);
5868
5869  ProcessDeclAttributes(S, New, D);
5870
5871  if (New->hasAttr<BlocksAttr>()) {
5872    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5873  }
5874  return New;
5875}
5876
5877/// \brief Synthesizes a variable for a parameter arising from a
5878/// typedef.
5879ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5880                                              SourceLocation Loc,
5881                                              QualType T) {
5882  /* FIXME: setting StartLoc == Loc.
5883     Would it be worth to modify callers so as to provide proper source
5884     location for the unnamed parameters, embedding the parameter's type? */
5885  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5886                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5887                                           SC_None, SC_None, 0);
5888  Param->setImplicit();
5889  return Param;
5890}
5891
5892void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5893                                    ParmVarDecl * const *ParamEnd) {
5894  // Don't diagnose unused-parameter errors in template instantiations; we
5895  // will already have done so in the template itself.
5896  if (!ActiveTemplateInstantiations.empty())
5897    return;
5898
5899  for (; Param != ParamEnd; ++Param) {
5900    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5901        !(*Param)->hasAttr<UnusedAttr>()) {
5902      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5903        << (*Param)->getDeclName();
5904    }
5905  }
5906}
5907
5908void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5909                                                  ParmVarDecl * const *ParamEnd,
5910                                                  QualType ReturnTy,
5911                                                  NamedDecl *D) {
5912  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5913    return;
5914
5915  // Warn if the return value is pass-by-value and larger than the specified
5916  // threshold.
5917  if (ReturnTy->isPODType()) {
5918    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5919    if (Size > LangOpts.NumLargeByValueCopy)
5920      Diag(D->getLocation(), diag::warn_return_value_size)
5921          << D->getDeclName() << Size;
5922  }
5923
5924  // Warn if any parameter is pass-by-value and larger than the specified
5925  // threshold.
5926  for (; Param != ParamEnd; ++Param) {
5927    QualType T = (*Param)->getType();
5928    if (!T->isPODType())
5929      continue;
5930    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5931    if (Size > LangOpts.NumLargeByValueCopy)
5932      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5933          << (*Param)->getDeclName() << Size;
5934  }
5935}
5936
5937ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5938                                  SourceLocation NameLoc, IdentifierInfo *Name,
5939                                  QualType T, TypeSourceInfo *TSInfo,
5940                                  VarDecl::StorageClass StorageClass,
5941                                  VarDecl::StorageClass StorageClassAsWritten) {
5942  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5943                                         adjustParameterType(T), TSInfo,
5944                                         StorageClass, StorageClassAsWritten,
5945                                         0);
5946
5947  // Parameters can not be abstract class types.
5948  // For record types, this is done by the AbstractClassUsageDiagnoser once
5949  // the class has been completely parsed.
5950  if (!CurContext->isRecord() &&
5951      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5952                             AbstractParamType))
5953    New->setInvalidDecl();
5954
5955  // Parameter declarators cannot be interface types. All ObjC objects are
5956  // passed by reference.
5957  if (T->isObjCObjectType()) {
5958    Diag(NameLoc,
5959         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5960    New->setInvalidDecl();
5961  }
5962
5963  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5964  // duration shall not be qualified by an address-space qualifier."
5965  // Since all parameters have automatic store duration, they can not have
5966  // an address space.
5967  if (T.getAddressSpace() != 0) {
5968    Diag(NameLoc, diag::err_arg_with_address_space);
5969    New->setInvalidDecl();
5970  }
5971
5972  return New;
5973}
5974
5975void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5976                                           SourceLocation LocAfterDecls) {
5977  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5978
5979  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5980  // for a K&R function.
5981  if (!FTI.hasPrototype) {
5982    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5983      --i;
5984      if (FTI.ArgInfo[i].Param == 0) {
5985        llvm::SmallString<256> Code;
5986        llvm::raw_svector_ostream(Code) << "  int "
5987                                        << FTI.ArgInfo[i].Ident->getName()
5988                                        << ";\n";
5989        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5990          << FTI.ArgInfo[i].Ident
5991          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5992
5993        // Implicitly declare the argument as type 'int' for lack of a better
5994        // type.
5995        AttributeFactory attrs;
5996        DeclSpec DS(attrs);
5997        const char* PrevSpec; // unused
5998        unsigned DiagID; // unused
5999        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6000                           PrevSpec, DiagID);
6001        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6002        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6003        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6004      }
6005    }
6006  }
6007}
6008
6009Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6010                                         Declarator &D) {
6011  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6012  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6013  Scope *ParentScope = FnBodyScope->getParent();
6014
6015  Decl *DP = HandleDeclarator(ParentScope, D,
6016                              MultiTemplateParamsArg(*this),
6017                              /*IsFunctionDefinition=*/true);
6018  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6019}
6020
6021static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6022  // Don't warn about invalid declarations.
6023  if (FD->isInvalidDecl())
6024    return false;
6025
6026  // Or declarations that aren't global.
6027  if (!FD->isGlobal())
6028    return false;
6029
6030  // Don't warn about C++ member functions.
6031  if (isa<CXXMethodDecl>(FD))
6032    return false;
6033
6034  // Don't warn about 'main'.
6035  if (FD->isMain())
6036    return false;
6037
6038  // Don't warn about inline functions.
6039  if (FD->isInlined())
6040    return false;
6041
6042  // Don't warn about function templates.
6043  if (FD->getDescribedFunctionTemplate())
6044    return false;
6045
6046  // Don't warn about function template specializations.
6047  if (FD->isFunctionTemplateSpecialization())
6048    return false;
6049
6050  bool MissingPrototype = true;
6051  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6052       Prev; Prev = Prev->getPreviousDeclaration()) {
6053    // Ignore any declarations that occur in function or method
6054    // scope, because they aren't visible from the header.
6055    if (Prev->getDeclContext()->isFunctionOrMethod())
6056      continue;
6057
6058    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6059    break;
6060  }
6061
6062  return MissingPrototype;
6063}
6064
6065void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6066  // Don't complain if we're in GNU89 mode and the previous definition
6067  // was an extern inline function.
6068  const FunctionDecl *Definition;
6069  if (FD->hasBody(Definition) &&
6070      !canRedefineFunction(Definition, getLangOptions())) {
6071    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6072        Definition->getStorageClass() == SC_Extern)
6073      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6074        << FD->getDeclName() << getLangOptions().CPlusPlus;
6075    else
6076      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6077    Diag(Definition->getLocation(), diag::note_previous_definition);
6078  }
6079}
6080
6081Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6082  // Clear the last template instantiation error context.
6083  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6084
6085  if (!D)
6086    return D;
6087  FunctionDecl *FD = 0;
6088
6089  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6090    FD = FunTmpl->getTemplatedDecl();
6091  else
6092    FD = cast<FunctionDecl>(D);
6093
6094  // Enter a new function scope
6095  PushFunctionScope();
6096
6097  // See if this is a redefinition.
6098  if (!FD->isLateTemplateParsed())
6099    CheckForFunctionRedefinition(FD);
6100
6101  // Builtin functions cannot be defined.
6102  if (unsigned BuiltinID = FD->getBuiltinID()) {
6103    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6104      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6105      FD->setInvalidDecl();
6106    }
6107  }
6108
6109  // The return type of a function definition must be complete
6110  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6111  QualType ResultType = FD->getResultType();
6112  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6113      !FD->isInvalidDecl() &&
6114      RequireCompleteType(FD->getLocation(), ResultType,
6115                          diag::err_func_def_incomplete_result))
6116    FD->setInvalidDecl();
6117
6118  // GNU warning -Wmissing-prototypes:
6119  //   Warn if a global function is defined without a previous
6120  //   prototype declaration. This warning is issued even if the
6121  //   definition itself provides a prototype. The aim is to detect
6122  //   global functions that fail to be declared in header files.
6123  if (ShouldWarnAboutMissingPrototype(FD))
6124    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6125
6126  if (FnBodyScope)
6127    PushDeclContext(FnBodyScope, FD);
6128
6129  // Check the validity of our function parameters
6130  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6131                           /*CheckParameterNames=*/true);
6132
6133  // Introduce our parameters into the function scope
6134  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6135    ParmVarDecl *Param = FD->getParamDecl(p);
6136    Param->setOwningFunction(FD);
6137
6138    // If this has an identifier, add it to the scope stack.
6139    if (Param->getIdentifier() && FnBodyScope) {
6140      CheckShadow(FnBodyScope, Param);
6141
6142      PushOnScopeChains(Param, FnBodyScope);
6143    }
6144  }
6145
6146  // Checking attributes of current function definition
6147  // dllimport attribute.
6148  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6149  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6150    // dllimport attribute cannot be directly applied to definition.
6151    // Microsoft accepts dllimport for functions defined within class scope.
6152    if (!DA->isInherited() &&
6153        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6154      Diag(FD->getLocation(),
6155           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6156        << "dllimport";
6157      FD->setInvalidDecl();
6158      return FD;
6159    }
6160
6161    // Visual C++ appears to not think this is an issue, so only issue
6162    // a warning when Microsoft extensions are disabled.
6163    if (!LangOpts.Microsoft) {
6164      // If a symbol previously declared dllimport is later defined, the
6165      // attribute is ignored in subsequent references, and a warning is
6166      // emitted.
6167      Diag(FD->getLocation(),
6168           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6169        << FD->getName() << "dllimport";
6170    }
6171  }
6172  return FD;
6173}
6174
6175/// \brief Given the set of return statements within a function body,
6176/// compute the variables that are subject to the named return value
6177/// optimization.
6178///
6179/// Each of the variables that is subject to the named return value
6180/// optimization will be marked as NRVO variables in the AST, and any
6181/// return statement that has a marked NRVO variable as its NRVO candidate can
6182/// use the named return value optimization.
6183///
6184/// This function applies a very simplistic algorithm for NRVO: if every return
6185/// statement in the function has the same NRVO candidate, that candidate is
6186/// the NRVO variable.
6187///
6188/// FIXME: Employ a smarter algorithm that accounts for multiple return
6189/// statements and the lifetimes of the NRVO candidates. We should be able to
6190/// find a maximal set of NRVO variables.
6191static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6192  ReturnStmt **Returns = Scope->Returns.data();
6193
6194  const VarDecl *NRVOCandidate = 0;
6195  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6196    if (!Returns[I]->getNRVOCandidate())
6197      return;
6198
6199    if (!NRVOCandidate)
6200      NRVOCandidate = Returns[I]->getNRVOCandidate();
6201    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6202      return;
6203  }
6204
6205  if (NRVOCandidate)
6206    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6207}
6208
6209Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6210  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6211}
6212
6213Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6214                                    bool IsInstantiation) {
6215  FunctionDecl *FD = 0;
6216  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6217  if (FunTmpl)
6218    FD = FunTmpl->getTemplatedDecl();
6219  else
6220    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6221
6222  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6223  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6224
6225  if (FD) {
6226    FD->setBody(Body);
6227    if (FD->isMain()) {
6228      // C and C++ allow for main to automagically return 0.
6229      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6230      FD->setHasImplicitReturnZero(true);
6231      WP.disableCheckFallThrough();
6232    }
6233
6234    if (!FD->isInvalidDecl()) {
6235      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6236      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6237                                             FD->getResultType(), FD);
6238
6239      // If this is a constructor, we need a vtable.
6240      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6241        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6242
6243      ComputeNRVO(Body, getCurFunction());
6244    }
6245
6246    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6247  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6248    assert(MD == getCurMethodDecl() && "Method parsing confused");
6249    MD->setBody(Body);
6250    if (Body)
6251      MD->setEndLoc(Body->getLocEnd());
6252    if (!MD->isInvalidDecl()) {
6253      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6254      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6255                                             MD->getResultType(), MD);
6256    }
6257  } else {
6258    return 0;
6259  }
6260
6261  // Verify and clean out per-function state.
6262  if (Body) {
6263    // C++ constructors that have function-try-blocks can't have return
6264    // statements in the handlers of that block. (C++ [except.handle]p14)
6265    // Verify this.
6266    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6267      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6268
6269    // Verify that that gotos and switch cases don't jump into scopes illegally.
6270    // Verify that that gotos and switch cases don't jump into scopes illegally.
6271    if (getCurFunction()->NeedsScopeChecking() &&
6272        !dcl->isInvalidDecl() &&
6273        !hasAnyErrorsInThisFunction())
6274      DiagnoseInvalidJumps(Body);
6275
6276    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6277      if (!Destructor->getParent()->isDependentType())
6278        CheckDestructor(Destructor);
6279
6280      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6281                                             Destructor->getParent());
6282    }
6283
6284    // If any errors have occurred, clear out any temporaries that may have
6285    // been leftover. This ensures that these temporaries won't be picked up for
6286    // deletion in some later function.
6287    if (PP.getDiagnostics().hasErrorOccurred() ||
6288        PP.getDiagnostics().getSuppressAllDiagnostics())
6289      ExprTemporaries.clear();
6290    else if (!isa<FunctionTemplateDecl>(dcl)) {
6291      // Since the body is valid, issue any analysis-based warnings that are
6292      // enabled.
6293      ActivePolicy = &WP;
6294    }
6295
6296    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6297  }
6298
6299  if (!IsInstantiation)
6300    PopDeclContext();
6301
6302  PopFunctionOrBlockScope(ActivePolicy, dcl);
6303
6304  // If any errors have occurred, clear out any temporaries that may have
6305  // been leftover. This ensures that these temporaries won't be picked up for
6306  // deletion in some later function.
6307  if (getDiagnostics().hasErrorOccurred())
6308    ExprTemporaries.clear();
6309
6310  return dcl;
6311}
6312
6313/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6314/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6315NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6316                                          IdentifierInfo &II, Scope *S) {
6317  // Before we produce a declaration for an implicitly defined
6318  // function, see whether there was a locally-scoped declaration of
6319  // this name as a function or variable. If so, use that
6320  // (non-visible) declaration, and complain about it.
6321  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6322    = LocallyScopedExternalDecls.find(&II);
6323  if (Pos != LocallyScopedExternalDecls.end()) {
6324    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6325    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6326    return Pos->second;
6327  }
6328
6329  // Extension in C99.  Legal in C90, but warn about it.
6330  if (II.getName().startswith("__builtin_"))
6331    Diag(Loc, diag::warn_builtin_unknown) << &II;
6332  else if (getLangOptions().C99)
6333    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6334  else
6335    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6336
6337  // Set a Declarator for the implicit definition: int foo();
6338  const char *Dummy;
6339  AttributeFactory attrFactory;
6340  DeclSpec DS(attrFactory);
6341  unsigned DiagID;
6342  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6343  (void)Error; // Silence warning.
6344  assert(!Error && "Error setting up implicit decl!");
6345  Declarator D(DS, Declarator::BlockContext);
6346  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6347                                             0, 0, true, SourceLocation(),
6348                                             EST_None, SourceLocation(),
6349                                             0, 0, 0, 0, Loc, Loc, D),
6350                DS.getAttributes(),
6351                SourceLocation());
6352  D.SetIdentifier(&II, Loc);
6353
6354  // Insert this function into translation-unit scope.
6355
6356  DeclContext *PrevDC = CurContext;
6357  CurContext = Context.getTranslationUnitDecl();
6358
6359  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6360  FD->setImplicit();
6361
6362  CurContext = PrevDC;
6363
6364  AddKnownFunctionAttributes(FD);
6365
6366  return FD;
6367}
6368
6369/// \brief Adds any function attributes that we know a priori based on
6370/// the declaration of this function.
6371///
6372/// These attributes can apply both to implicitly-declared builtins
6373/// (like __builtin___printf_chk) or to library-declared functions
6374/// like NSLog or printf.
6375void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6376  if (FD->isInvalidDecl())
6377    return;
6378
6379  // If this is a built-in function, map its builtin attributes to
6380  // actual attributes.
6381  if (unsigned BuiltinID = FD->getBuiltinID()) {
6382    // Handle printf-formatting attributes.
6383    unsigned FormatIdx;
6384    bool HasVAListArg;
6385    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6386      if (!FD->getAttr<FormatAttr>())
6387        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6388                                                "printf", FormatIdx+1,
6389                                               HasVAListArg ? 0 : FormatIdx+2));
6390    }
6391    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6392                                             HasVAListArg)) {
6393     if (!FD->getAttr<FormatAttr>())
6394       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6395                                              "scanf", FormatIdx+1,
6396                                              HasVAListArg ? 0 : FormatIdx+2));
6397    }
6398
6399    // Mark const if we don't care about errno and that is the only
6400    // thing preventing the function from being const. This allows
6401    // IRgen to use LLVM intrinsics for such functions.
6402    if (!getLangOptions().MathErrno &&
6403        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6404      if (!FD->getAttr<ConstAttr>())
6405        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6406    }
6407
6408    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6409      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6410    if (Context.BuiltinInfo.isConst(BuiltinID))
6411      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6412  }
6413
6414  IdentifierInfo *Name = FD->getIdentifier();
6415  if (!Name)
6416    return;
6417  if ((!getLangOptions().CPlusPlus &&
6418       FD->getDeclContext()->isTranslationUnit()) ||
6419      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6420       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6421       LinkageSpecDecl::lang_c)) {
6422    // Okay: this could be a libc/libm/Objective-C function we know
6423    // about.
6424  } else
6425    return;
6426
6427  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6428    // FIXME: NSLog and NSLogv should be target specific
6429    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6430      // FIXME: We known better than our headers.
6431      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6432    } else
6433      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6434                                             "printf", 1,
6435                                             Name->isStr("NSLogv") ? 0 : 2));
6436  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6437    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6438    // target-specific builtins, perhaps?
6439    if (!FD->getAttr<FormatAttr>())
6440      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6441                                             "printf", 2,
6442                                             Name->isStr("vasprintf") ? 0 : 3));
6443  }
6444}
6445
6446TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6447                                    TypeSourceInfo *TInfo) {
6448  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6449  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6450
6451  if (!TInfo) {
6452    assert(D.isInvalidType() && "no declarator info for valid type");
6453    TInfo = Context.getTrivialTypeSourceInfo(T);
6454  }
6455
6456  // Scope manipulation handled by caller.
6457  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6458                                           D.getSourceRange().getBegin(),
6459                                           D.getIdentifierLoc(),
6460                                           D.getIdentifier(),
6461                                           TInfo);
6462
6463  // Bail out immediately if we have an invalid declaration.
6464  if (D.isInvalidType()) {
6465    NewTD->setInvalidDecl();
6466    return NewTD;
6467  }
6468
6469  // C++ [dcl.typedef]p8:
6470  //   If the typedef declaration defines an unnamed class (or
6471  //   enum), the first typedef-name declared by the declaration
6472  //   to be that class type (or enum type) is used to denote the
6473  //   class type (or enum type) for linkage purposes only.
6474  // We need to check whether the type was declared in the declaration.
6475  switch (D.getDeclSpec().getTypeSpecType()) {
6476  case TST_enum:
6477  case TST_struct:
6478  case TST_union:
6479  case TST_class: {
6480    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6481
6482    // Do nothing if the tag is not anonymous or already has an
6483    // associated typedef (from an earlier typedef in this decl group).
6484    if (tagFromDeclSpec->getIdentifier()) break;
6485    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6486
6487    // A well-formed anonymous tag must always be a TUK_Definition.
6488    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6489
6490    // The type must match the tag exactly;  no qualifiers allowed.
6491    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6492      break;
6493
6494    // Otherwise, set this is the anon-decl typedef for the tag.
6495    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6496    break;
6497  }
6498
6499  default:
6500    break;
6501  }
6502
6503  return NewTD;
6504}
6505
6506
6507/// \brief Determine whether a tag with a given kind is acceptable
6508/// as a redeclaration of the given tag declaration.
6509///
6510/// \returns true if the new tag kind is acceptable, false otherwise.
6511bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6512                                        TagTypeKind NewTag,
6513                                        SourceLocation NewTagLoc,
6514                                        const IdentifierInfo &Name) {
6515  // C++ [dcl.type.elab]p3:
6516  //   The class-key or enum keyword present in the
6517  //   elaborated-type-specifier shall agree in kind with the
6518  //   declaration to which the name in the elaborated-type-specifier
6519  //   refers. This rule also applies to the form of
6520  //   elaborated-type-specifier that declares a class-name or
6521  //   friend class since it can be construed as referring to the
6522  //   definition of the class. Thus, in any
6523  //   elaborated-type-specifier, the enum keyword shall be used to
6524  //   refer to an enumeration (7.2), the union class-key shall be
6525  //   used to refer to a union (clause 9), and either the class or
6526  //   struct class-key shall be used to refer to a class (clause 9)
6527  //   declared using the class or struct class-key.
6528  TagTypeKind OldTag = Previous->getTagKind();
6529  if (OldTag == NewTag)
6530    return true;
6531
6532  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6533      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6534    // Warn about the struct/class tag mismatch.
6535    bool isTemplate = false;
6536    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6537      isTemplate = Record->getDescribedClassTemplate();
6538
6539    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6540      << (NewTag == TTK_Class)
6541      << isTemplate << &Name
6542      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6543                              OldTag == TTK_Class? "class" : "struct");
6544    Diag(Previous->getLocation(), diag::note_previous_use);
6545    return true;
6546  }
6547  return false;
6548}
6549
6550/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6551/// former case, Name will be non-null.  In the later case, Name will be null.
6552/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6553/// reference/declaration/definition of a tag.
6554Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6555                     SourceLocation KWLoc, CXXScopeSpec &SS,
6556                     IdentifierInfo *Name, SourceLocation NameLoc,
6557                     AttributeList *Attr, AccessSpecifier AS,
6558                     MultiTemplateParamsArg TemplateParameterLists,
6559                     bool &OwnedDecl, bool &IsDependent,
6560                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6561                     TypeResult UnderlyingType) {
6562  // If this is not a definition, it must have a name.
6563  assert((Name != 0 || TUK == TUK_Definition) &&
6564         "Nameless record must be a definition!");
6565  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6566
6567  OwnedDecl = false;
6568  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6569
6570  // FIXME: Check explicit specializations more carefully.
6571  bool isExplicitSpecialization = false;
6572  bool Invalid = false;
6573
6574  // We only need to do this matching if we have template parameters
6575  // or a scope specifier, which also conveniently avoids this work
6576  // for non-C++ cases.
6577  if (TemplateParameterLists.size() > 0 ||
6578      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6579    if (TemplateParameterList *TemplateParams
6580          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6581                                                TemplateParameterLists.get(),
6582                                                TemplateParameterLists.size(),
6583                                                    TUK == TUK_Friend,
6584                                                    isExplicitSpecialization,
6585                                                    Invalid)) {
6586      if (TemplateParams->size() > 0) {
6587        // This is a declaration or definition of a class template (which may
6588        // be a member of another template).
6589
6590        if (Invalid)
6591          return 0;
6592
6593        OwnedDecl = false;
6594        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6595                                               SS, Name, NameLoc, Attr,
6596                                               TemplateParams, AS,
6597                                           TemplateParameterLists.size() - 1,
6598                 (TemplateParameterList**) TemplateParameterLists.release());
6599        return Result.get();
6600      } else {
6601        // The "template<>" header is extraneous.
6602        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6603          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6604        isExplicitSpecialization = true;
6605      }
6606    }
6607  }
6608
6609  // Figure out the underlying type if this a enum declaration. We need to do
6610  // this early, because it's needed to detect if this is an incompatible
6611  // redeclaration.
6612  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6613
6614  if (Kind == TTK_Enum) {
6615    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6616      // No underlying type explicitly specified, or we failed to parse the
6617      // type, default to int.
6618      EnumUnderlying = Context.IntTy.getTypePtr();
6619    else if (UnderlyingType.get()) {
6620      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6621      // integral type; any cv-qualification is ignored.
6622      TypeSourceInfo *TI = 0;
6623      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6624      EnumUnderlying = TI;
6625
6626      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6627
6628      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6629        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6630          << T;
6631        // Recover by falling back to int.
6632        EnumUnderlying = Context.IntTy.getTypePtr();
6633      }
6634
6635      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6636                                          UPPC_FixedUnderlyingType))
6637        EnumUnderlying = Context.IntTy.getTypePtr();
6638
6639    } else if (getLangOptions().Microsoft)
6640      // Microsoft enums are always of int type.
6641      EnumUnderlying = Context.IntTy.getTypePtr();
6642  }
6643
6644  DeclContext *SearchDC = CurContext;
6645  DeclContext *DC = CurContext;
6646  bool isStdBadAlloc = false;
6647
6648  RedeclarationKind Redecl = ForRedeclaration;
6649  if (TUK == TUK_Friend || TUK == TUK_Reference)
6650    Redecl = NotForRedeclaration;
6651
6652  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6653
6654  if (Name && SS.isNotEmpty()) {
6655    // We have a nested-name tag ('struct foo::bar').
6656
6657    // Check for invalid 'foo::'.
6658    if (SS.isInvalid()) {
6659      Name = 0;
6660      goto CreateNewDecl;
6661    }
6662
6663    // If this is a friend or a reference to a class in a dependent
6664    // context, don't try to make a decl for it.
6665    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6666      DC = computeDeclContext(SS, false);
6667      if (!DC) {
6668        IsDependent = true;
6669        return 0;
6670      }
6671    } else {
6672      DC = computeDeclContext(SS, true);
6673      if (!DC) {
6674        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6675          << SS.getRange();
6676        return 0;
6677      }
6678    }
6679
6680    if (RequireCompleteDeclContext(SS, DC))
6681      return 0;
6682
6683    SearchDC = DC;
6684    // Look-up name inside 'foo::'.
6685    LookupQualifiedName(Previous, DC);
6686
6687    if (Previous.isAmbiguous())
6688      return 0;
6689
6690    if (Previous.empty()) {
6691      // Name lookup did not find anything. However, if the
6692      // nested-name-specifier refers to the current instantiation,
6693      // and that current instantiation has any dependent base
6694      // classes, we might find something at instantiation time: treat
6695      // this as a dependent elaborated-type-specifier.
6696      // But this only makes any sense for reference-like lookups.
6697      if (Previous.wasNotFoundInCurrentInstantiation() &&
6698          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6699        IsDependent = true;
6700        return 0;
6701      }
6702
6703      // A tag 'foo::bar' must already exist.
6704      Diag(NameLoc, diag::err_not_tag_in_scope)
6705        << Kind << Name << DC << SS.getRange();
6706      Name = 0;
6707      Invalid = true;
6708      goto CreateNewDecl;
6709    }
6710  } else if (Name) {
6711    // If this is a named struct, check to see if there was a previous forward
6712    // declaration or definition.
6713    // FIXME: We're looking into outer scopes here, even when we
6714    // shouldn't be. Doing so can result in ambiguities that we
6715    // shouldn't be diagnosing.
6716    LookupName(Previous, S);
6717
6718    if (Previous.isAmbiguous() && TUK == TUK_Definition) {
6719      LookupResult::Filter F = Previous.makeFilter();
6720      while (F.hasNext()) {
6721        NamedDecl *ND = F.next();
6722        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6723          F.erase();
6724      }
6725      F.done();
6726
6727      if (Previous.isAmbiguous())
6728        return 0;
6729    }
6730
6731    // Note:  there used to be some attempt at recovery here.
6732    if (Previous.isAmbiguous())
6733      return 0;
6734
6735    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6736      // FIXME: This makes sure that we ignore the contexts associated
6737      // with C structs, unions, and enums when looking for a matching
6738      // tag declaration or definition. See the similar lookup tweak
6739      // in Sema::LookupName; is there a better way to deal with this?
6740      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6741        SearchDC = SearchDC->getParent();
6742    }
6743  } else if (S->isFunctionPrototypeScope()) {
6744    // If this is an enum declaration in function prototype scope, set its
6745    // initial context to the translation unit.
6746    SearchDC = Context.getTranslationUnitDecl();
6747  }
6748
6749  if (Previous.isSingleResult() &&
6750      Previous.getFoundDecl()->isTemplateParameter()) {
6751    // Maybe we will complain about the shadowed template parameter.
6752    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6753    // Just pretend that we didn't see the previous declaration.
6754    Previous.clear();
6755  }
6756
6757  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6758      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6759    // This is a declaration of or a reference to "std::bad_alloc".
6760    isStdBadAlloc = true;
6761
6762    if (Previous.empty() && StdBadAlloc) {
6763      // std::bad_alloc has been implicitly declared (but made invisible to
6764      // name lookup). Fill in this implicit declaration as the previous
6765      // declaration, so that the declarations get chained appropriately.
6766      Previous.addDecl(getStdBadAlloc());
6767    }
6768  }
6769
6770  // If we didn't find a previous declaration, and this is a reference
6771  // (or friend reference), move to the correct scope.  In C++, we
6772  // also need to do a redeclaration lookup there, just in case
6773  // there's a shadow friend decl.
6774  if (Name && Previous.empty() &&
6775      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6776    if (Invalid) goto CreateNewDecl;
6777    assert(SS.isEmpty());
6778
6779    if (TUK == TUK_Reference) {
6780      // C++ [basic.scope.pdecl]p5:
6781      //   -- for an elaborated-type-specifier of the form
6782      //
6783      //          class-key identifier
6784      //
6785      //      if the elaborated-type-specifier is used in the
6786      //      decl-specifier-seq or parameter-declaration-clause of a
6787      //      function defined in namespace scope, the identifier is
6788      //      declared as a class-name in the namespace that contains
6789      //      the declaration; otherwise, except as a friend
6790      //      declaration, the identifier is declared in the smallest
6791      //      non-class, non-function-prototype scope that contains the
6792      //      declaration.
6793      //
6794      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6795      // C structs and unions.
6796      //
6797      // It is an error in C++ to declare (rather than define) an enum
6798      // type, including via an elaborated type specifier.  We'll
6799      // diagnose that later; for now, declare the enum in the same
6800      // scope as we would have picked for any other tag type.
6801      //
6802      // GNU C also supports this behavior as part of its incomplete
6803      // enum types extension, while GNU C++ does not.
6804      //
6805      // Find the context where we'll be declaring the tag.
6806      // FIXME: We would like to maintain the current DeclContext as the
6807      // lexical context,
6808      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6809        SearchDC = SearchDC->getParent();
6810
6811      // Find the scope where we'll be declaring the tag.
6812      while (S->isClassScope() ||
6813             (getLangOptions().CPlusPlus &&
6814              S->isFunctionPrototypeScope()) ||
6815             ((S->getFlags() & Scope::DeclScope) == 0) ||
6816             (S->getEntity() &&
6817              ((DeclContext *)S->getEntity())->isTransparentContext()))
6818        S = S->getParent();
6819    } else {
6820      assert(TUK == TUK_Friend);
6821      // C++ [namespace.memdef]p3:
6822      //   If a friend declaration in a non-local class first declares a
6823      //   class or function, the friend class or function is a member of
6824      //   the innermost enclosing namespace.
6825      SearchDC = SearchDC->getEnclosingNamespaceContext();
6826    }
6827
6828    // In C++, we need to do a redeclaration lookup to properly
6829    // diagnose some problems.
6830    if (getLangOptions().CPlusPlus) {
6831      Previous.setRedeclarationKind(ForRedeclaration);
6832      LookupQualifiedName(Previous, SearchDC);
6833    }
6834  }
6835
6836  if (!Previous.empty()) {
6837    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6838
6839    // It's okay to have a tag decl in the same scope as a typedef
6840    // which hides a tag decl in the same scope.  Finding this
6841    // insanity with a redeclaration lookup can only actually happen
6842    // in C++.
6843    //
6844    // This is also okay for elaborated-type-specifiers, which is
6845    // technically forbidden by the current standard but which is
6846    // okay according to the likely resolution of an open issue;
6847    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6848    if (getLangOptions().CPlusPlus) {
6849      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6850        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6851          TagDecl *Tag = TT->getDecl();
6852          if (Tag->getDeclName() == Name &&
6853              Tag->getDeclContext()->getRedeclContext()
6854                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6855            PrevDecl = Tag;
6856            Previous.clear();
6857            Previous.addDecl(Tag);
6858            Previous.resolveKind();
6859          }
6860        }
6861      }
6862    }
6863
6864    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6865      // If this is a use of a previous tag, or if the tag is already declared
6866      // in the same scope (so that the definition/declaration completes or
6867      // rementions the tag), reuse the decl.
6868      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6869          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6870        // Make sure that this wasn't declared as an enum and now used as a
6871        // struct or something similar.
6872        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6873          bool SafeToContinue
6874            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6875               Kind != TTK_Enum);
6876          if (SafeToContinue)
6877            Diag(KWLoc, diag::err_use_with_wrong_tag)
6878              << Name
6879              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6880                                              PrevTagDecl->getKindName());
6881          else
6882            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6883          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6884
6885          if (SafeToContinue)
6886            Kind = PrevTagDecl->getTagKind();
6887          else {
6888            // Recover by making this an anonymous redefinition.
6889            Name = 0;
6890            Previous.clear();
6891            Invalid = true;
6892          }
6893        }
6894
6895        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6896          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6897
6898          // All conflicts with previous declarations are recovered by
6899          // returning the previous declaration.
6900          if (ScopedEnum != PrevEnum->isScoped()) {
6901            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6902              << PrevEnum->isScoped();
6903            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6904            return PrevTagDecl;
6905          }
6906          else if (EnumUnderlying && PrevEnum->isFixed()) {
6907            QualType T;
6908            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6909                T = TI->getType();
6910            else
6911                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6912
6913            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6914              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6915                   diag::err_enum_redeclare_type_mismatch)
6916                << T
6917                << PrevEnum->getIntegerType();
6918              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6919              return PrevTagDecl;
6920            }
6921          }
6922          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6923            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6924              << PrevEnum->isFixed();
6925            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6926            return PrevTagDecl;
6927          }
6928        }
6929
6930        if (!Invalid) {
6931          // If this is a use, just return the declaration we found.
6932
6933          // FIXME: In the future, return a variant or some other clue
6934          // for the consumer of this Decl to know it doesn't own it.
6935          // For our current ASTs this shouldn't be a problem, but will
6936          // need to be changed with DeclGroups.
6937          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6938              TUK == TUK_Friend)
6939            return PrevTagDecl;
6940
6941          // Diagnose attempts to redefine a tag.
6942          if (TUK == TUK_Definition) {
6943            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6944              // If we're defining a specialization and the previous definition
6945              // is from an implicit instantiation, don't emit an error
6946              // here; we'll catch this in the general case below.
6947              if (!isExplicitSpecialization ||
6948                  !isa<CXXRecordDecl>(Def) ||
6949                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6950                                               == TSK_ExplicitSpecialization) {
6951                Diag(NameLoc, diag::err_redefinition) << Name;
6952                Diag(Def->getLocation(), diag::note_previous_definition);
6953                // If this is a redefinition, recover by making this
6954                // struct be anonymous, which will make any later
6955                // references get the previous definition.
6956                Name = 0;
6957                Previous.clear();
6958                Invalid = true;
6959              }
6960            } else {
6961              // If the type is currently being defined, complain
6962              // about a nested redefinition.
6963              const TagType *Tag
6964                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6965              if (Tag->isBeingDefined()) {
6966                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6967                Diag(PrevTagDecl->getLocation(),
6968                     diag::note_previous_definition);
6969                Name = 0;
6970                Previous.clear();
6971                Invalid = true;
6972              }
6973            }
6974
6975            // Okay, this is definition of a previously declared or referenced
6976            // tag PrevDecl. We're going to create a new Decl for it.
6977          }
6978        }
6979        // If we get here we have (another) forward declaration or we
6980        // have a definition.  Just create a new decl.
6981
6982      } else {
6983        // If we get here, this is a definition of a new tag type in a nested
6984        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6985        // new decl/type.  We set PrevDecl to NULL so that the entities
6986        // have distinct types.
6987        Previous.clear();
6988      }
6989      // If we get here, we're going to create a new Decl. If PrevDecl
6990      // is non-NULL, it's a definition of the tag declared by
6991      // PrevDecl. If it's NULL, we have a new definition.
6992
6993
6994    // Otherwise, PrevDecl is not a tag, but was found with tag
6995    // lookup.  This is only actually possible in C++, where a few
6996    // things like templates still live in the tag namespace.
6997    } else {
6998      assert(getLangOptions().CPlusPlus);
6999
7000      // Use a better diagnostic if an elaborated-type-specifier
7001      // found the wrong kind of type on the first
7002      // (non-redeclaration) lookup.
7003      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7004          !Previous.isForRedeclaration()) {
7005        unsigned Kind = 0;
7006        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7007        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7008        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7009        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7010        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7011        Invalid = true;
7012
7013      // Otherwise, only diagnose if the declaration is in scope.
7014      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7015                                isExplicitSpecialization)) {
7016        // do nothing
7017
7018      // Diagnose implicit declarations introduced by elaborated types.
7019      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7020        unsigned Kind = 0;
7021        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7022        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7023        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7024        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7025        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7026        Invalid = true;
7027
7028      // Otherwise it's a declaration.  Call out a particularly common
7029      // case here.
7030      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7031        unsigned Kind = 0;
7032        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7033        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7034          << Name << Kind << TND->getUnderlyingType();
7035        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7036        Invalid = true;
7037
7038      // Otherwise, diagnose.
7039      } else {
7040        // The tag name clashes with something else in the target scope,
7041        // issue an error and recover by making this tag be anonymous.
7042        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7043        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7044        Name = 0;
7045        Invalid = true;
7046      }
7047
7048      // The existing declaration isn't relevant to us; we're in a
7049      // new scope, so clear out the previous declaration.
7050      Previous.clear();
7051    }
7052  }
7053
7054CreateNewDecl:
7055
7056  TagDecl *PrevDecl = 0;
7057  if (Previous.isSingleResult())
7058    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7059
7060  // If there is an identifier, use the location of the identifier as the
7061  // location of the decl, otherwise use the location of the struct/union
7062  // keyword.
7063  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7064
7065  // Otherwise, create a new declaration. If there is a previous
7066  // declaration of the same entity, the two will be linked via
7067  // PrevDecl.
7068  TagDecl *New;
7069
7070  bool IsForwardReference = false;
7071  if (Kind == TTK_Enum) {
7072    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7073    // enum X { A, B, C } D;    D should chain to X.
7074    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7075                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7076                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7077    // If this is an undefined enum, warn.
7078    if (TUK != TUK_Definition && !Invalid) {
7079      TagDecl *Def;
7080      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7081        // C++0x: 7.2p2: opaque-enum-declaration.
7082        // Conflicts are diagnosed above. Do nothing.
7083      }
7084      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7085        Diag(Loc, diag::ext_forward_ref_enum_def)
7086          << New;
7087        Diag(Def->getLocation(), diag::note_previous_definition);
7088      } else {
7089        unsigned DiagID = diag::ext_forward_ref_enum;
7090        if (getLangOptions().Microsoft)
7091          DiagID = diag::ext_ms_forward_ref_enum;
7092        else if (getLangOptions().CPlusPlus)
7093          DiagID = diag::err_forward_ref_enum;
7094        Diag(Loc, DiagID);
7095
7096        // If this is a forward-declared reference to an enumeration, make a
7097        // note of it; we won't actually be introducing the declaration into
7098        // the declaration context.
7099        if (TUK == TUK_Reference)
7100          IsForwardReference = true;
7101      }
7102    }
7103
7104    if (EnumUnderlying) {
7105      EnumDecl *ED = cast<EnumDecl>(New);
7106      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7107        ED->setIntegerTypeSourceInfo(TI);
7108      else
7109        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7110      ED->setPromotionType(ED->getIntegerType());
7111    }
7112
7113  } else {
7114    // struct/union/class
7115
7116    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7117    // struct X { int A; } D;    D should chain to X.
7118    if (getLangOptions().CPlusPlus) {
7119      // FIXME: Look for a way to use RecordDecl for simple structs.
7120      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7121                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7122
7123      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7124        StdBadAlloc = cast<CXXRecordDecl>(New);
7125    } else
7126      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7127                               cast_or_null<RecordDecl>(PrevDecl));
7128  }
7129
7130  // Maybe add qualifier info.
7131  if (SS.isNotEmpty()) {
7132    if (SS.isSet()) {
7133      New->setQualifierInfo(SS.getWithLocInContext(Context));
7134      if (TemplateParameterLists.size() > 0) {
7135        New->setTemplateParameterListsInfo(Context,
7136                                           TemplateParameterLists.size(),
7137                    (TemplateParameterList**) TemplateParameterLists.release());
7138      }
7139    }
7140    else
7141      Invalid = true;
7142  }
7143
7144  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7145    // Add alignment attributes if necessary; these attributes are checked when
7146    // the ASTContext lays out the structure.
7147    //
7148    // It is important for implementing the correct semantics that this
7149    // happen here (in act on tag decl). The #pragma pack stack is
7150    // maintained as a result of parser callbacks which can occur at
7151    // many points during the parsing of a struct declaration (because
7152    // the #pragma tokens are effectively skipped over during the
7153    // parsing of the struct).
7154    AddAlignmentAttributesForRecord(RD);
7155
7156    AddMsStructLayoutForRecord(RD);
7157  }
7158
7159  // If this is a specialization of a member class (of a class template),
7160  // check the specialization.
7161  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7162    Invalid = true;
7163
7164  if (Invalid)
7165    New->setInvalidDecl();
7166
7167  if (Attr)
7168    ProcessDeclAttributeList(S, New, Attr);
7169
7170  // If we're declaring or defining a tag in function prototype scope
7171  // in C, note that this type can only be used within the function.
7172  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7173    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7174
7175  // Set the lexical context. If the tag has a C++ scope specifier, the
7176  // lexical context will be different from the semantic context.
7177  New->setLexicalDeclContext(CurContext);
7178
7179  // Mark this as a friend decl if applicable.
7180  if (TUK == TUK_Friend)
7181    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7182
7183  // Set the access specifier.
7184  if (!Invalid && SearchDC->isRecord())
7185    SetMemberAccessSpecifier(New, PrevDecl, AS);
7186
7187  if (TUK == TUK_Definition)
7188    New->startDefinition();
7189
7190  // If this has an identifier, add it to the scope stack.
7191  if (TUK == TUK_Friend) {
7192    // We might be replacing an existing declaration in the lookup tables;
7193    // if so, borrow its access specifier.
7194    if (PrevDecl)
7195      New->setAccess(PrevDecl->getAccess());
7196
7197    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7198    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7199    if (Name) // can be null along some error paths
7200      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7201        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7202  } else if (Name) {
7203    S = getNonFieldDeclScope(S);
7204    PushOnScopeChains(New, S, !IsForwardReference);
7205    if (IsForwardReference)
7206      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7207
7208  } else {
7209    CurContext->addDecl(New);
7210  }
7211
7212  // If this is the C FILE type, notify the AST context.
7213  if (IdentifierInfo *II = New->getIdentifier())
7214    if (!New->isInvalidDecl() &&
7215        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7216        II->isStr("FILE"))
7217      Context.setFILEDecl(New);
7218
7219  OwnedDecl = true;
7220  return New;
7221}
7222
7223void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7224  AdjustDeclIfTemplate(TagD);
7225  TagDecl *Tag = cast<TagDecl>(TagD);
7226
7227  // Enter the tag context.
7228  PushDeclContext(S, Tag);
7229}
7230
7231void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7232                                           SourceLocation FinalLoc,
7233                                           SourceLocation LBraceLoc) {
7234  AdjustDeclIfTemplate(TagD);
7235  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7236
7237  FieldCollector->StartClass();
7238
7239  if (!Record->getIdentifier())
7240    return;
7241
7242  if (FinalLoc.isValid())
7243    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7244
7245  // C++ [class]p2:
7246  //   [...] The class-name is also inserted into the scope of the
7247  //   class itself; this is known as the injected-class-name. For
7248  //   purposes of access checking, the injected-class-name is treated
7249  //   as if it were a public member name.
7250  CXXRecordDecl *InjectedClassName
7251    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7252                            Record->getLocStart(), Record->getLocation(),
7253                            Record->getIdentifier(),
7254                            /*PrevDecl=*/0,
7255                            /*DelayTypeCreation=*/true);
7256  Context.getTypeDeclType(InjectedClassName, Record);
7257  InjectedClassName->setImplicit();
7258  InjectedClassName->setAccess(AS_public);
7259  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7260      InjectedClassName->setDescribedClassTemplate(Template);
7261  PushOnScopeChains(InjectedClassName, S);
7262  assert(InjectedClassName->isInjectedClassName() &&
7263         "Broken injected-class-name");
7264}
7265
7266void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7267                                    SourceLocation RBraceLoc) {
7268  AdjustDeclIfTemplate(TagD);
7269  TagDecl *Tag = cast<TagDecl>(TagD);
7270  Tag->setRBraceLoc(RBraceLoc);
7271
7272  if (isa<CXXRecordDecl>(Tag))
7273    FieldCollector->FinishClass();
7274
7275  // Exit this scope of this tag's definition.
7276  PopDeclContext();
7277
7278  // Notify the consumer that we've defined a tag.
7279  Consumer.HandleTagDeclDefinition(Tag);
7280}
7281
7282void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7283  AdjustDeclIfTemplate(TagD);
7284  TagDecl *Tag = cast<TagDecl>(TagD);
7285  Tag->setInvalidDecl();
7286
7287  // We're undoing ActOnTagStartDefinition here, not
7288  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7289  // the FieldCollector.
7290
7291  PopDeclContext();
7292}
7293
7294// Note that FieldName may be null for anonymous bitfields.
7295bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7296                          QualType FieldTy, const Expr *BitWidth,
7297                          bool *ZeroWidth) {
7298  // Default to true; that shouldn't confuse checks for emptiness
7299  if (ZeroWidth)
7300    *ZeroWidth = true;
7301
7302  // C99 6.7.2.1p4 - verify the field type.
7303  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7304  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7305    // Handle incomplete types with specific error.
7306    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7307      return true;
7308    if (FieldName)
7309      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7310        << FieldName << FieldTy << BitWidth->getSourceRange();
7311    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7312      << FieldTy << BitWidth->getSourceRange();
7313  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7314                                             UPPC_BitFieldWidth))
7315    return true;
7316
7317  // If the bit-width is type- or value-dependent, don't try to check
7318  // it now.
7319  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7320    return false;
7321
7322  llvm::APSInt Value;
7323  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7324    return true;
7325
7326  if (Value != 0 && ZeroWidth)
7327    *ZeroWidth = false;
7328
7329  // Zero-width bitfield is ok for anonymous field.
7330  if (Value == 0 && FieldName)
7331    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7332
7333  if (Value.isSigned() && Value.isNegative()) {
7334    if (FieldName)
7335      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7336               << FieldName << Value.toString(10);
7337    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7338      << Value.toString(10);
7339  }
7340
7341  if (!FieldTy->isDependentType()) {
7342    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7343    if (Value.getZExtValue() > TypeSize) {
7344      if (!getLangOptions().CPlusPlus) {
7345        if (FieldName)
7346          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7347            << FieldName << (unsigned)Value.getZExtValue()
7348            << (unsigned)TypeSize;
7349
7350        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7351          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7352      }
7353
7354      if (FieldName)
7355        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7356          << FieldName << (unsigned)Value.getZExtValue()
7357          << (unsigned)TypeSize;
7358      else
7359        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7360          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7361    }
7362  }
7363
7364  return false;
7365}
7366
7367/// ActOnField - Each field of a struct/union/class is passed into this in order
7368/// to create a FieldDecl object for it.
7369Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7370                                 SourceLocation DeclStart,
7371                                 Declarator &D, ExprTy *BitfieldWidth) {
7372  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7373                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7374                               AS_public);
7375  return Res;
7376}
7377
7378/// HandleField - Analyze a field of a C struct or a C++ data member.
7379///
7380FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7381                             SourceLocation DeclStart,
7382                             Declarator &D, Expr *BitWidth,
7383                             AccessSpecifier AS) {
7384  IdentifierInfo *II = D.getIdentifier();
7385  SourceLocation Loc = DeclStart;
7386  if (II) Loc = D.getIdentifierLoc();
7387
7388  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7389  QualType T = TInfo->getType();
7390  if (getLangOptions().CPlusPlus) {
7391    CheckExtraCXXDefaultArguments(D);
7392
7393    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7394                                        UPPC_DataMemberType)) {
7395      D.setInvalidType();
7396      T = Context.IntTy;
7397      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7398    }
7399  }
7400
7401  DiagnoseFunctionSpecifiers(D);
7402
7403  if (D.getDeclSpec().isThreadSpecified())
7404    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7405
7406  // Check to see if this name was declared as a member previously
7407  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7408  LookupName(Previous, S);
7409  assert((Previous.empty() || Previous.isOverloadedResult() ||
7410          Previous.isSingleResult())
7411    && "Lookup of member name should be either overloaded, single or null");
7412
7413  // If the name is overloaded then get any declaration else get the single result
7414  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7415    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7416
7417  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7418    // Maybe we will complain about the shadowed template parameter.
7419    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7420    // Just pretend that we didn't see the previous declaration.
7421    PrevDecl = 0;
7422  }
7423
7424  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7425    PrevDecl = 0;
7426
7427  bool Mutable
7428    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7429  SourceLocation TSSL = D.getSourceRange().getBegin();
7430  FieldDecl *NewFD
7431    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7432                     AS, PrevDecl, &D);
7433
7434  if (NewFD->isInvalidDecl())
7435    Record->setInvalidDecl();
7436
7437  if (NewFD->isInvalidDecl() && PrevDecl) {
7438    // Don't introduce NewFD into scope; there's already something
7439    // with the same name in the same scope.
7440  } else if (II) {
7441    PushOnScopeChains(NewFD, S);
7442  } else
7443    Record->addDecl(NewFD);
7444
7445  return NewFD;
7446}
7447
7448/// \brief Build a new FieldDecl and check its well-formedness.
7449///
7450/// This routine builds a new FieldDecl given the fields name, type,
7451/// record, etc. \p PrevDecl should refer to any previous declaration
7452/// with the same name and in the same scope as the field to be
7453/// created.
7454///
7455/// \returns a new FieldDecl.
7456///
7457/// \todo The Declarator argument is a hack. It will be removed once
7458FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7459                                TypeSourceInfo *TInfo,
7460                                RecordDecl *Record, SourceLocation Loc,
7461                                bool Mutable, Expr *BitWidth,
7462                                SourceLocation TSSL,
7463                                AccessSpecifier AS, NamedDecl *PrevDecl,
7464                                Declarator *D) {
7465  IdentifierInfo *II = Name.getAsIdentifierInfo();
7466  bool InvalidDecl = false;
7467  if (D) InvalidDecl = D->isInvalidType();
7468
7469  // If we receive a broken type, recover by assuming 'int' and
7470  // marking this declaration as invalid.
7471  if (T.isNull()) {
7472    InvalidDecl = true;
7473    T = Context.IntTy;
7474  }
7475
7476  QualType EltTy = Context.getBaseElementType(T);
7477  if (!EltTy->isDependentType() &&
7478      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7479    // Fields of incomplete type force their record to be invalid.
7480    Record->setInvalidDecl();
7481    InvalidDecl = true;
7482  }
7483
7484  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7485  // than a variably modified type.
7486  if (!InvalidDecl && T->isVariablyModifiedType()) {
7487    bool SizeIsNegative;
7488    llvm::APSInt Oversized;
7489    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7490                                                           SizeIsNegative,
7491                                                           Oversized);
7492    if (!FixedTy.isNull()) {
7493      Diag(Loc, diag::warn_illegal_constant_array_size);
7494      T = FixedTy;
7495    } else {
7496      if (SizeIsNegative)
7497        Diag(Loc, diag::err_typecheck_negative_array_size);
7498      else if (Oversized.getBoolValue())
7499        Diag(Loc, diag::err_array_too_large)
7500          << Oversized.toString(10);
7501      else
7502        Diag(Loc, diag::err_typecheck_field_variable_size);
7503      InvalidDecl = true;
7504    }
7505  }
7506
7507  // Fields can not have abstract class types
7508  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7509                                             diag::err_abstract_type_in_decl,
7510                                             AbstractFieldType))
7511    InvalidDecl = true;
7512
7513  bool ZeroWidth = false;
7514  // If this is declared as a bit-field, check the bit-field.
7515  if (!InvalidDecl && BitWidth &&
7516      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7517    InvalidDecl = true;
7518    BitWidth = 0;
7519    ZeroWidth = false;
7520  }
7521
7522  // Check that 'mutable' is consistent with the type of the declaration.
7523  if (!InvalidDecl && Mutable) {
7524    unsigned DiagID = 0;
7525    if (T->isReferenceType())
7526      DiagID = diag::err_mutable_reference;
7527    else if (T.isConstQualified())
7528      DiagID = diag::err_mutable_const;
7529
7530    if (DiagID) {
7531      SourceLocation ErrLoc = Loc;
7532      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7533        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7534      Diag(ErrLoc, DiagID);
7535      Mutable = false;
7536      InvalidDecl = true;
7537    }
7538  }
7539
7540  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7541                                       BitWidth, Mutable);
7542  if (InvalidDecl)
7543    NewFD->setInvalidDecl();
7544
7545  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7546    Diag(Loc, diag::err_duplicate_member) << II;
7547    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7548    NewFD->setInvalidDecl();
7549  }
7550
7551  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7552    if (Record->isUnion()) {
7553      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7554        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7555        if (RDecl->getDefinition()) {
7556          // C++ [class.union]p1: An object of a class with a non-trivial
7557          // constructor, a non-trivial copy constructor, a non-trivial
7558          // destructor, or a non-trivial copy assignment operator
7559          // cannot be a member of a union, nor can an array of such
7560          // objects.
7561          // TODO: C++0x alters this restriction significantly.
7562          if (CheckNontrivialField(NewFD))
7563            NewFD->setInvalidDecl();
7564        }
7565      }
7566
7567      // C++ [class.union]p1: If a union contains a member of reference type,
7568      // the program is ill-formed.
7569      if (EltTy->isReferenceType()) {
7570        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7571          << NewFD->getDeclName() << EltTy;
7572        NewFD->setInvalidDecl();
7573      }
7574    }
7575  }
7576
7577  // FIXME: We need to pass in the attributes given an AST
7578  // representation, not a parser representation.
7579  if (D)
7580    // FIXME: What to pass instead of TUScope?
7581    ProcessDeclAttributes(TUScope, NewFD, *D);
7582
7583  if (T.isObjCGCWeak())
7584    Diag(Loc, diag::warn_attribute_weak_on_field);
7585
7586  NewFD->setAccess(AS);
7587  return NewFD;
7588}
7589
7590bool Sema::CheckNontrivialField(FieldDecl *FD) {
7591  assert(FD);
7592  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7593
7594  if (FD->isInvalidDecl())
7595    return true;
7596
7597  QualType EltTy = Context.getBaseElementType(FD->getType());
7598  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7599    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7600    if (RDecl->getDefinition()) {
7601      // We check for copy constructors before constructors
7602      // because otherwise we'll never get complaints about
7603      // copy constructors.
7604
7605      CXXSpecialMember member = CXXInvalid;
7606      if (!RDecl->hasTrivialCopyConstructor())
7607        member = CXXCopyConstructor;
7608      else if (!RDecl->hasTrivialConstructor())
7609        member = CXXConstructor;
7610      else if (!RDecl->hasTrivialCopyAssignment())
7611        member = CXXCopyAssignment;
7612      else if (!RDecl->hasTrivialDestructor())
7613        member = CXXDestructor;
7614
7615      if (member != CXXInvalid) {
7616        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7617              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7618        DiagnoseNontrivial(RT, member);
7619        return true;
7620      }
7621    }
7622  }
7623
7624  return false;
7625}
7626
7627/// DiagnoseNontrivial - Given that a class has a non-trivial
7628/// special member, figure out why.
7629void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7630  QualType QT(T, 0U);
7631  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7632
7633  // Check whether the member was user-declared.
7634  switch (member) {
7635  case CXXInvalid:
7636    break;
7637
7638  case CXXConstructor:
7639    if (RD->hasUserDeclaredConstructor()) {
7640      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7641      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7642        const FunctionDecl *body = 0;
7643        ci->hasBody(body);
7644        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7645          SourceLocation CtorLoc = ci->getLocation();
7646          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7647          return;
7648        }
7649      }
7650
7651      assert(0 && "found no user-declared constructors");
7652      return;
7653    }
7654    break;
7655
7656  case CXXCopyConstructor:
7657    if (RD->hasUserDeclaredCopyConstructor()) {
7658      SourceLocation CtorLoc =
7659        RD->getCopyConstructor(Context, 0)->getLocation();
7660      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7661      return;
7662    }
7663    break;
7664
7665  case CXXCopyAssignment:
7666    if (RD->hasUserDeclaredCopyAssignment()) {
7667      // FIXME: this should use the location of the copy
7668      // assignment, not the type.
7669      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7670      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7671      return;
7672    }
7673    break;
7674
7675  case CXXDestructor:
7676    if (RD->hasUserDeclaredDestructor()) {
7677      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7678      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7679      return;
7680    }
7681    break;
7682  }
7683
7684  typedef CXXRecordDecl::base_class_iterator base_iter;
7685
7686  // Virtual bases and members inhibit trivial copying/construction,
7687  // but not trivial destruction.
7688  if (member != CXXDestructor) {
7689    // Check for virtual bases.  vbases includes indirect virtual bases,
7690    // so we just iterate through the direct bases.
7691    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7692      if (bi->isVirtual()) {
7693        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7694        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7695        return;
7696      }
7697
7698    // Check for virtual methods.
7699    typedef CXXRecordDecl::method_iterator meth_iter;
7700    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7701         ++mi) {
7702      if (mi->isVirtual()) {
7703        SourceLocation MLoc = mi->getSourceRange().getBegin();
7704        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7705        return;
7706      }
7707    }
7708  }
7709
7710  bool (CXXRecordDecl::*hasTrivial)() const;
7711  switch (member) {
7712  case CXXConstructor:
7713    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7714  case CXXCopyConstructor:
7715    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7716  case CXXCopyAssignment:
7717    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7718  case CXXDestructor:
7719    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7720  default:
7721    assert(0 && "unexpected special member"); return;
7722  }
7723
7724  // Check for nontrivial bases (and recurse).
7725  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7726    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7727    assert(BaseRT && "Don't know how to handle dependent bases");
7728    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7729    if (!(BaseRecTy->*hasTrivial)()) {
7730      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7731      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7732      DiagnoseNontrivial(BaseRT, member);
7733      return;
7734    }
7735  }
7736
7737  // Check for nontrivial members (and recurse).
7738  typedef RecordDecl::field_iterator field_iter;
7739  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7740       ++fi) {
7741    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7742    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7743      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7744
7745      if (!(EltRD->*hasTrivial)()) {
7746        SourceLocation FLoc = (*fi)->getLocation();
7747        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7748        DiagnoseNontrivial(EltRT, member);
7749        return;
7750      }
7751    }
7752  }
7753
7754  assert(0 && "found no explanation for non-trivial member");
7755}
7756
7757/// TranslateIvarVisibility - Translate visibility from a token ID to an
7758///  AST enum value.
7759static ObjCIvarDecl::AccessControl
7760TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7761  switch (ivarVisibility) {
7762  default: assert(0 && "Unknown visitibility kind");
7763  case tok::objc_private: return ObjCIvarDecl::Private;
7764  case tok::objc_public: return ObjCIvarDecl::Public;
7765  case tok::objc_protected: return ObjCIvarDecl::Protected;
7766  case tok::objc_package: return ObjCIvarDecl::Package;
7767  }
7768}
7769
7770/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7771/// in order to create an IvarDecl object for it.
7772Decl *Sema::ActOnIvar(Scope *S,
7773                                SourceLocation DeclStart,
7774                                Decl *IntfDecl,
7775                                Declarator &D, ExprTy *BitfieldWidth,
7776                                tok::ObjCKeywordKind Visibility) {
7777
7778  IdentifierInfo *II = D.getIdentifier();
7779  Expr *BitWidth = (Expr*)BitfieldWidth;
7780  SourceLocation Loc = DeclStart;
7781  if (II) Loc = D.getIdentifierLoc();
7782
7783  // FIXME: Unnamed fields can be handled in various different ways, for
7784  // example, unnamed unions inject all members into the struct namespace!
7785
7786  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7787  QualType T = TInfo->getType();
7788
7789  if (BitWidth) {
7790    // 6.7.2.1p3, 6.7.2.1p4
7791    if (VerifyBitField(Loc, II, T, BitWidth)) {
7792      D.setInvalidType();
7793      BitWidth = 0;
7794    }
7795  } else {
7796    // Not a bitfield.
7797
7798    // validate II.
7799
7800  }
7801  if (T->isReferenceType()) {
7802    Diag(Loc, diag::err_ivar_reference_type);
7803    D.setInvalidType();
7804  }
7805  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7806  // than a variably modified type.
7807  else if (T->isVariablyModifiedType()) {
7808    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7809    D.setInvalidType();
7810  }
7811
7812  // Get the visibility (access control) for this ivar.
7813  ObjCIvarDecl::AccessControl ac =
7814    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7815                                        : ObjCIvarDecl::None;
7816  // Must set ivar's DeclContext to its enclosing interface.
7817  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7818  ObjCContainerDecl *EnclosingContext;
7819  if (ObjCImplementationDecl *IMPDecl =
7820      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7821    if (!LangOpts.ObjCNonFragileABI2) {
7822    // Case of ivar declared in an implementation. Context is that of its class.
7823      EnclosingContext = IMPDecl->getClassInterface();
7824      assert(EnclosingContext && "Implementation has no class interface!");
7825    }
7826    else
7827      EnclosingContext = EnclosingDecl;
7828  } else {
7829    if (ObjCCategoryDecl *CDecl =
7830        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7831      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7832        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7833        return 0;
7834      }
7835    }
7836    EnclosingContext = EnclosingDecl;
7837  }
7838
7839  // Construct the decl.
7840  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7841                                             DeclStart, Loc, II, T,
7842                                             TInfo, ac, (Expr *)BitfieldWidth);
7843
7844  if (II) {
7845    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7846                                           ForRedeclaration);
7847    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7848        && !isa<TagDecl>(PrevDecl)) {
7849      Diag(Loc, diag::err_duplicate_member) << II;
7850      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7851      NewID->setInvalidDecl();
7852    }
7853  }
7854
7855  // Process attributes attached to the ivar.
7856  ProcessDeclAttributes(S, NewID, D);
7857
7858  if (D.isInvalidType())
7859    NewID->setInvalidDecl();
7860
7861  if (II) {
7862    // FIXME: When interfaces are DeclContexts, we'll need to add
7863    // these to the interface.
7864    S->AddDecl(NewID);
7865    IdResolver.AddDecl(NewID);
7866  }
7867
7868  return NewID;
7869}
7870
7871/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7872/// class and class extensions. For every class @interface and class
7873/// extension @interface, if the last ivar is a bitfield of any type,
7874/// then add an implicit `char :0` ivar to the end of that interface.
7875void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7876                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7877  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7878    return;
7879
7880  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7881  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7882
7883  if (!Ivar->isBitField())
7884    return;
7885  uint64_t BitFieldSize =
7886    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7887  if (BitFieldSize == 0)
7888    return;
7889  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7890  if (!ID) {
7891    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7892      if (!CD->IsClassExtension())
7893        return;
7894    }
7895    // No need to add this to end of @implementation.
7896    else
7897      return;
7898  }
7899  // All conditions are met. Add a new bitfield to the tail end of ivars.
7900  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7901  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7902
7903  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7904                              DeclLoc, DeclLoc, 0,
7905                              Context.CharTy,
7906                              Context.CreateTypeSourceInfo(Context.CharTy),
7907                              ObjCIvarDecl::Private, BW,
7908                              true);
7909  AllIvarDecls.push_back(Ivar);
7910}
7911
7912void Sema::ActOnFields(Scope* S,
7913                       SourceLocation RecLoc, Decl *EnclosingDecl,
7914                       Decl **Fields, unsigned NumFields,
7915                       SourceLocation LBrac, SourceLocation RBrac,
7916                       AttributeList *Attr) {
7917  assert(EnclosingDecl && "missing record or interface decl");
7918
7919  // If the decl this is being inserted into is invalid, then it may be a
7920  // redeclaration or some other bogus case.  Don't try to add fields to it.
7921  if (EnclosingDecl->isInvalidDecl()) {
7922    // FIXME: Deallocate fields?
7923    return;
7924  }
7925
7926
7927  // Verify that all the fields are okay.
7928  unsigned NumNamedMembers = 0;
7929  llvm::SmallVector<FieldDecl*, 32> RecFields;
7930
7931  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7932  for (unsigned i = 0; i != NumFields; ++i) {
7933    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7934
7935    // Get the type for the field.
7936    const Type *FDTy = FD->getType().getTypePtr();
7937
7938    if (!FD->isAnonymousStructOrUnion()) {
7939      // Remember all fields written by the user.
7940      RecFields.push_back(FD);
7941    }
7942
7943    // If the field is already invalid for some reason, don't emit more
7944    // diagnostics about it.
7945    if (FD->isInvalidDecl()) {
7946      EnclosingDecl->setInvalidDecl();
7947      continue;
7948    }
7949
7950    // C99 6.7.2.1p2:
7951    //   A structure or union shall not contain a member with
7952    //   incomplete or function type (hence, a structure shall not
7953    //   contain an instance of itself, but may contain a pointer to
7954    //   an instance of itself), except that the last member of a
7955    //   structure with more than one named member may have incomplete
7956    //   array type; such a structure (and any union containing,
7957    //   possibly recursively, a member that is such a structure)
7958    //   shall not be a member of a structure or an element of an
7959    //   array.
7960    if (FDTy->isFunctionType()) {
7961      // Field declared as a function.
7962      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7963        << FD->getDeclName();
7964      FD->setInvalidDecl();
7965      EnclosingDecl->setInvalidDecl();
7966      continue;
7967    } else if (FDTy->isIncompleteArrayType() && Record &&
7968               ((i == NumFields - 1 && !Record->isUnion()) ||
7969                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7970                 (i == NumFields - 1 || Record->isUnion())))) {
7971      // Flexible array member.
7972      // Microsoft and g++ is more permissive regarding flexible array.
7973      // It will accept flexible array in union and also
7974      // as the sole element of a struct/class.
7975      if (getLangOptions().Microsoft) {
7976        if (Record->isUnion())
7977          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7978            << FD->getDeclName();
7979        else if (NumFields == 1)
7980          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7981            << FD->getDeclName() << Record->getTagKind();
7982      } else if (getLangOptions().CPlusPlus) {
7983        if (Record->isUnion())
7984          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7985            << FD->getDeclName();
7986        else if (NumFields == 1)
7987          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7988            << FD->getDeclName() << Record->getTagKind();
7989      } else if (NumNamedMembers < 1) {
7990        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7991          << FD->getDeclName();
7992        FD->setInvalidDecl();
7993        EnclosingDecl->setInvalidDecl();
7994        continue;
7995      }
7996      if (!FD->getType()->isDependentType() &&
7997          !Context.getBaseElementType(FD->getType())->isPODType()) {
7998        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7999          << FD->getDeclName() << FD->getType();
8000        FD->setInvalidDecl();
8001        EnclosingDecl->setInvalidDecl();
8002        continue;
8003      }
8004      // Okay, we have a legal flexible array member at the end of the struct.
8005      if (Record)
8006        Record->setHasFlexibleArrayMember(true);
8007    } else if (!FDTy->isDependentType() &&
8008               RequireCompleteType(FD->getLocation(), FD->getType(),
8009                                   diag::err_field_incomplete)) {
8010      // Incomplete type
8011      FD->setInvalidDecl();
8012      EnclosingDecl->setInvalidDecl();
8013      continue;
8014    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8015      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8016        // If this is a member of a union, then entire union becomes "flexible".
8017        if (Record && Record->isUnion()) {
8018          Record->setHasFlexibleArrayMember(true);
8019        } else {
8020          // If this is a struct/class and this is not the last element, reject
8021          // it.  Note that GCC supports variable sized arrays in the middle of
8022          // structures.
8023          if (i != NumFields-1)
8024            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8025              << FD->getDeclName() << FD->getType();
8026          else {
8027            // We support flexible arrays at the end of structs in
8028            // other structs as an extension.
8029            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8030              << FD->getDeclName();
8031            if (Record)
8032              Record->setHasFlexibleArrayMember(true);
8033          }
8034        }
8035      }
8036      if (Record && FDTTy->getDecl()->hasObjectMember())
8037        Record->setHasObjectMember(true);
8038    } else if (FDTy->isObjCObjectType()) {
8039      /// A field cannot be an Objective-c object
8040      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8041      FD->setInvalidDecl();
8042      EnclosingDecl->setInvalidDecl();
8043      continue;
8044    } else if (getLangOptions().ObjC1 &&
8045               getLangOptions().getGCMode() != LangOptions::NonGC &&
8046               Record &&
8047               (FD->getType()->isObjCObjectPointerType() ||
8048                FD->getType().isObjCGCStrong()))
8049      Record->setHasObjectMember(true);
8050    else if (Context.getAsArrayType(FD->getType())) {
8051      QualType BaseType = Context.getBaseElementType(FD->getType());
8052      if (Record && BaseType->isRecordType() &&
8053          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8054        Record->setHasObjectMember(true);
8055    }
8056    // Keep track of the number of named members.
8057    if (FD->getIdentifier())
8058      ++NumNamedMembers;
8059  }
8060
8061  // Okay, we successfully defined 'Record'.
8062  if (Record) {
8063    bool Completed = false;
8064    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8065      if (!CXXRecord->isInvalidDecl()) {
8066        // Set access bits correctly on the directly-declared conversions.
8067        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8068        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8069             I != E; ++I)
8070          Convs->setAccess(I, (*I)->getAccess());
8071
8072        if (!CXXRecord->isDependentType()) {
8073          // Add any implicitly-declared members to this class.
8074          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8075
8076          // If we have virtual base classes, we may end up finding multiple
8077          // final overriders for a given virtual function. Check for this
8078          // problem now.
8079          if (CXXRecord->getNumVBases()) {
8080            CXXFinalOverriderMap FinalOverriders;
8081            CXXRecord->getFinalOverriders(FinalOverriders);
8082
8083            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8084                                             MEnd = FinalOverriders.end();
8085                 M != MEnd; ++M) {
8086              for (OverridingMethods::iterator SO = M->second.begin(),
8087                                            SOEnd = M->second.end();
8088                   SO != SOEnd; ++SO) {
8089                assert(SO->second.size() > 0 &&
8090                       "Virtual function without overridding functions?");
8091                if (SO->second.size() == 1)
8092                  continue;
8093
8094                // C++ [class.virtual]p2:
8095                //   In a derived class, if a virtual member function of a base
8096                //   class subobject has more than one final overrider the
8097                //   program is ill-formed.
8098                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8099                  << (NamedDecl *)M->first << Record;
8100                Diag(M->first->getLocation(),
8101                     diag::note_overridden_virtual_function);
8102                for (OverridingMethods::overriding_iterator
8103                          OM = SO->second.begin(),
8104                       OMEnd = SO->second.end();
8105                     OM != OMEnd; ++OM)
8106                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8107                    << (NamedDecl *)M->first << OM->Method->getParent();
8108
8109                Record->setInvalidDecl();
8110              }
8111            }
8112            CXXRecord->completeDefinition(&FinalOverriders);
8113            Completed = true;
8114          }
8115        }
8116      }
8117    }
8118
8119    if (!Completed)
8120      Record->completeDefinition();
8121  } else {
8122    ObjCIvarDecl **ClsFields =
8123      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8124    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8125      ID->setLocEnd(RBrac);
8126      // Add ivar's to class's DeclContext.
8127      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8128        ClsFields[i]->setLexicalDeclContext(ID);
8129        ID->addDecl(ClsFields[i]);
8130      }
8131      // Must enforce the rule that ivars in the base classes may not be
8132      // duplicates.
8133      if (ID->getSuperClass())
8134        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8135    } else if (ObjCImplementationDecl *IMPDecl =
8136                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8137      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8138      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8139        // Ivar declared in @implementation never belongs to the implementation.
8140        // Only it is in implementation's lexical context.
8141        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8142      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8143    } else if (ObjCCategoryDecl *CDecl =
8144                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8145      // case of ivars in class extension; all other cases have been
8146      // reported as errors elsewhere.
8147      // FIXME. Class extension does not have a LocEnd field.
8148      // CDecl->setLocEnd(RBrac);
8149      // Add ivar's to class extension's DeclContext.
8150      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8151        ClsFields[i]->setLexicalDeclContext(CDecl);
8152        CDecl->addDecl(ClsFields[i]);
8153      }
8154    }
8155  }
8156
8157  if (Attr)
8158    ProcessDeclAttributeList(S, Record, Attr);
8159
8160  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8161  // set the visibility of this record.
8162  if (Record && !Record->getDeclContext()->isRecord())
8163    AddPushedVisibilityAttribute(Record);
8164}
8165
8166/// \brief Determine whether the given integral value is representable within
8167/// the given type T.
8168static bool isRepresentableIntegerValue(ASTContext &Context,
8169                                        llvm::APSInt &Value,
8170                                        QualType T) {
8171  assert(T->isIntegralType(Context) && "Integral type required!");
8172  unsigned BitWidth = Context.getIntWidth(T);
8173
8174  if (Value.isUnsigned() || Value.isNonNegative()) {
8175    if (T->isSignedIntegerType())
8176      --BitWidth;
8177    return Value.getActiveBits() <= BitWidth;
8178  }
8179  return Value.getMinSignedBits() <= BitWidth;
8180}
8181
8182// \brief Given an integral type, return the next larger integral type
8183// (or a NULL type of no such type exists).
8184static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8185  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8186  // enum checking below.
8187  assert(T->isIntegralType(Context) && "Integral type required!");
8188  const unsigned NumTypes = 4;
8189  QualType SignedIntegralTypes[NumTypes] = {
8190    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8191  };
8192  QualType UnsignedIntegralTypes[NumTypes] = {
8193    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8194    Context.UnsignedLongLongTy
8195  };
8196
8197  unsigned BitWidth = Context.getTypeSize(T);
8198  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8199                                            : UnsignedIntegralTypes;
8200  for (unsigned I = 0; I != NumTypes; ++I)
8201    if (Context.getTypeSize(Types[I]) > BitWidth)
8202      return Types[I];
8203
8204  return QualType();
8205}
8206
8207EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8208                                          EnumConstantDecl *LastEnumConst,
8209                                          SourceLocation IdLoc,
8210                                          IdentifierInfo *Id,
8211                                          Expr *Val) {
8212  unsigned IntWidth = Context.Target.getIntWidth();
8213  llvm::APSInt EnumVal(IntWidth);
8214  QualType EltTy;
8215
8216  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8217    Val = 0;
8218
8219  if (Val) {
8220    if (Enum->isDependentType() || Val->isTypeDependent())
8221      EltTy = Context.DependentTy;
8222    else {
8223      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8224      SourceLocation ExpLoc;
8225      if (!Val->isValueDependent() &&
8226          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8227        Val = 0;
8228      } else {
8229        if (!getLangOptions().CPlusPlus) {
8230          // C99 6.7.2.2p2:
8231          //   The expression that defines the value of an enumeration constant
8232          //   shall be an integer constant expression that has a value
8233          //   representable as an int.
8234
8235          // Complain if the value is not representable in an int.
8236          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8237            Diag(IdLoc, diag::ext_enum_value_not_int)
8238              << EnumVal.toString(10) << Val->getSourceRange()
8239              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8240          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8241            // Force the type of the expression to 'int'.
8242            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8243          }
8244        }
8245
8246        if (Enum->isFixed()) {
8247          EltTy = Enum->getIntegerType();
8248
8249          // C++0x [dcl.enum]p5:
8250          //   ... if the initializing value of an enumerator cannot be
8251          //   represented by the underlying type, the program is ill-formed.
8252          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8253            if (getLangOptions().Microsoft) {
8254              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8255              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8256            } else
8257              Diag(IdLoc, diag::err_enumerator_too_large)
8258                << EltTy;
8259          } else
8260            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8261        }
8262        else {
8263          // C++0x [dcl.enum]p5:
8264          //   If the underlying type is not fixed, the type of each enumerator
8265          //   is the type of its initializing value:
8266          //     - If an initializer is specified for an enumerator, the
8267          //       initializing value has the same type as the expression.
8268          EltTy = Val->getType();
8269        }
8270      }
8271    }
8272  }
8273
8274  if (!Val) {
8275    if (Enum->isDependentType())
8276      EltTy = Context.DependentTy;
8277    else if (!LastEnumConst) {
8278      // C++0x [dcl.enum]p5:
8279      //   If the underlying type is not fixed, the type of each enumerator
8280      //   is the type of its initializing value:
8281      //     - If no initializer is specified for the first enumerator, the
8282      //       initializing value has an unspecified integral type.
8283      //
8284      // GCC uses 'int' for its unspecified integral type, as does
8285      // C99 6.7.2.2p3.
8286      if (Enum->isFixed()) {
8287        EltTy = Enum->getIntegerType();
8288      }
8289      else {
8290        EltTy = Context.IntTy;
8291      }
8292    } else {
8293      // Assign the last value + 1.
8294      EnumVal = LastEnumConst->getInitVal();
8295      ++EnumVal;
8296      EltTy = LastEnumConst->getType();
8297
8298      // Check for overflow on increment.
8299      if (EnumVal < LastEnumConst->getInitVal()) {
8300        // C++0x [dcl.enum]p5:
8301        //   If the underlying type is not fixed, the type of each enumerator
8302        //   is the type of its initializing value:
8303        //
8304        //     - Otherwise the type of the initializing value is the same as
8305        //       the type of the initializing value of the preceding enumerator
8306        //       unless the incremented value is not representable in that type,
8307        //       in which case the type is an unspecified integral type
8308        //       sufficient to contain the incremented value. If no such type
8309        //       exists, the program is ill-formed.
8310        QualType T = getNextLargerIntegralType(Context, EltTy);
8311        if (T.isNull() || Enum->isFixed()) {
8312          // There is no integral type larger enough to represent this
8313          // value. Complain, then allow the value to wrap around.
8314          EnumVal = LastEnumConst->getInitVal();
8315          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8316          ++EnumVal;
8317          if (Enum->isFixed())
8318            // When the underlying type is fixed, this is ill-formed.
8319            Diag(IdLoc, diag::err_enumerator_wrapped)
8320              << EnumVal.toString(10)
8321              << EltTy;
8322          else
8323            Diag(IdLoc, diag::warn_enumerator_too_large)
8324              << EnumVal.toString(10);
8325        } else {
8326          EltTy = T;
8327        }
8328
8329        // Retrieve the last enumerator's value, extent that type to the
8330        // type that is supposed to be large enough to represent the incremented
8331        // value, then increment.
8332        EnumVal = LastEnumConst->getInitVal();
8333        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8334        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8335        ++EnumVal;
8336
8337        // If we're not in C++, diagnose the overflow of enumerator values,
8338        // which in C99 means that the enumerator value is not representable in
8339        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8340        // permits enumerator values that are representable in some larger
8341        // integral type.
8342        if (!getLangOptions().CPlusPlus && !T.isNull())
8343          Diag(IdLoc, diag::warn_enum_value_overflow);
8344      } else if (!getLangOptions().CPlusPlus &&
8345                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8346        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8347        Diag(IdLoc, diag::ext_enum_value_not_int)
8348          << EnumVal.toString(10) << 1;
8349      }
8350    }
8351  }
8352
8353  if (!EltTy->isDependentType()) {
8354    // Make the enumerator value match the signedness and size of the
8355    // enumerator's type.
8356    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8357    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8358  }
8359
8360  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8361                                  Val, EnumVal);
8362}
8363
8364
8365Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8366                              SourceLocation IdLoc, IdentifierInfo *Id,
8367                              AttributeList *Attr,
8368                              SourceLocation EqualLoc, ExprTy *val) {
8369  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8370  EnumConstantDecl *LastEnumConst =
8371    cast_or_null<EnumConstantDecl>(lastEnumConst);
8372  Expr *Val = static_cast<Expr*>(val);
8373
8374  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8375  // we find one that is.
8376  S = getNonFieldDeclScope(S);
8377
8378  // Verify that there isn't already something declared with this name in this
8379  // scope.
8380  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8381                                         ForRedeclaration);
8382  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8383    // Maybe we will complain about the shadowed template parameter.
8384    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8385    // Just pretend that we didn't see the previous declaration.
8386    PrevDecl = 0;
8387  }
8388
8389  if (PrevDecl) {
8390    // When in C++, we may get a TagDecl with the same name; in this case the
8391    // enum constant will 'hide' the tag.
8392    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8393           "Received TagDecl when not in C++!");
8394    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8395      if (isa<EnumConstantDecl>(PrevDecl))
8396        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8397      else
8398        Diag(IdLoc, diag::err_redefinition) << Id;
8399      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8400      return 0;
8401    }
8402  }
8403
8404  // C++ [class.mem]p13:
8405  //   If T is the name of a class, then each of the following shall have a
8406  //   name different from T:
8407  //     - every enumerator of every member of class T that is an enumerated
8408  //       type
8409  if (CXXRecordDecl *Record
8410                      = dyn_cast<CXXRecordDecl>(
8411                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8412    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8413      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8414
8415  EnumConstantDecl *New =
8416    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8417
8418  if (New) {
8419    // Process attributes.
8420    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8421
8422    // Register this decl in the current scope stack.
8423    New->setAccess(TheEnumDecl->getAccess());
8424    PushOnScopeChains(New, S);
8425  }
8426
8427  return New;
8428}
8429
8430void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8431                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8432                         Decl **Elements, unsigned NumElements,
8433                         Scope *S, AttributeList *Attr) {
8434  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8435  QualType EnumType = Context.getTypeDeclType(Enum);
8436
8437  if (Attr)
8438    ProcessDeclAttributeList(S, Enum, Attr);
8439
8440  if (Enum->isDependentType()) {
8441    for (unsigned i = 0; i != NumElements; ++i) {
8442      EnumConstantDecl *ECD =
8443        cast_or_null<EnumConstantDecl>(Elements[i]);
8444      if (!ECD) continue;
8445
8446      ECD->setType(EnumType);
8447    }
8448
8449    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8450    return;
8451  }
8452
8453  // TODO: If the result value doesn't fit in an int, it must be a long or long
8454  // long value.  ISO C does not support this, but GCC does as an extension,
8455  // emit a warning.
8456  unsigned IntWidth = Context.Target.getIntWidth();
8457  unsigned CharWidth = Context.Target.getCharWidth();
8458  unsigned ShortWidth = Context.Target.getShortWidth();
8459
8460  // Verify that all the values are okay, compute the size of the values, and
8461  // reverse the list.
8462  unsigned NumNegativeBits = 0;
8463  unsigned NumPositiveBits = 0;
8464
8465  // Keep track of whether all elements have type int.
8466  bool AllElementsInt = true;
8467
8468  for (unsigned i = 0; i != NumElements; ++i) {
8469    EnumConstantDecl *ECD =
8470      cast_or_null<EnumConstantDecl>(Elements[i]);
8471    if (!ECD) continue;  // Already issued a diagnostic.
8472
8473    const llvm::APSInt &InitVal = ECD->getInitVal();
8474
8475    // Keep track of the size of positive and negative values.
8476    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8477      NumPositiveBits = std::max(NumPositiveBits,
8478                                 (unsigned)InitVal.getActiveBits());
8479    else
8480      NumNegativeBits = std::max(NumNegativeBits,
8481                                 (unsigned)InitVal.getMinSignedBits());
8482
8483    // Keep track of whether every enum element has type int (very commmon).
8484    if (AllElementsInt)
8485      AllElementsInt = ECD->getType() == Context.IntTy;
8486  }
8487
8488  // Figure out the type that should be used for this enum.
8489  QualType BestType;
8490  unsigned BestWidth;
8491
8492  // C++0x N3000 [conv.prom]p3:
8493  //   An rvalue of an unscoped enumeration type whose underlying
8494  //   type is not fixed can be converted to an rvalue of the first
8495  //   of the following types that can represent all the values of
8496  //   the enumeration: int, unsigned int, long int, unsigned long
8497  //   int, long long int, or unsigned long long int.
8498  // C99 6.4.4.3p2:
8499  //   An identifier declared as an enumeration constant has type int.
8500  // The C99 rule is modified by a gcc extension
8501  QualType BestPromotionType;
8502
8503  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8504  // -fshort-enums is the equivalent to specifying the packed attribute on all
8505  // enum definitions.
8506  if (LangOpts.ShortEnums)
8507    Packed = true;
8508
8509  if (Enum->isFixed()) {
8510    BestType = BestPromotionType = Enum->getIntegerType();
8511    // We don't need to set BestWidth, because BestType is going to be the type
8512    // of the enumerators, but we do anyway because otherwise some compilers
8513    // warn that it might be used uninitialized.
8514    BestWidth = CharWidth;
8515  }
8516  else if (NumNegativeBits) {
8517    // If there is a negative value, figure out the smallest integer type (of
8518    // int/long/longlong) that fits.
8519    // If it's packed, check also if it fits a char or a short.
8520    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8521      BestType = Context.SignedCharTy;
8522      BestWidth = CharWidth;
8523    } else if (Packed && NumNegativeBits <= ShortWidth &&
8524               NumPositiveBits < ShortWidth) {
8525      BestType = Context.ShortTy;
8526      BestWidth = ShortWidth;
8527    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8528      BestType = Context.IntTy;
8529      BestWidth = IntWidth;
8530    } else {
8531      BestWidth = Context.Target.getLongWidth();
8532
8533      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8534        BestType = Context.LongTy;
8535      } else {
8536        BestWidth = Context.Target.getLongLongWidth();
8537
8538        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8539          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8540        BestType = Context.LongLongTy;
8541      }
8542    }
8543    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8544  } else {
8545    // If there is no negative value, figure out the smallest type that fits
8546    // all of the enumerator values.
8547    // If it's packed, check also if it fits a char or a short.
8548    if (Packed && NumPositiveBits <= CharWidth) {
8549      BestType = Context.UnsignedCharTy;
8550      BestPromotionType = Context.IntTy;
8551      BestWidth = CharWidth;
8552    } else if (Packed && NumPositiveBits <= ShortWidth) {
8553      BestType = Context.UnsignedShortTy;
8554      BestPromotionType = Context.IntTy;
8555      BestWidth = ShortWidth;
8556    } else if (NumPositiveBits <= IntWidth) {
8557      BestType = Context.UnsignedIntTy;
8558      BestWidth = IntWidth;
8559      BestPromotionType
8560        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8561                           ? Context.UnsignedIntTy : Context.IntTy;
8562    } else if (NumPositiveBits <=
8563               (BestWidth = Context.Target.getLongWidth())) {
8564      BestType = Context.UnsignedLongTy;
8565      BestPromotionType
8566        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8567                           ? Context.UnsignedLongTy : Context.LongTy;
8568    } else {
8569      BestWidth = Context.Target.getLongLongWidth();
8570      assert(NumPositiveBits <= BestWidth &&
8571             "How could an initializer get larger than ULL?");
8572      BestType = Context.UnsignedLongLongTy;
8573      BestPromotionType
8574        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8575                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8576    }
8577  }
8578
8579  // Loop over all of the enumerator constants, changing their types to match
8580  // the type of the enum if needed.
8581  for (unsigned i = 0; i != NumElements; ++i) {
8582    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8583    if (!ECD) continue;  // Already issued a diagnostic.
8584
8585    // Standard C says the enumerators have int type, but we allow, as an
8586    // extension, the enumerators to be larger than int size.  If each
8587    // enumerator value fits in an int, type it as an int, otherwise type it the
8588    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8589    // that X has type 'int', not 'unsigned'.
8590
8591    // Determine whether the value fits into an int.
8592    llvm::APSInt InitVal = ECD->getInitVal();
8593
8594    // If it fits into an integer type, force it.  Otherwise force it to match
8595    // the enum decl type.
8596    QualType NewTy;
8597    unsigned NewWidth;
8598    bool NewSign;
8599    if (!getLangOptions().CPlusPlus &&
8600        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8601      NewTy = Context.IntTy;
8602      NewWidth = IntWidth;
8603      NewSign = true;
8604    } else if (ECD->getType() == BestType) {
8605      // Already the right type!
8606      if (getLangOptions().CPlusPlus)
8607        // C++ [dcl.enum]p4: Following the closing brace of an
8608        // enum-specifier, each enumerator has the type of its
8609        // enumeration.
8610        ECD->setType(EnumType);
8611      continue;
8612    } else {
8613      NewTy = BestType;
8614      NewWidth = BestWidth;
8615      NewSign = BestType->isSignedIntegerType();
8616    }
8617
8618    // Adjust the APSInt value.
8619    InitVal = InitVal.extOrTrunc(NewWidth);
8620    InitVal.setIsSigned(NewSign);
8621    ECD->setInitVal(InitVal);
8622
8623    // Adjust the Expr initializer and type.
8624    if (ECD->getInitExpr() &&
8625	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8626      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8627                                                CK_IntegralCast,
8628                                                ECD->getInitExpr(),
8629                                                /*base paths*/ 0,
8630                                                VK_RValue));
8631    if (getLangOptions().CPlusPlus)
8632      // C++ [dcl.enum]p4: Following the closing brace of an
8633      // enum-specifier, each enumerator has the type of its
8634      // enumeration.
8635      ECD->setType(EnumType);
8636    else
8637      ECD->setType(NewTy);
8638  }
8639
8640  Enum->completeDefinition(BestType, BestPromotionType,
8641                           NumPositiveBits, NumNegativeBits);
8642}
8643
8644Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8645                                  SourceLocation StartLoc,
8646                                  SourceLocation EndLoc) {
8647  StringLiteral *AsmString = cast<StringLiteral>(expr);
8648
8649  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8650                                                   AsmString, StartLoc,
8651                                                   EndLoc);
8652  CurContext->addDecl(New);
8653  return New;
8654}
8655
8656void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8657                             SourceLocation PragmaLoc,
8658                             SourceLocation NameLoc) {
8659  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8660
8661  if (PrevDecl) {
8662    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8663  } else {
8664    (void)WeakUndeclaredIdentifiers.insert(
8665      std::pair<IdentifierInfo*,WeakInfo>
8666        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8667  }
8668}
8669
8670void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8671                                IdentifierInfo* AliasName,
8672                                SourceLocation PragmaLoc,
8673                                SourceLocation NameLoc,
8674                                SourceLocation AliasNameLoc) {
8675  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8676                                    LookupOrdinaryName);
8677  WeakInfo W = WeakInfo(Name, NameLoc);
8678
8679  if (PrevDecl) {
8680    if (!PrevDecl->hasAttr<AliasAttr>())
8681      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8682        DeclApplyPragmaWeak(TUScope, ND, W);
8683  } else {
8684    (void)WeakUndeclaredIdentifiers.insert(
8685      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8686  }
8687}
8688