SemaDecl.cpp revision 6666ed4ed2e2bc13da5ac5d0a4947019137d45be
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354/// cases in C where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Interface: return DeclSpec::TST_interface;
365      case TTK_Union:  return DeclSpec::TST_union;
366      case TTK_Class:  return DeclSpec::TST_class;
367      case TTK_Enum:   return DeclSpec::TST_enum;
368      }
369    }
370
371  return DeclSpec::TST_unspecified;
372}
373
374/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375/// if a CXXScopeSpec's type is equal to the type of one of the base classes
376/// then downgrade the missing typename error to a warning.
377/// This is needed for MSVC compatibility; Example:
378/// @code
379/// template<class T> class A {
380/// public:
381///   typedef int TYPE;
382/// };
383/// template<class T> class B : public A<T> {
384/// public:
385///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386/// };
387/// @endcode
388bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389  if (CurContext->isRecord()) {
390    const Type *Ty = SS->getScopeRep()->getAsType();
391
392    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396        return true;
397    return S->isFunctionPrototypeScope();
398  }
399  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400}
401
402bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                   SourceLocation IILoc,
404                                   Scope *S,
405                                   CXXScopeSpec *SS,
406                                   ParsedType &SuggestedType) {
407  // We don't have anything to suggest (yet).
408  SuggestedType = ParsedType();
409
410  // There may have been a typo in the name of the type. Look up typo
411  // results, in case we have something that we can suggest.
412  TypeNameValidatorCCC Validator(false);
413  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                             LookupOrdinaryName, S, SS,
415                                             Validator)) {
416    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419    if (Corrected.isKeyword()) {
420      // We corrected to a keyword.
421      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424      Diag(IILoc, diag::err_unknown_typename_suggest)
425        << II << CorrectedQuotedStr
426        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet())
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435      else if (DeclContext *DC = computeDeclContext(*SS, false))
436        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437          << II << DC << CorrectedQuotedStr << SS->getRange()
438          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  Result.clear(Sema::LookupTagName);
522  SemaRef.LookupParsedName(Result, S, &SS);
523  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
558    if (SemaRef.LookupParsedName(R, S, &SS)) {
559      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
560           I != IEnd; ++I)
561        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
562          << Name << TagName;
563    }
564    return true;
565  }
566
567  Result.clear(Sema::LookupOrdinaryName);
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
692
693        // Update the name, so that the caller has the new name.
694        Name = Corrected.getCorrectionAsIdentifierInfo();
695
696        // Typo correction corrected to a keyword.
697        if (Corrected.isKeyword())
698          return Corrected.getCorrectionAsIdentifierInfo();
699
700        // Also update the LookupResult...
701        // FIXME: This should probably go away at some point
702        Result.clear();
703        Result.setLookupName(Corrected.getCorrection());
704        if (FirstDecl) {
705          Result.addDecl(FirstDecl);
706          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
707            << CorrectedQuotedStr;
708        }
709
710        // If we found an Objective-C instance variable, let
711        // LookupInObjCMethod build the appropriate expression to
712        // reference the ivar.
713        // FIXME: This is a gross hack.
714        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
715          Result.clear();
716          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
717          return E;
718        }
719
720        goto Corrected;
721      }
722    }
723
724    // We failed to correct; just fall through and let the parser deal with it.
725    Result.suppressDiagnostics();
726    return NameClassification::Unknown();
727
728  case LookupResult::NotFoundInCurrentInstantiation: {
729    // We performed name lookup into the current instantiation, and there were
730    // dependent bases, so we treat this result the same way as any other
731    // dependent nested-name-specifier.
732
733    // C++ [temp.res]p2:
734    //   A name used in a template declaration or definition and that is
735    //   dependent on a template-parameter is assumed not to name a type
736    //   unless the applicable name lookup finds a type name or the name is
737    //   qualified by the keyword typename.
738    //
739    // FIXME: If the next token is '<', we might want to ask the parser to
740    // perform some heroics to see if we actually have a
741    // template-argument-list, which would indicate a missing 'template'
742    // keyword here.
743    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
744                                      NameInfo, IsAddressOfOperand,
745                                      /*TemplateArgs=*/0);
746  }
747
748  case LookupResult::Found:
749  case LookupResult::FoundOverloaded:
750  case LookupResult::FoundUnresolvedValue:
751    break;
752
753  case LookupResult::Ambiguous:
754    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755        hasAnyAcceptableTemplateNames(Result)) {
756      // C++ [temp.local]p3:
757      //   A lookup that finds an injected-class-name (10.2) can result in an
758      //   ambiguity in certain cases (for example, if it is found in more than
759      //   one base class). If all of the injected-class-names that are found
760      //   refer to specializations of the same class template, and if the name
761      //   is followed by a template-argument-list, the reference refers to the
762      //   class template itself and not a specialization thereof, and is not
763      //   ambiguous.
764      //
765      // This filtering can make an ambiguous result into an unambiguous one,
766      // so try again after filtering out template names.
767      FilterAcceptableTemplateNames(Result);
768      if (!Result.isAmbiguous()) {
769        IsFilteredTemplateName = true;
770        break;
771      }
772    }
773
774    // Diagnose the ambiguity and return an error.
775    return NameClassification::Error();
776  }
777
778  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
779      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
780    // C++ [temp.names]p3:
781    //   After name lookup (3.4) finds that a name is a template-name or that
782    //   an operator-function-id or a literal- operator-id refers to a set of
783    //   overloaded functions any member of which is a function template if
784    //   this is followed by a <, the < is always taken as the delimiter of a
785    //   template-argument-list and never as the less-than operator.
786    if (!IsFilteredTemplateName)
787      FilterAcceptableTemplateNames(Result);
788
789    if (!Result.empty()) {
790      bool IsFunctionTemplate;
791      TemplateName Template;
792      if (Result.end() - Result.begin() > 1) {
793        IsFunctionTemplate = true;
794        Template = Context.getOverloadedTemplateName(Result.begin(),
795                                                     Result.end());
796      } else {
797        TemplateDecl *TD
798          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
799        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
800
801        if (SS.isSet() && !SS.isInvalid())
802          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
803                                                    /*TemplateKeyword=*/false,
804                                                      TD);
805        else
806          Template = TemplateName(TD);
807      }
808
809      if (IsFunctionTemplate) {
810        // Function templates always go through overload resolution, at which
811        // point we'll perform the various checks (e.g., accessibility) we need
812        // to based on which function we selected.
813        Result.suppressDiagnostics();
814
815        return NameClassification::FunctionTemplate(Template);
816      }
817
818      return NameClassification::TypeTemplate(Template);
819    }
820  }
821
822  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
823  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
824    DiagnoseUseOfDecl(Type, NameLoc);
825    QualType T = Context.getTypeDeclType(Type);
826    if (SS.isNotEmpty())
827      return buildNestedType(*this, SS, T, NameLoc);
828    return ParsedType::make(T);
829  }
830
831  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
832  if (!Class) {
833    // FIXME: It's unfortunate that we don't have a Type node for handling this.
834    if (ObjCCompatibleAliasDecl *Alias
835                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
836      Class = Alias->getClassInterface();
837  }
838
839  if (Class) {
840    DiagnoseUseOfDecl(Class, NameLoc);
841
842    if (NextToken.is(tok::period)) {
843      // Interface. <something> is parsed as a property reference expression.
844      // Just return "unknown" as a fall-through for now.
845      Result.suppressDiagnostics();
846      return NameClassification::Unknown();
847    }
848
849    QualType T = Context.getObjCInterfaceType(Class);
850    return ParsedType::make(T);
851  }
852
853  // We can have a type template here if we're classifying a template argument.
854  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
855    return NameClassification::TypeTemplate(
856        TemplateName(cast<TemplateDecl>(FirstDecl)));
857
858  // Check for a tag type hidden by a non-type decl in a few cases where it
859  // seems likely a type is wanted instead of the non-type that was found.
860  if (!getLangOpts().ObjC1) {
861    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862    if ((NextToken.is(tok::identifier) ||
863         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865      FirstDecl = (*Result.begin())->getUnderlyingDecl();
866      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
867        DiagnoseUseOfDecl(Type, NameLoc);
868        QualType T = Context.getTypeDeclType(Type);
869        if (SS.isNotEmpty())
870          return buildNestedType(*this, SS, T, NameLoc);
871        return ParsedType::make(T);
872      }
873    }
874  }
875
876  if (FirstDecl->isCXXClassMember())
877    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
878
879  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
880  return BuildDeclarationNameExpr(SS, Result, ADL);
881}
882
883// Determines the context to return to after temporarily entering a
884// context.  This depends in an unnecessarily complicated way on the
885// exact ordering of callbacks from the parser.
886DeclContext *Sema::getContainingDC(DeclContext *DC) {
887
888  // Functions defined inline within classes aren't parsed until we've
889  // finished parsing the top-level class, so the top-level class is
890  // the context we'll need to return to.
891  if (isa<FunctionDecl>(DC)) {
892    DC = DC->getLexicalParent();
893
894    // A function not defined within a class will always return to its
895    // lexical context.
896    if (!isa<CXXRecordDecl>(DC))
897      return DC;
898
899    // A C++ inline method/friend is parsed *after* the topmost class
900    // it was declared in is fully parsed ("complete");  the topmost
901    // class is the context we need to return to.
902    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
903      DC = RD;
904
905    // Return the declaration context of the topmost class the inline method is
906    // declared in.
907    return DC;
908  }
909
910  return DC->getLexicalParent();
911}
912
913void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
914  assert(getContainingDC(DC) == CurContext &&
915      "The next DeclContext should be lexically contained in the current one.");
916  CurContext = DC;
917  S->setEntity(DC);
918}
919
920void Sema::PopDeclContext() {
921  assert(CurContext && "DeclContext imbalance!");
922
923  CurContext = getContainingDC(CurContext);
924  assert(CurContext && "Popped translation unit!");
925}
926
927/// EnterDeclaratorContext - Used when we must lookup names in the context
928/// of a declarator's nested name specifier.
929///
930void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
931  // C++0x [basic.lookup.unqual]p13:
932  //   A name used in the definition of a static data member of class
933  //   X (after the qualified-id of the static member) is looked up as
934  //   if the name was used in a member function of X.
935  // C++0x [basic.lookup.unqual]p14:
936  //   If a variable member of a namespace is defined outside of the
937  //   scope of its namespace then any name used in the definition of
938  //   the variable member (after the declarator-id) is looked up as
939  //   if the definition of the variable member occurred in its
940  //   namespace.
941  // Both of these imply that we should push a scope whose context
942  // is the semantic context of the declaration.  We can't use
943  // PushDeclContext here because that context is not necessarily
944  // lexically contained in the current context.  Fortunately,
945  // the containing scope should have the appropriate information.
946
947  assert(!S->getEntity() && "scope already has entity");
948
949#ifndef NDEBUG
950  Scope *Ancestor = S->getParent();
951  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
952  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
953#endif
954
955  CurContext = DC;
956  S->setEntity(DC);
957}
958
959void Sema::ExitDeclaratorContext(Scope *S) {
960  assert(S->getEntity() == CurContext && "Context imbalance!");
961
962  // Switch back to the lexical context.  The safety of this is
963  // enforced by an assert in EnterDeclaratorContext.
964  Scope *Ancestor = S->getParent();
965  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
966  CurContext = (DeclContext*) Ancestor->getEntity();
967
968  // We don't need to do anything with the scope, which is going to
969  // disappear.
970}
971
972
973void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
974  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
975  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
976    // We assume that the caller has already called
977    // ActOnReenterTemplateScope
978    FD = TFD->getTemplatedDecl();
979  }
980  if (!FD)
981    return;
982
983  // Same implementation as PushDeclContext, but enters the context
984  // from the lexical parent, rather than the top-level class.
985  assert(CurContext == FD->getLexicalParent() &&
986    "The next DeclContext should be lexically contained in the current one.");
987  CurContext = FD;
988  S->setEntity(CurContext);
989
990  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
991    ParmVarDecl *Param = FD->getParamDecl(P);
992    // If the parameter has an identifier, then add it to the scope
993    if (Param->getIdentifier()) {
994      S->AddDecl(Param);
995      IdResolver.AddDecl(Param);
996    }
997  }
998}
999
1000
1001void Sema::ActOnExitFunctionContext() {
1002  // Same implementation as PopDeclContext, but returns to the lexical parent,
1003  // rather than the top-level class.
1004  assert(CurContext && "DeclContext imbalance!");
1005  CurContext = CurContext->getLexicalParent();
1006  assert(CurContext && "Popped translation unit!");
1007}
1008
1009
1010/// \brief Determine whether we allow overloading of the function
1011/// PrevDecl with another declaration.
1012///
1013/// This routine determines whether overloading is possible, not
1014/// whether some new function is actually an overload. It will return
1015/// true in C++ (where we can always provide overloads) or, as an
1016/// extension, in C when the previous function is already an
1017/// overloaded function declaration or has the "overloadable"
1018/// attribute.
1019static bool AllowOverloadingOfFunction(LookupResult &Previous,
1020                                       ASTContext &Context) {
1021  if (Context.getLangOpts().CPlusPlus)
1022    return true;
1023
1024  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1025    return true;
1026
1027  return (Previous.getResultKind() == LookupResult::Found
1028          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1029}
1030
1031/// Add this decl to the scope shadowed decl chains.
1032void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1033  // Move up the scope chain until we find the nearest enclosing
1034  // non-transparent context. The declaration will be introduced into this
1035  // scope.
1036  while (S->getEntity() &&
1037         ((DeclContext *)S->getEntity())->isTransparentContext())
1038    S = S->getParent();
1039
1040  // Add scoped declarations into their context, so that they can be
1041  // found later. Declarations without a context won't be inserted
1042  // into any context.
1043  if (AddToContext)
1044    CurContext->addDecl(D);
1045
1046  // Out-of-line definitions shouldn't be pushed into scope in C++.
1047  // Out-of-line variable and function definitions shouldn't even in C.
1048  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1049      D->isOutOfLine() &&
1050      !D->getDeclContext()->getRedeclContext()->Equals(
1051        D->getLexicalDeclContext()->getRedeclContext()))
1052    return;
1053
1054  // Template instantiations should also not be pushed into scope.
1055  if (isa<FunctionDecl>(D) &&
1056      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1057    return;
1058
1059  // If this replaces anything in the current scope,
1060  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1061                               IEnd = IdResolver.end();
1062  for (; I != IEnd; ++I) {
1063    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1064      S->RemoveDecl(*I);
1065      IdResolver.RemoveDecl(*I);
1066
1067      // Should only need to replace one decl.
1068      break;
1069    }
1070  }
1071
1072  S->AddDecl(D);
1073
1074  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1075    // Implicitly-generated labels may end up getting generated in an order that
1076    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1077    // the label at the appropriate place in the identifier chain.
1078    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1079      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1080      if (IDC == CurContext) {
1081        if (!S->isDeclScope(*I))
1082          continue;
1083      } else if (IDC->Encloses(CurContext))
1084        break;
1085    }
1086
1087    IdResolver.InsertDeclAfter(I, D);
1088  } else {
1089    IdResolver.AddDecl(D);
1090  }
1091}
1092
1093void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1094  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1095    TUScope->AddDecl(D);
1096}
1097
1098bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1099                         bool ExplicitInstantiationOrSpecialization) {
1100  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1101                                  ExplicitInstantiationOrSpecialization);
1102}
1103
1104Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1105  DeclContext *TargetDC = DC->getPrimaryContext();
1106  do {
1107    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1108      if (ScopeDC->getPrimaryContext() == TargetDC)
1109        return S;
1110  } while ((S = S->getParent()));
1111
1112  return 0;
1113}
1114
1115static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1116                                            DeclContext*,
1117                                            ASTContext&);
1118
1119/// Filters out lookup results that don't fall within the given scope
1120/// as determined by isDeclInScope.
1121void Sema::FilterLookupForScope(LookupResult &R,
1122                                DeclContext *Ctx, Scope *S,
1123                                bool ConsiderLinkage,
1124                                bool ExplicitInstantiationOrSpecialization) {
1125  LookupResult::Filter F = R.makeFilter();
1126  while (F.hasNext()) {
1127    NamedDecl *D = F.next();
1128
1129    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1130      continue;
1131
1132    if (ConsiderLinkage &&
1133        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1134      continue;
1135
1136    F.erase();
1137  }
1138
1139  F.done();
1140}
1141
1142static bool isUsingDecl(NamedDecl *D) {
1143  return isa<UsingShadowDecl>(D) ||
1144         isa<UnresolvedUsingTypenameDecl>(D) ||
1145         isa<UnresolvedUsingValueDecl>(D);
1146}
1147
1148/// Removes using shadow declarations from the lookup results.
1149static void RemoveUsingDecls(LookupResult &R) {
1150  LookupResult::Filter F = R.makeFilter();
1151  while (F.hasNext())
1152    if (isUsingDecl(F.next()))
1153      F.erase();
1154
1155  F.done();
1156}
1157
1158/// \brief Check for this common pattern:
1159/// @code
1160/// class S {
1161///   S(const S&); // DO NOT IMPLEMENT
1162///   void operator=(const S&); // DO NOT IMPLEMENT
1163/// };
1164/// @endcode
1165static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1166  // FIXME: Should check for private access too but access is set after we get
1167  // the decl here.
1168  if (D->doesThisDeclarationHaveABody())
1169    return false;
1170
1171  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1172    return CD->isCopyConstructor();
1173  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1174    return Method->isCopyAssignmentOperator();
1175  return false;
1176}
1177
1178bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1179  assert(D);
1180
1181  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1182    return false;
1183
1184  // Ignore class templates.
1185  if (D->getDeclContext()->isDependentContext() ||
1186      D->getLexicalDeclContext()->isDependentContext())
1187    return false;
1188
1189  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1190    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1191      return false;
1192
1193    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1194      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1195        return false;
1196    } else {
1197      // 'static inline' functions are used in headers; don't warn.
1198      if (FD->getStorageClass() == SC_Static &&
1199          FD->isInlineSpecified())
1200        return false;
1201    }
1202
1203    if (FD->doesThisDeclarationHaveABody() &&
1204        Context.DeclMustBeEmitted(FD))
1205      return false;
1206  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1207    if (!VD->isFileVarDecl() ||
1208        VD->getType().isConstant(Context) ||
1209        Context.DeclMustBeEmitted(VD))
1210      return false;
1211
1212    if (VD->isStaticDataMember() &&
1213        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1214      return false;
1215
1216  } else {
1217    return false;
1218  }
1219
1220  // Only warn for unused decls internal to the translation unit.
1221  if (D->getLinkage() == ExternalLinkage)
1222    return false;
1223
1224  return true;
1225}
1226
1227void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1228  if (!D)
1229    return;
1230
1231  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1232    const FunctionDecl *First = FD->getFirstDeclaration();
1233    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1234      return; // First should already be in the vector.
1235  }
1236
1237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1238    const VarDecl *First = VD->getFirstDeclaration();
1239    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1240      return; // First should already be in the vector.
1241  }
1242
1243  if (ShouldWarnIfUnusedFileScopedDecl(D))
1244    UnusedFileScopedDecls.push_back(D);
1245}
1246
1247static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1248  if (D->isInvalidDecl())
1249    return false;
1250
1251  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1252    return false;
1253
1254  if (isa<LabelDecl>(D))
1255    return true;
1256
1257  // White-list anything that isn't a local variable.
1258  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1259      !D->getDeclContext()->isFunctionOrMethod())
1260    return false;
1261
1262  // Types of valid local variables should be complete, so this should succeed.
1263  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1264
1265    // White-list anything with an __attribute__((unused)) type.
1266    QualType Ty = VD->getType();
1267
1268    // Only look at the outermost level of typedef.
1269    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1270      if (TT->getDecl()->hasAttr<UnusedAttr>())
1271        return false;
1272    }
1273
1274    // If we failed to complete the type for some reason, or if the type is
1275    // dependent, don't diagnose the variable.
1276    if (Ty->isIncompleteType() || Ty->isDependentType())
1277      return false;
1278
1279    if (const TagType *TT = Ty->getAs<TagType>()) {
1280      const TagDecl *Tag = TT->getDecl();
1281      if (Tag->hasAttr<UnusedAttr>())
1282        return false;
1283
1284      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1285        if (!RD->hasTrivialDestructor())
1286          return false;
1287
1288        if (const Expr *Init = VD->getInit()) {
1289          const CXXConstructExpr *Construct =
1290            dyn_cast<CXXConstructExpr>(Init);
1291          if (Construct && !Construct->isElidable()) {
1292            CXXConstructorDecl *CD = Construct->getConstructor();
1293            if (!CD->isTrivial())
1294              return false;
1295          }
1296        }
1297      }
1298    }
1299
1300    // TODO: __attribute__((unused)) templates?
1301  }
1302
1303  return true;
1304}
1305
1306static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1307                                     FixItHint &Hint) {
1308  if (isa<LabelDecl>(D)) {
1309    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1310                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1311    if (AfterColon.isInvalid())
1312      return;
1313    Hint = FixItHint::CreateRemoval(CharSourceRange::
1314                                    getCharRange(D->getLocStart(), AfterColon));
1315  }
1316  return;
1317}
1318
1319/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1320/// unless they are marked attr(unused).
1321void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1322  FixItHint Hint;
1323  if (!ShouldDiagnoseUnusedDecl(D))
1324    return;
1325
1326  GenerateFixForUnusedDecl(D, Context, Hint);
1327
1328  unsigned DiagID;
1329  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1330    DiagID = diag::warn_unused_exception_param;
1331  else if (isa<LabelDecl>(D))
1332    DiagID = diag::warn_unused_label;
1333  else
1334    DiagID = diag::warn_unused_variable;
1335
1336  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1337}
1338
1339static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1340  // Verify that we have no forward references left.  If so, there was a goto
1341  // or address of a label taken, but no definition of it.  Label fwd
1342  // definitions are indicated with a null substmt.
1343  if (L->getStmt() == 0)
1344    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1345}
1346
1347void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1348  if (S->decl_empty()) return;
1349  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1350         "Scope shouldn't contain decls!");
1351
1352  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1353       I != E; ++I) {
1354    Decl *TmpD = (*I);
1355    assert(TmpD && "This decl didn't get pushed??");
1356
1357    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1358    NamedDecl *D = cast<NamedDecl>(TmpD);
1359
1360    if (!D->getDeclName()) continue;
1361
1362    // Diagnose unused variables in this scope.
1363    if (!S->hasErrorOccurred())
1364      DiagnoseUnusedDecl(D);
1365
1366    // If this was a forward reference to a label, verify it was defined.
1367    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1368      CheckPoppedLabel(LD, *this);
1369
1370    // Remove this name from our lexical scope.
1371    IdResolver.RemoveDecl(D);
1372  }
1373}
1374
1375void Sema::ActOnStartFunctionDeclarator() {
1376  ++InFunctionDeclarator;
1377}
1378
1379void Sema::ActOnEndFunctionDeclarator() {
1380  assert(InFunctionDeclarator);
1381  --InFunctionDeclarator;
1382}
1383
1384/// \brief Look for an Objective-C class in the translation unit.
1385///
1386/// \param Id The name of the Objective-C class we're looking for. If
1387/// typo-correction fixes this name, the Id will be updated
1388/// to the fixed name.
1389///
1390/// \param IdLoc The location of the name in the translation unit.
1391///
1392/// \param DoTypoCorrection If true, this routine will attempt typo correction
1393/// if there is no class with the given name.
1394///
1395/// \returns The declaration of the named Objective-C class, or NULL if the
1396/// class could not be found.
1397ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1398                                              SourceLocation IdLoc,
1399                                              bool DoTypoCorrection) {
1400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1401  // creation from this context.
1402  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1403
1404  if (!IDecl && DoTypoCorrection) {
1405    // Perform typo correction at the given location, but only if we
1406    // find an Objective-C class name.
1407    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1408    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1409                                       LookupOrdinaryName, TUScope, NULL,
1410                                       Validator)) {
1411      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1412      Diag(IdLoc, diag::err_undef_interface_suggest)
1413        << Id << IDecl->getDeclName()
1414        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1415      Diag(IDecl->getLocation(), diag::note_previous_decl)
1416        << IDecl->getDeclName();
1417
1418      Id = IDecl->getIdentifier();
1419    }
1420  }
1421  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1422  // This routine must always return a class definition, if any.
1423  if (Def && Def->getDefinition())
1424      Def = Def->getDefinition();
1425  return Def;
1426}
1427
1428/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1429/// from S, where a non-field would be declared. This routine copes
1430/// with the difference between C and C++ scoping rules in structs and
1431/// unions. For example, the following code is well-formed in C but
1432/// ill-formed in C++:
1433/// @code
1434/// struct S6 {
1435///   enum { BAR } e;
1436/// };
1437///
1438/// void test_S6() {
1439///   struct S6 a;
1440///   a.e = BAR;
1441/// }
1442/// @endcode
1443/// For the declaration of BAR, this routine will return a different
1444/// scope. The scope S will be the scope of the unnamed enumeration
1445/// within S6. In C++, this routine will return the scope associated
1446/// with S6, because the enumeration's scope is a transparent
1447/// context but structures can contain non-field names. In C, this
1448/// routine will return the translation unit scope, since the
1449/// enumeration's scope is a transparent context and structures cannot
1450/// contain non-field names.
1451Scope *Sema::getNonFieldDeclScope(Scope *S) {
1452  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1453         (S->getEntity() &&
1454          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1455         (S->isClassScope() && !getLangOpts().CPlusPlus))
1456    S = S->getParent();
1457  return S;
1458}
1459
1460/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1461/// file scope.  lazily create a decl for it. ForRedeclaration is true
1462/// if we're creating this built-in in anticipation of redeclaring the
1463/// built-in.
1464NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1465                                     Scope *S, bool ForRedeclaration,
1466                                     SourceLocation Loc) {
1467  Builtin::ID BID = (Builtin::ID)bid;
1468
1469  ASTContext::GetBuiltinTypeError Error;
1470  QualType R = Context.GetBuiltinType(BID, Error);
1471  switch (Error) {
1472  case ASTContext::GE_None:
1473    // Okay
1474    break;
1475
1476  case ASTContext::GE_Missing_stdio:
1477    if (ForRedeclaration)
1478      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1479        << Context.BuiltinInfo.GetName(BID);
1480    return 0;
1481
1482  case ASTContext::GE_Missing_setjmp:
1483    if (ForRedeclaration)
1484      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1485        << Context.BuiltinInfo.GetName(BID);
1486    return 0;
1487
1488  case ASTContext::GE_Missing_ucontext:
1489    if (ForRedeclaration)
1490      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1491        << Context.BuiltinInfo.GetName(BID);
1492    return 0;
1493  }
1494
1495  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1496    Diag(Loc, diag::ext_implicit_lib_function_decl)
1497      << Context.BuiltinInfo.GetName(BID)
1498      << R;
1499    if (Context.BuiltinInfo.getHeaderName(BID) &&
1500        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1501          != DiagnosticsEngine::Ignored)
1502      Diag(Loc, diag::note_please_include_header)
1503        << Context.BuiltinInfo.getHeaderName(BID)
1504        << Context.BuiltinInfo.GetName(BID);
1505  }
1506
1507  FunctionDecl *New = FunctionDecl::Create(Context,
1508                                           Context.getTranslationUnitDecl(),
1509                                           Loc, Loc, II, R, /*TInfo=*/0,
1510                                           SC_Extern,
1511                                           SC_None, false,
1512                                           /*hasPrototype=*/true);
1513  New->setImplicit();
1514
1515  // Create Decl objects for each parameter, adding them to the
1516  // FunctionDecl.
1517  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1518    SmallVector<ParmVarDecl*, 16> Params;
1519    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1520      ParmVarDecl *parm =
1521        ParmVarDecl::Create(Context, New, SourceLocation(),
1522                            SourceLocation(), 0,
1523                            FT->getArgType(i), /*TInfo=*/0,
1524                            SC_None, SC_None, 0);
1525      parm->setScopeInfo(0, i);
1526      Params.push_back(parm);
1527    }
1528    New->setParams(Params);
1529  }
1530
1531  AddKnownFunctionAttributes(New);
1532
1533  // TUScope is the translation-unit scope to insert this function into.
1534  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1535  // relate Scopes to DeclContexts, and probably eliminate CurContext
1536  // entirely, but we're not there yet.
1537  DeclContext *SavedContext = CurContext;
1538  CurContext = Context.getTranslationUnitDecl();
1539  PushOnScopeChains(New, TUScope);
1540  CurContext = SavedContext;
1541  return New;
1542}
1543
1544bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1545  QualType OldType;
1546  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1547    OldType = OldTypedef->getUnderlyingType();
1548  else
1549    OldType = Context.getTypeDeclType(Old);
1550  QualType NewType = New->getUnderlyingType();
1551
1552  if (NewType->isVariablyModifiedType()) {
1553    // Must not redefine a typedef with a variably-modified type.
1554    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1555    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1556      << Kind << NewType;
1557    if (Old->getLocation().isValid())
1558      Diag(Old->getLocation(), diag::note_previous_definition);
1559    New->setInvalidDecl();
1560    return true;
1561  }
1562
1563  if (OldType != NewType &&
1564      !OldType->isDependentType() &&
1565      !NewType->isDependentType() &&
1566      !Context.hasSameType(OldType, NewType)) {
1567    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1568    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1569      << Kind << NewType << OldType;
1570    if (Old->getLocation().isValid())
1571      Diag(Old->getLocation(), diag::note_previous_definition);
1572    New->setInvalidDecl();
1573    return true;
1574  }
1575  return false;
1576}
1577
1578/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1579/// same name and scope as a previous declaration 'Old'.  Figure out
1580/// how to resolve this situation, merging decls or emitting
1581/// diagnostics as appropriate. If there was an error, set New to be invalid.
1582///
1583void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1584  // If the new decl is known invalid already, don't bother doing any
1585  // merging checks.
1586  if (New->isInvalidDecl()) return;
1587
1588  // Allow multiple definitions for ObjC built-in typedefs.
1589  // FIXME: Verify the underlying types are equivalent!
1590  if (getLangOpts().ObjC1) {
1591    const IdentifierInfo *TypeID = New->getIdentifier();
1592    switch (TypeID->getLength()) {
1593    default: break;
1594    case 2:
1595      {
1596        if (!TypeID->isStr("id"))
1597          break;
1598        QualType T = New->getUnderlyingType();
1599        if (!T->isPointerType())
1600          break;
1601        if (!T->isVoidPointerType()) {
1602          QualType PT = T->getAs<PointerType>()->getPointeeType();
1603          if (!PT->isStructureType())
1604            break;
1605        }
1606        Context.setObjCIdRedefinitionType(T);
1607        // Install the built-in type for 'id', ignoring the current definition.
1608        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1609        return;
1610      }
1611    case 5:
1612      if (!TypeID->isStr("Class"))
1613        break;
1614      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1615      // Install the built-in type for 'Class', ignoring the current definition.
1616      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1617      return;
1618    case 3:
1619      if (!TypeID->isStr("SEL"))
1620        break;
1621      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1622      // Install the built-in type for 'SEL', ignoring the current definition.
1623      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1624      return;
1625    }
1626    // Fall through - the typedef name was not a builtin type.
1627  }
1628
1629  // Verify the old decl was also a type.
1630  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1631  if (!Old) {
1632    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1633      << New->getDeclName();
1634
1635    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1636    if (OldD->getLocation().isValid())
1637      Diag(OldD->getLocation(), diag::note_previous_definition);
1638
1639    return New->setInvalidDecl();
1640  }
1641
1642  // If the old declaration is invalid, just give up here.
1643  if (Old->isInvalidDecl())
1644    return New->setInvalidDecl();
1645
1646  // If the typedef types are not identical, reject them in all languages and
1647  // with any extensions enabled.
1648  if (isIncompatibleTypedef(Old, New))
1649    return;
1650
1651  // The types match.  Link up the redeclaration chain if the old
1652  // declaration was a typedef.
1653  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1654    New->setPreviousDeclaration(Typedef);
1655
1656  if (getLangOpts().MicrosoftExt)
1657    return;
1658
1659  if (getLangOpts().CPlusPlus) {
1660    // C++ [dcl.typedef]p2:
1661    //   In a given non-class scope, a typedef specifier can be used to
1662    //   redefine the name of any type declared in that scope to refer
1663    //   to the type to which it already refers.
1664    if (!isa<CXXRecordDecl>(CurContext))
1665      return;
1666
1667    // C++0x [dcl.typedef]p4:
1668    //   In a given class scope, a typedef specifier can be used to redefine
1669    //   any class-name declared in that scope that is not also a typedef-name
1670    //   to refer to the type to which it already refers.
1671    //
1672    // This wording came in via DR424, which was a correction to the
1673    // wording in DR56, which accidentally banned code like:
1674    //
1675    //   struct S {
1676    //     typedef struct A { } A;
1677    //   };
1678    //
1679    // in the C++03 standard. We implement the C++0x semantics, which
1680    // allow the above but disallow
1681    //
1682    //   struct S {
1683    //     typedef int I;
1684    //     typedef int I;
1685    //   };
1686    //
1687    // since that was the intent of DR56.
1688    if (!isa<TypedefNameDecl>(Old))
1689      return;
1690
1691    Diag(New->getLocation(), diag::err_redefinition)
1692      << New->getDeclName();
1693    Diag(Old->getLocation(), diag::note_previous_definition);
1694    return New->setInvalidDecl();
1695  }
1696
1697  // Modules always permit redefinition of typedefs, as does C11.
1698  if (getLangOpts().Modules || getLangOpts().C11)
1699    return;
1700
1701  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1702  // is normally mapped to an error, but can be controlled with
1703  // -Wtypedef-redefinition.  If either the original or the redefinition is
1704  // in a system header, don't emit this for compatibility with GCC.
1705  if (getDiagnostics().getSuppressSystemWarnings() &&
1706      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1707       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1708    return;
1709
1710  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1711    << New->getDeclName();
1712  Diag(Old->getLocation(), diag::note_previous_definition);
1713  return;
1714}
1715
1716/// DeclhasAttr - returns true if decl Declaration already has the target
1717/// attribute.
1718static bool
1719DeclHasAttr(const Decl *D, const Attr *A) {
1720  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1721  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1722  // responsible for making sure they are consistent.
1723  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1724  if (AA)
1725    return false;
1726
1727  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1728  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1729  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1730    if ((*i)->getKind() == A->getKind()) {
1731      if (Ann) {
1732        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1733          return true;
1734        continue;
1735      }
1736      // FIXME: Don't hardcode this check
1737      if (OA && isa<OwnershipAttr>(*i))
1738        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1739      return true;
1740    }
1741
1742  return false;
1743}
1744
1745bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1746  InheritableAttr *NewAttr = NULL;
1747  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1748    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1749                                    AA->getIntroduced(), AA->getDeprecated(),
1750                                    AA->getObsoleted(), AA->getUnavailable(),
1751                                    AA->getMessage());
1752  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1753    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1754  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1755    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1756  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1757    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1758  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1759    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1760                              FA->getFormatIdx(), FA->getFirstArg());
1761  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1762    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1763  else if (!DeclHasAttr(D, Attr))
1764    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1765
1766  if (NewAttr) {
1767    NewAttr->setInherited(true);
1768    D->addAttr(NewAttr);
1769    return true;
1770  }
1771
1772  return false;
1773}
1774
1775static const Decl *getDefinition(const Decl *D) {
1776  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1777    return TD->getDefinition();
1778  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1779    return VD->getDefinition();
1780  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1781    const FunctionDecl* Def;
1782    if (FD->hasBody(Def))
1783      return Def;
1784  }
1785  return NULL;
1786}
1787
1788static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1789  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1790       I != E; ++I) {
1791    Attr *Attribute = *I;
1792    if (Attribute->getKind() == Kind)
1793      return true;
1794  }
1795  return false;
1796}
1797
1798/// checkNewAttributesAfterDef - If we already have a definition, check that
1799/// there are no new attributes in this declaration.
1800static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1801  if (!New->hasAttrs())
1802    return;
1803
1804  const Decl *Def = getDefinition(Old);
1805  if (!Def || Def == New)
1806    return;
1807
1808  AttrVec &NewAttributes = New->getAttrs();
1809  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1810    const Attr *NewAttribute = NewAttributes[I];
1811    if (hasAttribute(Def, NewAttribute->getKind())) {
1812      ++I;
1813      continue; // regular attr merging will take care of validating this.
1814    }
1815    S.Diag(NewAttribute->getLocation(),
1816           diag::warn_attribute_precede_definition);
1817    S.Diag(Def->getLocation(), diag::note_previous_definition);
1818    NewAttributes.erase(NewAttributes.begin() + I);
1819    --E;
1820  }
1821}
1822
1823/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1824void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1825                               bool MergeDeprecation) {
1826  // attributes declared post-definition are currently ignored
1827  checkNewAttributesAfterDef(*this, New, Old);
1828
1829  if (!Old->hasAttrs())
1830    return;
1831
1832  bool foundAny = New->hasAttrs();
1833
1834  // Ensure that any moving of objects within the allocated map is done before
1835  // we process them.
1836  if (!foundAny) New->setAttrs(AttrVec());
1837
1838  for (specific_attr_iterator<InheritableAttr>
1839         i = Old->specific_attr_begin<InheritableAttr>(),
1840         e = Old->specific_attr_end<InheritableAttr>();
1841       i != e; ++i) {
1842    // Ignore deprecated/unavailable/availability attributes if requested.
1843    if (!MergeDeprecation &&
1844        (isa<DeprecatedAttr>(*i) ||
1845         isa<UnavailableAttr>(*i) ||
1846         isa<AvailabilityAttr>(*i)))
1847      continue;
1848
1849    if (mergeDeclAttribute(New, *i))
1850      foundAny = true;
1851  }
1852
1853  if (!foundAny) New->dropAttrs();
1854}
1855
1856/// mergeParamDeclAttributes - Copy attributes from the old parameter
1857/// to the new one.
1858static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1859                                     const ParmVarDecl *oldDecl,
1860                                     ASTContext &C) {
1861  if (!oldDecl->hasAttrs())
1862    return;
1863
1864  bool foundAny = newDecl->hasAttrs();
1865
1866  // Ensure that any moving of objects within the allocated map is
1867  // done before we process them.
1868  if (!foundAny) newDecl->setAttrs(AttrVec());
1869
1870  for (specific_attr_iterator<InheritableParamAttr>
1871       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1872       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1873    if (!DeclHasAttr(newDecl, *i)) {
1874      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1875      newAttr->setInherited(true);
1876      newDecl->addAttr(newAttr);
1877      foundAny = true;
1878    }
1879  }
1880
1881  if (!foundAny) newDecl->dropAttrs();
1882}
1883
1884namespace {
1885
1886/// Used in MergeFunctionDecl to keep track of function parameters in
1887/// C.
1888struct GNUCompatibleParamWarning {
1889  ParmVarDecl *OldParm;
1890  ParmVarDecl *NewParm;
1891  QualType PromotedType;
1892};
1893
1894}
1895
1896/// getSpecialMember - get the special member enum for a method.
1897Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1898  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1899    if (Ctor->isDefaultConstructor())
1900      return Sema::CXXDefaultConstructor;
1901
1902    if (Ctor->isCopyConstructor())
1903      return Sema::CXXCopyConstructor;
1904
1905    if (Ctor->isMoveConstructor())
1906      return Sema::CXXMoveConstructor;
1907  } else if (isa<CXXDestructorDecl>(MD)) {
1908    return Sema::CXXDestructor;
1909  } else if (MD->isCopyAssignmentOperator()) {
1910    return Sema::CXXCopyAssignment;
1911  } else if (MD->isMoveAssignmentOperator()) {
1912    return Sema::CXXMoveAssignment;
1913  }
1914
1915  return Sema::CXXInvalid;
1916}
1917
1918/// canRedefineFunction - checks if a function can be redefined. Currently,
1919/// only extern inline functions can be redefined, and even then only in
1920/// GNU89 mode.
1921static bool canRedefineFunction(const FunctionDecl *FD,
1922                                const LangOptions& LangOpts) {
1923  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1924          !LangOpts.CPlusPlus &&
1925          FD->isInlineSpecified() &&
1926          FD->getStorageClass() == SC_Extern);
1927}
1928
1929/// Is the given calling convention the ABI default for the given
1930/// declaration?
1931static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1932  CallingConv ABIDefaultCC;
1933  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1934    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1935  } else {
1936    // Free C function or a static method.
1937    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1938  }
1939  return ABIDefaultCC == CC;
1940}
1941
1942/// MergeFunctionDecl - We just parsed a function 'New' from
1943/// declarator D which has the same name and scope as a previous
1944/// declaration 'Old'.  Figure out how to resolve this situation,
1945/// merging decls or emitting diagnostics as appropriate.
1946///
1947/// In C++, New and Old must be declarations that are not
1948/// overloaded. Use IsOverload to determine whether New and Old are
1949/// overloaded, and to select the Old declaration that New should be
1950/// merged with.
1951///
1952/// Returns true if there was an error, false otherwise.
1953bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1954  // Verify the old decl was also a function.
1955  FunctionDecl *Old = 0;
1956  if (FunctionTemplateDecl *OldFunctionTemplate
1957        = dyn_cast<FunctionTemplateDecl>(OldD))
1958    Old = OldFunctionTemplate->getTemplatedDecl();
1959  else
1960    Old = dyn_cast<FunctionDecl>(OldD);
1961  if (!Old) {
1962    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1963      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1964      Diag(Shadow->getTargetDecl()->getLocation(),
1965           diag::note_using_decl_target);
1966      Diag(Shadow->getUsingDecl()->getLocation(),
1967           diag::note_using_decl) << 0;
1968      return true;
1969    }
1970
1971    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1972      << New->getDeclName();
1973    Diag(OldD->getLocation(), diag::note_previous_definition);
1974    return true;
1975  }
1976
1977  // Determine whether the previous declaration was a definition,
1978  // implicit declaration, or a declaration.
1979  diag::kind PrevDiag;
1980  if (Old->isThisDeclarationADefinition())
1981    PrevDiag = diag::note_previous_definition;
1982  else if (Old->isImplicit())
1983    PrevDiag = diag::note_previous_implicit_declaration;
1984  else
1985    PrevDiag = diag::note_previous_declaration;
1986
1987  QualType OldQType = Context.getCanonicalType(Old->getType());
1988  QualType NewQType = Context.getCanonicalType(New->getType());
1989
1990  // Don't complain about this if we're in GNU89 mode and the old function
1991  // is an extern inline function.
1992  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1993      New->getStorageClass() == SC_Static &&
1994      Old->getStorageClass() != SC_Static &&
1995      !canRedefineFunction(Old, getLangOpts())) {
1996    if (getLangOpts().MicrosoftExt) {
1997      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1998      Diag(Old->getLocation(), PrevDiag);
1999    } else {
2000      Diag(New->getLocation(), diag::err_static_non_static) << New;
2001      Diag(Old->getLocation(), PrevDiag);
2002      return true;
2003    }
2004  }
2005
2006  // If a function is first declared with a calling convention, but is
2007  // later declared or defined without one, the second decl assumes the
2008  // calling convention of the first.
2009  //
2010  // It's OK if a function is first declared without a calling convention,
2011  // but is later declared or defined with the default calling convention.
2012  //
2013  // For the new decl, we have to look at the NON-canonical type to tell the
2014  // difference between a function that really doesn't have a calling
2015  // convention and one that is declared cdecl. That's because in
2016  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2017  // because it is the default calling convention.
2018  //
2019  // Note also that we DO NOT return at this point, because we still have
2020  // other tests to run.
2021  const FunctionType *OldType = cast<FunctionType>(OldQType);
2022  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2023  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2024  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2025  bool RequiresAdjustment = false;
2026  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2027    // Fast path: nothing to do.
2028
2029  // Inherit the CC from the previous declaration if it was specified
2030  // there but not here.
2031  } else if (NewTypeInfo.getCC() == CC_Default) {
2032    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2033    RequiresAdjustment = true;
2034
2035  // Don't complain about mismatches when the default CC is
2036  // effectively the same as the explict one.
2037  } else if (OldTypeInfo.getCC() == CC_Default &&
2038             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2039    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2040    RequiresAdjustment = true;
2041
2042  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2043                                     NewTypeInfo.getCC())) {
2044    // Calling conventions really aren't compatible, so complain.
2045    Diag(New->getLocation(), diag::err_cconv_change)
2046      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2047      << (OldTypeInfo.getCC() == CC_Default)
2048      << (OldTypeInfo.getCC() == CC_Default ? "" :
2049          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2050    Diag(Old->getLocation(), diag::note_previous_declaration);
2051    return true;
2052  }
2053
2054  // FIXME: diagnose the other way around?
2055  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2056    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2057    RequiresAdjustment = true;
2058  }
2059
2060  // Merge regparm attribute.
2061  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2062      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2063    if (NewTypeInfo.getHasRegParm()) {
2064      Diag(New->getLocation(), diag::err_regparm_mismatch)
2065        << NewType->getRegParmType()
2066        << OldType->getRegParmType();
2067      Diag(Old->getLocation(), diag::note_previous_declaration);
2068      return true;
2069    }
2070
2071    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2072    RequiresAdjustment = true;
2073  }
2074
2075  // Merge ns_returns_retained attribute.
2076  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2077    if (NewTypeInfo.getProducesResult()) {
2078      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2079      Diag(Old->getLocation(), diag::note_previous_declaration);
2080      return true;
2081    }
2082
2083    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2084    RequiresAdjustment = true;
2085  }
2086
2087  if (RequiresAdjustment) {
2088    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2089    New->setType(QualType(NewType, 0));
2090    NewQType = Context.getCanonicalType(New->getType());
2091  }
2092
2093  if (getLangOpts().CPlusPlus) {
2094    // (C++98 13.1p2):
2095    //   Certain function declarations cannot be overloaded:
2096    //     -- Function declarations that differ only in the return type
2097    //        cannot be overloaded.
2098    QualType OldReturnType = OldType->getResultType();
2099    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2100    QualType ResQT;
2101    if (OldReturnType != NewReturnType) {
2102      if (NewReturnType->isObjCObjectPointerType()
2103          && OldReturnType->isObjCObjectPointerType())
2104        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2105      if (ResQT.isNull()) {
2106        if (New->isCXXClassMember() && New->isOutOfLine())
2107          Diag(New->getLocation(),
2108               diag::err_member_def_does_not_match_ret_type) << New;
2109        else
2110          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2111        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2112        return true;
2113      }
2114      else
2115        NewQType = ResQT;
2116    }
2117
2118    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2119    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2120    if (OldMethod && NewMethod) {
2121      // Preserve triviality.
2122      NewMethod->setTrivial(OldMethod->isTrivial());
2123
2124      // MSVC allows explicit template specialization at class scope:
2125      // 2 CXMethodDecls referring to the same function will be injected.
2126      // We don't want a redeclartion error.
2127      bool IsClassScopeExplicitSpecialization =
2128                              OldMethod->isFunctionTemplateSpecialization() &&
2129                              NewMethod->isFunctionTemplateSpecialization();
2130      bool isFriend = NewMethod->getFriendObjectKind();
2131
2132      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2133          !IsClassScopeExplicitSpecialization) {
2134        //    -- Member function declarations with the same name and the
2135        //       same parameter types cannot be overloaded if any of them
2136        //       is a static member function declaration.
2137        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2138          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2139          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2140          return true;
2141        }
2142
2143        // C++ [class.mem]p1:
2144        //   [...] A member shall not be declared twice in the
2145        //   member-specification, except that a nested class or member
2146        //   class template can be declared and then later defined.
2147        if (ActiveTemplateInstantiations.empty()) {
2148          unsigned NewDiag;
2149          if (isa<CXXConstructorDecl>(OldMethod))
2150            NewDiag = diag::err_constructor_redeclared;
2151          else if (isa<CXXDestructorDecl>(NewMethod))
2152            NewDiag = diag::err_destructor_redeclared;
2153          else if (isa<CXXConversionDecl>(NewMethod))
2154            NewDiag = diag::err_conv_function_redeclared;
2155          else
2156            NewDiag = diag::err_member_redeclared;
2157
2158          Diag(New->getLocation(), NewDiag);
2159        } else {
2160          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2161            << New << New->getType();
2162        }
2163        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2164
2165      // Complain if this is an explicit declaration of a special
2166      // member that was initially declared implicitly.
2167      //
2168      // As an exception, it's okay to befriend such methods in order
2169      // to permit the implicit constructor/destructor/operator calls.
2170      } else if (OldMethod->isImplicit()) {
2171        if (isFriend) {
2172          NewMethod->setImplicit();
2173        } else {
2174          Diag(NewMethod->getLocation(),
2175               diag::err_definition_of_implicitly_declared_member)
2176            << New << getSpecialMember(OldMethod);
2177          return true;
2178        }
2179      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2180        Diag(NewMethod->getLocation(),
2181             diag::err_definition_of_explicitly_defaulted_member)
2182          << getSpecialMember(OldMethod);
2183        return true;
2184      }
2185    }
2186
2187    // (C++98 8.3.5p3):
2188    //   All declarations for a function shall agree exactly in both the
2189    //   return type and the parameter-type-list.
2190    // We also want to respect all the extended bits except noreturn.
2191
2192    // noreturn should now match unless the old type info didn't have it.
2193    QualType OldQTypeForComparison = OldQType;
2194    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2195      assert(OldQType == QualType(OldType, 0));
2196      const FunctionType *OldTypeForComparison
2197        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2198      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2199      assert(OldQTypeForComparison.isCanonical());
2200    }
2201
2202    if (OldQTypeForComparison == NewQType)
2203      return MergeCompatibleFunctionDecls(New, Old, S);
2204
2205    // Fall through for conflicting redeclarations and redefinitions.
2206  }
2207
2208  // C: Function types need to be compatible, not identical. This handles
2209  // duplicate function decls like "void f(int); void f(enum X);" properly.
2210  if (!getLangOpts().CPlusPlus &&
2211      Context.typesAreCompatible(OldQType, NewQType)) {
2212    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2213    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2214    const FunctionProtoType *OldProto = 0;
2215    if (isa<FunctionNoProtoType>(NewFuncType) &&
2216        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2217      // The old declaration provided a function prototype, but the
2218      // new declaration does not. Merge in the prototype.
2219      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2220      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2221                                                 OldProto->arg_type_end());
2222      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2223                                         ParamTypes.data(), ParamTypes.size(),
2224                                         OldProto->getExtProtoInfo());
2225      New->setType(NewQType);
2226      New->setHasInheritedPrototype();
2227
2228      // Synthesize a parameter for each argument type.
2229      SmallVector<ParmVarDecl*, 16> Params;
2230      for (FunctionProtoType::arg_type_iterator
2231             ParamType = OldProto->arg_type_begin(),
2232             ParamEnd = OldProto->arg_type_end();
2233           ParamType != ParamEnd; ++ParamType) {
2234        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2235                                                 SourceLocation(),
2236                                                 SourceLocation(), 0,
2237                                                 *ParamType, /*TInfo=*/0,
2238                                                 SC_None, SC_None,
2239                                                 0);
2240        Param->setScopeInfo(0, Params.size());
2241        Param->setImplicit();
2242        Params.push_back(Param);
2243      }
2244
2245      New->setParams(Params);
2246    }
2247
2248    return MergeCompatibleFunctionDecls(New, Old, S);
2249  }
2250
2251  // GNU C permits a K&R definition to follow a prototype declaration
2252  // if the declared types of the parameters in the K&R definition
2253  // match the types in the prototype declaration, even when the
2254  // promoted types of the parameters from the K&R definition differ
2255  // from the types in the prototype. GCC then keeps the types from
2256  // the prototype.
2257  //
2258  // If a variadic prototype is followed by a non-variadic K&R definition,
2259  // the K&R definition becomes variadic.  This is sort of an edge case, but
2260  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2261  // C99 6.9.1p8.
2262  if (!getLangOpts().CPlusPlus &&
2263      Old->hasPrototype() && !New->hasPrototype() &&
2264      New->getType()->getAs<FunctionProtoType>() &&
2265      Old->getNumParams() == New->getNumParams()) {
2266    SmallVector<QualType, 16> ArgTypes;
2267    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2268    const FunctionProtoType *OldProto
2269      = Old->getType()->getAs<FunctionProtoType>();
2270    const FunctionProtoType *NewProto
2271      = New->getType()->getAs<FunctionProtoType>();
2272
2273    // Determine whether this is the GNU C extension.
2274    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2275                                               NewProto->getResultType());
2276    bool LooseCompatible = !MergedReturn.isNull();
2277    for (unsigned Idx = 0, End = Old->getNumParams();
2278         LooseCompatible && Idx != End; ++Idx) {
2279      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2280      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2281      if (Context.typesAreCompatible(OldParm->getType(),
2282                                     NewProto->getArgType(Idx))) {
2283        ArgTypes.push_back(NewParm->getType());
2284      } else if (Context.typesAreCompatible(OldParm->getType(),
2285                                            NewParm->getType(),
2286                                            /*CompareUnqualified=*/true)) {
2287        GNUCompatibleParamWarning Warn
2288          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2289        Warnings.push_back(Warn);
2290        ArgTypes.push_back(NewParm->getType());
2291      } else
2292        LooseCompatible = false;
2293    }
2294
2295    if (LooseCompatible) {
2296      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2297        Diag(Warnings[Warn].NewParm->getLocation(),
2298             diag::ext_param_promoted_not_compatible_with_prototype)
2299          << Warnings[Warn].PromotedType
2300          << Warnings[Warn].OldParm->getType();
2301        if (Warnings[Warn].OldParm->getLocation().isValid())
2302          Diag(Warnings[Warn].OldParm->getLocation(),
2303               diag::note_previous_declaration);
2304      }
2305
2306      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2307                                           ArgTypes.size(),
2308                                           OldProto->getExtProtoInfo()));
2309      return MergeCompatibleFunctionDecls(New, Old, S);
2310    }
2311
2312    // Fall through to diagnose conflicting types.
2313  }
2314
2315  // A function that has already been declared has been redeclared or defined
2316  // with a different type- show appropriate diagnostic
2317  if (unsigned BuiltinID = Old->getBuiltinID()) {
2318    // The user has declared a builtin function with an incompatible
2319    // signature.
2320    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2321      // The function the user is redeclaring is a library-defined
2322      // function like 'malloc' or 'printf'. Warn about the
2323      // redeclaration, then pretend that we don't know about this
2324      // library built-in.
2325      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2326      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2327        << Old << Old->getType();
2328      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2329      Old->setInvalidDecl();
2330      return false;
2331    }
2332
2333    PrevDiag = diag::note_previous_builtin_declaration;
2334  }
2335
2336  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2337  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2338  return true;
2339}
2340
2341/// \brief Completes the merge of two function declarations that are
2342/// known to be compatible.
2343///
2344/// This routine handles the merging of attributes and other
2345/// properties of function declarations form the old declaration to
2346/// the new declaration, once we know that New is in fact a
2347/// redeclaration of Old.
2348///
2349/// \returns false
2350bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2351                                        Scope *S) {
2352  // Merge the attributes
2353  mergeDeclAttributes(New, Old);
2354
2355  // Merge the storage class.
2356  if (Old->getStorageClass() != SC_Extern &&
2357      Old->getStorageClass() != SC_None)
2358    New->setStorageClass(Old->getStorageClass());
2359
2360  // Merge "pure" flag.
2361  if (Old->isPure())
2362    New->setPure();
2363
2364  // Merge attributes from the parameters.  These can mismatch with K&R
2365  // declarations.
2366  if (New->getNumParams() == Old->getNumParams())
2367    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2368      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2369                               Context);
2370
2371  if (getLangOpts().CPlusPlus)
2372    return MergeCXXFunctionDecl(New, Old, S);
2373
2374  return false;
2375}
2376
2377
2378void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2379                                ObjCMethodDecl *oldMethod) {
2380
2381  // Merge the attributes, including deprecated/unavailable
2382  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2383
2384  // Merge attributes from the parameters.
2385  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2386                                       oe = oldMethod->param_end();
2387  for (ObjCMethodDecl::param_iterator
2388         ni = newMethod->param_begin(), ne = newMethod->param_end();
2389       ni != ne && oi != oe; ++ni, ++oi)
2390    mergeParamDeclAttributes(*ni, *oi, Context);
2391
2392  CheckObjCMethodOverride(newMethod, oldMethod, true);
2393}
2394
2395/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2396/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2397/// emitting diagnostics as appropriate.
2398///
2399/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2400/// to here in AddInitializerToDecl. We can't check them before the initializer
2401/// is attached.
2402void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2403  if (New->isInvalidDecl() || Old->isInvalidDecl())
2404    return;
2405
2406  QualType MergedT;
2407  if (getLangOpts().CPlusPlus) {
2408    AutoType *AT = New->getType()->getContainedAutoType();
2409    if (AT && !AT->isDeduced()) {
2410      // We don't know what the new type is until the initializer is attached.
2411      return;
2412    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2413      // These could still be something that needs exception specs checked.
2414      return MergeVarDeclExceptionSpecs(New, Old);
2415    }
2416    // C++ [basic.link]p10:
2417    //   [...] the types specified by all declarations referring to a given
2418    //   object or function shall be identical, except that declarations for an
2419    //   array object can specify array types that differ by the presence or
2420    //   absence of a major array bound (8.3.4).
2421    else if (Old->getType()->isIncompleteArrayType() &&
2422             New->getType()->isArrayType()) {
2423      CanQual<ArrayType> OldArray
2424        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2425      CanQual<ArrayType> NewArray
2426        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2427      if (OldArray->getElementType() == NewArray->getElementType())
2428        MergedT = New->getType();
2429    } else if (Old->getType()->isArrayType() &&
2430             New->getType()->isIncompleteArrayType()) {
2431      CanQual<ArrayType> OldArray
2432        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2433      CanQual<ArrayType> NewArray
2434        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2435      if (OldArray->getElementType() == NewArray->getElementType())
2436        MergedT = Old->getType();
2437    } else if (New->getType()->isObjCObjectPointerType()
2438               && Old->getType()->isObjCObjectPointerType()) {
2439        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2440                                                        Old->getType());
2441    }
2442  } else {
2443    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2444  }
2445  if (MergedT.isNull()) {
2446    Diag(New->getLocation(), diag::err_redefinition_different_type)
2447      << New->getDeclName();
2448    Diag(Old->getLocation(), diag::note_previous_definition);
2449    return New->setInvalidDecl();
2450  }
2451  New->setType(MergedT);
2452}
2453
2454/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2455/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2456/// situation, merging decls or emitting diagnostics as appropriate.
2457///
2458/// Tentative definition rules (C99 6.9.2p2) are checked by
2459/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2460/// definitions here, since the initializer hasn't been attached.
2461///
2462void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2463  // If the new decl is already invalid, don't do any other checking.
2464  if (New->isInvalidDecl())
2465    return;
2466
2467  // Verify the old decl was also a variable.
2468  VarDecl *Old = 0;
2469  if (!Previous.isSingleResult() ||
2470      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2471    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2472      << New->getDeclName();
2473    Diag(Previous.getRepresentativeDecl()->getLocation(),
2474         diag::note_previous_definition);
2475    return New->setInvalidDecl();
2476  }
2477
2478  // C++ [class.mem]p1:
2479  //   A member shall not be declared twice in the member-specification [...]
2480  //
2481  // Here, we need only consider static data members.
2482  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2483    Diag(New->getLocation(), diag::err_duplicate_member)
2484      << New->getIdentifier();
2485    Diag(Old->getLocation(), diag::note_previous_declaration);
2486    New->setInvalidDecl();
2487  }
2488
2489  mergeDeclAttributes(New, Old);
2490  // Warn if an already-declared variable is made a weak_import in a subsequent
2491  // declaration
2492  if (New->getAttr<WeakImportAttr>() &&
2493      Old->getStorageClass() == SC_None &&
2494      !Old->getAttr<WeakImportAttr>()) {
2495    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2496    Diag(Old->getLocation(), diag::note_previous_definition);
2497    // Remove weak_import attribute on new declaration.
2498    New->dropAttr<WeakImportAttr>();
2499  }
2500
2501  // Merge the types.
2502  MergeVarDeclTypes(New, Old);
2503  if (New->isInvalidDecl())
2504    return;
2505
2506  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2507  if (New->getStorageClass() == SC_Static &&
2508      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2509    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2510    Diag(Old->getLocation(), diag::note_previous_definition);
2511    return New->setInvalidDecl();
2512  }
2513  // C99 6.2.2p4:
2514  //   For an identifier declared with the storage-class specifier
2515  //   extern in a scope in which a prior declaration of that
2516  //   identifier is visible,23) if the prior declaration specifies
2517  //   internal or external linkage, the linkage of the identifier at
2518  //   the later declaration is the same as the linkage specified at
2519  //   the prior declaration. If no prior declaration is visible, or
2520  //   if the prior declaration specifies no linkage, then the
2521  //   identifier has external linkage.
2522  if (New->hasExternalStorage() && Old->hasLinkage())
2523    /* Okay */;
2524  else if (New->getStorageClass() != SC_Static &&
2525           Old->getStorageClass() == SC_Static) {
2526    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2527    Diag(Old->getLocation(), diag::note_previous_definition);
2528    return New->setInvalidDecl();
2529  }
2530
2531  // Check if extern is followed by non-extern and vice-versa.
2532  if (New->hasExternalStorage() &&
2533      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2534    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2535    Diag(Old->getLocation(), diag::note_previous_definition);
2536    return New->setInvalidDecl();
2537  }
2538  if (Old->hasExternalStorage() &&
2539      !New->hasLinkage() && New->isLocalVarDecl()) {
2540    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2541    Diag(Old->getLocation(), diag::note_previous_definition);
2542    return New->setInvalidDecl();
2543  }
2544
2545  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2546
2547  // FIXME: The test for external storage here seems wrong? We still
2548  // need to check for mismatches.
2549  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2550      // Don't complain about out-of-line definitions of static members.
2551      !(Old->getLexicalDeclContext()->isRecord() &&
2552        !New->getLexicalDeclContext()->isRecord())) {
2553    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2554    Diag(Old->getLocation(), diag::note_previous_definition);
2555    return New->setInvalidDecl();
2556  }
2557
2558  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2559    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2560    Diag(Old->getLocation(), diag::note_previous_definition);
2561  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2562    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2563    Diag(Old->getLocation(), diag::note_previous_definition);
2564  }
2565
2566  // C++ doesn't have tentative definitions, so go right ahead and check here.
2567  const VarDecl *Def;
2568  if (getLangOpts().CPlusPlus &&
2569      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2570      (Def = Old->getDefinition())) {
2571    Diag(New->getLocation(), diag::err_redefinition)
2572      << New->getDeclName();
2573    Diag(Def->getLocation(), diag::note_previous_definition);
2574    New->setInvalidDecl();
2575    return;
2576  }
2577  // c99 6.2.2 P4.
2578  // For an identifier declared with the storage-class specifier extern in a
2579  // scope in which a prior declaration of that identifier is visible, if
2580  // the prior declaration specifies internal or external linkage, the linkage
2581  // of the identifier at the later declaration is the same as the linkage
2582  // specified at the prior declaration.
2583  // FIXME. revisit this code.
2584  if (New->hasExternalStorage() &&
2585      Old->getLinkage() == InternalLinkage &&
2586      New->getDeclContext() == Old->getDeclContext())
2587    New->setStorageClass(Old->getStorageClass());
2588
2589  // Keep a chain of previous declarations.
2590  New->setPreviousDeclaration(Old);
2591
2592  // Inherit access appropriately.
2593  New->setAccess(Old->getAccess());
2594}
2595
2596/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2597/// no declarator (e.g. "struct foo;") is parsed.
2598Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2599                                       DeclSpec &DS) {
2600  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2601}
2602
2603/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2604/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2605/// parameters to cope with template friend declarations.
2606Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2607                                       DeclSpec &DS,
2608                                       MultiTemplateParamsArg TemplateParams) {
2609  Decl *TagD = 0;
2610  TagDecl *Tag = 0;
2611  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2612      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2613      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2614      DS.getTypeSpecType() == DeclSpec::TST_union ||
2615      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2616    TagD = DS.getRepAsDecl();
2617
2618    if (!TagD) // We probably had an error
2619      return 0;
2620
2621    // Note that the above type specs guarantee that the
2622    // type rep is a Decl, whereas in many of the others
2623    // it's a Type.
2624    if (isa<TagDecl>(TagD))
2625      Tag = cast<TagDecl>(TagD);
2626    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2627      Tag = CTD->getTemplatedDecl();
2628  }
2629
2630  if (Tag) {
2631    Tag->setFreeStanding();
2632    if (Tag->isInvalidDecl())
2633      return Tag;
2634  }
2635
2636  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2637    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2638    // or incomplete types shall not be restrict-qualified."
2639    if (TypeQuals & DeclSpec::TQ_restrict)
2640      Diag(DS.getRestrictSpecLoc(),
2641           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2642           << DS.getSourceRange();
2643  }
2644
2645  if (DS.isConstexprSpecified()) {
2646    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2647    // and definitions of functions and variables.
2648    if (Tag)
2649      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2650        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2651            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2652            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2653            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2654    else
2655      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2656    // Don't emit warnings after this error.
2657    return TagD;
2658  }
2659
2660  if (DS.isFriendSpecified()) {
2661    // If we're dealing with a decl but not a TagDecl, assume that
2662    // whatever routines created it handled the friendship aspect.
2663    if (TagD && !Tag)
2664      return 0;
2665    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2666  }
2667
2668  // Track whether we warned about the fact that there aren't any
2669  // declarators.
2670  bool emittedWarning = false;
2671
2672  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2673    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2674        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2675      if (getLangOpts().CPlusPlus ||
2676          Record->getDeclContext()->isRecord())
2677        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2678
2679      Diag(DS.getLocStart(), diag::ext_no_declarators)
2680        << DS.getSourceRange();
2681      emittedWarning = true;
2682    }
2683  }
2684
2685  // Check for Microsoft C extension: anonymous struct.
2686  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2687      CurContext->isRecord() &&
2688      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2689    // Handle 2 kinds of anonymous struct:
2690    //   struct STRUCT;
2691    // and
2692    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2693    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2694    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2695        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2696         DS.getRepAsType().get()->isStructureType())) {
2697      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2698        << DS.getSourceRange();
2699      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2700    }
2701  }
2702
2703  if (getLangOpts().CPlusPlus &&
2704      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2705    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2706      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2707          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2708        Diag(Enum->getLocation(), diag::ext_no_declarators)
2709          << DS.getSourceRange();
2710        emittedWarning = true;
2711      }
2712
2713  // Skip all the checks below if we have a type error.
2714  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2715
2716  if (!DS.isMissingDeclaratorOk()) {
2717    // Warn about typedefs of enums without names, since this is an
2718    // extension in both Microsoft and GNU.
2719    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2720        Tag && isa<EnumDecl>(Tag)) {
2721      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2722        << DS.getSourceRange();
2723      return Tag;
2724    }
2725
2726    Diag(DS.getLocStart(), diag::ext_no_declarators)
2727      << DS.getSourceRange();
2728    emittedWarning = true;
2729  }
2730
2731  // We're going to complain about a bunch of spurious specifiers;
2732  // only do this if we're declaring a tag, because otherwise we
2733  // should be getting diag::ext_no_declarators.
2734  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2735    return TagD;
2736
2737  // Note that a linkage-specification sets a storage class, but
2738  // 'extern "C" struct foo;' is actually valid and not theoretically
2739  // useless.
2740  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2741    if (!DS.isExternInLinkageSpec())
2742      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2743        << DeclSpec::getSpecifierName(scs);
2744
2745  if (DS.isThreadSpecified())
2746    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2747  if (DS.getTypeQualifiers()) {
2748    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2749      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2750    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2751      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2752    // Restrict is covered above.
2753  }
2754  if (DS.isInlineSpecified())
2755    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2756  if (DS.isVirtualSpecified())
2757    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2758  if (DS.isExplicitSpecified())
2759    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2760
2761  if (DS.isModulePrivateSpecified() &&
2762      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2763    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2764      << Tag->getTagKind()
2765      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2766
2767  // Warn about ignored type attributes, for example:
2768  // __attribute__((aligned)) struct A;
2769  // Attributes should be placed after tag to apply to type declaration.
2770  if (!DS.getAttributes().empty()) {
2771    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2772    if (TypeSpecType == DeclSpec::TST_class ||
2773        TypeSpecType == DeclSpec::TST_struct ||
2774        TypeSpecType == DeclSpec::TST_interface ||
2775        TypeSpecType == DeclSpec::TST_union ||
2776        TypeSpecType == DeclSpec::TST_enum) {
2777      AttributeList* attrs = DS.getAttributes().getList();
2778      while (attrs) {
2779        Diag(attrs->getScopeLoc(),
2780             diag::warn_declspec_attribute_ignored)
2781        << attrs->getName()
2782        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2783            TypeSpecType == DeclSpec::TST_struct ? 1 :
2784            TypeSpecType == DeclSpec::TST_union ? 2 :
2785            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2786        attrs = attrs->getNext();
2787      }
2788    }
2789  }
2790
2791  ActOnDocumentableDecl(TagD);
2792
2793  return TagD;
2794}
2795
2796/// We are trying to inject an anonymous member into the given scope;
2797/// check if there's an existing declaration that can't be overloaded.
2798///
2799/// \return true if this is a forbidden redeclaration
2800static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2801                                         Scope *S,
2802                                         DeclContext *Owner,
2803                                         DeclarationName Name,
2804                                         SourceLocation NameLoc,
2805                                         unsigned diagnostic) {
2806  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2807                 Sema::ForRedeclaration);
2808  if (!SemaRef.LookupName(R, S)) return false;
2809
2810  if (R.getAsSingle<TagDecl>())
2811    return false;
2812
2813  // Pick a representative declaration.
2814  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2815  assert(PrevDecl && "Expected a non-null Decl");
2816
2817  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2818    return false;
2819
2820  SemaRef.Diag(NameLoc, diagnostic) << Name;
2821  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2822
2823  return true;
2824}
2825
2826/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2827/// anonymous struct or union AnonRecord into the owning context Owner
2828/// and scope S. This routine will be invoked just after we realize
2829/// that an unnamed union or struct is actually an anonymous union or
2830/// struct, e.g.,
2831///
2832/// @code
2833/// union {
2834///   int i;
2835///   float f;
2836/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2837///    // f into the surrounding scope.x
2838/// @endcode
2839///
2840/// This routine is recursive, injecting the names of nested anonymous
2841/// structs/unions into the owning context and scope as well.
2842static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2843                                                DeclContext *Owner,
2844                                                RecordDecl *AnonRecord,
2845                                                AccessSpecifier AS,
2846                              SmallVector<NamedDecl*, 2> &Chaining,
2847                                                      bool MSAnonStruct) {
2848  unsigned diagKind
2849    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2850                            : diag::err_anonymous_struct_member_redecl;
2851
2852  bool Invalid = false;
2853
2854  // Look every FieldDecl and IndirectFieldDecl with a name.
2855  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2856                               DEnd = AnonRecord->decls_end();
2857       D != DEnd; ++D) {
2858    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2859        cast<NamedDecl>(*D)->getDeclName()) {
2860      ValueDecl *VD = cast<ValueDecl>(*D);
2861      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2862                                       VD->getLocation(), diagKind)) {
2863        // C++ [class.union]p2:
2864        //   The names of the members of an anonymous union shall be
2865        //   distinct from the names of any other entity in the
2866        //   scope in which the anonymous union is declared.
2867        Invalid = true;
2868      } else {
2869        // C++ [class.union]p2:
2870        //   For the purpose of name lookup, after the anonymous union
2871        //   definition, the members of the anonymous union are
2872        //   considered to have been defined in the scope in which the
2873        //   anonymous union is declared.
2874        unsigned OldChainingSize = Chaining.size();
2875        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2876          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2877               PE = IF->chain_end(); PI != PE; ++PI)
2878            Chaining.push_back(*PI);
2879        else
2880          Chaining.push_back(VD);
2881
2882        assert(Chaining.size() >= 2);
2883        NamedDecl **NamedChain =
2884          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2885        for (unsigned i = 0; i < Chaining.size(); i++)
2886          NamedChain[i] = Chaining[i];
2887
2888        IndirectFieldDecl* IndirectField =
2889          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2890                                    VD->getIdentifier(), VD->getType(),
2891                                    NamedChain, Chaining.size());
2892
2893        IndirectField->setAccess(AS);
2894        IndirectField->setImplicit();
2895        SemaRef.PushOnScopeChains(IndirectField, S);
2896
2897        // That includes picking up the appropriate access specifier.
2898        if (AS != AS_none) IndirectField->setAccess(AS);
2899
2900        Chaining.resize(OldChainingSize);
2901      }
2902    }
2903  }
2904
2905  return Invalid;
2906}
2907
2908/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2909/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2910/// illegal input values are mapped to SC_None.
2911static StorageClass
2912StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2913  switch (StorageClassSpec) {
2914  case DeclSpec::SCS_unspecified:    return SC_None;
2915  case DeclSpec::SCS_extern:         return SC_Extern;
2916  case DeclSpec::SCS_static:         return SC_Static;
2917  case DeclSpec::SCS_auto:           return SC_Auto;
2918  case DeclSpec::SCS_register:       return SC_Register;
2919  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2920    // Illegal SCSs map to None: error reporting is up to the caller.
2921  case DeclSpec::SCS_mutable:        // Fall through.
2922  case DeclSpec::SCS_typedef:        return SC_None;
2923  }
2924  llvm_unreachable("unknown storage class specifier");
2925}
2926
2927/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2928/// a StorageClass. Any error reporting is up to the caller:
2929/// illegal input values are mapped to SC_None.
2930static StorageClass
2931StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2932  switch (StorageClassSpec) {
2933  case DeclSpec::SCS_unspecified:    return SC_None;
2934  case DeclSpec::SCS_extern:         return SC_Extern;
2935  case DeclSpec::SCS_static:         return SC_Static;
2936  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2937    // Illegal SCSs map to None: error reporting is up to the caller.
2938  case DeclSpec::SCS_auto:           // Fall through.
2939  case DeclSpec::SCS_mutable:        // Fall through.
2940  case DeclSpec::SCS_register:       // Fall through.
2941  case DeclSpec::SCS_typedef:        return SC_None;
2942  }
2943  llvm_unreachable("unknown storage class specifier");
2944}
2945
2946/// BuildAnonymousStructOrUnion - Handle the declaration of an
2947/// anonymous structure or union. Anonymous unions are a C++ feature
2948/// (C++ [class.union]) and a C11 feature; anonymous structures
2949/// are a C11 feature and GNU C++ extension.
2950Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2951                                             AccessSpecifier AS,
2952                                             RecordDecl *Record) {
2953  DeclContext *Owner = Record->getDeclContext();
2954
2955  // Diagnose whether this anonymous struct/union is an extension.
2956  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2957    Diag(Record->getLocation(), diag::ext_anonymous_union);
2958  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2959    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2960  else if (!Record->isUnion() && !getLangOpts().C11)
2961    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2962
2963  // C and C++ require different kinds of checks for anonymous
2964  // structs/unions.
2965  bool Invalid = false;
2966  if (getLangOpts().CPlusPlus) {
2967    const char* PrevSpec = 0;
2968    unsigned DiagID;
2969    if (Record->isUnion()) {
2970      // C++ [class.union]p6:
2971      //   Anonymous unions declared in a named namespace or in the
2972      //   global namespace shall be declared static.
2973      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2974          (isa<TranslationUnitDecl>(Owner) ||
2975           (isa<NamespaceDecl>(Owner) &&
2976            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2977        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2978          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2979
2980        // Recover by adding 'static'.
2981        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2982                               PrevSpec, DiagID);
2983      }
2984      // C++ [class.union]p6:
2985      //   A storage class is not allowed in a declaration of an
2986      //   anonymous union in a class scope.
2987      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2988               isa<RecordDecl>(Owner)) {
2989        Diag(DS.getStorageClassSpecLoc(),
2990             diag::err_anonymous_union_with_storage_spec)
2991          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2992
2993        // Recover by removing the storage specifier.
2994        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2995                               SourceLocation(),
2996                               PrevSpec, DiagID);
2997      }
2998    }
2999
3000    // Ignore const/volatile/restrict qualifiers.
3001    if (DS.getTypeQualifiers()) {
3002      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3003        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3004          << Record->isUnion() << 0
3005          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3006      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3007        Diag(DS.getVolatileSpecLoc(),
3008             diag::ext_anonymous_struct_union_qualified)
3009          << Record->isUnion() << 1
3010          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3011      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3012        Diag(DS.getRestrictSpecLoc(),
3013             diag::ext_anonymous_struct_union_qualified)
3014          << Record->isUnion() << 2
3015          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3016
3017      DS.ClearTypeQualifiers();
3018    }
3019
3020    // C++ [class.union]p2:
3021    //   The member-specification of an anonymous union shall only
3022    //   define non-static data members. [Note: nested types and
3023    //   functions cannot be declared within an anonymous union. ]
3024    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3025                                 MemEnd = Record->decls_end();
3026         Mem != MemEnd; ++Mem) {
3027      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3028        // C++ [class.union]p3:
3029        //   An anonymous union shall not have private or protected
3030        //   members (clause 11).
3031        assert(FD->getAccess() != AS_none);
3032        if (FD->getAccess() != AS_public) {
3033          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3034            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3035          Invalid = true;
3036        }
3037
3038        // C++ [class.union]p1
3039        //   An object of a class with a non-trivial constructor, a non-trivial
3040        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3041        //   assignment operator cannot be a member of a union, nor can an
3042        //   array of such objects.
3043        if (CheckNontrivialField(FD))
3044          Invalid = true;
3045      } else if ((*Mem)->isImplicit()) {
3046        // Any implicit members are fine.
3047      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3048        // This is a type that showed up in an
3049        // elaborated-type-specifier inside the anonymous struct or
3050        // union, but which actually declares a type outside of the
3051        // anonymous struct or union. It's okay.
3052      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3053        if (!MemRecord->isAnonymousStructOrUnion() &&
3054            MemRecord->getDeclName()) {
3055          // Visual C++ allows type definition in anonymous struct or union.
3056          if (getLangOpts().MicrosoftExt)
3057            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3058              << (int)Record->isUnion();
3059          else {
3060            // This is a nested type declaration.
3061            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3062              << (int)Record->isUnion();
3063            Invalid = true;
3064          }
3065        }
3066      } else if (isa<AccessSpecDecl>(*Mem)) {
3067        // Any access specifier is fine.
3068      } else {
3069        // We have something that isn't a non-static data
3070        // member. Complain about it.
3071        unsigned DK = diag::err_anonymous_record_bad_member;
3072        if (isa<TypeDecl>(*Mem))
3073          DK = diag::err_anonymous_record_with_type;
3074        else if (isa<FunctionDecl>(*Mem))
3075          DK = diag::err_anonymous_record_with_function;
3076        else if (isa<VarDecl>(*Mem))
3077          DK = diag::err_anonymous_record_with_static;
3078
3079        // Visual C++ allows type definition in anonymous struct or union.
3080        if (getLangOpts().MicrosoftExt &&
3081            DK == diag::err_anonymous_record_with_type)
3082          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3083            << (int)Record->isUnion();
3084        else {
3085          Diag((*Mem)->getLocation(), DK)
3086              << (int)Record->isUnion();
3087          Invalid = true;
3088        }
3089      }
3090    }
3091  }
3092
3093  if (!Record->isUnion() && !Owner->isRecord()) {
3094    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3095      << (int)getLangOpts().CPlusPlus;
3096    Invalid = true;
3097  }
3098
3099  // Mock up a declarator.
3100  Declarator Dc(DS, Declarator::MemberContext);
3101  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3102  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3103
3104  // Create a declaration for this anonymous struct/union.
3105  NamedDecl *Anon = 0;
3106  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3107    Anon = FieldDecl::Create(Context, OwningClass,
3108                             DS.getLocStart(),
3109                             Record->getLocation(),
3110                             /*IdentifierInfo=*/0,
3111                             Context.getTypeDeclType(Record),
3112                             TInfo,
3113                             /*BitWidth=*/0, /*Mutable=*/false,
3114                             /*InitStyle=*/ICIS_NoInit);
3115    Anon->setAccess(AS);
3116    if (getLangOpts().CPlusPlus)
3117      FieldCollector->Add(cast<FieldDecl>(Anon));
3118  } else {
3119    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3120    assert(SCSpec != DeclSpec::SCS_typedef &&
3121           "Parser allowed 'typedef' as storage class VarDecl.");
3122    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3123    if (SCSpec == DeclSpec::SCS_mutable) {
3124      // mutable can only appear on non-static class members, so it's always
3125      // an error here
3126      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3127      Invalid = true;
3128      SC = SC_None;
3129    }
3130    SCSpec = DS.getStorageClassSpecAsWritten();
3131    VarDecl::StorageClass SCAsWritten
3132      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3133
3134    Anon = VarDecl::Create(Context, Owner,
3135                           DS.getLocStart(),
3136                           Record->getLocation(), /*IdentifierInfo=*/0,
3137                           Context.getTypeDeclType(Record),
3138                           TInfo, SC, SCAsWritten);
3139
3140    // Default-initialize the implicit variable. This initialization will be
3141    // trivial in almost all cases, except if a union member has an in-class
3142    // initializer:
3143    //   union { int n = 0; };
3144    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3145  }
3146  Anon->setImplicit();
3147
3148  // Add the anonymous struct/union object to the current
3149  // context. We'll be referencing this object when we refer to one of
3150  // its members.
3151  Owner->addDecl(Anon);
3152
3153  // Inject the members of the anonymous struct/union into the owning
3154  // context and into the identifier resolver chain for name lookup
3155  // purposes.
3156  SmallVector<NamedDecl*, 2> Chain;
3157  Chain.push_back(Anon);
3158
3159  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3160                                          Chain, false))
3161    Invalid = true;
3162
3163  // Mark this as an anonymous struct/union type. Note that we do not
3164  // do this until after we have already checked and injected the
3165  // members of this anonymous struct/union type, because otherwise
3166  // the members could be injected twice: once by DeclContext when it
3167  // builds its lookup table, and once by
3168  // InjectAnonymousStructOrUnionMembers.
3169  Record->setAnonymousStructOrUnion(true);
3170
3171  if (Invalid)
3172    Anon->setInvalidDecl();
3173
3174  return Anon;
3175}
3176
3177/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3178/// Microsoft C anonymous structure.
3179/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3180/// Example:
3181///
3182/// struct A { int a; };
3183/// struct B { struct A; int b; };
3184///
3185/// void foo() {
3186///   B var;
3187///   var.a = 3;
3188/// }
3189///
3190Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3191                                           RecordDecl *Record) {
3192
3193  // If there is no Record, get the record via the typedef.
3194  if (!Record)
3195    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3196
3197  // Mock up a declarator.
3198  Declarator Dc(DS, Declarator::TypeNameContext);
3199  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3200  assert(TInfo && "couldn't build declarator info for anonymous struct");
3201
3202  // Create a declaration for this anonymous struct.
3203  NamedDecl* Anon = FieldDecl::Create(Context,
3204                             cast<RecordDecl>(CurContext),
3205                             DS.getLocStart(),
3206                             DS.getLocStart(),
3207                             /*IdentifierInfo=*/0,
3208                             Context.getTypeDeclType(Record),
3209                             TInfo,
3210                             /*BitWidth=*/0, /*Mutable=*/false,
3211                             /*InitStyle=*/ICIS_NoInit);
3212  Anon->setImplicit();
3213
3214  // Add the anonymous struct object to the current context.
3215  CurContext->addDecl(Anon);
3216
3217  // Inject the members of the anonymous struct into the current
3218  // context and into the identifier resolver chain for name lookup
3219  // purposes.
3220  SmallVector<NamedDecl*, 2> Chain;
3221  Chain.push_back(Anon);
3222
3223  RecordDecl *RecordDef = Record->getDefinition();
3224  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3225                                                        RecordDef, AS_none,
3226                                                        Chain, true))
3227    Anon->setInvalidDecl();
3228
3229  return Anon;
3230}
3231
3232/// GetNameForDeclarator - Determine the full declaration name for the
3233/// given Declarator.
3234DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3235  return GetNameFromUnqualifiedId(D.getName());
3236}
3237
3238/// \brief Retrieves the declaration name from a parsed unqualified-id.
3239DeclarationNameInfo
3240Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3241  DeclarationNameInfo NameInfo;
3242  NameInfo.setLoc(Name.StartLocation);
3243
3244  switch (Name.getKind()) {
3245
3246  case UnqualifiedId::IK_ImplicitSelfParam:
3247  case UnqualifiedId::IK_Identifier:
3248    NameInfo.setName(Name.Identifier);
3249    NameInfo.setLoc(Name.StartLocation);
3250    return NameInfo;
3251
3252  case UnqualifiedId::IK_OperatorFunctionId:
3253    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3254                                           Name.OperatorFunctionId.Operator));
3255    NameInfo.setLoc(Name.StartLocation);
3256    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3257      = Name.OperatorFunctionId.SymbolLocations[0];
3258    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3259      = Name.EndLocation.getRawEncoding();
3260    return NameInfo;
3261
3262  case UnqualifiedId::IK_LiteralOperatorId:
3263    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3264                                                           Name.Identifier));
3265    NameInfo.setLoc(Name.StartLocation);
3266    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3267    return NameInfo;
3268
3269  case UnqualifiedId::IK_ConversionFunctionId: {
3270    TypeSourceInfo *TInfo;
3271    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3272    if (Ty.isNull())
3273      return DeclarationNameInfo();
3274    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3275                                               Context.getCanonicalType(Ty)));
3276    NameInfo.setLoc(Name.StartLocation);
3277    NameInfo.setNamedTypeInfo(TInfo);
3278    return NameInfo;
3279  }
3280
3281  case UnqualifiedId::IK_ConstructorName: {
3282    TypeSourceInfo *TInfo;
3283    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3284    if (Ty.isNull())
3285      return DeclarationNameInfo();
3286    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3287                                              Context.getCanonicalType(Ty)));
3288    NameInfo.setLoc(Name.StartLocation);
3289    NameInfo.setNamedTypeInfo(TInfo);
3290    return NameInfo;
3291  }
3292
3293  case UnqualifiedId::IK_ConstructorTemplateId: {
3294    // In well-formed code, we can only have a constructor
3295    // template-id that refers to the current context, so go there
3296    // to find the actual type being constructed.
3297    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3298    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3299      return DeclarationNameInfo();
3300
3301    // Determine the type of the class being constructed.
3302    QualType CurClassType = Context.getTypeDeclType(CurClass);
3303
3304    // FIXME: Check two things: that the template-id names the same type as
3305    // CurClassType, and that the template-id does not occur when the name
3306    // was qualified.
3307
3308    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3309                                    Context.getCanonicalType(CurClassType)));
3310    NameInfo.setLoc(Name.StartLocation);
3311    // FIXME: should we retrieve TypeSourceInfo?
3312    NameInfo.setNamedTypeInfo(0);
3313    return NameInfo;
3314  }
3315
3316  case UnqualifiedId::IK_DestructorName: {
3317    TypeSourceInfo *TInfo;
3318    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3319    if (Ty.isNull())
3320      return DeclarationNameInfo();
3321    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3322                                              Context.getCanonicalType(Ty)));
3323    NameInfo.setLoc(Name.StartLocation);
3324    NameInfo.setNamedTypeInfo(TInfo);
3325    return NameInfo;
3326  }
3327
3328  case UnqualifiedId::IK_TemplateId: {
3329    TemplateName TName = Name.TemplateId->Template.get();
3330    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3331    return Context.getNameForTemplate(TName, TNameLoc);
3332  }
3333
3334  } // switch (Name.getKind())
3335
3336  llvm_unreachable("Unknown name kind");
3337}
3338
3339static QualType getCoreType(QualType Ty) {
3340  do {
3341    if (Ty->isPointerType() || Ty->isReferenceType())
3342      Ty = Ty->getPointeeType();
3343    else if (Ty->isArrayType())
3344      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3345    else
3346      return Ty.withoutLocalFastQualifiers();
3347  } while (true);
3348}
3349
3350/// hasSimilarParameters - Determine whether the C++ functions Declaration
3351/// and Definition have "nearly" matching parameters. This heuristic is
3352/// used to improve diagnostics in the case where an out-of-line function
3353/// definition doesn't match any declaration within the class or namespace.
3354/// Also sets Params to the list of indices to the parameters that differ
3355/// between the declaration and the definition. If hasSimilarParameters
3356/// returns true and Params is empty, then all of the parameters match.
3357static bool hasSimilarParameters(ASTContext &Context,
3358                                     FunctionDecl *Declaration,
3359                                     FunctionDecl *Definition,
3360                                     llvm::SmallVectorImpl<unsigned> &Params) {
3361  Params.clear();
3362  if (Declaration->param_size() != Definition->param_size())
3363    return false;
3364  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3365    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3366    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3367
3368    // The parameter types are identical
3369    if (Context.hasSameType(DefParamTy, DeclParamTy))
3370      continue;
3371
3372    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3373    QualType DefParamBaseTy = getCoreType(DefParamTy);
3374    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3375    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3376
3377    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3378        (DeclTyName && DeclTyName == DefTyName))
3379      Params.push_back(Idx);
3380    else  // The two parameters aren't even close
3381      return false;
3382  }
3383
3384  return true;
3385}
3386
3387/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3388/// declarator needs to be rebuilt in the current instantiation.
3389/// Any bits of declarator which appear before the name are valid for
3390/// consideration here.  That's specifically the type in the decl spec
3391/// and the base type in any member-pointer chunks.
3392static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3393                                                    DeclarationName Name) {
3394  // The types we specifically need to rebuild are:
3395  //   - typenames, typeofs, and decltypes
3396  //   - types which will become injected class names
3397  // Of course, we also need to rebuild any type referencing such a
3398  // type.  It's safest to just say "dependent", but we call out a
3399  // few cases here.
3400
3401  DeclSpec &DS = D.getMutableDeclSpec();
3402  switch (DS.getTypeSpecType()) {
3403  case DeclSpec::TST_typename:
3404  case DeclSpec::TST_typeofType:
3405  case DeclSpec::TST_decltype:
3406  case DeclSpec::TST_underlyingType:
3407  case DeclSpec::TST_atomic: {
3408    // Grab the type from the parser.
3409    TypeSourceInfo *TSI = 0;
3410    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3411    if (T.isNull() || !T->isDependentType()) break;
3412
3413    // Make sure there's a type source info.  This isn't really much
3414    // of a waste; most dependent types should have type source info
3415    // attached already.
3416    if (!TSI)
3417      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3418
3419    // Rebuild the type in the current instantiation.
3420    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3421    if (!TSI) return true;
3422
3423    // Store the new type back in the decl spec.
3424    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3425    DS.UpdateTypeRep(LocType);
3426    break;
3427  }
3428
3429  case DeclSpec::TST_typeofExpr: {
3430    Expr *E = DS.getRepAsExpr();
3431    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3432    if (Result.isInvalid()) return true;
3433    DS.UpdateExprRep(Result.get());
3434    break;
3435  }
3436
3437  default:
3438    // Nothing to do for these decl specs.
3439    break;
3440  }
3441
3442  // It doesn't matter what order we do this in.
3443  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3444    DeclaratorChunk &Chunk = D.getTypeObject(I);
3445
3446    // The only type information in the declarator which can come
3447    // before the declaration name is the base type of a member
3448    // pointer.
3449    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3450      continue;
3451
3452    // Rebuild the scope specifier in-place.
3453    CXXScopeSpec &SS = Chunk.Mem.Scope();
3454    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3455      return true;
3456  }
3457
3458  return false;
3459}
3460
3461Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3462  D.setFunctionDefinitionKind(FDK_Declaration);
3463  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3464
3465  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3466      Dcl && Dcl->getDeclContext()->isFileContext())
3467    Dcl->setTopLevelDeclInObjCContainer();
3468
3469  return Dcl;
3470}
3471
3472/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3473///   If T is the name of a class, then each of the following shall have a
3474///   name different from T:
3475///     - every static data member of class T;
3476///     - every member function of class T
3477///     - every member of class T that is itself a type;
3478/// \returns true if the declaration name violates these rules.
3479bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3480                                   DeclarationNameInfo NameInfo) {
3481  DeclarationName Name = NameInfo.getName();
3482
3483  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3484    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3485      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3486      return true;
3487    }
3488
3489  return false;
3490}
3491
3492/// \brief Diagnose a declaration whose declarator-id has the given
3493/// nested-name-specifier.
3494///
3495/// \param SS The nested-name-specifier of the declarator-id.
3496///
3497/// \param DC The declaration context to which the nested-name-specifier
3498/// resolves.
3499///
3500/// \param Name The name of the entity being declared.
3501///
3502/// \param Loc The location of the name of the entity being declared.
3503///
3504/// \returns true if we cannot safely recover from this error, false otherwise.
3505bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3506                                        DeclarationName Name,
3507                                      SourceLocation Loc) {
3508  DeclContext *Cur = CurContext;
3509  while (isa<LinkageSpecDecl>(Cur))
3510    Cur = Cur->getParent();
3511
3512  // C++ [dcl.meaning]p1:
3513  //   A declarator-id shall not be qualified except for the definition
3514  //   of a member function (9.3) or static data member (9.4) outside of
3515  //   its class, the definition or explicit instantiation of a function
3516  //   or variable member of a namespace outside of its namespace, or the
3517  //   definition of an explicit specialization outside of its namespace,
3518  //   or the declaration of a friend function that is a member of
3519  //   another class or namespace (11.3). [...]
3520
3521  // The user provided a superfluous scope specifier that refers back to the
3522  // class or namespaces in which the entity is already declared.
3523  //
3524  // class X {
3525  //   void X::f();
3526  // };
3527  if (Cur->Equals(DC)) {
3528    Diag(Loc, diag::warn_member_extra_qualification)
3529      << Name << FixItHint::CreateRemoval(SS.getRange());
3530    SS.clear();
3531    return false;
3532  }
3533
3534  // Check whether the qualifying scope encloses the scope of the original
3535  // declaration.
3536  if (!Cur->Encloses(DC)) {
3537    if (Cur->isRecord())
3538      Diag(Loc, diag::err_member_qualification)
3539        << Name << SS.getRange();
3540    else if (isa<TranslationUnitDecl>(DC))
3541      Diag(Loc, diag::err_invalid_declarator_global_scope)
3542        << Name << SS.getRange();
3543    else if (isa<FunctionDecl>(Cur))
3544      Diag(Loc, diag::err_invalid_declarator_in_function)
3545        << Name << SS.getRange();
3546    else
3547      Diag(Loc, diag::err_invalid_declarator_scope)
3548      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3549
3550    return true;
3551  }
3552
3553  if (Cur->isRecord()) {
3554    // Cannot qualify members within a class.
3555    Diag(Loc, diag::err_member_qualification)
3556      << Name << SS.getRange();
3557    SS.clear();
3558
3559    // C++ constructors and destructors with incorrect scopes can break
3560    // our AST invariants by having the wrong underlying types. If
3561    // that's the case, then drop this declaration entirely.
3562    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3563         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3564        !Context.hasSameType(Name.getCXXNameType(),
3565                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3566      return true;
3567
3568    return false;
3569  }
3570
3571  // C++11 [dcl.meaning]p1:
3572  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3573  //   not begin with a decltype-specifer"
3574  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3575  while (SpecLoc.getPrefix())
3576    SpecLoc = SpecLoc.getPrefix();
3577  if (dyn_cast_or_null<DecltypeType>(
3578        SpecLoc.getNestedNameSpecifier()->getAsType()))
3579    Diag(Loc, diag::err_decltype_in_declarator)
3580      << SpecLoc.getTypeLoc().getSourceRange();
3581
3582  return false;
3583}
3584
3585Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3586                             MultiTemplateParamsArg TemplateParamLists) {
3587  // TODO: consider using NameInfo for diagnostic.
3588  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3589  DeclarationName Name = NameInfo.getName();
3590
3591  // All of these full declarators require an identifier.  If it doesn't have
3592  // one, the ParsedFreeStandingDeclSpec action should be used.
3593  if (!Name) {
3594    if (!D.isInvalidType())  // Reject this if we think it is valid.
3595      Diag(D.getDeclSpec().getLocStart(),
3596           diag::err_declarator_need_ident)
3597        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3598    return 0;
3599  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3600    return 0;
3601
3602  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3603  // we find one that is.
3604  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3605         (S->getFlags() & Scope::TemplateParamScope) != 0)
3606    S = S->getParent();
3607
3608  DeclContext *DC = CurContext;
3609  if (D.getCXXScopeSpec().isInvalid())
3610    D.setInvalidType();
3611  else if (D.getCXXScopeSpec().isSet()) {
3612    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3613                                        UPPC_DeclarationQualifier))
3614      return 0;
3615
3616    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3617    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3618    if (!DC) {
3619      // If we could not compute the declaration context, it's because the
3620      // declaration context is dependent but does not refer to a class,
3621      // class template, or class template partial specialization. Complain
3622      // and return early, to avoid the coming semantic disaster.
3623      Diag(D.getIdentifierLoc(),
3624           diag::err_template_qualified_declarator_no_match)
3625        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3626        << D.getCXXScopeSpec().getRange();
3627      return 0;
3628    }
3629    bool IsDependentContext = DC->isDependentContext();
3630
3631    if (!IsDependentContext &&
3632        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3633      return 0;
3634
3635    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3636      Diag(D.getIdentifierLoc(),
3637           diag::err_member_def_undefined_record)
3638        << Name << DC << D.getCXXScopeSpec().getRange();
3639      D.setInvalidType();
3640    } else if (!D.getDeclSpec().isFriendSpecified()) {
3641      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3642                                      Name, D.getIdentifierLoc())) {
3643        if (DC->isRecord())
3644          return 0;
3645
3646        D.setInvalidType();
3647      }
3648    }
3649
3650    // Check whether we need to rebuild the type of the given
3651    // declaration in the current instantiation.
3652    if (EnteringContext && IsDependentContext &&
3653        TemplateParamLists.size() != 0) {
3654      ContextRAII SavedContext(*this, DC);
3655      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3656        D.setInvalidType();
3657    }
3658  }
3659
3660  if (DiagnoseClassNameShadow(DC, NameInfo))
3661    // If this is a typedef, we'll end up spewing multiple diagnostics.
3662    // Just return early; it's safer.
3663    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3664      return 0;
3665
3666  NamedDecl *New;
3667
3668  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3669  QualType R = TInfo->getType();
3670
3671  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3672                                      UPPC_DeclarationType))
3673    D.setInvalidType();
3674
3675  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3676                        ForRedeclaration);
3677
3678  // See if this is a redefinition of a variable in the same scope.
3679  if (!D.getCXXScopeSpec().isSet()) {
3680    bool IsLinkageLookup = false;
3681
3682    // If the declaration we're planning to build will be a function
3683    // or object with linkage, then look for another declaration with
3684    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3685    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3686      /* Do nothing*/;
3687    else if (R->isFunctionType()) {
3688      if (CurContext->isFunctionOrMethod() ||
3689          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3690        IsLinkageLookup = true;
3691    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3692      IsLinkageLookup = true;
3693    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3694             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3695      IsLinkageLookup = true;
3696
3697    if (IsLinkageLookup)
3698      Previous.clear(LookupRedeclarationWithLinkage);
3699
3700    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3701  } else { // Something like "int foo::x;"
3702    LookupQualifiedName(Previous, DC);
3703
3704    // C++ [dcl.meaning]p1:
3705    //   When the declarator-id is qualified, the declaration shall refer to a
3706    //  previously declared member of the class or namespace to which the
3707    //  qualifier refers (or, in the case of a namespace, of an element of the
3708    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3709    //  thereof; [...]
3710    //
3711    // Note that we already checked the context above, and that we do not have
3712    // enough information to make sure that Previous contains the declaration
3713    // we want to match. For example, given:
3714    //
3715    //   class X {
3716    //     void f();
3717    //     void f(float);
3718    //   };
3719    //
3720    //   void X::f(int) { } // ill-formed
3721    //
3722    // In this case, Previous will point to the overload set
3723    // containing the two f's declared in X, but neither of them
3724    // matches.
3725
3726    // C++ [dcl.meaning]p1:
3727    //   [...] the member shall not merely have been introduced by a
3728    //   using-declaration in the scope of the class or namespace nominated by
3729    //   the nested-name-specifier of the declarator-id.
3730    RemoveUsingDecls(Previous);
3731  }
3732
3733  if (Previous.isSingleResult() &&
3734      Previous.getFoundDecl()->isTemplateParameter()) {
3735    // Maybe we will complain about the shadowed template parameter.
3736    if (!D.isInvalidType())
3737      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3738                                      Previous.getFoundDecl());
3739
3740    // Just pretend that we didn't see the previous declaration.
3741    Previous.clear();
3742  }
3743
3744  // In C++, the previous declaration we find might be a tag type
3745  // (class or enum). In this case, the new declaration will hide the
3746  // tag type. Note that this does does not apply if we're declaring a
3747  // typedef (C++ [dcl.typedef]p4).
3748  if (Previous.isSingleTagDecl() &&
3749      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3750    Previous.clear();
3751
3752  bool AddToScope = true;
3753  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3754    if (TemplateParamLists.size()) {
3755      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3756      return 0;
3757    }
3758
3759    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3760  } else if (R->isFunctionType()) {
3761    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3762                                  TemplateParamLists,
3763                                  AddToScope);
3764  } else {
3765    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3766                                  TemplateParamLists);
3767  }
3768
3769  if (New == 0)
3770    return 0;
3771
3772  // If this has an identifier and is not an invalid redeclaration or
3773  // function template specialization, add it to the scope stack.
3774  if (New->getDeclName() && AddToScope &&
3775       !(D.isRedeclaration() && New->isInvalidDecl()))
3776    PushOnScopeChains(New, S);
3777
3778  return New;
3779}
3780
3781/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3782/// types into constant array types in certain situations which would otherwise
3783/// be errors (for GCC compatibility).
3784static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3785                                                    ASTContext &Context,
3786                                                    bool &SizeIsNegative,
3787                                                    llvm::APSInt &Oversized) {
3788  // This method tries to turn a variable array into a constant
3789  // array even when the size isn't an ICE.  This is necessary
3790  // for compatibility with code that depends on gcc's buggy
3791  // constant expression folding, like struct {char x[(int)(char*)2];}
3792  SizeIsNegative = false;
3793  Oversized = 0;
3794
3795  if (T->isDependentType())
3796    return QualType();
3797
3798  QualifierCollector Qs;
3799  const Type *Ty = Qs.strip(T);
3800
3801  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3802    QualType Pointee = PTy->getPointeeType();
3803    QualType FixedType =
3804        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3805                                            Oversized);
3806    if (FixedType.isNull()) return FixedType;
3807    FixedType = Context.getPointerType(FixedType);
3808    return Qs.apply(Context, FixedType);
3809  }
3810  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3811    QualType Inner = PTy->getInnerType();
3812    QualType FixedType =
3813        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3814                                            Oversized);
3815    if (FixedType.isNull()) return FixedType;
3816    FixedType = Context.getParenType(FixedType);
3817    return Qs.apply(Context, FixedType);
3818  }
3819
3820  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3821  if (!VLATy)
3822    return QualType();
3823  // FIXME: We should probably handle this case
3824  if (VLATy->getElementType()->isVariablyModifiedType())
3825    return QualType();
3826
3827  llvm::APSInt Res;
3828  if (!VLATy->getSizeExpr() ||
3829      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3830    return QualType();
3831
3832  // Check whether the array size is negative.
3833  if (Res.isSigned() && Res.isNegative()) {
3834    SizeIsNegative = true;
3835    return QualType();
3836  }
3837
3838  // Check whether the array is too large to be addressed.
3839  unsigned ActiveSizeBits
3840    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3841                                              Res);
3842  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3843    Oversized = Res;
3844    return QualType();
3845  }
3846
3847  return Context.getConstantArrayType(VLATy->getElementType(),
3848                                      Res, ArrayType::Normal, 0);
3849}
3850
3851/// \brief Register the given locally-scoped external C declaration so
3852/// that it can be found later for redeclarations
3853void
3854Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3855                                       const LookupResult &Previous,
3856                                       Scope *S) {
3857  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3858         "Decl is not a locally-scoped decl!");
3859  // Note that we have a locally-scoped external with this name.
3860  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3861
3862  if (!Previous.isSingleResult())
3863    return;
3864
3865  NamedDecl *PrevDecl = Previous.getFoundDecl();
3866
3867  // If there was a previous declaration of this variable, it may be
3868  // in our identifier chain. Update the identifier chain with the new
3869  // declaration.
3870  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3871    // The previous declaration was found on the identifer resolver
3872    // chain, so remove it from its scope.
3873
3874    if (S->isDeclScope(PrevDecl)) {
3875      // Special case for redeclarations in the SAME scope.
3876      // Because this declaration is going to be added to the identifier chain
3877      // later, we should temporarily take it OFF the chain.
3878      IdResolver.RemoveDecl(ND);
3879
3880    } else {
3881      // Find the scope for the original declaration.
3882      while (S && !S->isDeclScope(PrevDecl))
3883        S = S->getParent();
3884    }
3885
3886    if (S)
3887      S->RemoveDecl(PrevDecl);
3888  }
3889}
3890
3891llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3892Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3893  if (ExternalSource) {
3894    // Load locally-scoped external decls from the external source.
3895    SmallVector<NamedDecl *, 4> Decls;
3896    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3897    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3898      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3899        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3900      if (Pos == LocallyScopedExternalDecls.end())
3901        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3902    }
3903  }
3904
3905  return LocallyScopedExternalDecls.find(Name);
3906}
3907
3908/// \brief Diagnose function specifiers on a declaration of an identifier that
3909/// does not identify a function.
3910void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3911  // FIXME: We should probably indicate the identifier in question to avoid
3912  // confusion for constructs like "inline int a(), b;"
3913  if (D.getDeclSpec().isInlineSpecified())
3914    Diag(D.getDeclSpec().getInlineSpecLoc(),
3915         diag::err_inline_non_function);
3916
3917  if (D.getDeclSpec().isVirtualSpecified())
3918    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3919         diag::err_virtual_non_function);
3920
3921  if (D.getDeclSpec().isExplicitSpecified())
3922    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3923         diag::err_explicit_non_function);
3924}
3925
3926NamedDecl*
3927Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3928                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3929  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3930  if (D.getCXXScopeSpec().isSet()) {
3931    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3932      << D.getCXXScopeSpec().getRange();
3933    D.setInvalidType();
3934    // Pretend we didn't see the scope specifier.
3935    DC = CurContext;
3936    Previous.clear();
3937  }
3938
3939  if (getLangOpts().CPlusPlus) {
3940    // Check that there are no default arguments (C++ only).
3941    CheckExtraCXXDefaultArguments(D);
3942  }
3943
3944  DiagnoseFunctionSpecifiers(D);
3945
3946  if (D.getDeclSpec().isThreadSpecified())
3947    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3948  if (D.getDeclSpec().isConstexprSpecified())
3949    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3950      << 1;
3951
3952  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3953    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3954      << D.getName().getSourceRange();
3955    return 0;
3956  }
3957
3958  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3959  if (!NewTD) return 0;
3960
3961  // Handle attributes prior to checking for duplicates in MergeVarDecl
3962  ProcessDeclAttributes(S, NewTD, D);
3963
3964  CheckTypedefForVariablyModifiedType(S, NewTD);
3965
3966  bool Redeclaration = D.isRedeclaration();
3967  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3968  D.setRedeclaration(Redeclaration);
3969  return ND;
3970}
3971
3972void
3973Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3974  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3975  // then it shall have block scope.
3976  // Note that variably modified types must be fixed before merging the decl so
3977  // that redeclarations will match.
3978  QualType T = NewTD->getUnderlyingType();
3979  if (T->isVariablyModifiedType()) {
3980    getCurFunction()->setHasBranchProtectedScope();
3981
3982    if (S->getFnParent() == 0) {
3983      bool SizeIsNegative;
3984      llvm::APSInt Oversized;
3985      QualType FixedTy =
3986          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3987                                              Oversized);
3988      if (!FixedTy.isNull()) {
3989        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3990        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3991      } else {
3992        if (SizeIsNegative)
3993          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3994        else if (T->isVariableArrayType())
3995          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3996        else if (Oversized.getBoolValue())
3997          Diag(NewTD->getLocation(), diag::err_array_too_large)
3998            << Oversized.toString(10);
3999        else
4000          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4001        NewTD->setInvalidDecl();
4002      }
4003    }
4004  }
4005}
4006
4007
4008/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4009/// declares a typedef-name, either using the 'typedef' type specifier or via
4010/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4011NamedDecl*
4012Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4013                           LookupResult &Previous, bool &Redeclaration) {
4014  // Merge the decl with the existing one if appropriate. If the decl is
4015  // in an outer scope, it isn't the same thing.
4016  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4017                       /*ExplicitInstantiationOrSpecialization=*/false);
4018  if (!Previous.empty()) {
4019    Redeclaration = true;
4020    MergeTypedefNameDecl(NewTD, Previous);
4021  }
4022
4023  // If this is the C FILE type, notify the AST context.
4024  if (IdentifierInfo *II = NewTD->getIdentifier())
4025    if (!NewTD->isInvalidDecl() &&
4026        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4027      if (II->isStr("FILE"))
4028        Context.setFILEDecl(NewTD);
4029      else if (II->isStr("jmp_buf"))
4030        Context.setjmp_bufDecl(NewTD);
4031      else if (II->isStr("sigjmp_buf"))
4032        Context.setsigjmp_bufDecl(NewTD);
4033      else if (II->isStr("ucontext_t"))
4034        Context.setucontext_tDecl(NewTD);
4035    }
4036
4037  return NewTD;
4038}
4039
4040/// \brief Determines whether the given declaration is an out-of-scope
4041/// previous declaration.
4042///
4043/// This routine should be invoked when name lookup has found a
4044/// previous declaration (PrevDecl) that is not in the scope where a
4045/// new declaration by the same name is being introduced. If the new
4046/// declaration occurs in a local scope, previous declarations with
4047/// linkage may still be considered previous declarations (C99
4048/// 6.2.2p4-5, C++ [basic.link]p6).
4049///
4050/// \param PrevDecl the previous declaration found by name
4051/// lookup
4052///
4053/// \param DC the context in which the new declaration is being
4054/// declared.
4055///
4056/// \returns true if PrevDecl is an out-of-scope previous declaration
4057/// for a new delcaration with the same name.
4058static bool
4059isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4060                                ASTContext &Context) {
4061  if (!PrevDecl)
4062    return false;
4063
4064  if (!PrevDecl->hasLinkage())
4065    return false;
4066
4067  if (Context.getLangOpts().CPlusPlus) {
4068    // C++ [basic.link]p6:
4069    //   If there is a visible declaration of an entity with linkage
4070    //   having the same name and type, ignoring entities declared
4071    //   outside the innermost enclosing namespace scope, the block
4072    //   scope declaration declares that same entity and receives the
4073    //   linkage of the previous declaration.
4074    DeclContext *OuterContext = DC->getRedeclContext();
4075    if (!OuterContext->isFunctionOrMethod())
4076      // This rule only applies to block-scope declarations.
4077      return false;
4078
4079    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4080    if (PrevOuterContext->isRecord())
4081      // We found a member function: ignore it.
4082      return false;
4083
4084    // Find the innermost enclosing namespace for the new and
4085    // previous declarations.
4086    OuterContext = OuterContext->getEnclosingNamespaceContext();
4087    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4088
4089    // The previous declaration is in a different namespace, so it
4090    // isn't the same function.
4091    if (!OuterContext->Equals(PrevOuterContext))
4092      return false;
4093  }
4094
4095  return true;
4096}
4097
4098static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4099  CXXScopeSpec &SS = D.getCXXScopeSpec();
4100  if (!SS.isSet()) return;
4101  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4102}
4103
4104bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4105  QualType type = decl->getType();
4106  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4107  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4108    // Various kinds of declaration aren't allowed to be __autoreleasing.
4109    unsigned kind = -1U;
4110    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4111      if (var->hasAttr<BlocksAttr>())
4112        kind = 0; // __block
4113      else if (!var->hasLocalStorage())
4114        kind = 1; // global
4115    } else if (isa<ObjCIvarDecl>(decl)) {
4116      kind = 3; // ivar
4117    } else if (isa<FieldDecl>(decl)) {
4118      kind = 2; // field
4119    }
4120
4121    if (kind != -1U) {
4122      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4123        << kind;
4124    }
4125  } else if (lifetime == Qualifiers::OCL_None) {
4126    // Try to infer lifetime.
4127    if (!type->isObjCLifetimeType())
4128      return false;
4129
4130    lifetime = type->getObjCARCImplicitLifetime();
4131    type = Context.getLifetimeQualifiedType(type, lifetime);
4132    decl->setType(type);
4133  }
4134
4135  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4136    // Thread-local variables cannot have lifetime.
4137    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4138        var->isThreadSpecified()) {
4139      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4140        << var->getType();
4141      return true;
4142    }
4143  }
4144
4145  return false;
4146}
4147
4148NamedDecl*
4149Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4150                              TypeSourceInfo *TInfo, LookupResult &Previous,
4151                              MultiTemplateParamsArg TemplateParamLists) {
4152  QualType R = TInfo->getType();
4153  DeclarationName Name = GetNameForDeclarator(D).getName();
4154
4155  // Check that there are no default arguments (C++ only).
4156  if (getLangOpts().CPlusPlus)
4157    CheckExtraCXXDefaultArguments(D);
4158
4159  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4160  assert(SCSpec != DeclSpec::SCS_typedef &&
4161         "Parser allowed 'typedef' as storage class VarDecl.");
4162  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4163  if (SCSpec == DeclSpec::SCS_mutable) {
4164    // mutable can only appear on non-static class members, so it's always
4165    // an error here
4166    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4167    D.setInvalidType();
4168    SC = SC_None;
4169  }
4170  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4171  VarDecl::StorageClass SCAsWritten
4172    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4173
4174  IdentifierInfo *II = Name.getAsIdentifierInfo();
4175  if (!II) {
4176    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4177      << Name;
4178    return 0;
4179  }
4180
4181  DiagnoseFunctionSpecifiers(D);
4182
4183  if (!DC->isRecord() && S->getFnParent() == 0) {
4184    // C99 6.9p2: The storage-class specifiers auto and register shall not
4185    // appear in the declaration specifiers in an external declaration.
4186    if (SC == SC_Auto || SC == SC_Register) {
4187
4188      // If this is a register variable with an asm label specified, then this
4189      // is a GNU extension.
4190      if (SC == SC_Register && D.getAsmLabel())
4191        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4192      else
4193        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4194      D.setInvalidType();
4195    }
4196  }
4197
4198  if (getLangOpts().OpenCL) {
4199    // Set up the special work-group-local storage class for variables in the
4200    // OpenCL __local address space.
4201    if (R.getAddressSpace() == LangAS::opencl_local)
4202      SC = SC_OpenCLWorkGroupLocal;
4203  }
4204
4205  bool isExplicitSpecialization = false;
4206  VarDecl *NewVD;
4207  if (!getLangOpts().CPlusPlus) {
4208    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4209                            D.getIdentifierLoc(), II,
4210                            R, TInfo, SC, SCAsWritten);
4211
4212    if (D.isInvalidType())
4213      NewVD->setInvalidDecl();
4214  } else {
4215    if (DC->isRecord() && !CurContext->isRecord()) {
4216      // This is an out-of-line definition of a static data member.
4217      if (SC == SC_Static) {
4218        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4219             diag::err_static_out_of_line)
4220          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4221      } else if (SC == SC_None)
4222        SC = SC_Static;
4223    }
4224    if (SC == SC_Static && CurContext->isRecord()) {
4225      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4226        if (RD->isLocalClass())
4227          Diag(D.getIdentifierLoc(),
4228               diag::err_static_data_member_not_allowed_in_local_class)
4229            << Name << RD->getDeclName();
4230
4231        // C++98 [class.union]p1: If a union contains a static data member,
4232        // the program is ill-formed. C++11 drops this restriction.
4233        if (RD->isUnion())
4234          Diag(D.getIdentifierLoc(),
4235               getLangOpts().CPlusPlus0x
4236                 ? diag::warn_cxx98_compat_static_data_member_in_union
4237                 : diag::ext_static_data_member_in_union) << Name;
4238        // We conservatively disallow static data members in anonymous structs.
4239        else if (!RD->getDeclName())
4240          Diag(D.getIdentifierLoc(),
4241               diag::err_static_data_member_not_allowed_in_anon_struct)
4242            << Name << RD->isUnion();
4243      }
4244    }
4245
4246    // Match up the template parameter lists with the scope specifier, then
4247    // determine whether we have a template or a template specialization.
4248    isExplicitSpecialization = false;
4249    bool Invalid = false;
4250    if (TemplateParameterList *TemplateParams
4251        = MatchTemplateParametersToScopeSpecifier(
4252                                  D.getDeclSpec().getLocStart(),
4253                                                  D.getIdentifierLoc(),
4254                                                  D.getCXXScopeSpec(),
4255                                                  TemplateParamLists.data(),
4256                                                  TemplateParamLists.size(),
4257                                                  /*never a friend*/ false,
4258                                                  isExplicitSpecialization,
4259                                                  Invalid)) {
4260      if (TemplateParams->size() > 0) {
4261        // There is no such thing as a variable template.
4262        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4263          << II
4264          << SourceRange(TemplateParams->getTemplateLoc(),
4265                         TemplateParams->getRAngleLoc());
4266        return 0;
4267      } else {
4268        // There is an extraneous 'template<>' for this variable. Complain
4269        // about it, but allow the declaration of the variable.
4270        Diag(TemplateParams->getTemplateLoc(),
4271             diag::err_template_variable_noparams)
4272          << II
4273          << SourceRange(TemplateParams->getTemplateLoc(),
4274                         TemplateParams->getRAngleLoc());
4275      }
4276    }
4277
4278    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4279                            D.getIdentifierLoc(), II,
4280                            R, TInfo, SC, SCAsWritten);
4281
4282    // If this decl has an auto type in need of deduction, make a note of the
4283    // Decl so we can diagnose uses of it in its own initializer.
4284    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4285        R->getContainedAutoType())
4286      ParsingInitForAutoVars.insert(NewVD);
4287
4288    if (D.isInvalidType() || Invalid)
4289      NewVD->setInvalidDecl();
4290
4291    SetNestedNameSpecifier(NewVD, D);
4292
4293    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4294      NewVD->setTemplateParameterListsInfo(Context,
4295                                           TemplateParamLists.size(),
4296                                           TemplateParamLists.data());
4297    }
4298
4299    if (D.getDeclSpec().isConstexprSpecified())
4300      NewVD->setConstexpr(true);
4301  }
4302
4303  // Set the lexical context. If the declarator has a C++ scope specifier, the
4304  // lexical context will be different from the semantic context.
4305  NewVD->setLexicalDeclContext(CurContext);
4306
4307  if (D.getDeclSpec().isThreadSpecified()) {
4308    if (NewVD->hasLocalStorage())
4309      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4310    else if (!Context.getTargetInfo().isTLSSupported())
4311      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4312    else
4313      NewVD->setThreadSpecified(true);
4314  }
4315
4316  if (D.getDeclSpec().isModulePrivateSpecified()) {
4317    if (isExplicitSpecialization)
4318      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4319        << 2
4320        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4321    else if (NewVD->hasLocalStorage())
4322      Diag(NewVD->getLocation(), diag::err_module_private_local)
4323        << 0 << NewVD->getDeclName()
4324        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4325        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4326    else
4327      NewVD->setModulePrivate();
4328  }
4329
4330  // Handle attributes prior to checking for duplicates in MergeVarDecl
4331  ProcessDeclAttributes(S, NewVD, D);
4332
4333  if (getLangOpts().CUDA) {
4334    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4335    // storage [duration]."
4336    if (SC == SC_None && S->getFnParent() != 0 &&
4337       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4338      NewVD->setStorageClass(SC_Static);
4339  }
4340
4341  // In auto-retain/release, infer strong retension for variables of
4342  // retainable type.
4343  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4344    NewVD->setInvalidDecl();
4345
4346  // Handle GNU asm-label extension (encoded as an attribute).
4347  if (Expr *E = (Expr*)D.getAsmLabel()) {
4348    // The parser guarantees this is a string.
4349    StringLiteral *SE = cast<StringLiteral>(E);
4350    StringRef Label = SE->getString();
4351    if (S->getFnParent() != 0) {
4352      switch (SC) {
4353      case SC_None:
4354      case SC_Auto:
4355        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4356        break;
4357      case SC_Register:
4358        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4359          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4360        break;
4361      case SC_Static:
4362      case SC_Extern:
4363      case SC_PrivateExtern:
4364      case SC_OpenCLWorkGroupLocal:
4365        break;
4366      }
4367    }
4368
4369    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4370                                                Context, Label));
4371  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4372    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4373      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4374    if (I != ExtnameUndeclaredIdentifiers.end()) {
4375      NewVD->addAttr(I->second);
4376      ExtnameUndeclaredIdentifiers.erase(I);
4377    }
4378  }
4379
4380  // Diagnose shadowed variables before filtering for scope.
4381  if (!D.getCXXScopeSpec().isSet())
4382    CheckShadow(S, NewVD, Previous);
4383
4384  // Don't consider existing declarations that are in a different
4385  // scope and are out-of-semantic-context declarations (if the new
4386  // declaration has linkage).
4387  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4388                       isExplicitSpecialization);
4389
4390  if (!getLangOpts().CPlusPlus) {
4391    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4392  } else {
4393    // Merge the decl with the existing one if appropriate.
4394    if (!Previous.empty()) {
4395      if (Previous.isSingleResult() &&
4396          isa<FieldDecl>(Previous.getFoundDecl()) &&
4397          D.getCXXScopeSpec().isSet()) {
4398        // The user tried to define a non-static data member
4399        // out-of-line (C++ [dcl.meaning]p1).
4400        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4401          << D.getCXXScopeSpec().getRange();
4402        Previous.clear();
4403        NewVD->setInvalidDecl();
4404      }
4405    } else if (D.getCXXScopeSpec().isSet()) {
4406      // No previous declaration in the qualifying scope.
4407      Diag(D.getIdentifierLoc(), diag::err_no_member)
4408        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4409        << D.getCXXScopeSpec().getRange();
4410      NewVD->setInvalidDecl();
4411    }
4412
4413    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4414
4415    // This is an explicit specialization of a static data member. Check it.
4416    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4417        CheckMemberSpecialization(NewVD, Previous))
4418      NewVD->setInvalidDecl();
4419  }
4420
4421  // If this is a locally-scoped extern C variable, update the map of
4422  // such variables.
4423  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4424      !NewVD->isInvalidDecl())
4425    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4426
4427  // If there's a #pragma GCC visibility in scope, and this isn't a class
4428  // member, set the visibility of this variable.
4429  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4430    AddPushedVisibilityAttribute(NewVD);
4431
4432  MarkUnusedFileScopedDecl(NewVD);
4433
4434  return NewVD;
4435}
4436
4437/// \brief Diagnose variable or built-in function shadowing.  Implements
4438/// -Wshadow.
4439///
4440/// This method is called whenever a VarDecl is added to a "useful"
4441/// scope.
4442///
4443/// \param S the scope in which the shadowing name is being declared
4444/// \param R the lookup of the name
4445///
4446void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4447  // Return if warning is ignored.
4448  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4449        DiagnosticsEngine::Ignored)
4450    return;
4451
4452  // Don't diagnose declarations at file scope.
4453  if (D->hasGlobalStorage())
4454    return;
4455
4456  DeclContext *NewDC = D->getDeclContext();
4457
4458  // Only diagnose if we're shadowing an unambiguous field or variable.
4459  if (R.getResultKind() != LookupResult::Found)
4460    return;
4461
4462  NamedDecl* ShadowedDecl = R.getFoundDecl();
4463  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4464    return;
4465
4466  // Fields are not shadowed by variables in C++ static methods.
4467  if (isa<FieldDecl>(ShadowedDecl))
4468    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4469      if (MD->isStatic())
4470        return;
4471
4472  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4473    if (shadowedVar->isExternC()) {
4474      // For shadowing external vars, make sure that we point to the global
4475      // declaration, not a locally scoped extern declaration.
4476      for (VarDecl::redecl_iterator
4477             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4478           I != E; ++I)
4479        if (I->isFileVarDecl()) {
4480          ShadowedDecl = *I;
4481          break;
4482        }
4483    }
4484
4485  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4486
4487  // Only warn about certain kinds of shadowing for class members.
4488  if (NewDC && NewDC->isRecord()) {
4489    // In particular, don't warn about shadowing non-class members.
4490    if (!OldDC->isRecord())
4491      return;
4492
4493    // TODO: should we warn about static data members shadowing
4494    // static data members from base classes?
4495
4496    // TODO: don't diagnose for inaccessible shadowed members.
4497    // This is hard to do perfectly because we might friend the
4498    // shadowing context, but that's just a false negative.
4499  }
4500
4501  // Determine what kind of declaration we're shadowing.
4502  unsigned Kind;
4503  if (isa<RecordDecl>(OldDC)) {
4504    if (isa<FieldDecl>(ShadowedDecl))
4505      Kind = 3; // field
4506    else
4507      Kind = 2; // static data member
4508  } else if (OldDC->isFileContext())
4509    Kind = 1; // global
4510  else
4511    Kind = 0; // local
4512
4513  DeclarationName Name = R.getLookupName();
4514
4515  // Emit warning and note.
4516  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4517  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4518}
4519
4520/// \brief Check -Wshadow without the advantage of a previous lookup.
4521void Sema::CheckShadow(Scope *S, VarDecl *D) {
4522  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4523        DiagnosticsEngine::Ignored)
4524    return;
4525
4526  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4527                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4528  LookupName(R, S);
4529  CheckShadow(S, D, R);
4530}
4531
4532/// \brief Perform semantic checking on a newly-created variable
4533/// declaration.
4534///
4535/// This routine performs all of the type-checking required for a
4536/// variable declaration once it has been built. It is used both to
4537/// check variables after they have been parsed and their declarators
4538/// have been translated into a declaration, and to check variables
4539/// that have been instantiated from a template.
4540///
4541/// Sets NewVD->isInvalidDecl() if an error was encountered.
4542///
4543/// Returns true if the variable declaration is a redeclaration.
4544bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4545                                    LookupResult &Previous) {
4546  // If the decl is already known invalid, don't check it.
4547  if (NewVD->isInvalidDecl())
4548    return false;
4549
4550  QualType T = NewVD->getType();
4551
4552  if (T->isObjCObjectType()) {
4553    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4554      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4555    T = Context.getObjCObjectPointerType(T);
4556    NewVD->setType(T);
4557  }
4558
4559  // Emit an error if an address space was applied to decl with local storage.
4560  // This includes arrays of objects with address space qualifiers, but not
4561  // automatic variables that point to other address spaces.
4562  // ISO/IEC TR 18037 S5.1.2
4563  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4564    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4565    NewVD->setInvalidDecl();
4566    return false;
4567  }
4568
4569  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4570  // scope.
4571  if ((getLangOpts().OpenCLVersion >= 120)
4572      && NewVD->isStaticLocal()) {
4573    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4574    NewVD->setInvalidDecl();
4575    return false;
4576  }
4577
4578  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4579      && !NewVD->hasAttr<BlocksAttr>()) {
4580    if (getLangOpts().getGC() != LangOptions::NonGC)
4581      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4582    else
4583      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4584  }
4585
4586  bool isVM = T->isVariablyModifiedType();
4587  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4588      NewVD->hasAttr<BlocksAttr>())
4589    getCurFunction()->setHasBranchProtectedScope();
4590
4591  if ((isVM && NewVD->hasLinkage()) ||
4592      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4593    bool SizeIsNegative;
4594    llvm::APSInt Oversized;
4595    QualType FixedTy =
4596        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4597                                            Oversized);
4598
4599    if (FixedTy.isNull() && T->isVariableArrayType()) {
4600      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4601      // FIXME: This won't give the correct result for
4602      // int a[10][n];
4603      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4604
4605      if (NewVD->isFileVarDecl())
4606        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4607        << SizeRange;
4608      else if (NewVD->getStorageClass() == SC_Static)
4609        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4610        << SizeRange;
4611      else
4612        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4613        << SizeRange;
4614      NewVD->setInvalidDecl();
4615      return false;
4616    }
4617
4618    if (FixedTy.isNull()) {
4619      if (NewVD->isFileVarDecl())
4620        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4621      else
4622        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4623      NewVD->setInvalidDecl();
4624      return false;
4625    }
4626
4627    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4628    NewVD->setType(FixedTy);
4629  }
4630
4631  if (Previous.empty() && NewVD->isExternC()) {
4632    // Since we did not find anything by this name and we're declaring
4633    // an extern "C" variable, look for a non-visible extern "C"
4634    // declaration with the same name.
4635    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4636      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4637    if (Pos != LocallyScopedExternalDecls.end())
4638      Previous.addDecl(Pos->second);
4639  }
4640
4641  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4642    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4643      << T;
4644    NewVD->setInvalidDecl();
4645    return false;
4646  }
4647
4648  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4649    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4650    NewVD->setInvalidDecl();
4651    return false;
4652  }
4653
4654  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4655    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4656    NewVD->setInvalidDecl();
4657    return false;
4658  }
4659
4660  if (NewVD->isConstexpr() && !T->isDependentType() &&
4661      RequireLiteralType(NewVD->getLocation(), T,
4662                         diag::err_constexpr_var_non_literal)) {
4663    NewVD->setInvalidDecl();
4664    return false;
4665  }
4666
4667  if (!Previous.empty()) {
4668    MergeVarDecl(NewVD, Previous);
4669    return true;
4670  }
4671  return false;
4672}
4673
4674/// \brief Data used with FindOverriddenMethod
4675struct FindOverriddenMethodData {
4676  Sema *S;
4677  CXXMethodDecl *Method;
4678};
4679
4680/// \brief Member lookup function that determines whether a given C++
4681/// method overrides a method in a base class, to be used with
4682/// CXXRecordDecl::lookupInBases().
4683static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4684                                 CXXBasePath &Path,
4685                                 void *UserData) {
4686  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4687
4688  FindOverriddenMethodData *Data
4689    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4690
4691  DeclarationName Name = Data->Method->getDeclName();
4692
4693  // FIXME: Do we care about other names here too?
4694  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4695    // We really want to find the base class destructor here.
4696    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4697    CanQualType CT = Data->S->Context.getCanonicalType(T);
4698
4699    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4700  }
4701
4702  for (Path.Decls = BaseRecord->lookup(Name);
4703       Path.Decls.first != Path.Decls.second;
4704       ++Path.Decls.first) {
4705    NamedDecl *D = *Path.Decls.first;
4706    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4707      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4708        return true;
4709    }
4710  }
4711
4712  return false;
4713}
4714
4715/// AddOverriddenMethods - See if a method overrides any in the base classes,
4716/// and if so, check that it's a valid override and remember it.
4717bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4718  // Look for virtual methods in base classes that this method might override.
4719  CXXBasePaths Paths;
4720  FindOverriddenMethodData Data;
4721  Data.Method = MD;
4722  Data.S = this;
4723  bool AddedAny = false;
4724  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4725    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4726         E = Paths.found_decls_end(); I != E; ++I) {
4727      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4728        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4729        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4730            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4731            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4732          AddedAny = true;
4733        }
4734      }
4735    }
4736  }
4737
4738  return AddedAny;
4739}
4740
4741namespace {
4742  // Struct for holding all of the extra arguments needed by
4743  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4744  struct ActOnFDArgs {
4745    Scope *S;
4746    Declarator &D;
4747    MultiTemplateParamsArg TemplateParamLists;
4748    bool AddToScope;
4749  };
4750}
4751
4752namespace {
4753
4754// Callback to only accept typo corrections that have a non-zero edit distance.
4755// Also only accept corrections that have the same parent decl.
4756class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4757 public:
4758  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4759                            CXXRecordDecl *Parent)
4760      : Context(Context), OriginalFD(TypoFD),
4761        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4762
4763  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4764    if (candidate.getEditDistance() == 0)
4765      return false;
4766
4767    llvm::SmallVector<unsigned, 1> MismatchedParams;
4768    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4769                                          CDeclEnd = candidate.end();
4770         CDecl != CDeclEnd; ++CDecl) {
4771      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4772
4773      if (FD && !FD->hasBody() &&
4774          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4775        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4776          CXXRecordDecl *Parent = MD->getParent();
4777          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4778            return true;
4779        } else if (!ExpectedParent) {
4780          return true;
4781        }
4782      }
4783    }
4784
4785    return false;
4786  }
4787
4788 private:
4789  ASTContext &Context;
4790  FunctionDecl *OriginalFD;
4791  CXXRecordDecl *ExpectedParent;
4792};
4793
4794}
4795
4796/// \brief Generate diagnostics for an invalid function redeclaration.
4797///
4798/// This routine handles generating the diagnostic messages for an invalid
4799/// function redeclaration, including finding possible similar declarations
4800/// or performing typo correction if there are no previous declarations with
4801/// the same name.
4802///
4803/// Returns a NamedDecl iff typo correction was performed and substituting in
4804/// the new declaration name does not cause new errors.
4805static NamedDecl* DiagnoseInvalidRedeclaration(
4806    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4807    ActOnFDArgs &ExtraArgs) {
4808  NamedDecl *Result = NULL;
4809  DeclarationName Name = NewFD->getDeclName();
4810  DeclContext *NewDC = NewFD->getDeclContext();
4811  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4812                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4813  llvm::SmallVector<unsigned, 1> MismatchedParams;
4814  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4815  TypoCorrection Correction;
4816  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4817                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4818  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4819                                  : diag::err_member_def_does_not_match;
4820
4821  NewFD->setInvalidDecl();
4822  SemaRef.LookupQualifiedName(Prev, NewDC);
4823  assert(!Prev.isAmbiguous() &&
4824         "Cannot have an ambiguity in previous-declaration lookup");
4825  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4826  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4827                                      MD ? MD->getParent() : 0);
4828  if (!Prev.empty()) {
4829    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4830         Func != FuncEnd; ++Func) {
4831      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4832      if (FD &&
4833          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4834        // Add 1 to the index so that 0 can mean the mismatch didn't
4835        // involve a parameter
4836        unsigned ParamNum =
4837            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4838        NearMatches.push_back(std::make_pair(FD, ParamNum));
4839      }
4840    }
4841  // If the qualified name lookup yielded nothing, try typo correction
4842  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4843                                         Prev.getLookupKind(), 0, 0,
4844                                         Validator, NewDC))) {
4845    // Trap errors.
4846    Sema::SFINAETrap Trap(SemaRef);
4847
4848    // Set up everything for the call to ActOnFunctionDeclarator
4849    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4850                              ExtraArgs.D.getIdentifierLoc());
4851    Previous.clear();
4852    Previous.setLookupName(Correction.getCorrection());
4853    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4854                                    CDeclEnd = Correction.end();
4855         CDecl != CDeclEnd; ++CDecl) {
4856      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4857      if (FD && !FD->hasBody() &&
4858          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4859        Previous.addDecl(FD);
4860      }
4861    }
4862    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4863    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4864    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4865    // eliminate the need for the parameter pack ExtraArgs.
4866    Result = SemaRef.ActOnFunctionDeclarator(
4867        ExtraArgs.S, ExtraArgs.D,
4868        Correction.getCorrectionDecl()->getDeclContext(),
4869        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4870        ExtraArgs.AddToScope);
4871    if (Trap.hasErrorOccurred()) {
4872      // Pretend the typo correction never occurred
4873      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4874                                ExtraArgs.D.getIdentifierLoc());
4875      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4876      Previous.clear();
4877      Previous.setLookupName(Name);
4878      Result = NULL;
4879    } else {
4880      for (LookupResult::iterator Func = Previous.begin(),
4881                               FuncEnd = Previous.end();
4882           Func != FuncEnd; ++Func) {
4883        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4884          NearMatches.push_back(std::make_pair(FD, 0));
4885      }
4886    }
4887    if (NearMatches.empty()) {
4888      // Ignore the correction if it didn't yield any close FunctionDecl matches
4889      Correction = TypoCorrection();
4890    } else {
4891      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4892                             : diag::err_member_def_does_not_match_suggest;
4893    }
4894  }
4895
4896  if (Correction) {
4897    SourceRange FixItLoc(NewFD->getLocation());
4898    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4899    if (Correction.getCorrectionSpecifier() && SS.isValid())
4900      FixItLoc.setBegin(SS.getBeginLoc());
4901    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4902        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4903        << FixItHint::CreateReplacement(
4904            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4905  } else {
4906    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4907        << Name << NewDC << NewFD->getLocation();
4908  }
4909
4910  bool NewFDisConst = false;
4911  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4912    NewFDisConst = NewMD->isConst();
4913
4914  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4915       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4916       NearMatch != NearMatchEnd; ++NearMatch) {
4917    FunctionDecl *FD = NearMatch->first;
4918    bool FDisConst = false;
4919    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4920      FDisConst = MD->isConst();
4921
4922    if (unsigned Idx = NearMatch->second) {
4923      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4924      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4925      if (Loc.isInvalid()) Loc = FD->getLocation();
4926      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4927          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4928    } else if (Correction) {
4929      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4930          << Correction.getQuoted(SemaRef.getLangOpts());
4931    } else if (FDisConst != NewFDisConst) {
4932      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4933          << NewFDisConst << FD->getSourceRange().getEnd();
4934    } else
4935      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4936  }
4937  return Result;
4938}
4939
4940static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4941                                                          Declarator &D) {
4942  switch (D.getDeclSpec().getStorageClassSpec()) {
4943  default: llvm_unreachable("Unknown storage class!");
4944  case DeclSpec::SCS_auto:
4945  case DeclSpec::SCS_register:
4946  case DeclSpec::SCS_mutable:
4947    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4948                 diag::err_typecheck_sclass_func);
4949    D.setInvalidType();
4950    break;
4951  case DeclSpec::SCS_unspecified: break;
4952  case DeclSpec::SCS_extern: return SC_Extern;
4953  case DeclSpec::SCS_static: {
4954    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4955      // C99 6.7.1p5:
4956      //   The declaration of an identifier for a function that has
4957      //   block scope shall have no explicit storage-class specifier
4958      //   other than extern
4959      // See also (C++ [dcl.stc]p4).
4960      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4961                   diag::err_static_block_func);
4962      break;
4963    } else
4964      return SC_Static;
4965  }
4966  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4967  }
4968
4969  // No explicit storage class has already been returned
4970  return SC_None;
4971}
4972
4973static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4974                                           DeclContext *DC, QualType &R,
4975                                           TypeSourceInfo *TInfo,
4976                                           FunctionDecl::StorageClass SC,
4977                                           bool &IsVirtualOkay) {
4978  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4979  DeclarationName Name = NameInfo.getName();
4980
4981  FunctionDecl *NewFD = 0;
4982  bool isInline = D.getDeclSpec().isInlineSpecified();
4983  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4984  FunctionDecl::StorageClass SCAsWritten
4985    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4986
4987  if (!SemaRef.getLangOpts().CPlusPlus) {
4988    // Determine whether the function was written with a
4989    // prototype. This true when:
4990    //   - there is a prototype in the declarator, or
4991    //   - the type R of the function is some kind of typedef or other reference
4992    //     to a type name (which eventually refers to a function type).
4993    bool HasPrototype =
4994      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4995      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4996
4997    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4998                                 D.getLocStart(), NameInfo, R,
4999                                 TInfo, SC, SCAsWritten, isInline,
5000                                 HasPrototype);
5001    if (D.isInvalidType())
5002      NewFD->setInvalidDecl();
5003
5004    // Set the lexical context.
5005    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5006
5007    return NewFD;
5008  }
5009
5010  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5011  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5012
5013  // Check that the return type is not an abstract class type.
5014  // For record types, this is done by the AbstractClassUsageDiagnoser once
5015  // the class has been completely parsed.
5016  if (!DC->isRecord() &&
5017      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5018                                     R->getAs<FunctionType>()->getResultType(),
5019                                     diag::err_abstract_type_in_decl,
5020                                     SemaRef.AbstractReturnType))
5021    D.setInvalidType();
5022
5023  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5024    // This is a C++ constructor declaration.
5025    assert(DC->isRecord() &&
5026           "Constructors can only be declared in a member context");
5027
5028    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5029    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5030                                      D.getLocStart(), NameInfo,
5031                                      R, TInfo, isExplicit, isInline,
5032                                      /*isImplicitlyDeclared=*/false,
5033                                      isConstexpr);
5034
5035  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5036    // This is a C++ destructor declaration.
5037    if (DC->isRecord()) {
5038      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5039      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5040      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5041                                        SemaRef.Context, Record,
5042                                        D.getLocStart(),
5043                                        NameInfo, R, TInfo, isInline,
5044                                        /*isImplicitlyDeclared=*/false);
5045
5046      // If the class is complete, then we now create the implicit exception
5047      // specification. If the class is incomplete or dependent, we can't do
5048      // it yet.
5049      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5050          Record->getDefinition() && !Record->isBeingDefined() &&
5051          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5052        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5053      }
5054
5055      IsVirtualOkay = true;
5056      return NewDD;
5057
5058    } else {
5059      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5060      D.setInvalidType();
5061
5062      // Create a FunctionDecl to satisfy the function definition parsing
5063      // code path.
5064      return FunctionDecl::Create(SemaRef.Context, DC,
5065                                  D.getLocStart(),
5066                                  D.getIdentifierLoc(), Name, R, TInfo,
5067                                  SC, SCAsWritten, isInline,
5068                                  /*hasPrototype=*/true, isConstexpr);
5069    }
5070
5071  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5072    if (!DC->isRecord()) {
5073      SemaRef.Diag(D.getIdentifierLoc(),
5074           diag::err_conv_function_not_member);
5075      return 0;
5076    }
5077
5078    SemaRef.CheckConversionDeclarator(D, R, SC);
5079    IsVirtualOkay = true;
5080    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5081                                     D.getLocStart(), NameInfo,
5082                                     R, TInfo, isInline, isExplicit,
5083                                     isConstexpr, SourceLocation());
5084
5085  } else if (DC->isRecord()) {
5086    // If the name of the function is the same as the name of the record,
5087    // then this must be an invalid constructor that has a return type.
5088    // (The parser checks for a return type and makes the declarator a
5089    // constructor if it has no return type).
5090    if (Name.getAsIdentifierInfo() &&
5091        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5092      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5093        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5094        << SourceRange(D.getIdentifierLoc());
5095      return 0;
5096    }
5097
5098    bool isStatic = SC == SC_Static;
5099
5100    // [class.free]p1:
5101    // Any allocation function for a class T is a static member
5102    // (even if not explicitly declared static).
5103    if (Name.getCXXOverloadedOperator() == OO_New ||
5104        Name.getCXXOverloadedOperator() == OO_Array_New)
5105      isStatic = true;
5106
5107    // [class.free]p6 Any deallocation function for a class X is a static member
5108    // (even if not explicitly declared static).
5109    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5110        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5111      isStatic = true;
5112
5113    IsVirtualOkay = !isStatic;
5114
5115    // This is a C++ method declaration.
5116    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5117                                 D.getLocStart(), NameInfo, R,
5118                                 TInfo, isStatic, SCAsWritten, isInline,
5119                                 isConstexpr, SourceLocation());
5120
5121  } else {
5122    // Determine whether the function was written with a
5123    // prototype. This true when:
5124    //   - we're in C++ (where every function has a prototype),
5125    return FunctionDecl::Create(SemaRef.Context, DC,
5126                                D.getLocStart(),
5127                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5128                                true/*HasPrototype*/, isConstexpr);
5129  }
5130}
5131
5132NamedDecl*
5133Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5134                              TypeSourceInfo *TInfo, LookupResult &Previous,
5135                              MultiTemplateParamsArg TemplateParamLists,
5136                              bool &AddToScope) {
5137  QualType R = TInfo->getType();
5138
5139  assert(R.getTypePtr()->isFunctionType());
5140
5141  // TODO: consider using NameInfo for diagnostic.
5142  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5143  DeclarationName Name = NameInfo.getName();
5144  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5145
5146  if (D.getDeclSpec().isThreadSpecified())
5147    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5148
5149  // Do not allow returning a objc interface by-value.
5150  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5151    Diag(D.getIdentifierLoc(),
5152         diag::err_object_cannot_be_passed_returned_by_value) << 0
5153    << R->getAs<FunctionType>()->getResultType()
5154    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5155
5156    QualType T = R->getAs<FunctionType>()->getResultType();
5157    T = Context.getObjCObjectPointerType(T);
5158    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5159      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5160      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5161                                  FPT->getNumArgs(), EPI);
5162    }
5163    else if (isa<FunctionNoProtoType>(R))
5164      R = Context.getFunctionNoProtoType(T);
5165  }
5166
5167  bool isFriend = false;
5168  FunctionTemplateDecl *FunctionTemplate = 0;
5169  bool isExplicitSpecialization = false;
5170  bool isFunctionTemplateSpecialization = false;
5171
5172  bool isDependentClassScopeExplicitSpecialization = false;
5173  bool HasExplicitTemplateArgs = false;
5174  TemplateArgumentListInfo TemplateArgs;
5175
5176  bool isVirtualOkay = false;
5177
5178  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5179                                              isVirtualOkay);
5180  if (!NewFD) return 0;
5181
5182  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5183    NewFD->setTopLevelDeclInObjCContainer();
5184
5185  if (getLangOpts().CPlusPlus) {
5186    bool isInline = D.getDeclSpec().isInlineSpecified();
5187    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5188    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5189    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5190    isFriend = D.getDeclSpec().isFriendSpecified();
5191    if (isFriend && !isInline && D.isFunctionDefinition()) {
5192      // C++ [class.friend]p5
5193      //   A function can be defined in a friend declaration of a
5194      //   class . . . . Such a function is implicitly inline.
5195      NewFD->setImplicitlyInline();
5196    }
5197
5198    // if this is a method defined in an __interface, set pure
5199    // (isVirtual will already return true)
5200    if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(
5201        NewFD->getDeclContext())) {
5202      if (Parent->getTagKind() == TTK_Interface)
5203        NewFD->setPure(true);
5204    }
5205
5206    SetNestedNameSpecifier(NewFD, D);
5207    isExplicitSpecialization = false;
5208    isFunctionTemplateSpecialization = false;
5209    if (D.isInvalidType())
5210      NewFD->setInvalidDecl();
5211
5212    // Set the lexical context. If the declarator has a C++
5213    // scope specifier, or is the object of a friend declaration, the
5214    // lexical context will be different from the semantic context.
5215    NewFD->setLexicalDeclContext(CurContext);
5216
5217    // Match up the template parameter lists with the scope specifier, then
5218    // determine whether we have a template or a template specialization.
5219    bool Invalid = false;
5220    if (TemplateParameterList *TemplateParams
5221          = MatchTemplateParametersToScopeSpecifier(
5222                                  D.getDeclSpec().getLocStart(),
5223                                  D.getIdentifierLoc(),
5224                                  D.getCXXScopeSpec(),
5225                                  TemplateParamLists.data(),
5226                                  TemplateParamLists.size(),
5227                                  isFriend,
5228                                  isExplicitSpecialization,
5229                                  Invalid)) {
5230      if (TemplateParams->size() > 0) {
5231        // This is a function template
5232
5233        // Check that we can declare a template here.
5234        if (CheckTemplateDeclScope(S, TemplateParams))
5235          return 0;
5236
5237        // A destructor cannot be a template.
5238        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5239          Diag(NewFD->getLocation(), diag::err_destructor_template);
5240          return 0;
5241        }
5242
5243        // If we're adding a template to a dependent context, we may need to
5244        // rebuilding some of the types used within the template parameter list,
5245        // now that we know what the current instantiation is.
5246        if (DC->isDependentContext()) {
5247          ContextRAII SavedContext(*this, DC);
5248          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5249            Invalid = true;
5250        }
5251
5252
5253        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5254                                                        NewFD->getLocation(),
5255                                                        Name, TemplateParams,
5256                                                        NewFD);
5257        FunctionTemplate->setLexicalDeclContext(CurContext);
5258        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5259
5260        // For source fidelity, store the other template param lists.
5261        if (TemplateParamLists.size() > 1) {
5262          NewFD->setTemplateParameterListsInfo(Context,
5263                                               TemplateParamLists.size() - 1,
5264                                               TemplateParamLists.data());
5265        }
5266      } else {
5267        // This is a function template specialization.
5268        isFunctionTemplateSpecialization = true;
5269        // For source fidelity, store all the template param lists.
5270        NewFD->setTemplateParameterListsInfo(Context,
5271                                             TemplateParamLists.size(),
5272                                             TemplateParamLists.data());
5273
5274        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5275        if (isFriend) {
5276          // We want to remove the "template<>", found here.
5277          SourceRange RemoveRange = TemplateParams->getSourceRange();
5278
5279          // If we remove the template<> and the name is not a
5280          // template-id, we're actually silently creating a problem:
5281          // the friend declaration will refer to an untemplated decl,
5282          // and clearly the user wants a template specialization.  So
5283          // we need to insert '<>' after the name.
5284          SourceLocation InsertLoc;
5285          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5286            InsertLoc = D.getName().getSourceRange().getEnd();
5287            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5288          }
5289
5290          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5291            << Name << RemoveRange
5292            << FixItHint::CreateRemoval(RemoveRange)
5293            << FixItHint::CreateInsertion(InsertLoc, "<>");
5294        }
5295      }
5296    }
5297    else {
5298      // All template param lists were matched against the scope specifier:
5299      // this is NOT (an explicit specialization of) a template.
5300      if (TemplateParamLists.size() > 0)
5301        // For source fidelity, store all the template param lists.
5302        NewFD->setTemplateParameterListsInfo(Context,
5303                                             TemplateParamLists.size(),
5304                                             TemplateParamLists.data());
5305    }
5306
5307    if (Invalid) {
5308      NewFD->setInvalidDecl();
5309      if (FunctionTemplate)
5310        FunctionTemplate->setInvalidDecl();
5311    }
5312
5313    // C++ [dcl.fct.spec]p5:
5314    //   The virtual specifier shall only be used in declarations of
5315    //   nonstatic class member functions that appear within a
5316    //   member-specification of a class declaration; see 10.3.
5317    //
5318    if (isVirtual && !NewFD->isInvalidDecl()) {
5319      if (!isVirtualOkay) {
5320        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5321             diag::err_virtual_non_function);
5322      } else if (!CurContext->isRecord()) {
5323        // 'virtual' was specified outside of the class.
5324        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5325             diag::err_virtual_out_of_class)
5326          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5327      } else if (NewFD->getDescribedFunctionTemplate()) {
5328        // C++ [temp.mem]p3:
5329        //  A member function template shall not be virtual.
5330        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5331             diag::err_virtual_member_function_template)
5332          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5333      } else {
5334        // Okay: Add virtual to the method.
5335        NewFD->setVirtualAsWritten(true);
5336      }
5337    }
5338
5339    // C++ [dcl.fct.spec]p3:
5340    //  The inline specifier shall not appear on a block scope function
5341    //  declaration.
5342    if (isInline && !NewFD->isInvalidDecl()) {
5343      if (CurContext->isFunctionOrMethod()) {
5344        // 'inline' is not allowed on block scope function declaration.
5345        Diag(D.getDeclSpec().getInlineSpecLoc(),
5346             diag::err_inline_declaration_block_scope) << Name
5347          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5348      }
5349    }
5350
5351    // C++ [dcl.fct.spec]p6:
5352    //  The explicit specifier shall be used only in the declaration of a
5353    //  constructor or conversion function within its class definition;
5354    //  see 12.3.1 and 12.3.2.
5355    if (isExplicit && !NewFD->isInvalidDecl()) {
5356      if (!CurContext->isRecord()) {
5357        // 'explicit' was specified outside of the class.
5358        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5359             diag::err_explicit_out_of_class)
5360          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5361      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5362                 !isa<CXXConversionDecl>(NewFD)) {
5363        // 'explicit' was specified on a function that wasn't a constructor
5364        // or conversion function.
5365        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5366             diag::err_explicit_non_ctor_or_conv_function)
5367          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5368      }
5369    }
5370
5371    if (isConstexpr) {
5372      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5373      // are implicitly inline.
5374      NewFD->setImplicitlyInline();
5375
5376      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5377      // be either constructors or to return a literal type. Therefore,
5378      // destructors cannot be declared constexpr.
5379      if (isa<CXXDestructorDecl>(NewFD))
5380        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5381    }
5382
5383    // If __module_private__ was specified, mark the function accordingly.
5384    if (D.getDeclSpec().isModulePrivateSpecified()) {
5385      if (isFunctionTemplateSpecialization) {
5386        SourceLocation ModulePrivateLoc
5387          = D.getDeclSpec().getModulePrivateSpecLoc();
5388        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5389          << 0
5390          << FixItHint::CreateRemoval(ModulePrivateLoc);
5391      } else {
5392        NewFD->setModulePrivate();
5393        if (FunctionTemplate)
5394          FunctionTemplate->setModulePrivate();
5395      }
5396    }
5397
5398    if (isFriend) {
5399      // For now, claim that the objects have no previous declaration.
5400      if (FunctionTemplate) {
5401        FunctionTemplate->setObjectOfFriendDecl(false);
5402        FunctionTemplate->setAccess(AS_public);
5403      }
5404      NewFD->setObjectOfFriendDecl(false);
5405      NewFD->setAccess(AS_public);
5406    }
5407
5408    // If a function is defined as defaulted or deleted, mark it as such now.
5409    switch (D.getFunctionDefinitionKind()) {
5410      case FDK_Declaration:
5411      case FDK_Definition:
5412        break;
5413
5414      case FDK_Defaulted:
5415        NewFD->setDefaulted();
5416        break;
5417
5418      case FDK_Deleted:
5419        NewFD->setDeletedAsWritten();
5420        break;
5421    }
5422
5423    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5424        D.isFunctionDefinition()) {
5425      // C++ [class.mfct]p2:
5426      //   A member function may be defined (8.4) in its class definition, in
5427      //   which case it is an inline member function (7.1.2)
5428      NewFD->setImplicitlyInline();
5429    }
5430
5431    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5432        !CurContext->isRecord()) {
5433      // C++ [class.static]p1:
5434      //   A data or function member of a class may be declared static
5435      //   in a class definition, in which case it is a static member of
5436      //   the class.
5437
5438      // Complain about the 'static' specifier if it's on an out-of-line
5439      // member function definition.
5440      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5441           diag::err_static_out_of_line)
5442        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5443    }
5444  }
5445
5446  // Filter out previous declarations that don't match the scope.
5447  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5448                       isExplicitSpecialization ||
5449                       isFunctionTemplateSpecialization);
5450
5451  // Handle GNU asm-label extension (encoded as an attribute).
5452  if (Expr *E = (Expr*) D.getAsmLabel()) {
5453    // The parser guarantees this is a string.
5454    StringLiteral *SE = cast<StringLiteral>(E);
5455    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5456                                                SE->getString()));
5457  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5458    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5459      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5460    if (I != ExtnameUndeclaredIdentifiers.end()) {
5461      NewFD->addAttr(I->second);
5462      ExtnameUndeclaredIdentifiers.erase(I);
5463    }
5464  }
5465
5466  // Copy the parameter declarations from the declarator D to the function
5467  // declaration NewFD, if they are available.  First scavenge them into Params.
5468  SmallVector<ParmVarDecl*, 16> Params;
5469  if (D.isFunctionDeclarator()) {
5470    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5471
5472    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5473    // function that takes no arguments, not a function that takes a
5474    // single void argument.
5475    // We let through "const void" here because Sema::GetTypeForDeclarator
5476    // already checks for that case.
5477    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5478        FTI.ArgInfo[0].Param &&
5479        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5480      // Empty arg list, don't push any params.
5481      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5482
5483      // In C++, the empty parameter-type-list must be spelled "void"; a
5484      // typedef of void is not permitted.
5485      if (getLangOpts().CPlusPlus &&
5486          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5487        bool IsTypeAlias = false;
5488        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5489          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5490        else if (const TemplateSpecializationType *TST =
5491                   Param->getType()->getAs<TemplateSpecializationType>())
5492          IsTypeAlias = TST->isTypeAlias();
5493        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5494          << IsTypeAlias;
5495      }
5496    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5497      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5498        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5499        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5500        Param->setDeclContext(NewFD);
5501        Params.push_back(Param);
5502
5503        if (Param->isInvalidDecl())
5504          NewFD->setInvalidDecl();
5505      }
5506    }
5507
5508  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5509    // When we're declaring a function with a typedef, typeof, etc as in the
5510    // following example, we'll need to synthesize (unnamed)
5511    // parameters for use in the declaration.
5512    //
5513    // @code
5514    // typedef void fn(int);
5515    // fn f;
5516    // @endcode
5517
5518    // Synthesize a parameter for each argument type.
5519    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5520         AE = FT->arg_type_end(); AI != AE; ++AI) {
5521      ParmVarDecl *Param =
5522        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5523      Param->setScopeInfo(0, Params.size());
5524      Params.push_back(Param);
5525    }
5526  } else {
5527    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5528           "Should not need args for typedef of non-prototype fn");
5529  }
5530
5531  // Finally, we know we have the right number of parameters, install them.
5532  NewFD->setParams(Params);
5533
5534  // Find all anonymous symbols defined during the declaration of this function
5535  // and add to NewFD. This lets us track decls such 'enum Y' in:
5536  //
5537  //   void f(enum Y {AA} x) {}
5538  //
5539  // which would otherwise incorrectly end up in the translation unit scope.
5540  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5541  DeclsInPrototypeScope.clear();
5542
5543  // Process the non-inheritable attributes on this declaration.
5544  ProcessDeclAttributes(S, NewFD, D,
5545                        /*NonInheritable=*/true, /*Inheritable=*/false);
5546
5547  // Functions returning a variably modified type violate C99 6.7.5.2p2
5548  // because all functions have linkage.
5549  if (!NewFD->isInvalidDecl() &&
5550      NewFD->getResultType()->isVariablyModifiedType()) {
5551    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5552    NewFD->setInvalidDecl();
5553  }
5554
5555  // Handle attributes.
5556  ProcessDeclAttributes(S, NewFD, D,
5557                        /*NonInheritable=*/false, /*Inheritable=*/true);
5558
5559  if (!getLangOpts().CPlusPlus) {
5560    // Perform semantic checking on the function declaration.
5561    bool isExplicitSpecialization=false;
5562    if (!NewFD->isInvalidDecl()) {
5563      if (NewFD->isMain())
5564        CheckMain(NewFD, D.getDeclSpec());
5565      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5566                                                  isExplicitSpecialization));
5567    }
5568    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5569            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5570           "previous declaration set still overloaded");
5571  } else {
5572    // If the declarator is a template-id, translate the parser's template
5573    // argument list into our AST format.
5574    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5575      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5576      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5577      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5578      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5579                                         TemplateId->NumArgs);
5580      translateTemplateArguments(TemplateArgsPtr,
5581                                 TemplateArgs);
5582
5583      HasExplicitTemplateArgs = true;
5584
5585      if (NewFD->isInvalidDecl()) {
5586        HasExplicitTemplateArgs = false;
5587      } else if (FunctionTemplate) {
5588        // Function template with explicit template arguments.
5589        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5590          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5591
5592        HasExplicitTemplateArgs = false;
5593      } else if (!isFunctionTemplateSpecialization &&
5594                 !D.getDeclSpec().isFriendSpecified()) {
5595        // We have encountered something that the user meant to be a
5596        // specialization (because it has explicitly-specified template
5597        // arguments) but that was not introduced with a "template<>" (or had
5598        // too few of them).
5599        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5600          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5601          << FixItHint::CreateInsertion(
5602                                    D.getDeclSpec().getLocStart(),
5603                                        "template<> ");
5604        isFunctionTemplateSpecialization = true;
5605      } else {
5606        // "friend void foo<>(int);" is an implicit specialization decl.
5607        isFunctionTemplateSpecialization = true;
5608      }
5609    } else if (isFriend && isFunctionTemplateSpecialization) {
5610      // This combination is only possible in a recovery case;  the user
5611      // wrote something like:
5612      //   template <> friend void foo(int);
5613      // which we're recovering from as if the user had written:
5614      //   friend void foo<>(int);
5615      // Go ahead and fake up a template id.
5616      HasExplicitTemplateArgs = true;
5617        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5618      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5619    }
5620
5621    // If it's a friend (and only if it's a friend), it's possible
5622    // that either the specialized function type or the specialized
5623    // template is dependent, and therefore matching will fail.  In
5624    // this case, don't check the specialization yet.
5625    bool InstantiationDependent = false;
5626    if (isFunctionTemplateSpecialization && isFriend &&
5627        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5628         TemplateSpecializationType::anyDependentTemplateArguments(
5629            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5630            InstantiationDependent))) {
5631      assert(HasExplicitTemplateArgs &&
5632             "friend function specialization without template args");
5633      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5634                                                       Previous))
5635        NewFD->setInvalidDecl();
5636    } else if (isFunctionTemplateSpecialization) {
5637      if (CurContext->isDependentContext() && CurContext->isRecord()
5638          && !isFriend) {
5639        isDependentClassScopeExplicitSpecialization = true;
5640        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5641          diag::ext_function_specialization_in_class :
5642          diag::err_function_specialization_in_class)
5643          << NewFD->getDeclName();
5644      } else if (CheckFunctionTemplateSpecialization(NewFD,
5645                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5646                                                     Previous))
5647        NewFD->setInvalidDecl();
5648
5649      // C++ [dcl.stc]p1:
5650      //   A storage-class-specifier shall not be specified in an explicit
5651      //   specialization (14.7.3)
5652      if (SC != SC_None) {
5653        if (SC != NewFD->getStorageClass())
5654          Diag(NewFD->getLocation(),
5655               diag::err_explicit_specialization_inconsistent_storage_class)
5656            << SC
5657            << FixItHint::CreateRemoval(
5658                                      D.getDeclSpec().getStorageClassSpecLoc());
5659
5660        else
5661          Diag(NewFD->getLocation(),
5662               diag::ext_explicit_specialization_storage_class)
5663            << FixItHint::CreateRemoval(
5664                                      D.getDeclSpec().getStorageClassSpecLoc());
5665      }
5666
5667    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5668      if (CheckMemberSpecialization(NewFD, Previous))
5669          NewFD->setInvalidDecl();
5670    }
5671
5672    // Perform semantic checking on the function declaration.
5673    if (!isDependentClassScopeExplicitSpecialization) {
5674      if (NewFD->isInvalidDecl()) {
5675        // If this is a class member, mark the class invalid immediately.
5676        // This avoids some consistency errors later.
5677        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5678          methodDecl->getParent()->setInvalidDecl();
5679      } else {
5680        if (NewFD->isMain())
5681          CheckMain(NewFD, D.getDeclSpec());
5682        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5683                                                    isExplicitSpecialization));
5684      }
5685    }
5686
5687    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5688            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5689           "previous declaration set still overloaded");
5690
5691    NamedDecl *PrincipalDecl = (FunctionTemplate
5692                                ? cast<NamedDecl>(FunctionTemplate)
5693                                : NewFD);
5694
5695    if (isFriend && D.isRedeclaration()) {
5696      AccessSpecifier Access = AS_public;
5697      if (!NewFD->isInvalidDecl())
5698        Access = NewFD->getPreviousDecl()->getAccess();
5699
5700      NewFD->setAccess(Access);
5701      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5702
5703      PrincipalDecl->setObjectOfFriendDecl(true);
5704    }
5705
5706    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5707        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5708      PrincipalDecl->setNonMemberOperator();
5709
5710    // If we have a function template, check the template parameter
5711    // list. This will check and merge default template arguments.
5712    if (FunctionTemplate) {
5713      FunctionTemplateDecl *PrevTemplate =
5714                                     FunctionTemplate->getPreviousDecl();
5715      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5716                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5717                            D.getDeclSpec().isFriendSpecified()
5718                              ? (D.isFunctionDefinition()
5719                                   ? TPC_FriendFunctionTemplateDefinition
5720                                   : TPC_FriendFunctionTemplate)
5721                              : (D.getCXXScopeSpec().isSet() &&
5722                                 DC && DC->isRecord() &&
5723                                 DC->isDependentContext())
5724                                  ? TPC_ClassTemplateMember
5725                                  : TPC_FunctionTemplate);
5726    }
5727
5728    if (NewFD->isInvalidDecl()) {
5729      // Ignore all the rest of this.
5730    } else if (!D.isRedeclaration()) {
5731      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5732                                       AddToScope };
5733      // Fake up an access specifier if it's supposed to be a class member.
5734      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5735        NewFD->setAccess(AS_public);
5736
5737      // Qualified decls generally require a previous declaration.
5738      if (D.getCXXScopeSpec().isSet()) {
5739        // ...with the major exception of templated-scope or
5740        // dependent-scope friend declarations.
5741
5742        // TODO: we currently also suppress this check in dependent
5743        // contexts because (1) the parameter depth will be off when
5744        // matching friend templates and (2) we might actually be
5745        // selecting a friend based on a dependent factor.  But there
5746        // are situations where these conditions don't apply and we
5747        // can actually do this check immediately.
5748        if (isFriend &&
5749            (TemplateParamLists.size() ||
5750             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5751             CurContext->isDependentContext())) {
5752          // ignore these
5753        } else {
5754          // The user tried to provide an out-of-line definition for a
5755          // function that is a member of a class or namespace, but there
5756          // was no such member function declared (C++ [class.mfct]p2,
5757          // C++ [namespace.memdef]p2). For example:
5758          //
5759          // class X {
5760          //   void f() const;
5761          // };
5762          //
5763          // void X::f() { } // ill-formed
5764          //
5765          // Complain about this problem, and attempt to suggest close
5766          // matches (e.g., those that differ only in cv-qualifiers and
5767          // whether the parameter types are references).
5768
5769          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5770                                                               NewFD,
5771                                                               ExtraArgs)) {
5772            AddToScope = ExtraArgs.AddToScope;
5773            return Result;
5774          }
5775        }
5776
5777        // Unqualified local friend declarations are required to resolve
5778        // to something.
5779      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5780        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5781                                                             NewFD,
5782                                                             ExtraArgs)) {
5783          AddToScope = ExtraArgs.AddToScope;
5784          return Result;
5785        }
5786      }
5787
5788    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5789               !isFriend && !isFunctionTemplateSpecialization &&
5790               !isExplicitSpecialization) {
5791      // An out-of-line member function declaration must also be a
5792      // definition (C++ [dcl.meaning]p1).
5793      // Note that this is not the case for explicit specializations of
5794      // function templates or member functions of class templates, per
5795      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5796      // extension for compatibility with old SWIG code which likes to
5797      // generate them.
5798      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5799        << D.getCXXScopeSpec().getRange();
5800    }
5801  }
5802
5803  AddKnownFunctionAttributes(NewFD);
5804
5805  if (NewFD->hasAttr<OverloadableAttr>() &&
5806      !NewFD->getType()->getAs<FunctionProtoType>()) {
5807    Diag(NewFD->getLocation(),
5808         diag::err_attribute_overloadable_no_prototype)
5809      << NewFD;
5810
5811    // Turn this into a variadic function with no parameters.
5812    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5813    FunctionProtoType::ExtProtoInfo EPI;
5814    EPI.Variadic = true;
5815    EPI.ExtInfo = FT->getExtInfo();
5816
5817    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5818    NewFD->setType(R);
5819  }
5820
5821  // If there's a #pragma GCC visibility in scope, and this isn't a class
5822  // member, set the visibility of this function.
5823  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5824    AddPushedVisibilityAttribute(NewFD);
5825
5826  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5827  // marking the function.
5828  AddCFAuditedAttribute(NewFD);
5829
5830  // If this is a locally-scoped extern C function, update the
5831  // map of such names.
5832  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5833      && !NewFD->isInvalidDecl())
5834    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5835
5836  // Set this FunctionDecl's range up to the right paren.
5837  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5838
5839  if (getLangOpts().CPlusPlus) {
5840    if (FunctionTemplate) {
5841      if (NewFD->isInvalidDecl())
5842        FunctionTemplate->setInvalidDecl();
5843      return FunctionTemplate;
5844    }
5845  }
5846
5847  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5848  if ((getLangOpts().OpenCLVersion >= 120)
5849      && NewFD->hasAttr<OpenCLKernelAttr>()
5850      && (SC == SC_Static)) {
5851    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5852    D.setInvalidType();
5853  }
5854
5855  MarkUnusedFileScopedDecl(NewFD);
5856
5857  if (getLangOpts().CUDA)
5858    if (IdentifierInfo *II = NewFD->getIdentifier())
5859      if (!NewFD->isInvalidDecl() &&
5860          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5861        if (II->isStr("cudaConfigureCall")) {
5862          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5863            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5864
5865          Context.setcudaConfigureCallDecl(NewFD);
5866        }
5867      }
5868
5869  // Here we have an function template explicit specialization at class scope.
5870  // The actually specialization will be postponed to template instatiation
5871  // time via the ClassScopeFunctionSpecializationDecl node.
5872  if (isDependentClassScopeExplicitSpecialization) {
5873    ClassScopeFunctionSpecializationDecl *NewSpec =
5874                         ClassScopeFunctionSpecializationDecl::Create(
5875                                Context, CurContext, SourceLocation(),
5876                                cast<CXXMethodDecl>(NewFD),
5877                                HasExplicitTemplateArgs, TemplateArgs);
5878    CurContext->addDecl(NewSpec);
5879    AddToScope = false;
5880  }
5881
5882  return NewFD;
5883}
5884
5885/// \brief Perform semantic checking of a new function declaration.
5886///
5887/// Performs semantic analysis of the new function declaration
5888/// NewFD. This routine performs all semantic checking that does not
5889/// require the actual declarator involved in the declaration, and is
5890/// used both for the declaration of functions as they are parsed
5891/// (called via ActOnDeclarator) and for the declaration of functions
5892/// that have been instantiated via C++ template instantiation (called
5893/// via InstantiateDecl).
5894///
5895/// \param IsExplicitSpecialization whether this new function declaration is
5896/// an explicit specialization of the previous declaration.
5897///
5898/// This sets NewFD->isInvalidDecl() to true if there was an error.
5899///
5900/// \returns true if the function declaration is a redeclaration.
5901bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5902                                    LookupResult &Previous,
5903                                    bool IsExplicitSpecialization) {
5904  assert(!NewFD->getResultType()->isVariablyModifiedType()
5905         && "Variably modified return types are not handled here");
5906
5907  // Check for a previous declaration of this name.
5908  if (Previous.empty() && NewFD->isExternC()) {
5909    // Since we did not find anything by this name and we're declaring
5910    // an extern "C" function, look for a non-visible extern "C"
5911    // declaration with the same name.
5912    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5913      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5914    if (Pos != LocallyScopedExternalDecls.end())
5915      Previous.addDecl(Pos->second);
5916  }
5917
5918  bool Redeclaration = false;
5919
5920  // Merge or overload the declaration with an existing declaration of
5921  // the same name, if appropriate.
5922  if (!Previous.empty()) {
5923    // Determine whether NewFD is an overload of PrevDecl or
5924    // a declaration that requires merging. If it's an overload,
5925    // there's no more work to do here; we'll just add the new
5926    // function to the scope.
5927
5928    NamedDecl *OldDecl = 0;
5929    if (!AllowOverloadingOfFunction(Previous, Context)) {
5930      Redeclaration = true;
5931      OldDecl = Previous.getFoundDecl();
5932    } else {
5933      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5934                            /*NewIsUsingDecl*/ false)) {
5935      case Ovl_Match:
5936        Redeclaration = true;
5937        break;
5938
5939      case Ovl_NonFunction:
5940        Redeclaration = true;
5941        break;
5942
5943      case Ovl_Overload:
5944        Redeclaration = false;
5945        break;
5946      }
5947
5948      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5949        // If a function name is overloadable in C, then every function
5950        // with that name must be marked "overloadable".
5951        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5952          << Redeclaration << NewFD;
5953        NamedDecl *OverloadedDecl = 0;
5954        if (Redeclaration)
5955          OverloadedDecl = OldDecl;
5956        else if (!Previous.empty())
5957          OverloadedDecl = Previous.getRepresentativeDecl();
5958        if (OverloadedDecl)
5959          Diag(OverloadedDecl->getLocation(),
5960               diag::note_attribute_overloadable_prev_overload);
5961        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5962                                                        Context));
5963      }
5964    }
5965
5966    if (Redeclaration) {
5967      // NewFD and OldDecl represent declarations that need to be
5968      // merged.
5969      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5970        NewFD->setInvalidDecl();
5971        return Redeclaration;
5972      }
5973
5974      Previous.clear();
5975      Previous.addDecl(OldDecl);
5976
5977      if (FunctionTemplateDecl *OldTemplateDecl
5978                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5979        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5980        FunctionTemplateDecl *NewTemplateDecl
5981          = NewFD->getDescribedFunctionTemplate();
5982        assert(NewTemplateDecl && "Template/non-template mismatch");
5983        if (CXXMethodDecl *Method
5984              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5985          Method->setAccess(OldTemplateDecl->getAccess());
5986          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5987        }
5988
5989        // If this is an explicit specialization of a member that is a function
5990        // template, mark it as a member specialization.
5991        if (IsExplicitSpecialization &&
5992            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5993          NewTemplateDecl->setMemberSpecialization();
5994          assert(OldTemplateDecl->isMemberSpecialization());
5995        }
5996
5997      } else {
5998        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5999          NewFD->setAccess(OldDecl->getAccess());
6000        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6001      }
6002    }
6003  }
6004
6005  // Semantic checking for this function declaration (in isolation).
6006  if (getLangOpts().CPlusPlus) {
6007    // C++-specific checks.
6008    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6009      CheckConstructor(Constructor);
6010    } else if (CXXDestructorDecl *Destructor =
6011                dyn_cast<CXXDestructorDecl>(NewFD)) {
6012      CXXRecordDecl *Record = Destructor->getParent();
6013      QualType ClassType = Context.getTypeDeclType(Record);
6014
6015      // FIXME: Shouldn't we be able to perform this check even when the class
6016      // type is dependent? Both gcc and edg can handle that.
6017      if (!ClassType->isDependentType()) {
6018        DeclarationName Name
6019          = Context.DeclarationNames.getCXXDestructorName(
6020                                        Context.getCanonicalType(ClassType));
6021        if (NewFD->getDeclName() != Name) {
6022          Diag(NewFD->getLocation(), diag::err_destructor_name);
6023          NewFD->setInvalidDecl();
6024          return Redeclaration;
6025        }
6026      }
6027    } else if (CXXConversionDecl *Conversion
6028               = dyn_cast<CXXConversionDecl>(NewFD)) {
6029      ActOnConversionDeclarator(Conversion);
6030    }
6031
6032    // Find any virtual functions that this function overrides.
6033    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6034      if (!Method->isFunctionTemplateSpecialization() &&
6035          !Method->getDescribedFunctionTemplate()) {
6036        if (AddOverriddenMethods(Method->getParent(), Method)) {
6037          // If the function was marked as "static", we have a problem.
6038          if (NewFD->getStorageClass() == SC_Static) {
6039            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6040              << NewFD->getDeclName();
6041            for (CXXMethodDecl::method_iterator
6042                      Overridden = Method->begin_overridden_methods(),
6043                   OverriddenEnd = Method->end_overridden_methods();
6044                 Overridden != OverriddenEnd;
6045                 ++Overridden) {
6046              Diag((*Overridden)->getLocation(),
6047                   diag::note_overridden_virtual_function);
6048            }
6049          }
6050        }
6051      }
6052
6053      if (Method->isStatic())
6054        checkThisInStaticMemberFunctionType(Method);
6055    }
6056
6057    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6058    if (NewFD->isOverloadedOperator() &&
6059        CheckOverloadedOperatorDeclaration(NewFD)) {
6060      NewFD->setInvalidDecl();
6061      return Redeclaration;
6062    }
6063
6064    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6065    if (NewFD->getLiteralIdentifier() &&
6066        CheckLiteralOperatorDeclaration(NewFD)) {
6067      NewFD->setInvalidDecl();
6068      return Redeclaration;
6069    }
6070
6071    // In C++, check default arguments now that we have merged decls. Unless
6072    // the lexical context is the class, because in this case this is done
6073    // during delayed parsing anyway.
6074    if (!CurContext->isRecord())
6075      CheckCXXDefaultArguments(NewFD);
6076
6077    // If this function declares a builtin function, check the type of this
6078    // declaration against the expected type for the builtin.
6079    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6080      ASTContext::GetBuiltinTypeError Error;
6081      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6082      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6083        // The type of this function differs from the type of the builtin,
6084        // so forget about the builtin entirely.
6085        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6086      }
6087    }
6088
6089    // If this function is declared as being extern "C", then check to see if
6090    // the function returns a UDT (class, struct, or union type) that is not C
6091    // compatible, and if it does, warn the user.
6092    if (NewFD->isExternC()) {
6093      QualType R = NewFD->getResultType();
6094      if (R->isIncompleteType() && !R->isVoidType())
6095        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6096            << NewFD << R;
6097      else if (!R.isPODType(Context) && !R->isVoidType() &&
6098               !R->isObjCObjectPointerType())
6099        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6100    }
6101  }
6102  return Redeclaration;
6103}
6104
6105void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6106  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6107  //   static or constexpr is ill-formed.
6108  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6109  //   shall not appear in a declaration of main.
6110  // static main is not an error under C99, but we should warn about it.
6111  if (FD->getStorageClass() == SC_Static)
6112    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6113         ? diag::err_static_main : diag::warn_static_main)
6114      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6115  if (FD->isInlineSpecified())
6116    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6117      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6118  if (FD->isConstexpr()) {
6119    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6120      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6121    FD->setConstexpr(false);
6122  }
6123
6124  QualType T = FD->getType();
6125  assert(T->isFunctionType() && "function decl is not of function type");
6126  const FunctionType* FT = T->castAs<FunctionType>();
6127
6128  // All the standards say that main() should should return 'int'.
6129  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6130    // In C and C++, main magically returns 0 if you fall off the end;
6131    // set the flag which tells us that.
6132    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6133    FD->setHasImplicitReturnZero(true);
6134
6135  // In C with GNU extensions we allow main() to have non-integer return
6136  // type, but we should warn about the extension, and we disable the
6137  // implicit-return-zero rule.
6138  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6139    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6140
6141  // Otherwise, this is just a flat-out error.
6142  } else {
6143    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6144    FD->setInvalidDecl(true);
6145  }
6146
6147  // Treat protoless main() as nullary.
6148  if (isa<FunctionNoProtoType>(FT)) return;
6149
6150  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6151  unsigned nparams = FTP->getNumArgs();
6152  assert(FD->getNumParams() == nparams);
6153
6154  bool HasExtraParameters = (nparams > 3);
6155
6156  // Darwin passes an undocumented fourth argument of type char**.  If
6157  // other platforms start sprouting these, the logic below will start
6158  // getting shifty.
6159  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6160    HasExtraParameters = false;
6161
6162  if (HasExtraParameters) {
6163    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6164    FD->setInvalidDecl(true);
6165    nparams = 3;
6166  }
6167
6168  // FIXME: a lot of the following diagnostics would be improved
6169  // if we had some location information about types.
6170
6171  QualType CharPP =
6172    Context.getPointerType(Context.getPointerType(Context.CharTy));
6173  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6174
6175  for (unsigned i = 0; i < nparams; ++i) {
6176    QualType AT = FTP->getArgType(i);
6177
6178    bool mismatch = true;
6179
6180    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6181      mismatch = false;
6182    else if (Expected[i] == CharPP) {
6183      // As an extension, the following forms are okay:
6184      //   char const **
6185      //   char const * const *
6186      //   char * const *
6187
6188      QualifierCollector qs;
6189      const PointerType* PT;
6190      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6191          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6192          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6193        qs.removeConst();
6194        mismatch = !qs.empty();
6195      }
6196    }
6197
6198    if (mismatch) {
6199      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6200      // TODO: suggest replacing given type with expected type
6201      FD->setInvalidDecl(true);
6202    }
6203  }
6204
6205  if (nparams == 1 && !FD->isInvalidDecl()) {
6206    Diag(FD->getLocation(), diag::warn_main_one_arg);
6207  }
6208
6209  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6210    Diag(FD->getLocation(), diag::err_main_template_decl);
6211    FD->setInvalidDecl();
6212  }
6213}
6214
6215bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6216  // FIXME: Need strict checking.  In C89, we need to check for
6217  // any assignment, increment, decrement, function-calls, or
6218  // commas outside of a sizeof.  In C99, it's the same list,
6219  // except that the aforementioned are allowed in unevaluated
6220  // expressions.  Everything else falls under the
6221  // "may accept other forms of constant expressions" exception.
6222  // (We never end up here for C++, so the constant expression
6223  // rules there don't matter.)
6224  if (Init->isConstantInitializer(Context, false))
6225    return false;
6226  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6227    << Init->getSourceRange();
6228  return true;
6229}
6230
6231namespace {
6232  // Visits an initialization expression to see if OrigDecl is evaluated in
6233  // its own initialization and throws a warning if it does.
6234  class SelfReferenceChecker
6235      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6236    Sema &S;
6237    Decl *OrigDecl;
6238    bool isRecordType;
6239    bool isPODType;
6240    bool isReferenceType;
6241
6242  public:
6243    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6244
6245    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6246                                                    S(S), OrigDecl(OrigDecl) {
6247      isPODType = false;
6248      isRecordType = false;
6249      isReferenceType = false;
6250      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6251        isPODType = VD->getType().isPODType(S.Context);
6252        isRecordType = VD->getType()->isRecordType();
6253        isReferenceType = VD->getType()->isReferenceType();
6254      }
6255    }
6256
6257    // Sometimes, the expression passed in lacks the casts that are used
6258    // to determine which DeclRefExpr's to check.  Assume that the casts
6259    // are present and continue visiting the expression.
6260    void HandleExpr(Expr *E) {
6261      // Skip checking T a = a where T is not a record or reference type.
6262      // Doing so is a way to silence uninitialized warnings.
6263      if (isRecordType || isReferenceType)
6264        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6265          HandleDeclRefExpr(DRE);
6266
6267      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6268        HandleValue(CO->getTrueExpr());
6269        HandleValue(CO->getFalseExpr());
6270      }
6271
6272      Visit(E);
6273    }
6274
6275    // For most expressions, the cast is directly above the DeclRefExpr.
6276    // For conditional operators, the cast can be outside the conditional
6277    // operator if both expressions are DeclRefExpr's.
6278    void HandleValue(Expr *E) {
6279      E = E->IgnoreParenImpCasts();
6280      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6281        HandleDeclRefExpr(DRE);
6282        return;
6283      }
6284
6285      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6286        HandleValue(CO->getTrueExpr());
6287        HandleValue(CO->getFalseExpr());
6288      }
6289    }
6290
6291    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6292      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6293          (isRecordType && E->getCastKind() == CK_NoOp))
6294        HandleValue(E->getSubExpr());
6295
6296      Inherited::VisitImplicitCastExpr(E);
6297    }
6298
6299    void VisitMemberExpr(MemberExpr *E) {
6300      // Don't warn on arrays since they can be treated as pointers.
6301      if (E->getType()->canDecayToPointerType()) return;
6302
6303      ValueDecl *VD = E->getMemberDecl();
6304      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6305      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6306        if (DeclRefExpr *DRE
6307              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6308          HandleDeclRefExpr(DRE);
6309          return;
6310        }
6311
6312      Inherited::VisitMemberExpr(E);
6313    }
6314
6315    void VisitUnaryOperator(UnaryOperator *E) {
6316      // For POD record types, addresses of its own members are well-defined.
6317      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6318          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6319      Inherited::VisitUnaryOperator(E);
6320    }
6321
6322    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6323
6324    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6325      Decl* ReferenceDecl = DRE->getDecl();
6326      if (OrigDecl != ReferenceDecl) return;
6327      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6328                          Sema::NotForRedeclaration);
6329      unsigned diag = isReferenceType
6330          ? diag::warn_uninit_self_reference_in_reference_init
6331          : diag::warn_uninit_self_reference_in_init;
6332      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6333                            S.PDiag(diag)
6334                              << Result.getLookupName()
6335                              << OrigDecl->getLocation()
6336                              << DRE->getSourceRange());
6337    }
6338  };
6339}
6340
6341/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6342void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6343  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6344}
6345
6346/// AddInitializerToDecl - Adds the initializer Init to the
6347/// declaration dcl. If DirectInit is true, this is C++ direct
6348/// initialization rather than copy initialization.
6349void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6350                                bool DirectInit, bool TypeMayContainAuto) {
6351  // If there is no declaration, there was an error parsing it.  Just ignore
6352  // the initializer.
6353  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6354    return;
6355
6356  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6357    // With declarators parsed the way they are, the parser cannot
6358    // distinguish between a normal initializer and a pure-specifier.
6359    // Thus this grotesque test.
6360    IntegerLiteral *IL;
6361    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6362        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6363      CheckPureMethod(Method, Init->getSourceRange());
6364    else {
6365      Diag(Method->getLocation(), diag::err_member_function_initialization)
6366        << Method->getDeclName() << Init->getSourceRange();
6367      Method->setInvalidDecl();
6368    }
6369    return;
6370  }
6371
6372  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6373  if (!VDecl) {
6374    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6375    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6376    RealDecl->setInvalidDecl();
6377    return;
6378  }
6379
6380  // Check for self-references within variable initializers.
6381  // Variables declared within a function/method body (except for references)
6382  // are handled by a dataflow analysis.
6383  // Record types initialized by initializer list are handled here.
6384  // Initialization by constructors are handled in TryConstructorInitialization.
6385  if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6386      (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6387    CheckSelfReference(RealDecl, Init);
6388
6389  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6390
6391  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6392  AutoType *Auto = 0;
6393  if (TypeMayContainAuto &&
6394      (Auto = VDecl->getType()->getContainedAutoType()) &&
6395      !Auto->isDeduced()) {
6396    Expr *DeduceInit = Init;
6397    // Initializer could be a C++ direct-initializer. Deduction only works if it
6398    // contains exactly one expression.
6399    if (CXXDirectInit) {
6400      if (CXXDirectInit->getNumExprs() == 0) {
6401        // It isn't possible to write this directly, but it is possible to
6402        // end up in this situation with "auto x(some_pack...);"
6403        Diag(CXXDirectInit->getLocStart(),
6404             diag::err_auto_var_init_no_expression)
6405          << VDecl->getDeclName() << VDecl->getType()
6406          << VDecl->getSourceRange();
6407        RealDecl->setInvalidDecl();
6408        return;
6409      } else if (CXXDirectInit->getNumExprs() > 1) {
6410        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6411             diag::err_auto_var_init_multiple_expressions)
6412          << VDecl->getDeclName() << VDecl->getType()
6413          << VDecl->getSourceRange();
6414        RealDecl->setInvalidDecl();
6415        return;
6416      } else {
6417        DeduceInit = CXXDirectInit->getExpr(0);
6418      }
6419    }
6420    TypeSourceInfo *DeducedType = 0;
6421    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6422            DAR_Failed)
6423      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6424    if (!DeducedType) {
6425      RealDecl->setInvalidDecl();
6426      return;
6427    }
6428    VDecl->setTypeSourceInfo(DeducedType);
6429    VDecl->setType(DeducedType->getType());
6430    VDecl->ClearLinkageCache();
6431
6432    // In ARC, infer lifetime.
6433    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6434      VDecl->setInvalidDecl();
6435
6436    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6437    // 'id' instead of a specific object type prevents most of our usual checks.
6438    // We only want to warn outside of template instantiations, though:
6439    // inside a template, the 'id' could have come from a parameter.
6440    if (ActiveTemplateInstantiations.empty() &&
6441        DeducedType->getType()->isObjCIdType()) {
6442      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6443      Diag(Loc, diag::warn_auto_var_is_id)
6444        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6445    }
6446
6447    // If this is a redeclaration, check that the type we just deduced matches
6448    // the previously declared type.
6449    if (VarDecl *Old = VDecl->getPreviousDecl())
6450      MergeVarDeclTypes(VDecl, Old);
6451  }
6452
6453  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6454    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6455    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6456    VDecl->setInvalidDecl();
6457    return;
6458  }
6459
6460  if (!VDecl->getType()->isDependentType()) {
6461    // A definition must end up with a complete type, which means it must be
6462    // complete with the restriction that an array type might be completed by
6463    // the initializer; note that later code assumes this restriction.
6464    QualType BaseDeclType = VDecl->getType();
6465    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6466      BaseDeclType = Array->getElementType();
6467    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6468                            diag::err_typecheck_decl_incomplete_type)) {
6469      RealDecl->setInvalidDecl();
6470      return;
6471    }
6472
6473    // The variable can not have an abstract class type.
6474    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6475                               diag::err_abstract_type_in_decl,
6476                               AbstractVariableType))
6477      VDecl->setInvalidDecl();
6478  }
6479
6480  const VarDecl *Def;
6481  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6482    Diag(VDecl->getLocation(), diag::err_redefinition)
6483      << VDecl->getDeclName();
6484    Diag(Def->getLocation(), diag::note_previous_definition);
6485    VDecl->setInvalidDecl();
6486    return;
6487  }
6488
6489  const VarDecl* PrevInit = 0;
6490  if (getLangOpts().CPlusPlus) {
6491    // C++ [class.static.data]p4
6492    //   If a static data member is of const integral or const
6493    //   enumeration type, its declaration in the class definition can
6494    //   specify a constant-initializer which shall be an integral
6495    //   constant expression (5.19). In that case, the member can appear
6496    //   in integral constant expressions. The member shall still be
6497    //   defined in a namespace scope if it is used in the program and the
6498    //   namespace scope definition shall not contain an initializer.
6499    //
6500    // We already performed a redefinition check above, but for static
6501    // data members we also need to check whether there was an in-class
6502    // declaration with an initializer.
6503    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6504      Diag(VDecl->getLocation(), diag::err_redefinition)
6505        << VDecl->getDeclName();
6506      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6507      return;
6508    }
6509
6510    if (VDecl->hasLocalStorage())
6511      getCurFunction()->setHasBranchProtectedScope();
6512
6513    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6514      VDecl->setInvalidDecl();
6515      return;
6516    }
6517  }
6518
6519  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6520  // a kernel function cannot be initialized."
6521  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6522    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6523    VDecl->setInvalidDecl();
6524    return;
6525  }
6526
6527  // Get the decls type and save a reference for later, since
6528  // CheckInitializerTypes may change it.
6529  QualType DclT = VDecl->getType(), SavT = DclT;
6530
6531  // Top-level message sends default to 'id' when we're in a debugger
6532  // and we are assigning it to a variable of 'id' type.
6533  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6534    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6535      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6536      if (Result.isInvalid()) {
6537        VDecl->setInvalidDecl();
6538        return;
6539      }
6540      Init = Result.take();
6541    }
6542
6543  // Perform the initialization.
6544  if (!VDecl->isInvalidDecl()) {
6545    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6546    InitializationKind Kind
6547      = DirectInit ?
6548          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6549                                                           Init->getLocStart(),
6550                                                           Init->getLocEnd())
6551                        : InitializationKind::CreateDirectList(
6552                                                          VDecl->getLocation())
6553                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6554                                                    Init->getLocStart());
6555
6556    Expr **Args = &Init;
6557    unsigned NumArgs = 1;
6558    if (CXXDirectInit) {
6559      Args = CXXDirectInit->getExprs();
6560      NumArgs = CXXDirectInit->getNumExprs();
6561    }
6562    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6563    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6564                                        MultiExprArg(Args, NumArgs), &DclT);
6565    if (Result.isInvalid()) {
6566      VDecl->setInvalidDecl();
6567      return;
6568    }
6569
6570    Init = Result.takeAs<Expr>();
6571  }
6572
6573  // If the type changed, it means we had an incomplete type that was
6574  // completed by the initializer. For example:
6575  //   int ary[] = { 1, 3, 5 };
6576  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6577  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6578    VDecl->setType(DclT);
6579
6580  // Check any implicit conversions within the expression.
6581  CheckImplicitConversions(Init, VDecl->getLocation());
6582
6583  if (!VDecl->isInvalidDecl())
6584    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6585
6586  Init = MaybeCreateExprWithCleanups(Init);
6587  // Attach the initializer to the decl.
6588  VDecl->setInit(Init);
6589
6590  if (VDecl->isLocalVarDecl()) {
6591    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6592    // static storage duration shall be constant expressions or string literals.
6593    // C++ does not have this restriction.
6594    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6595        VDecl->getStorageClass() == SC_Static)
6596      CheckForConstantInitializer(Init, DclT);
6597  } else if (VDecl->isStaticDataMember() &&
6598             VDecl->getLexicalDeclContext()->isRecord()) {
6599    // This is an in-class initialization for a static data member, e.g.,
6600    //
6601    // struct S {
6602    //   static const int value = 17;
6603    // };
6604
6605    // C++ [class.mem]p4:
6606    //   A member-declarator can contain a constant-initializer only
6607    //   if it declares a static member (9.4) of const integral or
6608    //   const enumeration type, see 9.4.2.
6609    //
6610    // C++11 [class.static.data]p3:
6611    //   If a non-volatile const static data member is of integral or
6612    //   enumeration type, its declaration in the class definition can
6613    //   specify a brace-or-equal-initializer in which every initalizer-clause
6614    //   that is an assignment-expression is a constant expression. A static
6615    //   data member of literal type can be declared in the class definition
6616    //   with the constexpr specifier; if so, its declaration shall specify a
6617    //   brace-or-equal-initializer in which every initializer-clause that is
6618    //   an assignment-expression is a constant expression.
6619
6620    // Do nothing on dependent types.
6621    if (DclT->isDependentType()) {
6622
6623    // Allow any 'static constexpr' members, whether or not they are of literal
6624    // type. We separately check that every constexpr variable is of literal
6625    // type.
6626    } else if (VDecl->isConstexpr()) {
6627
6628    // Require constness.
6629    } else if (!DclT.isConstQualified()) {
6630      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6631        << Init->getSourceRange();
6632      VDecl->setInvalidDecl();
6633
6634    // We allow integer constant expressions in all cases.
6635    } else if (DclT->isIntegralOrEnumerationType()) {
6636      // Check whether the expression is a constant expression.
6637      SourceLocation Loc;
6638      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6639        // In C++11, a non-constexpr const static data member with an
6640        // in-class initializer cannot be volatile.
6641        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6642      else if (Init->isValueDependent())
6643        ; // Nothing to check.
6644      else if (Init->isIntegerConstantExpr(Context, &Loc))
6645        ; // Ok, it's an ICE!
6646      else if (Init->isEvaluatable(Context)) {
6647        // If we can constant fold the initializer through heroics, accept it,
6648        // but report this as a use of an extension for -pedantic.
6649        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6650          << Init->getSourceRange();
6651      } else {
6652        // Otherwise, this is some crazy unknown case.  Report the issue at the
6653        // location provided by the isIntegerConstantExpr failed check.
6654        Diag(Loc, diag::err_in_class_initializer_non_constant)
6655          << Init->getSourceRange();
6656        VDecl->setInvalidDecl();
6657      }
6658
6659    // We allow foldable floating-point constants as an extension.
6660    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6661      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6662        << DclT << Init->getSourceRange();
6663      if (getLangOpts().CPlusPlus0x)
6664        Diag(VDecl->getLocation(),
6665             diag::note_in_class_initializer_float_type_constexpr)
6666          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6667
6668      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6669        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6670          << Init->getSourceRange();
6671        VDecl->setInvalidDecl();
6672      }
6673
6674    // Suggest adding 'constexpr' in C++11 for literal types.
6675    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6676      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6677        << DclT << Init->getSourceRange()
6678        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6679      VDecl->setConstexpr(true);
6680
6681    } else {
6682      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6683        << DclT << Init->getSourceRange();
6684      VDecl->setInvalidDecl();
6685    }
6686  } else if (VDecl->isFileVarDecl()) {
6687    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6688        (!getLangOpts().CPlusPlus ||
6689         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6690      Diag(VDecl->getLocation(), diag::warn_extern_init);
6691
6692    // C99 6.7.8p4. All file scoped initializers need to be constant.
6693    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6694      CheckForConstantInitializer(Init, DclT);
6695  }
6696
6697  // We will represent direct-initialization similarly to copy-initialization:
6698  //    int x(1);  -as-> int x = 1;
6699  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6700  //
6701  // Clients that want to distinguish between the two forms, can check for
6702  // direct initializer using VarDecl::getInitStyle().
6703  // A major benefit is that clients that don't particularly care about which
6704  // exactly form was it (like the CodeGen) can handle both cases without
6705  // special case code.
6706
6707  // C++ 8.5p11:
6708  // The form of initialization (using parentheses or '=') is generally
6709  // insignificant, but does matter when the entity being initialized has a
6710  // class type.
6711  if (CXXDirectInit) {
6712    assert(DirectInit && "Call-style initializer must be direct init.");
6713    VDecl->setInitStyle(VarDecl::CallInit);
6714  } else if (DirectInit) {
6715    // This must be list-initialization. No other way is direct-initialization.
6716    VDecl->setInitStyle(VarDecl::ListInit);
6717  }
6718
6719  CheckCompleteVariableDeclaration(VDecl);
6720}
6721
6722/// ActOnInitializerError - Given that there was an error parsing an
6723/// initializer for the given declaration, try to return to some form
6724/// of sanity.
6725void Sema::ActOnInitializerError(Decl *D) {
6726  // Our main concern here is re-establishing invariants like "a
6727  // variable's type is either dependent or complete".
6728  if (!D || D->isInvalidDecl()) return;
6729
6730  VarDecl *VD = dyn_cast<VarDecl>(D);
6731  if (!VD) return;
6732
6733  // Auto types are meaningless if we can't make sense of the initializer.
6734  if (ParsingInitForAutoVars.count(D)) {
6735    D->setInvalidDecl();
6736    return;
6737  }
6738
6739  QualType Ty = VD->getType();
6740  if (Ty->isDependentType()) return;
6741
6742  // Require a complete type.
6743  if (RequireCompleteType(VD->getLocation(),
6744                          Context.getBaseElementType(Ty),
6745                          diag::err_typecheck_decl_incomplete_type)) {
6746    VD->setInvalidDecl();
6747    return;
6748  }
6749
6750  // Require an abstract type.
6751  if (RequireNonAbstractType(VD->getLocation(), Ty,
6752                             diag::err_abstract_type_in_decl,
6753                             AbstractVariableType)) {
6754    VD->setInvalidDecl();
6755    return;
6756  }
6757
6758  // Don't bother complaining about constructors or destructors,
6759  // though.
6760}
6761
6762void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6763                                  bool TypeMayContainAuto) {
6764  // If there is no declaration, there was an error parsing it. Just ignore it.
6765  if (RealDecl == 0)
6766    return;
6767
6768  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6769    QualType Type = Var->getType();
6770
6771    // C++11 [dcl.spec.auto]p3
6772    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6773      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6774        << Var->getDeclName() << Type;
6775      Var->setInvalidDecl();
6776      return;
6777    }
6778
6779    // C++11 [class.static.data]p3: A static data member can be declared with
6780    // the constexpr specifier; if so, its declaration shall specify
6781    // a brace-or-equal-initializer.
6782    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6783    // the definition of a variable [...] or the declaration of a static data
6784    // member.
6785    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6786      if (Var->isStaticDataMember())
6787        Diag(Var->getLocation(),
6788             diag::err_constexpr_static_mem_var_requires_init)
6789          << Var->getDeclName();
6790      else
6791        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6792      Var->setInvalidDecl();
6793      return;
6794    }
6795
6796    switch (Var->isThisDeclarationADefinition()) {
6797    case VarDecl::Definition:
6798      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6799        break;
6800
6801      // We have an out-of-line definition of a static data member
6802      // that has an in-class initializer, so we type-check this like
6803      // a declaration.
6804      //
6805      // Fall through
6806
6807    case VarDecl::DeclarationOnly:
6808      // It's only a declaration.
6809
6810      // Block scope. C99 6.7p7: If an identifier for an object is
6811      // declared with no linkage (C99 6.2.2p6), the type for the
6812      // object shall be complete.
6813      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6814          !Var->getLinkage() && !Var->isInvalidDecl() &&
6815          RequireCompleteType(Var->getLocation(), Type,
6816                              diag::err_typecheck_decl_incomplete_type))
6817        Var->setInvalidDecl();
6818
6819      // Make sure that the type is not abstract.
6820      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6821          RequireNonAbstractType(Var->getLocation(), Type,
6822                                 diag::err_abstract_type_in_decl,
6823                                 AbstractVariableType))
6824        Var->setInvalidDecl();
6825      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6826          Var->getStorageClass() == SC_PrivateExtern) {
6827        Diag(Var->getLocation(), diag::warn_private_extern);
6828        Diag(Var->getLocation(), diag::note_private_extern);
6829      }
6830
6831      return;
6832
6833    case VarDecl::TentativeDefinition:
6834      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6835      // object that has file scope without an initializer, and without a
6836      // storage-class specifier or with the storage-class specifier "static",
6837      // constitutes a tentative definition. Note: A tentative definition with
6838      // external linkage is valid (C99 6.2.2p5).
6839      if (!Var->isInvalidDecl()) {
6840        if (const IncompleteArrayType *ArrayT
6841                                    = Context.getAsIncompleteArrayType(Type)) {
6842          if (RequireCompleteType(Var->getLocation(),
6843                                  ArrayT->getElementType(),
6844                                  diag::err_illegal_decl_array_incomplete_type))
6845            Var->setInvalidDecl();
6846        } else if (Var->getStorageClass() == SC_Static) {
6847          // C99 6.9.2p3: If the declaration of an identifier for an object is
6848          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6849          // declared type shall not be an incomplete type.
6850          // NOTE: code such as the following
6851          //     static struct s;
6852          //     struct s { int a; };
6853          // is accepted by gcc. Hence here we issue a warning instead of
6854          // an error and we do not invalidate the static declaration.
6855          // NOTE: to avoid multiple warnings, only check the first declaration.
6856          if (Var->getPreviousDecl() == 0)
6857            RequireCompleteType(Var->getLocation(), Type,
6858                                diag::ext_typecheck_decl_incomplete_type);
6859        }
6860      }
6861
6862      // Record the tentative definition; we're done.
6863      if (!Var->isInvalidDecl())
6864        TentativeDefinitions.push_back(Var);
6865      return;
6866    }
6867
6868    // Provide a specific diagnostic for uninitialized variable
6869    // definitions with incomplete array type.
6870    if (Type->isIncompleteArrayType()) {
6871      Diag(Var->getLocation(),
6872           diag::err_typecheck_incomplete_array_needs_initializer);
6873      Var->setInvalidDecl();
6874      return;
6875    }
6876
6877    // Provide a specific diagnostic for uninitialized variable
6878    // definitions with reference type.
6879    if (Type->isReferenceType()) {
6880      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6881        << Var->getDeclName()
6882        << SourceRange(Var->getLocation(), Var->getLocation());
6883      Var->setInvalidDecl();
6884      return;
6885    }
6886
6887    // Do not attempt to type-check the default initializer for a
6888    // variable with dependent type.
6889    if (Type->isDependentType())
6890      return;
6891
6892    if (Var->isInvalidDecl())
6893      return;
6894
6895    if (RequireCompleteType(Var->getLocation(),
6896                            Context.getBaseElementType(Type),
6897                            diag::err_typecheck_decl_incomplete_type)) {
6898      Var->setInvalidDecl();
6899      return;
6900    }
6901
6902    // The variable can not have an abstract class type.
6903    if (RequireNonAbstractType(Var->getLocation(), Type,
6904                               diag::err_abstract_type_in_decl,
6905                               AbstractVariableType)) {
6906      Var->setInvalidDecl();
6907      return;
6908    }
6909
6910    // Check for jumps past the implicit initializer.  C++0x
6911    // clarifies that this applies to a "variable with automatic
6912    // storage duration", not a "local variable".
6913    // C++11 [stmt.dcl]p3
6914    //   A program that jumps from a point where a variable with automatic
6915    //   storage duration is not in scope to a point where it is in scope is
6916    //   ill-formed unless the variable has scalar type, class type with a
6917    //   trivial default constructor and a trivial destructor, a cv-qualified
6918    //   version of one of these types, or an array of one of the preceding
6919    //   types and is declared without an initializer.
6920    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6921      if (const RecordType *Record
6922            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6923        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6924        // Mark the function for further checking even if the looser rules of
6925        // C++11 do not require such checks, so that we can diagnose
6926        // incompatibilities with C++98.
6927        if (!CXXRecord->isPOD())
6928          getCurFunction()->setHasBranchProtectedScope();
6929      }
6930    }
6931
6932    // C++03 [dcl.init]p9:
6933    //   If no initializer is specified for an object, and the
6934    //   object is of (possibly cv-qualified) non-POD class type (or
6935    //   array thereof), the object shall be default-initialized; if
6936    //   the object is of const-qualified type, the underlying class
6937    //   type shall have a user-declared default
6938    //   constructor. Otherwise, if no initializer is specified for
6939    //   a non- static object, the object and its subobjects, if
6940    //   any, have an indeterminate initial value); if the object
6941    //   or any of its subobjects are of const-qualified type, the
6942    //   program is ill-formed.
6943    // C++0x [dcl.init]p11:
6944    //   If no initializer is specified for an object, the object is
6945    //   default-initialized; [...].
6946    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6947    InitializationKind Kind
6948      = InitializationKind::CreateDefault(Var->getLocation());
6949
6950    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6951    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6952    if (Init.isInvalid())
6953      Var->setInvalidDecl();
6954    else if (Init.get()) {
6955      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6956      // This is important for template substitution.
6957      Var->setInitStyle(VarDecl::CallInit);
6958    }
6959
6960    CheckCompleteVariableDeclaration(Var);
6961  }
6962}
6963
6964void Sema::ActOnCXXForRangeDecl(Decl *D) {
6965  VarDecl *VD = dyn_cast<VarDecl>(D);
6966  if (!VD) {
6967    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6968    D->setInvalidDecl();
6969    return;
6970  }
6971
6972  VD->setCXXForRangeDecl(true);
6973
6974  // for-range-declaration cannot be given a storage class specifier.
6975  int Error = -1;
6976  switch (VD->getStorageClassAsWritten()) {
6977  case SC_None:
6978    break;
6979  case SC_Extern:
6980    Error = 0;
6981    break;
6982  case SC_Static:
6983    Error = 1;
6984    break;
6985  case SC_PrivateExtern:
6986    Error = 2;
6987    break;
6988  case SC_Auto:
6989    Error = 3;
6990    break;
6991  case SC_Register:
6992    Error = 4;
6993    break;
6994  case SC_OpenCLWorkGroupLocal:
6995    llvm_unreachable("Unexpected storage class");
6996  }
6997  if (VD->isConstexpr())
6998    Error = 5;
6999  if (Error != -1) {
7000    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7001      << VD->getDeclName() << Error;
7002    D->setInvalidDecl();
7003  }
7004}
7005
7006void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7007  if (var->isInvalidDecl()) return;
7008
7009  // In ARC, don't allow jumps past the implicit initialization of a
7010  // local retaining variable.
7011  if (getLangOpts().ObjCAutoRefCount &&
7012      var->hasLocalStorage()) {
7013    switch (var->getType().getObjCLifetime()) {
7014    case Qualifiers::OCL_None:
7015    case Qualifiers::OCL_ExplicitNone:
7016    case Qualifiers::OCL_Autoreleasing:
7017      break;
7018
7019    case Qualifiers::OCL_Weak:
7020    case Qualifiers::OCL_Strong:
7021      getCurFunction()->setHasBranchProtectedScope();
7022      break;
7023    }
7024  }
7025
7026  // All the following checks are C++ only.
7027  if (!getLangOpts().CPlusPlus) return;
7028
7029  QualType baseType = Context.getBaseElementType(var->getType());
7030  if (baseType->isDependentType()) return;
7031
7032  // __block variables might require us to capture a copy-initializer.
7033  if (var->hasAttr<BlocksAttr>()) {
7034    // It's currently invalid to ever have a __block variable with an
7035    // array type; should we diagnose that here?
7036
7037    // Regardless, we don't want to ignore array nesting when
7038    // constructing this copy.
7039    QualType type = var->getType();
7040
7041    if (type->isStructureOrClassType()) {
7042      SourceLocation poi = var->getLocation();
7043      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7044      ExprResult result =
7045        PerformCopyInitialization(
7046                        InitializedEntity::InitializeBlock(poi, type, false),
7047                                  poi, Owned(varRef));
7048      if (!result.isInvalid()) {
7049        result = MaybeCreateExprWithCleanups(result);
7050        Expr *init = result.takeAs<Expr>();
7051        Context.setBlockVarCopyInits(var, init);
7052      }
7053    }
7054  }
7055
7056  Expr *Init = var->getInit();
7057  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7058
7059  if (!var->getDeclContext()->isDependentContext() && Init) {
7060    if (IsGlobal && !var->isConstexpr() &&
7061        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7062                                            var->getLocation())
7063          != DiagnosticsEngine::Ignored &&
7064        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7065      Diag(var->getLocation(), diag::warn_global_constructor)
7066        << Init->getSourceRange();
7067
7068    if (var->isConstexpr()) {
7069      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7070      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7071        SourceLocation DiagLoc = var->getLocation();
7072        // If the note doesn't add any useful information other than a source
7073        // location, fold it into the primary diagnostic.
7074        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7075              diag::note_invalid_subexpr_in_const_expr) {
7076          DiagLoc = Notes[0].first;
7077          Notes.clear();
7078        }
7079        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7080          << var << Init->getSourceRange();
7081        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7082          Diag(Notes[I].first, Notes[I].second);
7083      }
7084    } else if (var->isUsableInConstantExpressions(Context)) {
7085      // Check whether the initializer of a const variable of integral or
7086      // enumeration type is an ICE now, since we can't tell whether it was
7087      // initialized by a constant expression if we check later.
7088      var->checkInitIsICE();
7089    }
7090  }
7091
7092  // Require the destructor.
7093  if (const RecordType *recordType = baseType->getAs<RecordType>())
7094    FinalizeVarWithDestructor(var, recordType);
7095}
7096
7097/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7098/// any semantic actions necessary after any initializer has been attached.
7099void
7100Sema::FinalizeDeclaration(Decl *ThisDecl) {
7101  // Note that we are no longer parsing the initializer for this declaration.
7102  ParsingInitForAutoVars.erase(ThisDecl);
7103
7104  // Now we have parsed the initializer and can update the table of magic
7105  // tag values.
7106  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7107    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7108    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7109      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7110               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7111               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7112           I != E; ++I) {
7113        const Expr *MagicValueExpr = VD->getInit();
7114        if (!MagicValueExpr) {
7115          continue;
7116        }
7117        llvm::APSInt MagicValueInt;
7118        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7119          Diag(I->getRange().getBegin(),
7120               diag::err_type_tag_for_datatype_not_ice)
7121            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7122          continue;
7123        }
7124        if (MagicValueInt.getActiveBits() > 64) {
7125          Diag(I->getRange().getBegin(),
7126               diag::err_type_tag_for_datatype_too_large)
7127            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7128          continue;
7129        }
7130        uint64_t MagicValue = MagicValueInt.getZExtValue();
7131        RegisterTypeTagForDatatype(I->getArgumentKind(),
7132                                   MagicValue,
7133                                   I->getMatchingCType(),
7134                                   I->getLayoutCompatible(),
7135                                   I->getMustBeNull());
7136      }
7137    }
7138  }
7139}
7140
7141Sema::DeclGroupPtrTy
7142Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7143                              Decl **Group, unsigned NumDecls) {
7144  SmallVector<Decl*, 8> Decls;
7145
7146  if (DS.isTypeSpecOwned())
7147    Decls.push_back(DS.getRepAsDecl());
7148
7149  for (unsigned i = 0; i != NumDecls; ++i)
7150    if (Decl *D = Group[i])
7151      Decls.push_back(D);
7152
7153  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7154                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7155}
7156
7157/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7158/// group, performing any necessary semantic checking.
7159Sema::DeclGroupPtrTy
7160Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7161                           bool TypeMayContainAuto) {
7162  // C++0x [dcl.spec.auto]p7:
7163  //   If the type deduced for the template parameter U is not the same in each
7164  //   deduction, the program is ill-formed.
7165  // FIXME: When initializer-list support is added, a distinction is needed
7166  // between the deduced type U and the deduced type which 'auto' stands for.
7167  //   auto a = 0, b = { 1, 2, 3 };
7168  // is legal because the deduced type U is 'int' in both cases.
7169  if (TypeMayContainAuto && NumDecls > 1) {
7170    QualType Deduced;
7171    CanQualType DeducedCanon;
7172    VarDecl *DeducedDecl = 0;
7173    for (unsigned i = 0; i != NumDecls; ++i) {
7174      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7175        AutoType *AT = D->getType()->getContainedAutoType();
7176        // Don't reissue diagnostics when instantiating a template.
7177        if (AT && D->isInvalidDecl())
7178          break;
7179        if (AT && AT->isDeduced()) {
7180          QualType U = AT->getDeducedType();
7181          CanQualType UCanon = Context.getCanonicalType(U);
7182          if (Deduced.isNull()) {
7183            Deduced = U;
7184            DeducedCanon = UCanon;
7185            DeducedDecl = D;
7186          } else if (DeducedCanon != UCanon) {
7187            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7188                 diag::err_auto_different_deductions)
7189              << Deduced << DeducedDecl->getDeclName()
7190              << U << D->getDeclName()
7191              << DeducedDecl->getInit()->getSourceRange()
7192              << D->getInit()->getSourceRange();
7193            D->setInvalidDecl();
7194            break;
7195          }
7196        }
7197      }
7198    }
7199  }
7200
7201  ActOnDocumentableDecls(Group, NumDecls);
7202
7203  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7204}
7205
7206void Sema::ActOnDocumentableDecl(Decl *D) {
7207  ActOnDocumentableDecls(&D, 1);
7208}
7209
7210void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7211  // Don't parse the comment if Doxygen diagnostics are ignored.
7212  if (NumDecls == 0 || !Group[0])
7213   return;
7214
7215  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7216                               Group[0]->getLocation())
7217        == DiagnosticsEngine::Ignored)
7218    return;
7219
7220  if (NumDecls >= 2) {
7221    // This is a decl group.  Normally it will contain only declarations
7222    // procuded from declarator list.  But in case we have any definitions or
7223    // additional declaration references:
7224    //   'typedef struct S {} S;'
7225    //   'typedef struct S *S;'
7226    //   'struct S *pS;'
7227    // FinalizeDeclaratorGroup adds these as separate declarations.
7228    Decl *MaybeTagDecl = Group[0];
7229    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7230      Group++;
7231      NumDecls--;
7232    }
7233  }
7234
7235  // See if there are any new comments that are not attached to a decl.
7236  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7237  if (!Comments.empty() &&
7238      !Comments.back()->isAttached()) {
7239    // There is at least one comment that not attached to a decl.
7240    // Maybe it should be attached to one of these decls?
7241    //
7242    // Note that this way we pick up not only comments that precede the
7243    // declaration, but also comments that *follow* the declaration -- thanks to
7244    // the lookahead in the lexer: we've consumed the semicolon and looked
7245    // ahead through comments.
7246    for (unsigned i = 0; i != NumDecls; ++i)
7247      Context.getCommentForDecl(Group[i]);
7248  }
7249}
7250
7251/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7252/// to introduce parameters into function prototype scope.
7253Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7254  const DeclSpec &DS = D.getDeclSpec();
7255
7256  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7257  // C++03 [dcl.stc]p2 also permits 'auto'.
7258  VarDecl::StorageClass StorageClass = SC_None;
7259  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7260  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7261    StorageClass = SC_Register;
7262    StorageClassAsWritten = SC_Register;
7263  } else if (getLangOpts().CPlusPlus &&
7264             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7265    StorageClass = SC_Auto;
7266    StorageClassAsWritten = SC_Auto;
7267  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7268    Diag(DS.getStorageClassSpecLoc(),
7269         diag::err_invalid_storage_class_in_func_decl);
7270    D.getMutableDeclSpec().ClearStorageClassSpecs();
7271  }
7272
7273  if (D.getDeclSpec().isThreadSpecified())
7274    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7275  if (D.getDeclSpec().isConstexprSpecified())
7276    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7277      << 0;
7278
7279  DiagnoseFunctionSpecifiers(D);
7280
7281  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7282  QualType parmDeclType = TInfo->getType();
7283
7284  if (getLangOpts().CPlusPlus) {
7285    // Check that there are no default arguments inside the type of this
7286    // parameter.
7287    CheckExtraCXXDefaultArguments(D);
7288
7289    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7290    if (D.getCXXScopeSpec().isSet()) {
7291      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7292        << D.getCXXScopeSpec().getRange();
7293      D.getCXXScopeSpec().clear();
7294    }
7295  }
7296
7297  // Ensure we have a valid name
7298  IdentifierInfo *II = 0;
7299  if (D.hasName()) {
7300    II = D.getIdentifier();
7301    if (!II) {
7302      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7303        << GetNameForDeclarator(D).getName().getAsString();
7304      D.setInvalidType(true);
7305    }
7306  }
7307
7308  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7309  if (II) {
7310    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7311                   ForRedeclaration);
7312    LookupName(R, S);
7313    if (R.isSingleResult()) {
7314      NamedDecl *PrevDecl = R.getFoundDecl();
7315      if (PrevDecl->isTemplateParameter()) {
7316        // Maybe we will complain about the shadowed template parameter.
7317        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7318        // Just pretend that we didn't see the previous declaration.
7319        PrevDecl = 0;
7320      } else if (S->isDeclScope(PrevDecl)) {
7321        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7322        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7323
7324        // Recover by removing the name
7325        II = 0;
7326        D.SetIdentifier(0, D.getIdentifierLoc());
7327        D.setInvalidType(true);
7328      }
7329    }
7330  }
7331
7332  // Temporarily put parameter variables in the translation unit, not
7333  // the enclosing context.  This prevents them from accidentally
7334  // looking like class members in C++.
7335  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7336                                    D.getLocStart(),
7337                                    D.getIdentifierLoc(), II,
7338                                    parmDeclType, TInfo,
7339                                    StorageClass, StorageClassAsWritten);
7340
7341  if (D.isInvalidType())
7342    New->setInvalidDecl();
7343
7344  assert(S->isFunctionPrototypeScope());
7345  assert(S->getFunctionPrototypeDepth() >= 1);
7346  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7347                    S->getNextFunctionPrototypeIndex());
7348
7349  // Add the parameter declaration into this scope.
7350  S->AddDecl(New);
7351  if (II)
7352    IdResolver.AddDecl(New);
7353
7354  ProcessDeclAttributes(S, New, D);
7355
7356  if (D.getDeclSpec().isModulePrivateSpecified())
7357    Diag(New->getLocation(), diag::err_module_private_local)
7358      << 1 << New->getDeclName()
7359      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7360      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7361
7362  if (New->hasAttr<BlocksAttr>()) {
7363    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7364  }
7365  return New;
7366}
7367
7368/// \brief Synthesizes a variable for a parameter arising from a
7369/// typedef.
7370ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7371                                              SourceLocation Loc,
7372                                              QualType T) {
7373  /* FIXME: setting StartLoc == Loc.
7374     Would it be worth to modify callers so as to provide proper source
7375     location for the unnamed parameters, embedding the parameter's type? */
7376  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7377                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7378                                           SC_None, SC_None, 0);
7379  Param->setImplicit();
7380  return Param;
7381}
7382
7383void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7384                                    ParmVarDecl * const *ParamEnd) {
7385  // Don't diagnose unused-parameter errors in template instantiations; we
7386  // will already have done so in the template itself.
7387  if (!ActiveTemplateInstantiations.empty())
7388    return;
7389
7390  for (; Param != ParamEnd; ++Param) {
7391    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7392        !(*Param)->hasAttr<UnusedAttr>()) {
7393      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7394        << (*Param)->getDeclName();
7395    }
7396  }
7397}
7398
7399void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7400                                                  ParmVarDecl * const *ParamEnd,
7401                                                  QualType ReturnTy,
7402                                                  NamedDecl *D) {
7403  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7404    return;
7405
7406  // Warn if the return value is pass-by-value and larger than the specified
7407  // threshold.
7408  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7409    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7410    if (Size > LangOpts.NumLargeByValueCopy)
7411      Diag(D->getLocation(), diag::warn_return_value_size)
7412          << D->getDeclName() << Size;
7413  }
7414
7415  // Warn if any parameter is pass-by-value and larger than the specified
7416  // threshold.
7417  for (; Param != ParamEnd; ++Param) {
7418    QualType T = (*Param)->getType();
7419    if (T->isDependentType() || !T.isPODType(Context))
7420      continue;
7421    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7422    if (Size > LangOpts.NumLargeByValueCopy)
7423      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7424          << (*Param)->getDeclName() << Size;
7425  }
7426}
7427
7428ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7429                                  SourceLocation NameLoc, IdentifierInfo *Name,
7430                                  QualType T, TypeSourceInfo *TSInfo,
7431                                  VarDecl::StorageClass StorageClass,
7432                                  VarDecl::StorageClass StorageClassAsWritten) {
7433  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7434  if (getLangOpts().ObjCAutoRefCount &&
7435      T.getObjCLifetime() == Qualifiers::OCL_None &&
7436      T->isObjCLifetimeType()) {
7437
7438    Qualifiers::ObjCLifetime lifetime;
7439
7440    // Special cases for arrays:
7441    //   - if it's const, use __unsafe_unretained
7442    //   - otherwise, it's an error
7443    if (T->isArrayType()) {
7444      if (!T.isConstQualified()) {
7445        DelayedDiagnostics.add(
7446            sema::DelayedDiagnostic::makeForbiddenType(
7447            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7448      }
7449      lifetime = Qualifiers::OCL_ExplicitNone;
7450    } else {
7451      lifetime = T->getObjCARCImplicitLifetime();
7452    }
7453    T = Context.getLifetimeQualifiedType(T, lifetime);
7454  }
7455
7456  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7457                                         Context.getAdjustedParameterType(T),
7458                                         TSInfo,
7459                                         StorageClass, StorageClassAsWritten,
7460                                         0);
7461
7462  // Parameters can not be abstract class types.
7463  // For record types, this is done by the AbstractClassUsageDiagnoser once
7464  // the class has been completely parsed.
7465  if (!CurContext->isRecord() &&
7466      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7467                             AbstractParamType))
7468    New->setInvalidDecl();
7469
7470  // Parameter declarators cannot be interface types. All ObjC objects are
7471  // passed by reference.
7472  if (T->isObjCObjectType()) {
7473    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7474    Diag(NameLoc,
7475         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7476      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7477    T = Context.getObjCObjectPointerType(T);
7478    New->setType(T);
7479  }
7480
7481  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7482  // duration shall not be qualified by an address-space qualifier."
7483  // Since all parameters have automatic store duration, they can not have
7484  // an address space.
7485  if (T.getAddressSpace() != 0) {
7486    Diag(NameLoc, diag::err_arg_with_address_space);
7487    New->setInvalidDecl();
7488  }
7489
7490  return New;
7491}
7492
7493void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7494                                           SourceLocation LocAfterDecls) {
7495  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7496
7497  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7498  // for a K&R function.
7499  if (!FTI.hasPrototype) {
7500    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7501      --i;
7502      if (FTI.ArgInfo[i].Param == 0) {
7503        SmallString<256> Code;
7504        llvm::raw_svector_ostream(Code) << "  int "
7505                                        << FTI.ArgInfo[i].Ident->getName()
7506                                        << ";\n";
7507        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7508          << FTI.ArgInfo[i].Ident
7509          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7510
7511        // Implicitly declare the argument as type 'int' for lack of a better
7512        // type.
7513        AttributeFactory attrs;
7514        DeclSpec DS(attrs);
7515        const char* PrevSpec; // unused
7516        unsigned DiagID; // unused
7517        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7518                           PrevSpec, DiagID);
7519        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7520        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7521        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7522      }
7523    }
7524  }
7525}
7526
7527Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7528  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7529  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7530  Scope *ParentScope = FnBodyScope->getParent();
7531
7532  D.setFunctionDefinitionKind(FDK_Definition);
7533  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7534  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7535}
7536
7537static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7538  // Don't warn about invalid declarations.
7539  if (FD->isInvalidDecl())
7540    return false;
7541
7542  // Or declarations that aren't global.
7543  if (!FD->isGlobal())
7544    return false;
7545
7546  // Don't warn about C++ member functions.
7547  if (isa<CXXMethodDecl>(FD))
7548    return false;
7549
7550  // Don't warn about 'main'.
7551  if (FD->isMain())
7552    return false;
7553
7554  // Don't warn about inline functions.
7555  if (FD->isInlined())
7556    return false;
7557
7558  // Don't warn about function templates.
7559  if (FD->getDescribedFunctionTemplate())
7560    return false;
7561
7562  // Don't warn about function template specializations.
7563  if (FD->isFunctionTemplateSpecialization())
7564    return false;
7565
7566  // Don't warn for OpenCL kernels.
7567  if (FD->hasAttr<OpenCLKernelAttr>())
7568    return false;
7569
7570  bool MissingPrototype = true;
7571  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7572       Prev; Prev = Prev->getPreviousDecl()) {
7573    // Ignore any declarations that occur in function or method
7574    // scope, because they aren't visible from the header.
7575    if (Prev->getDeclContext()->isFunctionOrMethod())
7576      continue;
7577
7578    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7579    break;
7580  }
7581
7582  return MissingPrototype;
7583}
7584
7585void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7586  // Don't complain if we're in GNU89 mode and the previous definition
7587  // was an extern inline function.
7588  const FunctionDecl *Definition;
7589  if (FD->isDefined(Definition) &&
7590      !canRedefineFunction(Definition, getLangOpts())) {
7591    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7592        Definition->getStorageClass() == SC_Extern)
7593      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7594        << FD->getDeclName() << getLangOpts().CPlusPlus;
7595    else
7596      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7597    Diag(Definition->getLocation(), diag::note_previous_definition);
7598    FD->setInvalidDecl();
7599  }
7600}
7601
7602Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7603  // Clear the last template instantiation error context.
7604  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7605
7606  if (!D)
7607    return D;
7608  FunctionDecl *FD = 0;
7609
7610  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7611    FD = FunTmpl->getTemplatedDecl();
7612  else
7613    FD = cast<FunctionDecl>(D);
7614
7615  // Enter a new function scope
7616  PushFunctionScope();
7617
7618  // See if this is a redefinition.
7619  if (!FD->isLateTemplateParsed())
7620    CheckForFunctionRedefinition(FD);
7621
7622  // Builtin functions cannot be defined.
7623  if (unsigned BuiltinID = FD->getBuiltinID()) {
7624    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7625      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7626      FD->setInvalidDecl();
7627    }
7628  }
7629
7630  // The return type of a function definition must be complete
7631  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7632  QualType ResultType = FD->getResultType();
7633  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7634      !FD->isInvalidDecl() &&
7635      RequireCompleteType(FD->getLocation(), ResultType,
7636                          diag::err_func_def_incomplete_result))
7637    FD->setInvalidDecl();
7638
7639  // GNU warning -Wmissing-prototypes:
7640  //   Warn if a global function is defined without a previous
7641  //   prototype declaration. This warning is issued even if the
7642  //   definition itself provides a prototype. The aim is to detect
7643  //   global functions that fail to be declared in header files.
7644  if (ShouldWarnAboutMissingPrototype(FD))
7645    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7646
7647  if (FnBodyScope)
7648    PushDeclContext(FnBodyScope, FD);
7649
7650  // Check the validity of our function parameters
7651  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7652                           /*CheckParameterNames=*/true);
7653
7654  // Introduce our parameters into the function scope
7655  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7656    ParmVarDecl *Param = FD->getParamDecl(p);
7657    Param->setOwningFunction(FD);
7658
7659    // If this has an identifier, add it to the scope stack.
7660    if (Param->getIdentifier() && FnBodyScope) {
7661      CheckShadow(FnBodyScope, Param);
7662
7663      PushOnScopeChains(Param, FnBodyScope);
7664    }
7665  }
7666
7667  // If we had any tags defined in the function prototype,
7668  // introduce them into the function scope.
7669  if (FnBodyScope) {
7670    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7671           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7672      NamedDecl *D = *I;
7673
7674      // Some of these decls (like enums) may have been pinned to the translation unit
7675      // for lack of a real context earlier. If so, remove from the translation unit
7676      // and reattach to the current context.
7677      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7678        // Is the decl actually in the context?
7679        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7680               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7681          if (*DI == D) {
7682            Context.getTranslationUnitDecl()->removeDecl(D);
7683            break;
7684          }
7685        }
7686        // Either way, reassign the lexical decl context to our FunctionDecl.
7687        D->setLexicalDeclContext(CurContext);
7688      }
7689
7690      // If the decl has a non-null name, make accessible in the current scope.
7691      if (!D->getName().empty())
7692        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7693
7694      // Similarly, dive into enums and fish their constants out, making them
7695      // accessible in this scope.
7696      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7697        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7698               EE = ED->enumerator_end(); EI != EE; ++EI)
7699          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7700      }
7701    }
7702  }
7703
7704  // Ensure that the function's exception specification is instantiated.
7705  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7706    ResolveExceptionSpec(D->getLocation(), FPT);
7707
7708  // Checking attributes of current function definition
7709  // dllimport attribute.
7710  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7711  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7712    // dllimport attribute cannot be directly applied to definition.
7713    // Microsoft accepts dllimport for functions defined within class scope.
7714    if (!DA->isInherited() &&
7715        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7716      Diag(FD->getLocation(),
7717           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7718        << "dllimport";
7719      FD->setInvalidDecl();
7720      return FD;
7721    }
7722
7723    // Visual C++ appears to not think this is an issue, so only issue
7724    // a warning when Microsoft extensions are disabled.
7725    if (!LangOpts.MicrosoftExt) {
7726      // If a symbol previously declared dllimport is later defined, the
7727      // attribute is ignored in subsequent references, and a warning is
7728      // emitted.
7729      Diag(FD->getLocation(),
7730           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7731        << FD->getName() << "dllimport";
7732    }
7733  }
7734  // We want to attach documentation to original Decl (which might be
7735  // a function template).
7736  ActOnDocumentableDecl(D);
7737  return FD;
7738}
7739
7740/// \brief Given the set of return statements within a function body,
7741/// compute the variables that are subject to the named return value
7742/// optimization.
7743///
7744/// Each of the variables that is subject to the named return value
7745/// optimization will be marked as NRVO variables in the AST, and any
7746/// return statement that has a marked NRVO variable as its NRVO candidate can
7747/// use the named return value optimization.
7748///
7749/// This function applies a very simplistic algorithm for NRVO: if every return
7750/// statement in the function has the same NRVO candidate, that candidate is
7751/// the NRVO variable.
7752///
7753/// FIXME: Employ a smarter algorithm that accounts for multiple return
7754/// statements and the lifetimes of the NRVO candidates. We should be able to
7755/// find a maximal set of NRVO variables.
7756void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7757  ReturnStmt **Returns = Scope->Returns.data();
7758
7759  const VarDecl *NRVOCandidate = 0;
7760  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7761    if (!Returns[I]->getNRVOCandidate())
7762      return;
7763
7764    if (!NRVOCandidate)
7765      NRVOCandidate = Returns[I]->getNRVOCandidate();
7766    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7767      return;
7768  }
7769
7770  if (NRVOCandidate)
7771    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7772}
7773
7774Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7775  return ActOnFinishFunctionBody(D, BodyArg, false);
7776}
7777
7778Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7779                                    bool IsInstantiation) {
7780  FunctionDecl *FD = 0;
7781  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7782  if (FunTmpl)
7783    FD = FunTmpl->getTemplatedDecl();
7784  else
7785    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7786
7787  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7788  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7789
7790  if (FD) {
7791    FD->setBody(Body);
7792
7793    // If the function implicitly returns zero (like 'main') or is naked,
7794    // don't complain about missing return statements.
7795    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7796      WP.disableCheckFallThrough();
7797
7798    // MSVC permits the use of pure specifier (=0) on function definition,
7799    // defined at class scope, warn about this non standard construct.
7800    if (getLangOpts().MicrosoftExt && FD->isPure())
7801      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7802
7803    if (!FD->isInvalidDecl()) {
7804      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7805      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7806                                             FD->getResultType(), FD);
7807
7808      // If this is a constructor, we need a vtable.
7809      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7810        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7811
7812      // Try to apply the named return value optimization. We have to check
7813      // if we can do this here because lambdas keep return statements around
7814      // to deduce an implicit return type.
7815      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7816          !FD->isDependentContext())
7817        computeNRVO(Body, getCurFunction());
7818    }
7819
7820    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7821           "Function parsing confused");
7822  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7823    assert(MD == getCurMethodDecl() && "Method parsing confused");
7824    MD->setBody(Body);
7825    if (!MD->isInvalidDecl()) {
7826      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7827      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7828                                             MD->getResultType(), MD);
7829
7830      if (Body)
7831        computeNRVO(Body, getCurFunction());
7832    }
7833    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7834      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7835      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7836    }
7837    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7838      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7839      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7840    }
7841  } else {
7842    return 0;
7843  }
7844
7845  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7846         "This should only be set for ObjC methods, which should have been "
7847         "handled in the block above.");
7848  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7849         "This should only be set for ObjC methods, which should have been "
7850         "handled in the block above.");
7851
7852  // Verify and clean out per-function state.
7853  if (Body) {
7854    // C++ constructors that have function-try-blocks can't have return
7855    // statements in the handlers of that block. (C++ [except.handle]p14)
7856    // Verify this.
7857    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7858      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7859
7860    // Verify that gotos and switch cases don't jump into scopes illegally.
7861    if (getCurFunction()->NeedsScopeChecking() &&
7862        !dcl->isInvalidDecl() &&
7863        !hasAnyUnrecoverableErrorsInThisFunction() &&
7864        !PP.isCodeCompletionEnabled())
7865      DiagnoseInvalidJumps(Body);
7866
7867    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7868      if (!Destructor->getParent()->isDependentType())
7869        CheckDestructor(Destructor);
7870
7871      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7872                                             Destructor->getParent());
7873    }
7874
7875    // If any errors have occurred, clear out any temporaries that may have
7876    // been leftover. This ensures that these temporaries won't be picked up for
7877    // deletion in some later function.
7878    if (PP.getDiagnostics().hasErrorOccurred() ||
7879        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7880      DiscardCleanupsInEvaluationContext();
7881    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7882      // Since the body is valid, issue any analysis-based warnings that are
7883      // enabled.
7884      ActivePolicy = &WP;
7885    }
7886
7887    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7888        (!CheckConstexprFunctionDecl(FD) ||
7889         !CheckConstexprFunctionBody(FD, Body)))
7890      FD->setInvalidDecl();
7891
7892    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7893    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7894    assert(MaybeODRUseExprs.empty() &&
7895           "Leftover expressions for odr-use checking");
7896  }
7897
7898  if (!IsInstantiation)
7899    PopDeclContext();
7900
7901  PopFunctionScopeInfo(ActivePolicy, dcl);
7902
7903  // If any errors have occurred, clear out any temporaries that may have
7904  // been leftover. This ensures that these temporaries won't be picked up for
7905  // deletion in some later function.
7906  if (getDiagnostics().hasErrorOccurred()) {
7907    DiscardCleanupsInEvaluationContext();
7908  }
7909
7910  return dcl;
7911}
7912
7913
7914/// When we finish delayed parsing of an attribute, we must attach it to the
7915/// relevant Decl.
7916void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7917                                       ParsedAttributes &Attrs) {
7918  // Always attach attributes to the underlying decl.
7919  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7920    D = TD->getTemplatedDecl();
7921  ProcessDeclAttributeList(S, D, Attrs.getList());
7922
7923  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7924    if (Method->isStatic())
7925      checkThisInStaticMemberFunctionAttributes(Method);
7926}
7927
7928
7929/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7930/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7931NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7932                                          IdentifierInfo &II, Scope *S) {
7933  // Before we produce a declaration for an implicitly defined
7934  // function, see whether there was a locally-scoped declaration of
7935  // this name as a function or variable. If so, use that
7936  // (non-visible) declaration, and complain about it.
7937  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7938    = findLocallyScopedExternalDecl(&II);
7939  if (Pos != LocallyScopedExternalDecls.end()) {
7940    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7941    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7942    return Pos->second;
7943  }
7944
7945  // Extension in C99.  Legal in C90, but warn about it.
7946  unsigned diag_id;
7947  if (II.getName().startswith("__builtin_"))
7948    diag_id = diag::warn_builtin_unknown;
7949  else if (getLangOpts().C99)
7950    diag_id = diag::ext_implicit_function_decl;
7951  else
7952    diag_id = diag::warn_implicit_function_decl;
7953  Diag(Loc, diag_id) << &II;
7954
7955  // Because typo correction is expensive, only do it if the implicit
7956  // function declaration is going to be treated as an error.
7957  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7958    TypoCorrection Corrected;
7959    DeclFilterCCC<FunctionDecl> Validator;
7960    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7961                                      LookupOrdinaryName, S, 0, Validator))) {
7962      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7963      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7964      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7965
7966      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7967          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7968
7969      if (Func->getLocation().isValid()
7970          && !II.getName().startswith("__builtin_"))
7971        Diag(Func->getLocation(), diag::note_previous_decl)
7972            << CorrectedQuotedStr;
7973    }
7974  }
7975
7976  // Set a Declarator for the implicit definition: int foo();
7977  const char *Dummy;
7978  AttributeFactory attrFactory;
7979  DeclSpec DS(attrFactory);
7980  unsigned DiagID;
7981  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7982  (void)Error; // Silence warning.
7983  assert(!Error && "Error setting up implicit decl!");
7984  Declarator D(DS, Declarator::BlockContext);
7985  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7986                                             SourceLocation(), 0, 0, 0, true,
7987                                             SourceLocation(), SourceLocation(),
7988                                             SourceLocation(), SourceLocation(),
7989                                             EST_None, SourceLocation(),
7990                                             0, 0, 0, 0, Loc, Loc, D),
7991                DS.getAttributes(),
7992                SourceLocation());
7993  D.SetIdentifier(&II, Loc);
7994
7995  // Insert this function into translation-unit scope.
7996
7997  DeclContext *PrevDC = CurContext;
7998  CurContext = Context.getTranslationUnitDecl();
7999
8000  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8001  FD->setImplicit();
8002
8003  CurContext = PrevDC;
8004
8005  AddKnownFunctionAttributes(FD);
8006
8007  return FD;
8008}
8009
8010/// \brief Adds any function attributes that we know a priori based on
8011/// the declaration of this function.
8012///
8013/// These attributes can apply both to implicitly-declared builtins
8014/// (like __builtin___printf_chk) or to library-declared functions
8015/// like NSLog or printf.
8016///
8017/// We need to check for duplicate attributes both here and where user-written
8018/// attributes are applied to declarations.
8019void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8020  if (FD->isInvalidDecl())
8021    return;
8022
8023  // If this is a built-in function, map its builtin attributes to
8024  // actual attributes.
8025  if (unsigned BuiltinID = FD->getBuiltinID()) {
8026    // Handle printf-formatting attributes.
8027    unsigned FormatIdx;
8028    bool HasVAListArg;
8029    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8030      if (!FD->getAttr<FormatAttr>()) {
8031        const char *fmt = "printf";
8032        unsigned int NumParams = FD->getNumParams();
8033        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8034            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8035          fmt = "NSString";
8036        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8037                                               fmt, FormatIdx+1,
8038                                               HasVAListArg ? 0 : FormatIdx+2));
8039      }
8040    }
8041    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8042                                             HasVAListArg)) {
8043     if (!FD->getAttr<FormatAttr>())
8044       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8045                                              "scanf", FormatIdx+1,
8046                                              HasVAListArg ? 0 : FormatIdx+2));
8047    }
8048
8049    // Mark const if we don't care about errno and that is the only
8050    // thing preventing the function from being const. This allows
8051    // IRgen to use LLVM intrinsics for such functions.
8052    if (!getLangOpts().MathErrno &&
8053        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8054      if (!FD->getAttr<ConstAttr>())
8055        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8056    }
8057
8058    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8059        !FD->getAttr<ReturnsTwiceAttr>())
8060      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8061    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8062      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8063    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8064      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8065  }
8066
8067  IdentifierInfo *Name = FD->getIdentifier();
8068  if (!Name)
8069    return;
8070  if ((!getLangOpts().CPlusPlus &&
8071       FD->getDeclContext()->isTranslationUnit()) ||
8072      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8073       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8074       LinkageSpecDecl::lang_c)) {
8075    // Okay: this could be a libc/libm/Objective-C function we know
8076    // about.
8077  } else
8078    return;
8079
8080  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8081    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8082    // target-specific builtins, perhaps?
8083    if (!FD->getAttr<FormatAttr>())
8084      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8085                                             "printf", 2,
8086                                             Name->isStr("vasprintf") ? 0 : 3));
8087  }
8088
8089  if (Name->isStr("__CFStringMakeConstantString")) {
8090    // We already have a __builtin___CFStringMakeConstantString,
8091    // but builds that use -fno-constant-cfstrings don't go through that.
8092    if (!FD->getAttr<FormatArgAttr>())
8093      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8094  }
8095}
8096
8097TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8098                                    TypeSourceInfo *TInfo) {
8099  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8100  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8101
8102  if (!TInfo) {
8103    assert(D.isInvalidType() && "no declarator info for valid type");
8104    TInfo = Context.getTrivialTypeSourceInfo(T);
8105  }
8106
8107  // Scope manipulation handled by caller.
8108  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8109                                           D.getLocStart(),
8110                                           D.getIdentifierLoc(),
8111                                           D.getIdentifier(),
8112                                           TInfo);
8113
8114  // Bail out immediately if we have an invalid declaration.
8115  if (D.isInvalidType()) {
8116    NewTD->setInvalidDecl();
8117    return NewTD;
8118  }
8119
8120  if (D.getDeclSpec().isModulePrivateSpecified()) {
8121    if (CurContext->isFunctionOrMethod())
8122      Diag(NewTD->getLocation(), diag::err_module_private_local)
8123        << 2 << NewTD->getDeclName()
8124        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8125        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8126    else
8127      NewTD->setModulePrivate();
8128  }
8129
8130  // C++ [dcl.typedef]p8:
8131  //   If the typedef declaration defines an unnamed class (or
8132  //   enum), the first typedef-name declared by the declaration
8133  //   to be that class type (or enum type) is used to denote the
8134  //   class type (or enum type) for linkage purposes only.
8135  // We need to check whether the type was declared in the declaration.
8136  switch (D.getDeclSpec().getTypeSpecType()) {
8137  case TST_enum:
8138  case TST_struct:
8139  case TST_interface:
8140  case TST_union:
8141  case TST_class: {
8142    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8143
8144    // Do nothing if the tag is not anonymous or already has an
8145    // associated typedef (from an earlier typedef in this decl group).
8146    if (tagFromDeclSpec->getIdentifier()) break;
8147    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8148
8149    // A well-formed anonymous tag must always be a TUK_Definition.
8150    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8151
8152    // The type must match the tag exactly;  no qualifiers allowed.
8153    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8154      break;
8155
8156    // Otherwise, set this is the anon-decl typedef for the tag.
8157    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8158    break;
8159  }
8160
8161  default:
8162    break;
8163  }
8164
8165  return NewTD;
8166}
8167
8168
8169/// \brief Check that this is a valid underlying type for an enum declaration.
8170bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8171  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8172  QualType T = TI->getType();
8173
8174  if (T->isDependentType() || T->isIntegralType(Context))
8175    return false;
8176
8177  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8178  return true;
8179}
8180
8181/// Check whether this is a valid redeclaration of a previous enumeration.
8182/// \return true if the redeclaration was invalid.
8183bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8184                                  QualType EnumUnderlyingTy,
8185                                  const EnumDecl *Prev) {
8186  bool IsFixed = !EnumUnderlyingTy.isNull();
8187
8188  if (IsScoped != Prev->isScoped()) {
8189    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8190      << Prev->isScoped();
8191    Diag(Prev->getLocation(), diag::note_previous_use);
8192    return true;
8193  }
8194
8195  if (IsFixed && Prev->isFixed()) {
8196    if (!EnumUnderlyingTy->isDependentType() &&
8197        !Prev->getIntegerType()->isDependentType() &&
8198        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8199                                        Prev->getIntegerType())) {
8200      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8201        << EnumUnderlyingTy << Prev->getIntegerType();
8202      Diag(Prev->getLocation(), diag::note_previous_use);
8203      return true;
8204    }
8205  } else if (IsFixed != Prev->isFixed()) {
8206    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8207      << Prev->isFixed();
8208    Diag(Prev->getLocation(), diag::note_previous_use);
8209    return true;
8210  }
8211
8212  return false;
8213}
8214
8215/// \brief Get diagnostic %select index for tag kind for
8216/// redeclaration diagnostic message.
8217/// WARNING: Indexes apply to particular diagnostics only!
8218///
8219/// \returns diagnostic %select index.
8220static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag)
8221{
8222  switch (Tag) {
8223    case TTK_Struct: return 0;
8224    case TTK_Interface: return 1;
8225    case TTK_Class:  return 2;
8226    default: assert("Invalid tag kind for redecl diagnostic!");
8227  }
8228  return -1;
8229}
8230
8231/// \brief Determine if tag kind is a class-key compatible with
8232/// class for redeclaration (class, struct, or __interface).
8233///
8234/// \returns true iff the tag kind is compatible.
8235static bool isClassCompatTagKind(TagTypeKind Tag)
8236{
8237  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8238}
8239
8240/// \brief Determine whether a tag with a given kind is acceptable
8241/// as a redeclaration of the given tag declaration.
8242///
8243/// \returns true if the new tag kind is acceptable, false otherwise.
8244bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8245                                        TagTypeKind NewTag, bool isDefinition,
8246                                        SourceLocation NewTagLoc,
8247                                        const IdentifierInfo &Name) {
8248  // C++ [dcl.type.elab]p3:
8249  //   The class-key or enum keyword present in the
8250  //   elaborated-type-specifier shall agree in kind with the
8251  //   declaration to which the name in the elaborated-type-specifier
8252  //   refers. This rule also applies to the form of
8253  //   elaborated-type-specifier that declares a class-name or
8254  //   friend class since it can be construed as referring to the
8255  //   definition of the class. Thus, in any
8256  //   elaborated-type-specifier, the enum keyword shall be used to
8257  //   refer to an enumeration (7.2), the union class-key shall be
8258  //   used to refer to a union (clause 9), and either the class or
8259  //   struct class-key shall be used to refer to a class (clause 9)
8260  //   declared using the class or struct class-key.
8261  TagTypeKind OldTag = Previous->getTagKind();
8262  if (!isDefinition || !isClassCompatTagKind(NewTag))
8263    if (OldTag == NewTag)
8264      return true;
8265
8266  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8267    // Warn about the struct/class tag mismatch.
8268    bool isTemplate = false;
8269    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8270      isTemplate = Record->getDescribedClassTemplate();
8271
8272    if (!ActiveTemplateInstantiations.empty()) {
8273      // In a template instantiation, do not offer fix-its for tag mismatches
8274      // since they usually mess up the template instead of fixing the problem.
8275      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8276        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8277        << getRedeclDiagFromTagKind(OldTag);
8278      return true;
8279    }
8280
8281    if (isDefinition) {
8282      // On definitions, check previous tags and issue a fix-it for each
8283      // one that doesn't match the current tag.
8284      if (Previous->getDefinition()) {
8285        // Don't suggest fix-its for redefinitions.
8286        return true;
8287      }
8288
8289      bool previousMismatch = false;
8290      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8291           E(Previous->redecls_end()); I != E; ++I) {
8292        if (I->getTagKind() != NewTag) {
8293          if (!previousMismatch) {
8294            previousMismatch = true;
8295            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8296              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8297              << getRedeclDiagFromTagKind(I->getTagKind());
8298          }
8299          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8300            << getRedeclDiagFromTagKind(NewTag)
8301            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8302                 TypeWithKeyword::getTagTypeKindName(NewTag));
8303        }
8304      }
8305      return true;
8306    }
8307
8308    // Check for a previous definition.  If current tag and definition
8309    // are same type, do nothing.  If no definition, but disagree with
8310    // with previous tag type, give a warning, but no fix-it.
8311    const TagDecl *Redecl = Previous->getDefinition() ?
8312                            Previous->getDefinition() : Previous;
8313    if (Redecl->getTagKind() == NewTag) {
8314      return true;
8315    }
8316
8317    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8318      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8319      << getRedeclDiagFromTagKind(OldTag);
8320    Diag(Redecl->getLocation(), diag::note_previous_use);
8321
8322    // If there is a previous defintion, suggest a fix-it.
8323    if (Previous->getDefinition()) {
8324        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8325          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8326          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8327               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8328    }
8329
8330    return true;
8331  }
8332  return false;
8333}
8334
8335/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8336/// former case, Name will be non-null.  In the later case, Name will be null.
8337/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8338/// reference/declaration/definition of a tag.
8339Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8340                     SourceLocation KWLoc, CXXScopeSpec &SS,
8341                     IdentifierInfo *Name, SourceLocation NameLoc,
8342                     AttributeList *Attr, AccessSpecifier AS,
8343                     SourceLocation ModulePrivateLoc,
8344                     MultiTemplateParamsArg TemplateParameterLists,
8345                     bool &OwnedDecl, bool &IsDependent,
8346                     SourceLocation ScopedEnumKWLoc,
8347                     bool ScopedEnumUsesClassTag,
8348                     TypeResult UnderlyingType) {
8349  // If this is not a definition, it must have a name.
8350  IdentifierInfo *OrigName = Name;
8351  assert((Name != 0 || TUK == TUK_Definition) &&
8352         "Nameless record must be a definition!");
8353  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8354
8355  OwnedDecl = false;
8356  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8357  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8358
8359  // FIXME: Check explicit specializations more carefully.
8360  bool isExplicitSpecialization = false;
8361  bool Invalid = false;
8362
8363  // We only need to do this matching if we have template parameters
8364  // or a scope specifier, which also conveniently avoids this work
8365  // for non-C++ cases.
8366  if (TemplateParameterLists.size() > 0 ||
8367      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8368    if (TemplateParameterList *TemplateParams
8369          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8370                                                TemplateParameterLists.data(),
8371                                                TemplateParameterLists.size(),
8372                                                    TUK == TUK_Friend,
8373                                                    isExplicitSpecialization,
8374                                                    Invalid)) {
8375      if (TemplateParams->size() > 0) {
8376        // This is a declaration or definition of a class template (which may
8377        // be a member of another template).
8378
8379        if (Invalid)
8380          return 0;
8381
8382        OwnedDecl = false;
8383        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8384                                               SS, Name, NameLoc, Attr,
8385                                               TemplateParams, AS,
8386                                               ModulePrivateLoc,
8387                                               TemplateParameterLists.size()-1,
8388                                               TemplateParameterLists.data());
8389        return Result.get();
8390      } else {
8391        // The "template<>" header is extraneous.
8392        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8393          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8394        isExplicitSpecialization = true;
8395      }
8396    }
8397  }
8398
8399  // Figure out the underlying type if this a enum declaration. We need to do
8400  // this early, because it's needed to detect if this is an incompatible
8401  // redeclaration.
8402  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8403
8404  if (Kind == TTK_Enum) {
8405    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8406      // No underlying type explicitly specified, or we failed to parse the
8407      // type, default to int.
8408      EnumUnderlying = Context.IntTy.getTypePtr();
8409    else if (UnderlyingType.get()) {
8410      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8411      // integral type; any cv-qualification is ignored.
8412      TypeSourceInfo *TI = 0;
8413      GetTypeFromParser(UnderlyingType.get(), &TI);
8414      EnumUnderlying = TI;
8415
8416      if (CheckEnumUnderlyingType(TI))
8417        // Recover by falling back to int.
8418        EnumUnderlying = Context.IntTy.getTypePtr();
8419
8420      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8421                                          UPPC_FixedUnderlyingType))
8422        EnumUnderlying = Context.IntTy.getTypePtr();
8423
8424    } else if (getLangOpts().MicrosoftMode)
8425      // Microsoft enums are always of int type.
8426      EnumUnderlying = Context.IntTy.getTypePtr();
8427  }
8428
8429  DeclContext *SearchDC = CurContext;
8430  DeclContext *DC = CurContext;
8431  bool isStdBadAlloc = false;
8432
8433  RedeclarationKind Redecl = ForRedeclaration;
8434  if (TUK == TUK_Friend || TUK == TUK_Reference)
8435    Redecl = NotForRedeclaration;
8436
8437  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8438
8439  if (Name && SS.isNotEmpty()) {
8440    // We have a nested-name tag ('struct foo::bar').
8441
8442    // Check for invalid 'foo::'.
8443    if (SS.isInvalid()) {
8444      Name = 0;
8445      goto CreateNewDecl;
8446    }
8447
8448    // If this is a friend or a reference to a class in a dependent
8449    // context, don't try to make a decl for it.
8450    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8451      DC = computeDeclContext(SS, false);
8452      if (!DC) {
8453        IsDependent = true;
8454        return 0;
8455      }
8456    } else {
8457      DC = computeDeclContext(SS, true);
8458      if (!DC) {
8459        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8460          << SS.getRange();
8461        return 0;
8462      }
8463    }
8464
8465    if (RequireCompleteDeclContext(SS, DC))
8466      return 0;
8467
8468    SearchDC = DC;
8469    // Look-up name inside 'foo::'.
8470    LookupQualifiedName(Previous, DC);
8471
8472    if (Previous.isAmbiguous())
8473      return 0;
8474
8475    if (Previous.empty()) {
8476      // Name lookup did not find anything. However, if the
8477      // nested-name-specifier refers to the current instantiation,
8478      // and that current instantiation has any dependent base
8479      // classes, we might find something at instantiation time: treat
8480      // this as a dependent elaborated-type-specifier.
8481      // But this only makes any sense for reference-like lookups.
8482      if (Previous.wasNotFoundInCurrentInstantiation() &&
8483          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8484        IsDependent = true;
8485        return 0;
8486      }
8487
8488      // A tag 'foo::bar' must already exist.
8489      Diag(NameLoc, diag::err_not_tag_in_scope)
8490        << Kind << Name << DC << SS.getRange();
8491      Name = 0;
8492      Invalid = true;
8493      goto CreateNewDecl;
8494    }
8495  } else if (Name) {
8496    // If this is a named struct, check to see if there was a previous forward
8497    // declaration or definition.
8498    // FIXME: We're looking into outer scopes here, even when we
8499    // shouldn't be. Doing so can result in ambiguities that we
8500    // shouldn't be diagnosing.
8501    LookupName(Previous, S);
8502
8503    if (Previous.isAmbiguous() &&
8504        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8505      LookupResult::Filter F = Previous.makeFilter();
8506      while (F.hasNext()) {
8507        NamedDecl *ND = F.next();
8508        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8509          F.erase();
8510      }
8511      F.done();
8512    }
8513
8514    // Note:  there used to be some attempt at recovery here.
8515    if (Previous.isAmbiguous())
8516      return 0;
8517
8518    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8519      // FIXME: This makes sure that we ignore the contexts associated
8520      // with C structs, unions, and enums when looking for a matching
8521      // tag declaration or definition. See the similar lookup tweak
8522      // in Sema::LookupName; is there a better way to deal with this?
8523      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8524        SearchDC = SearchDC->getParent();
8525    }
8526  } else if (S->isFunctionPrototypeScope()) {
8527    // If this is an enum declaration in function prototype scope, set its
8528    // initial context to the translation unit.
8529    // FIXME: [citation needed]
8530    SearchDC = Context.getTranslationUnitDecl();
8531  }
8532
8533  if (Previous.isSingleResult() &&
8534      Previous.getFoundDecl()->isTemplateParameter()) {
8535    // Maybe we will complain about the shadowed template parameter.
8536    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8537    // Just pretend that we didn't see the previous declaration.
8538    Previous.clear();
8539  }
8540
8541  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8542      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8543    // This is a declaration of or a reference to "std::bad_alloc".
8544    isStdBadAlloc = true;
8545
8546    if (Previous.empty() && StdBadAlloc) {
8547      // std::bad_alloc has been implicitly declared (but made invisible to
8548      // name lookup). Fill in this implicit declaration as the previous
8549      // declaration, so that the declarations get chained appropriately.
8550      Previous.addDecl(getStdBadAlloc());
8551    }
8552  }
8553
8554  // If we didn't find a previous declaration, and this is a reference
8555  // (or friend reference), move to the correct scope.  In C++, we
8556  // also need to do a redeclaration lookup there, just in case
8557  // there's a shadow friend decl.
8558  if (Name && Previous.empty() &&
8559      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8560    if (Invalid) goto CreateNewDecl;
8561    assert(SS.isEmpty());
8562
8563    if (TUK == TUK_Reference) {
8564      // C++ [basic.scope.pdecl]p5:
8565      //   -- for an elaborated-type-specifier of the form
8566      //
8567      //          class-key identifier
8568      //
8569      //      if the elaborated-type-specifier is used in the
8570      //      decl-specifier-seq or parameter-declaration-clause of a
8571      //      function defined in namespace scope, the identifier is
8572      //      declared as a class-name in the namespace that contains
8573      //      the declaration; otherwise, except as a friend
8574      //      declaration, the identifier is declared in the smallest
8575      //      non-class, non-function-prototype scope that contains the
8576      //      declaration.
8577      //
8578      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8579      // C structs and unions.
8580      //
8581      // It is an error in C++ to declare (rather than define) an enum
8582      // type, including via an elaborated type specifier.  We'll
8583      // diagnose that later; for now, declare the enum in the same
8584      // scope as we would have picked for any other tag type.
8585      //
8586      // GNU C also supports this behavior as part of its incomplete
8587      // enum types extension, while GNU C++ does not.
8588      //
8589      // Find the context where we'll be declaring the tag.
8590      // FIXME: We would like to maintain the current DeclContext as the
8591      // lexical context,
8592      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8593        SearchDC = SearchDC->getParent();
8594
8595      // Find the scope where we'll be declaring the tag.
8596      while (S->isClassScope() ||
8597             (getLangOpts().CPlusPlus &&
8598              S->isFunctionPrototypeScope()) ||
8599             ((S->getFlags() & Scope::DeclScope) == 0) ||
8600             (S->getEntity() &&
8601              ((DeclContext *)S->getEntity())->isTransparentContext()))
8602        S = S->getParent();
8603    } else {
8604      assert(TUK == TUK_Friend);
8605      // C++ [namespace.memdef]p3:
8606      //   If a friend declaration in a non-local class first declares a
8607      //   class or function, the friend class or function is a member of
8608      //   the innermost enclosing namespace.
8609      SearchDC = SearchDC->getEnclosingNamespaceContext();
8610    }
8611
8612    // In C++, we need to do a redeclaration lookup to properly
8613    // diagnose some problems.
8614    if (getLangOpts().CPlusPlus) {
8615      Previous.setRedeclarationKind(ForRedeclaration);
8616      LookupQualifiedName(Previous, SearchDC);
8617    }
8618  }
8619
8620  if (!Previous.empty()) {
8621    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8622
8623    // It's okay to have a tag decl in the same scope as a typedef
8624    // which hides a tag decl in the same scope.  Finding this
8625    // insanity with a redeclaration lookup can only actually happen
8626    // in C++.
8627    //
8628    // This is also okay for elaborated-type-specifiers, which is
8629    // technically forbidden by the current standard but which is
8630    // okay according to the likely resolution of an open issue;
8631    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8632    if (getLangOpts().CPlusPlus) {
8633      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8634        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8635          TagDecl *Tag = TT->getDecl();
8636          if (Tag->getDeclName() == Name &&
8637              Tag->getDeclContext()->getRedeclContext()
8638                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8639            PrevDecl = Tag;
8640            Previous.clear();
8641            Previous.addDecl(Tag);
8642            Previous.resolveKind();
8643          }
8644        }
8645      }
8646    }
8647
8648    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8649      // If this is a use of a previous tag, or if the tag is already declared
8650      // in the same scope (so that the definition/declaration completes or
8651      // rementions the tag), reuse the decl.
8652      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8653          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8654        // Make sure that this wasn't declared as an enum and now used as a
8655        // struct or something similar.
8656        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8657                                          TUK == TUK_Definition, KWLoc,
8658                                          *Name)) {
8659          bool SafeToContinue
8660            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8661               Kind != TTK_Enum);
8662          if (SafeToContinue)
8663            Diag(KWLoc, diag::err_use_with_wrong_tag)
8664              << Name
8665              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8666                                              PrevTagDecl->getKindName());
8667          else
8668            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8669          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8670
8671          if (SafeToContinue)
8672            Kind = PrevTagDecl->getTagKind();
8673          else {
8674            // Recover by making this an anonymous redefinition.
8675            Name = 0;
8676            Previous.clear();
8677            Invalid = true;
8678          }
8679        }
8680
8681        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8682          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8683
8684          // If this is an elaborated-type-specifier for a scoped enumeration,
8685          // the 'class' keyword is not necessary and not permitted.
8686          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8687            if (ScopedEnum)
8688              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8689                << PrevEnum->isScoped()
8690                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8691            return PrevTagDecl;
8692          }
8693
8694          QualType EnumUnderlyingTy;
8695          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8696            EnumUnderlyingTy = TI->getType();
8697          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8698            EnumUnderlyingTy = QualType(T, 0);
8699
8700          // All conflicts with previous declarations are recovered by
8701          // returning the previous declaration, unless this is a definition,
8702          // in which case we want the caller to bail out.
8703          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8704                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8705            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8706        }
8707
8708        if (!Invalid) {
8709          // If this is a use, just return the declaration we found.
8710
8711          // FIXME: In the future, return a variant or some other clue
8712          // for the consumer of this Decl to know it doesn't own it.
8713          // For our current ASTs this shouldn't be a problem, but will
8714          // need to be changed with DeclGroups.
8715          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8716               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8717            return PrevTagDecl;
8718
8719          // Diagnose attempts to redefine a tag.
8720          if (TUK == TUK_Definition) {
8721            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8722              // If we're defining a specialization and the previous definition
8723              // is from an implicit instantiation, don't emit an error
8724              // here; we'll catch this in the general case below.
8725              bool IsExplicitSpecializationAfterInstantiation = false;
8726              if (isExplicitSpecialization) {
8727                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8728                  IsExplicitSpecializationAfterInstantiation =
8729                    RD->getTemplateSpecializationKind() !=
8730                    TSK_ExplicitSpecialization;
8731                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8732                  IsExplicitSpecializationAfterInstantiation =
8733                    ED->getTemplateSpecializationKind() !=
8734                    TSK_ExplicitSpecialization;
8735              }
8736
8737              if (!IsExplicitSpecializationAfterInstantiation) {
8738                // A redeclaration in function prototype scope in C isn't
8739                // visible elsewhere, so merely issue a warning.
8740                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8741                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8742                else
8743                  Diag(NameLoc, diag::err_redefinition) << Name;
8744                Diag(Def->getLocation(), diag::note_previous_definition);
8745                // If this is a redefinition, recover by making this
8746                // struct be anonymous, which will make any later
8747                // references get the previous definition.
8748                Name = 0;
8749                Previous.clear();
8750                Invalid = true;
8751              }
8752            } else {
8753              // If the type is currently being defined, complain
8754              // about a nested redefinition.
8755              const TagType *Tag
8756                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8757              if (Tag->isBeingDefined()) {
8758                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8759                Diag(PrevTagDecl->getLocation(),
8760                     diag::note_previous_definition);
8761                Name = 0;
8762                Previous.clear();
8763                Invalid = true;
8764              }
8765            }
8766
8767            // Okay, this is definition of a previously declared or referenced
8768            // tag PrevDecl. We're going to create a new Decl for it.
8769          }
8770        }
8771        // If we get here we have (another) forward declaration or we
8772        // have a definition.  Just create a new decl.
8773
8774      } else {
8775        // If we get here, this is a definition of a new tag type in a nested
8776        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8777        // new decl/type.  We set PrevDecl to NULL so that the entities
8778        // have distinct types.
8779        Previous.clear();
8780      }
8781      // If we get here, we're going to create a new Decl. If PrevDecl
8782      // is non-NULL, it's a definition of the tag declared by
8783      // PrevDecl. If it's NULL, we have a new definition.
8784
8785
8786    // Otherwise, PrevDecl is not a tag, but was found with tag
8787    // lookup.  This is only actually possible in C++, where a few
8788    // things like templates still live in the tag namespace.
8789    } else {
8790      // Use a better diagnostic if an elaborated-type-specifier
8791      // found the wrong kind of type on the first
8792      // (non-redeclaration) lookup.
8793      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8794          !Previous.isForRedeclaration()) {
8795        unsigned Kind = 0;
8796        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8797        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8798        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8799        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8800        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8801        Invalid = true;
8802
8803      // Otherwise, only diagnose if the declaration is in scope.
8804      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8805                                isExplicitSpecialization)) {
8806        // do nothing
8807
8808      // Diagnose implicit declarations introduced by elaborated types.
8809      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8810        unsigned Kind = 0;
8811        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8812        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8813        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8814        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8815        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8816        Invalid = true;
8817
8818      // Otherwise it's a declaration.  Call out a particularly common
8819      // case here.
8820      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8821        unsigned Kind = 0;
8822        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8823        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8824          << Name << Kind << TND->getUnderlyingType();
8825        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8826        Invalid = true;
8827
8828      // Otherwise, diagnose.
8829      } else {
8830        // The tag name clashes with something else in the target scope,
8831        // issue an error and recover by making this tag be anonymous.
8832        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8833        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8834        Name = 0;
8835        Invalid = true;
8836      }
8837
8838      // The existing declaration isn't relevant to us; we're in a
8839      // new scope, so clear out the previous declaration.
8840      Previous.clear();
8841    }
8842  }
8843
8844CreateNewDecl:
8845
8846  TagDecl *PrevDecl = 0;
8847  if (Previous.isSingleResult())
8848    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8849
8850  // If there is an identifier, use the location of the identifier as the
8851  // location of the decl, otherwise use the location of the struct/union
8852  // keyword.
8853  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8854
8855  // Otherwise, create a new declaration. If there is a previous
8856  // declaration of the same entity, the two will be linked via
8857  // PrevDecl.
8858  TagDecl *New;
8859
8860  bool IsForwardReference = false;
8861  if (Kind == TTK_Enum) {
8862    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8863    // enum X { A, B, C } D;    D should chain to X.
8864    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8865                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8866                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8867    // If this is an undefined enum, warn.
8868    if (TUK != TUK_Definition && !Invalid) {
8869      TagDecl *Def;
8870      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8871        // C++0x: 7.2p2: opaque-enum-declaration.
8872        // Conflicts are diagnosed above. Do nothing.
8873      }
8874      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8875        Diag(Loc, diag::ext_forward_ref_enum_def)
8876          << New;
8877        Diag(Def->getLocation(), diag::note_previous_definition);
8878      } else {
8879        unsigned DiagID = diag::ext_forward_ref_enum;
8880        if (getLangOpts().MicrosoftMode)
8881          DiagID = diag::ext_ms_forward_ref_enum;
8882        else if (getLangOpts().CPlusPlus)
8883          DiagID = diag::err_forward_ref_enum;
8884        Diag(Loc, DiagID);
8885
8886        // If this is a forward-declared reference to an enumeration, make a
8887        // note of it; we won't actually be introducing the declaration into
8888        // the declaration context.
8889        if (TUK == TUK_Reference)
8890          IsForwardReference = true;
8891      }
8892    }
8893
8894    if (EnumUnderlying) {
8895      EnumDecl *ED = cast<EnumDecl>(New);
8896      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8897        ED->setIntegerTypeSourceInfo(TI);
8898      else
8899        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8900      ED->setPromotionType(ED->getIntegerType());
8901    }
8902
8903  } else {
8904    // struct/union/class
8905
8906    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8907    // struct X { int A; } D;    D should chain to X.
8908    if (getLangOpts().CPlusPlus) {
8909      // FIXME: Look for a way to use RecordDecl for simple structs.
8910      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8911                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8912
8913      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8914        StdBadAlloc = cast<CXXRecordDecl>(New);
8915    } else
8916      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8917                               cast_or_null<RecordDecl>(PrevDecl));
8918  }
8919
8920  // Maybe add qualifier info.
8921  if (SS.isNotEmpty()) {
8922    if (SS.isSet()) {
8923      // If this is either a declaration or a definition, check the
8924      // nested-name-specifier against the current context. We don't do this
8925      // for explicit specializations, because they have similar checking
8926      // (with more specific diagnostics) in the call to
8927      // CheckMemberSpecialization, below.
8928      if (!isExplicitSpecialization &&
8929          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8930          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8931        Invalid = true;
8932
8933      New->setQualifierInfo(SS.getWithLocInContext(Context));
8934      if (TemplateParameterLists.size() > 0) {
8935        New->setTemplateParameterListsInfo(Context,
8936                                           TemplateParameterLists.size(),
8937                                           TemplateParameterLists.data());
8938      }
8939    }
8940    else
8941      Invalid = true;
8942  }
8943
8944  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8945    // Add alignment attributes if necessary; these attributes are checked when
8946    // the ASTContext lays out the structure.
8947    //
8948    // It is important for implementing the correct semantics that this
8949    // happen here (in act on tag decl). The #pragma pack stack is
8950    // maintained as a result of parser callbacks which can occur at
8951    // many points during the parsing of a struct declaration (because
8952    // the #pragma tokens are effectively skipped over during the
8953    // parsing of the struct).
8954    if (TUK == TUK_Definition) {
8955      AddAlignmentAttributesForRecord(RD);
8956      AddMsStructLayoutForRecord(RD);
8957    }
8958  }
8959
8960  if (ModulePrivateLoc.isValid()) {
8961    if (isExplicitSpecialization)
8962      Diag(New->getLocation(), diag::err_module_private_specialization)
8963        << 2
8964        << FixItHint::CreateRemoval(ModulePrivateLoc);
8965    // __module_private__ does not apply to local classes. However, we only
8966    // diagnose this as an error when the declaration specifiers are
8967    // freestanding. Here, we just ignore the __module_private__.
8968    else if (!SearchDC->isFunctionOrMethod())
8969      New->setModulePrivate();
8970  }
8971
8972  // If this is a specialization of a member class (of a class template),
8973  // check the specialization.
8974  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8975    Invalid = true;
8976
8977  if (Invalid)
8978    New->setInvalidDecl();
8979
8980  if (Attr)
8981    ProcessDeclAttributeList(S, New, Attr);
8982
8983  // If we're declaring or defining a tag in function prototype scope
8984  // in C, note that this type can only be used within the function.
8985  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8986    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8987
8988  // Set the lexical context. If the tag has a C++ scope specifier, the
8989  // lexical context will be different from the semantic context.
8990  New->setLexicalDeclContext(CurContext);
8991
8992  // Mark this as a friend decl if applicable.
8993  // In Microsoft mode, a friend declaration also acts as a forward
8994  // declaration so we always pass true to setObjectOfFriendDecl to make
8995  // the tag name visible.
8996  if (TUK == TUK_Friend)
8997    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8998                               getLangOpts().MicrosoftExt);
8999
9000  // Set the access specifier.
9001  if (!Invalid && SearchDC->isRecord())
9002    SetMemberAccessSpecifier(New, PrevDecl, AS);
9003
9004  if (TUK == TUK_Definition)
9005    New->startDefinition();
9006
9007  // If this has an identifier, add it to the scope stack.
9008  if (TUK == TUK_Friend) {
9009    // We might be replacing an existing declaration in the lookup tables;
9010    // if so, borrow its access specifier.
9011    if (PrevDecl)
9012      New->setAccess(PrevDecl->getAccess());
9013
9014    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9015    DC->makeDeclVisibleInContext(New);
9016    if (Name) // can be null along some error paths
9017      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9018        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9019  } else if (Name) {
9020    S = getNonFieldDeclScope(S);
9021    PushOnScopeChains(New, S, !IsForwardReference);
9022    if (IsForwardReference)
9023      SearchDC->makeDeclVisibleInContext(New);
9024
9025  } else {
9026    CurContext->addDecl(New);
9027  }
9028
9029  // If this is the C FILE type, notify the AST context.
9030  if (IdentifierInfo *II = New->getIdentifier())
9031    if (!New->isInvalidDecl() &&
9032        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9033        II->isStr("FILE"))
9034      Context.setFILEDecl(New);
9035
9036  // If we were in function prototype scope (and not in C++ mode), add this
9037  // tag to the list of decls to inject into the function definition scope.
9038  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9039      InFunctionDeclarator && Name)
9040    DeclsInPrototypeScope.push_back(New);
9041
9042  if (PrevDecl)
9043    mergeDeclAttributes(New, PrevDecl);
9044
9045  // If there's a #pragma GCC visibility in scope, set the visibility of this
9046  // record.
9047  AddPushedVisibilityAttribute(New);
9048
9049  OwnedDecl = true;
9050  return New;
9051}
9052
9053void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9054  AdjustDeclIfTemplate(TagD);
9055  TagDecl *Tag = cast<TagDecl>(TagD);
9056
9057  // Enter the tag context.
9058  PushDeclContext(S, Tag);
9059
9060  ActOnDocumentableDecl(TagD);
9061
9062  // If there's a #pragma GCC visibility in scope, set the visibility of this
9063  // record.
9064  AddPushedVisibilityAttribute(Tag);
9065}
9066
9067Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9068  assert(isa<ObjCContainerDecl>(IDecl) &&
9069         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9070  DeclContext *OCD = cast<DeclContext>(IDecl);
9071  assert(getContainingDC(OCD) == CurContext &&
9072      "The next DeclContext should be lexically contained in the current one.");
9073  CurContext = OCD;
9074  return IDecl;
9075}
9076
9077void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9078                                           SourceLocation FinalLoc,
9079                                           SourceLocation LBraceLoc) {
9080  AdjustDeclIfTemplate(TagD);
9081  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9082
9083  FieldCollector->StartClass();
9084
9085  if (!Record->getIdentifier())
9086    return;
9087
9088  if (FinalLoc.isValid())
9089    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9090
9091  // C++ [class]p2:
9092  //   [...] The class-name is also inserted into the scope of the
9093  //   class itself; this is known as the injected-class-name. For
9094  //   purposes of access checking, the injected-class-name is treated
9095  //   as if it were a public member name.
9096  CXXRecordDecl *InjectedClassName
9097    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9098                            Record->getLocStart(), Record->getLocation(),
9099                            Record->getIdentifier(),
9100                            /*PrevDecl=*/0,
9101                            /*DelayTypeCreation=*/true);
9102  Context.getTypeDeclType(InjectedClassName, Record);
9103  InjectedClassName->setImplicit();
9104  InjectedClassName->setAccess(AS_public);
9105  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9106      InjectedClassName->setDescribedClassTemplate(Template);
9107  PushOnScopeChains(InjectedClassName, S);
9108  assert(InjectedClassName->isInjectedClassName() &&
9109         "Broken injected-class-name");
9110}
9111
9112void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9113                                    SourceLocation RBraceLoc) {
9114  AdjustDeclIfTemplate(TagD);
9115  TagDecl *Tag = cast<TagDecl>(TagD);
9116  Tag->setRBraceLoc(RBraceLoc);
9117
9118  // Make sure we "complete" the definition even it is invalid.
9119  if (Tag->isBeingDefined()) {
9120    assert(Tag->isInvalidDecl() && "We should already have completed it");
9121    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9122      RD->completeDefinition();
9123  }
9124
9125  if (isa<CXXRecordDecl>(Tag))
9126    FieldCollector->FinishClass();
9127
9128  // Exit this scope of this tag's definition.
9129  PopDeclContext();
9130
9131  // Notify the consumer that we've defined a tag.
9132  Consumer.HandleTagDeclDefinition(Tag);
9133}
9134
9135void Sema::ActOnObjCContainerFinishDefinition() {
9136  // Exit this scope of this interface definition.
9137  PopDeclContext();
9138}
9139
9140void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9141  assert(DC == CurContext && "Mismatch of container contexts");
9142  OriginalLexicalContext = DC;
9143  ActOnObjCContainerFinishDefinition();
9144}
9145
9146void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9147  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9148  OriginalLexicalContext = 0;
9149}
9150
9151void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9152  AdjustDeclIfTemplate(TagD);
9153  TagDecl *Tag = cast<TagDecl>(TagD);
9154  Tag->setInvalidDecl();
9155
9156  // Make sure we "complete" the definition even it is invalid.
9157  if (Tag->isBeingDefined()) {
9158    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9159      RD->completeDefinition();
9160  }
9161
9162  // We're undoing ActOnTagStartDefinition here, not
9163  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9164  // the FieldCollector.
9165
9166  PopDeclContext();
9167}
9168
9169// Note that FieldName may be null for anonymous bitfields.
9170ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9171                                IdentifierInfo *FieldName,
9172                                QualType FieldTy, Expr *BitWidth,
9173                                bool *ZeroWidth) {
9174  // Default to true; that shouldn't confuse checks for emptiness
9175  if (ZeroWidth)
9176    *ZeroWidth = true;
9177
9178  // C99 6.7.2.1p4 - verify the field type.
9179  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9180  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9181    // Handle incomplete types with specific error.
9182    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9183      return ExprError();
9184    if (FieldName)
9185      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9186        << FieldName << FieldTy << BitWidth->getSourceRange();
9187    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9188      << FieldTy << BitWidth->getSourceRange();
9189  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9190                                             UPPC_BitFieldWidth))
9191    return ExprError();
9192
9193  // If the bit-width is type- or value-dependent, don't try to check
9194  // it now.
9195  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9196    return Owned(BitWidth);
9197
9198  llvm::APSInt Value;
9199  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9200  if (ICE.isInvalid())
9201    return ICE;
9202  BitWidth = ICE.take();
9203
9204  if (Value != 0 && ZeroWidth)
9205    *ZeroWidth = false;
9206
9207  // Zero-width bitfield is ok for anonymous field.
9208  if (Value == 0 && FieldName)
9209    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9210
9211  if (Value.isSigned() && Value.isNegative()) {
9212    if (FieldName)
9213      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9214               << FieldName << Value.toString(10);
9215    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9216      << Value.toString(10);
9217  }
9218
9219  if (!FieldTy->isDependentType()) {
9220    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9221    if (Value.getZExtValue() > TypeSize) {
9222      if (!getLangOpts().CPlusPlus) {
9223        if (FieldName)
9224          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9225            << FieldName << (unsigned)Value.getZExtValue()
9226            << (unsigned)TypeSize;
9227
9228        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9229          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9230      }
9231
9232      if (FieldName)
9233        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9234          << FieldName << (unsigned)Value.getZExtValue()
9235          << (unsigned)TypeSize;
9236      else
9237        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9238          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9239    }
9240  }
9241
9242  return Owned(BitWidth);
9243}
9244
9245/// ActOnField - Each field of a C struct/union is passed into this in order
9246/// to create a FieldDecl object for it.
9247Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9248                       Declarator &D, Expr *BitfieldWidth) {
9249  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9250                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9251                               /*InitStyle=*/ICIS_NoInit, AS_public);
9252  return Res;
9253}
9254
9255/// HandleField - Analyze a field of a C struct or a C++ data member.
9256///
9257FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9258                             SourceLocation DeclStart,
9259                             Declarator &D, Expr *BitWidth,
9260                             InClassInitStyle InitStyle,
9261                             AccessSpecifier AS) {
9262  IdentifierInfo *II = D.getIdentifier();
9263  SourceLocation Loc = DeclStart;
9264  if (II) Loc = D.getIdentifierLoc();
9265
9266  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9267  QualType T = TInfo->getType();
9268  if (getLangOpts().CPlusPlus) {
9269    CheckExtraCXXDefaultArguments(D);
9270
9271    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9272                                        UPPC_DataMemberType)) {
9273      D.setInvalidType();
9274      T = Context.IntTy;
9275      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9276    }
9277  }
9278
9279  DiagnoseFunctionSpecifiers(D);
9280
9281  if (D.getDeclSpec().isThreadSpecified())
9282    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9283  if (D.getDeclSpec().isConstexprSpecified())
9284    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9285      << 2;
9286
9287  // Check to see if this name was declared as a member previously
9288  NamedDecl *PrevDecl = 0;
9289  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9290  LookupName(Previous, S);
9291  switch (Previous.getResultKind()) {
9292    case LookupResult::Found:
9293    case LookupResult::FoundUnresolvedValue:
9294      PrevDecl = Previous.getAsSingle<NamedDecl>();
9295      break;
9296
9297    case LookupResult::FoundOverloaded:
9298      PrevDecl = Previous.getRepresentativeDecl();
9299      break;
9300
9301    case LookupResult::NotFound:
9302    case LookupResult::NotFoundInCurrentInstantiation:
9303    case LookupResult::Ambiguous:
9304      break;
9305  }
9306  Previous.suppressDiagnostics();
9307
9308  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9309    // Maybe we will complain about the shadowed template parameter.
9310    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9311    // Just pretend that we didn't see the previous declaration.
9312    PrevDecl = 0;
9313  }
9314
9315  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9316    PrevDecl = 0;
9317
9318  bool Mutable
9319    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9320  SourceLocation TSSL = D.getLocStart();
9321  FieldDecl *NewFD
9322    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9323                     TSSL, AS, PrevDecl, &D);
9324
9325  if (NewFD->isInvalidDecl())
9326    Record->setInvalidDecl();
9327
9328  if (D.getDeclSpec().isModulePrivateSpecified())
9329    NewFD->setModulePrivate();
9330
9331  if (NewFD->isInvalidDecl() && PrevDecl) {
9332    // Don't introduce NewFD into scope; there's already something
9333    // with the same name in the same scope.
9334  } else if (II) {
9335    PushOnScopeChains(NewFD, S);
9336  } else
9337    Record->addDecl(NewFD);
9338
9339  return NewFD;
9340}
9341
9342/// \brief Build a new FieldDecl and check its well-formedness.
9343///
9344/// This routine builds a new FieldDecl given the fields name, type,
9345/// record, etc. \p PrevDecl should refer to any previous declaration
9346/// with the same name and in the same scope as the field to be
9347/// created.
9348///
9349/// \returns a new FieldDecl.
9350///
9351/// \todo The Declarator argument is a hack. It will be removed once
9352FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9353                                TypeSourceInfo *TInfo,
9354                                RecordDecl *Record, SourceLocation Loc,
9355                                bool Mutable, Expr *BitWidth,
9356                                InClassInitStyle InitStyle,
9357                                SourceLocation TSSL,
9358                                AccessSpecifier AS, NamedDecl *PrevDecl,
9359                                Declarator *D) {
9360  IdentifierInfo *II = Name.getAsIdentifierInfo();
9361  bool InvalidDecl = false;
9362  if (D) InvalidDecl = D->isInvalidType();
9363
9364  // If we receive a broken type, recover by assuming 'int' and
9365  // marking this declaration as invalid.
9366  if (T.isNull()) {
9367    InvalidDecl = true;
9368    T = Context.IntTy;
9369  }
9370
9371  QualType EltTy = Context.getBaseElementType(T);
9372  if (!EltTy->isDependentType()) {
9373    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9374      // Fields of incomplete type force their record to be invalid.
9375      Record->setInvalidDecl();
9376      InvalidDecl = true;
9377    } else {
9378      NamedDecl *Def;
9379      EltTy->isIncompleteType(&Def);
9380      if (Def && Def->isInvalidDecl()) {
9381        Record->setInvalidDecl();
9382        InvalidDecl = true;
9383      }
9384    }
9385  }
9386
9387  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9388  // than a variably modified type.
9389  if (!InvalidDecl && T->isVariablyModifiedType()) {
9390    bool SizeIsNegative;
9391    llvm::APSInt Oversized;
9392    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9393                                                           SizeIsNegative,
9394                                                           Oversized);
9395    if (!FixedTy.isNull()) {
9396      Diag(Loc, diag::warn_illegal_constant_array_size);
9397      T = FixedTy;
9398    } else {
9399      if (SizeIsNegative)
9400        Diag(Loc, diag::err_typecheck_negative_array_size);
9401      else if (Oversized.getBoolValue())
9402        Diag(Loc, diag::err_array_too_large)
9403          << Oversized.toString(10);
9404      else
9405        Diag(Loc, diag::err_typecheck_field_variable_size);
9406      InvalidDecl = true;
9407    }
9408  }
9409
9410  // Fields can not have abstract class types
9411  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9412                                             diag::err_abstract_type_in_decl,
9413                                             AbstractFieldType))
9414    InvalidDecl = true;
9415
9416  bool ZeroWidth = false;
9417  // If this is declared as a bit-field, check the bit-field.
9418  if (!InvalidDecl && BitWidth) {
9419    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9420    if (!BitWidth) {
9421      InvalidDecl = true;
9422      BitWidth = 0;
9423      ZeroWidth = false;
9424    }
9425  }
9426
9427  // Check that 'mutable' is consistent with the type of the declaration.
9428  if (!InvalidDecl && Mutable) {
9429    unsigned DiagID = 0;
9430    if (T->isReferenceType())
9431      DiagID = diag::err_mutable_reference;
9432    else if (T.isConstQualified())
9433      DiagID = diag::err_mutable_const;
9434
9435    if (DiagID) {
9436      SourceLocation ErrLoc = Loc;
9437      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9438        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9439      Diag(ErrLoc, DiagID);
9440      Mutable = false;
9441      InvalidDecl = true;
9442    }
9443  }
9444
9445  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9446                                       BitWidth, Mutable, InitStyle);
9447  if (InvalidDecl)
9448    NewFD->setInvalidDecl();
9449
9450  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9451    Diag(Loc, diag::err_duplicate_member) << II;
9452    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9453    NewFD->setInvalidDecl();
9454  }
9455
9456  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9457    if (Record->isUnion()) {
9458      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9459        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9460        if (RDecl->getDefinition()) {
9461          // C++ [class.union]p1: An object of a class with a non-trivial
9462          // constructor, a non-trivial copy constructor, a non-trivial
9463          // destructor, or a non-trivial copy assignment operator
9464          // cannot be a member of a union, nor can an array of such
9465          // objects.
9466          if (CheckNontrivialField(NewFD))
9467            NewFD->setInvalidDecl();
9468        }
9469      }
9470
9471      // C++ [class.union]p1: If a union contains a member of reference type,
9472      // the program is ill-formed.
9473      if (EltTy->isReferenceType()) {
9474        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9475          << NewFD->getDeclName() << EltTy;
9476        NewFD->setInvalidDecl();
9477      }
9478    }
9479  }
9480
9481  // FIXME: We need to pass in the attributes given an AST
9482  // representation, not a parser representation.
9483  if (D)
9484    // FIXME: What to pass instead of TUScope?
9485    ProcessDeclAttributes(TUScope, NewFD, *D);
9486
9487  // In auto-retain/release, infer strong retension for fields of
9488  // retainable type.
9489  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9490    NewFD->setInvalidDecl();
9491
9492  if (T.isObjCGCWeak())
9493    Diag(Loc, diag::warn_attribute_weak_on_field);
9494
9495  NewFD->setAccess(AS);
9496  return NewFD;
9497}
9498
9499bool Sema::CheckNontrivialField(FieldDecl *FD) {
9500  assert(FD);
9501  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9502
9503  if (FD->isInvalidDecl())
9504    return true;
9505
9506  QualType EltTy = Context.getBaseElementType(FD->getType());
9507  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9508    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9509    if (RDecl->getDefinition()) {
9510      // We check for copy constructors before constructors
9511      // because otherwise we'll never get complaints about
9512      // copy constructors.
9513
9514      CXXSpecialMember member = CXXInvalid;
9515      if (!RDecl->hasTrivialCopyConstructor())
9516        member = CXXCopyConstructor;
9517      else if (!RDecl->hasTrivialDefaultConstructor())
9518        member = CXXDefaultConstructor;
9519      else if (!RDecl->hasTrivialCopyAssignment())
9520        member = CXXCopyAssignment;
9521      else if (!RDecl->hasTrivialDestructor())
9522        member = CXXDestructor;
9523
9524      if (member != CXXInvalid) {
9525        if (!getLangOpts().CPlusPlus0x &&
9526            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9527          // Objective-C++ ARC: it is an error to have a non-trivial field of
9528          // a union. However, system headers in Objective-C programs
9529          // occasionally have Objective-C lifetime objects within unions,
9530          // and rather than cause the program to fail, we make those
9531          // members unavailable.
9532          SourceLocation Loc = FD->getLocation();
9533          if (getSourceManager().isInSystemHeader(Loc)) {
9534            if (!FD->hasAttr<UnavailableAttr>())
9535              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9536                                  "this system field has retaining ownership"));
9537            return false;
9538          }
9539        }
9540
9541        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9542               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9543               diag::err_illegal_union_or_anon_struct_member)
9544          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9545        DiagnoseNontrivial(RT, member);
9546        return !getLangOpts().CPlusPlus0x;
9547      }
9548    }
9549  }
9550
9551  return false;
9552}
9553
9554/// If the given constructor is user-declared, produce a diagnostic explaining
9555/// that it makes the class non-trivial.
9556static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9557                                               CXXConstructorDecl *CD,
9558                                               Sema::CXXSpecialMember CSM) {
9559  if (CD->isImplicit())
9560    return false;
9561
9562  SourceLocation CtorLoc = CD->getLocation();
9563  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9564  return true;
9565}
9566
9567/// DiagnoseNontrivial - Given that a class has a non-trivial
9568/// special member, figure out why.
9569void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9570  QualType QT(T, 0U);
9571  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9572
9573  // Check whether the member was user-declared.
9574  switch (member) {
9575  case CXXInvalid:
9576    break;
9577
9578  case CXXDefaultConstructor:
9579    if (RD->hasUserDeclaredConstructor()) {
9580      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9581      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9582        if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9583          return;
9584
9585      // No user-delcared constructors; look for constructor templates.
9586      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9587          tmpl_iter;
9588      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9589           TI != TE; ++TI) {
9590        CXXConstructorDecl *CD =
9591            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9592        if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9593          return;
9594      }
9595    }
9596    break;
9597
9598  case CXXCopyConstructor:
9599    if (RD->hasUserDeclaredCopyConstructor()) {
9600      SourceLocation CtorLoc =
9601        RD->getCopyConstructor(0)->getLocation();
9602      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9603      return;
9604    }
9605    break;
9606
9607  case CXXMoveConstructor:
9608    if (RD->hasUserDeclaredMoveConstructor()) {
9609      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9610      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9611      return;
9612    }
9613    break;
9614
9615  case CXXCopyAssignment:
9616    if (RD->hasUserDeclaredCopyAssignment()) {
9617      SourceLocation AssignLoc =
9618        RD->getCopyAssignmentOperator(0)->getLocation();
9619      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9620      return;
9621    }
9622    break;
9623
9624  case CXXMoveAssignment:
9625    if (RD->hasUserDeclaredMoveAssignment()) {
9626      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9627      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9628      return;
9629    }
9630    break;
9631
9632  case CXXDestructor:
9633    if (RD->hasUserDeclaredDestructor()) {
9634      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9635      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9636      return;
9637    }
9638    break;
9639  }
9640
9641  typedef CXXRecordDecl::base_class_iterator base_iter;
9642
9643  // Virtual bases and members inhibit trivial copying/construction,
9644  // but not trivial destruction.
9645  if (member != CXXDestructor) {
9646    // Check for virtual bases.  vbases includes indirect virtual bases,
9647    // so we just iterate through the direct bases.
9648    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9649      if (bi->isVirtual()) {
9650        SourceLocation BaseLoc = bi->getLocStart();
9651        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9652        return;
9653      }
9654
9655    // Check for virtual methods.
9656    typedef CXXRecordDecl::method_iterator meth_iter;
9657    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9658         ++mi) {
9659      if (mi->isVirtual()) {
9660        SourceLocation MLoc = mi->getLocStart();
9661        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9662        return;
9663      }
9664    }
9665  }
9666
9667  bool (CXXRecordDecl::*hasTrivial)() const;
9668  switch (member) {
9669  case CXXDefaultConstructor:
9670    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9671  case CXXCopyConstructor:
9672    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9673  case CXXCopyAssignment:
9674    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9675  case CXXDestructor:
9676    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9677  default:
9678    llvm_unreachable("unexpected special member");
9679  }
9680
9681  // Check for nontrivial bases (and recurse).
9682  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9683    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9684    assert(BaseRT && "Don't know how to handle dependent bases");
9685    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9686    if (!(BaseRecTy->*hasTrivial)()) {
9687      SourceLocation BaseLoc = bi->getLocStart();
9688      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9689      DiagnoseNontrivial(BaseRT, member);
9690      return;
9691    }
9692  }
9693
9694  // Check for nontrivial members (and recurse).
9695  typedef RecordDecl::field_iterator field_iter;
9696  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9697       ++fi) {
9698    QualType EltTy = Context.getBaseElementType(fi->getType());
9699    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9700      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9701
9702      if (!(EltRD->*hasTrivial)()) {
9703        SourceLocation FLoc = fi->getLocation();
9704        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9705        DiagnoseNontrivial(EltRT, member);
9706        return;
9707      }
9708    }
9709
9710    if (EltTy->isObjCLifetimeType()) {
9711      switch (EltTy.getObjCLifetime()) {
9712      case Qualifiers::OCL_None:
9713      case Qualifiers::OCL_ExplicitNone:
9714        break;
9715
9716      case Qualifiers::OCL_Autoreleasing:
9717      case Qualifiers::OCL_Weak:
9718      case Qualifiers::OCL_Strong:
9719        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9720          << QT << EltTy.getObjCLifetime();
9721        return;
9722      }
9723    }
9724  }
9725
9726  llvm_unreachable("found no explanation for non-trivial member");
9727}
9728
9729/// TranslateIvarVisibility - Translate visibility from a token ID to an
9730///  AST enum value.
9731static ObjCIvarDecl::AccessControl
9732TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9733  switch (ivarVisibility) {
9734  default: llvm_unreachable("Unknown visitibility kind");
9735  case tok::objc_private: return ObjCIvarDecl::Private;
9736  case tok::objc_public: return ObjCIvarDecl::Public;
9737  case tok::objc_protected: return ObjCIvarDecl::Protected;
9738  case tok::objc_package: return ObjCIvarDecl::Package;
9739  }
9740}
9741
9742/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9743/// in order to create an IvarDecl object for it.
9744Decl *Sema::ActOnIvar(Scope *S,
9745                                SourceLocation DeclStart,
9746                                Declarator &D, Expr *BitfieldWidth,
9747                                tok::ObjCKeywordKind Visibility) {
9748
9749  IdentifierInfo *II = D.getIdentifier();
9750  Expr *BitWidth = (Expr*)BitfieldWidth;
9751  SourceLocation Loc = DeclStart;
9752  if (II) Loc = D.getIdentifierLoc();
9753
9754  // FIXME: Unnamed fields can be handled in various different ways, for
9755  // example, unnamed unions inject all members into the struct namespace!
9756
9757  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9758  QualType T = TInfo->getType();
9759
9760  if (BitWidth) {
9761    // 6.7.2.1p3, 6.7.2.1p4
9762    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9763    if (!BitWidth)
9764      D.setInvalidType();
9765  } else {
9766    // Not a bitfield.
9767
9768    // validate II.
9769
9770  }
9771  if (T->isReferenceType()) {
9772    Diag(Loc, diag::err_ivar_reference_type);
9773    D.setInvalidType();
9774  }
9775  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9776  // than a variably modified type.
9777  else if (T->isVariablyModifiedType()) {
9778    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9779    D.setInvalidType();
9780  }
9781
9782  // Get the visibility (access control) for this ivar.
9783  ObjCIvarDecl::AccessControl ac =
9784    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9785                                        : ObjCIvarDecl::None;
9786  // Must set ivar's DeclContext to its enclosing interface.
9787  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9788  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9789    return 0;
9790  ObjCContainerDecl *EnclosingContext;
9791  if (ObjCImplementationDecl *IMPDecl =
9792      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9793    if (LangOpts.ObjCRuntime.isFragile()) {
9794    // Case of ivar declared in an implementation. Context is that of its class.
9795      EnclosingContext = IMPDecl->getClassInterface();
9796      assert(EnclosingContext && "Implementation has no class interface!");
9797    }
9798    else
9799      EnclosingContext = EnclosingDecl;
9800  } else {
9801    if (ObjCCategoryDecl *CDecl =
9802        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9803      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9804        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9805        return 0;
9806      }
9807    }
9808    EnclosingContext = EnclosingDecl;
9809  }
9810
9811  // Construct the decl.
9812  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9813                                             DeclStart, Loc, II, T,
9814                                             TInfo, ac, (Expr *)BitfieldWidth);
9815
9816  if (II) {
9817    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9818                                           ForRedeclaration);
9819    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9820        && !isa<TagDecl>(PrevDecl)) {
9821      Diag(Loc, diag::err_duplicate_member) << II;
9822      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9823      NewID->setInvalidDecl();
9824    }
9825  }
9826
9827  // Process attributes attached to the ivar.
9828  ProcessDeclAttributes(S, NewID, D);
9829
9830  if (D.isInvalidType())
9831    NewID->setInvalidDecl();
9832
9833  // In ARC, infer 'retaining' for ivars of retainable type.
9834  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9835    NewID->setInvalidDecl();
9836
9837  if (D.getDeclSpec().isModulePrivateSpecified())
9838    NewID->setModulePrivate();
9839
9840  if (II) {
9841    // FIXME: When interfaces are DeclContexts, we'll need to add
9842    // these to the interface.
9843    S->AddDecl(NewID);
9844    IdResolver.AddDecl(NewID);
9845  }
9846
9847  if (LangOpts.ObjCRuntime.isNonFragile() &&
9848      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9849    Diag(Loc, diag::warn_ivars_in_interface);
9850
9851  return NewID;
9852}
9853
9854/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9855/// class and class extensions. For every class @interface and class
9856/// extension @interface, if the last ivar is a bitfield of any type,
9857/// then add an implicit `char :0` ivar to the end of that interface.
9858void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9859                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9860  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9861    return;
9862
9863  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9864  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9865
9866  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9867    return;
9868  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9869  if (!ID) {
9870    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9871      if (!CD->IsClassExtension())
9872        return;
9873    }
9874    // No need to add this to end of @implementation.
9875    else
9876      return;
9877  }
9878  // All conditions are met. Add a new bitfield to the tail end of ivars.
9879  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9880  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9881
9882  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9883                              DeclLoc, DeclLoc, 0,
9884                              Context.CharTy,
9885                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9886                                                               DeclLoc),
9887                              ObjCIvarDecl::Private, BW,
9888                              true);
9889  AllIvarDecls.push_back(Ivar);
9890}
9891
9892void Sema::ActOnFields(Scope* S,
9893                       SourceLocation RecLoc, Decl *EnclosingDecl,
9894                       llvm::ArrayRef<Decl *> Fields,
9895                       SourceLocation LBrac, SourceLocation RBrac,
9896                       AttributeList *Attr) {
9897  assert(EnclosingDecl && "missing record or interface decl");
9898
9899  // If this is an Objective-C @implementation or category and we have
9900  // new fields here we should reset the layout of the interface since
9901  // it will now change.
9902  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9903    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9904    switch (DC->getKind()) {
9905    default: break;
9906    case Decl::ObjCCategory:
9907      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9908      break;
9909    case Decl::ObjCImplementation:
9910      Context.
9911        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9912      break;
9913    }
9914  }
9915
9916  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9917
9918  // Start counting up the number of named members; make sure to include
9919  // members of anonymous structs and unions in the total.
9920  unsigned NumNamedMembers = 0;
9921  if (Record) {
9922    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9923                                   e = Record->decls_end(); i != e; i++) {
9924      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9925        if (IFD->getDeclName())
9926          ++NumNamedMembers;
9927    }
9928  }
9929
9930  // Verify that all the fields are okay.
9931  SmallVector<FieldDecl*, 32> RecFields;
9932
9933  bool ARCErrReported = false;
9934  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9935       i != end; ++i) {
9936    FieldDecl *FD = cast<FieldDecl>(*i);
9937
9938    // Get the type for the field.
9939    const Type *FDTy = FD->getType().getTypePtr();
9940
9941    if (!FD->isAnonymousStructOrUnion()) {
9942      // Remember all fields written by the user.
9943      RecFields.push_back(FD);
9944    }
9945
9946    // If the field is already invalid for some reason, don't emit more
9947    // diagnostics about it.
9948    if (FD->isInvalidDecl()) {
9949      EnclosingDecl->setInvalidDecl();
9950      continue;
9951    }
9952
9953    // C99 6.7.2.1p2:
9954    //   A structure or union shall not contain a member with
9955    //   incomplete or function type (hence, a structure shall not
9956    //   contain an instance of itself, but may contain a pointer to
9957    //   an instance of itself), except that the last member of a
9958    //   structure with more than one named member may have incomplete
9959    //   array type; such a structure (and any union containing,
9960    //   possibly recursively, a member that is such a structure)
9961    //   shall not be a member of a structure or an element of an
9962    //   array.
9963    if (FDTy->isFunctionType()) {
9964      // Field declared as a function.
9965      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9966        << FD->getDeclName();
9967      FD->setInvalidDecl();
9968      EnclosingDecl->setInvalidDecl();
9969      continue;
9970    } else if (FDTy->isIncompleteArrayType() && Record &&
9971               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9972                ((getLangOpts().MicrosoftExt ||
9973                  getLangOpts().CPlusPlus) &&
9974                 (i + 1 == Fields.end() || Record->isUnion())))) {
9975      // Flexible array member.
9976      // Microsoft and g++ is more permissive regarding flexible array.
9977      // It will accept flexible array in union and also
9978      // as the sole element of a struct/class.
9979      if (getLangOpts().MicrosoftExt) {
9980        if (Record->isUnion())
9981          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9982            << FD->getDeclName();
9983        else if (Fields.size() == 1)
9984          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9985            << FD->getDeclName() << Record->getTagKind();
9986      } else if (getLangOpts().CPlusPlus) {
9987        if (Record->isUnion())
9988          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9989            << FD->getDeclName();
9990        else if (Fields.size() == 1)
9991          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9992            << FD->getDeclName() << Record->getTagKind();
9993      } else if (!getLangOpts().C99) {
9994      if (Record->isUnion())
9995        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9996          << FD->getDeclName();
9997      else
9998        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9999          << FD->getDeclName() << Record->getTagKind();
10000      } else if (NumNamedMembers < 1) {
10001        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10002          << FD->getDeclName();
10003        FD->setInvalidDecl();
10004        EnclosingDecl->setInvalidDecl();
10005        continue;
10006      }
10007      if (!FD->getType()->isDependentType() &&
10008          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10009        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10010          << FD->getDeclName() << FD->getType();
10011        FD->setInvalidDecl();
10012        EnclosingDecl->setInvalidDecl();
10013        continue;
10014      }
10015      // Okay, we have a legal flexible array member at the end of the struct.
10016      if (Record)
10017        Record->setHasFlexibleArrayMember(true);
10018    } else if (!FDTy->isDependentType() &&
10019               RequireCompleteType(FD->getLocation(), FD->getType(),
10020                                   diag::err_field_incomplete)) {
10021      // Incomplete type
10022      FD->setInvalidDecl();
10023      EnclosingDecl->setInvalidDecl();
10024      continue;
10025    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10026      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10027        // If this is a member of a union, then entire union becomes "flexible".
10028        if (Record && Record->isUnion()) {
10029          Record->setHasFlexibleArrayMember(true);
10030        } else {
10031          // If this is a struct/class and this is not the last element, reject
10032          // it.  Note that GCC supports variable sized arrays in the middle of
10033          // structures.
10034          if (i + 1 != Fields.end())
10035            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10036              << FD->getDeclName() << FD->getType();
10037          else {
10038            // We support flexible arrays at the end of structs in
10039            // other structs as an extension.
10040            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10041              << FD->getDeclName();
10042            if (Record)
10043              Record->setHasFlexibleArrayMember(true);
10044          }
10045        }
10046      }
10047      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10048          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10049                                 diag::err_abstract_type_in_decl,
10050                                 AbstractIvarType)) {
10051        // Ivars can not have abstract class types
10052        FD->setInvalidDecl();
10053      }
10054      if (Record && FDTTy->getDecl()->hasObjectMember())
10055        Record->setHasObjectMember(true);
10056    } else if (FDTy->isObjCObjectType()) {
10057      /// A field cannot be an Objective-c object
10058      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10059        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10060      QualType T = Context.getObjCObjectPointerType(FD->getType());
10061      FD->setType(T);
10062    } else if (!getLangOpts().CPlusPlus) {
10063      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10064        // It's an error in ARC if a field has lifetime.
10065        // We don't want to report this in a system header, though,
10066        // so we just make the field unavailable.
10067        // FIXME: that's really not sufficient; we need to make the type
10068        // itself invalid to, say, initialize or copy.
10069        QualType T = FD->getType();
10070        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10071        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10072          SourceLocation loc = FD->getLocation();
10073          if (getSourceManager().isInSystemHeader(loc)) {
10074            if (!FD->hasAttr<UnavailableAttr>()) {
10075              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10076                                "this system field has retaining ownership"));
10077            }
10078          } else {
10079            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10080              << T->isBlockPointerType();
10081          }
10082          ARCErrReported = true;
10083        }
10084      }
10085      else if (getLangOpts().ObjC1 &&
10086               getLangOpts().getGC() != LangOptions::NonGC &&
10087               Record && !Record->hasObjectMember()) {
10088        if (FD->getType()->isObjCObjectPointerType() ||
10089            FD->getType().isObjCGCStrong())
10090          Record->setHasObjectMember(true);
10091        else if (Context.getAsArrayType(FD->getType())) {
10092          QualType BaseType = Context.getBaseElementType(FD->getType());
10093          if (BaseType->isRecordType() &&
10094              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10095            Record->setHasObjectMember(true);
10096          else if (BaseType->isObjCObjectPointerType() ||
10097                   BaseType.isObjCGCStrong())
10098                 Record->setHasObjectMember(true);
10099        }
10100      }
10101    }
10102    // Keep track of the number of named members.
10103    if (FD->getIdentifier())
10104      ++NumNamedMembers;
10105  }
10106
10107  // Okay, we successfully defined 'Record'.
10108  if (Record) {
10109    bool Completed = false;
10110    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10111      if (!CXXRecord->isInvalidDecl()) {
10112        // Set access bits correctly on the directly-declared conversions.
10113        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10114        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10115             I != E; ++I)
10116          Convs->setAccess(I, (*I)->getAccess());
10117
10118        if (!CXXRecord->isDependentType()) {
10119          // Objective-C Automatic Reference Counting:
10120          //   If a class has a non-static data member of Objective-C pointer
10121          //   type (or array thereof), it is a non-POD type and its
10122          //   default constructor (if any), copy constructor, copy assignment
10123          //   operator, and destructor are non-trivial.
10124          //
10125          // This rule is also handled by CXXRecordDecl::completeDefinition().
10126          // However, here we check whether this particular class is only
10127          // non-POD because of the presence of an Objective-C pointer member.
10128          // If so, objects of this type cannot be shared between code compiled
10129          // with ARC and code compiled with manual retain/release.
10130          if (getLangOpts().ObjCAutoRefCount &&
10131              CXXRecord->hasObjectMember() &&
10132              CXXRecord->getLinkage() == ExternalLinkage) {
10133            if (CXXRecord->isPOD()) {
10134              Diag(CXXRecord->getLocation(),
10135                   diag::warn_arc_non_pod_class_with_object_member)
10136               << CXXRecord;
10137            } else {
10138              // FIXME: Fix-Its would be nice here, but finding a good location
10139              // for them is going to be tricky.
10140              if (CXXRecord->hasTrivialCopyConstructor())
10141                Diag(CXXRecord->getLocation(),
10142                     diag::warn_arc_trivial_member_function_with_object_member)
10143                  << CXXRecord << 0;
10144              if (CXXRecord->hasTrivialCopyAssignment())
10145                Diag(CXXRecord->getLocation(),
10146                     diag::warn_arc_trivial_member_function_with_object_member)
10147                << CXXRecord << 1;
10148              if (CXXRecord->hasTrivialDestructor())
10149                Diag(CXXRecord->getLocation(),
10150                     diag::warn_arc_trivial_member_function_with_object_member)
10151                << CXXRecord << 2;
10152            }
10153          }
10154
10155          // Adjust user-defined destructor exception spec.
10156          if (getLangOpts().CPlusPlus0x &&
10157              CXXRecord->hasUserDeclaredDestructor())
10158            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10159
10160          // Add any implicitly-declared members to this class.
10161          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10162
10163          // If we have virtual base classes, we may end up finding multiple
10164          // final overriders for a given virtual function. Check for this
10165          // problem now.
10166          if (CXXRecord->getNumVBases()) {
10167            CXXFinalOverriderMap FinalOverriders;
10168            CXXRecord->getFinalOverriders(FinalOverriders);
10169
10170            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10171                                             MEnd = FinalOverriders.end();
10172                 M != MEnd; ++M) {
10173              for (OverridingMethods::iterator SO = M->second.begin(),
10174                                            SOEnd = M->second.end();
10175                   SO != SOEnd; ++SO) {
10176                assert(SO->second.size() > 0 &&
10177                       "Virtual function without overridding functions?");
10178                if (SO->second.size() == 1)
10179                  continue;
10180
10181                // C++ [class.virtual]p2:
10182                //   In a derived class, if a virtual member function of a base
10183                //   class subobject has more than one final overrider the
10184                //   program is ill-formed.
10185                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10186                  << (NamedDecl *)M->first << Record;
10187                Diag(M->first->getLocation(),
10188                     diag::note_overridden_virtual_function);
10189                for (OverridingMethods::overriding_iterator
10190                          OM = SO->second.begin(),
10191                       OMEnd = SO->second.end();
10192                     OM != OMEnd; ++OM)
10193                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10194                    << (NamedDecl *)M->first << OM->Method->getParent();
10195
10196                Record->setInvalidDecl();
10197              }
10198            }
10199            CXXRecord->completeDefinition(&FinalOverriders);
10200            Completed = true;
10201          }
10202        }
10203      }
10204    }
10205
10206    if (!Completed)
10207      Record->completeDefinition();
10208
10209  } else {
10210    ObjCIvarDecl **ClsFields =
10211      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10212    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10213      ID->setEndOfDefinitionLoc(RBrac);
10214      // Add ivar's to class's DeclContext.
10215      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10216        ClsFields[i]->setLexicalDeclContext(ID);
10217        ID->addDecl(ClsFields[i]);
10218      }
10219      // Must enforce the rule that ivars in the base classes may not be
10220      // duplicates.
10221      if (ID->getSuperClass())
10222        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10223    } else if (ObjCImplementationDecl *IMPDecl =
10224                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10225      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10226      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10227        // Ivar declared in @implementation never belongs to the implementation.
10228        // Only it is in implementation's lexical context.
10229        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10230      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10231      IMPDecl->setIvarLBraceLoc(LBrac);
10232      IMPDecl->setIvarRBraceLoc(RBrac);
10233    } else if (ObjCCategoryDecl *CDecl =
10234                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10235      // case of ivars in class extension; all other cases have been
10236      // reported as errors elsewhere.
10237      // FIXME. Class extension does not have a LocEnd field.
10238      // CDecl->setLocEnd(RBrac);
10239      // Add ivar's to class extension's DeclContext.
10240      // Diagnose redeclaration of private ivars.
10241      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10242      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10243        if (IDecl) {
10244          if (const ObjCIvarDecl *ClsIvar =
10245              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10246            Diag(ClsFields[i]->getLocation(),
10247                 diag::err_duplicate_ivar_declaration);
10248            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10249            continue;
10250          }
10251          for (const ObjCCategoryDecl *ClsExtDecl =
10252                IDecl->getFirstClassExtension();
10253               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10254            if (const ObjCIvarDecl *ClsExtIvar =
10255                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10256              Diag(ClsFields[i]->getLocation(),
10257                   diag::err_duplicate_ivar_declaration);
10258              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10259              continue;
10260            }
10261          }
10262        }
10263        ClsFields[i]->setLexicalDeclContext(CDecl);
10264        CDecl->addDecl(ClsFields[i]);
10265      }
10266      CDecl->setIvarLBraceLoc(LBrac);
10267      CDecl->setIvarRBraceLoc(RBrac);
10268    }
10269  }
10270
10271  if (Attr)
10272    ProcessDeclAttributeList(S, Record, Attr);
10273}
10274
10275/// \brief Determine whether the given integral value is representable within
10276/// the given type T.
10277static bool isRepresentableIntegerValue(ASTContext &Context,
10278                                        llvm::APSInt &Value,
10279                                        QualType T) {
10280  assert(T->isIntegralType(Context) && "Integral type required!");
10281  unsigned BitWidth = Context.getIntWidth(T);
10282
10283  if (Value.isUnsigned() || Value.isNonNegative()) {
10284    if (T->isSignedIntegerOrEnumerationType())
10285      --BitWidth;
10286    return Value.getActiveBits() <= BitWidth;
10287  }
10288  return Value.getMinSignedBits() <= BitWidth;
10289}
10290
10291// \brief Given an integral type, return the next larger integral type
10292// (or a NULL type of no such type exists).
10293static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10294  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10295  // enum checking below.
10296  assert(T->isIntegralType(Context) && "Integral type required!");
10297  const unsigned NumTypes = 4;
10298  QualType SignedIntegralTypes[NumTypes] = {
10299    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10300  };
10301  QualType UnsignedIntegralTypes[NumTypes] = {
10302    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10303    Context.UnsignedLongLongTy
10304  };
10305
10306  unsigned BitWidth = Context.getTypeSize(T);
10307  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10308                                                        : UnsignedIntegralTypes;
10309  for (unsigned I = 0; I != NumTypes; ++I)
10310    if (Context.getTypeSize(Types[I]) > BitWidth)
10311      return Types[I];
10312
10313  return QualType();
10314}
10315
10316EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10317                                          EnumConstantDecl *LastEnumConst,
10318                                          SourceLocation IdLoc,
10319                                          IdentifierInfo *Id,
10320                                          Expr *Val) {
10321  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10322  llvm::APSInt EnumVal(IntWidth);
10323  QualType EltTy;
10324
10325  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10326    Val = 0;
10327
10328  if (Val)
10329    Val = DefaultLvalueConversion(Val).take();
10330
10331  if (Val) {
10332    if (Enum->isDependentType() || Val->isTypeDependent())
10333      EltTy = Context.DependentTy;
10334    else {
10335      SourceLocation ExpLoc;
10336      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10337          !getLangOpts().MicrosoftMode) {
10338        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10339        // constant-expression in the enumerator-definition shall be a converted
10340        // constant expression of the underlying type.
10341        EltTy = Enum->getIntegerType();
10342        ExprResult Converted =
10343          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10344                                           CCEK_Enumerator);
10345        if (Converted.isInvalid())
10346          Val = 0;
10347        else
10348          Val = Converted.take();
10349      } else if (!Val->isValueDependent() &&
10350                 !(Val = VerifyIntegerConstantExpression(Val,
10351                                                         &EnumVal).take())) {
10352        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10353      } else {
10354        if (Enum->isFixed()) {
10355          EltTy = Enum->getIntegerType();
10356
10357          // In Obj-C and Microsoft mode, require the enumeration value to be
10358          // representable in the underlying type of the enumeration. In C++11,
10359          // we perform a non-narrowing conversion as part of converted constant
10360          // expression checking.
10361          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10362            if (getLangOpts().MicrosoftMode) {
10363              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10364              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10365            } else
10366              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10367          } else
10368            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10369        } else if (getLangOpts().CPlusPlus) {
10370          // C++11 [dcl.enum]p5:
10371          //   If the underlying type is not fixed, the type of each enumerator
10372          //   is the type of its initializing value:
10373          //     - If an initializer is specified for an enumerator, the
10374          //       initializing value has the same type as the expression.
10375          EltTy = Val->getType();
10376        } else {
10377          // C99 6.7.2.2p2:
10378          //   The expression that defines the value of an enumeration constant
10379          //   shall be an integer constant expression that has a value
10380          //   representable as an int.
10381
10382          // Complain if the value is not representable in an int.
10383          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10384            Diag(IdLoc, diag::ext_enum_value_not_int)
10385              << EnumVal.toString(10) << Val->getSourceRange()
10386              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10387          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10388            // Force the type of the expression to 'int'.
10389            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10390          }
10391          EltTy = Val->getType();
10392        }
10393      }
10394    }
10395  }
10396
10397  if (!Val) {
10398    if (Enum->isDependentType())
10399      EltTy = Context.DependentTy;
10400    else if (!LastEnumConst) {
10401      // C++0x [dcl.enum]p5:
10402      //   If the underlying type is not fixed, the type of each enumerator
10403      //   is the type of its initializing value:
10404      //     - If no initializer is specified for the first enumerator, the
10405      //       initializing value has an unspecified integral type.
10406      //
10407      // GCC uses 'int' for its unspecified integral type, as does
10408      // C99 6.7.2.2p3.
10409      if (Enum->isFixed()) {
10410        EltTy = Enum->getIntegerType();
10411      }
10412      else {
10413        EltTy = Context.IntTy;
10414      }
10415    } else {
10416      // Assign the last value + 1.
10417      EnumVal = LastEnumConst->getInitVal();
10418      ++EnumVal;
10419      EltTy = LastEnumConst->getType();
10420
10421      // Check for overflow on increment.
10422      if (EnumVal < LastEnumConst->getInitVal()) {
10423        // C++0x [dcl.enum]p5:
10424        //   If the underlying type is not fixed, the type of each enumerator
10425        //   is the type of its initializing value:
10426        //
10427        //     - Otherwise the type of the initializing value is the same as
10428        //       the type of the initializing value of the preceding enumerator
10429        //       unless the incremented value is not representable in that type,
10430        //       in which case the type is an unspecified integral type
10431        //       sufficient to contain the incremented value. If no such type
10432        //       exists, the program is ill-formed.
10433        QualType T = getNextLargerIntegralType(Context, EltTy);
10434        if (T.isNull() || Enum->isFixed()) {
10435          // There is no integral type larger enough to represent this
10436          // value. Complain, then allow the value to wrap around.
10437          EnumVal = LastEnumConst->getInitVal();
10438          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10439          ++EnumVal;
10440          if (Enum->isFixed())
10441            // When the underlying type is fixed, this is ill-formed.
10442            Diag(IdLoc, diag::err_enumerator_wrapped)
10443              << EnumVal.toString(10)
10444              << EltTy;
10445          else
10446            Diag(IdLoc, diag::warn_enumerator_too_large)
10447              << EnumVal.toString(10);
10448        } else {
10449          EltTy = T;
10450        }
10451
10452        // Retrieve the last enumerator's value, extent that type to the
10453        // type that is supposed to be large enough to represent the incremented
10454        // value, then increment.
10455        EnumVal = LastEnumConst->getInitVal();
10456        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10457        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10458        ++EnumVal;
10459
10460        // If we're not in C++, diagnose the overflow of enumerator values,
10461        // which in C99 means that the enumerator value is not representable in
10462        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10463        // permits enumerator values that are representable in some larger
10464        // integral type.
10465        if (!getLangOpts().CPlusPlus && !T.isNull())
10466          Diag(IdLoc, diag::warn_enum_value_overflow);
10467      } else if (!getLangOpts().CPlusPlus &&
10468                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10469        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10470        Diag(IdLoc, diag::ext_enum_value_not_int)
10471          << EnumVal.toString(10) << 1;
10472      }
10473    }
10474  }
10475
10476  if (!EltTy->isDependentType()) {
10477    // Make the enumerator value match the signedness and size of the
10478    // enumerator's type.
10479    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10480    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10481  }
10482
10483  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10484                                  Val, EnumVal);
10485}
10486
10487
10488Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10489                              SourceLocation IdLoc, IdentifierInfo *Id,
10490                              AttributeList *Attr,
10491                              SourceLocation EqualLoc, Expr *Val) {
10492  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10493  EnumConstantDecl *LastEnumConst =
10494    cast_or_null<EnumConstantDecl>(lastEnumConst);
10495
10496  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10497  // we find one that is.
10498  S = getNonFieldDeclScope(S);
10499
10500  // Verify that there isn't already something declared with this name in this
10501  // scope.
10502  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10503                                         ForRedeclaration);
10504  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10505    // Maybe we will complain about the shadowed template parameter.
10506    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10507    // Just pretend that we didn't see the previous declaration.
10508    PrevDecl = 0;
10509  }
10510
10511  if (PrevDecl) {
10512    // When in C++, we may get a TagDecl with the same name; in this case the
10513    // enum constant will 'hide' the tag.
10514    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10515           "Received TagDecl when not in C++!");
10516    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10517      if (isa<EnumConstantDecl>(PrevDecl))
10518        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10519      else
10520        Diag(IdLoc, diag::err_redefinition) << Id;
10521      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10522      return 0;
10523    }
10524  }
10525
10526  // C++ [class.mem]p15:
10527  // If T is the name of a class, then each of the following shall have a name
10528  // different from T:
10529  // - every enumerator of every member of class T that is an unscoped
10530  // enumerated type
10531  if (CXXRecordDecl *Record
10532                      = dyn_cast<CXXRecordDecl>(
10533                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10534    if (!TheEnumDecl->isScoped() &&
10535        Record->getIdentifier() && Record->getIdentifier() == Id)
10536      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10537
10538  EnumConstantDecl *New =
10539    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10540
10541  if (New) {
10542    // Process attributes.
10543    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10544
10545    // Register this decl in the current scope stack.
10546    New->setAccess(TheEnumDecl->getAccess());
10547    PushOnScopeChains(New, S);
10548  }
10549
10550  ActOnDocumentableDecl(New);
10551
10552  return New;
10553}
10554
10555// Emits a warning if every element in the enum is the same value and if
10556// every element is initialized with a integer or boolean literal.
10557static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10558                                     unsigned NumElements, EnumDecl *Enum,
10559                                     QualType EnumType) {
10560  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10561                                 Enum->getLocation()) ==
10562      DiagnosticsEngine::Ignored)
10563    return;
10564
10565  if (NumElements < 2)
10566    return;
10567
10568  if (!Enum->getIdentifier())
10569    return;
10570
10571  llvm::APSInt FirstVal;
10572
10573  for (unsigned i = 0; i != NumElements; ++i) {
10574    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10575    if (!ECD)
10576      return;
10577
10578    Expr *InitExpr = ECD->getInitExpr();
10579    if (!InitExpr)
10580      return;
10581    InitExpr = InitExpr->IgnoreImpCasts();
10582    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10583      return;
10584
10585    if (i == 0) {
10586      FirstVal = ECD->getInitVal();
10587      continue;
10588    }
10589
10590    if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10591      return;
10592  }
10593
10594  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10595      << EnumType << FirstVal.toString(10)
10596      << Enum->getSourceRange();
10597
10598  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10599                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10600
10601  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10602    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10603                                    Next->getName());
10604}
10605
10606// Returns true when the enum initial expression does not trigger the
10607// duplicate enum warning.  A few common cases are exempted as follows:
10608// Element2 = Element1
10609// Element2 = Element1 + 1
10610// Element2 = Element1 - 1
10611// Where Element2 and Element1 are from the same enum.
10612static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10613  Expr *InitExpr = ECD->getInitExpr();
10614  if (!InitExpr)
10615    return true;
10616  InitExpr = InitExpr->IgnoreImpCasts();
10617
10618  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10619    if (!BO->isAdditiveOp())
10620      return true;
10621    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10622    if (!IL)
10623      return true;
10624    if (IL->getValue() != 1)
10625      return true;
10626
10627    InitExpr = BO->getLHS();
10628  }
10629
10630  // This checks if the elements are from the same enum.
10631  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10632  if (!DRE)
10633    return true;
10634
10635  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10636  if (!EnumConstant)
10637    return true;
10638
10639  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10640      Enum)
10641    return true;
10642
10643  return false;
10644}
10645
10646struct DupKey {
10647  int64_t val;
10648  bool isTombstoneOrEmptyKey;
10649  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10650    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10651};
10652
10653static DupKey GetDupKey(const llvm::APSInt& Val) {
10654  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10655                false);
10656}
10657
10658struct DenseMapInfoDupKey {
10659  static DupKey getEmptyKey() { return DupKey(0, true); }
10660  static DupKey getTombstoneKey() { return DupKey(1, true); }
10661  static unsigned getHashValue(const DupKey Key) {
10662    return (unsigned)(Key.val * 37);
10663  }
10664  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10665    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10666           LHS.val == RHS.val;
10667  }
10668};
10669
10670// Emits a warning when an element is implicitly set a value that
10671// a previous element has already been set to.
10672static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10673                                        unsigned NumElements, EnumDecl *Enum,
10674                                        QualType EnumType) {
10675  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10676                                 Enum->getLocation()) ==
10677      DiagnosticsEngine::Ignored)
10678    return;
10679  // Avoid anonymous enums
10680  if (!Enum->getIdentifier())
10681    return;
10682
10683  // Only check for small enums.
10684  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10685    return;
10686
10687  typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
10688  typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
10689
10690  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10691  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10692          ValueToVectorMap;
10693
10694  DuplicatesVector DupVector;
10695  ValueToVectorMap EnumMap;
10696
10697  // Populate the EnumMap with all values represented by enum constants without
10698  // an initialier.
10699  for (unsigned i = 0; i < NumElements; ++i) {
10700    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10701
10702    // Null EnumConstantDecl means a previous diagnostic has been emitted for
10703    // this constant.  Skip this enum since it may be ill-formed.
10704    if (!ECD) {
10705      return;
10706    }
10707
10708    if (ECD->getInitExpr())
10709      continue;
10710
10711    DupKey Key = GetDupKey(ECD->getInitVal());
10712    DeclOrVector &Entry = EnumMap[Key];
10713
10714    // First time encountering this value.
10715    if (Entry.isNull())
10716      Entry = ECD;
10717  }
10718
10719  // Create vectors for any values that has duplicates.
10720  for (unsigned i = 0; i < NumElements; ++i) {
10721    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10722    if (!ValidDuplicateEnum(ECD, Enum))
10723      continue;
10724
10725    DupKey Key = GetDupKey(ECD->getInitVal());
10726
10727    DeclOrVector& Entry = EnumMap[Key];
10728    if (Entry.isNull())
10729      continue;
10730
10731    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10732      // Ensure constants are different.
10733      if (D == ECD)
10734        continue;
10735
10736      // Create new vector and push values onto it.
10737      ECDVector *Vec = new ECDVector();
10738      Vec->push_back(D);
10739      Vec->push_back(ECD);
10740
10741      // Update entry to point to the duplicates vector.
10742      Entry = Vec;
10743
10744      // Store the vector somewhere we can consult later for quick emission of
10745      // diagnostics.
10746      DupVector.push_back(Vec);
10747      continue;
10748    }
10749
10750    ECDVector *Vec = Entry.get<ECDVector*>();
10751    // Make sure constants are not added more than once.
10752    if (*Vec->begin() == ECD)
10753      continue;
10754
10755    Vec->push_back(ECD);
10756  }
10757
10758  // Emit diagnostics.
10759  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10760                                  DupVectorEnd = DupVector.end();
10761       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10762    ECDVector *Vec = *DupVectorIter;
10763    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10764
10765    // Emit warning for one enum constant.
10766    ECDVector::iterator I = Vec->begin();
10767    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10768      << (*I)->getName() << (*I)->getInitVal().toString(10)
10769      << (*I)->getSourceRange();
10770    ++I;
10771
10772    // Emit one note for each of the remaining enum constants with
10773    // the same value.
10774    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10775      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10776        << (*I)->getName() << (*I)->getInitVal().toString(10)
10777        << (*I)->getSourceRange();
10778    delete Vec;
10779  }
10780}
10781
10782void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10783                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10784                         Decl **Elements, unsigned NumElements,
10785                         Scope *S, AttributeList *Attr) {
10786  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10787  QualType EnumType = Context.getTypeDeclType(Enum);
10788
10789  if (Attr)
10790    ProcessDeclAttributeList(S, Enum, Attr);
10791
10792  if (Enum->isDependentType()) {
10793    for (unsigned i = 0; i != NumElements; ++i) {
10794      EnumConstantDecl *ECD =
10795        cast_or_null<EnumConstantDecl>(Elements[i]);
10796      if (!ECD) continue;
10797
10798      ECD->setType(EnumType);
10799    }
10800
10801    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10802    return;
10803  }
10804
10805  // TODO: If the result value doesn't fit in an int, it must be a long or long
10806  // long value.  ISO C does not support this, but GCC does as an extension,
10807  // emit a warning.
10808  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10809  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10810  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10811
10812  // Verify that all the values are okay, compute the size of the values, and
10813  // reverse the list.
10814  unsigned NumNegativeBits = 0;
10815  unsigned NumPositiveBits = 0;
10816
10817  // Keep track of whether all elements have type int.
10818  bool AllElementsInt = true;
10819
10820  for (unsigned i = 0; i != NumElements; ++i) {
10821    EnumConstantDecl *ECD =
10822      cast_or_null<EnumConstantDecl>(Elements[i]);
10823    if (!ECD) continue;  // Already issued a diagnostic.
10824
10825    const llvm::APSInt &InitVal = ECD->getInitVal();
10826
10827    // Keep track of the size of positive and negative values.
10828    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10829      NumPositiveBits = std::max(NumPositiveBits,
10830                                 (unsigned)InitVal.getActiveBits());
10831    else
10832      NumNegativeBits = std::max(NumNegativeBits,
10833                                 (unsigned)InitVal.getMinSignedBits());
10834
10835    // Keep track of whether every enum element has type int (very commmon).
10836    if (AllElementsInt)
10837      AllElementsInt = ECD->getType() == Context.IntTy;
10838  }
10839
10840  // Figure out the type that should be used for this enum.
10841  QualType BestType;
10842  unsigned BestWidth;
10843
10844  // C++0x N3000 [conv.prom]p3:
10845  //   An rvalue of an unscoped enumeration type whose underlying
10846  //   type is not fixed can be converted to an rvalue of the first
10847  //   of the following types that can represent all the values of
10848  //   the enumeration: int, unsigned int, long int, unsigned long
10849  //   int, long long int, or unsigned long long int.
10850  // C99 6.4.4.3p2:
10851  //   An identifier declared as an enumeration constant has type int.
10852  // The C99 rule is modified by a gcc extension
10853  QualType BestPromotionType;
10854
10855  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10856  // -fshort-enums is the equivalent to specifying the packed attribute on all
10857  // enum definitions.
10858  if (LangOpts.ShortEnums)
10859    Packed = true;
10860
10861  if (Enum->isFixed()) {
10862    BestType = Enum->getIntegerType();
10863    if (BestType->isPromotableIntegerType())
10864      BestPromotionType = Context.getPromotedIntegerType(BestType);
10865    else
10866      BestPromotionType = BestType;
10867    // We don't need to set BestWidth, because BestType is going to be the type
10868    // of the enumerators, but we do anyway because otherwise some compilers
10869    // warn that it might be used uninitialized.
10870    BestWidth = CharWidth;
10871  }
10872  else if (NumNegativeBits) {
10873    // If there is a negative value, figure out the smallest integer type (of
10874    // int/long/longlong) that fits.
10875    // If it's packed, check also if it fits a char or a short.
10876    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10877      BestType = Context.SignedCharTy;
10878      BestWidth = CharWidth;
10879    } else if (Packed && NumNegativeBits <= ShortWidth &&
10880               NumPositiveBits < ShortWidth) {
10881      BestType = Context.ShortTy;
10882      BestWidth = ShortWidth;
10883    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10884      BestType = Context.IntTy;
10885      BestWidth = IntWidth;
10886    } else {
10887      BestWidth = Context.getTargetInfo().getLongWidth();
10888
10889      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10890        BestType = Context.LongTy;
10891      } else {
10892        BestWidth = Context.getTargetInfo().getLongLongWidth();
10893
10894        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10895          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10896        BestType = Context.LongLongTy;
10897      }
10898    }
10899    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10900  } else {
10901    // If there is no negative value, figure out the smallest type that fits
10902    // all of the enumerator values.
10903    // If it's packed, check also if it fits a char or a short.
10904    if (Packed && NumPositiveBits <= CharWidth) {
10905      BestType = Context.UnsignedCharTy;
10906      BestPromotionType = Context.IntTy;
10907      BestWidth = CharWidth;
10908    } else if (Packed && NumPositiveBits <= ShortWidth) {
10909      BestType = Context.UnsignedShortTy;
10910      BestPromotionType = Context.IntTy;
10911      BestWidth = ShortWidth;
10912    } else if (NumPositiveBits <= IntWidth) {
10913      BestType = Context.UnsignedIntTy;
10914      BestWidth = IntWidth;
10915      BestPromotionType
10916        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10917                           ? Context.UnsignedIntTy : Context.IntTy;
10918    } else if (NumPositiveBits <=
10919               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10920      BestType = Context.UnsignedLongTy;
10921      BestPromotionType
10922        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10923                           ? Context.UnsignedLongTy : Context.LongTy;
10924    } else {
10925      BestWidth = Context.getTargetInfo().getLongLongWidth();
10926      assert(NumPositiveBits <= BestWidth &&
10927             "How could an initializer get larger than ULL?");
10928      BestType = Context.UnsignedLongLongTy;
10929      BestPromotionType
10930        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10931                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10932    }
10933  }
10934
10935  // Loop over all of the enumerator constants, changing their types to match
10936  // the type of the enum if needed.
10937  for (unsigned i = 0; i != NumElements; ++i) {
10938    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10939    if (!ECD) continue;  // Already issued a diagnostic.
10940
10941    // Standard C says the enumerators have int type, but we allow, as an
10942    // extension, the enumerators to be larger than int size.  If each
10943    // enumerator value fits in an int, type it as an int, otherwise type it the
10944    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10945    // that X has type 'int', not 'unsigned'.
10946
10947    // Determine whether the value fits into an int.
10948    llvm::APSInt InitVal = ECD->getInitVal();
10949
10950    // If it fits into an integer type, force it.  Otherwise force it to match
10951    // the enum decl type.
10952    QualType NewTy;
10953    unsigned NewWidth;
10954    bool NewSign;
10955    if (!getLangOpts().CPlusPlus &&
10956        !Enum->isFixed() &&
10957        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10958      NewTy = Context.IntTy;
10959      NewWidth = IntWidth;
10960      NewSign = true;
10961    } else if (ECD->getType() == BestType) {
10962      // Already the right type!
10963      if (getLangOpts().CPlusPlus)
10964        // C++ [dcl.enum]p4: Following the closing brace of an
10965        // enum-specifier, each enumerator has the type of its
10966        // enumeration.
10967        ECD->setType(EnumType);
10968      continue;
10969    } else {
10970      NewTy = BestType;
10971      NewWidth = BestWidth;
10972      NewSign = BestType->isSignedIntegerOrEnumerationType();
10973    }
10974
10975    // Adjust the APSInt value.
10976    InitVal = InitVal.extOrTrunc(NewWidth);
10977    InitVal.setIsSigned(NewSign);
10978    ECD->setInitVal(InitVal);
10979
10980    // Adjust the Expr initializer and type.
10981    if (ECD->getInitExpr() &&
10982        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10983      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10984                                                CK_IntegralCast,
10985                                                ECD->getInitExpr(),
10986                                                /*base paths*/ 0,
10987                                                VK_RValue));
10988    if (getLangOpts().CPlusPlus)
10989      // C++ [dcl.enum]p4: Following the closing brace of an
10990      // enum-specifier, each enumerator has the type of its
10991      // enumeration.
10992      ECD->setType(EnumType);
10993    else
10994      ECD->setType(NewTy);
10995  }
10996
10997  Enum->completeDefinition(BestType, BestPromotionType,
10998                           NumPositiveBits, NumNegativeBits);
10999
11000  // If we're declaring a function, ensure this decl isn't forgotten about -
11001  // it needs to go into the function scope.
11002  if (InFunctionDeclarator)
11003    DeclsInPrototypeScope.push_back(Enum);
11004
11005  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
11006  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11007}
11008
11009Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11010                                  SourceLocation StartLoc,
11011                                  SourceLocation EndLoc) {
11012  StringLiteral *AsmString = cast<StringLiteral>(expr);
11013
11014  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11015                                                   AsmString, StartLoc,
11016                                                   EndLoc);
11017  CurContext->addDecl(New);
11018  return New;
11019}
11020
11021DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11022                                   SourceLocation ImportLoc,
11023                                   ModuleIdPath Path) {
11024  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11025                                                Module::AllVisible,
11026                                                /*IsIncludeDirective=*/false);
11027  if (!Mod)
11028    return true;
11029
11030  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
11031  Module *ModCheck = Mod;
11032  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11033    // If we've run out of module parents, just drop the remaining identifiers.
11034    // We need the length to be consistent.
11035    if (!ModCheck)
11036      break;
11037    ModCheck = ModCheck->Parent;
11038
11039    IdentifierLocs.push_back(Path[I].second);
11040  }
11041
11042  ImportDecl *Import = ImportDecl::Create(Context,
11043                                          Context.getTranslationUnitDecl(),
11044                                          AtLoc.isValid()? AtLoc : ImportLoc,
11045                                          Mod, IdentifierLocs);
11046  Context.getTranslationUnitDecl()->addDecl(Import);
11047  return Import;
11048}
11049
11050void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11051                                      IdentifierInfo* AliasName,
11052                                      SourceLocation PragmaLoc,
11053                                      SourceLocation NameLoc,
11054                                      SourceLocation AliasNameLoc) {
11055  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11056                                    LookupOrdinaryName);
11057  AsmLabelAttr *Attr =
11058     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11059
11060  if (PrevDecl)
11061    PrevDecl->addAttr(Attr);
11062  else
11063    (void)ExtnameUndeclaredIdentifiers.insert(
11064      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11065}
11066
11067void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11068                             SourceLocation PragmaLoc,
11069                             SourceLocation NameLoc) {
11070  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11071
11072  if (PrevDecl) {
11073    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11074  } else {
11075    (void)WeakUndeclaredIdentifiers.insert(
11076      std::pair<IdentifierInfo*,WeakInfo>
11077        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11078  }
11079}
11080
11081void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11082                                IdentifierInfo* AliasName,
11083                                SourceLocation PragmaLoc,
11084                                SourceLocation NameLoc,
11085                                SourceLocation AliasNameLoc) {
11086  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11087                                    LookupOrdinaryName);
11088  WeakInfo W = WeakInfo(Name, NameLoc);
11089
11090  if (PrevDecl) {
11091    if (!PrevDecl->hasAttr<AliasAttr>())
11092      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11093        DeclApplyPragmaWeak(TUScope, ND, W);
11094  } else {
11095    (void)WeakUndeclaredIdentifiers.insert(
11096      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11097  }
11098}
11099
11100Decl *Sema::getObjCDeclContext() const {
11101  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11102}
11103
11104AvailabilityResult Sema::getCurContextAvailability() const {
11105  const Decl *D = cast<Decl>(getCurLexicalContext());
11106  // A category implicitly has the availability of the interface.
11107  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
11108    D = CatD->getClassInterface();
11109
11110  return D->getAvailability();
11111}
11112