SemaDecl.cpp revision 66973121788ca645fe3d4a66179b9cfb6f2bce08
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/DiagnosticSema.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  LookupResult Result = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC);
43
44  Decl *IIDecl = 0;
45  switch (Result.getKind()) {
46  case LookupResult::NotFound:
47  case LookupResult::FoundOverloaded:
48  case LookupResult::AmbiguousBaseSubobjectTypes:
49  case LookupResult::AmbiguousBaseSubobjects:
50    // FIXME: In the event of an ambiguous lookup, we could visit all of
51    // the entities found to determine whether they are all types. This
52    // might provide better diagnostics.
53    return 0;
54
55  case LookupResult::Found:
56    IIDecl = Result.getAsDecl();
57    break;
58  }
59
60  if (isa<TypedefDecl>(IIDecl) ||
61      isa<ObjCInterfaceDecl>(IIDecl) ||
62      isa<TagDecl>(IIDecl) ||
63      isa<TemplateTypeParmDecl>(IIDecl))
64    return IIDecl;
65  return 0;
66}
67
68DeclContext *Sema::getContainingDC(DeclContext *DC) {
69  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
70    // A C++ out-of-line method will return to the file declaration context.
71    if (MD->isOutOfLineDefinition())
72      return MD->getLexicalDeclContext();
73
74    // A C++ inline method is parsed *after* the topmost class it was declared in
75    // is fully parsed (it's "complete").
76    // The parsing of a C++ inline method happens at the declaration context of
77    // the topmost (non-nested) class it is lexically declared in.
78    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
79    DC = MD->getParent();
80    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
81      DC = RD;
82
83    // Return the declaration context of the topmost class the inline method is
84    // declared in.
85    return DC;
86  }
87
88  if (isa<ObjCMethodDecl>(DC))
89    return Context.getTranslationUnitDecl();
90
91  if (Decl *D = dyn_cast<Decl>(DC))
92    return D->getLexicalDeclContext();
93
94  return DC->getLexicalParent();
95}
96
97void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
98  assert(getContainingDC(DC) == CurContext &&
99      "The next DeclContext should be lexically contained in the current one.");
100  CurContext = DC;
101  S->setEntity(DC);
102}
103
104void Sema::PopDeclContext() {
105  assert(CurContext && "DeclContext imbalance!");
106
107  CurContext = getContainingDC(CurContext);
108}
109
110/// Add this decl to the scope shadowed decl chains.
111void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
112  // Move up the scope chain until we find the nearest enclosing
113  // non-transparent context. The declaration will be introduced into this
114  // scope.
115  while (S->getEntity() &&
116         ((DeclContext *)S->getEntity())->isTransparentContext())
117    S = S->getParent();
118
119  S->AddDecl(D);
120
121  // Add scoped declarations into their context, so that they can be
122  // found later. Declarations without a context won't be inserted
123  // into any context.
124  CurContext->addDecl(D);
125
126  // C++ [basic.scope]p4:
127  //   -- exactly one declaration shall declare a class name or
128  //   enumeration name that is not a typedef name and the other
129  //   declarations shall all refer to the same object or
130  //   enumerator, or all refer to functions and function templates;
131  //   in this case the class name or enumeration name is hidden.
132  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
133    // We are pushing the name of a tag (enum or class).
134    if (CurContext->getLookupContext()
135          == TD->getDeclContext()->getLookupContext()) {
136      // We're pushing the tag into the current context, which might
137      // require some reshuffling in the identifier resolver.
138      IdentifierResolver::iterator
139        I = IdResolver.begin(TD->getDeclName(), CurContext,
140                             false/*LookInParentCtx*/),
141        IEnd = IdResolver.end();
142      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
143        NamedDecl *PrevDecl = *I;
144        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
145             PrevDecl = *I, ++I) {
146          if (TD->declarationReplaces(*I)) {
147            // This is a redeclaration. Remove it from the chain and
148            // break out, so that we'll add in the shadowed
149            // declaration.
150            S->RemoveDecl(*I);
151            if (PrevDecl == *I) {
152              IdResolver.RemoveDecl(*I);
153              IdResolver.AddDecl(TD);
154              return;
155            } else {
156              IdResolver.RemoveDecl(*I);
157              break;
158            }
159          }
160        }
161
162        // There is already a declaration with the same name in the same
163        // scope, which is not a tag declaration. It must be found
164        // before we find the new declaration, so insert the new
165        // declaration at the end of the chain.
166        IdResolver.AddShadowedDecl(TD, PrevDecl);
167
168        return;
169      }
170    }
171  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
172    // We are pushing the name of a function, which might be an
173    // overloaded name.
174    FunctionDecl *FD = cast<FunctionDecl>(D);
175    DeclContext *DC = FD->getDeclContext()->getLookupContext();
176    IdentifierResolver::iterator Redecl
177      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
178                                      false/*LookInParentCtx*/),
179                     IdResolver.end(),
180                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
181                                  FD));
182    if (Redecl != IdResolver.end()) {
183      // There is already a declaration of a function on our
184      // IdResolver chain. Replace it with this declaration.
185      S->RemoveDecl(*Redecl);
186      IdResolver.RemoveDecl(*Redecl);
187    }
188  }
189
190  IdResolver.AddDecl(D);
191}
192
193void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
194  if (S->decl_empty()) return;
195  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
196	 "Scope shouldn't contain decls!");
197
198  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
199       I != E; ++I) {
200    Decl *TmpD = static_cast<Decl*>(*I);
201    assert(TmpD && "This decl didn't get pushed??");
202
203    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
204    NamedDecl *D = cast<NamedDecl>(TmpD);
205
206    if (!D->getDeclName()) continue;
207
208    // Remove this name from our lexical scope.
209    IdResolver.RemoveDecl(D);
210  }
211}
212
213/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
214/// return 0 if one not found.
215ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
216  // The third "scope" argument is 0 since we aren't enabling lazy built-in
217  // creation from this context.
218  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0);
219
220  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
221}
222
223/// getNonFieldDeclScope - Retrieves the innermost scope, starting
224/// from S, where a non-field would be declared. This routine copes
225/// with the difference between C and C++ scoping rules in structs and
226/// unions. For example, the following code is well-formed in C but
227/// ill-formed in C++:
228/// @code
229/// struct S6 {
230///   enum { BAR } e;
231/// };
232///
233/// void test_S6() {
234///   struct S6 a;
235///   a.e = BAR;
236/// }
237/// @endcode
238/// For the declaration of BAR, this routine will return a different
239/// scope. The scope S will be the scope of the unnamed enumeration
240/// within S6. In C++, this routine will return the scope associated
241/// with S6, because the enumeration's scope is a transparent
242/// context but structures can contain non-field names. In C, this
243/// routine will return the translation unit scope, since the
244/// enumeration's scope is a transparent context and structures cannot
245/// contain non-field names.
246Scope *Sema::getNonFieldDeclScope(Scope *S) {
247  while (((S->getFlags() & Scope::DeclScope) == 0) ||
248         (S->getEntity() &&
249          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
250         (S->isClassScope() && !getLangOptions().CPlusPlus))
251    S = S->getParent();
252  return S;
253}
254
255/// LookupDecl - Look up the inner-most declaration in the specified
256/// namespace. NamespaceNameOnly - during lookup only namespace names
257/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
258/// 'When looking up a namespace-name in a using-directive or
259/// namespace-alias-definition, only namespace names are considered.'
260///
261/// Note: The use of this routine is deprecated. Please use
262/// LookupName, LookupQualifiedName, or LookupParsedName instead.
263Sema::LookupResult
264Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
265                 const DeclContext *LookupCtx,
266                 bool LookInParent) {
267  LookupCriteria::NameKind Kind;
268  if (NSI == Decl::IDNS_Ordinary) {
269    Kind = LookupCriteria::Ordinary;
270  } else if (NSI == Decl::IDNS_Tag)
271    Kind = LookupCriteria::Tag;
272  else {
273    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
274    Kind = LookupCriteria::Member;
275  }
276
277  if (LookupCtx)
278    return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
279                               LookupCriteria(Kind, !LookInParent,
280                                              getLangOptions().CPlusPlus));
281
282  // Unqualified lookup
283  return LookupName(S, Name,
284                    LookupCriteria(Kind, !LookInParent,
285                                   getLangOptions().CPlusPlus));
286}
287
288void Sema::InitBuiltinVaListType() {
289  if (!Context.getBuiltinVaListType().isNull())
290    return;
291
292  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
293  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
294  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
295  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
296}
297
298/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
299/// lazily create a decl for it.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S) {
302  Builtin::ID BID = (Builtin::ID)bid;
303
304  if (Context.BuiltinInfo.hasVAListUse(BID))
305    InitBuiltinVaListType();
306
307  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
308  FunctionDecl *New = FunctionDecl::Create(Context,
309                                           Context.getTranslationUnitDecl(),
310                                           SourceLocation(), II, R,
311                                           FunctionDecl::Extern, false);
312
313  // Create Decl objects for each parameter, adding them to the
314  // FunctionDecl.
315  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
316    llvm::SmallVector<ParmVarDecl*, 16> Params;
317    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
318      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
319                                           FT->getArgType(i), VarDecl::None, 0));
320    New->setParams(Context, &Params[0], Params.size());
321  }
322
323
324
325  // TUScope is the translation-unit scope to insert this function into.
326  // FIXME: This is hideous. We need to teach PushOnScopeChains to
327  // relate Scopes to DeclContexts, and probably eliminate CurContext
328  // entirely, but we're not there yet.
329  DeclContext *SavedContext = CurContext;
330  CurContext = Context.getTranslationUnitDecl();
331  PushOnScopeChains(New, TUScope);
332  CurContext = SavedContext;
333  return New;
334}
335
336/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
337/// everything from the standard library is defined.
338NamespaceDecl *Sema::GetStdNamespace() {
339  if (!StdNamespace) {
340    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
341    DeclContext *Global = Context.getTranslationUnitDecl();
342    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Ordinary, 0, Global);
343    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
344  }
345  return StdNamespace;
346}
347
348/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
349/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
350/// situation, merging decls or emitting diagnostics as appropriate.
351///
352TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
353  bool objc_types = false;
354  // Allow multiple definitions for ObjC built-in typedefs.
355  // FIXME: Verify the underlying types are equivalent!
356  if (getLangOptions().ObjC1) {
357    const IdentifierInfo *TypeID = New->getIdentifier();
358    switch (TypeID->getLength()) {
359    default: break;
360    case 2:
361      if (!TypeID->isStr("id"))
362        break;
363      Context.setObjCIdType(New);
364      objc_types = true;
365      break;
366    case 5:
367      if (!TypeID->isStr("Class"))
368        break;
369      Context.setObjCClassType(New);
370      objc_types = true;
371      return New;
372    case 3:
373      if (!TypeID->isStr("SEL"))
374        break;
375      Context.setObjCSelType(New);
376      objc_types = true;
377      return New;
378    case 8:
379      if (!TypeID->isStr("Protocol"))
380        break;
381      Context.setObjCProtoType(New->getUnderlyingType());
382      objc_types = true;
383      return New;
384    }
385    // Fall through - the typedef name was not a builtin type.
386  }
387  // Verify the old decl was also a type.
388  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
389  if (!Old) {
390    Diag(New->getLocation(), diag::err_redefinition_different_kind)
391      << New->getDeclName();
392    if (!objc_types)
393      Diag(OldD->getLocation(), diag::note_previous_definition);
394    return New;
395  }
396
397  // Determine the "old" type we'll use for checking and diagnostics.
398  QualType OldType;
399  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
400    OldType = OldTypedef->getUnderlyingType();
401  else
402    OldType = Context.getTypeDeclType(Old);
403
404  // If the typedef types are not identical, reject them in all languages and
405  // with any extensions enabled.
406
407  if (OldType != New->getUnderlyingType() &&
408      Context.getCanonicalType(OldType) !=
409      Context.getCanonicalType(New->getUnderlyingType())) {
410    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
411      << New->getUnderlyingType() << OldType;
412    if (!objc_types)
413      Diag(Old->getLocation(), diag::note_previous_definition);
414    return New;
415  }
416  if (objc_types) return New;
417  if (getLangOptions().Microsoft) return New;
418
419  // C++ [dcl.typedef]p2:
420  //   In a given non-class scope, a typedef specifier can be used to
421  //   redefine the name of any type declared in that scope to refer
422  //   to the type to which it already refers.
423  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
424    return New;
425
426  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
427  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
428  // *either* declaration is in a system header. The code below implements
429  // this adhoc compatibility rule. FIXME: The following code will not
430  // work properly when compiling ".i" files (containing preprocessed output).
431  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
432    SourceManager &SrcMgr = Context.getSourceManager();
433    if (SrcMgr.isInSystemHeader(Old->getLocation()))
434      return New;
435    if (SrcMgr.isInSystemHeader(New->getLocation()))
436      return New;
437  }
438
439  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
440  Diag(Old->getLocation(), diag::note_previous_definition);
441  return New;
442}
443
444/// DeclhasAttr - returns true if decl Declaration already has the target
445/// attribute.
446static bool DeclHasAttr(const Decl *decl, const Attr *target) {
447  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
448    if (attr->getKind() == target->getKind())
449      return true;
450
451  return false;
452}
453
454/// MergeAttributes - append attributes from the Old decl to the New one.
455static void MergeAttributes(Decl *New, Decl *Old) {
456  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
457
458  while (attr) {
459     tmp = attr;
460     attr = attr->getNext();
461
462    if (!DeclHasAttr(New, tmp)) {
463       tmp->setInherited(true);
464       New->addAttr(tmp);
465    } else {
466       tmp->setNext(0);
467       delete(tmp);
468    }
469  }
470
471  Old->invalidateAttrs();
472}
473
474/// MergeFunctionDecl - We just parsed a function 'New' from
475/// declarator D which has the same name and scope as a previous
476/// declaration 'Old'.  Figure out how to resolve this situation,
477/// merging decls or emitting diagnostics as appropriate.
478/// Redeclaration will be set true if this New is a redeclaration OldD.
479///
480/// In C++, New and Old must be declarations that are not
481/// overloaded. Use IsOverload to determine whether New and Old are
482/// overloaded, and to select the Old declaration that New should be
483/// merged with.
484FunctionDecl *
485Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
486  assert(!isa<OverloadedFunctionDecl>(OldD) &&
487         "Cannot merge with an overloaded function declaration");
488
489  Redeclaration = false;
490  // Verify the old decl was also a function.
491  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
492  if (!Old) {
493    Diag(New->getLocation(), diag::err_redefinition_different_kind)
494      << New->getDeclName();
495    Diag(OldD->getLocation(), diag::note_previous_definition);
496    return New;
497  }
498
499  // Determine whether the previous declaration was a definition,
500  // implicit declaration, or a declaration.
501  diag::kind PrevDiag;
502  if (Old->isThisDeclarationADefinition())
503    PrevDiag = diag::note_previous_definition;
504  else if (Old->isImplicit())
505    PrevDiag = diag::note_previous_implicit_declaration;
506  else
507    PrevDiag = diag::note_previous_declaration;
508
509  QualType OldQType = Context.getCanonicalType(Old->getType());
510  QualType NewQType = Context.getCanonicalType(New->getType());
511
512  if (getLangOptions().CPlusPlus) {
513    // (C++98 13.1p2):
514    //   Certain function declarations cannot be overloaded:
515    //     -- Function declarations that differ only in the return type
516    //        cannot be overloaded.
517    QualType OldReturnType
518      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
519    QualType NewReturnType
520      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
521    if (OldReturnType != NewReturnType) {
522      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
523      Diag(Old->getLocation(), PrevDiag);
524      Redeclaration = true;
525      return New;
526    }
527
528    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
529    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
530    if (OldMethod && NewMethod) {
531      //    -- Member function declarations with the same name and the
532      //       same parameter types cannot be overloaded if any of them
533      //       is a static member function declaration.
534      if (OldMethod->isStatic() || NewMethod->isStatic()) {
535        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
536        Diag(Old->getLocation(), PrevDiag);
537        return New;
538      }
539
540      // C++ [class.mem]p1:
541      //   [...] A member shall not be declared twice in the
542      //   member-specification, except that a nested class or member
543      //   class template can be declared and then later defined.
544      if (OldMethod->getLexicalDeclContext() ==
545            NewMethod->getLexicalDeclContext()) {
546        unsigned NewDiag;
547        if (isa<CXXConstructorDecl>(OldMethod))
548          NewDiag = diag::err_constructor_redeclared;
549        else if (isa<CXXDestructorDecl>(NewMethod))
550          NewDiag = diag::err_destructor_redeclared;
551        else if (isa<CXXConversionDecl>(NewMethod))
552          NewDiag = diag::err_conv_function_redeclared;
553        else
554          NewDiag = diag::err_member_redeclared;
555
556        Diag(New->getLocation(), NewDiag);
557        Diag(Old->getLocation(), PrevDiag);
558      }
559    }
560
561    // (C++98 8.3.5p3):
562    //   All declarations for a function shall agree exactly in both the
563    //   return type and the parameter-type-list.
564    if (OldQType == NewQType) {
565      // We have a redeclaration.
566      MergeAttributes(New, Old);
567      Redeclaration = true;
568      return MergeCXXFunctionDecl(New, Old);
569    }
570
571    // Fall through for conflicting redeclarations and redefinitions.
572  }
573
574  // C: Function types need to be compatible, not identical. This handles
575  // duplicate function decls like "void f(int); void f(enum X);" properly.
576  if (!getLangOptions().CPlusPlus &&
577      Context.typesAreCompatible(OldQType, NewQType)) {
578    MergeAttributes(New, Old);
579    Redeclaration = true;
580    return New;
581  }
582
583  // A function that has already been declared has been redeclared or defined
584  // with a different type- show appropriate diagnostic
585
586  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
587  // TODO: This is totally simplistic.  It should handle merging functions
588  // together etc, merging extern int X; int X; ...
589  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
590  Diag(Old->getLocation(), PrevDiag);
591  return New;
592}
593
594/// Predicate for C "tentative" external object definitions (C99 6.9.2).
595static bool isTentativeDefinition(VarDecl *VD) {
596  if (VD->isFileVarDecl())
597    return (!VD->getInit() &&
598            (VD->getStorageClass() == VarDecl::None ||
599             VD->getStorageClass() == VarDecl::Static));
600  return false;
601}
602
603/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
604/// when dealing with C "tentative" external object definitions (C99 6.9.2).
605void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
606  bool VDIsTentative = isTentativeDefinition(VD);
607  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
608
609  // FIXME: I don't think this will actually see all of the
610  // redefinitions. Can't we check this property on-the-fly?
611  for (IdentifierResolver::iterator
612       I = IdResolver.begin(VD->getIdentifier(),
613                            VD->getDeclContext(), false/*LookInParentCtx*/),
614       E = IdResolver.end(); I != E; ++I) {
615    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
616      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
617
618      // Handle the following case:
619      //   int a[10];
620      //   int a[];   - the code below makes sure we set the correct type.
621      //   int a[11]; - this is an error, size isn't 10.
622      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
623          OldDecl->getType()->isConstantArrayType())
624        VD->setType(OldDecl->getType());
625
626      // Check for "tentative" definitions. We can't accomplish this in
627      // MergeVarDecl since the initializer hasn't been attached.
628      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
629        continue;
630
631      // Handle __private_extern__ just like extern.
632      if (OldDecl->getStorageClass() != VarDecl::Extern &&
633          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
634          VD->getStorageClass() != VarDecl::Extern &&
635          VD->getStorageClass() != VarDecl::PrivateExtern) {
636        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
637        Diag(OldDecl->getLocation(), diag::note_previous_definition);
638      }
639    }
640  }
641}
642
643/// MergeVarDecl - We just parsed a variable 'New' which has the same name
644/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
645/// situation, merging decls or emitting diagnostics as appropriate.
646///
647/// Tentative definition rules (C99 6.9.2p2) are checked by
648/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
649/// definitions here, since the initializer hasn't been attached.
650///
651VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
652  // Verify the old decl was also a variable.
653  VarDecl *Old = dyn_cast<VarDecl>(OldD);
654  if (!Old) {
655    Diag(New->getLocation(), diag::err_redefinition_different_kind)
656      << New->getDeclName();
657    Diag(OldD->getLocation(), diag::note_previous_definition);
658    return New;
659  }
660
661  MergeAttributes(New, Old);
662
663  // Merge the types
664  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
665  if (MergedT.isNull()) {
666    Diag(New->getLocation(), diag::err_redefinition_different_type)
667      << New->getDeclName();
668    Diag(Old->getLocation(), diag::note_previous_definition);
669    return New;
670  }
671  New->setType(MergedT);
672  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
673  if (New->getStorageClass() == VarDecl::Static &&
674      (Old->getStorageClass() == VarDecl::None ||
675       Old->getStorageClass() == VarDecl::Extern)) {
676    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
677    Diag(Old->getLocation(), diag::note_previous_definition);
678    return New;
679  }
680  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
681  if (New->getStorageClass() != VarDecl::Static &&
682      Old->getStorageClass() == VarDecl::Static) {
683    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
684    Diag(Old->getLocation(), diag::note_previous_definition);
685    return New;
686  }
687  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
688  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
689    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
690    Diag(Old->getLocation(), diag::note_previous_definition);
691  }
692  return New;
693}
694
695/// CheckParmsForFunctionDef - Check that the parameters of the given
696/// function are appropriate for the definition of a function. This
697/// takes care of any checks that cannot be performed on the
698/// declaration itself, e.g., that the types of each of the function
699/// parameters are complete.
700bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
701  bool HasInvalidParm = false;
702  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
703    ParmVarDecl *Param = FD->getParamDecl(p);
704
705    // C99 6.7.5.3p4: the parameters in a parameter type list in a
706    // function declarator that is part of a function definition of
707    // that function shall not have incomplete type.
708    if (!Param->isInvalidDecl() &&
709        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
710                               diag::err_typecheck_decl_incomplete_type)) {
711      Param->setInvalidDecl();
712      HasInvalidParm = true;
713    }
714
715    // C99 6.9.1p5: If the declarator includes a parameter type list, the
716    // declaration of each parameter shall include an identifier.
717    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
718      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
719  }
720
721  return HasInvalidParm;
722}
723
724/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
725/// no declarator (e.g. "struct foo;") is parsed.
726Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
727  TagDecl *Tag
728    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
729  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
730    if (!Record->getDeclName() && Record->isDefinition() &&
731        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
732      return BuildAnonymousStructOrUnion(S, DS, Record);
733
734    // Microsoft allows unnamed struct/union fields. Don't complain
735    // about them.
736    // FIXME: Should we support Microsoft's extensions in this area?
737    if (Record->getDeclName() && getLangOptions().Microsoft)
738      return Tag;
739  }
740
741  if (!DS.isMissingDeclaratorOk()) {
742    // Warn about typedefs of enums without names, since this is an
743    // extension in both Microsoft an GNU.
744    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
745        Tag && isa<EnumDecl>(Tag)) {
746      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
747        << DS.getSourceRange();
748      return Tag;
749    }
750
751    // FIXME: This diagnostic is emitted even when various previous
752    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
753    // DeclSpec has no means of communicating this information, and the
754    // responsible parser functions are quite far apart.
755    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
756      << DS.getSourceRange();
757    return 0;
758  }
759
760  return Tag;
761}
762
763/// InjectAnonymousStructOrUnionMembers - Inject the members of the
764/// anonymous struct or union AnonRecord into the owning context Owner
765/// and scope S. This routine will be invoked just after we realize
766/// that an unnamed union or struct is actually an anonymous union or
767/// struct, e.g.,
768///
769/// @code
770/// union {
771///   int i;
772///   float f;
773/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
774///    // f into the surrounding scope.x
775/// @endcode
776///
777/// This routine is recursive, injecting the names of nested anonymous
778/// structs/unions into the owning context and scope as well.
779bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
780                                               RecordDecl *AnonRecord) {
781  bool Invalid = false;
782  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
783                               FEnd = AnonRecord->field_end();
784       F != FEnd; ++F) {
785    if ((*F)->getDeclName()) {
786      Decl *PrevDecl = LookupDecl((*F)->getDeclName(), Decl::IDNS_Ordinary,
787                                  S, Owner, false);
788      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
789        // C++ [class.union]p2:
790        //   The names of the members of an anonymous union shall be
791        //   distinct from the names of any other entity in the
792        //   scope in which the anonymous union is declared.
793        unsigned diagKind
794          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
795                                 : diag::err_anonymous_struct_member_redecl;
796        Diag((*F)->getLocation(), diagKind)
797          << (*F)->getDeclName();
798        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
799        Invalid = true;
800      } else {
801        // C++ [class.union]p2:
802        //   For the purpose of name lookup, after the anonymous union
803        //   definition, the members of the anonymous union are
804        //   considered to have been defined in the scope in which the
805        //   anonymous union is declared.
806        Owner->makeDeclVisibleInContext(*F);
807        S->AddDecl(*F);
808        IdResolver.AddDecl(*F);
809      }
810    } else if (const RecordType *InnerRecordType
811                 = (*F)->getType()->getAsRecordType()) {
812      RecordDecl *InnerRecord = InnerRecordType->getDecl();
813      if (InnerRecord->isAnonymousStructOrUnion())
814        Invalid = Invalid ||
815          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
816    }
817  }
818
819  return Invalid;
820}
821
822/// ActOnAnonymousStructOrUnion - Handle the declaration of an
823/// anonymous structure or union. Anonymous unions are a C++ feature
824/// (C++ [class.union]) and a GNU C extension; anonymous structures
825/// are a GNU C and GNU C++ extension.
826Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
827                                                RecordDecl *Record) {
828  DeclContext *Owner = Record->getDeclContext();
829
830  // Diagnose whether this anonymous struct/union is an extension.
831  if (Record->isUnion() && !getLangOptions().CPlusPlus)
832    Diag(Record->getLocation(), diag::ext_anonymous_union);
833  else if (!Record->isUnion())
834    Diag(Record->getLocation(), diag::ext_anonymous_struct);
835
836  // C and C++ require different kinds of checks for anonymous
837  // structs/unions.
838  bool Invalid = false;
839  if (getLangOptions().CPlusPlus) {
840    const char* PrevSpec = 0;
841    // C++ [class.union]p3:
842    //   Anonymous unions declared in a named namespace or in the
843    //   global namespace shall be declared static.
844    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
845        (isa<TranslationUnitDecl>(Owner) ||
846         (isa<NamespaceDecl>(Owner) &&
847          cast<NamespaceDecl>(Owner)->getDeclName()))) {
848      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
849      Invalid = true;
850
851      // Recover by adding 'static'.
852      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
853    }
854    // C++ [class.union]p3:
855    //   A storage class is not allowed in a declaration of an
856    //   anonymous union in a class scope.
857    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
858             isa<RecordDecl>(Owner)) {
859      Diag(DS.getStorageClassSpecLoc(),
860           diag::err_anonymous_union_with_storage_spec);
861      Invalid = true;
862
863      // Recover by removing the storage specifier.
864      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
865                             PrevSpec);
866    }
867
868    // C++ [class.union]p2:
869    //   The member-specification of an anonymous union shall only
870    //   define non-static data members. [Note: nested types and
871    //   functions cannot be declared within an anonymous union. ]
872    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
873                                 MemEnd = Record->decls_end();
874         Mem != MemEnd; ++Mem) {
875      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
876        // C++ [class.union]p3:
877        //   An anonymous union shall not have private or protected
878        //   members (clause 11).
879        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
880          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
881            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
882          Invalid = true;
883        }
884      } else if ((*Mem)->isImplicit()) {
885        // Any implicit members are fine.
886      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
887        if (!MemRecord->isAnonymousStructOrUnion() &&
888            MemRecord->getDeclName()) {
889          // This is a nested type declaration.
890          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
891            << (int)Record->isUnion();
892          Invalid = true;
893        }
894      } else {
895        // We have something that isn't a non-static data
896        // member. Complain about it.
897        unsigned DK = diag::err_anonymous_record_bad_member;
898        if (isa<TypeDecl>(*Mem))
899          DK = diag::err_anonymous_record_with_type;
900        else if (isa<FunctionDecl>(*Mem))
901          DK = diag::err_anonymous_record_with_function;
902        else if (isa<VarDecl>(*Mem))
903          DK = diag::err_anonymous_record_with_static;
904        Diag((*Mem)->getLocation(), DK)
905            << (int)Record->isUnion();
906          Invalid = true;
907      }
908    }
909  } else {
910    // FIXME: Check GNU C semantics
911    if (Record->isUnion() && !Owner->isRecord()) {
912      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
913        << (int)getLangOptions().CPlusPlus;
914      Invalid = true;
915    }
916  }
917
918  if (!Record->isUnion() && !Owner->isRecord()) {
919    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
920      << (int)getLangOptions().CPlusPlus;
921    Invalid = true;
922  }
923
924  // Create a declaration for this anonymous struct/union.
925  NamedDecl *Anon = 0;
926  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
927    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
928                             /*IdentifierInfo=*/0,
929                             Context.getTypeDeclType(Record),
930                             /*BitWidth=*/0, /*Mutable=*/false);
931    Anon->setAccess(AS_public);
932    if (getLangOptions().CPlusPlus)
933      FieldCollector->Add(cast<FieldDecl>(Anon));
934  } else {
935    VarDecl::StorageClass SC;
936    switch (DS.getStorageClassSpec()) {
937    default: assert(0 && "Unknown storage class!");
938    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
939    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
940    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
941    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
942    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
943    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
944    case DeclSpec::SCS_mutable:
945      // mutable can only appear on non-static class members, so it's always
946      // an error here
947      Diag(Record->getLocation(), diag::err_mutable_nonmember);
948      Invalid = true;
949      SC = VarDecl::None;
950      break;
951    }
952
953    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
954                           /*IdentifierInfo=*/0,
955                           Context.getTypeDeclType(Record),
956                           SC, DS.getSourceRange().getBegin());
957  }
958  Anon->setImplicit();
959
960  // Add the anonymous struct/union object to the current
961  // context. We'll be referencing this object when we refer to one of
962  // its members.
963  Owner->addDecl(Anon);
964
965  // Inject the members of the anonymous struct/union into the owning
966  // context and into the identifier resolver chain for name lookup
967  // purposes.
968  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
969    Invalid = true;
970
971  // Mark this as an anonymous struct/union type. Note that we do not
972  // do this until after we have already checked and injected the
973  // members of this anonymous struct/union type, because otherwise
974  // the members could be injected twice: once by DeclContext when it
975  // builds its lookup table, and once by
976  // InjectAnonymousStructOrUnionMembers.
977  Record->setAnonymousStructOrUnion(true);
978
979  if (Invalid)
980    Anon->setInvalidDecl();
981
982  return Anon;
983}
984
985bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
986                                  bool DirectInit) {
987  // Get the type before calling CheckSingleAssignmentConstraints(), since
988  // it can promote the expression.
989  QualType InitType = Init->getType();
990
991  if (getLangOptions().CPlusPlus) {
992    // FIXME: I dislike this error message. A lot.
993    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
994      return Diag(Init->getSourceRange().getBegin(),
995                  diag::err_typecheck_convert_incompatible)
996        << DeclType << Init->getType() << "initializing"
997        << Init->getSourceRange();
998
999    return false;
1000  }
1001
1002  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1003  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1004                                  InitType, Init, "initializing");
1005}
1006
1007bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1008  const ArrayType *AT = Context.getAsArrayType(DeclT);
1009
1010  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1011    // C99 6.7.8p14. We have an array of character type with unknown size
1012    // being initialized to a string literal.
1013    llvm::APSInt ConstVal(32);
1014    ConstVal = strLiteral->getByteLength() + 1;
1015    // Return a new array type (C99 6.7.8p22).
1016    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1017                                         ArrayType::Normal, 0);
1018  } else {
1019    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1020    // C99 6.7.8p14. We have an array of character type with known size.
1021    // FIXME: Avoid truncation for 64-bit length strings.
1022    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1023      Diag(strLiteral->getSourceRange().getBegin(),
1024           diag::warn_initializer_string_for_char_array_too_long)
1025        << strLiteral->getSourceRange();
1026  }
1027  // Set type from "char *" to "constant array of char".
1028  strLiteral->setType(DeclT);
1029  // For now, we always return false (meaning success).
1030  return false;
1031}
1032
1033StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1034  const ArrayType *AT = Context.getAsArrayType(DeclType);
1035  if (AT && AT->getElementType()->isCharType()) {
1036    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1037  }
1038  return 0;
1039}
1040
1041bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1042                                 SourceLocation InitLoc,
1043                                 DeclarationName InitEntity,
1044                                 bool DirectInit) {
1045  if (DeclType->isDependentType() || Init->isTypeDependent())
1046    return false;
1047
1048  // C++ [dcl.init.ref]p1:
1049  //   A variable declared to be a T&, that is "reference to type T"
1050  //   (8.3.2), shall be initialized by an object, or function, of
1051  //   type T or by an object that can be converted into a T.
1052  if (DeclType->isReferenceType())
1053    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1054
1055  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1056  // of unknown size ("[]") or an object type that is not a variable array type.
1057  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1058    return Diag(InitLoc,  diag::err_variable_object_no_init)
1059      << VAT->getSizeExpr()->getSourceRange();
1060
1061  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1062  if (!InitList) {
1063    // FIXME: Handle wide strings
1064    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1065      return CheckStringLiteralInit(strLiteral, DeclType);
1066
1067    // C++ [dcl.init]p14:
1068    //   -- If the destination type is a (possibly cv-qualified) class
1069    //      type:
1070    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1071      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1072      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1073
1074      //   -- If the initialization is direct-initialization, or if it is
1075      //      copy-initialization where the cv-unqualified version of the
1076      //      source type is the same class as, or a derived class of, the
1077      //      class of the destination, constructors are considered.
1078      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1079          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1080        CXXConstructorDecl *Constructor
1081          = PerformInitializationByConstructor(DeclType, &Init, 1,
1082                                               InitLoc, Init->getSourceRange(),
1083                                               InitEntity,
1084                                               DirectInit? IK_Direct : IK_Copy);
1085        return Constructor == 0;
1086      }
1087
1088      //   -- Otherwise (i.e., for the remaining copy-initialization
1089      //      cases), user-defined conversion sequences that can
1090      //      convert from the source type to the destination type or
1091      //      (when a conversion function is used) to a derived class
1092      //      thereof are enumerated as described in 13.3.1.4, and the
1093      //      best one is chosen through overload resolution
1094      //      (13.3). If the conversion cannot be done or is
1095      //      ambiguous, the initialization is ill-formed. The
1096      //      function selected is called with the initializer
1097      //      expression as its argument; if the function is a
1098      //      constructor, the call initializes a temporary of the
1099      //      destination type.
1100      // FIXME: We're pretending to do copy elision here; return to
1101      // this when we have ASTs for such things.
1102      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1103        return false;
1104
1105      if (InitEntity)
1106        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1107          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1108          << Init->getType() << Init->getSourceRange();
1109      else
1110        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1111          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1112          << Init->getType() << Init->getSourceRange();
1113    }
1114
1115    // C99 6.7.8p16.
1116    if (DeclType->isArrayType())
1117      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1118        << Init->getSourceRange();
1119
1120    return CheckSingleInitializer(Init, DeclType, DirectInit);
1121  } else if (getLangOptions().CPlusPlus) {
1122    // C++ [dcl.init]p14:
1123    //   [...] If the class is an aggregate (8.5.1), and the initializer
1124    //   is a brace-enclosed list, see 8.5.1.
1125    //
1126    // Note: 8.5.1 is handled below; here, we diagnose the case where
1127    // we have an initializer list and a destination type that is not
1128    // an aggregate.
1129    // FIXME: In C++0x, this is yet another form of initialization.
1130    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1131      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1132      if (!ClassDecl->isAggregate())
1133        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1134           << DeclType << Init->getSourceRange();
1135    }
1136  }
1137
1138  InitListChecker CheckInitList(this, InitList, DeclType);
1139  return CheckInitList.HadError();
1140}
1141
1142/// GetNameForDeclarator - Determine the full declaration name for the
1143/// given Declarator.
1144DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1145  switch (D.getKind()) {
1146  case Declarator::DK_Abstract:
1147    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1148    return DeclarationName();
1149
1150  case Declarator::DK_Normal:
1151    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1152    return DeclarationName(D.getIdentifier());
1153
1154  case Declarator::DK_Constructor: {
1155    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1156    Ty = Context.getCanonicalType(Ty);
1157    return Context.DeclarationNames.getCXXConstructorName(Ty);
1158  }
1159
1160  case Declarator::DK_Destructor: {
1161    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1162    Ty = Context.getCanonicalType(Ty);
1163    return Context.DeclarationNames.getCXXDestructorName(Ty);
1164  }
1165
1166  case Declarator::DK_Conversion: {
1167    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1168    Ty = Context.getCanonicalType(Ty);
1169    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1170  }
1171
1172  case Declarator::DK_Operator:
1173    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1174    return Context.DeclarationNames.getCXXOperatorName(
1175                                                D.getOverloadedOperator());
1176  }
1177
1178  assert(false && "Unknown name kind");
1179  return DeclarationName();
1180}
1181
1182/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1183/// functions Declaration and Definition are "nearly" matching. This
1184/// heuristic is used to improve diagnostics in the case where an
1185/// out-of-line member function definition doesn't match any
1186/// declaration within the class.
1187static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1188                                           FunctionDecl *Declaration,
1189                                           FunctionDecl *Definition) {
1190  if (Declaration->param_size() != Definition->param_size())
1191    return false;
1192  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1193    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1194    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1195
1196    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1197    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1198    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1199      return false;
1200  }
1201
1202  return true;
1203}
1204
1205Sema::DeclTy *
1206Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1207                      bool IsFunctionDefinition) {
1208  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1209  DeclarationName Name = GetNameForDeclarator(D);
1210
1211  // All of these full declarators require an identifier.  If it doesn't have
1212  // one, the ParsedFreeStandingDeclSpec action should be used.
1213  if (!Name) {
1214    if (!D.getInvalidType())  // Reject this if we think it is valid.
1215      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1216           diag::err_declarator_need_ident)
1217        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1218    return 0;
1219  }
1220
1221  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1222  // we find one that is.
1223  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1224        (S->getFlags() & Scope::TemplateParamScope) != 0)
1225    S = S->getParent();
1226
1227  DeclContext *DC;
1228  Decl *PrevDecl;
1229  NamedDecl *New;
1230  bool InvalidDecl = false;
1231
1232  // See if this is a redefinition of a variable in the same scope.
1233  if (!D.getCXXScopeSpec().isSet()) {
1234    DC = CurContext;
1235    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1236  } else { // Something like "int foo::x;"
1237    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1238    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1239
1240    // C++ 7.3.1.2p2:
1241    // Members (including explicit specializations of templates) of a named
1242    // namespace can also be defined outside that namespace by explicit
1243    // qualification of the name being defined, provided that the entity being
1244    // defined was already declared in the namespace and the definition appears
1245    // after the point of declaration in a namespace that encloses the
1246    // declarations namespace.
1247    //
1248    // Note that we only check the context at this point. We don't yet
1249    // have enough information to make sure that PrevDecl is actually
1250    // the declaration we want to match. For example, given:
1251    //
1252    //   class X {
1253    //     void f();
1254    //     void f(float);
1255    //   };
1256    //
1257    //   void X::f(int) { } // ill-formed
1258    //
1259    // In this case, PrevDecl will point to the overload set
1260    // containing the two f's declared in X, but neither of them
1261    // matches.
1262    if (!CurContext->Encloses(DC)) {
1263      // The qualifying scope doesn't enclose the original declaration.
1264      // Emit diagnostic based on current scope.
1265      SourceLocation L = D.getIdentifierLoc();
1266      SourceRange R = D.getCXXScopeSpec().getRange();
1267      if (isa<FunctionDecl>(CurContext)) {
1268        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1269      } else {
1270        Diag(L, diag::err_invalid_declarator_scope)
1271          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1272      }
1273      InvalidDecl = true;
1274    }
1275  }
1276
1277  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1278    // Maybe we will complain about the shadowed template parameter.
1279    InvalidDecl = InvalidDecl
1280      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1281    // Just pretend that we didn't see the previous declaration.
1282    PrevDecl = 0;
1283  }
1284
1285  // In C++, the previous declaration we find might be a tag type
1286  // (class or enum). In this case, the new declaration will hide the
1287  // tag type. Note that this does does not apply if we're declaring a
1288  // typedef (C++ [dcl.typedef]p4).
1289  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1290      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1291    PrevDecl = 0;
1292
1293  QualType R = GetTypeForDeclarator(D, S);
1294  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1295
1296  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1297    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1298                                 InvalidDecl);
1299  } else if (R.getTypePtr()->isFunctionType()) {
1300    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1301                                  IsFunctionDefinition, InvalidDecl);
1302  } else {
1303    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1304                                  InvalidDecl);
1305  }
1306
1307  if (New == 0)
1308    return 0;
1309
1310  // Set the lexical context. If the declarator has a C++ scope specifier, the
1311  // lexical context will be different from the semantic context.
1312  New->setLexicalDeclContext(CurContext);
1313
1314  // If this has an identifier, add it to the scope stack.
1315  if (Name)
1316    PushOnScopeChains(New, S);
1317  // If any semantic error occurred, mark the decl as invalid.
1318  if (D.getInvalidType() || InvalidDecl)
1319    New->setInvalidDecl();
1320
1321  return New;
1322}
1323
1324NamedDecl*
1325Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1326                             QualType R, Decl* LastDeclarator,
1327                             Decl* PrevDecl, bool& InvalidDecl) {
1328  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1329  if (D.getCXXScopeSpec().isSet()) {
1330    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1331      << D.getCXXScopeSpec().getRange();
1332    InvalidDecl = true;
1333    // Pretend we didn't see the scope specifier.
1334    DC = 0;
1335  }
1336
1337  // Check that there are no default arguments (C++ only).
1338  if (getLangOptions().CPlusPlus)
1339    CheckExtraCXXDefaultArguments(D);
1340
1341  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1342  if (!NewTD) return 0;
1343
1344  // Handle attributes prior to checking for duplicates in MergeVarDecl
1345  ProcessDeclAttributes(NewTD, D);
1346  // Merge the decl with the existing one if appropriate. If the decl is
1347  // in an outer scope, it isn't the same thing.
1348  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1349    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1350    if (NewTD == 0) return 0;
1351  }
1352
1353  if (S->getFnParent() == 0) {
1354    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1355    // then it shall have block scope.
1356    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1357      if (NewTD->getUnderlyingType()->isVariableArrayType())
1358        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1359      else
1360        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1361
1362      InvalidDecl = true;
1363    }
1364  }
1365  return NewTD;
1366}
1367
1368NamedDecl*
1369Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1370                              QualType R, Decl* LastDeclarator,
1371                              Decl* PrevDecl, bool& InvalidDecl) {
1372  DeclarationName Name = GetNameForDeclarator(D);
1373
1374  // Check that there are no default arguments (C++ only).
1375  if (getLangOptions().CPlusPlus)
1376    CheckExtraCXXDefaultArguments(D);
1377
1378  if (R.getTypePtr()->isObjCInterfaceType()) {
1379    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1380      << D.getIdentifier();
1381    InvalidDecl = true;
1382  }
1383
1384  VarDecl *NewVD;
1385  VarDecl::StorageClass SC;
1386  switch (D.getDeclSpec().getStorageClassSpec()) {
1387  default: assert(0 && "Unknown storage class!");
1388  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1389  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1390  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1391  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1392  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1393  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1394  case DeclSpec::SCS_mutable:
1395    // mutable can only appear on non-static class members, so it's always
1396    // an error here
1397    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1398    InvalidDecl = true;
1399    SC = VarDecl::None;
1400    break;
1401  }
1402
1403  IdentifierInfo *II = Name.getAsIdentifierInfo();
1404  if (!II) {
1405    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1406      << Name.getAsString();
1407    return 0;
1408  }
1409
1410  if (DC->isRecord()) {
1411    // This is a static data member for a C++ class.
1412    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1413                                    D.getIdentifierLoc(), II,
1414                                    R);
1415  } else {
1416    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1417    if (S->getFnParent() == 0) {
1418      // C99 6.9p2: The storage-class specifiers auto and register shall not
1419      // appear in the declaration specifiers in an external declaration.
1420      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1421        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1422        InvalidDecl = true;
1423      }
1424    }
1425    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1426                            II, R, SC,
1427                            // FIXME: Move to DeclGroup...
1428                            D.getDeclSpec().getSourceRange().getBegin());
1429    NewVD->setThreadSpecified(ThreadSpecified);
1430  }
1431  NewVD->setNextDeclarator(LastDeclarator);
1432
1433  // Handle attributes prior to checking for duplicates in MergeVarDecl
1434  ProcessDeclAttributes(NewVD, D);
1435
1436  // Handle GNU asm-label extension (encoded as an attribute).
1437  if (Expr *E = (Expr*) D.getAsmLabel()) {
1438    // The parser guarantees this is a string.
1439    StringLiteral *SE = cast<StringLiteral>(E);
1440    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1441                                                SE->getByteLength())));
1442  }
1443
1444  // Emit an error if an address space was applied to decl with local storage.
1445  // This includes arrays of objects with address space qualifiers, but not
1446  // automatic variables that point to other address spaces.
1447  // ISO/IEC TR 18037 S5.1.2
1448  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1449    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1450    InvalidDecl = true;
1451  }
1452  // Merge the decl with the existing one if appropriate. If the decl is
1453  // in an outer scope, it isn't the same thing.
1454  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1455    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1456      // The user tried to define a non-static data member
1457      // out-of-line (C++ [dcl.meaning]p1).
1458      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1459        << D.getCXXScopeSpec().getRange();
1460      NewVD->Destroy(Context);
1461      return 0;
1462    }
1463
1464    NewVD = MergeVarDecl(NewVD, PrevDecl);
1465    if (NewVD == 0) return 0;
1466
1467    if (D.getCXXScopeSpec().isSet()) {
1468      // No previous declaration in the qualifying scope.
1469      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1470        << Name << D.getCXXScopeSpec().getRange();
1471      InvalidDecl = true;
1472    }
1473  }
1474  return NewVD;
1475}
1476
1477NamedDecl*
1478Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1479                              QualType R, Decl *LastDeclarator,
1480                              Decl* PrevDecl, bool IsFunctionDefinition,
1481                              bool& InvalidDecl) {
1482  assert(R.getTypePtr()->isFunctionType());
1483
1484  DeclarationName Name = GetNameForDeclarator(D);
1485  FunctionDecl::StorageClass SC = FunctionDecl::None;
1486  switch (D.getDeclSpec().getStorageClassSpec()) {
1487  default: assert(0 && "Unknown storage class!");
1488  case DeclSpec::SCS_auto:
1489  case DeclSpec::SCS_register:
1490  case DeclSpec::SCS_mutable:
1491    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1492    InvalidDecl = true;
1493    break;
1494  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1495  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1496  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1497  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1498  }
1499
1500  bool isInline = D.getDeclSpec().isInlineSpecified();
1501  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1502  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1503
1504  FunctionDecl *NewFD;
1505  if (D.getKind() == Declarator::DK_Constructor) {
1506    // This is a C++ constructor declaration.
1507    assert(DC->isRecord() &&
1508           "Constructors can only be declared in a member context");
1509
1510    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1511
1512    // Create the new declaration
1513    NewFD = CXXConstructorDecl::Create(Context,
1514                                       cast<CXXRecordDecl>(DC),
1515                                       D.getIdentifierLoc(), Name, R,
1516                                       isExplicit, isInline,
1517                                       /*isImplicitlyDeclared=*/false);
1518
1519    if (InvalidDecl)
1520      NewFD->setInvalidDecl();
1521  } else if (D.getKind() == Declarator::DK_Destructor) {
1522    // This is a C++ destructor declaration.
1523    if (DC->isRecord()) {
1524      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1525
1526      NewFD = CXXDestructorDecl::Create(Context,
1527                                        cast<CXXRecordDecl>(DC),
1528                                        D.getIdentifierLoc(), Name, R,
1529                                        isInline,
1530                                        /*isImplicitlyDeclared=*/false);
1531
1532      if (InvalidDecl)
1533        NewFD->setInvalidDecl();
1534    } else {
1535      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1536
1537      // Create a FunctionDecl to satisfy the function definition parsing
1538      // code path.
1539      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1540                                   Name, R, SC, isInline,
1541                                   // FIXME: Move to DeclGroup...
1542                                   D.getDeclSpec().getSourceRange().getBegin());
1543      InvalidDecl = true;
1544      NewFD->setInvalidDecl();
1545    }
1546  } else if (D.getKind() == Declarator::DK_Conversion) {
1547    if (!DC->isRecord()) {
1548      Diag(D.getIdentifierLoc(),
1549           diag::err_conv_function_not_member);
1550      return 0;
1551    } else {
1552      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1553
1554      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1555                                        D.getIdentifierLoc(), Name, R,
1556                                        isInline, isExplicit);
1557
1558      if (InvalidDecl)
1559        NewFD->setInvalidDecl();
1560    }
1561  } else if (DC->isRecord()) {
1562    // This is a C++ method declaration.
1563    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1564                                  D.getIdentifierLoc(), Name, R,
1565                                  (SC == FunctionDecl::Static), isInline);
1566  } else {
1567    NewFD = FunctionDecl::Create(Context, DC,
1568                                 D.getIdentifierLoc(),
1569                                 Name, R, SC, isInline,
1570                                 // FIXME: Move to DeclGroup...
1571                                 D.getDeclSpec().getSourceRange().getBegin());
1572  }
1573  NewFD->setNextDeclarator(LastDeclarator);
1574
1575  // Set the lexical context. If the declarator has a C++
1576  // scope specifier, the lexical context will be different
1577  // from the semantic context.
1578  NewFD->setLexicalDeclContext(CurContext);
1579
1580  // Handle GNU asm-label extension (encoded as an attribute).
1581  if (Expr *E = (Expr*) D.getAsmLabel()) {
1582    // The parser guarantees this is a string.
1583    StringLiteral *SE = cast<StringLiteral>(E);
1584    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1585                                                SE->getByteLength())));
1586  }
1587
1588  // Copy the parameter declarations from the declarator D to
1589  // the function declaration NewFD, if they are available.
1590  if (D.getNumTypeObjects() > 0) {
1591    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1592
1593    // Create Decl objects for each parameter, adding them to the
1594    // FunctionDecl.
1595    llvm::SmallVector<ParmVarDecl*, 16> Params;
1596
1597    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1598    // function that takes no arguments, not a function that takes a
1599    // single void argument.
1600    // We let through "const void" here because Sema::GetTypeForDeclarator
1601    // already checks for that case.
1602    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1603        FTI.ArgInfo[0].Param &&
1604        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1605      // empty arg list, don't push any params.
1606      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1607
1608      // In C++, the empty parameter-type-list must be spelled "void"; a
1609      // typedef of void is not permitted.
1610      if (getLangOptions().CPlusPlus &&
1611          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1612        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1613      }
1614    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1615      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1616        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1617    }
1618
1619    NewFD->setParams(Context, &Params[0], Params.size());
1620  } else if (R->getAsTypedefType()) {
1621    // When we're declaring a function with a typedef, as in the
1622    // following example, we'll need to synthesize (unnamed)
1623    // parameters for use in the declaration.
1624    //
1625    // @code
1626    // typedef void fn(int);
1627    // fn f;
1628    // @endcode
1629    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1630    if (!FT) {
1631      // This is a typedef of a function with no prototype, so we
1632      // don't need to do anything.
1633    } else if ((FT->getNumArgs() == 0) ||
1634               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1635                FT->getArgType(0)->isVoidType())) {
1636      // This is a zero-argument function. We don't need to do anything.
1637    } else {
1638      // Synthesize a parameter for each argument type.
1639      llvm::SmallVector<ParmVarDecl*, 16> Params;
1640      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1641           ArgType != FT->arg_type_end(); ++ArgType) {
1642        Params.push_back(ParmVarDecl::Create(Context, DC,
1643                                             SourceLocation(), 0,
1644                                             *ArgType, VarDecl::None,
1645                                             0));
1646      }
1647
1648      NewFD->setParams(Context, &Params[0], Params.size());
1649    }
1650  }
1651
1652  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1653    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1654  else if (isa<CXXDestructorDecl>(NewFD)) {
1655    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1656    Record->setUserDeclaredDestructor(true);
1657    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1658    // user-defined destructor.
1659    Record->setPOD(false);
1660  } else if (CXXConversionDecl *Conversion =
1661             dyn_cast<CXXConversionDecl>(NewFD))
1662    ActOnConversionDeclarator(Conversion);
1663
1664  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1665  if (NewFD->isOverloadedOperator() &&
1666      CheckOverloadedOperatorDeclaration(NewFD))
1667    NewFD->setInvalidDecl();
1668
1669  // Merge the decl with the existing one if appropriate. Since C functions
1670  // are in a flat namespace, make sure we consider decls in outer scopes.
1671  if (PrevDecl &&
1672      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1673    bool Redeclaration = false;
1674
1675    // If C++, determine whether NewFD is an overload of PrevDecl or
1676    // a declaration that requires merging. If it's an overload,
1677    // there's no more work to do here; we'll just add the new
1678    // function to the scope.
1679    OverloadedFunctionDecl::function_iterator MatchedDecl;
1680    if (!getLangOptions().CPlusPlus ||
1681        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1682      Decl *OldDecl = PrevDecl;
1683
1684      // If PrevDecl was an overloaded function, extract the
1685      // FunctionDecl that matched.
1686      if (isa<OverloadedFunctionDecl>(PrevDecl))
1687        OldDecl = *MatchedDecl;
1688
1689      // NewFD and PrevDecl represent declarations that need to be
1690      // merged.
1691      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1692
1693      if (NewFD == 0) return 0;
1694      if (Redeclaration) {
1695        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1696
1697        // An out-of-line member function declaration must also be a
1698        // definition (C++ [dcl.meaning]p1).
1699        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1700            !InvalidDecl) {
1701          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1702            << D.getCXXScopeSpec().getRange();
1703          NewFD->setInvalidDecl();
1704        }
1705      }
1706    }
1707
1708    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1709      // The user tried to provide an out-of-line definition for a
1710      // member function, but there was no such member function
1711      // declared (C++ [class.mfct]p2). For example:
1712      //
1713      // class X {
1714      //   void f() const;
1715      // };
1716      //
1717      // void X::f() { } // ill-formed
1718      //
1719      // Complain about this problem, and attempt to suggest close
1720      // matches (e.g., those that differ only in cv-qualifiers and
1721      // whether the parameter types are references).
1722      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1723        << cast<CXXRecordDecl>(DC)->getDeclName()
1724        << D.getCXXScopeSpec().getRange();
1725      InvalidDecl = true;
1726
1727      PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1728      if (!PrevDecl) {
1729        // Nothing to suggest.
1730      } else if (OverloadedFunctionDecl *Ovl
1731                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1732        for (OverloadedFunctionDecl::function_iterator
1733               Func = Ovl->function_begin(),
1734               FuncEnd = Ovl->function_end();
1735             Func != FuncEnd; ++Func) {
1736          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1737            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1738
1739        }
1740      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1741        // Suggest this no matter how mismatched it is; it's the only
1742        // thing we have.
1743        unsigned diag;
1744        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1745          diag = diag::note_member_def_close_match;
1746        else if (Method->getBody())
1747          diag = diag::note_previous_definition;
1748        else
1749          diag = diag::note_previous_declaration;
1750        Diag(Method->getLocation(), diag);
1751      }
1752
1753      PrevDecl = 0;
1754    }
1755  }
1756  // Handle attributes. We need to have merged decls when handling attributes
1757  // (for example to check for conflicts, etc).
1758  ProcessDeclAttributes(NewFD, D);
1759
1760  if (getLangOptions().CPlusPlus) {
1761    // In C++, check default arguments now that we have merged decls.
1762    CheckCXXDefaultArguments(NewFD);
1763
1764    // An out-of-line member function declaration must also be a
1765    // definition (C++ [dcl.meaning]p1).
1766    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1767      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1768        << D.getCXXScopeSpec().getRange();
1769      InvalidDecl = true;
1770    }
1771  }
1772  return NewFD;
1773}
1774
1775void Sema::InitializerElementNotConstant(const Expr *Init) {
1776  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1777    << Init->getSourceRange();
1778}
1779
1780bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1781  switch (Init->getStmtClass()) {
1782  default:
1783    InitializerElementNotConstant(Init);
1784    return true;
1785  case Expr::ParenExprClass: {
1786    const ParenExpr* PE = cast<ParenExpr>(Init);
1787    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1788  }
1789  case Expr::CompoundLiteralExprClass:
1790    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1791  case Expr::DeclRefExprClass:
1792  case Expr::QualifiedDeclRefExprClass: {
1793    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1794    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1795      if (VD->hasGlobalStorage())
1796        return false;
1797      InitializerElementNotConstant(Init);
1798      return true;
1799    }
1800    if (isa<FunctionDecl>(D))
1801      return false;
1802    InitializerElementNotConstant(Init);
1803    return true;
1804  }
1805  case Expr::MemberExprClass: {
1806    const MemberExpr *M = cast<MemberExpr>(Init);
1807    if (M->isArrow())
1808      return CheckAddressConstantExpression(M->getBase());
1809    return CheckAddressConstantExpressionLValue(M->getBase());
1810  }
1811  case Expr::ArraySubscriptExprClass: {
1812    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1813    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1814    return CheckAddressConstantExpression(ASE->getBase()) ||
1815           CheckArithmeticConstantExpression(ASE->getIdx());
1816  }
1817  case Expr::StringLiteralClass:
1818  case Expr::PredefinedExprClass:
1819    return false;
1820  case Expr::UnaryOperatorClass: {
1821    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1822
1823    // C99 6.6p9
1824    if (Exp->getOpcode() == UnaryOperator::Deref)
1825      return CheckAddressConstantExpression(Exp->getSubExpr());
1826
1827    InitializerElementNotConstant(Init);
1828    return true;
1829  }
1830  }
1831}
1832
1833bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1834  switch (Init->getStmtClass()) {
1835  default:
1836    InitializerElementNotConstant(Init);
1837    return true;
1838  case Expr::ParenExprClass:
1839    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1840  case Expr::StringLiteralClass:
1841  case Expr::ObjCStringLiteralClass:
1842    return false;
1843  case Expr::CallExprClass:
1844  case Expr::CXXOperatorCallExprClass:
1845    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1846    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1847           Builtin::BI__builtin___CFStringMakeConstantString)
1848      return false;
1849
1850    InitializerElementNotConstant(Init);
1851    return true;
1852
1853  case Expr::UnaryOperatorClass: {
1854    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1855
1856    // C99 6.6p9
1857    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1858      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1859
1860    if (Exp->getOpcode() == UnaryOperator::Extension)
1861      return CheckAddressConstantExpression(Exp->getSubExpr());
1862
1863    InitializerElementNotConstant(Init);
1864    return true;
1865  }
1866  case Expr::BinaryOperatorClass: {
1867    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1868    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1869
1870    Expr *PExp = Exp->getLHS();
1871    Expr *IExp = Exp->getRHS();
1872    if (IExp->getType()->isPointerType())
1873      std::swap(PExp, IExp);
1874
1875    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1876    return CheckAddressConstantExpression(PExp) ||
1877           CheckArithmeticConstantExpression(IExp);
1878  }
1879  case Expr::ImplicitCastExprClass:
1880  case Expr::CStyleCastExprClass: {
1881    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1882    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1883      // Check for implicit promotion
1884      if (SubExpr->getType()->isFunctionType() ||
1885          SubExpr->getType()->isArrayType())
1886        return CheckAddressConstantExpressionLValue(SubExpr);
1887    }
1888
1889    // Check for pointer->pointer cast
1890    if (SubExpr->getType()->isPointerType())
1891      return CheckAddressConstantExpression(SubExpr);
1892
1893    if (SubExpr->getType()->isIntegralType()) {
1894      // Check for the special-case of a pointer->int->pointer cast;
1895      // this isn't standard, but some code requires it. See
1896      // PR2720 for an example.
1897      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1898        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1899          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1900          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1901          if (IntWidth >= PointerWidth) {
1902            return CheckAddressConstantExpression(SubCast->getSubExpr());
1903          }
1904        }
1905      }
1906    }
1907    if (SubExpr->getType()->isArithmeticType()) {
1908      return CheckArithmeticConstantExpression(SubExpr);
1909    }
1910
1911    InitializerElementNotConstant(Init);
1912    return true;
1913  }
1914  case Expr::ConditionalOperatorClass: {
1915    // FIXME: Should we pedwarn here?
1916    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1917    if (!Exp->getCond()->getType()->isArithmeticType()) {
1918      InitializerElementNotConstant(Init);
1919      return true;
1920    }
1921    if (CheckArithmeticConstantExpression(Exp->getCond()))
1922      return true;
1923    if (Exp->getLHS() &&
1924        CheckAddressConstantExpression(Exp->getLHS()))
1925      return true;
1926    return CheckAddressConstantExpression(Exp->getRHS());
1927  }
1928  case Expr::AddrLabelExprClass:
1929    return false;
1930  }
1931}
1932
1933static const Expr* FindExpressionBaseAddress(const Expr* E);
1934
1935static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1936  switch (E->getStmtClass()) {
1937  default:
1938    return E;
1939  case Expr::ParenExprClass: {
1940    const ParenExpr* PE = cast<ParenExpr>(E);
1941    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1942  }
1943  case Expr::MemberExprClass: {
1944    const MemberExpr *M = cast<MemberExpr>(E);
1945    if (M->isArrow())
1946      return FindExpressionBaseAddress(M->getBase());
1947    return FindExpressionBaseAddressLValue(M->getBase());
1948  }
1949  case Expr::ArraySubscriptExprClass: {
1950    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1951    return FindExpressionBaseAddress(ASE->getBase());
1952  }
1953  case Expr::UnaryOperatorClass: {
1954    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1955
1956    if (Exp->getOpcode() == UnaryOperator::Deref)
1957      return FindExpressionBaseAddress(Exp->getSubExpr());
1958
1959    return E;
1960  }
1961  }
1962}
1963
1964static const Expr* FindExpressionBaseAddress(const Expr* E) {
1965  switch (E->getStmtClass()) {
1966  default:
1967    return E;
1968  case Expr::ParenExprClass: {
1969    const ParenExpr* PE = cast<ParenExpr>(E);
1970    return FindExpressionBaseAddress(PE->getSubExpr());
1971  }
1972  case Expr::UnaryOperatorClass: {
1973    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1974
1975    // C99 6.6p9
1976    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1977      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1978
1979    if (Exp->getOpcode() == UnaryOperator::Extension)
1980      return FindExpressionBaseAddress(Exp->getSubExpr());
1981
1982    return E;
1983  }
1984  case Expr::BinaryOperatorClass: {
1985    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1986
1987    Expr *PExp = Exp->getLHS();
1988    Expr *IExp = Exp->getRHS();
1989    if (IExp->getType()->isPointerType())
1990      std::swap(PExp, IExp);
1991
1992    return FindExpressionBaseAddress(PExp);
1993  }
1994  case Expr::ImplicitCastExprClass: {
1995    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1996
1997    // Check for implicit promotion
1998    if (SubExpr->getType()->isFunctionType() ||
1999        SubExpr->getType()->isArrayType())
2000      return FindExpressionBaseAddressLValue(SubExpr);
2001
2002    // Check for pointer->pointer cast
2003    if (SubExpr->getType()->isPointerType())
2004      return FindExpressionBaseAddress(SubExpr);
2005
2006    // We assume that we have an arithmetic expression here;
2007    // if we don't, we'll figure it out later
2008    return 0;
2009  }
2010  case Expr::CStyleCastExprClass: {
2011    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2012
2013    // Check for pointer->pointer cast
2014    if (SubExpr->getType()->isPointerType())
2015      return FindExpressionBaseAddress(SubExpr);
2016
2017    // We assume that we have an arithmetic expression here;
2018    // if we don't, we'll figure it out later
2019    return 0;
2020  }
2021  }
2022}
2023
2024bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2025  switch (Init->getStmtClass()) {
2026  default:
2027    InitializerElementNotConstant(Init);
2028    return true;
2029  case Expr::ParenExprClass: {
2030    const ParenExpr* PE = cast<ParenExpr>(Init);
2031    return CheckArithmeticConstantExpression(PE->getSubExpr());
2032  }
2033  case Expr::FloatingLiteralClass:
2034  case Expr::IntegerLiteralClass:
2035  case Expr::CharacterLiteralClass:
2036  case Expr::ImaginaryLiteralClass:
2037  case Expr::TypesCompatibleExprClass:
2038  case Expr::CXXBoolLiteralExprClass:
2039    return false;
2040  case Expr::CallExprClass:
2041  case Expr::CXXOperatorCallExprClass: {
2042    const CallExpr *CE = cast<CallExpr>(Init);
2043
2044    // Allow any constant foldable calls to builtins.
2045    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2046      return false;
2047
2048    InitializerElementNotConstant(Init);
2049    return true;
2050  }
2051  case Expr::DeclRefExprClass:
2052  case Expr::QualifiedDeclRefExprClass: {
2053    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2054    if (isa<EnumConstantDecl>(D))
2055      return false;
2056    InitializerElementNotConstant(Init);
2057    return true;
2058  }
2059  case Expr::CompoundLiteralExprClass:
2060    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2061    // but vectors are allowed to be magic.
2062    if (Init->getType()->isVectorType())
2063      return false;
2064    InitializerElementNotConstant(Init);
2065    return true;
2066  case Expr::UnaryOperatorClass: {
2067    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2068
2069    switch (Exp->getOpcode()) {
2070    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2071    // See C99 6.6p3.
2072    default:
2073      InitializerElementNotConstant(Init);
2074      return true;
2075    case UnaryOperator::OffsetOf:
2076      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2077        return false;
2078      InitializerElementNotConstant(Init);
2079      return true;
2080    case UnaryOperator::Extension:
2081    case UnaryOperator::LNot:
2082    case UnaryOperator::Plus:
2083    case UnaryOperator::Minus:
2084    case UnaryOperator::Not:
2085      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2086    }
2087  }
2088  case Expr::SizeOfAlignOfExprClass: {
2089    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2090    // Special check for void types, which are allowed as an extension
2091    if (Exp->getTypeOfArgument()->isVoidType())
2092      return false;
2093    // alignof always evaluates to a constant.
2094    // FIXME: is sizeof(int[3.0]) a constant expression?
2095    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2096      InitializerElementNotConstant(Init);
2097      return true;
2098    }
2099    return false;
2100  }
2101  case Expr::BinaryOperatorClass: {
2102    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2103
2104    if (Exp->getLHS()->getType()->isArithmeticType() &&
2105        Exp->getRHS()->getType()->isArithmeticType()) {
2106      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2107             CheckArithmeticConstantExpression(Exp->getRHS());
2108    }
2109
2110    if (Exp->getLHS()->getType()->isPointerType() &&
2111        Exp->getRHS()->getType()->isPointerType()) {
2112      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2113      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2114
2115      // Only allow a null (constant integer) base; we could
2116      // allow some additional cases if necessary, but this
2117      // is sufficient to cover offsetof-like constructs.
2118      if (!LHSBase && !RHSBase) {
2119        return CheckAddressConstantExpression(Exp->getLHS()) ||
2120               CheckAddressConstantExpression(Exp->getRHS());
2121      }
2122    }
2123
2124    InitializerElementNotConstant(Init);
2125    return true;
2126  }
2127  case Expr::ImplicitCastExprClass:
2128  case Expr::CStyleCastExprClass: {
2129    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2130    if (SubExpr->getType()->isArithmeticType())
2131      return CheckArithmeticConstantExpression(SubExpr);
2132
2133    if (SubExpr->getType()->isPointerType()) {
2134      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2135      // If the pointer has a null base, this is an offsetof-like construct
2136      if (!Base)
2137        return CheckAddressConstantExpression(SubExpr);
2138    }
2139
2140    InitializerElementNotConstant(Init);
2141    return true;
2142  }
2143  case Expr::ConditionalOperatorClass: {
2144    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2145
2146    // If GNU extensions are disabled, we require all operands to be arithmetic
2147    // constant expressions.
2148    if (getLangOptions().NoExtensions) {
2149      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2150          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2151             CheckArithmeticConstantExpression(Exp->getRHS());
2152    }
2153
2154    // Otherwise, we have to emulate some of the behavior of fold here.
2155    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2156    // because it can constant fold things away.  To retain compatibility with
2157    // GCC code, we see if we can fold the condition to a constant (which we
2158    // should always be able to do in theory).  If so, we only require the
2159    // specified arm of the conditional to be a constant.  This is a horrible
2160    // hack, but is require by real world code that uses __builtin_constant_p.
2161    Expr::EvalResult EvalResult;
2162    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2163        EvalResult.HasSideEffects) {
2164      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2165      // won't be able to either.  Use it to emit the diagnostic though.
2166      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2167      assert(Res && "Evaluate couldn't evaluate this constant?");
2168      return Res;
2169    }
2170
2171    // Verify that the side following the condition is also a constant.
2172    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2173    if (EvalResult.Val.getInt() == 0)
2174      std::swap(TrueSide, FalseSide);
2175
2176    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2177      return true;
2178
2179    // Okay, the evaluated side evaluates to a constant, so we accept this.
2180    // Check to see if the other side is obviously not a constant.  If so,
2181    // emit a warning that this is a GNU extension.
2182    if (FalseSide && !FalseSide->isEvaluatable(Context))
2183      Diag(Init->getExprLoc(),
2184           diag::ext_typecheck_expression_not_constant_but_accepted)
2185        << FalseSide->getSourceRange();
2186    return false;
2187  }
2188  }
2189}
2190
2191bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2192  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2193    Init = DIE->getInit();
2194
2195  Init = Init->IgnoreParens();
2196
2197  if (Init->isEvaluatable(Context))
2198    return false;
2199
2200  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2201  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2202    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2203
2204  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2205    return CheckForConstantInitializer(e->getInitializer(), DclT);
2206
2207  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2208    unsigned numInits = Exp->getNumInits();
2209    for (unsigned i = 0; i < numInits; i++) {
2210      // FIXME: Need to get the type of the declaration for C++,
2211      // because it could be a reference?
2212      if (CheckForConstantInitializer(Exp->getInit(i),
2213                                      Exp->getInit(i)->getType()))
2214        return true;
2215    }
2216    return false;
2217  }
2218
2219  // FIXME: We can probably remove some of this code below, now that
2220  // Expr::Evaluate is doing the heavy lifting for scalars.
2221
2222  if (Init->isNullPointerConstant(Context))
2223    return false;
2224  if (Init->getType()->isArithmeticType()) {
2225    QualType InitTy = Context.getCanonicalType(Init->getType())
2226                             .getUnqualifiedType();
2227    if (InitTy == Context.BoolTy) {
2228      // Special handling for pointers implicitly cast to bool;
2229      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2230      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2231        Expr* SubE = ICE->getSubExpr();
2232        if (SubE->getType()->isPointerType() ||
2233            SubE->getType()->isArrayType() ||
2234            SubE->getType()->isFunctionType()) {
2235          return CheckAddressConstantExpression(Init);
2236        }
2237      }
2238    } else if (InitTy->isIntegralType()) {
2239      Expr* SubE = 0;
2240      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2241        SubE = CE->getSubExpr();
2242      // Special check for pointer cast to int; we allow as an extension
2243      // an address constant cast to an integer if the integer
2244      // is of an appropriate width (this sort of code is apparently used
2245      // in some places).
2246      // FIXME: Add pedwarn?
2247      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2248      if (SubE && (SubE->getType()->isPointerType() ||
2249                   SubE->getType()->isArrayType() ||
2250                   SubE->getType()->isFunctionType())) {
2251        unsigned IntWidth = Context.getTypeSize(Init->getType());
2252        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2253        if (IntWidth >= PointerWidth)
2254          return CheckAddressConstantExpression(Init);
2255      }
2256    }
2257
2258    return CheckArithmeticConstantExpression(Init);
2259  }
2260
2261  if (Init->getType()->isPointerType())
2262    return CheckAddressConstantExpression(Init);
2263
2264  // An array type at the top level that isn't an init-list must
2265  // be a string literal
2266  if (Init->getType()->isArrayType())
2267    return false;
2268
2269  if (Init->getType()->isFunctionType())
2270    return false;
2271
2272  // Allow block exprs at top level.
2273  if (Init->getType()->isBlockPointerType())
2274    return false;
2275
2276  // GCC cast to union extension
2277  // note: the validity of the cast expr is checked by CheckCastTypes()
2278  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2279    QualType T = C->getType();
2280    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2281  }
2282
2283  InitializerElementNotConstant(Init);
2284  return true;
2285}
2286
2287void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2288  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2289}
2290
2291/// AddInitializerToDecl - Adds the initializer Init to the
2292/// declaration dcl. If DirectInit is true, this is C++ direct
2293/// initialization rather than copy initialization.
2294void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2295  Decl *RealDecl = static_cast<Decl *>(dcl);
2296  Expr *Init = static_cast<Expr *>(init.release());
2297  assert(Init && "missing initializer");
2298
2299  // If there is no declaration, there was an error parsing it.  Just ignore
2300  // the initializer.
2301  if (RealDecl == 0) {
2302    delete Init;
2303    return;
2304  }
2305
2306  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2307  if (!VDecl) {
2308    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2309    RealDecl->setInvalidDecl();
2310    return;
2311  }
2312  // Get the decls type and save a reference for later, since
2313  // CheckInitializerTypes may change it.
2314  QualType DclT = VDecl->getType(), SavT = DclT;
2315  if (VDecl->isBlockVarDecl()) {
2316    VarDecl::StorageClass SC = VDecl->getStorageClass();
2317    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2318      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2319      VDecl->setInvalidDecl();
2320    } else if (!VDecl->isInvalidDecl()) {
2321      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2322                                VDecl->getDeclName(), DirectInit))
2323        VDecl->setInvalidDecl();
2324
2325      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2326      if (!getLangOptions().CPlusPlus) {
2327        if (SC == VarDecl::Static) // C99 6.7.8p4.
2328          CheckForConstantInitializer(Init, DclT);
2329      }
2330    }
2331  } else if (VDecl->isFileVarDecl()) {
2332    if (VDecl->getStorageClass() == VarDecl::Extern)
2333      Diag(VDecl->getLocation(), diag::warn_extern_init);
2334    if (!VDecl->isInvalidDecl())
2335      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2336                                VDecl->getDeclName(), DirectInit))
2337        VDecl->setInvalidDecl();
2338
2339    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2340    if (!getLangOptions().CPlusPlus) {
2341      // C99 6.7.8p4. All file scoped initializers need to be constant.
2342      CheckForConstantInitializer(Init, DclT);
2343    }
2344  }
2345  // If the type changed, it means we had an incomplete type that was
2346  // completed by the initializer. For example:
2347  //   int ary[] = { 1, 3, 5 };
2348  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2349  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2350    VDecl->setType(DclT);
2351    Init->setType(DclT);
2352  }
2353
2354  // Attach the initializer to the decl.
2355  VDecl->setInit(Init);
2356  return;
2357}
2358
2359void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2360  Decl *RealDecl = static_cast<Decl *>(dcl);
2361
2362  // If there is no declaration, there was an error parsing it. Just ignore it.
2363  if (RealDecl == 0)
2364    return;
2365
2366  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2367    QualType Type = Var->getType();
2368    // C++ [dcl.init.ref]p3:
2369    //   The initializer can be omitted for a reference only in a
2370    //   parameter declaration (8.3.5), in the declaration of a
2371    //   function return type, in the declaration of a class member
2372    //   within its class declaration (9.2), and where the extern
2373    //   specifier is explicitly used.
2374    if (Type->isReferenceType() &&
2375        Var->getStorageClass() != VarDecl::Extern &&
2376        Var->getStorageClass() != VarDecl::PrivateExtern) {
2377      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2378        << Var->getDeclName()
2379        << SourceRange(Var->getLocation(), Var->getLocation());
2380      Var->setInvalidDecl();
2381      return;
2382    }
2383
2384    // C++ [dcl.init]p9:
2385    //
2386    //   If no initializer is specified for an object, and the object
2387    //   is of (possibly cv-qualified) non-POD class type (or array
2388    //   thereof), the object shall be default-initialized; if the
2389    //   object is of const-qualified type, the underlying class type
2390    //   shall have a user-declared default constructor.
2391    if (getLangOptions().CPlusPlus) {
2392      QualType InitType = Type;
2393      if (const ArrayType *Array = Context.getAsArrayType(Type))
2394        InitType = Array->getElementType();
2395      if (Var->getStorageClass() != VarDecl::Extern &&
2396          Var->getStorageClass() != VarDecl::PrivateExtern &&
2397          InitType->isRecordType()) {
2398        const CXXConstructorDecl *Constructor
2399          = PerformInitializationByConstructor(InitType, 0, 0,
2400                                               Var->getLocation(),
2401                                               SourceRange(Var->getLocation(),
2402                                                           Var->getLocation()),
2403                                               Var->getDeclName(),
2404                                               IK_Default);
2405        if (!Constructor)
2406          Var->setInvalidDecl();
2407      }
2408    }
2409
2410#if 0
2411    // FIXME: Temporarily disabled because we are not properly parsing
2412    // linkage specifications on declarations, e.g.,
2413    //
2414    //   extern "C" const CGPoint CGPointerZero;
2415    //
2416    // C++ [dcl.init]p9:
2417    //
2418    //     If no initializer is specified for an object, and the
2419    //     object is of (possibly cv-qualified) non-POD class type (or
2420    //     array thereof), the object shall be default-initialized; if
2421    //     the object is of const-qualified type, the underlying class
2422    //     type shall have a user-declared default
2423    //     constructor. Otherwise, if no initializer is specified for
2424    //     an object, the object and its subobjects, if any, have an
2425    //     indeterminate initial value; if the object or any of its
2426    //     subobjects are of const-qualified type, the program is
2427    //     ill-formed.
2428    //
2429    // This isn't technically an error in C, so we don't diagnose it.
2430    //
2431    // FIXME: Actually perform the POD/user-defined default
2432    // constructor check.
2433    if (getLangOptions().CPlusPlus &&
2434        Context.getCanonicalType(Type).isConstQualified() &&
2435        Var->getStorageClass() != VarDecl::Extern)
2436      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2437        << Var->getName()
2438        << SourceRange(Var->getLocation(), Var->getLocation());
2439#endif
2440  }
2441}
2442
2443/// The declarators are chained together backwards, reverse the list.
2444Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2445  // Often we have single declarators, handle them quickly.
2446  Decl *GroupDecl = static_cast<Decl*>(group);
2447  if (GroupDecl == 0)
2448    return 0;
2449
2450  Decl *Group = dyn_cast<Decl>(GroupDecl);
2451  Decl *NewGroup = 0;
2452  if (Group->getNextDeclarator() == 0)
2453    NewGroup = Group;
2454  else { // reverse the list.
2455    while (Group) {
2456      Decl *Next = Group->getNextDeclarator();
2457      Group->setNextDeclarator(NewGroup);
2458      NewGroup = Group;
2459      Group = Next;
2460    }
2461  }
2462  // Perform semantic analysis that depends on having fully processed both
2463  // the declarator and initializer.
2464  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2465    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2466    if (!IDecl)
2467      continue;
2468    QualType T = IDecl->getType();
2469
2470    if (T->isVariableArrayType()) {
2471      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2472
2473      // FIXME: This won't give the correct result for
2474      // int a[10][n];
2475      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2476      if (IDecl->isFileVarDecl()) {
2477        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2478          SizeRange;
2479
2480        IDecl->setInvalidDecl();
2481      } else {
2482        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2483        // static storage duration, it shall not have a variable length array.
2484        if (IDecl->getStorageClass() == VarDecl::Static) {
2485          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2486            << SizeRange;
2487          IDecl->setInvalidDecl();
2488        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2489          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2490            << SizeRange;
2491          IDecl->setInvalidDecl();
2492        }
2493      }
2494    } else if (T->isVariablyModifiedType()) {
2495      if (IDecl->isFileVarDecl()) {
2496        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2497        IDecl->setInvalidDecl();
2498      } else {
2499        if (IDecl->getStorageClass() == VarDecl::Extern) {
2500          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2501          IDecl->setInvalidDecl();
2502        }
2503      }
2504    }
2505
2506    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2507    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2508    if (IDecl->isBlockVarDecl() &&
2509        IDecl->getStorageClass() != VarDecl::Extern) {
2510      if (!IDecl->isInvalidDecl() &&
2511          DiagnoseIncompleteType(IDecl->getLocation(), T,
2512                                 diag::err_typecheck_decl_incomplete_type))
2513        IDecl->setInvalidDecl();
2514    }
2515    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2516    // object that has file scope without an initializer, and without a
2517    // storage-class specifier or with the storage-class specifier "static",
2518    // constitutes a tentative definition. Note: A tentative definition with
2519    // external linkage is valid (C99 6.2.2p5).
2520    if (isTentativeDefinition(IDecl)) {
2521      if (T->isIncompleteArrayType()) {
2522        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2523        // array to be completed. Don't issue a diagnostic.
2524      } else if (!IDecl->isInvalidDecl() &&
2525                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2526                                        diag::err_typecheck_decl_incomplete_type))
2527        // C99 6.9.2p3: If the declaration of an identifier for an object is
2528        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2529        // declared type shall not be an incomplete type.
2530        IDecl->setInvalidDecl();
2531    }
2532    if (IDecl->isFileVarDecl())
2533      CheckForFileScopedRedefinitions(S, IDecl);
2534  }
2535  return NewGroup;
2536}
2537
2538/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2539/// to introduce parameters into function prototype scope.
2540Sema::DeclTy *
2541Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2542  const DeclSpec &DS = D.getDeclSpec();
2543
2544  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2545  VarDecl::StorageClass StorageClass = VarDecl::None;
2546  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2547    StorageClass = VarDecl::Register;
2548  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2549    Diag(DS.getStorageClassSpecLoc(),
2550         diag::err_invalid_storage_class_in_func_decl);
2551    D.getMutableDeclSpec().ClearStorageClassSpecs();
2552  }
2553  if (DS.isThreadSpecified()) {
2554    Diag(DS.getThreadSpecLoc(),
2555         diag::err_invalid_storage_class_in_func_decl);
2556    D.getMutableDeclSpec().ClearStorageClassSpecs();
2557  }
2558
2559  // Check that there are no default arguments inside the type of this
2560  // parameter (C++ only).
2561  if (getLangOptions().CPlusPlus)
2562    CheckExtraCXXDefaultArguments(D);
2563
2564  // In this context, we *do not* check D.getInvalidType(). If the declarator
2565  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2566  // though it will not reflect the user specified type.
2567  QualType parmDeclType = GetTypeForDeclarator(D, S);
2568
2569  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2570
2571  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2572  // Can this happen for params?  We already checked that they don't conflict
2573  // among each other.  Here they can only shadow globals, which is ok.
2574  IdentifierInfo *II = D.getIdentifier();
2575  if (II) {
2576    if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2577      if (PrevDecl->isTemplateParameter()) {
2578        // Maybe we will complain about the shadowed template parameter.
2579        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2580        // Just pretend that we didn't see the previous declaration.
2581        PrevDecl = 0;
2582      } else if (S->isDeclScope(PrevDecl)) {
2583        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2584
2585        // Recover by removing the name
2586        II = 0;
2587        D.SetIdentifier(0, D.getIdentifierLoc());
2588      }
2589    }
2590  }
2591
2592  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2593  // Doing the promotion here has a win and a loss. The win is the type for
2594  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2595  // code generator). The loss is the orginal type isn't preserved. For example:
2596  //
2597  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2598  //    int blockvardecl[5];
2599  //    sizeof(parmvardecl);  // size == 4
2600  //    sizeof(blockvardecl); // size == 20
2601  // }
2602  //
2603  // For expressions, all implicit conversions are captured using the
2604  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2605  //
2606  // FIXME: If a source translation tool needs to see the original type, then
2607  // we need to consider storing both types (in ParmVarDecl)...
2608  //
2609  if (parmDeclType->isArrayType()) {
2610    // int x[restrict 4] ->  int *restrict
2611    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2612  } else if (parmDeclType->isFunctionType())
2613    parmDeclType = Context.getPointerType(parmDeclType);
2614
2615  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2616                                         D.getIdentifierLoc(), II,
2617                                         parmDeclType, StorageClass,
2618                                         0);
2619
2620  if (D.getInvalidType())
2621    New->setInvalidDecl();
2622
2623  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2624  if (D.getCXXScopeSpec().isSet()) {
2625    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2626      << D.getCXXScopeSpec().getRange();
2627    New->setInvalidDecl();
2628  }
2629
2630  // Add the parameter declaration into this scope.
2631  S->AddDecl(New);
2632  if (II)
2633    IdResolver.AddDecl(New);
2634
2635  ProcessDeclAttributes(New, D);
2636  return New;
2637
2638}
2639
2640void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2641  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2642         "Not a function declarator!");
2643  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2644
2645  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2646  // for a K&R function.
2647  if (!FTI.hasPrototype) {
2648    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2649      if (FTI.ArgInfo[i].Param == 0) {
2650        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2651          << FTI.ArgInfo[i].Ident;
2652        // Implicitly declare the argument as type 'int' for lack of a better
2653        // type.
2654        DeclSpec DS;
2655        const char* PrevSpec; // unused
2656        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2657                           PrevSpec);
2658        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2659        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2660        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2661      }
2662    }
2663  }
2664}
2665
2666Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2667  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2668  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2669         "Not a function declarator!");
2670  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2671
2672  if (FTI.hasPrototype) {
2673    // FIXME: Diagnose arguments without names in C.
2674  }
2675
2676  Scope *ParentScope = FnBodyScope->getParent();
2677
2678  return ActOnStartOfFunctionDef(FnBodyScope,
2679                                 ActOnDeclarator(ParentScope, D, 0,
2680                                                 /*IsFunctionDefinition=*/true));
2681}
2682
2683Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2684  Decl *decl = static_cast<Decl*>(D);
2685  FunctionDecl *FD = cast<FunctionDecl>(decl);
2686
2687  // See if this is a redefinition.
2688  const FunctionDecl *Definition;
2689  if (FD->getBody(Definition)) {
2690    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2691    Diag(Definition->getLocation(), diag::note_previous_definition);
2692  }
2693
2694  PushDeclContext(FnBodyScope, FD);
2695
2696  // Check the validity of our function parameters
2697  CheckParmsForFunctionDef(FD);
2698
2699  // Introduce our parameters into the function scope
2700  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2701    ParmVarDecl *Param = FD->getParamDecl(p);
2702    Param->setOwningFunction(FD);
2703
2704    // If this has an identifier, add it to the scope stack.
2705    if (Param->getIdentifier())
2706      PushOnScopeChains(Param, FnBodyScope);
2707  }
2708
2709  // Checking attributes of current function definition
2710  // dllimport attribute.
2711  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2712    // dllimport attribute cannot be applied to definition.
2713    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2714      Diag(FD->getLocation(),
2715           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2716        << "dllimport";
2717      FD->setInvalidDecl();
2718      return FD;
2719    } else {
2720      // If a symbol previously declared dllimport is later defined, the
2721      // attribute is ignored in subsequent references, and a warning is
2722      // emitted.
2723      Diag(FD->getLocation(),
2724           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2725        << FD->getNameAsCString() << "dllimport";
2726    }
2727  }
2728  return FD;
2729}
2730
2731Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2732  Decl *dcl = static_cast<Decl *>(D);
2733  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2734  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2735    FD->setBody(Body);
2736    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2737  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2738    MD->setBody((Stmt*)Body);
2739  } else
2740    return 0;
2741  PopDeclContext();
2742  // Verify and clean out per-function state.
2743
2744  // Check goto/label use.
2745  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2746       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2747    // Verify that we have no forward references left.  If so, there was a goto
2748    // or address of a label taken, but no definition of it.  Label fwd
2749    // definitions are indicated with a null substmt.
2750    if (I->second->getSubStmt() == 0) {
2751      LabelStmt *L = I->second;
2752      // Emit error.
2753      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2754
2755      // At this point, we have gotos that use the bogus label.  Stitch it into
2756      // the function body so that they aren't leaked and that the AST is well
2757      // formed.
2758      if (Body) {
2759        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2760        cast<CompoundStmt>(Body)->push_back(L);
2761      } else {
2762        // The whole function wasn't parsed correctly, just delete this.
2763        delete L;
2764      }
2765    }
2766  }
2767  LabelMap.clear();
2768
2769  return D;
2770}
2771
2772/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2773/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2774NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2775                                          IdentifierInfo &II, Scope *S) {
2776  // Extension in C99.  Legal in C90, but warn about it.
2777  if (getLangOptions().C99)
2778    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2779  else
2780    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2781
2782  // FIXME: handle stuff like:
2783  // void foo() { extern float X(); }
2784  // void bar() { X(); }  <-- implicit decl for X in another scope.
2785
2786  // Set a Declarator for the implicit definition: int foo();
2787  const char *Dummy;
2788  DeclSpec DS;
2789  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2790  Error = Error; // Silence warning.
2791  assert(!Error && "Error setting up implicit decl!");
2792  Declarator D(DS, Declarator::BlockContext);
2793  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2794  D.SetIdentifier(&II, Loc);
2795
2796  // Insert this function into translation-unit scope.
2797
2798  DeclContext *PrevDC = CurContext;
2799  CurContext = Context.getTranslationUnitDecl();
2800
2801  FunctionDecl *FD =
2802    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2803  FD->setImplicit();
2804
2805  CurContext = PrevDC;
2806
2807  return FD;
2808}
2809
2810
2811TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2812                                    Decl *LastDeclarator) {
2813  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2814  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2815
2816  // Scope manipulation handled by caller.
2817  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2818                                           D.getIdentifierLoc(),
2819                                           D.getIdentifier(),
2820                                           T);
2821  NewTD->setNextDeclarator(LastDeclarator);
2822  if (D.getInvalidType())
2823    NewTD->setInvalidDecl();
2824  return NewTD;
2825}
2826
2827/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2828/// former case, Name will be non-null.  In the later case, Name will be null.
2829/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2830/// reference/declaration/definition of a tag.
2831Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2832                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2833                             IdentifierInfo *Name, SourceLocation NameLoc,
2834                             AttributeList *Attr,
2835                             MultiTemplateParamsArg TemplateParameterLists) {
2836  // If this is not a definition, it must have a name.
2837  assert((Name != 0 || TK == TK_Definition) &&
2838         "Nameless record must be a definition!");
2839
2840  TagDecl::TagKind Kind;
2841  switch (TagSpec) {
2842  default: assert(0 && "Unknown tag type!");
2843  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2844  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2845  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2846  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2847  }
2848
2849  DeclContext *SearchDC = CurContext;
2850  DeclContext *DC = CurContext;
2851  DeclContext *LexicalContext = CurContext;
2852  Decl *PrevDecl = 0;
2853
2854  bool Invalid = false;
2855
2856  if (Name && SS.isNotEmpty()) {
2857    // We have a nested-name tag ('struct foo::bar').
2858
2859    // Check for invalid 'foo::'.
2860    if (SS.isInvalid()) {
2861      Name = 0;
2862      goto CreateNewDecl;
2863    }
2864
2865    DC = static_cast<DeclContext*>(SS.getScopeRep());
2866    // Look-up name inside 'foo::'.
2867    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC)
2868                                           .getAsDecl());
2869
2870    // A tag 'foo::bar' must already exist.
2871    if (PrevDecl == 0) {
2872      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2873      Name = 0;
2874      goto CreateNewDecl;
2875    }
2876  } else if (Name) {
2877    // If this is a named struct, check to see if there was a previous forward
2878    // declaration or definition.
2879    PrevDecl = dyn_cast_or_null<NamedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S)
2880                                           .getAsDecl());
2881
2882    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2883      // FIXME: This makes sure that we ignore the contexts associated
2884      // with C structs, unions, and enums when looking for a matching
2885      // tag declaration or definition. See the similar lookup tweak
2886      // in Sema::LookupDecl; is there a better way to deal with this?
2887      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2888        SearchDC = SearchDC->getParent();
2889    }
2890  }
2891
2892  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2893    // Maybe we will complain about the shadowed template parameter.
2894    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2895    // Just pretend that we didn't see the previous declaration.
2896    PrevDecl = 0;
2897  }
2898
2899  if (PrevDecl) {
2900    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2901      // If this is a use of a previous tag, or if the tag is already declared
2902      // in the same scope (so that the definition/declaration completes or
2903      // rementions the tag), reuse the decl.
2904      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2905        // Make sure that this wasn't declared as an enum and now used as a
2906        // struct or something similar.
2907        if (PrevTagDecl->getTagKind() != Kind) {
2908          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2909          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2910          // Recover by making this an anonymous redefinition.
2911          Name = 0;
2912          PrevDecl = 0;
2913          Invalid = true;
2914        } else {
2915          // If this is a use, just return the declaration we found.
2916
2917          // FIXME: In the future, return a variant or some other clue
2918          // for the consumer of this Decl to know it doesn't own it.
2919          // For our current ASTs this shouldn't be a problem, but will
2920          // need to be changed with DeclGroups.
2921          if (TK == TK_Reference)
2922            return PrevDecl;
2923
2924          // Diagnose attempts to redefine a tag.
2925          if (TK == TK_Definition) {
2926            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2927              Diag(NameLoc, diag::err_redefinition) << Name;
2928              Diag(Def->getLocation(), diag::note_previous_definition);
2929              // If this is a redefinition, recover by making this
2930              // struct be anonymous, which will make any later
2931              // references get the previous definition.
2932              Name = 0;
2933              PrevDecl = 0;
2934              Invalid = true;
2935            } else {
2936              // If the type is currently being defined, complain
2937              // about a nested redefinition.
2938              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2939              if (Tag->isBeingDefined()) {
2940                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2941                Diag(PrevTagDecl->getLocation(),
2942                     diag::note_previous_definition);
2943                Name = 0;
2944                PrevDecl = 0;
2945                Invalid = true;
2946              }
2947            }
2948
2949            // Okay, this is definition of a previously declared or referenced
2950            // tag PrevDecl. We're going to create a new Decl for it.
2951          }
2952        }
2953        // If we get here we have (another) forward declaration or we
2954        // have a definition.  Just create a new decl.
2955      } else {
2956        // If we get here, this is a definition of a new tag type in a nested
2957        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2958        // new decl/type.  We set PrevDecl to NULL so that the entities
2959        // have distinct types.
2960        PrevDecl = 0;
2961      }
2962      // If we get here, we're going to create a new Decl. If PrevDecl
2963      // is non-NULL, it's a definition of the tag declared by
2964      // PrevDecl. If it's NULL, we have a new definition.
2965    } else {
2966      // PrevDecl is a namespace, template, or anything else
2967      // that lives in the IDNS_Tag identifier namespace.
2968      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2969        // The tag name clashes with a namespace name, issue an error and
2970        // recover by making this tag be anonymous.
2971        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2972        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2973        Name = 0;
2974        PrevDecl = 0;
2975        Invalid = true;
2976      } else {
2977        // The existing declaration isn't relevant to us; we're in a
2978        // new scope, so clear out the previous declaration.
2979        PrevDecl = 0;
2980      }
2981    }
2982  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2983             (Kind != TagDecl::TK_enum))  {
2984    // C++ [basic.scope.pdecl]p5:
2985    //   -- for an elaborated-type-specifier of the form
2986    //
2987    //          class-key identifier
2988    //
2989    //      if the elaborated-type-specifier is used in the
2990    //      decl-specifier-seq or parameter-declaration-clause of a
2991    //      function defined in namespace scope, the identifier is
2992    //      declared as a class-name in the namespace that contains
2993    //      the declaration; otherwise, except as a friend
2994    //      declaration, the identifier is declared in the smallest
2995    //      non-class, non-function-prototype scope that contains the
2996    //      declaration.
2997    //
2998    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2999    // C structs and unions.
3000
3001    // Find the context where we'll be declaring the tag.
3002    // FIXME: We would like to maintain the current DeclContext as the
3003    // lexical context,
3004    while (DC->isRecord())
3005      DC = DC->getParent();
3006    LexicalContext = DC;
3007
3008    // Find the scope where we'll be declaring the tag.
3009    while (S->isClassScope() ||
3010           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3011           ((S->getFlags() & Scope::DeclScope) == 0) ||
3012           (S->getEntity() &&
3013            ((DeclContext *)S->getEntity())->isTransparentContext()))
3014      S = S->getParent();
3015  }
3016
3017CreateNewDecl:
3018
3019  // If there is an identifier, use the location of the identifier as the
3020  // location of the decl, otherwise use the location of the struct/union
3021  // keyword.
3022  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3023
3024  // Otherwise, create a new declaration. If there is a previous
3025  // declaration of the same entity, the two will be linked via
3026  // PrevDecl.
3027  TagDecl *New;
3028
3029  if (Kind == TagDecl::TK_enum) {
3030    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3031    // enum X { A, B, C } D;    D should chain to X.
3032    New = EnumDecl::Create(Context, DC, Loc, Name,
3033                           cast_or_null<EnumDecl>(PrevDecl));
3034    // If this is an undefined enum, warn.
3035    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3036  } else {
3037    // struct/union/class
3038
3039    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3040    // struct X { int A; } D;    D should chain to X.
3041    if (getLangOptions().CPlusPlus)
3042      // FIXME: Look for a way to use RecordDecl for simple structs.
3043      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3044                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3045    else
3046      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3047                               cast_or_null<RecordDecl>(PrevDecl));
3048  }
3049
3050  if (Kind != TagDecl::TK_enum) {
3051    // Handle #pragma pack: if the #pragma pack stack has non-default
3052    // alignment, make up a packed attribute for this decl. These
3053    // attributes are checked when the ASTContext lays out the
3054    // structure.
3055    //
3056    // It is important for implementing the correct semantics that this
3057    // happen here (in act on tag decl). The #pragma pack stack is
3058    // maintained as a result of parser callbacks which can occur at
3059    // many points during the parsing of a struct declaration (because
3060    // the #pragma tokens are effectively skipped over during the
3061    // parsing of the struct).
3062    if (unsigned Alignment = PackContext.getAlignment())
3063      New->addAttr(new PackedAttr(Alignment * 8));
3064  }
3065
3066  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3067    // C++ [dcl.typedef]p3:
3068    //   [...] Similarly, in a given scope, a class or enumeration
3069    //   shall not be declared with the same name as a typedef-name
3070    //   that is declared in that scope and refers to a type other
3071    //   than the class or enumeration itself.
3072    LookupResult Lookup = LookupName(S, Name,
3073                                     LookupCriteria(LookupCriteria::Ordinary,
3074                                                    true, true));
3075    TypedefDecl *PrevTypedef = 0;
3076    if (Lookup.getKind() == LookupResult::Found)
3077      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3078
3079    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3080        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3081          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3082      Diag(Loc, diag::err_tag_definition_of_typedef)
3083        << Context.getTypeDeclType(New)
3084        << PrevTypedef->getUnderlyingType();
3085      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3086      Invalid = true;
3087    }
3088  }
3089
3090  if (Invalid)
3091    New->setInvalidDecl();
3092
3093  if (Attr)
3094    ProcessDeclAttributeList(New, Attr);
3095
3096  // If we're declaring or defining a tag in function prototype scope
3097  // in C, note that this type can only be used within the function.
3098  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3099    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3100
3101  // Set the lexical context. If the tag has a C++ scope specifier, the
3102  // lexical context will be different from the semantic context.
3103  New->setLexicalDeclContext(LexicalContext);
3104
3105  if (TK == TK_Definition)
3106    New->startDefinition();
3107
3108  // If this has an identifier, add it to the scope stack.
3109  if (Name) {
3110    S = getNonFieldDeclScope(S);
3111
3112    // Add it to the decl chain.
3113    if (LexicalContext != CurContext) {
3114      // FIXME: PushOnScopeChains should not rely on CurContext!
3115      DeclContext *OldContext = CurContext;
3116      CurContext = LexicalContext;
3117      PushOnScopeChains(New, S);
3118      CurContext = OldContext;
3119    } else
3120      PushOnScopeChains(New, S);
3121  } else {
3122    LexicalContext->addDecl(New);
3123  }
3124
3125  return New;
3126}
3127
3128void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3129  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3130
3131  // Enter the tag context.
3132  PushDeclContext(S, Tag);
3133
3134  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3135    FieldCollector->StartClass();
3136
3137    if (Record->getIdentifier()) {
3138      // C++ [class]p2:
3139      //   [...] The class-name is also inserted into the scope of the
3140      //   class itself; this is known as the injected-class-name. For
3141      //   purposes of access checking, the injected-class-name is treated
3142      //   as if it were a public member name.
3143      RecordDecl *InjectedClassName
3144        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3145                                CurContext, Record->getLocation(),
3146                                Record->getIdentifier(), Record);
3147      InjectedClassName->setImplicit();
3148      PushOnScopeChains(InjectedClassName, S);
3149    }
3150  }
3151}
3152
3153void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3154  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3155
3156  if (isa<CXXRecordDecl>(Tag))
3157    FieldCollector->FinishClass();
3158
3159  // Exit this scope of this tag's definition.
3160  PopDeclContext();
3161
3162  // Notify the consumer that we've defined a tag.
3163  Consumer.HandleTagDeclDefinition(Tag);
3164}
3165
3166/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3167/// types into constant array types in certain situations which would otherwise
3168/// be errors (for GCC compatibility).
3169static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3170                                                    ASTContext &Context) {
3171  // This method tries to turn a variable array into a constant
3172  // array even when the size isn't an ICE.  This is necessary
3173  // for compatibility with code that depends on gcc's buggy
3174  // constant expression folding, like struct {char x[(int)(char*)2];}
3175  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3176  if (!VLATy) return QualType();
3177
3178  Expr::EvalResult EvalResult;
3179  if (!VLATy->getSizeExpr() ||
3180      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3181    return QualType();
3182
3183  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3184  llvm::APSInt &Res = EvalResult.Val.getInt();
3185  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3186    return Context.getConstantArrayType(VLATy->getElementType(),
3187                                        Res, ArrayType::Normal, 0);
3188  return QualType();
3189}
3190
3191bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3192                          QualType FieldTy, const Expr *BitWidth) {
3193  // FIXME: 6.7.2.1p4 - verify the field type.
3194
3195  llvm::APSInt Value;
3196  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3197    return true;
3198
3199  // Zero-width bitfield is ok for anonymous field.
3200  if (Value == 0 && FieldName)
3201    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3202
3203  if (Value.isNegative())
3204    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3205
3206  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3207  // FIXME: We won't need the 0 size once we check that the field type is valid.
3208  if (TypeSize && Value.getZExtValue() > TypeSize)
3209    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3210       << FieldName << (unsigned)TypeSize;
3211
3212  return false;
3213}
3214
3215/// ActOnField - Each field of a struct/union/class is passed into this in order
3216/// to create a FieldDecl object for it.
3217Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3218                               SourceLocation DeclStart,
3219                               Declarator &D, ExprTy *BitfieldWidth) {
3220  IdentifierInfo *II = D.getIdentifier();
3221  Expr *BitWidth = (Expr*)BitfieldWidth;
3222  SourceLocation Loc = DeclStart;
3223  RecordDecl *Record = (RecordDecl *)TagD;
3224  if (II) Loc = D.getIdentifierLoc();
3225
3226  // FIXME: Unnamed fields can be handled in various different ways, for
3227  // example, unnamed unions inject all members into the struct namespace!
3228
3229  QualType T = GetTypeForDeclarator(D, S);
3230  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3231  bool InvalidDecl = false;
3232
3233  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3234  // than a variably modified type.
3235  if (T->isVariablyModifiedType()) {
3236    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3237    if (!FixedTy.isNull()) {
3238      Diag(Loc, diag::warn_illegal_constant_array_size);
3239      T = FixedTy;
3240    } else {
3241      Diag(Loc, diag::err_typecheck_field_variable_size);
3242      T = Context.IntTy;
3243      InvalidDecl = true;
3244    }
3245  }
3246
3247  if (BitWidth) {
3248    if (VerifyBitField(Loc, II, T, BitWidth))
3249      InvalidDecl = true;
3250  } else {
3251    // Not a bitfield.
3252
3253    // validate II.
3254
3255  }
3256
3257  // FIXME: Chain fielddecls together.
3258  FieldDecl *NewFD;
3259
3260  NewFD = FieldDecl::Create(Context, Record,
3261                            Loc, II, T, BitWidth,
3262                            D.getDeclSpec().getStorageClassSpec() ==
3263                              DeclSpec::SCS_mutable);
3264
3265  if (II) {
3266    Decl *PrevDecl
3267      = LookupDecl(II, Decl::IDNS_Member, S, 0, false);
3268    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3269        && !isa<TagDecl>(PrevDecl)) {
3270      Diag(Loc, diag::err_duplicate_member) << II;
3271      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3272      NewFD->setInvalidDecl();
3273      Record->setInvalidDecl();
3274    }
3275  }
3276
3277  if (getLangOptions().CPlusPlus) {
3278    CheckExtraCXXDefaultArguments(D);
3279    if (!T->isPODType())
3280      cast<CXXRecordDecl>(Record)->setPOD(false);
3281  }
3282
3283  ProcessDeclAttributes(NewFD, D);
3284
3285  if (D.getInvalidType() || InvalidDecl)
3286    NewFD->setInvalidDecl();
3287
3288  if (II) {
3289    PushOnScopeChains(NewFD, S);
3290  } else
3291    Record->addDecl(NewFD);
3292
3293  return NewFD;
3294}
3295
3296/// TranslateIvarVisibility - Translate visibility from a token ID to an
3297///  AST enum value.
3298static ObjCIvarDecl::AccessControl
3299TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3300  switch (ivarVisibility) {
3301  default: assert(0 && "Unknown visitibility kind");
3302  case tok::objc_private: return ObjCIvarDecl::Private;
3303  case tok::objc_public: return ObjCIvarDecl::Public;
3304  case tok::objc_protected: return ObjCIvarDecl::Protected;
3305  case tok::objc_package: return ObjCIvarDecl::Package;
3306  }
3307}
3308
3309/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3310/// in order to create an IvarDecl object for it.
3311Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3312                              SourceLocation DeclStart,
3313                              Declarator &D, ExprTy *BitfieldWidth,
3314                              tok::ObjCKeywordKind Visibility) {
3315
3316  IdentifierInfo *II = D.getIdentifier();
3317  Expr *BitWidth = (Expr*)BitfieldWidth;
3318  SourceLocation Loc = DeclStart;
3319  if (II) Loc = D.getIdentifierLoc();
3320
3321  // FIXME: Unnamed fields can be handled in various different ways, for
3322  // example, unnamed unions inject all members into the struct namespace!
3323
3324  QualType T = GetTypeForDeclarator(D, S);
3325  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3326  bool InvalidDecl = false;
3327
3328  if (BitWidth) {
3329    // TODO: Validate.
3330    //printf("WARNING: BITFIELDS IGNORED!\n");
3331
3332    // 6.7.2.1p3
3333    // 6.7.2.1p4
3334
3335  } else {
3336    // Not a bitfield.
3337
3338    // validate II.
3339
3340  }
3341
3342  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3343  // than a variably modified type.
3344  if (T->isVariablyModifiedType()) {
3345    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3346    InvalidDecl = true;
3347  }
3348
3349  // Get the visibility (access control) for this ivar.
3350  ObjCIvarDecl::AccessControl ac =
3351    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3352                                        : ObjCIvarDecl::None;
3353
3354  // Construct the decl.
3355  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3356                                             (Expr *)BitfieldWidth);
3357
3358  if (II) {
3359    Decl *PrevDecl
3360      = LookupDecl(II, Decl::IDNS_Member, S, 0, false);
3361    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3362        && !isa<TagDecl>(PrevDecl)) {
3363      Diag(Loc, diag::err_duplicate_member) << II;
3364      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3365      NewID->setInvalidDecl();
3366    }
3367  }
3368
3369  // Process attributes attached to the ivar.
3370  ProcessDeclAttributes(NewID, D);
3371
3372  if (D.getInvalidType() || InvalidDecl)
3373    NewID->setInvalidDecl();
3374
3375  if (II) {
3376    // FIXME: When interfaces are DeclContexts, we'll need to add
3377    // these to the interface.
3378    S->AddDecl(NewID);
3379    IdResolver.AddDecl(NewID);
3380  }
3381
3382  return NewID;
3383}
3384
3385void Sema::ActOnFields(Scope* S,
3386                       SourceLocation RecLoc, DeclTy *RecDecl,
3387                       DeclTy **Fields, unsigned NumFields,
3388                       SourceLocation LBrac, SourceLocation RBrac,
3389                       AttributeList *Attr) {
3390  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3391  assert(EnclosingDecl && "missing record or interface decl");
3392  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3393
3394  // Verify that all the fields are okay.
3395  unsigned NumNamedMembers = 0;
3396  llvm::SmallVector<FieldDecl*, 32> RecFields;
3397
3398  for (unsigned i = 0; i != NumFields; ++i) {
3399    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3400    assert(FD && "missing field decl");
3401
3402    // Get the type for the field.
3403    Type *FDTy = FD->getType().getTypePtr();
3404
3405    if (!FD->isAnonymousStructOrUnion()) {
3406      // Remember all fields written by the user.
3407      RecFields.push_back(FD);
3408    }
3409
3410    // C99 6.7.2.1p2 - A field may not be a function type.
3411    if (FDTy->isFunctionType()) {
3412      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3413        << FD->getDeclName();
3414      FD->setInvalidDecl();
3415      EnclosingDecl->setInvalidDecl();
3416      continue;
3417    }
3418    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3419    if (FDTy->isIncompleteType()) {
3420      if (!Record) {  // Incomplete ivar type is always an error.
3421        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3422                               diag::err_field_incomplete);
3423        FD->setInvalidDecl();
3424        EnclosingDecl->setInvalidDecl();
3425        continue;
3426      }
3427      if (i != NumFields-1 ||                   // ... that the last member ...
3428          !Record->isStruct() ||  // ... of a structure ...
3429          !FDTy->isArrayType()) {         //... may have incomplete array type.
3430        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3431                               diag::err_field_incomplete);
3432        FD->setInvalidDecl();
3433        EnclosingDecl->setInvalidDecl();
3434        continue;
3435      }
3436      if (NumNamedMembers < 1) {  //... must have more than named member ...
3437        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3438          << FD->getDeclName();
3439        FD->setInvalidDecl();
3440        EnclosingDecl->setInvalidDecl();
3441        continue;
3442      }
3443      // Okay, we have a legal flexible array member at the end of the struct.
3444      if (Record)
3445        Record->setHasFlexibleArrayMember(true);
3446    }
3447    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3448    /// field of another structure or the element of an array.
3449    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3450      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3451        // If this is a member of a union, then entire union becomes "flexible".
3452        if (Record && Record->isUnion()) {
3453          Record->setHasFlexibleArrayMember(true);
3454        } else {
3455          // If this is a struct/class and this is not the last element, reject
3456          // it.  Note that GCC supports variable sized arrays in the middle of
3457          // structures.
3458          if (i != NumFields-1) {
3459            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3460              << FD->getDeclName();
3461            FD->setInvalidDecl();
3462            EnclosingDecl->setInvalidDecl();
3463            continue;
3464          }
3465          // We support flexible arrays at the end of structs in other structs
3466          // as an extension.
3467          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3468            << FD->getDeclName();
3469          if (Record)
3470            Record->setHasFlexibleArrayMember(true);
3471        }
3472      }
3473    }
3474    /// A field cannot be an Objective-c object
3475    if (FDTy->isObjCInterfaceType()) {
3476      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3477        << FD->getDeclName();
3478      FD->setInvalidDecl();
3479      EnclosingDecl->setInvalidDecl();
3480      continue;
3481    }
3482    // Keep track of the number of named members.
3483    if (FD->getIdentifier())
3484      ++NumNamedMembers;
3485  }
3486
3487  // Okay, we successfully defined 'Record'.
3488  if (Record) {
3489    Record->completeDefinition(Context);
3490  } else {
3491    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3492    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3493      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3494      // Must enforce the rule that ivars in the base classes may not be
3495      // duplicates.
3496      if (ID->getSuperClass()) {
3497        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3498             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3499          ObjCIvarDecl* Ivar = (*IVI);
3500          IdentifierInfo *II = Ivar->getIdentifier();
3501          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3502          if (prevIvar) {
3503            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3504            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3505          }
3506        }
3507      }
3508    }
3509    else if (ObjCImplementationDecl *IMPDecl =
3510               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3511      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3512      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3513      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3514    }
3515  }
3516
3517  if (Attr)
3518    ProcessDeclAttributeList(Record, Attr);
3519}
3520
3521Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3522                                      DeclTy *lastEnumConst,
3523                                      SourceLocation IdLoc, IdentifierInfo *Id,
3524                                      SourceLocation EqualLoc, ExprTy *val) {
3525  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3526  EnumConstantDecl *LastEnumConst =
3527    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3528  Expr *Val = static_cast<Expr*>(val);
3529
3530  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3531  // we find one that is.
3532  S = getNonFieldDeclScope(S);
3533
3534  // Verify that there isn't already something declared with this name in this
3535  // scope.
3536  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3537  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3538    // Maybe we will complain about the shadowed template parameter.
3539    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3540    // Just pretend that we didn't see the previous declaration.
3541    PrevDecl = 0;
3542  }
3543
3544  if (PrevDecl) {
3545    // When in C++, we may get a TagDecl with the same name; in this case the
3546    // enum constant will 'hide' the tag.
3547    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3548           "Received TagDecl when not in C++!");
3549    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3550      if (isa<EnumConstantDecl>(PrevDecl))
3551        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3552      else
3553        Diag(IdLoc, diag::err_redefinition) << Id;
3554      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3555      delete Val;
3556      return 0;
3557    }
3558  }
3559
3560  llvm::APSInt EnumVal(32);
3561  QualType EltTy;
3562  if (Val) {
3563    // Make sure to promote the operand type to int.
3564    UsualUnaryConversions(Val);
3565
3566    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3567    SourceLocation ExpLoc;
3568    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3569      delete Val;
3570      Val = 0;  // Just forget about it.
3571    } else {
3572      EltTy = Val->getType();
3573    }
3574  }
3575
3576  if (!Val) {
3577    if (LastEnumConst) {
3578      // Assign the last value + 1.
3579      EnumVal = LastEnumConst->getInitVal();
3580      ++EnumVal;
3581
3582      // Check for overflow on increment.
3583      if (EnumVal < LastEnumConst->getInitVal())
3584        Diag(IdLoc, diag::warn_enum_value_overflow);
3585
3586      EltTy = LastEnumConst->getType();
3587    } else {
3588      // First value, set to zero.
3589      EltTy = Context.IntTy;
3590      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3591    }
3592  }
3593
3594  EnumConstantDecl *New =
3595    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3596                             Val, EnumVal);
3597
3598  // Register this decl in the current scope stack.
3599  PushOnScopeChains(New, S);
3600
3601  return New;
3602}
3603
3604// FIXME: For consistency with ActOnFields(), we should have the parser
3605// pass in the source location for the left/right braces.
3606void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3607                         DeclTy **Elements, unsigned NumElements) {
3608  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3609  QualType EnumType = Context.getTypeDeclType(Enum);
3610
3611  // TODO: If the result value doesn't fit in an int, it must be a long or long
3612  // long value.  ISO C does not support this, but GCC does as an extension,
3613  // emit a warning.
3614  unsigned IntWidth = Context.Target.getIntWidth();
3615
3616  // Verify that all the values are okay, compute the size of the values, and
3617  // reverse the list.
3618  unsigned NumNegativeBits = 0;
3619  unsigned NumPositiveBits = 0;
3620
3621  // Keep track of whether all elements have type int.
3622  bool AllElementsInt = true;
3623
3624  for (unsigned i = 0; i != NumElements; ++i) {
3625    EnumConstantDecl *ECD =
3626      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3627    if (!ECD) continue;  // Already issued a diagnostic.
3628
3629    // If the enum value doesn't fit in an int, emit an extension warning.
3630    const llvm::APSInt &InitVal = ECD->getInitVal();
3631    assert(InitVal.getBitWidth() >= IntWidth &&
3632           "Should have promoted value to int");
3633    if (InitVal.getBitWidth() > IntWidth) {
3634      llvm::APSInt V(InitVal);
3635      V.trunc(IntWidth);
3636      V.extend(InitVal.getBitWidth());
3637      if (V != InitVal)
3638        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3639          << InitVal.toString(10);
3640    }
3641
3642    // Keep track of the size of positive and negative values.
3643    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3644      NumPositiveBits = std::max(NumPositiveBits,
3645                                 (unsigned)InitVal.getActiveBits());
3646    else
3647      NumNegativeBits = std::max(NumNegativeBits,
3648                                 (unsigned)InitVal.getMinSignedBits());
3649
3650    // Keep track of whether every enum element has type int (very commmon).
3651    if (AllElementsInt)
3652      AllElementsInt = ECD->getType() == Context.IntTy;
3653  }
3654
3655  // Figure out the type that should be used for this enum.
3656  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3657  QualType BestType;
3658  unsigned BestWidth;
3659
3660  if (NumNegativeBits) {
3661    // If there is a negative value, figure out the smallest integer type (of
3662    // int/long/longlong) that fits.
3663    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3664      BestType = Context.IntTy;
3665      BestWidth = IntWidth;
3666    } else {
3667      BestWidth = Context.Target.getLongWidth();
3668
3669      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3670        BestType = Context.LongTy;
3671      else {
3672        BestWidth = Context.Target.getLongLongWidth();
3673
3674        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3675          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3676        BestType = Context.LongLongTy;
3677      }
3678    }
3679  } else {
3680    // If there is no negative value, figure out which of uint, ulong, ulonglong
3681    // fits.
3682    if (NumPositiveBits <= IntWidth) {
3683      BestType = Context.UnsignedIntTy;
3684      BestWidth = IntWidth;
3685    } else if (NumPositiveBits <=
3686               (BestWidth = Context.Target.getLongWidth())) {
3687      BestType = Context.UnsignedLongTy;
3688    } else {
3689      BestWidth = Context.Target.getLongLongWidth();
3690      assert(NumPositiveBits <= BestWidth &&
3691             "How could an initializer get larger than ULL?");
3692      BestType = Context.UnsignedLongLongTy;
3693    }
3694  }
3695
3696  // Loop over all of the enumerator constants, changing their types to match
3697  // the type of the enum if needed.
3698  for (unsigned i = 0; i != NumElements; ++i) {
3699    EnumConstantDecl *ECD =
3700      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3701    if (!ECD) continue;  // Already issued a diagnostic.
3702
3703    // Standard C says the enumerators have int type, but we allow, as an
3704    // extension, the enumerators to be larger than int size.  If each
3705    // enumerator value fits in an int, type it as an int, otherwise type it the
3706    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3707    // that X has type 'int', not 'unsigned'.
3708    if (ECD->getType() == Context.IntTy) {
3709      // Make sure the init value is signed.
3710      llvm::APSInt IV = ECD->getInitVal();
3711      IV.setIsSigned(true);
3712      ECD->setInitVal(IV);
3713
3714      if (getLangOptions().CPlusPlus)
3715        // C++ [dcl.enum]p4: Following the closing brace of an
3716        // enum-specifier, each enumerator has the type of its
3717        // enumeration.
3718        ECD->setType(EnumType);
3719      continue;  // Already int type.
3720    }
3721
3722    // Determine whether the value fits into an int.
3723    llvm::APSInt InitVal = ECD->getInitVal();
3724    bool FitsInInt;
3725    if (InitVal.isUnsigned() || !InitVal.isNegative())
3726      FitsInInt = InitVal.getActiveBits() < IntWidth;
3727    else
3728      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3729
3730    // If it fits into an integer type, force it.  Otherwise force it to match
3731    // the enum decl type.
3732    QualType NewTy;
3733    unsigned NewWidth;
3734    bool NewSign;
3735    if (FitsInInt) {
3736      NewTy = Context.IntTy;
3737      NewWidth = IntWidth;
3738      NewSign = true;
3739    } else if (ECD->getType() == BestType) {
3740      // Already the right type!
3741      if (getLangOptions().CPlusPlus)
3742        // C++ [dcl.enum]p4: Following the closing brace of an
3743        // enum-specifier, each enumerator has the type of its
3744        // enumeration.
3745        ECD->setType(EnumType);
3746      continue;
3747    } else {
3748      NewTy = BestType;
3749      NewWidth = BestWidth;
3750      NewSign = BestType->isSignedIntegerType();
3751    }
3752
3753    // Adjust the APSInt value.
3754    InitVal.extOrTrunc(NewWidth);
3755    InitVal.setIsSigned(NewSign);
3756    ECD->setInitVal(InitVal);
3757
3758    // Adjust the Expr initializer and type.
3759    if (ECD->getInitExpr())
3760      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3761                                            /*isLvalue=*/false));
3762    if (getLangOptions().CPlusPlus)
3763      // C++ [dcl.enum]p4: Following the closing brace of an
3764      // enum-specifier, each enumerator has the type of its
3765      // enumeration.
3766      ECD->setType(EnumType);
3767    else
3768      ECD->setType(NewTy);
3769  }
3770
3771  Enum->completeDefinition(Context, BestType);
3772}
3773
3774Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3775                                          ExprArg expr) {
3776  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3777
3778  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3779}
3780
3781
3782void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3783                           ExprTy *alignment, SourceLocation PragmaLoc,
3784                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3785  Expr *Alignment = static_cast<Expr *>(alignment);
3786
3787  // If specified then alignment must be a "small" power of two.
3788  unsigned AlignmentVal = 0;
3789  if (Alignment) {
3790    llvm::APSInt Val;
3791    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3792        !Val.isPowerOf2() ||
3793        Val.getZExtValue() > 16) {
3794      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3795      delete Alignment;
3796      return; // Ignore
3797    }
3798
3799    AlignmentVal = (unsigned) Val.getZExtValue();
3800  }
3801
3802  switch (Kind) {
3803  case Action::PPK_Default: // pack([n])
3804    PackContext.setAlignment(AlignmentVal);
3805    break;
3806
3807  case Action::PPK_Show: // pack(show)
3808    // Show the current alignment, making sure to show the right value
3809    // for the default.
3810    AlignmentVal = PackContext.getAlignment();
3811    // FIXME: This should come from the target.
3812    if (AlignmentVal == 0)
3813      AlignmentVal = 8;
3814    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3815    break;
3816
3817  case Action::PPK_Push: // pack(push [, id] [, [n])
3818    PackContext.push(Name);
3819    // Set the new alignment if specified.
3820    if (Alignment)
3821      PackContext.setAlignment(AlignmentVal);
3822    break;
3823
3824  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3825    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3826    // "#pragma pack(pop, identifier, n) is undefined"
3827    if (Alignment && Name)
3828      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3829
3830    // Do the pop.
3831    if (!PackContext.pop(Name)) {
3832      // If a name was specified then failure indicates the name
3833      // wasn't found. Otherwise failure indicates the stack was
3834      // empty.
3835      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3836        << (Name ? "no record matching name" : "stack empty");
3837
3838      // FIXME: Warn about popping named records as MSVC does.
3839    } else {
3840      // Pop succeeded, set the new alignment if specified.
3841      if (Alignment)
3842        PackContext.setAlignment(AlignmentVal);
3843    }
3844    break;
3845
3846  default:
3847    assert(0 && "Invalid #pragma pack kind.");
3848  }
3849}
3850
3851bool PragmaPackStack::pop(IdentifierInfo *Name) {
3852  if (Stack.empty())
3853    return false;
3854
3855  // If name is empty just pop top.
3856  if (!Name) {
3857    Alignment = Stack.back().first;
3858    Stack.pop_back();
3859    return true;
3860  }
3861
3862  // Otherwise, find the named record.
3863  for (unsigned i = Stack.size(); i != 0; ) {
3864    --i;
3865    if (Stack[i].second == Name) {
3866      // Found it, pop up to and including this record.
3867      Alignment = Stack[i].first;
3868      Stack.erase(Stack.begin() + i, Stack.end());
3869      return true;
3870    }
3871  }
3872
3873  return false;
3874}
3875