SemaDecl.cpp revision 65365455dc48e8382aab5079aa2e23ed5ab65eb3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous: {
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134  }
135
136  case LookupResult::Found:
137    IIDecl = Result.getFoundDecl();
138    break;
139  }
140
141  if (IIDecl) {
142    QualType T;
143
144    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
145      // Check whether we can use this type
146      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
147
148      if (getLangOptions().CPlusPlus) {
149        // C++ [temp.local]p2:
150        //   Within the scope of a class template specialization or
151        //   partial specialization, when the injected-class-name is
152        //   not followed by a <, it is equivalent to the
153        //   injected-class-name followed by the template-argument s
154        //   of the class template specialization or partial
155        //   specialization enclosed in <>.
156        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
157          if (RD->isInjectedClassName())
158            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
159              T = Template->getInjectedClassNameType(Context);
160      }
161
162      if (T.isNull())
163        T = Context.getTypeDeclType(TD);
164    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
165      // Check whether we can use this interface.
166      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
167
168      T = Context.getObjCInterfaceType(IDecl);
169    } else
170      return 0;
171
172    if (SS)
173      T = getQualifiedNameType(*SS, T);
174
175    return T.getAsOpaquePtr();
176  }
177
178  return 0;
179}
180
181/// isTagName() - This method is called *for error recovery purposes only*
182/// to determine if the specified name is a valid tag name ("struct foo").  If
183/// so, this returns the TST for the tag corresponding to it (TST_enum,
184/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
185/// where the user forgot to specify the tag.
186DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
187  // Do a tag name lookup in this scope.
188  LookupResult R;
189  LookupName(R, S, &II, LookupTagName, false, false);
190  if (R.getKind() == LookupResult::Found)
191    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
192      switch (TD->getTagKind()) {
193      case TagDecl::TK_struct: return DeclSpec::TST_struct;
194      case TagDecl::TK_union:  return DeclSpec::TST_union;
195      case TagDecl::TK_class:  return DeclSpec::TST_class;
196      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
197      }
198    }
199
200  return DeclSpec::TST_unspecified;
201}
202
203bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
204                                   SourceLocation IILoc,
205                                   Scope *S,
206                                   const CXXScopeSpec *SS,
207                                   TypeTy *&SuggestedType) {
208  // We don't have anything to suggest (yet).
209  SuggestedType = 0;
210
211  // FIXME: Should we move the logic that tries to recover from a missing tag
212  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
213
214  if (!SS)
215    Diag(IILoc, diag::err_unknown_typename) << &II;
216  else if (DeclContext *DC = computeDeclContext(*SS, false))
217    Diag(IILoc, diag::err_typename_nested_not_found)
218      << &II << DC << SS->getRange();
219  else if (isDependentScopeSpecifier(*SS)) {
220    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
221      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
222      << SourceRange(SS->getRange().getBegin(), IILoc)
223      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
224                                               "typename ");
225    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
226  } else {
227    assert(SS && SS->isInvalid() &&
228           "Invalid scope specifier has already been diagnosed");
229  }
230
231  return true;
232}
233
234// Determines the context to return to after temporarily entering a
235// context.  This depends in an unnecessarily complicated way on the
236// exact ordering of callbacks from the parser.
237DeclContext *Sema::getContainingDC(DeclContext *DC) {
238
239  // Functions defined inline within classes aren't parsed until we've
240  // finished parsing the top-level class, so the top-level class is
241  // the context we'll need to return to.
242  if (isa<FunctionDecl>(DC)) {
243    DC = DC->getLexicalParent();
244
245    // A function not defined within a class will always return to its
246    // lexical context.
247    if (!isa<CXXRecordDecl>(DC))
248      return DC;
249
250    // A C++ inline method/friend is parsed *after* the topmost class
251    // it was declared in is fully parsed ("complete");  the topmost
252    // class is the context we need to return to.
253    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
254      DC = RD;
255
256    // Return the declaration context of the topmost class the inline method is
257    // declared in.
258    return DC;
259  }
260
261  if (isa<ObjCMethodDecl>(DC))
262    return Context.getTranslationUnitDecl();
263
264  return DC->getLexicalParent();
265}
266
267void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
268  assert(getContainingDC(DC) == CurContext &&
269      "The next DeclContext should be lexically contained in the current one.");
270  CurContext = DC;
271  S->setEntity(DC);
272}
273
274void Sema::PopDeclContext() {
275  assert(CurContext && "DeclContext imbalance!");
276
277  CurContext = getContainingDC(CurContext);
278}
279
280/// EnterDeclaratorContext - Used when we must lookup names in the context
281/// of a declarator's nested name specifier.
282void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
283  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
284  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
285  CurContext = DC;
286  assert(CurContext && "No context?");
287  S->setEntity(CurContext);
288}
289
290void Sema::ExitDeclaratorContext(Scope *S) {
291  S->setEntity(PreDeclaratorDC);
292  PreDeclaratorDC = 0;
293
294  // Reset CurContext to the nearest enclosing context.
295  while (!S->getEntity() && S->getParent())
296    S = S->getParent();
297  CurContext = static_cast<DeclContext*>(S->getEntity());
298  assert(CurContext && "No context?");
299}
300
301/// \brief Determine whether we allow overloading of the function
302/// PrevDecl with another declaration.
303///
304/// This routine determines whether overloading is possible, not
305/// whether some new function is actually an overload. It will return
306/// true in C++ (where we can always provide overloads) or, as an
307/// extension, in C when the previous function is already an
308/// overloaded function declaration or has the "overloadable"
309/// attribute.
310static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
311  if (Context.getLangOptions().CPlusPlus)
312    return true;
313
314  if (isa<OverloadedFunctionDecl>(PrevDecl))
315    return true;
316
317  return PrevDecl->getAttr<OverloadableAttr>() != 0;
318}
319
320/// Add this decl to the scope shadowed decl chains.
321void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
322  // Move up the scope chain until we find the nearest enclosing
323  // non-transparent context. The declaration will be introduced into this
324  // scope.
325  while (S->getEntity() &&
326         ((DeclContext *)S->getEntity())->isTransparentContext())
327    S = S->getParent();
328
329  // Add scoped declarations into their context, so that they can be
330  // found later. Declarations without a context won't be inserted
331  // into any context.
332  if (AddToContext)
333    CurContext->addDecl(D);
334
335  // Out-of-line function and variable definitions should not be pushed into
336  // scope.
337  if ((isa<FunctionTemplateDecl>(D) &&
338       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
339      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
340      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
341    return;
342
343  // If this replaces anything in the current scope,
344  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
345                               IEnd = IdResolver.end();
346  for (; I != IEnd; ++I) {
347    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
348      S->RemoveDecl(DeclPtrTy::make(*I));
349      IdResolver.RemoveDecl(*I);
350
351      // Should only need to replace one decl.
352      break;
353    }
354  }
355
356  S->AddDecl(DeclPtrTy::make(D));
357  IdResolver.AddDecl(D);
358}
359
360bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
361  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
362    // Look inside the overload set to determine if any of the declarations
363    // are in scope. (Possibly) build a new overload set containing only
364    // those declarations that are in scope.
365    OverloadedFunctionDecl *NewOvl = 0;
366    bool FoundInScope = false;
367    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
368         FEnd = Ovl->function_end();
369         F != FEnd; ++F) {
370      NamedDecl *FD = F->get();
371      if (!isDeclInScope(FD, Ctx, S)) {
372        if (!NewOvl && F != Ovl->function_begin()) {
373          NewOvl = OverloadedFunctionDecl::Create(Context,
374                                                  F->get()->getDeclContext(),
375                                                  F->get()->getDeclName());
376          D = NewOvl;
377          for (OverloadedFunctionDecl::function_iterator
378               First = Ovl->function_begin();
379               First != F; ++First)
380            NewOvl->addOverload(*First);
381        }
382      } else {
383        FoundInScope = true;
384        if (NewOvl)
385          NewOvl->addOverload(*F);
386      }
387    }
388
389    return FoundInScope;
390  }
391
392  return IdResolver.isDeclInScope(D, Ctx, Context, S);
393}
394
395void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
396  if (S->decl_empty()) return;
397  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
398         "Scope shouldn't contain decls!");
399
400  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
401       I != E; ++I) {
402    Decl *TmpD = (*I).getAs<Decl>();
403    assert(TmpD && "This decl didn't get pushed??");
404
405    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
406    NamedDecl *D = cast<NamedDecl>(TmpD);
407
408    if (!D->getDeclName()) continue;
409
410    // Diagnose unused variables in this scope.
411    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
412        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
413        D->getDeclContext()->isFunctionOrMethod())
414	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
415
416    // Remove this name from our lexical scope.
417    IdResolver.RemoveDecl(D);
418  }
419}
420
421/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
422/// return 0 if one not found.
423ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
424  // The third "scope" argument is 0 since we aren't enabling lazy built-in
425  // creation from this context.
426  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
427
428  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
429}
430
431/// getNonFieldDeclScope - Retrieves the innermost scope, starting
432/// from S, where a non-field would be declared. This routine copes
433/// with the difference between C and C++ scoping rules in structs and
434/// unions. For example, the following code is well-formed in C but
435/// ill-formed in C++:
436/// @code
437/// struct S6 {
438///   enum { BAR } e;
439/// };
440///
441/// void test_S6() {
442///   struct S6 a;
443///   a.e = BAR;
444/// }
445/// @endcode
446/// For the declaration of BAR, this routine will return a different
447/// scope. The scope S will be the scope of the unnamed enumeration
448/// within S6. In C++, this routine will return the scope associated
449/// with S6, because the enumeration's scope is a transparent
450/// context but structures can contain non-field names. In C, this
451/// routine will return the translation unit scope, since the
452/// enumeration's scope is a transparent context and structures cannot
453/// contain non-field names.
454Scope *Sema::getNonFieldDeclScope(Scope *S) {
455  while (((S->getFlags() & Scope::DeclScope) == 0) ||
456         (S->getEntity() &&
457          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
458         (S->isClassScope() && !getLangOptions().CPlusPlus))
459    S = S->getParent();
460  return S;
461}
462
463void Sema::InitBuiltinVaListType() {
464  if (!Context.getBuiltinVaListType().isNull())
465    return;
466
467  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
468  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
469  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
470  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
471}
472
473/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
474/// file scope.  lazily create a decl for it. ForRedeclaration is true
475/// if we're creating this built-in in anticipation of redeclaring the
476/// built-in.
477NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
478                                     Scope *S, bool ForRedeclaration,
479                                     SourceLocation Loc) {
480  Builtin::ID BID = (Builtin::ID)bid;
481
482  if (Context.BuiltinInfo.hasVAListUse(BID))
483    InitBuiltinVaListType();
484
485  ASTContext::GetBuiltinTypeError Error;
486  QualType R = Context.GetBuiltinType(BID, Error);
487  switch (Error) {
488  case ASTContext::GE_None:
489    // Okay
490    break;
491
492  case ASTContext::GE_Missing_stdio:
493    if (ForRedeclaration)
494      Diag(Loc, diag::err_implicit_decl_requires_stdio)
495        << Context.BuiltinInfo.GetName(BID);
496    return 0;
497
498  case ASTContext::GE_Missing_setjmp:
499    if (ForRedeclaration)
500      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
501        << Context.BuiltinInfo.GetName(BID);
502    return 0;
503  }
504
505  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
506    Diag(Loc, diag::ext_implicit_lib_function_decl)
507      << Context.BuiltinInfo.GetName(BID)
508      << R;
509    if (Context.BuiltinInfo.getHeaderName(BID) &&
510        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
511          != Diagnostic::Ignored)
512      Diag(Loc, diag::note_please_include_header)
513        << Context.BuiltinInfo.getHeaderName(BID)
514        << Context.BuiltinInfo.GetName(BID);
515  }
516
517  FunctionDecl *New = FunctionDecl::Create(Context,
518                                           Context.getTranslationUnitDecl(),
519                                           Loc, II, R, /*DInfo=*/0,
520                                           FunctionDecl::Extern, false,
521                                           /*hasPrototype=*/true);
522  New->setImplicit();
523
524  // Create Decl objects for each parameter, adding them to the
525  // FunctionDecl.
526  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
527    llvm::SmallVector<ParmVarDecl*, 16> Params;
528    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
529      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
530                                           FT->getArgType(i), /*DInfo=*/0,
531                                           VarDecl::None, 0));
532    New->setParams(Context, Params.data(), Params.size());
533  }
534
535  AddKnownFunctionAttributes(New);
536
537  // TUScope is the translation-unit scope to insert this function into.
538  // FIXME: This is hideous. We need to teach PushOnScopeChains to
539  // relate Scopes to DeclContexts, and probably eliminate CurContext
540  // entirely, but we're not there yet.
541  DeclContext *SavedContext = CurContext;
542  CurContext = Context.getTranslationUnitDecl();
543  PushOnScopeChains(New, TUScope);
544  CurContext = SavedContext;
545  return New;
546}
547
548/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
549/// same name and scope as a previous declaration 'Old'.  Figure out
550/// how to resolve this situation, merging decls or emitting
551/// diagnostics as appropriate. If there was an error, set New to be invalid.
552///
553void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
554  // If either decl is known invalid already, set the new one to be invalid and
555  // don't bother doing any merging checks.
556  if (New->isInvalidDecl() || OldD->isInvalidDecl())
557    return New->setInvalidDecl();
558
559  // Allow multiple definitions for ObjC built-in typedefs.
560  // FIXME: Verify the underlying types are equivalent!
561  if (getLangOptions().ObjC1) {
562    const IdentifierInfo *TypeID = New->getIdentifier();
563    switch (TypeID->getLength()) {
564    default: break;
565    case 2:
566      if (!TypeID->isStr("id"))
567        break;
568      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
569      // Install the built-in type for 'id', ignoring the current definition.
570      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
571      return;
572    case 5:
573      if (!TypeID->isStr("Class"))
574        break;
575      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
576      // Install the built-in type for 'Class', ignoring the current definition.
577      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
578      return;
579    case 3:
580      if (!TypeID->isStr("SEL"))
581        break;
582      Context.setObjCSelType(Context.getTypeDeclType(New));
583      return;
584    case 8:
585      if (!TypeID->isStr("Protocol"))
586        break;
587      Context.setObjCProtoType(New->getUnderlyingType());
588      return;
589    }
590    // Fall through - the typedef name was not a builtin type.
591  }
592  // Verify the old decl was also a type.
593  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
594  if (!Old) {
595    Diag(New->getLocation(), diag::err_redefinition_different_kind)
596      << New->getDeclName();
597    if (OldD->getLocation().isValid())
598      Diag(OldD->getLocation(), diag::note_previous_definition);
599    return New->setInvalidDecl();
600  }
601
602  // Determine the "old" type we'll use for checking and diagnostics.
603  QualType OldType;
604  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
605    OldType = OldTypedef->getUnderlyingType();
606  else
607    OldType = Context.getTypeDeclType(Old);
608
609  // If the typedef types are not identical, reject them in all languages and
610  // with any extensions enabled.
611
612  if (OldType != New->getUnderlyingType() &&
613      Context.getCanonicalType(OldType) !=
614      Context.getCanonicalType(New->getUnderlyingType())) {
615    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
616      << New->getUnderlyingType() << OldType;
617    if (Old->getLocation().isValid())
618      Diag(Old->getLocation(), diag::note_previous_definition);
619    return New->setInvalidDecl();
620  }
621
622  if (getLangOptions().Microsoft)
623    return;
624
625  // C++ [dcl.typedef]p2:
626  //   In a given non-class scope, a typedef specifier can be used to
627  //   redefine the name of any type declared in that scope to refer
628  //   to the type to which it already refers.
629  if (getLangOptions().CPlusPlus) {
630    if (!isa<CXXRecordDecl>(CurContext))
631      return;
632    Diag(New->getLocation(), diag::err_redefinition)
633      << New->getDeclName();
634    Diag(Old->getLocation(), diag::note_previous_definition);
635    return New->setInvalidDecl();
636  }
637
638  // If we have a redefinition of a typedef in C, emit a warning.  This warning
639  // is normally mapped to an error, but can be controlled with
640  // -Wtypedef-redefinition.  If either the original or the redefinition is
641  // in a system header, don't emit this for compatibility with GCC.
642  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
643      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
644       Context.getSourceManager().isInSystemHeader(New->getLocation())))
645    return;
646
647  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
648    << New->getDeclName();
649  Diag(Old->getLocation(), diag::note_previous_definition);
650  return;
651}
652
653/// DeclhasAttr - returns true if decl Declaration already has the target
654/// attribute.
655static bool
656DeclHasAttr(const Decl *decl, const Attr *target) {
657  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
658    if (attr->getKind() == target->getKind())
659      return true;
660
661  return false;
662}
663
664/// MergeAttributes - append attributes from the Old decl to the New one.
665static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
666  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
667    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
668      Attr *NewAttr = attr->clone(C);
669      NewAttr->setInherited(true);
670      New->addAttr(NewAttr);
671    }
672  }
673}
674
675/// Used in MergeFunctionDecl to keep track of function parameters in
676/// C.
677struct GNUCompatibleParamWarning {
678  ParmVarDecl *OldParm;
679  ParmVarDecl *NewParm;
680  QualType PromotedType;
681};
682
683/// MergeFunctionDecl - We just parsed a function 'New' from
684/// declarator D which has the same name and scope as a previous
685/// declaration 'Old'.  Figure out how to resolve this situation,
686/// merging decls or emitting diagnostics as appropriate.
687///
688/// In C++, New and Old must be declarations that are not
689/// overloaded. Use IsOverload to determine whether New and Old are
690/// overloaded, and to select the Old declaration that New should be
691/// merged with.
692///
693/// Returns true if there was an error, false otherwise.
694bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
695  assert(!isa<OverloadedFunctionDecl>(OldD) &&
696         "Cannot merge with an overloaded function declaration");
697
698  // Verify the old decl was also a function.
699  FunctionDecl *Old = 0;
700  if (FunctionTemplateDecl *OldFunctionTemplate
701        = dyn_cast<FunctionTemplateDecl>(OldD))
702    Old = OldFunctionTemplate->getTemplatedDecl();
703  else
704    Old = dyn_cast<FunctionDecl>(OldD);
705  if (!Old) {
706    Diag(New->getLocation(), diag::err_redefinition_different_kind)
707      << New->getDeclName();
708    Diag(OldD->getLocation(), diag::note_previous_definition);
709    return true;
710  }
711
712  // Determine whether the previous declaration was a definition,
713  // implicit declaration, or a declaration.
714  diag::kind PrevDiag;
715  if (Old->isThisDeclarationADefinition())
716    PrevDiag = diag::note_previous_definition;
717  else if (Old->isImplicit())
718    PrevDiag = diag::note_previous_implicit_declaration;
719  else
720    PrevDiag = diag::note_previous_declaration;
721
722  QualType OldQType = Context.getCanonicalType(Old->getType());
723  QualType NewQType = Context.getCanonicalType(New->getType());
724
725  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
726      New->getStorageClass() == FunctionDecl::Static &&
727      Old->getStorageClass() != FunctionDecl::Static) {
728    Diag(New->getLocation(), diag::err_static_non_static)
729      << New;
730    Diag(Old->getLocation(), PrevDiag);
731    return true;
732  }
733
734  if (getLangOptions().CPlusPlus) {
735    // (C++98 13.1p2):
736    //   Certain function declarations cannot be overloaded:
737    //     -- Function declarations that differ only in the return type
738    //        cannot be overloaded.
739    QualType OldReturnType
740      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
741    QualType NewReturnType
742      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
743    if (OldReturnType != NewReturnType) {
744      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
745      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
746      return true;
747    }
748
749    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
750    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
751    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
752        NewMethod->getLexicalDeclContext()->isRecord()) {
753      //    -- Member function declarations with the same name and the
754      //       same parameter types cannot be overloaded if any of them
755      //       is a static member function declaration.
756      if (OldMethod->isStatic() || NewMethod->isStatic()) {
757        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
758        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
759        return true;
760      }
761
762      // C++ [class.mem]p1:
763      //   [...] A member shall not be declared twice in the
764      //   member-specification, except that a nested class or member
765      //   class template can be declared and then later defined.
766      unsigned NewDiag;
767      if (isa<CXXConstructorDecl>(OldMethod))
768        NewDiag = diag::err_constructor_redeclared;
769      else if (isa<CXXDestructorDecl>(NewMethod))
770        NewDiag = diag::err_destructor_redeclared;
771      else if (isa<CXXConversionDecl>(NewMethod))
772        NewDiag = diag::err_conv_function_redeclared;
773      else
774        NewDiag = diag::err_member_redeclared;
775
776      Diag(New->getLocation(), NewDiag);
777      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
778    }
779
780    // (C++98 8.3.5p3):
781    //   All declarations for a function shall agree exactly in both the
782    //   return type and the parameter-type-list.
783    if (OldQType == NewQType)
784      return MergeCompatibleFunctionDecls(New, Old);
785
786    // Fall through for conflicting redeclarations and redefinitions.
787  }
788
789  // C: Function types need to be compatible, not identical. This handles
790  // duplicate function decls like "void f(int); void f(enum X);" properly.
791  if (!getLangOptions().CPlusPlus &&
792      Context.typesAreCompatible(OldQType, NewQType)) {
793    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
794    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
795    const FunctionProtoType *OldProto = 0;
796    if (isa<FunctionNoProtoType>(NewFuncType) &&
797        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
798      // The old declaration provided a function prototype, but the
799      // new declaration does not. Merge in the prototype.
800      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
801      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
802                                                 OldProto->arg_type_end());
803      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
804                                         ParamTypes.data(), ParamTypes.size(),
805                                         OldProto->isVariadic(),
806                                         OldProto->getTypeQuals());
807      New->setType(NewQType);
808      New->setHasInheritedPrototype();
809
810      // Synthesize a parameter for each argument type.
811      llvm::SmallVector<ParmVarDecl*, 16> Params;
812      for (FunctionProtoType::arg_type_iterator
813             ParamType = OldProto->arg_type_begin(),
814             ParamEnd = OldProto->arg_type_end();
815           ParamType != ParamEnd; ++ParamType) {
816        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
817                                                 SourceLocation(), 0,
818                                                 *ParamType, /*DInfo=*/0,
819                                                 VarDecl::None, 0);
820        Param->setImplicit();
821        Params.push_back(Param);
822      }
823
824      New->setParams(Context, Params.data(), Params.size());
825    }
826
827    return MergeCompatibleFunctionDecls(New, Old);
828  }
829
830  // GNU C permits a K&R definition to follow a prototype declaration
831  // if the declared types of the parameters in the K&R definition
832  // match the types in the prototype declaration, even when the
833  // promoted types of the parameters from the K&R definition differ
834  // from the types in the prototype. GCC then keeps the types from
835  // the prototype.
836  //
837  // If a variadic prototype is followed by a non-variadic K&R definition,
838  // the K&R definition becomes variadic.  This is sort of an edge case, but
839  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
840  // C99 6.9.1p8.
841  if (!getLangOptions().CPlusPlus &&
842      Old->hasPrototype() && !New->hasPrototype() &&
843      New->getType()->getAs<FunctionProtoType>() &&
844      Old->getNumParams() == New->getNumParams()) {
845    llvm::SmallVector<QualType, 16> ArgTypes;
846    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
847    const FunctionProtoType *OldProto
848      = Old->getType()->getAs<FunctionProtoType>();
849    const FunctionProtoType *NewProto
850      = New->getType()->getAs<FunctionProtoType>();
851
852    // Determine whether this is the GNU C extension.
853    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
854                                               NewProto->getResultType());
855    bool LooseCompatible = !MergedReturn.isNull();
856    for (unsigned Idx = 0, End = Old->getNumParams();
857         LooseCompatible && Idx != End; ++Idx) {
858      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
859      ParmVarDecl *NewParm = New->getParamDecl(Idx);
860      if (Context.typesAreCompatible(OldParm->getType(),
861                                     NewProto->getArgType(Idx))) {
862        ArgTypes.push_back(NewParm->getType());
863      } else if (Context.typesAreCompatible(OldParm->getType(),
864                                            NewParm->getType())) {
865        GNUCompatibleParamWarning Warn
866          = { OldParm, NewParm, NewProto->getArgType(Idx) };
867        Warnings.push_back(Warn);
868        ArgTypes.push_back(NewParm->getType());
869      } else
870        LooseCompatible = false;
871    }
872
873    if (LooseCompatible) {
874      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
875        Diag(Warnings[Warn].NewParm->getLocation(),
876             diag::ext_param_promoted_not_compatible_with_prototype)
877          << Warnings[Warn].PromotedType
878          << Warnings[Warn].OldParm->getType();
879        Diag(Warnings[Warn].OldParm->getLocation(),
880             diag::note_previous_declaration);
881      }
882
883      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
884                                           ArgTypes.size(),
885                                           OldProto->isVariadic(), 0));
886      return MergeCompatibleFunctionDecls(New, Old);
887    }
888
889    // Fall through to diagnose conflicting types.
890  }
891
892  // A function that has already been declared has been redeclared or defined
893  // with a different type- show appropriate diagnostic
894  if (unsigned BuiltinID = Old->getBuiltinID()) {
895    // The user has declared a builtin function with an incompatible
896    // signature.
897    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
898      // The function the user is redeclaring is a library-defined
899      // function like 'malloc' or 'printf'. Warn about the
900      // redeclaration, then pretend that we don't know about this
901      // library built-in.
902      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
903      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
904        << Old << Old->getType();
905      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
906      Old->setInvalidDecl();
907      return false;
908    }
909
910    PrevDiag = diag::note_previous_builtin_declaration;
911  }
912
913  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
914  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
915  return true;
916}
917
918/// \brief Completes the merge of two function declarations that are
919/// known to be compatible.
920///
921/// This routine handles the merging of attributes and other
922/// properties of function declarations form the old declaration to
923/// the new declaration, once we know that New is in fact a
924/// redeclaration of Old.
925///
926/// \returns false
927bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
928  // Merge the attributes
929  MergeAttributes(New, Old, Context);
930
931  // Merge the storage class.
932  if (Old->getStorageClass() != FunctionDecl::Extern &&
933      Old->getStorageClass() != FunctionDecl::None)
934    New->setStorageClass(Old->getStorageClass());
935
936  // Merge "pure" flag.
937  if (Old->isPure())
938    New->setPure();
939
940  // Merge the "deleted" flag.
941  if (Old->isDeleted())
942    New->setDeleted();
943
944  if (getLangOptions().CPlusPlus)
945    return MergeCXXFunctionDecl(New, Old);
946
947  return false;
948}
949
950/// MergeVarDecl - We just parsed a variable 'New' which has the same name
951/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
952/// situation, merging decls or emitting diagnostics as appropriate.
953///
954/// Tentative definition rules (C99 6.9.2p2) are checked by
955/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
956/// definitions here, since the initializer hasn't been attached.
957///
958void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
959  // If either decl is invalid, make sure the new one is marked invalid and
960  // don't do any other checking.
961  if (New->isInvalidDecl() || OldD->isInvalidDecl())
962    return New->setInvalidDecl();
963
964  // Verify the old decl was also a variable.
965  VarDecl *Old = dyn_cast<VarDecl>(OldD);
966  if (!Old) {
967    Diag(New->getLocation(), diag::err_redefinition_different_kind)
968      << New->getDeclName();
969    Diag(OldD->getLocation(), diag::note_previous_definition);
970    return New->setInvalidDecl();
971  }
972
973  MergeAttributes(New, Old, Context);
974
975  // Merge the types
976  QualType MergedT;
977  if (getLangOptions().CPlusPlus) {
978    if (Context.hasSameType(New->getType(), Old->getType()))
979      MergedT = New->getType();
980    // C++ [basic.types]p7:
981    //   [...] The declared type of an array object might be an array of
982    //   unknown size and therefore be incomplete at one point in a
983    //   translation unit and complete later on; [...]
984    else if (Old->getType()->isIncompleteArrayType() &&
985             New->getType()->isArrayType()) {
986      CanQual<ArrayType> OldArray
987        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
988      CanQual<ArrayType> NewArray
989        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
990      if (OldArray->getElementType() == NewArray->getElementType())
991        MergedT = New->getType();
992    }
993  } else {
994    MergedT = Context.mergeTypes(New->getType(), Old->getType());
995  }
996  if (MergedT.isNull()) {
997    Diag(New->getLocation(), diag::err_redefinition_different_type)
998      << New->getDeclName();
999    Diag(Old->getLocation(), diag::note_previous_definition);
1000    return New->setInvalidDecl();
1001  }
1002  New->setType(MergedT);
1003
1004  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1005  if (New->getStorageClass() == VarDecl::Static &&
1006      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1007    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009    return New->setInvalidDecl();
1010  }
1011  // C99 6.2.2p4:
1012  //   For an identifier declared with the storage-class specifier
1013  //   extern in a scope in which a prior declaration of that
1014  //   identifier is visible,23) if the prior declaration specifies
1015  //   internal or external linkage, the linkage of the identifier at
1016  //   the later declaration is the same as the linkage specified at
1017  //   the prior declaration. If no prior declaration is visible, or
1018  //   if the prior declaration specifies no linkage, then the
1019  //   identifier has external linkage.
1020  if (New->hasExternalStorage() && Old->hasLinkage())
1021    /* Okay */;
1022  else if (New->getStorageClass() != VarDecl::Static &&
1023           Old->getStorageClass() == VarDecl::Static) {
1024    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1025    Diag(Old->getLocation(), diag::note_previous_definition);
1026    return New->setInvalidDecl();
1027  }
1028
1029  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1030
1031  // FIXME: The test for external storage here seems wrong? We still
1032  // need to check for mismatches.
1033  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1034      // Don't complain about out-of-line definitions of static members.
1035      !(Old->getLexicalDeclContext()->isRecord() &&
1036        !New->getLexicalDeclContext()->isRecord())) {
1037    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1038    Diag(Old->getLocation(), diag::note_previous_definition);
1039    return New->setInvalidDecl();
1040  }
1041
1042  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1043    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1044    Diag(Old->getLocation(), diag::note_previous_definition);
1045  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1046    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1047    Diag(Old->getLocation(), diag::note_previous_definition);
1048  }
1049
1050  // Keep a chain of previous declarations.
1051  New->setPreviousDeclaration(Old);
1052}
1053
1054/// CheckFallThrough - Check that we don't fall off the end of a
1055/// Statement that should return a value.
1056///
1057/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1058/// MaybeFallThrough iff we might or might not fall off the end and
1059/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1060/// that functions not marked noreturn will return.
1061Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1062  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1063
1064  // FIXME: They should never return 0, fix that, delete this code.
1065  if (cfg == 0)
1066    return NeverFallThrough;
1067  // The CFG leaves in dead things, and we don't want to dead code paths to
1068  // confuse us, so we mark all live things first.
1069  std::queue<CFGBlock*> workq;
1070  llvm::BitVector live(cfg->getNumBlockIDs());
1071  // Prep work queue
1072  workq.push(&cfg->getEntry());
1073  // Solve
1074  while (!workq.empty()) {
1075    CFGBlock *item = workq.front();
1076    workq.pop();
1077    live.set(item->getBlockID());
1078    for (CFGBlock::succ_iterator I=item->succ_begin(),
1079           E=item->succ_end();
1080         I != E;
1081         ++I) {
1082      if ((*I) && !live[(*I)->getBlockID()]) {
1083        live.set((*I)->getBlockID());
1084        workq.push(*I);
1085      }
1086    }
1087  }
1088
1089  // Now we know what is live, we check the live precessors of the exit block
1090  // and look for fall through paths, being careful to ignore normal returns,
1091  // and exceptional paths.
1092  bool HasLiveReturn = false;
1093  bool HasFakeEdge = false;
1094  bool HasPlainEdge = false;
1095  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1096         E = cfg->getExit().pred_end();
1097       I != E;
1098       ++I) {
1099    CFGBlock& B = **I;
1100    if (!live[B.getBlockID()])
1101      continue;
1102    if (B.size() == 0) {
1103      // A labeled empty statement, or the entry block...
1104      HasPlainEdge = true;
1105      continue;
1106    }
1107    Stmt *S = B[B.size()-1];
1108    if (isa<ReturnStmt>(S)) {
1109      HasLiveReturn = true;
1110      continue;
1111    }
1112    if (isa<ObjCAtThrowStmt>(S)) {
1113      HasFakeEdge = true;
1114      continue;
1115    }
1116    if (isa<CXXThrowExpr>(S)) {
1117      HasFakeEdge = true;
1118      continue;
1119    }
1120    bool NoReturnEdge = false;
1121    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1122      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1123      if (CEE->getType().getNoReturnAttr()) {
1124        NoReturnEdge = true;
1125        HasFakeEdge = true;
1126      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1127        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1128          if (FD->hasAttr<NoReturnAttr>()) {
1129            NoReturnEdge = true;
1130            HasFakeEdge = true;
1131          }
1132        }
1133      }
1134    }
1135    // FIXME: Add noreturn message sends.
1136    if (NoReturnEdge == false)
1137      HasPlainEdge = true;
1138  }
1139  if (!HasPlainEdge)
1140    return NeverFallThrough;
1141  if (HasFakeEdge || HasLiveReturn)
1142    return MaybeFallThrough;
1143  // This says AlwaysFallThrough for calls to functions that are not marked
1144  // noreturn, that don't return.  If people would like this warning to be more
1145  // accurate, such functions should be marked as noreturn.
1146  return AlwaysFallThrough;
1147}
1148
1149/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1150/// function that should return a value.  Check that we don't fall off the end
1151/// of a noreturn function.  We assume that functions and blocks not marked
1152/// noreturn will return.
1153void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1154  // FIXME: Would be nice if we had a better way to control cascading errors,
1155  // but for now, avoid them.  The problem is that when Parse sees:
1156  //   int foo() { return a; }
1157  // The return is eaten and the Sema code sees just:
1158  //   int foo() { }
1159  // which this code would then warn about.
1160  if (getDiagnostics().hasErrorOccurred())
1161    return;
1162  bool ReturnsVoid = false;
1163  bool HasNoReturn = false;
1164  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1165    // If the result type of the function is a dependent type, we don't know
1166    // whether it will be void or not, so don't
1167    if (FD->getResultType()->isDependentType())
1168      return;
1169    if (FD->getResultType()->isVoidType())
1170      ReturnsVoid = true;
1171    if (FD->hasAttr<NoReturnAttr>())
1172      HasNoReturn = true;
1173  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1174    if (MD->getResultType()->isVoidType())
1175      ReturnsVoid = true;
1176    if (MD->hasAttr<NoReturnAttr>())
1177      HasNoReturn = true;
1178  }
1179
1180  // Short circuit for compilation speed.
1181  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1182       == Diagnostic::Ignored || ReturnsVoid)
1183      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1184          == Diagnostic::Ignored || !HasNoReturn)
1185      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1186          == Diagnostic::Ignored || !ReturnsVoid))
1187    return;
1188  // FIXME: Function try block
1189  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1190    switch (CheckFallThrough(Body)) {
1191    case MaybeFallThrough:
1192      if (HasNoReturn)
1193        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1194      else if (!ReturnsVoid)
1195        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1196      break;
1197    case AlwaysFallThrough:
1198      if (HasNoReturn)
1199        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1200      else if (!ReturnsVoid)
1201        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1202      break;
1203    case NeverFallThrough:
1204      if (ReturnsVoid)
1205        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1206      break;
1207    }
1208  }
1209}
1210
1211/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1212/// that should return a value.  Check that we don't fall off the end of a
1213/// noreturn block.  We assume that functions and blocks not marked noreturn
1214/// will return.
1215void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1216  // FIXME: Would be nice if we had a better way to control cascading errors,
1217  // but for now, avoid them.  The problem is that when Parse sees:
1218  //   int foo() { return a; }
1219  // The return is eaten and the Sema code sees just:
1220  //   int foo() { }
1221  // which this code would then warn about.
1222  if (getDiagnostics().hasErrorOccurred())
1223    return;
1224  bool ReturnsVoid = false;
1225  bool HasNoReturn = false;
1226  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1227    if (FT->getResultType()->isVoidType())
1228      ReturnsVoid = true;
1229    if (FT->getNoReturnAttr())
1230      HasNoReturn = true;
1231  }
1232
1233  // Short circuit for compilation speed.
1234  if (ReturnsVoid
1235      && !HasNoReturn
1236      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1237          == Diagnostic::Ignored || !ReturnsVoid))
1238    return;
1239  // FIXME: Funtion try block
1240  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1241    switch (CheckFallThrough(Body)) {
1242    case MaybeFallThrough:
1243      if (HasNoReturn)
1244        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1245      else if (!ReturnsVoid)
1246        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1247      break;
1248    case AlwaysFallThrough:
1249      if (HasNoReturn)
1250        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1251      else if (!ReturnsVoid)
1252        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1253      break;
1254    case NeverFallThrough:
1255      if (ReturnsVoid)
1256        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1257      break;
1258    }
1259  }
1260}
1261
1262/// CheckParmsForFunctionDef - Check that the parameters of the given
1263/// function are appropriate for the definition of a function. This
1264/// takes care of any checks that cannot be performed on the
1265/// declaration itself, e.g., that the types of each of the function
1266/// parameters are complete.
1267bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1268  bool HasInvalidParm = false;
1269  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1270    ParmVarDecl *Param = FD->getParamDecl(p);
1271
1272    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1273    // function declarator that is part of a function definition of
1274    // that function shall not have incomplete type.
1275    //
1276    // This is also C++ [dcl.fct]p6.
1277    if (!Param->isInvalidDecl() &&
1278        RequireCompleteType(Param->getLocation(), Param->getType(),
1279                               diag::err_typecheck_decl_incomplete_type)) {
1280      Param->setInvalidDecl();
1281      HasInvalidParm = true;
1282    }
1283
1284    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1285    // declaration of each parameter shall include an identifier.
1286    if (Param->getIdentifier() == 0 &&
1287        !Param->isImplicit() &&
1288        !getLangOptions().CPlusPlus)
1289      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1290  }
1291
1292  return HasInvalidParm;
1293}
1294
1295/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1296/// no declarator (e.g. "struct foo;") is parsed.
1297Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1298  // FIXME: Error on auto/register at file scope
1299  // FIXME: Error on inline/virtual/explicit
1300  // FIXME: Error on invalid restrict
1301  // FIXME: Warn on useless __thread
1302  // FIXME: Warn on useless const/volatile
1303  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1304  // FIXME: Warn on useless attributes
1305  Decl *TagD = 0;
1306  TagDecl *Tag = 0;
1307  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1308      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1309      DS.getTypeSpecType() == DeclSpec::TST_union ||
1310      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1311    TagD = static_cast<Decl *>(DS.getTypeRep());
1312
1313    if (!TagD) // We probably had an error
1314      return DeclPtrTy();
1315
1316    // Note that the above type specs guarantee that the
1317    // type rep is a Decl, whereas in many of the others
1318    // it's a Type.
1319    Tag = dyn_cast<TagDecl>(TagD);
1320  }
1321
1322  if (DS.isFriendSpecified()) {
1323    // If we're dealing with a class template decl, assume that the
1324    // template routines are handling it.
1325    if (TagD && isa<ClassTemplateDecl>(TagD))
1326      return DeclPtrTy();
1327    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1328  }
1329
1330  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1331    if (!Record->getDeclName() && Record->isDefinition() &&
1332        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1333      if (getLangOptions().CPlusPlus ||
1334          Record->getDeclContext()->isRecord())
1335        return BuildAnonymousStructOrUnion(S, DS, Record);
1336
1337      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1338        << DS.getSourceRange();
1339    }
1340
1341    // Microsoft allows unnamed struct/union fields. Don't complain
1342    // about them.
1343    // FIXME: Should we support Microsoft's extensions in this area?
1344    if (Record->getDeclName() && getLangOptions().Microsoft)
1345      return DeclPtrTy::make(Tag);
1346  }
1347
1348  if (!DS.isMissingDeclaratorOk() &&
1349      DS.getTypeSpecType() != DeclSpec::TST_error) {
1350    // Warn about typedefs of enums without names, since this is an
1351    // extension in both Microsoft an GNU.
1352    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1353        Tag && isa<EnumDecl>(Tag)) {
1354      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1355        << DS.getSourceRange();
1356      return DeclPtrTy::make(Tag);
1357    }
1358
1359    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1360      << DS.getSourceRange();
1361    return DeclPtrTy();
1362  }
1363
1364  return DeclPtrTy::make(Tag);
1365}
1366
1367/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1368/// anonymous struct or union AnonRecord into the owning context Owner
1369/// and scope S. This routine will be invoked just after we realize
1370/// that an unnamed union or struct is actually an anonymous union or
1371/// struct, e.g.,
1372///
1373/// @code
1374/// union {
1375///   int i;
1376///   float f;
1377/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1378///    // f into the surrounding scope.x
1379/// @endcode
1380///
1381/// This routine is recursive, injecting the names of nested anonymous
1382/// structs/unions into the owning context and scope as well.
1383bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1384                                               RecordDecl *AnonRecord) {
1385  bool Invalid = false;
1386  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1387                               FEnd = AnonRecord->field_end();
1388       F != FEnd; ++F) {
1389    if ((*F)->getDeclName()) {
1390      LookupResult R;
1391      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1392                          LookupOrdinaryName, true);
1393      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1394      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1395        // C++ [class.union]p2:
1396        //   The names of the members of an anonymous union shall be
1397        //   distinct from the names of any other entity in the
1398        //   scope in which the anonymous union is declared.
1399        unsigned diagKind
1400          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1401                                 : diag::err_anonymous_struct_member_redecl;
1402        Diag((*F)->getLocation(), diagKind)
1403          << (*F)->getDeclName();
1404        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1405        Invalid = true;
1406      } else {
1407        // C++ [class.union]p2:
1408        //   For the purpose of name lookup, after the anonymous union
1409        //   definition, the members of the anonymous union are
1410        //   considered to have been defined in the scope in which the
1411        //   anonymous union is declared.
1412        Owner->makeDeclVisibleInContext(*F);
1413        S->AddDecl(DeclPtrTy::make(*F));
1414        IdResolver.AddDecl(*F);
1415      }
1416    } else if (const RecordType *InnerRecordType
1417                 = (*F)->getType()->getAs<RecordType>()) {
1418      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1419      if (InnerRecord->isAnonymousStructOrUnion())
1420        Invalid = Invalid ||
1421          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1422    }
1423  }
1424
1425  return Invalid;
1426}
1427
1428/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1429/// anonymous structure or union. Anonymous unions are a C++ feature
1430/// (C++ [class.union]) and a GNU C extension; anonymous structures
1431/// are a GNU C and GNU C++ extension.
1432Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1433                                                  RecordDecl *Record) {
1434  DeclContext *Owner = Record->getDeclContext();
1435
1436  // Diagnose whether this anonymous struct/union is an extension.
1437  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1438    Diag(Record->getLocation(), diag::ext_anonymous_union);
1439  else if (!Record->isUnion())
1440    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1441
1442  // C and C++ require different kinds of checks for anonymous
1443  // structs/unions.
1444  bool Invalid = false;
1445  if (getLangOptions().CPlusPlus) {
1446    const char* PrevSpec = 0;
1447    unsigned DiagID;
1448    // C++ [class.union]p3:
1449    //   Anonymous unions declared in a named namespace or in the
1450    //   global namespace shall be declared static.
1451    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1452        (isa<TranslationUnitDecl>(Owner) ||
1453         (isa<NamespaceDecl>(Owner) &&
1454          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1455      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1456      Invalid = true;
1457
1458      // Recover by adding 'static'.
1459      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1460                             PrevSpec, DiagID);
1461    }
1462    // C++ [class.union]p3:
1463    //   A storage class is not allowed in a declaration of an
1464    //   anonymous union in a class scope.
1465    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1466             isa<RecordDecl>(Owner)) {
1467      Diag(DS.getStorageClassSpecLoc(),
1468           diag::err_anonymous_union_with_storage_spec);
1469      Invalid = true;
1470
1471      // Recover by removing the storage specifier.
1472      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1473                             PrevSpec, DiagID);
1474    }
1475
1476    // C++ [class.union]p2:
1477    //   The member-specification of an anonymous union shall only
1478    //   define non-static data members. [Note: nested types and
1479    //   functions cannot be declared within an anonymous union. ]
1480    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1481                                 MemEnd = Record->decls_end();
1482         Mem != MemEnd; ++Mem) {
1483      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1484        // C++ [class.union]p3:
1485        //   An anonymous union shall not have private or protected
1486        //   members (clause 11).
1487        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1488          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1489            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1490          Invalid = true;
1491        }
1492      } else if ((*Mem)->isImplicit()) {
1493        // Any implicit members are fine.
1494      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1495        // This is a type that showed up in an
1496        // elaborated-type-specifier inside the anonymous struct or
1497        // union, but which actually declares a type outside of the
1498        // anonymous struct or union. It's okay.
1499      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1500        if (!MemRecord->isAnonymousStructOrUnion() &&
1501            MemRecord->getDeclName()) {
1502          // This is a nested type declaration.
1503          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1504            << (int)Record->isUnion();
1505          Invalid = true;
1506        }
1507      } else {
1508        // We have something that isn't a non-static data
1509        // member. Complain about it.
1510        unsigned DK = diag::err_anonymous_record_bad_member;
1511        if (isa<TypeDecl>(*Mem))
1512          DK = diag::err_anonymous_record_with_type;
1513        else if (isa<FunctionDecl>(*Mem))
1514          DK = diag::err_anonymous_record_with_function;
1515        else if (isa<VarDecl>(*Mem))
1516          DK = diag::err_anonymous_record_with_static;
1517        Diag((*Mem)->getLocation(), DK)
1518            << (int)Record->isUnion();
1519          Invalid = true;
1520      }
1521    }
1522  }
1523
1524  if (!Record->isUnion() && !Owner->isRecord()) {
1525    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1526      << (int)getLangOptions().CPlusPlus;
1527    Invalid = true;
1528  }
1529
1530  // Create a declaration for this anonymous struct/union.
1531  NamedDecl *Anon = 0;
1532  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1533    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1534                             /*IdentifierInfo=*/0,
1535                             Context.getTypeDeclType(Record),
1536                             // FIXME: Type source info.
1537                             /*DInfo=*/0,
1538                             /*BitWidth=*/0, /*Mutable=*/false);
1539    Anon->setAccess(AS_public);
1540    if (getLangOptions().CPlusPlus)
1541      FieldCollector->Add(cast<FieldDecl>(Anon));
1542  } else {
1543    VarDecl::StorageClass SC;
1544    switch (DS.getStorageClassSpec()) {
1545    default: assert(0 && "Unknown storage class!");
1546    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1547    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1548    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1549    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1550    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1551    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1552    case DeclSpec::SCS_mutable:
1553      // mutable can only appear on non-static class members, so it's always
1554      // an error here
1555      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1556      Invalid = true;
1557      SC = VarDecl::None;
1558      break;
1559    }
1560
1561    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1562                           /*IdentifierInfo=*/0,
1563                           Context.getTypeDeclType(Record),
1564                           // FIXME: Type source info.
1565                           /*DInfo=*/0,
1566                           SC);
1567  }
1568  Anon->setImplicit();
1569
1570  // Add the anonymous struct/union object to the current
1571  // context. We'll be referencing this object when we refer to one of
1572  // its members.
1573  Owner->addDecl(Anon);
1574
1575  // Inject the members of the anonymous struct/union into the owning
1576  // context and into the identifier resolver chain for name lookup
1577  // purposes.
1578  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1579    Invalid = true;
1580
1581  // Mark this as an anonymous struct/union type. Note that we do not
1582  // do this until after we have already checked and injected the
1583  // members of this anonymous struct/union type, because otherwise
1584  // the members could be injected twice: once by DeclContext when it
1585  // builds its lookup table, and once by
1586  // InjectAnonymousStructOrUnionMembers.
1587  Record->setAnonymousStructOrUnion(true);
1588
1589  if (Invalid)
1590    Anon->setInvalidDecl();
1591
1592  return DeclPtrTy::make(Anon);
1593}
1594
1595
1596/// GetNameForDeclarator - Determine the full declaration name for the
1597/// given Declarator.
1598DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1599  switch (D.getKind()) {
1600  case Declarator::DK_Abstract:
1601    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1602    return DeclarationName();
1603
1604  case Declarator::DK_Normal:
1605    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1606    return DeclarationName(D.getIdentifier());
1607
1608  case Declarator::DK_Constructor: {
1609    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1610    return Context.DeclarationNames.getCXXConstructorName(
1611                                                Context.getCanonicalType(Ty));
1612  }
1613
1614  case Declarator::DK_Destructor: {
1615    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1616    return Context.DeclarationNames.getCXXDestructorName(
1617                                                Context.getCanonicalType(Ty));
1618  }
1619
1620  case Declarator::DK_Conversion: {
1621    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1622    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1623    return Context.DeclarationNames.getCXXConversionFunctionName(
1624                                                Context.getCanonicalType(Ty));
1625  }
1626
1627  case Declarator::DK_Operator:
1628    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1629    return Context.DeclarationNames.getCXXOperatorName(
1630                                                D.getOverloadedOperator());
1631
1632  case Declarator::DK_TemplateId: {
1633    TemplateName Name
1634      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1635    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1636      return Template->getDeclName();
1637    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1638      return Ovl->getDeclName();
1639
1640    return DeclarationName();
1641  }
1642  }
1643
1644  assert(false && "Unknown name kind");
1645  return DeclarationName();
1646}
1647
1648/// isNearlyMatchingFunction - Determine whether the C++ functions
1649/// Declaration and Definition are "nearly" matching. This heuristic
1650/// is used to improve diagnostics in the case where an out-of-line
1651/// function definition doesn't match any declaration within
1652/// the class or namespace.
1653static bool isNearlyMatchingFunction(ASTContext &Context,
1654                                     FunctionDecl *Declaration,
1655                                     FunctionDecl *Definition) {
1656  if (Declaration->param_size() != Definition->param_size())
1657    return false;
1658  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1659    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1660    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1661
1662    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1663    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1664    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1665      return false;
1666  }
1667
1668  return true;
1669}
1670
1671Sema::DeclPtrTy
1672Sema::HandleDeclarator(Scope *S, Declarator &D,
1673                       MultiTemplateParamsArg TemplateParamLists,
1674                       bool IsFunctionDefinition) {
1675  DeclarationName Name = GetNameForDeclarator(D);
1676
1677  // All of these full declarators require an identifier.  If it doesn't have
1678  // one, the ParsedFreeStandingDeclSpec action should be used.
1679  if (!Name) {
1680    if (!D.isInvalidType())  // Reject this if we think it is valid.
1681      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1682           diag::err_declarator_need_ident)
1683        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1684    return DeclPtrTy();
1685  }
1686
1687  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1688  // we find one that is.
1689  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1690         (S->getFlags() & Scope::TemplateParamScope) != 0)
1691    S = S->getParent();
1692
1693  // If this is an out-of-line definition of a member of a class template
1694  // or class template partial specialization, we may need to rebuild the
1695  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1696  // for more information.
1697  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1698  // handle expressions properly.
1699  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1700  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1701      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1702      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1703       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1704       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1705       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1706    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1707      // FIXME: Preserve type source info.
1708      QualType T = GetTypeFromParser(DS.getTypeRep());
1709      EnterDeclaratorContext(S, DC);
1710      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1711      ExitDeclaratorContext(S);
1712      if (T.isNull())
1713        return DeclPtrTy();
1714      DS.UpdateTypeRep(T.getAsOpaquePtr());
1715    }
1716  }
1717
1718  DeclContext *DC;
1719  NamedDecl *PrevDecl;
1720  NamedDecl *New;
1721
1722  DeclaratorInfo *DInfo = 0;
1723  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1724
1725  // See if this is a redefinition of a variable in the same scope.
1726  if (D.getCXXScopeSpec().isInvalid()) {
1727    DC = CurContext;
1728    PrevDecl = 0;
1729    D.setInvalidType();
1730  } else if (!D.getCXXScopeSpec().isSet()) {
1731    LookupNameKind NameKind = LookupOrdinaryName;
1732
1733    // If the declaration we're planning to build will be a function
1734    // or object with linkage, then look for another declaration with
1735    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1736    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1737      /* Do nothing*/;
1738    else if (R->isFunctionType()) {
1739      if (CurContext->isFunctionOrMethod() ||
1740          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1741        NameKind = LookupRedeclarationWithLinkage;
1742    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1743      NameKind = LookupRedeclarationWithLinkage;
1744    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1745             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1746      NameKind = LookupRedeclarationWithLinkage;
1747
1748    DC = CurContext;
1749    LookupResult R;
1750    LookupName(R, S, Name, NameKind, true,
1751               NameKind == LookupRedeclarationWithLinkage,
1752               D.getIdentifierLoc());
1753    PrevDecl = R.getAsSingleDecl(Context);
1754  } else { // Something like "int foo::x;"
1755    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1756
1757    if (!DC) {
1758      // If we could not compute the declaration context, it's because the
1759      // declaration context is dependent but does not refer to a class,
1760      // class template, or class template partial specialization. Complain
1761      // and return early, to avoid the coming semantic disaster.
1762      Diag(D.getIdentifierLoc(),
1763           diag::err_template_qualified_declarator_no_match)
1764        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1765        << D.getCXXScopeSpec().getRange();
1766      return DeclPtrTy();
1767    }
1768
1769    if (!DC->isDependentContext() &&
1770        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1771      return DeclPtrTy();
1772
1773    LookupResult Res;
1774    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1775    PrevDecl = Res.getAsSingleDecl(Context);
1776
1777    // C++ 7.3.1.2p2:
1778    // Members (including explicit specializations of templates) of a named
1779    // namespace can also be defined outside that namespace by explicit
1780    // qualification of the name being defined, provided that the entity being
1781    // defined was already declared in the namespace and the definition appears
1782    // after the point of declaration in a namespace that encloses the
1783    // declarations namespace.
1784    //
1785    // Note that we only check the context at this point. We don't yet
1786    // have enough information to make sure that PrevDecl is actually
1787    // the declaration we want to match. For example, given:
1788    //
1789    //   class X {
1790    //     void f();
1791    //     void f(float);
1792    //   };
1793    //
1794    //   void X::f(int) { } // ill-formed
1795    //
1796    // In this case, PrevDecl will point to the overload set
1797    // containing the two f's declared in X, but neither of them
1798    // matches.
1799
1800    // First check whether we named the global scope.
1801    if (isa<TranslationUnitDecl>(DC)) {
1802      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1803        << Name << D.getCXXScopeSpec().getRange();
1804    } else if (!CurContext->Encloses(DC)) {
1805      // The qualifying scope doesn't enclose the original declaration.
1806      // Emit diagnostic based on current scope.
1807      SourceLocation L = D.getIdentifierLoc();
1808      SourceRange R = D.getCXXScopeSpec().getRange();
1809      if (isa<FunctionDecl>(CurContext))
1810        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1811      else
1812        Diag(L, diag::err_invalid_declarator_scope)
1813          << Name << cast<NamedDecl>(DC) << R;
1814      D.setInvalidType();
1815    }
1816  }
1817
1818  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1819    // Maybe we will complain about the shadowed template parameter.
1820    if (!D.isInvalidType())
1821      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1822        D.setInvalidType();
1823
1824    // Just pretend that we didn't see the previous declaration.
1825    PrevDecl = 0;
1826  }
1827
1828  // In C++, the previous declaration we find might be a tag type
1829  // (class or enum). In this case, the new declaration will hide the
1830  // tag type. Note that this does does not apply if we're declaring a
1831  // typedef (C++ [dcl.typedef]p4).
1832  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1833      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1834    PrevDecl = 0;
1835
1836  bool Redeclaration = false;
1837  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1838    if (TemplateParamLists.size()) {
1839      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1840      return DeclPtrTy();
1841    }
1842
1843    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1844  } else if (R->isFunctionType()) {
1845    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1846                                  move(TemplateParamLists),
1847                                  IsFunctionDefinition, Redeclaration);
1848  } else {
1849    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1850                                  move(TemplateParamLists),
1851                                  Redeclaration);
1852  }
1853
1854  if (New == 0)
1855    return DeclPtrTy();
1856
1857  // If this has an identifier and is not an invalid redeclaration or
1858  // function template specialization, add it to the scope stack.
1859  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1860      !(isa<FunctionDecl>(New) &&
1861        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1862    PushOnScopeChains(New, S);
1863
1864  return DeclPtrTy::make(New);
1865}
1866
1867/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1868/// types into constant array types in certain situations which would otherwise
1869/// be errors (for GCC compatibility).
1870static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1871                                                    ASTContext &Context,
1872                                                    bool &SizeIsNegative) {
1873  // This method tries to turn a variable array into a constant
1874  // array even when the size isn't an ICE.  This is necessary
1875  // for compatibility with code that depends on gcc's buggy
1876  // constant expression folding, like struct {char x[(int)(char*)2];}
1877  SizeIsNegative = false;
1878
1879  QualifierCollector Qs;
1880  const Type *Ty = Qs.strip(T);
1881
1882  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1883    QualType Pointee = PTy->getPointeeType();
1884    QualType FixedType =
1885        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1886    if (FixedType.isNull()) return FixedType;
1887    FixedType = Context.getPointerType(FixedType);
1888    return Qs.apply(FixedType);
1889  }
1890
1891  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1892  if (!VLATy)
1893    return QualType();
1894  // FIXME: We should probably handle this case
1895  if (VLATy->getElementType()->isVariablyModifiedType())
1896    return QualType();
1897
1898  Expr::EvalResult EvalResult;
1899  if (!VLATy->getSizeExpr() ||
1900      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1901      !EvalResult.Val.isInt())
1902    return QualType();
1903
1904  llvm::APSInt &Res = EvalResult.Val.getInt();
1905  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1906    Expr* ArySizeExpr = VLATy->getSizeExpr();
1907    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1908    // so as to transfer ownership to the ConstantArrayWithExpr.
1909    // Alternatively, we could "clone" it (how?).
1910    // Since we don't know how to do things above, we just use the
1911    // very same Expr*.
1912    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1913                                                Res, ArySizeExpr,
1914                                                ArrayType::Normal, 0,
1915                                                VLATy->getBracketsRange());
1916  }
1917
1918  SizeIsNegative = true;
1919  return QualType();
1920}
1921
1922/// \brief Register the given locally-scoped external C declaration so
1923/// that it can be found later for redeclarations
1924void
1925Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1926                                       Scope *S) {
1927  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1928         "Decl is not a locally-scoped decl!");
1929  // Note that we have a locally-scoped external with this name.
1930  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1931
1932  if (!PrevDecl)
1933    return;
1934
1935  // If there was a previous declaration of this variable, it may be
1936  // in our identifier chain. Update the identifier chain with the new
1937  // declaration.
1938  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1939    // The previous declaration was found on the identifer resolver
1940    // chain, so remove it from its scope.
1941    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1942      S = S->getParent();
1943
1944    if (S)
1945      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1946  }
1947}
1948
1949/// \brief Diagnose function specifiers on a declaration of an identifier that
1950/// does not identify a function.
1951void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1952  // FIXME: We should probably indicate the identifier in question to avoid
1953  // confusion for constructs like "inline int a(), b;"
1954  if (D.getDeclSpec().isInlineSpecified())
1955    Diag(D.getDeclSpec().getInlineSpecLoc(),
1956         diag::err_inline_non_function);
1957
1958  if (D.getDeclSpec().isVirtualSpecified())
1959    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1960         diag::err_virtual_non_function);
1961
1962  if (D.getDeclSpec().isExplicitSpecified())
1963    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1964         diag::err_explicit_non_function);
1965}
1966
1967NamedDecl*
1968Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1969                             QualType R,  DeclaratorInfo *DInfo,
1970                             NamedDecl* PrevDecl, bool &Redeclaration) {
1971  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1972  if (D.getCXXScopeSpec().isSet()) {
1973    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1974      << D.getCXXScopeSpec().getRange();
1975    D.setInvalidType();
1976    // Pretend we didn't see the scope specifier.
1977    DC = 0;
1978  }
1979
1980  if (getLangOptions().CPlusPlus) {
1981    // Check that there are no default arguments (C++ only).
1982    CheckExtraCXXDefaultArguments(D);
1983  }
1984
1985  DiagnoseFunctionSpecifiers(D);
1986
1987  if (D.getDeclSpec().isThreadSpecified())
1988    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1989
1990  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1991  if (!NewTD) return 0;
1992
1993  if (D.isInvalidType())
1994    NewTD->setInvalidDecl();
1995
1996  // Handle attributes prior to checking for duplicates in MergeVarDecl
1997  ProcessDeclAttributes(S, NewTD, D);
1998  // Merge the decl with the existing one if appropriate. If the decl is
1999  // in an outer scope, it isn't the same thing.
2000  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2001    Redeclaration = true;
2002    MergeTypeDefDecl(NewTD, PrevDecl);
2003  }
2004
2005  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2006  // then it shall have block scope.
2007  QualType T = NewTD->getUnderlyingType();
2008  if (T->isVariablyModifiedType()) {
2009    CurFunctionNeedsScopeChecking = true;
2010
2011    if (S->getFnParent() == 0) {
2012      bool SizeIsNegative;
2013      QualType FixedTy =
2014          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2015      if (!FixedTy.isNull()) {
2016        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2017        NewTD->setUnderlyingType(FixedTy);
2018      } else {
2019        if (SizeIsNegative)
2020          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2021        else if (T->isVariableArrayType())
2022          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2023        else
2024          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2025        NewTD->setInvalidDecl();
2026      }
2027    }
2028  }
2029
2030  // If this is the C FILE type, notify the AST context.
2031  if (IdentifierInfo *II = NewTD->getIdentifier())
2032    if (!NewTD->isInvalidDecl() &&
2033        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2034      if (II->isStr("FILE"))
2035        Context.setFILEDecl(NewTD);
2036      else if (II->isStr("jmp_buf"))
2037        Context.setjmp_bufDecl(NewTD);
2038      else if (II->isStr("sigjmp_buf"))
2039        Context.setsigjmp_bufDecl(NewTD);
2040    }
2041
2042  return NewTD;
2043}
2044
2045/// \brief Determines whether the given declaration is an out-of-scope
2046/// previous declaration.
2047///
2048/// This routine should be invoked when name lookup has found a
2049/// previous declaration (PrevDecl) that is not in the scope where a
2050/// new declaration by the same name is being introduced. If the new
2051/// declaration occurs in a local scope, previous declarations with
2052/// linkage may still be considered previous declarations (C99
2053/// 6.2.2p4-5, C++ [basic.link]p6).
2054///
2055/// \param PrevDecl the previous declaration found by name
2056/// lookup
2057///
2058/// \param DC the context in which the new declaration is being
2059/// declared.
2060///
2061/// \returns true if PrevDecl is an out-of-scope previous declaration
2062/// for a new delcaration with the same name.
2063static bool
2064isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2065                                ASTContext &Context) {
2066  if (!PrevDecl)
2067    return 0;
2068
2069  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2070  // case we need to check each of the overloaded functions.
2071  if (!PrevDecl->hasLinkage())
2072    return false;
2073
2074  if (Context.getLangOptions().CPlusPlus) {
2075    // C++ [basic.link]p6:
2076    //   If there is a visible declaration of an entity with linkage
2077    //   having the same name and type, ignoring entities declared
2078    //   outside the innermost enclosing namespace scope, the block
2079    //   scope declaration declares that same entity and receives the
2080    //   linkage of the previous declaration.
2081    DeclContext *OuterContext = DC->getLookupContext();
2082    if (!OuterContext->isFunctionOrMethod())
2083      // This rule only applies to block-scope declarations.
2084      return false;
2085    else {
2086      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2087      if (PrevOuterContext->isRecord())
2088        // We found a member function: ignore it.
2089        return false;
2090      else {
2091        // Find the innermost enclosing namespace for the new and
2092        // previous declarations.
2093        while (!OuterContext->isFileContext())
2094          OuterContext = OuterContext->getParent();
2095        while (!PrevOuterContext->isFileContext())
2096          PrevOuterContext = PrevOuterContext->getParent();
2097
2098        // The previous declaration is in a different namespace, so it
2099        // isn't the same function.
2100        if (OuterContext->getPrimaryContext() !=
2101            PrevOuterContext->getPrimaryContext())
2102          return false;
2103      }
2104    }
2105  }
2106
2107  return true;
2108}
2109
2110NamedDecl*
2111Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2112                              QualType R, DeclaratorInfo *DInfo,
2113                              NamedDecl* PrevDecl,
2114                              MultiTemplateParamsArg TemplateParamLists,
2115                              bool &Redeclaration) {
2116  DeclarationName Name = GetNameForDeclarator(D);
2117
2118  // Check that there are no default arguments (C++ only).
2119  if (getLangOptions().CPlusPlus)
2120    CheckExtraCXXDefaultArguments(D);
2121
2122  VarDecl *NewVD;
2123  VarDecl::StorageClass SC;
2124  switch (D.getDeclSpec().getStorageClassSpec()) {
2125  default: assert(0 && "Unknown storage class!");
2126  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2127  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2128  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2129  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2130  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2131  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2132  case DeclSpec::SCS_mutable:
2133    // mutable can only appear on non-static class members, so it's always
2134    // an error here
2135    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2136    D.setInvalidType();
2137    SC = VarDecl::None;
2138    break;
2139  }
2140
2141  IdentifierInfo *II = Name.getAsIdentifierInfo();
2142  if (!II) {
2143    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2144      << Name.getAsString();
2145    return 0;
2146  }
2147
2148  DiagnoseFunctionSpecifiers(D);
2149
2150  if (!DC->isRecord() && S->getFnParent() == 0) {
2151    // C99 6.9p2: The storage-class specifiers auto and register shall not
2152    // appear in the declaration specifiers in an external declaration.
2153    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2154
2155      // If this is a register variable with an asm label specified, then this
2156      // is a GNU extension.
2157      if (SC == VarDecl::Register && D.getAsmLabel())
2158        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2159      else
2160        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2161      D.setInvalidType();
2162    }
2163  }
2164  if (DC->isRecord() && !CurContext->isRecord()) {
2165    // This is an out-of-line definition of a static data member.
2166    if (SC == VarDecl::Static) {
2167      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2168           diag::err_static_out_of_line)
2169        << CodeModificationHint::CreateRemoval(
2170                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2171    } else if (SC == VarDecl::None)
2172      SC = VarDecl::Static;
2173  }
2174  if (SC == VarDecl::Static) {
2175    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2176      if (RD->isLocalClass())
2177        Diag(D.getIdentifierLoc(),
2178             diag::err_static_data_member_not_allowed_in_local_class)
2179          << Name << RD->getDeclName();
2180    }
2181  }
2182
2183  // Match up the template parameter lists with the scope specifier, then
2184  // determine whether we have a template or a template specialization.
2185  bool isExplicitSpecialization = false;
2186  if (TemplateParameterList *TemplateParams
2187        = MatchTemplateParametersToScopeSpecifier(
2188                                  D.getDeclSpec().getSourceRange().getBegin(),
2189                                                  D.getCXXScopeSpec(),
2190                        (TemplateParameterList**)TemplateParamLists.get(),
2191                                                   TemplateParamLists.size(),
2192                                                  isExplicitSpecialization)) {
2193    if (TemplateParams->size() > 0) {
2194      // There is no such thing as a variable template.
2195      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2196        << II
2197        << SourceRange(TemplateParams->getTemplateLoc(),
2198                       TemplateParams->getRAngleLoc());
2199      return 0;
2200    } else {
2201      // There is an extraneous 'template<>' for this variable. Complain
2202      // about it, but allow the declaration of the variable.
2203      Diag(TemplateParams->getTemplateLoc(),
2204           diag::err_template_variable_noparams)
2205        << II
2206        << SourceRange(TemplateParams->getTemplateLoc(),
2207                       TemplateParams->getRAngleLoc());
2208
2209      isExplicitSpecialization = true;
2210    }
2211  }
2212
2213  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2214                          II, R, DInfo, SC);
2215
2216  if (D.isInvalidType())
2217    NewVD->setInvalidDecl();
2218
2219  if (D.getDeclSpec().isThreadSpecified()) {
2220    if (NewVD->hasLocalStorage())
2221      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2222    else if (!Context.Target.isTLSSupported())
2223      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2224    else
2225      NewVD->setThreadSpecified(true);
2226  }
2227
2228  // Set the lexical context. If the declarator has a C++ scope specifier, the
2229  // lexical context will be different from the semantic context.
2230  NewVD->setLexicalDeclContext(CurContext);
2231
2232  // Handle attributes prior to checking for duplicates in MergeVarDecl
2233  ProcessDeclAttributes(S, NewVD, D);
2234
2235  // Handle GNU asm-label extension (encoded as an attribute).
2236  if (Expr *E = (Expr*) D.getAsmLabel()) {
2237    // The parser guarantees this is a string.
2238    StringLiteral *SE = cast<StringLiteral>(E);
2239    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2240                                                        SE->getByteLength())));
2241  }
2242
2243  // If name lookup finds a previous declaration that is not in the
2244  // same scope as the new declaration, this may still be an
2245  // acceptable redeclaration.
2246  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2247      !(NewVD->hasLinkage() &&
2248        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2249    PrevDecl = 0;
2250
2251  // Merge the decl with the existing one if appropriate.
2252  if (PrevDecl) {
2253    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2254      // The user tried to define a non-static data member
2255      // out-of-line (C++ [dcl.meaning]p1).
2256      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2257        << D.getCXXScopeSpec().getRange();
2258      PrevDecl = 0;
2259      NewVD->setInvalidDecl();
2260    }
2261  } else if (D.getCXXScopeSpec().isSet()) {
2262    // No previous declaration in the qualifying scope.
2263    Diag(D.getIdentifierLoc(), diag::err_no_member)
2264      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2265      << D.getCXXScopeSpec().getRange();
2266    NewVD->setInvalidDecl();
2267  }
2268
2269  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2270
2271  // This is an explicit specialization of a static data member. Check it.
2272  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2273      CheckMemberSpecialization(NewVD, PrevDecl))
2274    NewVD->setInvalidDecl();
2275
2276  // attributes declared post-definition are currently ignored
2277  if (PrevDecl) {
2278    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2279    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2280      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2281      Diag(Def->getLocation(), diag::note_previous_definition);
2282    }
2283  }
2284
2285  // If this is a locally-scoped extern C variable, update the map of
2286  // such variables.
2287  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2288      !NewVD->isInvalidDecl())
2289    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2290
2291  return NewVD;
2292}
2293
2294/// \brief Perform semantic checking on a newly-created variable
2295/// declaration.
2296///
2297/// This routine performs all of the type-checking required for a
2298/// variable declaration once it has been built. It is used both to
2299/// check variables after they have been parsed and their declarators
2300/// have been translated into a declaration, and to check variables
2301/// that have been instantiated from a template.
2302///
2303/// Sets NewVD->isInvalidDecl() if an error was encountered.
2304void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2305                                    bool &Redeclaration) {
2306  // If the decl is already known invalid, don't check it.
2307  if (NewVD->isInvalidDecl())
2308    return;
2309
2310  QualType T = NewVD->getType();
2311
2312  if (T->isObjCInterfaceType()) {
2313    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2314    return NewVD->setInvalidDecl();
2315  }
2316
2317  // The variable can not have an abstract class type.
2318  if (RequireNonAbstractType(NewVD->getLocation(), T,
2319                             diag::err_abstract_type_in_decl,
2320                             AbstractVariableType))
2321    return NewVD->setInvalidDecl();
2322
2323  // Emit an error if an address space was applied to decl with local storage.
2324  // This includes arrays of objects with address space qualifiers, but not
2325  // automatic variables that point to other address spaces.
2326  // ISO/IEC TR 18037 S5.1.2
2327  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2328    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2329    return NewVD->setInvalidDecl();
2330  }
2331
2332  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2333      && !NewVD->hasAttr<BlocksAttr>())
2334    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2335
2336  bool isVM = T->isVariablyModifiedType();
2337  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2338      NewVD->hasAttr<BlocksAttr>())
2339    CurFunctionNeedsScopeChecking = true;
2340
2341  if ((isVM && NewVD->hasLinkage()) ||
2342      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2343    bool SizeIsNegative;
2344    QualType FixedTy =
2345        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2346
2347    if (FixedTy.isNull() && T->isVariableArrayType()) {
2348      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2349      // FIXME: This won't give the correct result for
2350      // int a[10][n];
2351      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2352
2353      if (NewVD->isFileVarDecl())
2354        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2355        << SizeRange;
2356      else if (NewVD->getStorageClass() == VarDecl::Static)
2357        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2358        << SizeRange;
2359      else
2360        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2361        << SizeRange;
2362      return NewVD->setInvalidDecl();
2363    }
2364
2365    if (FixedTy.isNull()) {
2366      if (NewVD->isFileVarDecl())
2367        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2368      else
2369        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2370      return NewVD->setInvalidDecl();
2371    }
2372
2373    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2374    NewVD->setType(FixedTy);
2375  }
2376
2377  if (!PrevDecl && NewVD->isExternC()) {
2378    // Since we did not find anything by this name and we're declaring
2379    // an extern "C" variable, look for a non-visible extern "C"
2380    // declaration with the same name.
2381    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2382      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2383    if (Pos != LocallyScopedExternalDecls.end())
2384      PrevDecl = Pos->second;
2385  }
2386
2387  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2388    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2389      << T;
2390    return NewVD->setInvalidDecl();
2391  }
2392
2393  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2394    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2395    return NewVD->setInvalidDecl();
2396  }
2397
2398  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2399    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2400    return NewVD->setInvalidDecl();
2401  }
2402
2403  if (PrevDecl) {
2404    Redeclaration = true;
2405    MergeVarDecl(NewVD, PrevDecl);
2406  }
2407}
2408
2409static bool isUsingDecl(Decl *D) {
2410  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2411}
2412
2413/// \brief Data used with FindOverriddenMethod
2414struct FindOverriddenMethodData {
2415  Sema *S;
2416  CXXMethodDecl *Method;
2417};
2418
2419/// \brief Member lookup function that determines whether a given C++
2420/// method overrides a method in a base class, to be used with
2421/// CXXRecordDecl::lookupInBases().
2422static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2423                                 CXXBasePath &Path,
2424                                 void *UserData) {
2425  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2426
2427  FindOverriddenMethodData *Data
2428    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2429  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2430       Path.Decls.first != Path.Decls.second;
2431       ++Path.Decls.first) {
2432    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2433      OverloadedFunctionDecl::function_iterator MatchedDecl;
2434      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2435        return true;
2436    }
2437  }
2438
2439  return false;
2440}
2441
2442NamedDecl*
2443Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2444                              QualType R, DeclaratorInfo *DInfo,
2445                              NamedDecl* PrevDecl,
2446                              MultiTemplateParamsArg TemplateParamLists,
2447                              bool IsFunctionDefinition, bool &Redeclaration) {
2448  assert(R.getTypePtr()->isFunctionType());
2449
2450  DeclarationName Name = GetNameForDeclarator(D);
2451  FunctionDecl::StorageClass SC = FunctionDecl::None;
2452  switch (D.getDeclSpec().getStorageClassSpec()) {
2453  default: assert(0 && "Unknown storage class!");
2454  case DeclSpec::SCS_auto:
2455  case DeclSpec::SCS_register:
2456  case DeclSpec::SCS_mutable:
2457    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2458         diag::err_typecheck_sclass_func);
2459    D.setInvalidType();
2460    break;
2461  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2462  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2463  case DeclSpec::SCS_static: {
2464    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2465      // C99 6.7.1p5:
2466      //   The declaration of an identifier for a function that has
2467      //   block scope shall have no explicit storage-class specifier
2468      //   other than extern
2469      // See also (C++ [dcl.stc]p4).
2470      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2471           diag::err_static_block_func);
2472      SC = FunctionDecl::None;
2473    } else
2474      SC = FunctionDecl::Static;
2475    break;
2476  }
2477  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2478  }
2479
2480  if (D.getDeclSpec().isThreadSpecified())
2481    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2482
2483  bool isFriend = D.getDeclSpec().isFriendSpecified();
2484  bool isInline = D.getDeclSpec().isInlineSpecified();
2485  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2486  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2487
2488  // Check that the return type is not an abstract class type.
2489  // For record types, this is done by the AbstractClassUsageDiagnoser once
2490  // the class has been completely parsed.
2491  if (!DC->isRecord() &&
2492      RequireNonAbstractType(D.getIdentifierLoc(),
2493                             R->getAs<FunctionType>()->getResultType(),
2494                             diag::err_abstract_type_in_decl,
2495                             AbstractReturnType))
2496    D.setInvalidType();
2497
2498  // Do not allow returning a objc interface by-value.
2499  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2500    Diag(D.getIdentifierLoc(),
2501         diag::err_object_cannot_be_passed_returned_by_value) << 0
2502      << R->getAs<FunctionType>()->getResultType();
2503    D.setInvalidType();
2504  }
2505
2506  bool isVirtualOkay = false;
2507  FunctionDecl *NewFD;
2508
2509  if (isFriend) {
2510    // DC is the namespace in which the function is being declared.
2511    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2512           "friend function being created in a non-namespace context");
2513
2514    // C++ [class.friend]p5
2515    //   A function can be defined in a friend declaration of a
2516    //   class . . . . Such a function is implicitly inline.
2517    isInline |= IsFunctionDefinition;
2518  }
2519
2520  if (D.getKind() == Declarator::DK_Constructor) {
2521    // This is a C++ constructor declaration.
2522    assert(DC->isRecord() &&
2523           "Constructors can only be declared in a member context");
2524
2525    R = CheckConstructorDeclarator(D, R, SC);
2526
2527    // Create the new declaration
2528    NewFD = CXXConstructorDecl::Create(Context,
2529                                       cast<CXXRecordDecl>(DC),
2530                                       D.getIdentifierLoc(), Name, R, DInfo,
2531                                       isExplicit, isInline,
2532                                       /*isImplicitlyDeclared=*/false);
2533  } else if (D.getKind() == Declarator::DK_Destructor) {
2534    // This is a C++ destructor declaration.
2535    if (DC->isRecord()) {
2536      R = CheckDestructorDeclarator(D, SC);
2537
2538      NewFD = CXXDestructorDecl::Create(Context,
2539                                        cast<CXXRecordDecl>(DC),
2540                                        D.getIdentifierLoc(), Name, R,
2541                                        isInline,
2542                                        /*isImplicitlyDeclared=*/false);
2543
2544      isVirtualOkay = true;
2545    } else {
2546      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2547
2548      // Create a FunctionDecl to satisfy the function definition parsing
2549      // code path.
2550      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2551                                   Name, R, DInfo, SC, isInline,
2552                                   /*hasPrototype=*/true);
2553      D.setInvalidType();
2554    }
2555  } else if (D.getKind() == Declarator::DK_Conversion) {
2556    if (!DC->isRecord()) {
2557      Diag(D.getIdentifierLoc(),
2558           diag::err_conv_function_not_member);
2559      return 0;
2560    }
2561
2562    CheckConversionDeclarator(D, R, SC);
2563    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2564                                      D.getIdentifierLoc(), Name, R, DInfo,
2565                                      isInline, isExplicit);
2566
2567    isVirtualOkay = true;
2568  } else if (DC->isRecord()) {
2569    // If the of the function is the same as the name of the record, then this
2570    // must be an invalid constructor that has a return type.
2571    // (The parser checks for a return type and makes the declarator a
2572    // constructor if it has no return type).
2573    // must have an invalid constructor that has a return type
2574    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2575      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2576        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2577        << SourceRange(D.getIdentifierLoc());
2578      return 0;
2579    }
2580
2581    // This is a C++ method declaration.
2582    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2583                                  D.getIdentifierLoc(), Name, R, DInfo,
2584                                  (SC == FunctionDecl::Static), isInline);
2585
2586    isVirtualOkay = (SC != FunctionDecl::Static);
2587  } else {
2588    // Determine whether the function was written with a
2589    // prototype. This true when:
2590    //   - we're in C++ (where every function has a prototype),
2591    //   - there is a prototype in the declarator, or
2592    //   - the type R of the function is some kind of typedef or other reference
2593    //     to a type name (which eventually refers to a function type).
2594    bool HasPrototype =
2595       getLangOptions().CPlusPlus ||
2596       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2597       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2598
2599    NewFD = FunctionDecl::Create(Context, DC,
2600                                 D.getIdentifierLoc(),
2601                                 Name, R, DInfo, SC, isInline, HasPrototype);
2602  }
2603
2604  if (D.isInvalidType())
2605    NewFD->setInvalidDecl();
2606
2607  // Set the lexical context. If the declarator has a C++
2608  // scope specifier, or is the object of a friend declaration, the
2609  // lexical context will be different from the semantic context.
2610  NewFD->setLexicalDeclContext(CurContext);
2611
2612  // Match up the template parameter lists with the scope specifier, then
2613  // determine whether we have a template or a template specialization.
2614  FunctionTemplateDecl *FunctionTemplate = 0;
2615  bool isExplicitSpecialization = false;
2616  bool isFunctionTemplateSpecialization = false;
2617  if (TemplateParameterList *TemplateParams
2618        = MatchTemplateParametersToScopeSpecifier(
2619                                  D.getDeclSpec().getSourceRange().getBegin(),
2620                                  D.getCXXScopeSpec(),
2621                           (TemplateParameterList**)TemplateParamLists.get(),
2622                                                  TemplateParamLists.size(),
2623                                                  isExplicitSpecialization)) {
2624    if (TemplateParams->size() > 0) {
2625      // This is a function template
2626
2627      // Check that we can declare a template here.
2628      if (CheckTemplateDeclScope(S, TemplateParams))
2629        return 0;
2630
2631      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2632                                                      NewFD->getLocation(),
2633                                                      Name, TemplateParams,
2634                                                      NewFD);
2635      FunctionTemplate->setLexicalDeclContext(CurContext);
2636      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2637    } else {
2638      // This is a function template specialization.
2639      isFunctionTemplateSpecialization = true;
2640    }
2641
2642    // FIXME: Free this memory properly.
2643    TemplateParamLists.release();
2644  }
2645
2646  // C++ [dcl.fct.spec]p5:
2647  //   The virtual specifier shall only be used in declarations of
2648  //   nonstatic class member functions that appear within a
2649  //   member-specification of a class declaration; see 10.3.
2650  //
2651  if (isVirtual && !NewFD->isInvalidDecl()) {
2652    if (!isVirtualOkay) {
2653       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2654           diag::err_virtual_non_function);
2655    } else if (!CurContext->isRecord()) {
2656      // 'virtual' was specified outside of the class.
2657      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2658        << CodeModificationHint::CreateRemoval(
2659                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2660    } else {
2661      // Okay: Add virtual to the method.
2662      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2663      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2664      CurClass->setAggregate(false);
2665      CurClass->setPOD(false);
2666      CurClass->setEmpty(false);
2667      CurClass->setPolymorphic(true);
2668      CurClass->setHasTrivialConstructor(false);
2669      CurClass->setHasTrivialCopyConstructor(false);
2670      CurClass->setHasTrivialCopyAssignment(false);
2671    }
2672  }
2673
2674  if (isFriend) {
2675    if (FunctionTemplate) {
2676      FunctionTemplate->setObjectOfFriendDecl(
2677                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2678      FunctionTemplate->setAccess(AS_public);
2679    }
2680    else
2681      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2682
2683    NewFD->setAccess(AS_public);
2684  }
2685
2686
2687  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2688    // Look for virtual methods in base classes that this method might override.
2689    CXXBasePaths Paths;
2690    FindOverriddenMethodData Data;
2691    Data.Method = NewMD;
2692    Data.S = this;
2693    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2694                                                Paths)) {
2695      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2696           E = Paths.found_decls_end(); I != E; ++I) {
2697        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2698          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2699              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2700            NewMD->addOverriddenMethod(OldMD);
2701        }
2702      }
2703    }
2704  }
2705
2706  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2707      !CurContext->isRecord()) {
2708    // C++ [class.static]p1:
2709    //   A data or function member of a class may be declared static
2710    //   in a class definition, in which case it is a static member of
2711    //   the class.
2712
2713    // Complain about the 'static' specifier if it's on an out-of-line
2714    // member function definition.
2715    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2716         diag::err_static_out_of_line)
2717      << CodeModificationHint::CreateRemoval(
2718                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2719  }
2720
2721  // Handle GNU asm-label extension (encoded as an attribute).
2722  if (Expr *E = (Expr*) D.getAsmLabel()) {
2723    // The parser guarantees this is a string.
2724    StringLiteral *SE = cast<StringLiteral>(E);
2725    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2726                                                        SE->getByteLength())));
2727  }
2728
2729  // Copy the parameter declarations from the declarator D to the function
2730  // declaration NewFD, if they are available.  First scavenge them into Params.
2731  llvm::SmallVector<ParmVarDecl*, 16> Params;
2732  if (D.getNumTypeObjects() > 0) {
2733    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2734
2735    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2736    // function that takes no arguments, not a function that takes a
2737    // single void argument.
2738    // We let through "const void" here because Sema::GetTypeForDeclarator
2739    // already checks for that case.
2740    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2741        FTI.ArgInfo[0].Param &&
2742        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2743      // Empty arg list, don't push any params.
2744      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2745
2746      // In C++, the empty parameter-type-list must be spelled "void"; a
2747      // typedef of void is not permitted.
2748      if (getLangOptions().CPlusPlus &&
2749          Param->getType().getUnqualifiedType() != Context.VoidTy)
2750        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2751      // FIXME: Leaks decl?
2752    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2753      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2754        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2755        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2756        Param->setDeclContext(NewFD);
2757        Params.push_back(Param);
2758      }
2759    }
2760
2761  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2762    // When we're declaring a function with a typedef, typeof, etc as in the
2763    // following example, we'll need to synthesize (unnamed)
2764    // parameters for use in the declaration.
2765    //
2766    // @code
2767    // typedef void fn(int);
2768    // fn f;
2769    // @endcode
2770
2771    // Synthesize a parameter for each argument type.
2772    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2773         AE = FT->arg_type_end(); AI != AE; ++AI) {
2774      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2775                                               SourceLocation(), 0,
2776                                               *AI, /*DInfo=*/0,
2777                                               VarDecl::None, 0);
2778      Param->setImplicit();
2779      Params.push_back(Param);
2780    }
2781  } else {
2782    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2783           "Should not need args for typedef of non-prototype fn");
2784  }
2785  // Finally, we know we have the right number of parameters, install them.
2786  NewFD->setParams(Context, Params.data(), Params.size());
2787
2788  // If name lookup finds a previous declaration that is not in the
2789  // same scope as the new declaration, this may still be an
2790  // acceptable redeclaration.
2791  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2792      !(NewFD->hasLinkage() &&
2793        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2794    PrevDecl = 0;
2795
2796  // If the declarator is a template-id, translate the parser's template
2797  // argument list into our AST format.
2798  bool HasExplicitTemplateArgs = false;
2799  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2800  SourceLocation LAngleLoc, RAngleLoc;
2801  if (D.getKind() == Declarator::DK_TemplateId) {
2802    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2803    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2804                                       TemplateId->getTemplateArgs(),
2805                                       TemplateId->getTemplateArgIsType(),
2806                                       TemplateId->NumArgs);
2807    translateTemplateArguments(TemplateArgsPtr,
2808                               TemplateId->getTemplateArgLocations(),
2809                               TemplateArgs);
2810    TemplateArgsPtr.release();
2811
2812    HasExplicitTemplateArgs = true;
2813    LAngleLoc = TemplateId->LAngleLoc;
2814    RAngleLoc = TemplateId->RAngleLoc;
2815
2816    if (FunctionTemplate) {
2817      // FIXME: Diagnose function template with explicit template
2818      // arguments.
2819      HasExplicitTemplateArgs = false;
2820    } else if (!isFunctionTemplateSpecialization &&
2821               !D.getDeclSpec().isFriendSpecified()) {
2822      // We have encountered something that the user meant to be a
2823      // specialization (because it has explicitly-specified template
2824      // arguments) but that was not introduced with a "template<>" (or had
2825      // too few of them).
2826      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2827        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2828        << CodeModificationHint::CreateInsertion(
2829                                   D.getDeclSpec().getSourceRange().getBegin(),
2830                                                 "template<> ");
2831      isFunctionTemplateSpecialization = true;
2832    }
2833  }
2834
2835  if (isFunctionTemplateSpecialization) {
2836      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2837                                              LAngleLoc, TemplateArgs.data(),
2838                                              TemplateArgs.size(), RAngleLoc,
2839                                              PrevDecl))
2840        NewFD->setInvalidDecl();
2841  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2842             CheckMemberSpecialization(NewFD, PrevDecl))
2843    NewFD->setInvalidDecl();
2844
2845  // Perform semantic checking on the function declaration.
2846  bool OverloadableAttrRequired = false; // FIXME: HACK!
2847  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2848                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2849
2850  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2851    // An out-of-line member function declaration must also be a
2852    // definition (C++ [dcl.meaning]p1).
2853    // Note that this is not the case for explicit specializations of
2854    // function templates or member functions of class templates, per
2855    // C++ [temp.expl.spec]p2.
2856    if (!IsFunctionDefinition && !isFriend &&
2857        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2858      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2859        << D.getCXXScopeSpec().getRange();
2860      NewFD->setInvalidDecl();
2861    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2862      // The user tried to provide an out-of-line definition for a
2863      // function that is a member of a class or namespace, but there
2864      // was no such member function declared (C++ [class.mfct]p2,
2865      // C++ [namespace.memdef]p2). For example:
2866      //
2867      // class X {
2868      //   void f() const;
2869      // };
2870      //
2871      // void X::f() { } // ill-formed
2872      //
2873      // Complain about this problem, and attempt to suggest close
2874      // matches (e.g., those that differ only in cv-qualifiers and
2875      // whether the parameter types are references).
2876      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2877        << Name << DC << D.getCXXScopeSpec().getRange();
2878      NewFD->setInvalidDecl();
2879
2880      LookupResult Prev;
2881      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2882      assert(!Prev.isAmbiguous() &&
2883             "Cannot have an ambiguity in previous-declaration lookup");
2884      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2885           Func != FuncEnd; ++Func) {
2886        if (isa<FunctionDecl>(*Func) &&
2887            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2888          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2889      }
2890
2891      PrevDecl = 0;
2892    }
2893  }
2894
2895  // Handle attributes. We need to have merged decls when handling attributes
2896  // (for example to check for conflicts, etc).
2897  // FIXME: This needs to happen before we merge declarations. Then,
2898  // let attribute merging cope with attribute conflicts.
2899  ProcessDeclAttributes(S, NewFD, D);
2900
2901  // attributes declared post-definition are currently ignored
2902  if (Redeclaration && PrevDecl) {
2903    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2904    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2905      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2906      Diag(Def->getLocation(), diag::note_previous_definition);
2907    }
2908  }
2909
2910  AddKnownFunctionAttributes(NewFD);
2911
2912  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2913    // If a function name is overloadable in C, then every function
2914    // with that name must be marked "overloadable".
2915    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2916      << Redeclaration << NewFD;
2917    if (PrevDecl)
2918      Diag(PrevDecl->getLocation(),
2919           diag::note_attribute_overloadable_prev_overload);
2920    NewFD->addAttr(::new (Context) OverloadableAttr());
2921  }
2922
2923  // If this is a locally-scoped extern C function, update the
2924  // map of such names.
2925  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2926      && !NewFD->isInvalidDecl())
2927    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2928
2929  // Set this FunctionDecl's range up to the right paren.
2930  NewFD->setLocEnd(D.getSourceRange().getEnd());
2931
2932  if (FunctionTemplate && NewFD->isInvalidDecl())
2933    FunctionTemplate->setInvalidDecl();
2934
2935  if (FunctionTemplate)
2936    return FunctionTemplate;
2937
2938  return NewFD;
2939}
2940
2941/// \brief Perform semantic checking of a new function declaration.
2942///
2943/// Performs semantic analysis of the new function declaration
2944/// NewFD. This routine performs all semantic checking that does not
2945/// require the actual declarator involved in the declaration, and is
2946/// used both for the declaration of functions as they are parsed
2947/// (called via ActOnDeclarator) and for the declaration of functions
2948/// that have been instantiated via C++ template instantiation (called
2949/// via InstantiateDecl).
2950///
2951/// \param IsExplicitSpecialiation whether this new function declaration is
2952/// an explicit specialization of the previous declaration.
2953///
2954/// This sets NewFD->isInvalidDecl() to true if there was an error.
2955void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2956                                    bool IsExplicitSpecialization,
2957                                    bool &Redeclaration,
2958                                    bool &OverloadableAttrRequired) {
2959  // If NewFD is already known erroneous, don't do any of this checking.
2960  if (NewFD->isInvalidDecl())
2961    return;
2962
2963  if (NewFD->getResultType()->isVariablyModifiedType()) {
2964    // Functions returning a variably modified type violate C99 6.7.5.2p2
2965    // because all functions have linkage.
2966    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2967    return NewFD->setInvalidDecl();
2968  }
2969
2970  if (NewFD->isMain())
2971    CheckMain(NewFD);
2972
2973  // Check for a previous declaration of this name.
2974  if (!PrevDecl && NewFD->isExternC()) {
2975    // Since we did not find anything by this name and we're declaring
2976    // an extern "C" function, look for a non-visible extern "C"
2977    // declaration with the same name.
2978    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2979      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2980    if (Pos != LocallyScopedExternalDecls.end())
2981      PrevDecl = Pos->second;
2982  }
2983
2984  // Merge or overload the declaration with an existing declaration of
2985  // the same name, if appropriate.
2986  if (PrevDecl) {
2987    // Determine whether NewFD is an overload of PrevDecl or
2988    // a declaration that requires merging. If it's an overload,
2989    // there's no more work to do here; we'll just add the new
2990    // function to the scope.
2991    OverloadedFunctionDecl::function_iterator MatchedDecl;
2992
2993    if (!getLangOptions().CPlusPlus &&
2994        AllowOverloadingOfFunction(PrevDecl, Context)) {
2995      OverloadableAttrRequired = true;
2996
2997      // Functions marked "overloadable" must have a prototype (that
2998      // we can't get through declaration merging).
2999      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3000        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3001          << NewFD;
3002        Redeclaration = true;
3003
3004        // Turn this into a variadic function with no parameters.
3005        QualType R = Context.getFunctionType(
3006                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3007                       0, 0, true, 0);
3008        NewFD->setType(R);
3009        return NewFD->setInvalidDecl();
3010      }
3011    }
3012
3013    if (PrevDecl &&
3014        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3015         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3016      Redeclaration = true;
3017      Decl *OldDecl = PrevDecl;
3018
3019      // If PrevDecl was an overloaded function, extract the
3020      // FunctionDecl that matched.
3021      if (isa<OverloadedFunctionDecl>(PrevDecl))
3022        OldDecl = *MatchedDecl;
3023
3024      // NewFD and OldDecl represent declarations that need to be
3025      // merged.
3026      if (MergeFunctionDecl(NewFD, OldDecl))
3027        return NewFD->setInvalidDecl();
3028
3029      if (FunctionTemplateDecl *OldTemplateDecl
3030                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3031        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3032        FunctionTemplateDecl *NewTemplateDecl
3033          = NewFD->getDescribedFunctionTemplate();
3034        assert(NewTemplateDecl && "Template/non-template mismatch");
3035        if (CXXMethodDecl *Method
3036              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3037          Method->setAccess(OldTemplateDecl->getAccess());
3038          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3039        }
3040
3041        // If this is an explicit specialization of a member that is a function
3042        // template, mark it as a member specialization.
3043        if (IsExplicitSpecialization &&
3044            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3045          NewTemplateDecl->setMemberSpecialization();
3046          assert(OldTemplateDecl->isMemberSpecialization());
3047        }
3048      } else {
3049        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3050          NewFD->setAccess(OldDecl->getAccess());
3051        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3052      }
3053    }
3054  }
3055
3056  // Semantic checking for this function declaration (in isolation).
3057  if (getLangOptions().CPlusPlus) {
3058    // C++-specific checks.
3059    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3060      CheckConstructor(Constructor);
3061    } else if (isa<CXXDestructorDecl>(NewFD)) {
3062      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3063      QualType ClassType = Context.getTypeDeclType(Record);
3064      if (!ClassType->isDependentType()) {
3065        DeclarationName Name
3066          = Context.DeclarationNames.getCXXDestructorName(
3067                                        Context.getCanonicalType(ClassType));
3068        if (NewFD->getDeclName() != Name) {
3069          Diag(NewFD->getLocation(), diag::err_destructor_name);
3070          return NewFD->setInvalidDecl();
3071        }
3072      }
3073      Record->setUserDeclaredDestructor(true);
3074      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3075      // user-defined destructor.
3076      Record->setPOD(false);
3077
3078      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3079      // declared destructor.
3080      // FIXME: C++0x: don't do this for "= default" destructors
3081      Record->setHasTrivialDestructor(false);
3082    } else if (CXXConversionDecl *Conversion
3083               = dyn_cast<CXXConversionDecl>(NewFD))
3084      ActOnConversionDeclarator(Conversion);
3085
3086    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3087    if (NewFD->isOverloadedOperator() &&
3088        CheckOverloadedOperatorDeclaration(NewFD))
3089      return NewFD->setInvalidDecl();
3090
3091    // In C++, check default arguments now that we have merged decls. Unless
3092    // the lexical context is the class, because in this case this is done
3093    // during delayed parsing anyway.
3094    if (!CurContext->isRecord())
3095      CheckCXXDefaultArguments(NewFD);
3096  }
3097}
3098
3099void Sema::CheckMain(FunctionDecl* FD) {
3100  // C++ [basic.start.main]p3:  A program that declares main to be inline
3101  //   or static is ill-formed.
3102  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3103  //   shall not appear in a declaration of main.
3104  // static main is not an error under C99, but we should warn about it.
3105  bool isInline = FD->isInline();
3106  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3107  if (isInline || isStatic) {
3108    unsigned diagID = diag::warn_unusual_main_decl;
3109    if (isInline || getLangOptions().CPlusPlus)
3110      diagID = diag::err_unusual_main_decl;
3111
3112    int which = isStatic + (isInline << 1) - 1;
3113    Diag(FD->getLocation(), diagID) << which;
3114  }
3115
3116  QualType T = FD->getType();
3117  assert(T->isFunctionType() && "function decl is not of function type");
3118  const FunctionType* FT = T->getAs<FunctionType>();
3119
3120  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3121    // TODO: add a replacement fixit to turn the return type into 'int'.
3122    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3123    FD->setInvalidDecl(true);
3124  }
3125
3126  // Treat protoless main() as nullary.
3127  if (isa<FunctionNoProtoType>(FT)) return;
3128
3129  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3130  unsigned nparams = FTP->getNumArgs();
3131  assert(FD->getNumParams() == nparams);
3132
3133  if (nparams > 3) {
3134    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3135    FD->setInvalidDecl(true);
3136    nparams = 3;
3137  }
3138
3139  // FIXME: a lot of the following diagnostics would be improved
3140  // if we had some location information about types.
3141
3142  QualType CharPP =
3143    Context.getPointerType(Context.getPointerType(Context.CharTy));
3144  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3145
3146  for (unsigned i = 0; i < nparams; ++i) {
3147    QualType AT = FTP->getArgType(i);
3148
3149    bool mismatch = true;
3150
3151    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3152      mismatch = false;
3153    else if (Expected[i] == CharPP) {
3154      // As an extension, the following forms are okay:
3155      //   char const **
3156      //   char const * const *
3157      //   char * const *
3158
3159      QualifierCollector qs;
3160      const PointerType* PT;
3161      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3162          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3163          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3164        qs.removeConst();
3165        mismatch = !qs.empty();
3166      }
3167    }
3168
3169    if (mismatch) {
3170      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3171      // TODO: suggest replacing given type with expected type
3172      FD->setInvalidDecl(true);
3173    }
3174  }
3175
3176  if (nparams == 1 && !FD->isInvalidDecl()) {
3177    Diag(FD->getLocation(), diag::warn_main_one_arg);
3178  }
3179}
3180
3181bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3182  // FIXME: Need strict checking.  In C89, we need to check for
3183  // any assignment, increment, decrement, function-calls, or
3184  // commas outside of a sizeof.  In C99, it's the same list,
3185  // except that the aforementioned are allowed in unevaluated
3186  // expressions.  Everything else falls under the
3187  // "may accept other forms of constant expressions" exception.
3188  // (We never end up here for C++, so the constant expression
3189  // rules there don't matter.)
3190  if (Init->isConstantInitializer(Context))
3191    return false;
3192  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3193    << Init->getSourceRange();
3194  return true;
3195}
3196
3197void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3198  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3199}
3200
3201/// AddInitializerToDecl - Adds the initializer Init to the
3202/// declaration dcl. If DirectInit is true, this is C++ direct
3203/// initialization rather than copy initialization.
3204void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3205  Decl *RealDecl = dcl.getAs<Decl>();
3206  // If there is no declaration, there was an error parsing it.  Just ignore
3207  // the initializer.
3208  if (RealDecl == 0)
3209    return;
3210
3211  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3212    // With declarators parsed the way they are, the parser cannot
3213    // distinguish between a normal initializer and a pure-specifier.
3214    // Thus this grotesque test.
3215    IntegerLiteral *IL;
3216    Expr *Init = static_cast<Expr *>(init.get());
3217    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3218        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3219      if (Method->isVirtualAsWritten()) {
3220        Method->setPure();
3221
3222        // A class is abstract if at least one function is pure virtual.
3223        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3224      } else if (!Method->isInvalidDecl()) {
3225        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3226          << Method->getDeclName() << Init->getSourceRange();
3227        Method->setInvalidDecl();
3228      }
3229    } else {
3230      Diag(Method->getLocation(), diag::err_member_function_initialization)
3231        << Method->getDeclName() << Init->getSourceRange();
3232      Method->setInvalidDecl();
3233    }
3234    return;
3235  }
3236
3237  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3238  if (!VDecl) {
3239    if (getLangOptions().CPlusPlus &&
3240        RealDecl->getLexicalDeclContext()->isRecord() &&
3241        isa<NamedDecl>(RealDecl))
3242      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3243        << cast<NamedDecl>(RealDecl)->getDeclName();
3244    else
3245      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3246    RealDecl->setInvalidDecl();
3247    return;
3248  }
3249
3250  if (!VDecl->getType()->isArrayType() &&
3251      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3252                          diag::err_typecheck_decl_incomplete_type)) {
3253    RealDecl->setInvalidDecl();
3254    return;
3255  }
3256
3257  const VarDecl *Def = 0;
3258  if (VDecl->getDefinition(Def)) {
3259    Diag(VDecl->getLocation(), diag::err_redefinition)
3260      << VDecl->getDeclName();
3261    Diag(Def->getLocation(), diag::note_previous_definition);
3262    VDecl->setInvalidDecl();
3263    return;
3264  }
3265
3266  // Take ownership of the expression, now that we're sure we have somewhere
3267  // to put it.
3268  Expr *Init = init.takeAs<Expr>();
3269  assert(Init && "missing initializer");
3270
3271  // Get the decls type and save a reference for later, since
3272  // CheckInitializerTypes may change it.
3273  QualType DclT = VDecl->getType(), SavT = DclT;
3274  if (VDecl->isBlockVarDecl()) {
3275    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3276      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3277      VDecl->setInvalidDecl();
3278    } else if (!VDecl->isInvalidDecl()) {
3279      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3280                                VDecl->getDeclName(), DirectInit))
3281        VDecl->setInvalidDecl();
3282
3283      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3284      // Don't check invalid declarations to avoid emitting useless diagnostics.
3285      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3286        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3287          CheckForConstantInitializer(Init, DclT);
3288      }
3289    }
3290  } else if (VDecl->isStaticDataMember() &&
3291             VDecl->getLexicalDeclContext()->isRecord()) {
3292    // This is an in-class initialization for a static data member, e.g.,
3293    //
3294    // struct S {
3295    //   static const int value = 17;
3296    // };
3297
3298    // Attach the initializer
3299    VDecl->setInit(Context, Init);
3300
3301    // C++ [class.mem]p4:
3302    //   A member-declarator can contain a constant-initializer only
3303    //   if it declares a static member (9.4) of const integral or
3304    //   const enumeration type, see 9.4.2.
3305    QualType T = VDecl->getType();
3306    if (!T->isDependentType() &&
3307        (!Context.getCanonicalType(T).isConstQualified() ||
3308         !T->isIntegralType())) {
3309      Diag(VDecl->getLocation(), diag::err_member_initialization)
3310        << VDecl->getDeclName() << Init->getSourceRange();
3311      VDecl->setInvalidDecl();
3312    } else {
3313      // C++ [class.static.data]p4:
3314      //   If a static data member is of const integral or const
3315      //   enumeration type, its declaration in the class definition
3316      //   can specify a constant-initializer which shall be an
3317      //   integral constant expression (5.19).
3318      if (!Init->isTypeDependent() &&
3319          !Init->getType()->isIntegralType()) {
3320        // We have a non-dependent, non-integral or enumeration type.
3321        Diag(Init->getSourceRange().getBegin(),
3322             diag::err_in_class_initializer_non_integral_type)
3323          << Init->getType() << Init->getSourceRange();
3324        VDecl->setInvalidDecl();
3325      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3326        // Check whether the expression is a constant expression.
3327        llvm::APSInt Value;
3328        SourceLocation Loc;
3329        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3330          Diag(Loc, diag::err_in_class_initializer_non_constant)
3331            << Init->getSourceRange();
3332          VDecl->setInvalidDecl();
3333        } else if (!VDecl->getType()->isDependentType())
3334          ImpCastExprToType(Init, VDecl->getType());
3335      }
3336    }
3337  } else if (VDecl->isFileVarDecl()) {
3338    if (VDecl->getStorageClass() == VarDecl::Extern)
3339      Diag(VDecl->getLocation(), diag::warn_extern_init);
3340    if (!VDecl->isInvalidDecl())
3341      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3342                                VDecl->getDeclName(), DirectInit))
3343        VDecl->setInvalidDecl();
3344
3345    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3346    // Don't check invalid declarations to avoid emitting useless diagnostics.
3347    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3348      // C99 6.7.8p4. All file scoped initializers need to be constant.
3349      CheckForConstantInitializer(Init, DclT);
3350    }
3351  }
3352  // If the type changed, it means we had an incomplete type that was
3353  // completed by the initializer. For example:
3354  //   int ary[] = { 1, 3, 5 };
3355  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3356  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3357    VDecl->setType(DclT);
3358    Init->setType(DclT);
3359  }
3360
3361  Init = MaybeCreateCXXExprWithTemporaries(Init,
3362                                           /*ShouldDestroyTemporaries=*/true);
3363  // Attach the initializer to the decl.
3364  VDecl->setInit(Context, Init);
3365
3366  // If the previous declaration of VDecl was a tentative definition,
3367  // remove it from the set of tentative definitions.
3368  if (VDecl->getPreviousDeclaration() &&
3369      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3370    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3371    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3372  }
3373
3374  return;
3375}
3376
3377void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3378                                  bool TypeContainsUndeducedAuto) {
3379  Decl *RealDecl = dcl.getAs<Decl>();
3380
3381  // If there is no declaration, there was an error parsing it. Just ignore it.
3382  if (RealDecl == 0)
3383    return;
3384
3385  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3386    QualType Type = Var->getType();
3387
3388    // Record tentative definitions.
3389    if (Var->isTentativeDefinition(Context)) {
3390      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3391        InsertPair =
3392           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3393
3394      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3395      // want the second one in the map.
3396      InsertPair.first->second = Var;
3397
3398      // However, for the list, we don't care about the order, just make sure
3399      // that there are no dupes for a given declaration name.
3400      if (InsertPair.second)
3401        TentativeDefinitionList.push_back(Var->getDeclName());
3402    }
3403
3404    // C++ [dcl.init.ref]p3:
3405    //   The initializer can be omitted for a reference only in a
3406    //   parameter declaration (8.3.5), in the declaration of a
3407    //   function return type, in the declaration of a class member
3408    //   within its class declaration (9.2), and where the extern
3409    //   specifier is explicitly used.
3410    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3411      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3412        << Var->getDeclName()
3413        << SourceRange(Var->getLocation(), Var->getLocation());
3414      Var->setInvalidDecl();
3415      return;
3416    }
3417
3418    // C++0x [dcl.spec.auto]p3
3419    if (TypeContainsUndeducedAuto) {
3420      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3421        << Var->getDeclName() << Type;
3422      Var->setInvalidDecl();
3423      return;
3424    }
3425
3426    // C++ [temp.expl.spec]p15:
3427    //   An explicit specialization of a static data member of a template is a
3428    //   definition if the declaration includes an initializer; otherwise, it
3429    //   is a declaration.
3430    if (Var->isStaticDataMember() &&
3431        Var->getInstantiatedFromStaticDataMember() &&
3432        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3433      return;
3434
3435    // C++ [dcl.init]p9:
3436    //   If no initializer is specified for an object, and the object
3437    //   is of (possibly cv-qualified) non-POD class type (or array
3438    //   thereof), the object shall be default-initialized; if the
3439    //   object is of const-qualified type, the underlying class type
3440    //   shall have a user-declared default constructor.
3441    //
3442    // FIXME: Diagnose the "user-declared default constructor" bit.
3443    if (getLangOptions().CPlusPlus) {
3444      QualType InitType = Type;
3445      if (const ArrayType *Array = Context.getAsArrayType(Type))
3446        InitType = Array->getElementType();
3447      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3448          InitType->isRecordType() && !InitType->isDependentType()) {
3449        if (!RequireCompleteType(Var->getLocation(), InitType,
3450                                 diag::err_invalid_incomplete_type_use)) {
3451          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3452
3453          CXXConstructorDecl *Constructor
3454            = PerformInitializationByConstructor(InitType,
3455                                                 MultiExprArg(*this, 0, 0),
3456                                                 Var->getLocation(),
3457                                               SourceRange(Var->getLocation(),
3458                                                           Var->getLocation()),
3459                                                 Var->getDeclName(),
3460                                                 IK_Default,
3461                                                 ConstructorArgs);
3462
3463          // FIXME: Location info for the variable initialization?
3464          if (!Constructor)
3465            Var->setInvalidDecl();
3466          else {
3467            // FIXME: Cope with initialization of arrays
3468            if (!Constructor->isTrivial() &&
3469                InitializeVarWithConstructor(Var, Constructor, InitType,
3470                                             move_arg(ConstructorArgs)))
3471              Var->setInvalidDecl();
3472
3473            FinalizeVarWithDestructor(Var, InitType);
3474          }
3475        } else {
3476          Var->setInvalidDecl();
3477        }
3478      }
3479    }
3480
3481#if 0
3482    // FIXME: Temporarily disabled because we are not properly parsing
3483    // linkage specifications on declarations, e.g.,
3484    //
3485    //   extern "C" const CGPoint CGPointerZero;
3486    //
3487    // C++ [dcl.init]p9:
3488    //
3489    //     If no initializer is specified for an object, and the
3490    //     object is of (possibly cv-qualified) non-POD class type (or
3491    //     array thereof), the object shall be default-initialized; if
3492    //     the object is of const-qualified type, the underlying class
3493    //     type shall have a user-declared default
3494    //     constructor. Otherwise, if no initializer is specified for
3495    //     an object, the object and its subobjects, if any, have an
3496    //     indeterminate initial value; if the object or any of its
3497    //     subobjects are of const-qualified type, the program is
3498    //     ill-formed.
3499    //
3500    // This isn't technically an error in C, so we don't diagnose it.
3501    //
3502    // FIXME: Actually perform the POD/user-defined default
3503    // constructor check.
3504    if (getLangOptions().CPlusPlus &&
3505        Context.getCanonicalType(Type).isConstQualified() &&
3506        !Var->hasExternalStorage())
3507      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3508        << Var->getName()
3509        << SourceRange(Var->getLocation(), Var->getLocation());
3510#endif
3511  }
3512}
3513
3514Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3515                                                   DeclPtrTy *Group,
3516                                                   unsigned NumDecls) {
3517  llvm::SmallVector<Decl*, 8> Decls;
3518
3519  if (DS.isTypeSpecOwned())
3520    Decls.push_back((Decl*)DS.getTypeRep());
3521
3522  for (unsigned i = 0; i != NumDecls; ++i)
3523    if (Decl *D = Group[i].getAs<Decl>())
3524      Decls.push_back(D);
3525
3526  // Perform semantic analysis that depends on having fully processed both
3527  // the declarator and initializer.
3528  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3529    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3530    if (!IDecl)
3531      continue;
3532    QualType T = IDecl->getType();
3533
3534    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3535    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3536    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3537      if (!IDecl->isInvalidDecl() &&
3538          RequireCompleteType(IDecl->getLocation(), T,
3539                              diag::err_typecheck_decl_incomplete_type))
3540        IDecl->setInvalidDecl();
3541    }
3542    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3543    // object that has file scope without an initializer, and without a
3544    // storage-class specifier or with the storage-class specifier "static",
3545    // constitutes a tentative definition. Note: A tentative definition with
3546    // external linkage is valid (C99 6.2.2p5).
3547    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3548      if (const IncompleteArrayType *ArrayT
3549          = Context.getAsIncompleteArrayType(T)) {
3550        if (RequireCompleteType(IDecl->getLocation(),
3551                                ArrayT->getElementType(),
3552                                diag::err_illegal_decl_array_incomplete_type))
3553          IDecl->setInvalidDecl();
3554      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3555        // C99 6.9.2p3: If the declaration of an identifier for an object is
3556        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3557        // declared type shall not be an incomplete type.
3558        // NOTE: code such as the following
3559        //     static struct s;
3560        //     struct s { int a; };
3561        // is accepted by gcc. Hence here we issue a warning instead of
3562        // an error and we do not invalidate the static declaration.
3563        // NOTE: to avoid multiple warnings, only check the first declaration.
3564        if (IDecl->getPreviousDeclaration() == 0)
3565          RequireCompleteType(IDecl->getLocation(), T,
3566                              diag::ext_typecheck_decl_incomplete_type);
3567      }
3568    }
3569  }
3570  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3571                                                   Decls.data(), Decls.size()));
3572}
3573
3574
3575/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3576/// to introduce parameters into function prototype scope.
3577Sema::DeclPtrTy
3578Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3579  const DeclSpec &DS = D.getDeclSpec();
3580
3581  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3582  VarDecl::StorageClass StorageClass = VarDecl::None;
3583  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3584    StorageClass = VarDecl::Register;
3585  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3586    Diag(DS.getStorageClassSpecLoc(),
3587         diag::err_invalid_storage_class_in_func_decl);
3588    D.getMutableDeclSpec().ClearStorageClassSpecs();
3589  }
3590
3591  if (D.getDeclSpec().isThreadSpecified())
3592    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3593
3594  DiagnoseFunctionSpecifiers(D);
3595
3596  // Check that there are no default arguments inside the type of this
3597  // parameter (C++ only).
3598  if (getLangOptions().CPlusPlus)
3599    CheckExtraCXXDefaultArguments(D);
3600
3601  DeclaratorInfo *DInfo = 0;
3602  TagDecl *OwnedDecl = 0;
3603  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3604                                               &OwnedDecl);
3605
3606  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3607    // C++ [dcl.fct]p6:
3608    //   Types shall not be defined in return or parameter types.
3609    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3610      << Context.getTypeDeclType(OwnedDecl);
3611  }
3612
3613  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3614  // Can this happen for params?  We already checked that they don't conflict
3615  // among each other.  Here they can only shadow globals, which is ok.
3616  IdentifierInfo *II = D.getIdentifier();
3617  if (II) {
3618    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3619      if (PrevDecl->isTemplateParameter()) {
3620        // Maybe we will complain about the shadowed template parameter.
3621        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3622        // Just pretend that we didn't see the previous declaration.
3623        PrevDecl = 0;
3624      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3625        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3626
3627        // Recover by removing the name
3628        II = 0;
3629        D.SetIdentifier(0, D.getIdentifierLoc());
3630      }
3631    }
3632  }
3633
3634  // Parameters can not be abstract class types.
3635  // For record types, this is done by the AbstractClassUsageDiagnoser once
3636  // the class has been completely parsed.
3637  if (!CurContext->isRecord() &&
3638      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3639                             diag::err_abstract_type_in_decl,
3640                             AbstractParamType))
3641    D.setInvalidType(true);
3642
3643  QualType T = adjustParameterType(parmDeclType);
3644
3645  ParmVarDecl *New;
3646  if (T == parmDeclType) // parameter type did not need adjustment
3647    New = ParmVarDecl::Create(Context, CurContext,
3648                              D.getIdentifierLoc(), II,
3649                              parmDeclType, DInfo, StorageClass,
3650                              0);
3651  else // keep track of both the adjusted and unadjusted types
3652    New = OriginalParmVarDecl::Create(Context, CurContext,
3653                                      D.getIdentifierLoc(), II, T, DInfo,
3654                                      parmDeclType, StorageClass, 0);
3655
3656  if (D.isInvalidType())
3657    New->setInvalidDecl();
3658
3659  // Parameter declarators cannot be interface types. All ObjC objects are
3660  // passed by reference.
3661  if (T->isObjCInterfaceType()) {
3662    Diag(D.getIdentifierLoc(),
3663         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3664    New->setInvalidDecl();
3665  }
3666
3667  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3668  if (D.getCXXScopeSpec().isSet()) {
3669    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3670      << D.getCXXScopeSpec().getRange();
3671    New->setInvalidDecl();
3672  }
3673
3674  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3675  // duration shall not be qualified by an address-space qualifier."
3676  // Since all parameters have automatic store duration, they can not have
3677  // an address space.
3678  if (T.getAddressSpace() != 0) {
3679    Diag(D.getIdentifierLoc(),
3680         diag::err_arg_with_address_space);
3681    New->setInvalidDecl();
3682  }
3683
3684
3685  // Add the parameter declaration into this scope.
3686  S->AddDecl(DeclPtrTy::make(New));
3687  if (II)
3688    IdResolver.AddDecl(New);
3689
3690  ProcessDeclAttributes(S, New, D);
3691
3692  if (New->hasAttr<BlocksAttr>()) {
3693    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3694  }
3695  return DeclPtrTy::make(New);
3696}
3697
3698void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3699                                           SourceLocation LocAfterDecls) {
3700  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3701         "Not a function declarator!");
3702  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3703
3704  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3705  // for a K&R function.
3706  if (!FTI.hasPrototype) {
3707    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3708      --i;
3709      if (FTI.ArgInfo[i].Param == 0) {
3710        std::string Code = "  int ";
3711        Code += FTI.ArgInfo[i].Ident->getName();
3712        Code += ";\n";
3713        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3714          << FTI.ArgInfo[i].Ident
3715          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3716
3717        // Implicitly declare the argument as type 'int' for lack of a better
3718        // type.
3719        DeclSpec DS;
3720        const char* PrevSpec; // unused
3721        unsigned DiagID; // unused
3722        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3723                           PrevSpec, DiagID);
3724        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3725        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3726        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3727      }
3728    }
3729  }
3730}
3731
3732Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3733                                              Declarator &D) {
3734  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3735  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3736         "Not a function declarator!");
3737  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3738
3739  if (FTI.hasPrototype) {
3740    // FIXME: Diagnose arguments without names in C.
3741  }
3742
3743  Scope *ParentScope = FnBodyScope->getParent();
3744
3745  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3746                                  MultiTemplateParamsArg(*this),
3747                                  /*IsFunctionDefinition=*/true);
3748  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3749}
3750
3751Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3752  if (!D)
3753    return D;
3754  FunctionDecl *FD = 0;
3755
3756  if (FunctionTemplateDecl *FunTmpl
3757        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3758    FD = FunTmpl->getTemplatedDecl();
3759  else
3760    FD = cast<FunctionDecl>(D.getAs<Decl>());
3761
3762  CurFunctionNeedsScopeChecking = false;
3763
3764  // See if this is a redefinition.
3765  const FunctionDecl *Definition;
3766  if (FD->getBody(Definition)) {
3767    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3768    Diag(Definition->getLocation(), diag::note_previous_definition);
3769  }
3770
3771  // Builtin functions cannot be defined.
3772  if (unsigned BuiltinID = FD->getBuiltinID()) {
3773    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3774      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3775      FD->setInvalidDecl();
3776    }
3777  }
3778
3779  // The return type of a function definition must be complete
3780  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3781  QualType ResultType = FD->getResultType();
3782  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3783      !FD->isInvalidDecl() &&
3784      RequireCompleteType(FD->getLocation(), ResultType,
3785                          diag::err_func_def_incomplete_result))
3786    FD->setInvalidDecl();
3787
3788  // GNU warning -Wmissing-prototypes:
3789  //   Warn if a global function is defined without a previous
3790  //   prototype declaration. This warning is issued even if the
3791  //   definition itself provides a prototype. The aim is to detect
3792  //   global functions that fail to be declared in header files.
3793  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3794      !FD->isMain()) {
3795    bool MissingPrototype = true;
3796    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3797         Prev; Prev = Prev->getPreviousDeclaration()) {
3798      // Ignore any declarations that occur in function or method
3799      // scope, because they aren't visible from the header.
3800      if (Prev->getDeclContext()->isFunctionOrMethod())
3801        continue;
3802
3803      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3804      break;
3805    }
3806
3807    if (MissingPrototype)
3808      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3809  }
3810
3811  if (FnBodyScope)
3812    PushDeclContext(FnBodyScope, FD);
3813
3814  // Check the validity of our function parameters
3815  CheckParmsForFunctionDef(FD);
3816
3817  // Introduce our parameters into the function scope
3818  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3819    ParmVarDecl *Param = FD->getParamDecl(p);
3820    Param->setOwningFunction(FD);
3821
3822    // If this has an identifier, add it to the scope stack.
3823    if (Param->getIdentifier() && FnBodyScope)
3824      PushOnScopeChains(Param, FnBodyScope);
3825  }
3826
3827  // Checking attributes of current function definition
3828  // dllimport attribute.
3829  if (FD->getAttr<DLLImportAttr>() &&
3830      (!FD->getAttr<DLLExportAttr>())) {
3831    // dllimport attribute cannot be applied to definition.
3832    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3833      Diag(FD->getLocation(),
3834           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3835        << "dllimport";
3836      FD->setInvalidDecl();
3837      return DeclPtrTy::make(FD);
3838    } else {
3839      // If a symbol previously declared dllimport is later defined, the
3840      // attribute is ignored in subsequent references, and a warning is
3841      // emitted.
3842      Diag(FD->getLocation(),
3843           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3844        << FD->getNameAsCString() << "dllimport";
3845    }
3846  }
3847  return DeclPtrTy::make(FD);
3848}
3849
3850Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3851  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3852}
3853
3854Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3855                                              bool IsInstantiation) {
3856  Decl *dcl = D.getAs<Decl>();
3857  Stmt *Body = BodyArg.takeAs<Stmt>();
3858
3859  FunctionDecl *FD = 0;
3860  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3861  if (FunTmpl)
3862    FD = FunTmpl->getTemplatedDecl();
3863  else
3864    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3865
3866  if (FD) {
3867    FD->setBody(Body);
3868    if (FD->isMain())
3869      // C and C++ allow for main to automagically return 0.
3870      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3871      FD->setHasImplicitReturnZero(true);
3872    else
3873      CheckFallThroughForFunctionDef(FD, Body);
3874
3875    if (!FD->isInvalidDecl())
3876      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3877
3878    // C++ [basic.def.odr]p2:
3879    //   [...] A virtual member function is used if it is not pure. [...]
3880    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3881      if (Method->isVirtual() && !Method->isPure())
3882        MarkDeclarationReferenced(Method->getLocation(), Method);
3883
3884    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3885  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3886    assert(MD == getCurMethodDecl() && "Method parsing confused");
3887    MD->setBody(Body);
3888    CheckFallThroughForFunctionDef(MD, Body);
3889    MD->setEndLoc(Body->getLocEnd());
3890
3891    if (!MD->isInvalidDecl())
3892      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3893  } else {
3894    Body->Destroy(Context);
3895    return DeclPtrTy();
3896  }
3897  if (!IsInstantiation)
3898    PopDeclContext();
3899
3900  // Verify and clean out per-function state.
3901
3902  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3903
3904  // Check goto/label use.
3905  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3906       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3907    LabelStmt *L = I->second;
3908
3909    // Verify that we have no forward references left.  If so, there was a goto
3910    // or address of a label taken, but no definition of it.  Label fwd
3911    // definitions are indicated with a null substmt.
3912    if (L->getSubStmt() != 0)
3913      continue;
3914
3915    // Emit error.
3916    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3917
3918    // At this point, we have gotos that use the bogus label.  Stitch it into
3919    // the function body so that they aren't leaked and that the AST is well
3920    // formed.
3921    if (Body == 0) {
3922      // The whole function wasn't parsed correctly, just delete this.
3923      L->Destroy(Context);
3924      continue;
3925    }
3926
3927    // Otherwise, the body is valid: we want to stitch the label decl into the
3928    // function somewhere so that it is properly owned and so that the goto
3929    // has a valid target.  Do this by creating a new compound stmt with the
3930    // label in it.
3931
3932    // Give the label a sub-statement.
3933    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3934
3935    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3936                               cast<CXXTryStmt>(Body)->getTryBlock() :
3937                               cast<CompoundStmt>(Body);
3938    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3939    Elements.push_back(L);
3940    Compound->setStmts(Context, &Elements[0], Elements.size());
3941  }
3942  FunctionLabelMap.clear();
3943
3944  if (!Body) return D;
3945
3946  // Verify that that gotos and switch cases don't jump into scopes illegally.
3947  if (CurFunctionNeedsScopeChecking)
3948    DiagnoseInvalidJumps(Body);
3949
3950  // C++ constructors that have function-try-blocks can't have return
3951  // statements in the handlers of that block. (C++ [except.handle]p14)
3952  // Verify this.
3953  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3954    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3955
3956  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3957    computeBaseOrMembersToDestroy(Destructor);
3958  return D;
3959}
3960
3961/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3962/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3963NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3964                                          IdentifierInfo &II, Scope *S) {
3965  // Before we produce a declaration for an implicitly defined
3966  // function, see whether there was a locally-scoped declaration of
3967  // this name as a function or variable. If so, use that
3968  // (non-visible) declaration, and complain about it.
3969  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3970    = LocallyScopedExternalDecls.find(&II);
3971  if (Pos != LocallyScopedExternalDecls.end()) {
3972    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3973    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3974    return Pos->second;
3975  }
3976
3977  // Extension in C99.  Legal in C90, but warn about it.
3978  static const unsigned int BuiltinLen = strlen("__builtin_");
3979  if (II.getLength() > BuiltinLen &&
3980      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3981    Diag(Loc, diag::warn_builtin_unknown) << &II;
3982  else if (getLangOptions().C99)
3983    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3984  else
3985    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3986
3987  // Set a Declarator for the implicit definition: int foo();
3988  const char *Dummy;
3989  DeclSpec DS;
3990  unsigned DiagID;
3991  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3992  Error = Error; // Silence warning.
3993  assert(!Error && "Error setting up implicit decl!");
3994  Declarator D(DS, Declarator::BlockContext);
3995  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3996                                             0, 0, false, SourceLocation(),
3997                                             false, 0,0,0, Loc, Loc, D),
3998                SourceLocation());
3999  D.SetIdentifier(&II, Loc);
4000
4001  // Insert this function into translation-unit scope.
4002
4003  DeclContext *PrevDC = CurContext;
4004  CurContext = Context.getTranslationUnitDecl();
4005
4006  FunctionDecl *FD =
4007 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4008  FD->setImplicit();
4009
4010  CurContext = PrevDC;
4011
4012  AddKnownFunctionAttributes(FD);
4013
4014  return FD;
4015}
4016
4017/// \brief Adds any function attributes that we know a priori based on
4018/// the declaration of this function.
4019///
4020/// These attributes can apply both to implicitly-declared builtins
4021/// (like __builtin___printf_chk) or to library-declared functions
4022/// like NSLog or printf.
4023void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4024  if (FD->isInvalidDecl())
4025    return;
4026
4027  // If this is a built-in function, map its builtin attributes to
4028  // actual attributes.
4029  if (unsigned BuiltinID = FD->getBuiltinID()) {
4030    // Handle printf-formatting attributes.
4031    unsigned FormatIdx;
4032    bool HasVAListArg;
4033    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4034      if (!FD->getAttr<FormatAttr>())
4035        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4036                                             HasVAListArg ? 0 : FormatIdx + 2));
4037    }
4038
4039    // Mark const if we don't care about errno and that is the only
4040    // thing preventing the function from being const. This allows
4041    // IRgen to use LLVM intrinsics for such functions.
4042    if (!getLangOptions().MathErrno &&
4043        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4044      if (!FD->getAttr<ConstAttr>())
4045        FD->addAttr(::new (Context) ConstAttr());
4046    }
4047
4048    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4049      FD->addAttr(::new (Context) NoReturnAttr());
4050  }
4051
4052  IdentifierInfo *Name = FD->getIdentifier();
4053  if (!Name)
4054    return;
4055  if ((!getLangOptions().CPlusPlus &&
4056       FD->getDeclContext()->isTranslationUnit()) ||
4057      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4058       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4059       LinkageSpecDecl::lang_c)) {
4060    // Okay: this could be a libc/libm/Objective-C function we know
4061    // about.
4062  } else
4063    return;
4064
4065  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4066    // FIXME: NSLog and NSLogv should be target specific
4067    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4068      // FIXME: We known better than our headers.
4069      const_cast<FormatAttr *>(Format)->setType("printf");
4070    } else
4071      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4072                                             Name->isStr("NSLogv") ? 0 : 2));
4073  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4074    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4075    // target-specific builtins, perhaps?
4076    if (!FD->getAttr<FormatAttr>())
4077      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4078                                             Name->isStr("vasprintf") ? 0 : 3));
4079  }
4080}
4081
4082TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4083  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4084  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4085
4086  // Scope manipulation handled by caller.
4087  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4088                                           D.getIdentifierLoc(),
4089                                           D.getIdentifier(),
4090                                           T);
4091
4092  if (const TagType *TT = T->getAs<TagType>()) {
4093    TagDecl *TD = TT->getDecl();
4094
4095    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4096    // keep track of the TypedefDecl.
4097    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4098      TD->setTypedefForAnonDecl(NewTD);
4099  }
4100
4101  if (D.isInvalidType())
4102    NewTD->setInvalidDecl();
4103  return NewTD;
4104}
4105
4106
4107/// \brief Determine whether a tag with a given kind is acceptable
4108/// as a redeclaration of the given tag declaration.
4109///
4110/// \returns true if the new tag kind is acceptable, false otherwise.
4111bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4112                                        TagDecl::TagKind NewTag,
4113                                        SourceLocation NewTagLoc,
4114                                        const IdentifierInfo &Name) {
4115  // C++ [dcl.type.elab]p3:
4116  //   The class-key or enum keyword present in the
4117  //   elaborated-type-specifier shall agree in kind with the
4118  //   declaration to which the name in theelaborated-type-specifier
4119  //   refers. This rule also applies to the form of
4120  //   elaborated-type-specifier that declares a class-name or
4121  //   friend class since it can be construed as referring to the
4122  //   definition of the class. Thus, in any
4123  //   elaborated-type-specifier, the enum keyword shall be used to
4124  //   refer to an enumeration (7.2), the union class-keyshall be
4125  //   used to refer to a union (clause 9), and either the class or
4126  //   struct class-key shall be used to refer to a class (clause 9)
4127  //   declared using the class or struct class-key.
4128  TagDecl::TagKind OldTag = Previous->getTagKind();
4129  if (OldTag == NewTag)
4130    return true;
4131
4132  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4133      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4134    // Warn about the struct/class tag mismatch.
4135    bool isTemplate = false;
4136    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4137      isTemplate = Record->getDescribedClassTemplate();
4138
4139    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4140      << (NewTag == TagDecl::TK_class)
4141      << isTemplate << &Name
4142      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4143                              OldTag == TagDecl::TK_class? "class" : "struct");
4144    Diag(Previous->getLocation(), diag::note_previous_use);
4145    return true;
4146  }
4147  return false;
4148}
4149
4150/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4151/// former case, Name will be non-null.  In the later case, Name will be null.
4152/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4153/// reference/declaration/definition of a tag.
4154Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4155                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4156                               IdentifierInfo *Name, SourceLocation NameLoc,
4157                               AttributeList *Attr, AccessSpecifier AS,
4158                               MultiTemplateParamsArg TemplateParameterLists,
4159                               bool &OwnedDecl, bool &IsDependent) {
4160  // If this is not a definition, it must have a name.
4161  assert((Name != 0 || TUK == TUK_Definition) &&
4162         "Nameless record must be a definition!");
4163
4164  OwnedDecl = false;
4165  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4166
4167  // FIXME: Check explicit specializations more carefully.
4168  bool isExplicitSpecialization = false;
4169  if (TUK != TUK_Reference) {
4170    if (TemplateParameterList *TemplateParams
4171          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4172                        (TemplateParameterList**)TemplateParameterLists.get(),
4173                                              TemplateParameterLists.size(),
4174                                                    isExplicitSpecialization)) {
4175      if (TemplateParams->size() > 0) {
4176        // This is a declaration or definition of a class template (which may
4177        // be a member of another template).
4178        OwnedDecl = false;
4179        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4180                                               SS, Name, NameLoc, Attr,
4181                                               TemplateParams,
4182                                               AS);
4183        TemplateParameterLists.release();
4184        return Result.get();
4185      } else {
4186        // The "template<>" header is extraneous.
4187        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4188          << ElaboratedType::getNameForTagKind(Kind) << Name;
4189        isExplicitSpecialization = true;
4190      }
4191    }
4192
4193    TemplateParameterLists.release();
4194  }
4195
4196  DeclContext *SearchDC = CurContext;
4197  DeclContext *DC = CurContext;
4198  NamedDecl *PrevDecl = 0;
4199  bool isStdBadAlloc = false;
4200  bool Invalid = false;
4201
4202  bool RedeclarationOnly = (TUK != TUK_Reference);
4203
4204  if (Name && SS.isNotEmpty()) {
4205    // We have a nested-name tag ('struct foo::bar').
4206
4207    // Check for invalid 'foo::'.
4208    if (SS.isInvalid()) {
4209      Name = 0;
4210      goto CreateNewDecl;
4211    }
4212
4213    // If this is a friend or a reference to a class in a dependent
4214    // context, don't try to make a decl for it.
4215    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4216      DC = computeDeclContext(SS, false);
4217      if (!DC) {
4218        IsDependent = true;
4219        return DeclPtrTy();
4220      }
4221    }
4222
4223    if (RequireCompleteDeclContext(SS))
4224      return DeclPtrTy::make((Decl *)0);
4225
4226    DC = computeDeclContext(SS, true);
4227    SearchDC = DC;
4228    // Look-up name inside 'foo::'.
4229    LookupResult R;
4230    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4231
4232    if (R.isAmbiguous()) {
4233      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4234      return DeclPtrTy();
4235    }
4236
4237    if (R.getKind() == LookupResult::Found)
4238      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4239
4240    // A tag 'foo::bar' must already exist.
4241    if (!PrevDecl) {
4242      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4243      Name = 0;
4244      Invalid = true;
4245      goto CreateNewDecl;
4246    }
4247  } else if (Name) {
4248    // If this is a named struct, check to see if there was a previous forward
4249    // declaration or definition.
4250    // FIXME: We're looking into outer scopes here, even when we
4251    // shouldn't be. Doing so can result in ambiguities that we
4252    // shouldn't be diagnosing.
4253    LookupResult R;
4254    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4255    if (R.isAmbiguous()) {
4256      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4257      // FIXME: This is not best way to recover from case like:
4258      //
4259      // struct S s;
4260      //
4261      // causes needless "incomplete type" error later.
4262      Name = 0;
4263      PrevDecl = 0;
4264      Invalid = true;
4265    } else
4266      PrevDecl = R.getAsSingleDecl(Context);
4267
4268    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4269      // FIXME: This makes sure that we ignore the contexts associated
4270      // with C structs, unions, and enums when looking for a matching
4271      // tag declaration or definition. See the similar lookup tweak
4272      // in Sema::LookupName; is there a better way to deal with this?
4273      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4274        SearchDC = SearchDC->getParent();
4275    }
4276  }
4277
4278  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4279    // Maybe we will complain about the shadowed template parameter.
4280    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4281    // Just pretend that we didn't see the previous declaration.
4282    PrevDecl = 0;
4283  }
4284
4285  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4286      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4287    // This is a declaration of or a reference to "std::bad_alloc".
4288    isStdBadAlloc = true;
4289
4290    if (!PrevDecl && StdBadAlloc) {
4291      // std::bad_alloc has been implicitly declared (but made invisible to
4292      // name lookup). Fill in this implicit declaration as the previous
4293      // declaration, so that the declarations get chained appropriately.
4294      PrevDecl = StdBadAlloc;
4295    }
4296  }
4297
4298  if (PrevDecl) {
4299    // Check whether the previous declaration is usable.
4300    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4301
4302    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4303      // If this is a use of a previous tag, or if the tag is already declared
4304      // in the same scope (so that the definition/declaration completes or
4305      // rementions the tag), reuse the decl.
4306      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4307          isDeclInScope(PrevDecl, SearchDC, S)) {
4308        // Make sure that this wasn't declared as an enum and now used as a
4309        // struct or something similar.
4310        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4311          bool SafeToContinue
4312            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4313               Kind != TagDecl::TK_enum);
4314          if (SafeToContinue)
4315            Diag(KWLoc, diag::err_use_with_wrong_tag)
4316              << Name
4317              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4318                                                  PrevTagDecl->getKindName());
4319          else
4320            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4321          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4322
4323          if (SafeToContinue)
4324            Kind = PrevTagDecl->getTagKind();
4325          else {
4326            // Recover by making this an anonymous redefinition.
4327            Name = 0;
4328            PrevDecl = 0;
4329            Invalid = true;
4330          }
4331        }
4332
4333        if (!Invalid) {
4334          // If this is a use, just return the declaration we found.
4335
4336          // FIXME: In the future, return a variant or some other clue
4337          // for the consumer of this Decl to know it doesn't own it.
4338          // For our current ASTs this shouldn't be a problem, but will
4339          // need to be changed with DeclGroups.
4340          if (TUK == TUK_Reference || TUK == TUK_Friend)
4341            return DeclPtrTy::make(PrevDecl);
4342
4343          // Diagnose attempts to redefine a tag.
4344          if (TUK == TUK_Definition) {
4345            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4346              // If we're defining a specialization and the previous definition
4347              // is from an implicit instantiation, don't emit an error
4348              // here; we'll catch this in the general case below.
4349              if (!isExplicitSpecialization ||
4350                  !isa<CXXRecordDecl>(Def) ||
4351                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4352                                               == TSK_ExplicitSpecialization) {
4353                Diag(NameLoc, diag::err_redefinition) << Name;
4354                Diag(Def->getLocation(), diag::note_previous_definition);
4355                // If this is a redefinition, recover by making this
4356                // struct be anonymous, which will make any later
4357                // references get the previous definition.
4358                Name = 0;
4359                PrevDecl = 0;
4360                Invalid = true;
4361              }
4362            } else {
4363              // If the type is currently being defined, complain
4364              // about a nested redefinition.
4365              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4366              if (Tag->isBeingDefined()) {
4367                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4368                Diag(PrevTagDecl->getLocation(),
4369                     diag::note_previous_definition);
4370                Name = 0;
4371                PrevDecl = 0;
4372                Invalid = true;
4373              }
4374            }
4375
4376            // Okay, this is definition of a previously declared or referenced
4377            // tag PrevDecl. We're going to create a new Decl for it.
4378          }
4379        }
4380        // If we get here we have (another) forward declaration or we
4381        // have a definition.  Just create a new decl.
4382
4383      } else {
4384        // If we get here, this is a definition of a new tag type in a nested
4385        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4386        // new decl/type.  We set PrevDecl to NULL so that the entities
4387        // have distinct types.
4388        PrevDecl = 0;
4389      }
4390      // If we get here, we're going to create a new Decl. If PrevDecl
4391      // is non-NULL, it's a definition of the tag declared by
4392      // PrevDecl. If it's NULL, we have a new definition.
4393    } else {
4394      // PrevDecl is a namespace, template, or anything else
4395      // that lives in the IDNS_Tag identifier namespace.
4396      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4397        // The tag name clashes with a namespace name, issue an error and
4398        // recover by making this tag be anonymous.
4399        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4400        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4401        Name = 0;
4402        PrevDecl = 0;
4403        Invalid = true;
4404      } else {
4405        // The existing declaration isn't relevant to us; we're in a
4406        // new scope, so clear out the previous declaration.
4407        PrevDecl = 0;
4408      }
4409    }
4410  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4411             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4412    // C++ [basic.scope.pdecl]p5:
4413    //   -- for an elaborated-type-specifier of the form
4414    //
4415    //          class-key identifier
4416    //
4417    //      if the elaborated-type-specifier is used in the
4418    //      decl-specifier-seq or parameter-declaration-clause of a
4419    //      function defined in namespace scope, the identifier is
4420    //      declared as a class-name in the namespace that contains
4421    //      the declaration; otherwise, except as a friend
4422    //      declaration, the identifier is declared in the smallest
4423    //      non-class, non-function-prototype scope that contains the
4424    //      declaration.
4425    //
4426    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4427    // C structs and unions.
4428    //
4429    // GNU C also supports this behavior as part of its incomplete
4430    // enum types extension, while GNU C++ does not.
4431    //
4432    // Find the context where we'll be declaring the tag.
4433    // FIXME: We would like to maintain the current DeclContext as the
4434    // lexical context,
4435    while (SearchDC->isRecord())
4436      SearchDC = SearchDC->getParent();
4437
4438    // Find the scope where we'll be declaring the tag.
4439    while (S->isClassScope() ||
4440           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4441           ((S->getFlags() & Scope::DeclScope) == 0) ||
4442           (S->getEntity() &&
4443            ((DeclContext *)S->getEntity())->isTransparentContext()))
4444      S = S->getParent();
4445
4446  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4447    // C++ [namespace.memdef]p3:
4448    //   If a friend declaration in a non-local class first declares a
4449    //   class or function, the friend class or function is a member of
4450    //   the innermost enclosing namespace.
4451    while (!SearchDC->isFileContext())
4452      SearchDC = SearchDC->getParent();
4453
4454    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4455    while (S->getEntity() != SearchDC)
4456      S = S->getParent();
4457  }
4458
4459CreateNewDecl:
4460
4461  // If there is an identifier, use the location of the identifier as the
4462  // location of the decl, otherwise use the location of the struct/union
4463  // keyword.
4464  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4465
4466  // Otherwise, create a new declaration. If there is a previous
4467  // declaration of the same entity, the two will be linked via
4468  // PrevDecl.
4469  TagDecl *New;
4470
4471  if (Kind == TagDecl::TK_enum) {
4472    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4473    // enum X { A, B, C } D;    D should chain to X.
4474    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4475                           cast_or_null<EnumDecl>(PrevDecl));
4476    // If this is an undefined enum, warn.
4477    if (TUK != TUK_Definition && !Invalid)  {
4478      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4479                                              : diag::ext_forward_ref_enum;
4480      Diag(Loc, DK);
4481    }
4482  } else {
4483    // struct/union/class
4484
4485    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4486    // struct X { int A; } D;    D should chain to X.
4487    if (getLangOptions().CPlusPlus) {
4488      // FIXME: Look for a way to use RecordDecl for simple structs.
4489      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4490                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4491
4492      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4493        StdBadAlloc = cast<CXXRecordDecl>(New);
4494    } else
4495      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4496                               cast_or_null<RecordDecl>(PrevDecl));
4497  }
4498
4499  if (Kind != TagDecl::TK_enum) {
4500    // Handle #pragma pack: if the #pragma pack stack has non-default
4501    // alignment, make up a packed attribute for this decl. These
4502    // attributes are checked when the ASTContext lays out the
4503    // structure.
4504    //
4505    // It is important for implementing the correct semantics that this
4506    // happen here (in act on tag decl). The #pragma pack stack is
4507    // maintained as a result of parser callbacks which can occur at
4508    // many points during the parsing of a struct declaration (because
4509    // the #pragma tokens are effectively skipped over during the
4510    // parsing of the struct).
4511    if (unsigned Alignment = getPragmaPackAlignment())
4512      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4513  }
4514
4515  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4516    // C++ [dcl.typedef]p3:
4517    //   [...] Similarly, in a given scope, a class or enumeration
4518    //   shall not be declared with the same name as a typedef-name
4519    //   that is declared in that scope and refers to a type other
4520    //   than the class or enumeration itself.
4521    LookupResult Lookup;
4522    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4523    TypedefDecl *PrevTypedef = 0;
4524    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4525      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4526
4527    NamedDecl *PrevTypedefNamed = PrevTypedef;
4528    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4529        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4530          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4531      Diag(Loc, diag::err_tag_definition_of_typedef)
4532        << Context.getTypeDeclType(New)
4533        << PrevTypedef->getUnderlyingType();
4534      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4535      Invalid = true;
4536    }
4537  }
4538
4539  // If this is a specialization of a member class (of a class template),
4540  // check the specialization.
4541  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4542    Invalid = true;
4543
4544  if (Invalid)
4545    New->setInvalidDecl();
4546
4547  if (Attr)
4548    ProcessDeclAttributeList(S, New, Attr);
4549
4550  // If we're declaring or defining a tag in function prototype scope
4551  // in C, note that this type can only be used within the function.
4552  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4553    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4554
4555  // Set the lexical context. If the tag has a C++ scope specifier, the
4556  // lexical context will be different from the semantic context.
4557  New->setLexicalDeclContext(CurContext);
4558
4559  // Mark this as a friend decl if applicable.
4560  if (TUK == TUK_Friend)
4561    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4562
4563  // Set the access specifier.
4564  if (!Invalid && TUK != TUK_Friend)
4565    SetMemberAccessSpecifier(New, PrevDecl, AS);
4566
4567  if (TUK == TUK_Definition)
4568    New->startDefinition();
4569
4570  // If this has an identifier, add it to the scope stack.
4571  if (TUK == TUK_Friend) {
4572    // We might be replacing an existing declaration in the lookup tables;
4573    // if so, borrow its access specifier.
4574    if (PrevDecl)
4575      New->setAccess(PrevDecl->getAccess());
4576
4577    // Friend tag decls are visible in fairly strange ways.
4578    if (!CurContext->isDependentContext()) {
4579      DeclContext *DC = New->getDeclContext()->getLookupContext();
4580      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4581      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4582        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4583    }
4584  } else if (Name) {
4585    S = getNonFieldDeclScope(S);
4586    PushOnScopeChains(New, S);
4587  } else {
4588    CurContext->addDecl(New);
4589  }
4590
4591  // If this is the C FILE type, notify the AST context.
4592  if (IdentifierInfo *II = New->getIdentifier())
4593    if (!New->isInvalidDecl() &&
4594        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4595        II->isStr("FILE"))
4596      Context.setFILEDecl(New);
4597
4598  OwnedDecl = true;
4599  return DeclPtrTy::make(New);
4600}
4601
4602void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4603  AdjustDeclIfTemplate(TagD);
4604  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4605
4606  // Enter the tag context.
4607  PushDeclContext(S, Tag);
4608
4609  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4610    FieldCollector->StartClass();
4611
4612    if (Record->getIdentifier()) {
4613      // C++ [class]p2:
4614      //   [...] The class-name is also inserted into the scope of the
4615      //   class itself; this is known as the injected-class-name. For
4616      //   purposes of access checking, the injected-class-name is treated
4617      //   as if it were a public member name.
4618      CXXRecordDecl *InjectedClassName
4619        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4620                                CurContext, Record->getLocation(),
4621                                Record->getIdentifier(),
4622                                Record->getTagKeywordLoc(),
4623                                Record);
4624      InjectedClassName->setImplicit();
4625      InjectedClassName->setAccess(AS_public);
4626      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4627        InjectedClassName->setDescribedClassTemplate(Template);
4628      PushOnScopeChains(InjectedClassName, S);
4629      assert(InjectedClassName->isInjectedClassName() &&
4630             "Broken injected-class-name");
4631    }
4632  }
4633}
4634
4635void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4636                                    SourceLocation RBraceLoc) {
4637  AdjustDeclIfTemplate(TagD);
4638  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4639  Tag->setRBraceLoc(RBraceLoc);
4640
4641  if (isa<CXXRecordDecl>(Tag))
4642    FieldCollector->FinishClass();
4643
4644  // Exit this scope of this tag's definition.
4645  PopDeclContext();
4646
4647  // Notify the consumer that we've defined a tag.
4648  Consumer.HandleTagDeclDefinition(Tag);
4649}
4650
4651// Note that FieldName may be null for anonymous bitfields.
4652bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4653                          QualType FieldTy, const Expr *BitWidth,
4654                          bool *ZeroWidth) {
4655  // Default to true; that shouldn't confuse checks for emptiness
4656  if (ZeroWidth)
4657    *ZeroWidth = true;
4658
4659  // C99 6.7.2.1p4 - verify the field type.
4660  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4661  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4662    // Handle incomplete types with specific error.
4663    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4664      return true;
4665    if (FieldName)
4666      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4667        << FieldName << FieldTy << BitWidth->getSourceRange();
4668    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4669      << FieldTy << BitWidth->getSourceRange();
4670  }
4671
4672  // If the bit-width is type- or value-dependent, don't try to check
4673  // it now.
4674  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4675    return false;
4676
4677  llvm::APSInt Value;
4678  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4679    return true;
4680
4681  if (Value != 0 && ZeroWidth)
4682    *ZeroWidth = false;
4683
4684  // Zero-width bitfield is ok for anonymous field.
4685  if (Value == 0 && FieldName)
4686    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4687
4688  if (Value.isSigned() && Value.isNegative()) {
4689    if (FieldName)
4690      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4691               << FieldName << Value.toString(10);
4692    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4693      << Value.toString(10);
4694  }
4695
4696  if (!FieldTy->isDependentType()) {
4697    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4698    if (Value.getZExtValue() > TypeSize) {
4699      if (FieldName)
4700        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4701          << FieldName << (unsigned)TypeSize;
4702      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4703        << (unsigned)TypeSize;
4704    }
4705  }
4706
4707  return false;
4708}
4709
4710/// ActOnField - Each field of a struct/union/class is passed into this in order
4711/// to create a FieldDecl object for it.
4712Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4713                                 SourceLocation DeclStart,
4714                                 Declarator &D, ExprTy *BitfieldWidth) {
4715  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4716                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4717                               AS_public);
4718  return DeclPtrTy::make(Res);
4719}
4720
4721/// HandleField - Analyze a field of a C struct or a C++ data member.
4722///
4723FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4724                             SourceLocation DeclStart,
4725                             Declarator &D, Expr *BitWidth,
4726                             AccessSpecifier AS) {
4727  IdentifierInfo *II = D.getIdentifier();
4728  SourceLocation Loc = DeclStart;
4729  if (II) Loc = D.getIdentifierLoc();
4730
4731  DeclaratorInfo *DInfo = 0;
4732  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4733  if (getLangOptions().CPlusPlus)
4734    CheckExtraCXXDefaultArguments(D);
4735
4736  DiagnoseFunctionSpecifiers(D);
4737
4738  if (D.getDeclSpec().isThreadSpecified())
4739    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4740
4741  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4742
4743  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4744    // Maybe we will complain about the shadowed template parameter.
4745    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4746    // Just pretend that we didn't see the previous declaration.
4747    PrevDecl = 0;
4748  }
4749
4750  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4751    PrevDecl = 0;
4752
4753  bool Mutable
4754    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4755  SourceLocation TSSL = D.getSourceRange().getBegin();
4756  FieldDecl *NewFD
4757    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4758                     AS, PrevDecl, &D);
4759  if (NewFD->isInvalidDecl() && PrevDecl) {
4760    // Don't introduce NewFD into scope; there's already something
4761    // with the same name in the same scope.
4762  } else if (II) {
4763    PushOnScopeChains(NewFD, S);
4764  } else
4765    Record->addDecl(NewFD);
4766
4767  return NewFD;
4768}
4769
4770/// \brief Build a new FieldDecl and check its well-formedness.
4771///
4772/// This routine builds a new FieldDecl given the fields name, type,
4773/// record, etc. \p PrevDecl should refer to any previous declaration
4774/// with the same name and in the same scope as the field to be
4775/// created.
4776///
4777/// \returns a new FieldDecl.
4778///
4779/// \todo The Declarator argument is a hack. It will be removed once
4780FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4781                                DeclaratorInfo *DInfo,
4782                                RecordDecl *Record, SourceLocation Loc,
4783                                bool Mutable, Expr *BitWidth,
4784                                SourceLocation TSSL,
4785                                AccessSpecifier AS, NamedDecl *PrevDecl,
4786                                Declarator *D) {
4787  IdentifierInfo *II = Name.getAsIdentifierInfo();
4788  bool InvalidDecl = false;
4789  if (D) InvalidDecl = D->isInvalidType();
4790
4791  // If we receive a broken type, recover by assuming 'int' and
4792  // marking this declaration as invalid.
4793  if (T.isNull()) {
4794    InvalidDecl = true;
4795    T = Context.IntTy;
4796  }
4797
4798  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4799  // than a variably modified type.
4800  if (T->isVariablyModifiedType()) {
4801    bool SizeIsNegative;
4802    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4803                                                           SizeIsNegative);
4804    if (!FixedTy.isNull()) {
4805      Diag(Loc, diag::warn_illegal_constant_array_size);
4806      T = FixedTy;
4807    } else {
4808      if (SizeIsNegative)
4809        Diag(Loc, diag::err_typecheck_negative_array_size);
4810      else
4811        Diag(Loc, diag::err_typecheck_field_variable_size);
4812      InvalidDecl = true;
4813    }
4814  }
4815
4816  // Fields can not have abstract class types
4817  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4818                             AbstractFieldType))
4819    InvalidDecl = true;
4820
4821  bool ZeroWidth = false;
4822  // If this is declared as a bit-field, check the bit-field.
4823  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4824    InvalidDecl = true;
4825    DeleteExpr(BitWidth);
4826    BitWidth = 0;
4827    ZeroWidth = false;
4828  }
4829
4830  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4831                                       BitWidth, Mutable);
4832  if (InvalidDecl)
4833    NewFD->setInvalidDecl();
4834
4835  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4836    Diag(Loc, diag::err_duplicate_member) << II;
4837    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4838    NewFD->setInvalidDecl();
4839  }
4840
4841  if (getLangOptions().CPlusPlus) {
4842    QualType EltTy = Context.getBaseElementType(T);
4843
4844    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4845
4846    if (!T->isPODType())
4847      CXXRecord->setPOD(false);
4848    if (!ZeroWidth)
4849      CXXRecord->setEmpty(false);
4850
4851    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4852      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4853
4854      if (!RDecl->hasTrivialConstructor())
4855        CXXRecord->setHasTrivialConstructor(false);
4856      if (!RDecl->hasTrivialCopyConstructor())
4857        CXXRecord->setHasTrivialCopyConstructor(false);
4858      if (!RDecl->hasTrivialCopyAssignment())
4859        CXXRecord->setHasTrivialCopyAssignment(false);
4860      if (!RDecl->hasTrivialDestructor())
4861        CXXRecord->setHasTrivialDestructor(false);
4862
4863      // C++ 9.5p1: An object of a class with a non-trivial
4864      // constructor, a non-trivial copy constructor, a non-trivial
4865      // destructor, or a non-trivial copy assignment operator
4866      // cannot be a member of a union, nor can an array of such
4867      // objects.
4868      // TODO: C++0x alters this restriction significantly.
4869      if (Record->isUnion()) {
4870        // We check for copy constructors before constructors
4871        // because otherwise we'll never get complaints about
4872        // copy constructors.
4873
4874        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4875
4876        CXXSpecialMember member;
4877        if (!RDecl->hasTrivialCopyConstructor())
4878          member = CXXCopyConstructor;
4879        else if (!RDecl->hasTrivialConstructor())
4880          member = CXXDefaultConstructor;
4881        else if (!RDecl->hasTrivialCopyAssignment())
4882          member = CXXCopyAssignment;
4883        else if (!RDecl->hasTrivialDestructor())
4884          member = CXXDestructor;
4885        else
4886          member = invalid;
4887
4888        if (member != invalid) {
4889          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4890          DiagnoseNontrivial(RT, member);
4891          NewFD->setInvalidDecl();
4892        }
4893      }
4894    }
4895  }
4896
4897  // FIXME: We need to pass in the attributes given an AST
4898  // representation, not a parser representation.
4899  if (D)
4900    // FIXME: What to pass instead of TUScope?
4901    ProcessDeclAttributes(TUScope, NewFD, *D);
4902
4903  if (T.isObjCGCWeak())
4904    Diag(Loc, diag::warn_attribute_weak_on_field);
4905
4906  NewFD->setAccess(AS);
4907
4908  // C++ [dcl.init.aggr]p1:
4909  //   An aggregate is an array or a class (clause 9) with [...] no
4910  //   private or protected non-static data members (clause 11).
4911  // A POD must be an aggregate.
4912  if (getLangOptions().CPlusPlus &&
4913      (AS == AS_private || AS == AS_protected)) {
4914    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4915    CXXRecord->setAggregate(false);
4916    CXXRecord->setPOD(false);
4917  }
4918
4919  return NewFD;
4920}
4921
4922/// DiagnoseNontrivial - Given that a class has a non-trivial
4923/// special member, figure out why.
4924void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4925  QualType QT(T, 0U);
4926  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4927
4928  // Check whether the member was user-declared.
4929  switch (member) {
4930  case CXXDefaultConstructor:
4931    if (RD->hasUserDeclaredConstructor()) {
4932      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4933      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4934        if (!ci->isImplicitlyDefined(Context)) {
4935          SourceLocation CtorLoc = ci->getLocation();
4936          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4937          return;
4938        }
4939
4940      assert(0 && "found no user-declared constructors");
4941      return;
4942    }
4943    break;
4944
4945  case CXXCopyConstructor:
4946    if (RD->hasUserDeclaredCopyConstructor()) {
4947      SourceLocation CtorLoc =
4948        RD->getCopyConstructor(Context, 0)->getLocation();
4949      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4950      return;
4951    }
4952    break;
4953
4954  case CXXCopyAssignment:
4955    if (RD->hasUserDeclaredCopyAssignment()) {
4956      // FIXME: this should use the location of the copy
4957      // assignment, not the type.
4958      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4959      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4960      return;
4961    }
4962    break;
4963
4964  case CXXDestructor:
4965    if (RD->hasUserDeclaredDestructor()) {
4966      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4967      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4968      return;
4969    }
4970    break;
4971  }
4972
4973  typedef CXXRecordDecl::base_class_iterator base_iter;
4974
4975  // Virtual bases and members inhibit trivial copying/construction,
4976  // but not trivial destruction.
4977  if (member != CXXDestructor) {
4978    // Check for virtual bases.  vbases includes indirect virtual bases,
4979    // so we just iterate through the direct bases.
4980    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4981      if (bi->isVirtual()) {
4982        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4983        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4984        return;
4985      }
4986
4987    // Check for virtual methods.
4988    typedef CXXRecordDecl::method_iterator meth_iter;
4989    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4990         ++mi) {
4991      if (mi->isVirtual()) {
4992        SourceLocation MLoc = mi->getSourceRange().getBegin();
4993        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4994        return;
4995      }
4996    }
4997  }
4998
4999  bool (CXXRecordDecl::*hasTrivial)() const;
5000  switch (member) {
5001  case CXXDefaultConstructor:
5002    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5003  case CXXCopyConstructor:
5004    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5005  case CXXCopyAssignment:
5006    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5007  case CXXDestructor:
5008    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5009  default:
5010    assert(0 && "unexpected special member"); return;
5011  }
5012
5013  // Check for nontrivial bases (and recurse).
5014  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5015    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5016    assert(BaseRT);
5017    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5018    if (!(BaseRecTy->*hasTrivial)()) {
5019      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5020      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5021      DiagnoseNontrivial(BaseRT, member);
5022      return;
5023    }
5024  }
5025
5026  // Check for nontrivial members (and recurse).
5027  typedef RecordDecl::field_iterator field_iter;
5028  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5029       ++fi) {
5030    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5031    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5032      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5033
5034      if (!(EltRD->*hasTrivial)()) {
5035        SourceLocation FLoc = (*fi)->getLocation();
5036        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5037        DiagnoseNontrivial(EltRT, member);
5038        return;
5039      }
5040    }
5041  }
5042
5043  assert(0 && "found no explanation for non-trivial member");
5044}
5045
5046/// TranslateIvarVisibility - Translate visibility from a token ID to an
5047///  AST enum value.
5048static ObjCIvarDecl::AccessControl
5049TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5050  switch (ivarVisibility) {
5051  default: assert(0 && "Unknown visitibility kind");
5052  case tok::objc_private: return ObjCIvarDecl::Private;
5053  case tok::objc_public: return ObjCIvarDecl::Public;
5054  case tok::objc_protected: return ObjCIvarDecl::Protected;
5055  case tok::objc_package: return ObjCIvarDecl::Package;
5056  }
5057}
5058
5059/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5060/// in order to create an IvarDecl object for it.
5061Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5062                                SourceLocation DeclStart,
5063                                DeclPtrTy IntfDecl,
5064                                Declarator &D, ExprTy *BitfieldWidth,
5065                                tok::ObjCKeywordKind Visibility) {
5066
5067  IdentifierInfo *II = D.getIdentifier();
5068  Expr *BitWidth = (Expr*)BitfieldWidth;
5069  SourceLocation Loc = DeclStart;
5070  if (II) Loc = D.getIdentifierLoc();
5071
5072  // FIXME: Unnamed fields can be handled in various different ways, for
5073  // example, unnamed unions inject all members into the struct namespace!
5074
5075  DeclaratorInfo *DInfo = 0;
5076  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5077
5078  if (BitWidth) {
5079    // 6.7.2.1p3, 6.7.2.1p4
5080    if (VerifyBitField(Loc, II, T, BitWidth)) {
5081      D.setInvalidType();
5082      DeleteExpr(BitWidth);
5083      BitWidth = 0;
5084    }
5085  } else {
5086    // Not a bitfield.
5087
5088    // validate II.
5089
5090  }
5091
5092  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5093  // than a variably modified type.
5094  if (T->isVariablyModifiedType()) {
5095    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5096    D.setInvalidType();
5097  }
5098
5099  // Get the visibility (access control) for this ivar.
5100  ObjCIvarDecl::AccessControl ac =
5101    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5102                                        : ObjCIvarDecl::None;
5103  // Must set ivar's DeclContext to its enclosing interface.
5104  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5105  DeclContext *EnclosingContext;
5106  if (ObjCImplementationDecl *IMPDecl =
5107      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5108    // Case of ivar declared in an implementation. Context is that of its class.
5109    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5110    assert(IDecl && "No class- ActOnIvar");
5111    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5112  } else
5113    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5114  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5115
5116  // Construct the decl.
5117  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5118                                             EnclosingContext, Loc, II, T,
5119                                             DInfo, ac, (Expr *)BitfieldWidth);
5120
5121  if (II) {
5122    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5123    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5124        && !isa<TagDecl>(PrevDecl)) {
5125      Diag(Loc, diag::err_duplicate_member) << II;
5126      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5127      NewID->setInvalidDecl();
5128    }
5129  }
5130
5131  // Process attributes attached to the ivar.
5132  ProcessDeclAttributes(S, NewID, D);
5133
5134  if (D.isInvalidType())
5135    NewID->setInvalidDecl();
5136
5137  if (II) {
5138    // FIXME: When interfaces are DeclContexts, we'll need to add
5139    // these to the interface.
5140    S->AddDecl(DeclPtrTy::make(NewID));
5141    IdResolver.AddDecl(NewID);
5142  }
5143
5144  return DeclPtrTy::make(NewID);
5145}
5146
5147void Sema::ActOnFields(Scope* S,
5148                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5149                       DeclPtrTy *Fields, unsigned NumFields,
5150                       SourceLocation LBrac, SourceLocation RBrac,
5151                       AttributeList *Attr) {
5152  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5153  assert(EnclosingDecl && "missing record or interface decl");
5154
5155  // If the decl this is being inserted into is invalid, then it may be a
5156  // redeclaration or some other bogus case.  Don't try to add fields to it.
5157  if (EnclosingDecl->isInvalidDecl()) {
5158    // FIXME: Deallocate fields?
5159    return;
5160  }
5161
5162
5163  // Verify that all the fields are okay.
5164  unsigned NumNamedMembers = 0;
5165  llvm::SmallVector<FieldDecl*, 32> RecFields;
5166
5167  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5168  for (unsigned i = 0; i != NumFields; ++i) {
5169    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5170
5171    // Get the type for the field.
5172    Type *FDTy = FD->getType().getTypePtr();
5173
5174    if (!FD->isAnonymousStructOrUnion()) {
5175      // Remember all fields written by the user.
5176      RecFields.push_back(FD);
5177    }
5178
5179    // If the field is already invalid for some reason, don't emit more
5180    // diagnostics about it.
5181    if (FD->isInvalidDecl())
5182      continue;
5183
5184    // C99 6.7.2.1p2:
5185    //   A structure or union shall not contain a member with
5186    //   incomplete or function type (hence, a structure shall not
5187    //   contain an instance of itself, but may contain a pointer to
5188    //   an instance of itself), except that the last member of a
5189    //   structure with more than one named member may have incomplete
5190    //   array type; such a structure (and any union containing,
5191    //   possibly recursively, a member that is such a structure)
5192    //   shall not be a member of a structure or an element of an
5193    //   array.
5194    if (FDTy->isFunctionType()) {
5195      // Field declared as a function.
5196      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5197        << FD->getDeclName();
5198      FD->setInvalidDecl();
5199      EnclosingDecl->setInvalidDecl();
5200      continue;
5201    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5202               Record && Record->isStruct()) {
5203      // Flexible array member.
5204      if (NumNamedMembers < 1) {
5205        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5206          << FD->getDeclName();
5207        FD->setInvalidDecl();
5208        EnclosingDecl->setInvalidDecl();
5209        continue;
5210      }
5211      // Okay, we have a legal flexible array member at the end of the struct.
5212      if (Record)
5213        Record->setHasFlexibleArrayMember(true);
5214    } else if (!FDTy->isDependentType() &&
5215               RequireCompleteType(FD->getLocation(), FD->getType(),
5216                                   diag::err_field_incomplete)) {
5217      // Incomplete type
5218      FD->setInvalidDecl();
5219      EnclosingDecl->setInvalidDecl();
5220      continue;
5221    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5222      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5223        // If this is a member of a union, then entire union becomes "flexible".
5224        if (Record && Record->isUnion()) {
5225          Record->setHasFlexibleArrayMember(true);
5226        } else {
5227          // If this is a struct/class and this is not the last element, reject
5228          // it.  Note that GCC supports variable sized arrays in the middle of
5229          // structures.
5230          if (i != NumFields-1)
5231            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5232              << FD->getDeclName() << FD->getType();
5233          else {
5234            // We support flexible arrays at the end of structs in
5235            // other structs as an extension.
5236            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5237              << FD->getDeclName();
5238            if (Record)
5239              Record->setHasFlexibleArrayMember(true);
5240          }
5241        }
5242      }
5243      if (Record && FDTTy->getDecl()->hasObjectMember())
5244        Record->setHasObjectMember(true);
5245    } else if (FDTy->isObjCInterfaceType()) {
5246      /// A field cannot be an Objective-c object
5247      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5248      FD->setInvalidDecl();
5249      EnclosingDecl->setInvalidDecl();
5250      continue;
5251    } else if (getLangOptions().ObjC1 &&
5252               getLangOptions().getGCMode() != LangOptions::NonGC &&
5253               Record &&
5254               (FD->getType()->isObjCObjectPointerType() ||
5255                FD->getType().isObjCGCStrong()))
5256      Record->setHasObjectMember(true);
5257    // Keep track of the number of named members.
5258    if (FD->getIdentifier())
5259      ++NumNamedMembers;
5260  }
5261
5262  // Okay, we successfully defined 'Record'.
5263  if (Record) {
5264    Record->completeDefinition(Context);
5265  } else {
5266    ObjCIvarDecl **ClsFields =
5267      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5268    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5269      ID->setIVarList(ClsFields, RecFields.size(), Context);
5270      ID->setLocEnd(RBrac);
5271      // Add ivar's to class's DeclContext.
5272      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5273        ClsFields[i]->setLexicalDeclContext(ID);
5274        ID->addDecl(ClsFields[i]);
5275      }
5276      // Must enforce the rule that ivars in the base classes may not be
5277      // duplicates.
5278      if (ID->getSuperClass()) {
5279        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5280             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5281          ObjCIvarDecl* Ivar = (*IVI);
5282
5283          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5284            ObjCIvarDecl* prevIvar =
5285              ID->getSuperClass()->lookupInstanceVariable(II);
5286            if (prevIvar) {
5287              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5288              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5289            }
5290          }
5291        }
5292      }
5293    } else if (ObjCImplementationDecl *IMPDecl =
5294                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5295      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5296      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5297        // Ivar declared in @implementation never belongs to the implementation.
5298        // Only it is in implementation's lexical context.
5299        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5300      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5301    }
5302  }
5303
5304  if (Attr)
5305    ProcessDeclAttributeList(S, Record, Attr);
5306}
5307
5308EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5309                                          EnumConstantDecl *LastEnumConst,
5310                                          SourceLocation IdLoc,
5311                                          IdentifierInfo *Id,
5312                                          ExprArg val) {
5313  Expr *Val = (Expr *)val.get();
5314
5315  llvm::APSInt EnumVal(32);
5316  QualType EltTy;
5317  if (Val && !Val->isTypeDependent()) {
5318    // Make sure to promote the operand type to int.
5319    UsualUnaryConversions(Val);
5320    if (Val != val.get()) {
5321      val.release();
5322      val = Val;
5323    }
5324
5325    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5326    SourceLocation ExpLoc;
5327    if (!Val->isValueDependent() &&
5328        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5329      Val = 0;
5330    } else {
5331      EltTy = Val->getType();
5332    }
5333  }
5334
5335  if (!Val) {
5336    if (LastEnumConst) {
5337      // Assign the last value + 1.
5338      EnumVal = LastEnumConst->getInitVal();
5339      ++EnumVal;
5340
5341      // Check for overflow on increment.
5342      if (EnumVal < LastEnumConst->getInitVal())
5343        Diag(IdLoc, diag::warn_enum_value_overflow);
5344
5345      EltTy = LastEnumConst->getType();
5346    } else {
5347      // First value, set to zero.
5348      EltTy = Context.IntTy;
5349      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5350    }
5351  }
5352
5353  val.release();
5354  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5355                                  Val, EnumVal);
5356}
5357
5358
5359Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5360                                        DeclPtrTy lastEnumConst,
5361                                        SourceLocation IdLoc,
5362                                        IdentifierInfo *Id,
5363                                        SourceLocation EqualLoc, ExprTy *val) {
5364  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5365  EnumConstantDecl *LastEnumConst =
5366    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5367  Expr *Val = static_cast<Expr*>(val);
5368
5369  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5370  // we find one that is.
5371  S = getNonFieldDeclScope(S);
5372
5373  // Verify that there isn't already something declared with this name in this
5374  // scope.
5375  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5376  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5377    // Maybe we will complain about the shadowed template parameter.
5378    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5379    // Just pretend that we didn't see the previous declaration.
5380    PrevDecl = 0;
5381  }
5382
5383  if (PrevDecl) {
5384    // When in C++, we may get a TagDecl with the same name; in this case the
5385    // enum constant will 'hide' the tag.
5386    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5387           "Received TagDecl when not in C++!");
5388    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5389      if (isa<EnumConstantDecl>(PrevDecl))
5390        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5391      else
5392        Diag(IdLoc, diag::err_redefinition) << Id;
5393      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5394      if (Val) Val->Destroy(Context);
5395      return DeclPtrTy();
5396    }
5397  }
5398
5399  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5400                                            IdLoc, Id, Owned(Val));
5401
5402  // Register this decl in the current scope stack.
5403  if (New)
5404    PushOnScopeChains(New, S);
5405
5406  return DeclPtrTy::make(New);
5407}
5408
5409void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5410                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5411                         DeclPtrTy *Elements, unsigned NumElements,
5412                         Scope *S, AttributeList *Attr) {
5413  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5414  QualType EnumType = Context.getTypeDeclType(Enum);
5415
5416  if (Attr)
5417    ProcessDeclAttributeList(S, Enum, Attr);
5418
5419  // TODO: If the result value doesn't fit in an int, it must be a long or long
5420  // long value.  ISO C does not support this, but GCC does as an extension,
5421  // emit a warning.
5422  unsigned IntWidth = Context.Target.getIntWidth();
5423  unsigned CharWidth = Context.Target.getCharWidth();
5424  unsigned ShortWidth = Context.Target.getShortWidth();
5425
5426  // Verify that all the values are okay, compute the size of the values, and
5427  // reverse the list.
5428  unsigned NumNegativeBits = 0;
5429  unsigned NumPositiveBits = 0;
5430
5431  // Keep track of whether all elements have type int.
5432  bool AllElementsInt = true;
5433
5434  for (unsigned i = 0; i != NumElements; ++i) {
5435    EnumConstantDecl *ECD =
5436      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5437    if (!ECD) continue;  // Already issued a diagnostic.
5438
5439    // If the enum value doesn't fit in an int, emit an extension warning.
5440    const llvm::APSInt &InitVal = ECD->getInitVal();
5441    assert(InitVal.getBitWidth() >= IntWidth &&
5442           "Should have promoted value to int");
5443    if (InitVal.getBitWidth() > IntWidth) {
5444      llvm::APSInt V(InitVal);
5445      V.trunc(IntWidth);
5446      V.extend(InitVal.getBitWidth());
5447      if (V != InitVal)
5448        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5449          << InitVal.toString(10);
5450    }
5451
5452    // Keep track of the size of positive and negative values.
5453    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5454      NumPositiveBits = std::max(NumPositiveBits,
5455                                 (unsigned)InitVal.getActiveBits());
5456    else
5457      NumNegativeBits = std::max(NumNegativeBits,
5458                                 (unsigned)InitVal.getMinSignedBits());
5459
5460    // Keep track of whether every enum element has type int (very commmon).
5461    if (AllElementsInt)
5462      AllElementsInt = ECD->getType() == Context.IntTy;
5463  }
5464
5465  // Figure out the type that should be used for this enum.
5466  // FIXME: Support -fshort-enums.
5467  QualType BestType;
5468  unsigned BestWidth;
5469
5470  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5471
5472  if (NumNegativeBits) {
5473    // If there is a negative value, figure out the smallest integer type (of
5474    // int/long/longlong) that fits.
5475    // If it's packed, check also if it fits a char or a short.
5476    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5477        BestType = Context.SignedCharTy;
5478        BestWidth = CharWidth;
5479    } else if (Packed && NumNegativeBits <= ShortWidth &&
5480               NumPositiveBits < ShortWidth) {
5481        BestType = Context.ShortTy;
5482        BestWidth = ShortWidth;
5483    }
5484    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5485      BestType = Context.IntTy;
5486      BestWidth = IntWidth;
5487    } else {
5488      BestWidth = Context.Target.getLongWidth();
5489
5490      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5491        BestType = Context.LongTy;
5492      else {
5493        BestWidth = Context.Target.getLongLongWidth();
5494
5495        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5496          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5497        BestType = Context.LongLongTy;
5498      }
5499    }
5500  } else {
5501    // If there is no negative value, figure out which of uint, ulong, ulonglong
5502    // fits.
5503    // If it's packed, check also if it fits a char or a short.
5504    if (Packed && NumPositiveBits <= CharWidth) {
5505        BestType = Context.UnsignedCharTy;
5506        BestWidth = CharWidth;
5507    } else if (Packed && NumPositiveBits <= ShortWidth) {
5508        BestType = Context.UnsignedShortTy;
5509        BestWidth = ShortWidth;
5510    }
5511    else if (NumPositiveBits <= IntWidth) {
5512      BestType = Context.UnsignedIntTy;
5513      BestWidth = IntWidth;
5514    } else if (NumPositiveBits <=
5515               (BestWidth = Context.Target.getLongWidth())) {
5516      BestType = Context.UnsignedLongTy;
5517    } else {
5518      BestWidth = Context.Target.getLongLongWidth();
5519      assert(NumPositiveBits <= BestWidth &&
5520             "How could an initializer get larger than ULL?");
5521      BestType = Context.UnsignedLongLongTy;
5522    }
5523  }
5524
5525  // Loop over all of the enumerator constants, changing their types to match
5526  // the type of the enum if needed.
5527  for (unsigned i = 0; i != NumElements; ++i) {
5528    EnumConstantDecl *ECD =
5529      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5530    if (!ECD) continue;  // Already issued a diagnostic.
5531
5532    // Standard C says the enumerators have int type, but we allow, as an
5533    // extension, the enumerators to be larger than int size.  If each
5534    // enumerator value fits in an int, type it as an int, otherwise type it the
5535    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5536    // that X has type 'int', not 'unsigned'.
5537    if (ECD->getType() == Context.IntTy) {
5538      // Make sure the init value is signed.
5539      llvm::APSInt IV = ECD->getInitVal();
5540      IV.setIsSigned(true);
5541      ECD->setInitVal(IV);
5542
5543      if (getLangOptions().CPlusPlus)
5544        // C++ [dcl.enum]p4: Following the closing brace of an
5545        // enum-specifier, each enumerator has the type of its
5546        // enumeration.
5547        ECD->setType(EnumType);
5548      continue;  // Already int type.
5549    }
5550
5551    // Determine whether the value fits into an int.
5552    llvm::APSInt InitVal = ECD->getInitVal();
5553    bool FitsInInt;
5554    if (InitVal.isUnsigned() || !InitVal.isNegative())
5555      FitsInInt = InitVal.getActiveBits() < IntWidth;
5556    else
5557      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5558
5559    // If it fits into an integer type, force it.  Otherwise force it to match
5560    // the enum decl type.
5561    QualType NewTy;
5562    unsigned NewWidth;
5563    bool NewSign;
5564    if (FitsInInt) {
5565      NewTy = Context.IntTy;
5566      NewWidth = IntWidth;
5567      NewSign = true;
5568    } else if (ECD->getType() == BestType) {
5569      // Already the right type!
5570      if (getLangOptions().CPlusPlus)
5571        // C++ [dcl.enum]p4: Following the closing brace of an
5572        // enum-specifier, each enumerator has the type of its
5573        // enumeration.
5574        ECD->setType(EnumType);
5575      continue;
5576    } else {
5577      NewTy = BestType;
5578      NewWidth = BestWidth;
5579      NewSign = BestType->isSignedIntegerType();
5580    }
5581
5582    // Adjust the APSInt value.
5583    InitVal.extOrTrunc(NewWidth);
5584    InitVal.setIsSigned(NewSign);
5585    ECD->setInitVal(InitVal);
5586
5587    // Adjust the Expr initializer and type.
5588    if (ECD->getInitExpr())
5589      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5590                                                      CastExpr::CK_Unknown,
5591                                                      ECD->getInitExpr(),
5592                                                      /*isLvalue=*/false));
5593    if (getLangOptions().CPlusPlus)
5594      // C++ [dcl.enum]p4: Following the closing brace of an
5595      // enum-specifier, each enumerator has the type of its
5596      // enumeration.
5597      ECD->setType(EnumType);
5598    else
5599      ECD->setType(NewTy);
5600  }
5601
5602  Enum->completeDefinition(Context, BestType);
5603}
5604
5605Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5606                                            ExprArg expr) {
5607  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5608
5609  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5610                                                   Loc, AsmString);
5611  CurContext->addDecl(New);
5612  return DeclPtrTy::make(New);
5613}
5614
5615void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5616                             SourceLocation PragmaLoc,
5617                             SourceLocation NameLoc) {
5618  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5619
5620  if (PrevDecl) {
5621    PrevDecl->addAttr(::new (Context) WeakAttr());
5622  } else {
5623    (void)WeakUndeclaredIdentifiers.insert(
5624      std::pair<IdentifierInfo*,WeakInfo>
5625        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5626  }
5627}
5628
5629void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5630                                IdentifierInfo* AliasName,
5631                                SourceLocation PragmaLoc,
5632                                SourceLocation NameLoc,
5633                                SourceLocation AliasNameLoc) {
5634  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5635  WeakInfo W = WeakInfo(Name, NameLoc);
5636
5637  if (PrevDecl) {
5638    if (!PrevDecl->hasAttr<AliasAttr>())
5639      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5640        DeclApplyPragmaWeak(TUScope, ND, W);
5641  } else {
5642    (void)WeakUndeclaredIdentifiers.insert(
5643      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5644  }
5645}
5646