SemaDecl.cpp revision 67027a7bc35671bc3f6d5c109720060f06303391
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S,
32                               const CXXScopeSpec *SS) {
33  DeclContext *DC = 0;
34  if (SS) {
35    if (SS->isInvalid())
36      return 0;
37    DC = static_cast<DeclContext*>(SS->getScopeRep());
38  }
39  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
40
41  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42                 isa<ObjCInterfaceDecl>(IIDecl) ||
43                 isa<TagDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48std::string Sema::getTypeAsString(TypeTy *Type) {
49  QualType Ty = QualType::getFromOpaquePtr(Type);
50  return Ty.getAsString();
51}
52
53DeclContext *Sema::getContainingDC(DeclContext *DC) {
54  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
55    // A C++ out-of-line method will return to the file declaration context.
56    if (MD->isOutOfLineDefinition())
57      return MD->getLexicalDeclContext();
58
59    // A C++ inline method is parsed *after* the topmost class it was declared in
60    // is fully parsed (it's "complete").
61    // The parsing of a C++ inline method happens at the declaration context of
62    // the topmost (non-nested) class it is declared in.
63    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
64    DC = MD->getParent();
65    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
66      DC = RD;
67
68    // Return the declaration context of the topmost class the inline method is
69    // declared in.
70    return DC;
71  }
72
73  if (isa<ObjCMethodDecl>(DC))
74    return Context.getTranslationUnitDecl();
75
76  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
77    return SD->getLexicalDeclContext();
78
79  return DC->getParent();
80}
81
82void Sema::PushDeclContext(DeclContext *DC) {
83  assert(getContainingDC(DC) == CurContext &&
84       "The next DeclContext should be lexically contained in the current one.");
85  CurContext = DC;
86}
87
88void Sema::PopDeclContext() {
89  assert(CurContext && "DeclContext imbalance!");
90  CurContext = getContainingDC(CurContext);
91}
92
93/// Add this decl to the scope shadowed decl chains.
94void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
95  S->AddDecl(D);
96
97  // C++ [basic.scope]p4:
98  //   -- exactly one declaration shall declare a class name or
99  //   enumeration name that is not a typedef name and the other
100  //   declarations shall all refer to the same object or
101  //   enumerator, or all refer to functions and function templates;
102  //   in this case the class name or enumeration name is hidden.
103  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
104    // We are pushing the name of a tag (enum or class).
105    IdentifierResolver::iterator
106        I = IdResolver.begin(TD->getIdentifier(),
107                             TD->getDeclContext(), false/*LookInParentCtx*/);
108    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
109      // There is already a declaration with the same name in the same
110      // scope. It must be found before we find the new declaration,
111      // so swap the order on the shadowed declaration chain.
112
113      IdResolver.AddShadowedDecl(TD, *I);
114      return;
115    }
116  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
117    FunctionDecl *FD = cast<FunctionDecl>(D);
118    // We are pushing the name of a function, which might be an
119    // overloaded name.
120    IdentifierResolver::iterator
121        I = IdResolver.begin(FD->getIdentifier(),
122                             FD->getDeclContext(), false/*LookInParentCtx*/);
123    if (I != IdResolver.end() &&
124        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
125        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
126      // There is already a declaration with the same name in the same
127      // scope. It must be a function or an overloaded function.
128      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
129      if (!Ovl) {
130        // We haven't yet overloaded this function. Take the existing
131        // FunctionDecl and put it into an OverloadedFunctionDecl.
132        Ovl = OverloadedFunctionDecl::Create(Context,
133                                             FD->getDeclContext(),
134                                             FD->getIdentifier());
135        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
136
137        // Remove the name binding to the existing FunctionDecl...
138        IdResolver.RemoveDecl(*I);
139
140        // ... and put the OverloadedFunctionDecl in its place.
141        IdResolver.AddDecl(Ovl);
142      }
143
144      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
145      // to its list of overloads.
146      Ovl->addOverload(FD);
147
148      return;
149    }
150  }
151
152  IdResolver.AddDecl(D);
153}
154
155void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
156  if (S->decl_empty()) return;
157  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
158
159  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
160       I != E; ++I) {
161    Decl *TmpD = static_cast<Decl*>(*I);
162    assert(TmpD && "This decl didn't get pushed??");
163
164    if (isa<CXXFieldDecl>(TmpD)) continue;
165
166    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
167    ScopedDecl *D = cast<ScopedDecl>(TmpD);
168
169    IdentifierInfo *II = D->getIdentifier();
170    if (!II) continue;
171
172    // We only want to remove the decls from the identifier decl chains for
173    // local scopes, when inside a function/method.
174    if (S->getFnParent() != 0)
175      IdResolver.RemoveDecl(D);
176
177    // Chain this decl to the containing DeclContext.
178    D->setNext(CurContext->getDeclChain());
179    CurContext->setDeclChain(D);
180  }
181}
182
183/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
184/// return 0 if one not found.
185ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
186  // The third "scope" argument is 0 since we aren't enabling lazy built-in
187  // creation from this context.
188  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
189
190  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
191}
192
193/// LookupDecl - Look up the inner-most declaration in the specified
194/// namespace.
195Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI, Scope *S,
196                       const DeclContext *LookupCtx,
197                       bool enableLazyBuiltinCreation) {
198  if (II == 0) return 0;
199  unsigned NS = NSI;
200  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
201    NS |= Decl::IDNS_Tag;
202
203  IdentifierResolver::iterator
204    I = LookupCtx ? IdResolver.begin(II, LookupCtx, false/*LookInParentCtx*/) :
205                    IdResolver.begin(II, CurContext, true/*LookInParentCtx*/);
206  // Scan up the scope chain looking for a decl that matches this identifier
207  // that is in the appropriate namespace.  This search should not take long, as
208  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
209  for (; I != IdResolver.end(); ++I)
210    if ((*I)->getIdentifierNamespace() & NS)
211      return *I;
212
213  // If we didn't find a use of this identifier, and if the identifier
214  // corresponds to a compiler builtin, create the decl object for the builtin
215  // now, injecting it into translation unit scope, and return it.
216  if (NS & Decl::IDNS_Ordinary) {
217    if (enableLazyBuiltinCreation &&
218        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
219      // If this is a builtin on this (or all) targets, create the decl.
220      if (unsigned BuiltinID = II->getBuiltinID())
221        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
222    }
223    if (getLangOptions().ObjC1) {
224      // @interface and @compatibility_alias introduce typedef-like names.
225      // Unlike typedef's, they can only be introduced at file-scope (and are
226      // therefore not scoped decls). They can, however, be shadowed by
227      // other names in IDNS_Ordinary.
228      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
229      if (IDI != ObjCInterfaceDecls.end())
230        return IDI->second;
231      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
232      if (I != ObjCAliasDecls.end())
233        return I->second->getClassInterface();
234    }
235  }
236  return 0;
237}
238
239void Sema::InitBuiltinVaListType() {
240  if (!Context.getBuiltinVaListType().isNull())
241    return;
242
243  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
244  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
245  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
246  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
247}
248
249/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
250/// lazily create a decl for it.
251ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
252                                      Scope *S) {
253  Builtin::ID BID = (Builtin::ID)bid;
254
255  if (Context.BuiltinInfo.hasVAListUse(BID))
256    InitBuiltinVaListType();
257
258  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
259  FunctionDecl *New = FunctionDecl::Create(Context,
260                                           Context.getTranslationUnitDecl(),
261                                           SourceLocation(), II, R,
262                                           FunctionDecl::Extern, false, 0);
263
264  // Create Decl objects for each parameter, adding them to the
265  // FunctionDecl.
266  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
267    llvm::SmallVector<ParmVarDecl*, 16> Params;
268    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
269      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
270                                           FT->getArgType(i), VarDecl::None, 0,
271                                           0));
272    New->setParams(&Params[0], Params.size());
273  }
274
275
276
277  // TUScope is the translation-unit scope to insert this function into.
278  PushOnScopeChains(New, TUScope);
279  return New;
280}
281
282/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
283/// everything from the standard library is defined.
284NamespaceDecl *Sema::GetStdNamespace() {
285  if (!StdNamespace) {
286    DeclContext *Global = Context.getTranslationUnitDecl();
287    Decl *Std = LookupDecl(Ident_StdNs, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
288                           0, Global, /*enableLazyBuiltinCreation=*/false);
289    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
290  }
291  return StdNamespace;
292}
293
294/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
295/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
296/// situation, merging decls or emitting diagnostics as appropriate.
297///
298TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
299  // Allow multiple definitions for ObjC built-in typedefs.
300  // FIXME: Verify the underlying types are equivalent!
301  if (getLangOptions().ObjC1) {
302    const IdentifierInfo *typeIdent = New->getIdentifier();
303    if (typeIdent == Ident_id) {
304      Context.setObjCIdType(New);
305      return New;
306    } else if (typeIdent == Ident_Class) {
307      Context.setObjCClassType(New);
308      return New;
309    } else if (typeIdent == Ident_SEL) {
310      Context.setObjCSelType(New);
311      return New;
312    } else if (typeIdent == Ident_Protocol) {
313      Context.setObjCProtoType(New->getUnderlyingType());
314      return New;
315    }
316    // Fall through - the typedef name was not a builtin type.
317  }
318  // Verify the old decl was also a typedef.
319  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
320  if (!Old) {
321    Diag(New->getLocation(), diag::err_redefinition_different_kind,
322         New->getName());
323    Diag(OldD->getLocation(), diag::err_previous_definition);
324    return New;
325  }
326
327  // If the typedef types are not identical, reject them in all languages and
328  // with any extensions enabled.
329  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
330      Context.getCanonicalType(Old->getUnderlyingType()) !=
331      Context.getCanonicalType(New->getUnderlyingType())) {
332    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
333         New->getUnderlyingType().getAsString(),
334         Old->getUnderlyingType().getAsString());
335    Diag(Old->getLocation(), diag::err_previous_definition);
336    return Old;
337  }
338
339  if (getLangOptions().Microsoft) return New;
340
341  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
342  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
343  // *either* declaration is in a system header. The code below implements
344  // this adhoc compatibility rule. FIXME: The following code will not
345  // work properly when compiling ".i" files (containing preprocessed output).
346  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
347    SourceManager &SrcMgr = Context.getSourceManager();
348    if (SrcMgr.isInSystemHeader(Old->getLocation()))
349      return New;
350    if (SrcMgr.isInSystemHeader(New->getLocation()))
351      return New;
352  }
353
354  Diag(New->getLocation(), diag::err_redefinition, New->getName());
355  Diag(Old->getLocation(), diag::err_previous_definition);
356  return New;
357}
358
359/// DeclhasAttr - returns true if decl Declaration already has the target
360/// attribute.
361static bool DeclHasAttr(const Decl *decl, const Attr *target) {
362  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
363    if (attr->getKind() == target->getKind())
364      return true;
365
366  return false;
367}
368
369/// MergeAttributes - append attributes from the Old decl to the New one.
370static void MergeAttributes(Decl *New, Decl *Old) {
371  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
372
373  while (attr) {
374     tmp = attr;
375     attr = attr->getNext();
376
377    if (!DeclHasAttr(New, tmp)) {
378       New->addAttr(tmp);
379    } else {
380       tmp->setNext(0);
381       delete(tmp);
382    }
383  }
384
385  Old->invalidateAttrs();
386}
387
388/// MergeFunctionDecl - We just parsed a function 'New' from
389/// declarator D which has the same name and scope as a previous
390/// declaration 'Old'.  Figure out how to resolve this situation,
391/// merging decls or emitting diagnostics as appropriate.
392/// Redeclaration will be set true if this New is a redeclaration OldD.
393///
394/// In C++, New and Old must be declarations that are not
395/// overloaded. Use IsOverload to determine whether New and Old are
396/// overloaded, and to select the Old declaration that New should be
397/// merged with.
398FunctionDecl *
399Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
400  assert(!isa<OverloadedFunctionDecl>(OldD) &&
401         "Cannot merge with an overloaded function declaration");
402
403  Redeclaration = false;
404  // Verify the old decl was also a function.
405  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
406  if (!Old) {
407    Diag(New->getLocation(), diag::err_redefinition_different_kind,
408         New->getName());
409    Diag(OldD->getLocation(), diag::err_previous_definition);
410    return New;
411  }
412
413  // Determine whether the previous declaration was a definition,
414  // implicit declaration, or a declaration.
415  diag::kind PrevDiag;
416  if (Old->isThisDeclarationADefinition())
417    PrevDiag = diag::err_previous_definition;
418  else if (Old->isImplicit())
419    PrevDiag = diag::err_previous_implicit_declaration;
420  else
421    PrevDiag = diag::err_previous_declaration;
422
423  QualType OldQType = Context.getCanonicalType(Old->getType());
424  QualType NewQType = Context.getCanonicalType(New->getType());
425
426  if (getLangOptions().CPlusPlus) {
427    // (C++98 13.1p2):
428    //   Certain function declarations cannot be overloaded:
429    //     -- Function declarations that differ only in the return type
430    //        cannot be overloaded.
431    QualType OldReturnType
432      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
433    QualType NewReturnType
434      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
435    if (OldReturnType != NewReturnType) {
436      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
437      Diag(Old->getLocation(), PrevDiag);
438      return New;
439    }
440
441    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
442    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
443    if (OldMethod && NewMethod) {
444      //    -- Member function declarations with the same name and the
445      //       same parameter types cannot be overloaded if any of them
446      //       is a static member function declaration.
447      if (OldMethod->isStatic() || NewMethod->isStatic()) {
448        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
449        Diag(Old->getLocation(), PrevDiag);
450        return New;
451      }
452    }
453
454    // (C++98 8.3.5p3):
455    //   All declarations for a function shall agree exactly in both the
456    //   return type and the parameter-type-list.
457    if (OldQType == NewQType) {
458      // We have a redeclaration.
459      MergeAttributes(New, Old);
460      Redeclaration = true;
461      return MergeCXXFunctionDecl(New, Old);
462    }
463
464    // Fall through for conflicting redeclarations and redefinitions.
465  }
466
467  // C: Function types need to be compatible, not identical. This handles
468  // duplicate function decls like "void f(int); void f(enum X);" properly.
469  if (!getLangOptions().CPlusPlus &&
470      Context.typesAreCompatible(OldQType, NewQType)) {
471    MergeAttributes(New, Old);
472    Redeclaration = true;
473    return New;
474  }
475
476  // A function that has already been declared has been redeclared or defined
477  // with a different type- show appropriate diagnostic
478
479  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
480  // TODO: This is totally simplistic.  It should handle merging functions
481  // together etc, merging extern int X; int X; ...
482  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
483  Diag(Old->getLocation(), PrevDiag);
484  return New;
485}
486
487/// Predicate for C "tentative" external object definitions (C99 6.9.2).
488static bool isTentativeDefinition(VarDecl *VD) {
489  if (VD->isFileVarDecl())
490    return (!VD->getInit() &&
491            (VD->getStorageClass() == VarDecl::None ||
492             VD->getStorageClass() == VarDecl::Static));
493  return false;
494}
495
496/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
497/// when dealing with C "tentative" external object definitions (C99 6.9.2).
498void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
499  bool VDIsTentative = isTentativeDefinition(VD);
500  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
501
502  for (IdentifierResolver::iterator
503       I = IdResolver.begin(VD->getIdentifier(),
504                            VD->getDeclContext(), false/*LookInParentCtx*/),
505       E = IdResolver.end(); I != E; ++I) {
506    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
507      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
508
509      // Handle the following case:
510      //   int a[10];
511      //   int a[];   - the code below makes sure we set the correct type.
512      //   int a[11]; - this is an error, size isn't 10.
513      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
514          OldDecl->getType()->isConstantArrayType())
515        VD->setType(OldDecl->getType());
516
517      // Check for "tentative" definitions. We can't accomplish this in
518      // MergeVarDecl since the initializer hasn't been attached.
519      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
520        continue;
521
522      // Handle __private_extern__ just like extern.
523      if (OldDecl->getStorageClass() != VarDecl::Extern &&
524          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
525          VD->getStorageClass() != VarDecl::Extern &&
526          VD->getStorageClass() != VarDecl::PrivateExtern) {
527        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
528        Diag(OldDecl->getLocation(), diag::err_previous_definition);
529      }
530    }
531  }
532}
533
534/// MergeVarDecl - We just parsed a variable 'New' which has the same name
535/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
536/// situation, merging decls or emitting diagnostics as appropriate.
537///
538/// Tentative definition rules (C99 6.9.2p2) are checked by
539/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
540/// definitions here, since the initializer hasn't been attached.
541///
542VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
543  // Verify the old decl was also a variable.
544  VarDecl *Old = dyn_cast<VarDecl>(OldD);
545  if (!Old) {
546    Diag(New->getLocation(), diag::err_redefinition_different_kind,
547         New->getName());
548    Diag(OldD->getLocation(), diag::err_previous_definition);
549    return New;
550  }
551
552  MergeAttributes(New, Old);
553
554  // Verify the types match.
555  QualType OldCType = Context.getCanonicalType(Old->getType());
556  QualType NewCType = Context.getCanonicalType(New->getType());
557  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
558    Diag(New->getLocation(), diag::err_redefinition, New->getName());
559    Diag(Old->getLocation(), diag::err_previous_definition);
560    return New;
561  }
562  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
563  if (New->getStorageClass() == VarDecl::Static &&
564      (Old->getStorageClass() == VarDecl::None ||
565       Old->getStorageClass() == VarDecl::Extern)) {
566    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
567    Diag(Old->getLocation(), diag::err_previous_definition);
568    return New;
569  }
570  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
571  if (New->getStorageClass() != VarDecl::Static &&
572      Old->getStorageClass() == VarDecl::Static) {
573    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
574    Diag(Old->getLocation(), diag::err_previous_definition);
575    return New;
576  }
577  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
578  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
579    Diag(New->getLocation(), diag::err_redefinition, New->getName());
580    Diag(Old->getLocation(), diag::err_previous_definition);
581  }
582  return New;
583}
584
585/// CheckParmsForFunctionDef - Check that the parameters of the given
586/// function are appropriate for the definition of a function. This
587/// takes care of any checks that cannot be performed on the
588/// declaration itself, e.g., that the types of each of the function
589/// parameters are complete.
590bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
591  bool HasInvalidParm = false;
592  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
593    ParmVarDecl *Param = FD->getParamDecl(p);
594
595    // C99 6.7.5.3p4: the parameters in a parameter type list in a
596    // function declarator that is part of a function definition of
597    // that function shall not have incomplete type.
598    if (Param->getType()->isIncompleteType() &&
599        !Param->isInvalidDecl()) {
600      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
601           Param->getType().getAsString());
602      Param->setInvalidDecl();
603      HasInvalidParm = true;
604    }
605  }
606
607  return HasInvalidParm;
608}
609
610/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
611/// no declarator (e.g. "struct foo;") is parsed.
612Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
613  // TODO: emit error on 'int;' or 'const enum foo;'.
614  // TODO: emit error on 'typedef int;'
615  // if (!DS.isMissingDeclaratorOk()) Diag(...);
616
617  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
618}
619
620bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
621  // Get the type before calling CheckSingleAssignmentConstraints(), since
622  // it can promote the expression.
623  QualType InitType = Init->getType();
624
625  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
626  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
627                                  InitType, Init, "initializing");
628}
629
630bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
631  const ArrayType *AT = Context.getAsArrayType(DeclT);
632
633  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
634    // C99 6.7.8p14. We have an array of character type with unknown size
635    // being initialized to a string literal.
636    llvm::APSInt ConstVal(32);
637    ConstVal = strLiteral->getByteLength() + 1;
638    // Return a new array type (C99 6.7.8p22).
639    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
640                                         ArrayType::Normal, 0);
641  } else {
642    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
643    // C99 6.7.8p14. We have an array of character type with known size.
644    // FIXME: Avoid truncation for 64-bit length strings.
645    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
646      Diag(strLiteral->getSourceRange().getBegin(),
647           diag::warn_initializer_string_for_char_array_too_long,
648           strLiteral->getSourceRange());
649  }
650  // Set type from "char *" to "constant array of char".
651  strLiteral->setType(DeclT);
652  // For now, we always return false (meaning success).
653  return false;
654}
655
656StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
657  const ArrayType *AT = Context.getAsArrayType(DeclType);
658  if (AT && AT->getElementType()->isCharType()) {
659    return dyn_cast<StringLiteral>(Init);
660  }
661  return 0;
662}
663
664bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
665                                 SourceLocation InitLoc,
666                                 std::string InitEntity) {
667  // C++ [dcl.init.ref]p1:
668  //   A variable declared to be a T&, that is “reference to type T”
669  //   (8.3.2), shall be initialized by an object, or function, of
670  //   type T or by an object that can be converted into a T.
671  if (DeclType->isReferenceType())
672    return CheckReferenceInit(Init, DeclType);
673
674  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
675  // of unknown size ("[]") or an object type that is not a variable array type.
676  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
677    return Diag(InitLoc,
678                diag::err_variable_object_no_init,
679                VAT->getSizeExpr()->getSourceRange());
680
681  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
682  if (!InitList) {
683    // FIXME: Handle wide strings
684    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
685      return CheckStringLiteralInit(strLiteral, DeclType);
686
687    // C++ [dcl.init]p14:
688    //   -- If the destination type is a (possibly cv-qualified) class
689    //      type:
690    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
691      QualType DeclTypeC = Context.getCanonicalType(DeclType);
692      QualType InitTypeC = Context.getCanonicalType(Init->getType());
693
694      //   -- If the initialization is direct-initialization, or if it is
695      //      copy-initialization where the cv-unqualified version of the
696      //      source type is the same class as, or a derived class of, the
697      //      class of the destination, constructors are considered.
698      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
699          IsDerivedFrom(InitTypeC, DeclTypeC)) {
700        CXXConstructorDecl *Constructor
701          = PerformInitializationByConstructor(DeclType, &Init, 1,
702                                               InitLoc, Init->getSourceRange(),
703                                               InitEntity, IK_Copy);
704        return Constructor == 0;
705      }
706
707      //   -- Otherwise (i.e., for the remaining copy-initialization
708      //      cases), user-defined conversion sequences that can
709      //      convert from the source type to the destination type or
710      //      (when a conversion function is used) to a derived class
711      //      thereof are enumerated as described in 13.3.1.4, and the
712      //      best one is chosen through overload resolution
713      //      (13.3). If the conversion cannot be done or is
714      //      ambiguous, the initialization is ill-formed. The
715      //      function selected is called with the initializer
716      //      expression as its argument; if the function is a
717      //      constructor, the call initializes a temporary of the
718      //      destination type.
719      // FIXME: We're pretending to do copy elision here; return to
720      // this when we have ASTs for such things.
721      if (PerformImplicitConversion(Init, DeclType))
722        return Diag(InitLoc,
723                    diag::err_typecheck_convert_incompatible,
724                    DeclType.getAsString(), InitEntity,
725                    "initializing",
726                    Init->getSourceRange());
727      else
728        return false;
729    }
730
731    // C99 6.7.8p16.
732    if (DeclType->isArrayType())
733      return Diag(Init->getLocStart(),
734                  diag::err_array_init_list_required,
735                  Init->getSourceRange());
736
737    return CheckSingleInitializer(Init, DeclType);
738  } else if (getLangOptions().CPlusPlus) {
739    // C++ [dcl.init]p14:
740    //   [...] If the class is an aggregate (8.5.1), and the initializer
741    //   is a brace-enclosed list, see 8.5.1.
742    //
743    // Note: 8.5.1 is handled below; here, we diagnose the case where
744    // we have an initializer list and a destination type that is not
745    // an aggregate.
746    // FIXME: In C++0x, this is yet another form of initialization.
747    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
748      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
749      if (!ClassDecl->isAggregate())
750        return Diag(InitLoc,
751                    diag::err_init_non_aggr_init_list,
752                    DeclType.getAsString(),
753                    Init->getSourceRange());
754    }
755  }
756
757  InitListChecker CheckInitList(this, InitList, DeclType);
758  return CheckInitList.HadError();
759}
760
761Sema::DeclTy *
762Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
763  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
764  IdentifierInfo *II = D.getIdentifier();
765
766  // All of these full declarators require an identifier.  If it doesn't have
767  // one, the ParsedFreeStandingDeclSpec action should be used.
768  if (II == 0) {
769    if (!D.getInvalidType())  // Reject this if we think it is valid.
770      Diag(D.getDeclSpec().getSourceRange().getBegin(),
771           diag::err_declarator_need_ident,
772           D.getDeclSpec().getSourceRange(), D.getSourceRange());
773    return 0;
774  }
775
776  // The scope passed in may not be a decl scope.  Zip up the scope tree until
777  // we find one that is.
778  while ((S->getFlags() & Scope::DeclScope) == 0)
779    S = S->getParent();
780
781  DeclContext *DC;
782  Decl *PrevDecl;
783  ScopedDecl *New;
784  bool InvalidDecl = false;
785
786  // See if this is a redefinition of a variable in the same scope.
787  if (!D.getCXXScopeSpec().isSet()) {
788    DC = CurContext;
789    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
790  } else { // Something like "int foo::x;"
791    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
792    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S, DC);
793
794    // C++ 7.3.1.2p2:
795    // Members (including explicit specializations of templates) of a named
796    // namespace can also be defined outside that namespace by explicit
797    // qualification of the name being defined, provided that the entity being
798    // defined was already declared in the namespace and the definition appears
799    // after the point of declaration in a namespace that encloses the
800    // declarations namespace.
801    //
802    if (PrevDecl == 0) {
803      // No previous declaration in the qualifying scope.
804      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
805           II->getName(), D.getCXXScopeSpec().getRange());
806    } else if (!CurContext->Encloses(DC)) {
807      // The qualifying scope doesn't enclose the original declaration.
808      // Emit diagnostic based on current scope.
809      SourceLocation L = D.getIdentifierLoc();
810      SourceRange R = D.getCXXScopeSpec().getRange();
811      if (isa<FunctionDecl>(CurContext)) {
812        Diag(L, diag::err_invalid_declarator_in_function, II->getName(), R);
813      } else {
814      Diag(L, diag::err_invalid_declarator_scope, II->getName(),
815           cast<NamedDecl>(DC)->getName(), R);
816      }
817    }
818  }
819
820  // In C++, the previous declaration we find might be a tag type
821  // (class or enum). In this case, the new declaration will hide the
822  // tag type.
823  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
824    PrevDecl = 0;
825
826  QualType R = GetTypeForDeclarator(D, S);
827  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
828
829  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
830    // Check that there are no default arguments (C++ only).
831    if (getLangOptions().CPlusPlus)
832      CheckExtraCXXDefaultArguments(D);
833
834    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
835    if (!NewTD) return 0;
836
837    // Handle attributes prior to checking for duplicates in MergeVarDecl
838    ProcessDeclAttributes(NewTD, D);
839    // Merge the decl with the existing one if appropriate. If the decl is
840    // in an outer scope, it isn't the same thing.
841    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
842      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
843      if (NewTD == 0) return 0;
844    }
845    New = NewTD;
846    if (S->getFnParent() == 0) {
847      // C99 6.7.7p2: If a typedef name specifies a variably modified type
848      // then it shall have block scope.
849      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
850        // FIXME: Diagnostic needs to be fixed.
851        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
852        InvalidDecl = true;
853      }
854    }
855  } else if (R.getTypePtr()->isFunctionType()) {
856    FunctionDecl::StorageClass SC = FunctionDecl::None;
857    switch (D.getDeclSpec().getStorageClassSpec()) {
858      default: assert(0 && "Unknown storage class!");
859      case DeclSpec::SCS_auto:
860      case DeclSpec::SCS_register:
861        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
862             R.getAsString());
863        InvalidDecl = true;
864        break;
865      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
866      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
867      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
868      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
869    }
870
871    bool isInline = D.getDeclSpec().isInlineSpecified();
872    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
873    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
874
875    FunctionDecl *NewFD;
876    if (D.getKind() == Declarator::DK_Constructor) {
877      // This is a C++ constructor declaration.
878      assert(DC->isCXXRecord() &&
879             "Constructors can only be declared in a member context");
880
881      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
882
883      // Create the new declaration
884      NewFD = CXXConstructorDecl::Create(Context,
885                                         cast<CXXRecordDecl>(DC),
886                                         D.getIdentifierLoc(), II, R,
887                                         isExplicit, isInline,
888                                         /*isImplicitlyDeclared=*/false);
889
890      if (isInvalidDecl)
891        NewFD->setInvalidDecl();
892    } else if (D.getKind() == Declarator::DK_Destructor) {
893      // This is a C++ destructor declaration.
894      if (DC->isCXXRecord()) {
895        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
896
897        NewFD = CXXDestructorDecl::Create(Context,
898                                          cast<CXXRecordDecl>(DC),
899                                          D.getIdentifierLoc(), II, R,
900                                          isInline,
901                                          /*isImplicitlyDeclared=*/false);
902
903        if (isInvalidDecl)
904          NewFD->setInvalidDecl();
905      } else {
906        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
907        // Create a FunctionDecl to satisfy the function definition parsing
908        // code path.
909        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
910                                     II, R, SC, isInline, LastDeclarator,
911                                     // FIXME: Move to DeclGroup...
912                                   D.getDeclSpec().getSourceRange().getBegin());
913        NewFD->setInvalidDecl();
914      }
915    } else if (D.getKind() == Declarator::DK_Conversion) {
916      if (!DC->isCXXRecord()) {
917        Diag(D.getIdentifierLoc(),
918             diag::err_conv_function_not_member);
919        return 0;
920      } else {
921        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
922
923        NewFD = CXXConversionDecl::Create(Context,
924                                          cast<CXXRecordDecl>(DC),
925                                          D.getIdentifierLoc(), II, R,
926                                          isInline, isExplicit);
927
928        if (isInvalidDecl)
929          NewFD->setInvalidDecl();
930      }
931    } else if (DC->isCXXRecord()) {
932      // This is a C++ method declaration.
933      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
934                                    D.getIdentifierLoc(), II, R,
935                                    (SC == FunctionDecl::Static), isInline,
936                                    LastDeclarator);
937    } else {
938      NewFD = FunctionDecl::Create(Context, DC,
939                                   D.getIdentifierLoc(),
940                                   II, R, SC, isInline, LastDeclarator,
941                                   // FIXME: Move to DeclGroup...
942                                   D.getDeclSpec().getSourceRange().getBegin());
943    }
944    // Handle attributes.
945    ProcessDeclAttributes(NewFD, D);
946
947    // Handle GNU asm-label extension (encoded as an attribute).
948    if (Expr *E = (Expr*) D.getAsmLabel()) {
949      // The parser guarantees this is a string.
950      StringLiteral *SE = cast<StringLiteral>(E);
951      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
952                                                  SE->getByteLength())));
953    }
954
955    // Copy the parameter declarations from the declarator D to
956    // the function declaration NewFD, if they are available.
957    if (D.getNumTypeObjects() > 0) {
958      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
959
960      // Create Decl objects for each parameter, adding them to the
961      // FunctionDecl.
962      llvm::SmallVector<ParmVarDecl*, 16> Params;
963
964      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
965      // function that takes no arguments, not a function that takes a
966      // single void argument.
967      // We let through "const void" here because Sema::GetTypeForDeclarator
968      // already checks for that case.
969      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
970          FTI.ArgInfo[0].Param &&
971          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
972        // empty arg list, don't push any params.
973        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
974
975        // In C++, the empty parameter-type-list must be spelled "void"; a
976        // typedef of void is not permitted.
977        if (getLangOptions().CPlusPlus &&
978            Param->getType().getUnqualifiedType() != Context.VoidTy) {
979          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
980        }
981      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
982        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
983          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
984      }
985
986      NewFD->setParams(&Params[0], Params.size());
987    } else if (R->getAsTypedefType()) {
988      // When we're declaring a function with a typedef, as in the
989      // following example, we'll need to synthesize (unnamed)
990      // parameters for use in the declaration.
991      //
992      // @code
993      // typedef void fn(int);
994      // fn f;
995      // @endcode
996      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
997      if (!FT) {
998        // This is a typedef of a function with no prototype, so we
999        // don't need to do anything.
1000      } else if ((FT->getNumArgs() == 0) ||
1001          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1002           FT->getArgType(0)->isVoidType())) {
1003        // This is a zero-argument function. We don't need to do anything.
1004      } else {
1005        // Synthesize a parameter for each argument type.
1006        llvm::SmallVector<ParmVarDecl*, 16> Params;
1007        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1008             ArgType != FT->arg_type_end(); ++ArgType) {
1009          Params.push_back(ParmVarDecl::Create(Context, DC,
1010                                               SourceLocation(), 0,
1011                                               *ArgType, VarDecl::None,
1012                                               0, 0));
1013        }
1014
1015        NewFD->setParams(&Params[0], Params.size());
1016      }
1017    }
1018
1019    // C++ constructors and destructors are handled by separate
1020    // routines, since they don't require any declaration merging (C++
1021    // [class.mfct]p2) and they aren't ever pushed into scope, because
1022    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1023    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1024      return ActOnConstructorDeclarator(Constructor);
1025    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1026      return ActOnDestructorDeclarator(Destructor);
1027    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1028      return ActOnConversionDeclarator(Conversion);
1029
1030    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1031    if (NewFD->isOverloadedOperator() &&
1032        CheckOverloadedOperatorDeclaration(NewFD))
1033      NewFD->setInvalidDecl();
1034
1035    // Merge the decl with the existing one if appropriate. Since C functions
1036    // are in a flat namespace, make sure we consider decls in outer scopes.
1037    if (PrevDecl &&
1038        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1039      bool Redeclaration = false;
1040
1041      // If C++, determine whether NewFD is an overload of PrevDecl or
1042      // a declaration that requires merging. If it's an overload,
1043      // there's no more work to do here; we'll just add the new
1044      // function to the scope.
1045      OverloadedFunctionDecl::function_iterator MatchedDecl;
1046      if (!getLangOptions().CPlusPlus ||
1047          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1048        Decl *OldDecl = PrevDecl;
1049
1050        // If PrevDecl was an overloaded function, extract the
1051        // FunctionDecl that matched.
1052        if (isa<OverloadedFunctionDecl>(PrevDecl))
1053          OldDecl = *MatchedDecl;
1054
1055        // NewFD and PrevDecl represent declarations that need to be
1056        // merged.
1057        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1058
1059        if (NewFD == 0) return 0;
1060        if (Redeclaration) {
1061          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1062
1063          if (OldDecl == PrevDecl) {
1064            // Remove the name binding for the previous
1065            // declaration. We'll add the binding back later, but then
1066            // it will refer to the new declaration (which will
1067            // contain more information).
1068            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1069          } else {
1070            // We need to update the OverloadedFunctionDecl with the
1071            // latest declaration of this function, so that name
1072            // lookup will always refer to the latest declaration of
1073            // this function.
1074            *MatchedDecl = NewFD;
1075
1076            // Add the redeclaration to the current scope, since we'll
1077            // be skipping PushOnScopeChains.
1078            S->AddDecl(NewFD);
1079
1080            return NewFD;
1081          }
1082        }
1083      }
1084    }
1085    New = NewFD;
1086
1087    // In C++, check default arguments now that we have merged decls.
1088    if (getLangOptions().CPlusPlus)
1089      CheckCXXDefaultArguments(NewFD);
1090  } else {
1091    // Check that there are no default arguments (C++ only).
1092    if (getLangOptions().CPlusPlus)
1093      CheckExtraCXXDefaultArguments(D);
1094
1095    if (R.getTypePtr()->isObjCInterfaceType()) {
1096      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
1097           D.getIdentifier()->getName());
1098      InvalidDecl = true;
1099    }
1100
1101    VarDecl *NewVD;
1102    VarDecl::StorageClass SC;
1103    switch (D.getDeclSpec().getStorageClassSpec()) {
1104    default: assert(0 && "Unknown storage class!");
1105    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1106    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1107    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1108    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1109    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1110    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1111    }
1112    if (DC->isCXXRecord()) {
1113      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1114      // This is a static data member for a C++ class.
1115      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1116                                      D.getIdentifierLoc(), II,
1117                                      R, LastDeclarator);
1118    } else {
1119      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1120      if (S->getFnParent() == 0) {
1121        // C99 6.9p2: The storage-class specifiers auto and register shall not
1122        // appear in the declaration specifiers in an external declaration.
1123        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1124          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1125               R.getAsString());
1126          InvalidDecl = true;
1127        }
1128      }
1129        NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1130                                II, R, SC, LastDeclarator,
1131                                // FIXME: Move to DeclGroup...
1132                                D.getDeclSpec().getSourceRange().getBegin());
1133        NewVD->setThreadSpecified(ThreadSpecified);
1134    }
1135    // Handle attributes prior to checking for duplicates in MergeVarDecl
1136    ProcessDeclAttributes(NewVD, D);
1137
1138    // Handle GNU asm-label extension (encoded as an attribute).
1139    if (Expr *E = (Expr*) D.getAsmLabel()) {
1140      // The parser guarantees this is a string.
1141      StringLiteral *SE = cast<StringLiteral>(E);
1142      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1143                                                  SE->getByteLength())));
1144    }
1145
1146    // Emit an error if an address space was applied to decl with local storage.
1147    // This includes arrays of objects with address space qualifiers, but not
1148    // automatic variables that point to other address spaces.
1149    // ISO/IEC TR 18037 S5.1.2
1150    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1151      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1152      InvalidDecl = true;
1153    }
1154    // Merge the decl with the existing one if appropriate. If the decl is
1155    // in an outer scope, it isn't the same thing.
1156    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1157      NewVD = MergeVarDecl(NewVD, PrevDecl);
1158      if (NewVD == 0) return 0;
1159    }
1160    New = NewVD;
1161  }
1162
1163  // Set the lexical context. If the declarator has a C++ scope specifier, the
1164  // lexical context will be different from the semantic context.
1165  New->setLexicalDeclContext(CurContext);
1166
1167  // If this has an identifier, add it to the scope stack.
1168  if (II)
1169    PushOnScopeChains(New, S);
1170  // If any semantic error occurred, mark the decl as invalid.
1171  if (D.getInvalidType() || InvalidDecl)
1172    New->setInvalidDecl();
1173
1174  return New;
1175}
1176
1177void Sema::InitializerElementNotConstant(const Expr *Init) {
1178  Diag(Init->getExprLoc(),
1179       diag::err_init_element_not_constant, Init->getSourceRange());
1180}
1181
1182bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1183  switch (Init->getStmtClass()) {
1184  default:
1185    InitializerElementNotConstant(Init);
1186    return true;
1187  case Expr::ParenExprClass: {
1188    const ParenExpr* PE = cast<ParenExpr>(Init);
1189    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1190  }
1191  case Expr::CompoundLiteralExprClass:
1192    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1193  case Expr::DeclRefExprClass: {
1194    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1195    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1196      if (VD->hasGlobalStorage())
1197        return false;
1198      InitializerElementNotConstant(Init);
1199      return true;
1200    }
1201    if (isa<FunctionDecl>(D))
1202      return false;
1203    InitializerElementNotConstant(Init);
1204    return true;
1205  }
1206  case Expr::MemberExprClass: {
1207    const MemberExpr *M = cast<MemberExpr>(Init);
1208    if (M->isArrow())
1209      return CheckAddressConstantExpression(M->getBase());
1210    return CheckAddressConstantExpressionLValue(M->getBase());
1211  }
1212  case Expr::ArraySubscriptExprClass: {
1213    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1214    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1215    return CheckAddressConstantExpression(ASE->getBase()) ||
1216           CheckArithmeticConstantExpression(ASE->getIdx());
1217  }
1218  case Expr::StringLiteralClass:
1219  case Expr::PredefinedExprClass:
1220    return false;
1221  case Expr::UnaryOperatorClass: {
1222    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1223
1224    // C99 6.6p9
1225    if (Exp->getOpcode() == UnaryOperator::Deref)
1226      return CheckAddressConstantExpression(Exp->getSubExpr());
1227
1228    InitializerElementNotConstant(Init);
1229    return true;
1230  }
1231  }
1232}
1233
1234bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1235  switch (Init->getStmtClass()) {
1236  default:
1237    InitializerElementNotConstant(Init);
1238    return true;
1239  case Expr::ParenExprClass:
1240    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1241  case Expr::StringLiteralClass:
1242  case Expr::ObjCStringLiteralClass:
1243    return false;
1244  case Expr::CallExprClass:
1245    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1246    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1247           Builtin::BI__builtin___CFStringMakeConstantString)
1248      return false;
1249
1250    InitializerElementNotConstant(Init);
1251    return true;
1252
1253  case Expr::UnaryOperatorClass: {
1254    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1255
1256    // C99 6.6p9
1257    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1258      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1259
1260    if (Exp->getOpcode() == UnaryOperator::Extension)
1261      return CheckAddressConstantExpression(Exp->getSubExpr());
1262
1263    InitializerElementNotConstant(Init);
1264    return true;
1265  }
1266  case Expr::BinaryOperatorClass: {
1267    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1268    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1269
1270    Expr *PExp = Exp->getLHS();
1271    Expr *IExp = Exp->getRHS();
1272    if (IExp->getType()->isPointerType())
1273      std::swap(PExp, IExp);
1274
1275    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1276    return CheckAddressConstantExpression(PExp) ||
1277           CheckArithmeticConstantExpression(IExp);
1278  }
1279  case Expr::ImplicitCastExprClass:
1280  case Expr::CStyleCastExprClass: {
1281    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1282    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1283      // Check for implicit promotion
1284      if (SubExpr->getType()->isFunctionType() ||
1285          SubExpr->getType()->isArrayType())
1286        return CheckAddressConstantExpressionLValue(SubExpr);
1287    }
1288
1289    // Check for pointer->pointer cast
1290    if (SubExpr->getType()->isPointerType())
1291      return CheckAddressConstantExpression(SubExpr);
1292
1293    if (SubExpr->getType()->isIntegralType()) {
1294      // Check for the special-case of a pointer->int->pointer cast;
1295      // this isn't standard, but some code requires it. See
1296      // PR2720 for an example.
1297      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1298        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1299          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1300          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1301          if (IntWidth >= PointerWidth) {
1302            return CheckAddressConstantExpression(SubCast->getSubExpr());
1303          }
1304        }
1305      }
1306    }
1307    if (SubExpr->getType()->isArithmeticType()) {
1308      return CheckArithmeticConstantExpression(SubExpr);
1309    }
1310
1311    InitializerElementNotConstant(Init);
1312    return true;
1313  }
1314  case Expr::ConditionalOperatorClass: {
1315    // FIXME: Should we pedwarn here?
1316    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1317    if (!Exp->getCond()->getType()->isArithmeticType()) {
1318      InitializerElementNotConstant(Init);
1319      return true;
1320    }
1321    if (CheckArithmeticConstantExpression(Exp->getCond()))
1322      return true;
1323    if (Exp->getLHS() &&
1324        CheckAddressConstantExpression(Exp->getLHS()))
1325      return true;
1326    return CheckAddressConstantExpression(Exp->getRHS());
1327  }
1328  case Expr::AddrLabelExprClass:
1329    return false;
1330  }
1331}
1332
1333static const Expr* FindExpressionBaseAddress(const Expr* E);
1334
1335static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1336  switch (E->getStmtClass()) {
1337  default:
1338    return E;
1339  case Expr::ParenExprClass: {
1340    const ParenExpr* PE = cast<ParenExpr>(E);
1341    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1342  }
1343  case Expr::MemberExprClass: {
1344    const MemberExpr *M = cast<MemberExpr>(E);
1345    if (M->isArrow())
1346      return FindExpressionBaseAddress(M->getBase());
1347    return FindExpressionBaseAddressLValue(M->getBase());
1348  }
1349  case Expr::ArraySubscriptExprClass: {
1350    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1351    return FindExpressionBaseAddress(ASE->getBase());
1352  }
1353  case Expr::UnaryOperatorClass: {
1354    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1355
1356    if (Exp->getOpcode() == UnaryOperator::Deref)
1357      return FindExpressionBaseAddress(Exp->getSubExpr());
1358
1359    return E;
1360  }
1361  }
1362}
1363
1364static const Expr* FindExpressionBaseAddress(const Expr* E) {
1365  switch (E->getStmtClass()) {
1366  default:
1367    return E;
1368  case Expr::ParenExprClass: {
1369    const ParenExpr* PE = cast<ParenExpr>(E);
1370    return FindExpressionBaseAddress(PE->getSubExpr());
1371  }
1372  case Expr::UnaryOperatorClass: {
1373    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1374
1375    // C99 6.6p9
1376    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1377      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1378
1379    if (Exp->getOpcode() == UnaryOperator::Extension)
1380      return FindExpressionBaseAddress(Exp->getSubExpr());
1381
1382    return E;
1383  }
1384  case Expr::BinaryOperatorClass: {
1385    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1386
1387    Expr *PExp = Exp->getLHS();
1388    Expr *IExp = Exp->getRHS();
1389    if (IExp->getType()->isPointerType())
1390      std::swap(PExp, IExp);
1391
1392    return FindExpressionBaseAddress(PExp);
1393  }
1394  case Expr::ImplicitCastExprClass: {
1395    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1396
1397    // Check for implicit promotion
1398    if (SubExpr->getType()->isFunctionType() ||
1399        SubExpr->getType()->isArrayType())
1400      return FindExpressionBaseAddressLValue(SubExpr);
1401
1402    // Check for pointer->pointer cast
1403    if (SubExpr->getType()->isPointerType())
1404      return FindExpressionBaseAddress(SubExpr);
1405
1406    // We assume that we have an arithmetic expression here;
1407    // if we don't, we'll figure it out later
1408    return 0;
1409  }
1410  case Expr::CStyleCastExprClass: {
1411    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1412
1413    // Check for pointer->pointer cast
1414    if (SubExpr->getType()->isPointerType())
1415      return FindExpressionBaseAddress(SubExpr);
1416
1417    // We assume that we have an arithmetic expression here;
1418    // if we don't, we'll figure it out later
1419    return 0;
1420  }
1421  }
1422}
1423
1424bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1425  switch (Init->getStmtClass()) {
1426  default:
1427    InitializerElementNotConstant(Init);
1428    return true;
1429  case Expr::ParenExprClass: {
1430    const ParenExpr* PE = cast<ParenExpr>(Init);
1431    return CheckArithmeticConstantExpression(PE->getSubExpr());
1432  }
1433  case Expr::FloatingLiteralClass:
1434  case Expr::IntegerLiteralClass:
1435  case Expr::CharacterLiteralClass:
1436  case Expr::ImaginaryLiteralClass:
1437  case Expr::TypesCompatibleExprClass:
1438  case Expr::CXXBoolLiteralExprClass:
1439    return false;
1440  case Expr::CallExprClass: {
1441    const CallExpr *CE = cast<CallExpr>(Init);
1442
1443    // Allow any constant foldable calls to builtins.
1444    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1445      return false;
1446
1447    InitializerElementNotConstant(Init);
1448    return true;
1449  }
1450  case Expr::DeclRefExprClass: {
1451    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1452    if (isa<EnumConstantDecl>(D))
1453      return false;
1454    InitializerElementNotConstant(Init);
1455    return true;
1456  }
1457  case Expr::CompoundLiteralExprClass:
1458    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1459    // but vectors are allowed to be magic.
1460    if (Init->getType()->isVectorType())
1461      return false;
1462    InitializerElementNotConstant(Init);
1463    return true;
1464  case Expr::UnaryOperatorClass: {
1465    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1466
1467    switch (Exp->getOpcode()) {
1468    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1469    // See C99 6.6p3.
1470    default:
1471      InitializerElementNotConstant(Init);
1472      return true;
1473    case UnaryOperator::OffsetOf:
1474      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1475        return false;
1476      InitializerElementNotConstant(Init);
1477      return true;
1478    case UnaryOperator::Extension:
1479    case UnaryOperator::LNot:
1480    case UnaryOperator::Plus:
1481    case UnaryOperator::Minus:
1482    case UnaryOperator::Not:
1483      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1484    }
1485  }
1486  case Expr::SizeOfAlignOfExprClass: {
1487    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1488    // Special check for void types, which are allowed as an extension
1489    if (Exp->getTypeOfArgument()->isVoidType())
1490      return false;
1491    // alignof always evaluates to a constant.
1492    // FIXME: is sizeof(int[3.0]) a constant expression?
1493    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1494      InitializerElementNotConstant(Init);
1495      return true;
1496    }
1497    return false;
1498  }
1499  case Expr::BinaryOperatorClass: {
1500    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1501
1502    if (Exp->getLHS()->getType()->isArithmeticType() &&
1503        Exp->getRHS()->getType()->isArithmeticType()) {
1504      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1505             CheckArithmeticConstantExpression(Exp->getRHS());
1506    }
1507
1508    if (Exp->getLHS()->getType()->isPointerType() &&
1509        Exp->getRHS()->getType()->isPointerType()) {
1510      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1511      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1512
1513      // Only allow a null (constant integer) base; we could
1514      // allow some additional cases if necessary, but this
1515      // is sufficient to cover offsetof-like constructs.
1516      if (!LHSBase && !RHSBase) {
1517        return CheckAddressConstantExpression(Exp->getLHS()) ||
1518               CheckAddressConstantExpression(Exp->getRHS());
1519      }
1520    }
1521
1522    InitializerElementNotConstant(Init);
1523    return true;
1524  }
1525  case Expr::ImplicitCastExprClass:
1526  case Expr::CStyleCastExprClass: {
1527    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1528    if (SubExpr->getType()->isArithmeticType())
1529      return CheckArithmeticConstantExpression(SubExpr);
1530
1531    if (SubExpr->getType()->isPointerType()) {
1532      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1533      // If the pointer has a null base, this is an offsetof-like construct
1534      if (!Base)
1535        return CheckAddressConstantExpression(SubExpr);
1536    }
1537
1538    InitializerElementNotConstant(Init);
1539    return true;
1540  }
1541  case Expr::ConditionalOperatorClass: {
1542    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1543
1544    // If GNU extensions are disabled, we require all operands to be arithmetic
1545    // constant expressions.
1546    if (getLangOptions().NoExtensions) {
1547      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1548          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1549             CheckArithmeticConstantExpression(Exp->getRHS());
1550    }
1551
1552    // Otherwise, we have to emulate some of the behavior of fold here.
1553    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1554    // because it can constant fold things away.  To retain compatibility with
1555    // GCC code, we see if we can fold the condition to a constant (which we
1556    // should always be able to do in theory).  If so, we only require the
1557    // specified arm of the conditional to be a constant.  This is a horrible
1558    // hack, but is require by real world code that uses __builtin_constant_p.
1559    APValue Val;
1560    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1561      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1562      // won't be able to either.  Use it to emit the diagnostic though.
1563      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1564      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1565      return Res;
1566    }
1567
1568    // Verify that the side following the condition is also a constant.
1569    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1570    if (Val.getInt() == 0)
1571      std::swap(TrueSide, FalseSide);
1572
1573    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1574      return true;
1575
1576    // Okay, the evaluated side evaluates to a constant, so we accept this.
1577    // Check to see if the other side is obviously not a constant.  If so,
1578    // emit a warning that this is a GNU extension.
1579    if (FalseSide && !FalseSide->isEvaluatable(Context))
1580      Diag(Init->getExprLoc(),
1581           diag::ext_typecheck_expression_not_constant_but_accepted,
1582           FalseSide->getSourceRange());
1583    return false;
1584  }
1585  }
1586}
1587
1588bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1589  Init = Init->IgnoreParens();
1590
1591  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1592  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1593    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1594
1595  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1596    return CheckForConstantInitializer(e->getInitializer(), DclT);
1597
1598  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1599    unsigned numInits = Exp->getNumInits();
1600    for (unsigned i = 0; i < numInits; i++) {
1601      // FIXME: Need to get the type of the declaration for C++,
1602      // because it could be a reference?
1603      if (CheckForConstantInitializer(Exp->getInit(i),
1604                                      Exp->getInit(i)->getType()))
1605        return true;
1606    }
1607    return false;
1608  }
1609
1610  if (Init->isNullPointerConstant(Context))
1611    return false;
1612  if (Init->getType()->isArithmeticType()) {
1613    QualType InitTy = Context.getCanonicalType(Init->getType())
1614                             .getUnqualifiedType();
1615    if (InitTy == Context.BoolTy) {
1616      // Special handling for pointers implicitly cast to bool;
1617      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1618      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1619        Expr* SubE = ICE->getSubExpr();
1620        if (SubE->getType()->isPointerType() ||
1621            SubE->getType()->isArrayType() ||
1622            SubE->getType()->isFunctionType()) {
1623          return CheckAddressConstantExpression(Init);
1624        }
1625      }
1626    } else if (InitTy->isIntegralType()) {
1627      Expr* SubE = 0;
1628      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1629        SubE = CE->getSubExpr();
1630      // Special check for pointer cast to int; we allow as an extension
1631      // an address constant cast to an integer if the integer
1632      // is of an appropriate width (this sort of code is apparently used
1633      // in some places).
1634      // FIXME: Add pedwarn?
1635      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1636      if (SubE && (SubE->getType()->isPointerType() ||
1637                   SubE->getType()->isArrayType() ||
1638                   SubE->getType()->isFunctionType())) {
1639        unsigned IntWidth = Context.getTypeSize(Init->getType());
1640        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1641        if (IntWidth >= PointerWidth)
1642          return CheckAddressConstantExpression(Init);
1643      }
1644    }
1645
1646    return CheckArithmeticConstantExpression(Init);
1647  }
1648
1649  if (Init->getType()->isPointerType())
1650    return CheckAddressConstantExpression(Init);
1651
1652  // An array type at the top level that isn't an init-list must
1653  // be a string literal
1654  if (Init->getType()->isArrayType())
1655    return false;
1656
1657  if (Init->getType()->isFunctionType())
1658    return false;
1659
1660  // Allow block exprs at top level.
1661  if (Init->getType()->isBlockPointerType())
1662    return false;
1663
1664  InitializerElementNotConstant(Init);
1665  return true;
1666}
1667
1668void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1669  Decl *RealDecl = static_cast<Decl *>(dcl);
1670  Expr *Init = static_cast<Expr *>(init);
1671  assert(Init && "missing initializer");
1672
1673  // If there is no declaration, there was an error parsing it.  Just ignore
1674  // the initializer.
1675  if (RealDecl == 0) {
1676    delete Init;
1677    return;
1678  }
1679
1680  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1681  if (!VDecl) {
1682    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1683         diag::err_illegal_initializer);
1684    RealDecl->setInvalidDecl();
1685    return;
1686  }
1687  // Get the decls type and save a reference for later, since
1688  // CheckInitializerTypes may change it.
1689  QualType DclT = VDecl->getType(), SavT = DclT;
1690  if (VDecl->isBlockVarDecl()) {
1691    VarDecl::StorageClass SC = VDecl->getStorageClass();
1692    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1693      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1694      VDecl->setInvalidDecl();
1695    } else if (!VDecl->isInvalidDecl()) {
1696      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1697                                VDecl->getName()))
1698        VDecl->setInvalidDecl();
1699
1700      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1701      if (!getLangOptions().CPlusPlus) {
1702        if (SC == VarDecl::Static) // C99 6.7.8p4.
1703          CheckForConstantInitializer(Init, DclT);
1704      }
1705    }
1706  } else if (VDecl->isFileVarDecl()) {
1707    if (VDecl->getStorageClass() == VarDecl::Extern)
1708      Diag(VDecl->getLocation(), diag::warn_extern_init);
1709    if (!VDecl->isInvalidDecl())
1710      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1711                                VDecl->getName()))
1712        VDecl->setInvalidDecl();
1713
1714    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1715    if (!getLangOptions().CPlusPlus) {
1716      // C99 6.7.8p4. All file scoped initializers need to be constant.
1717      CheckForConstantInitializer(Init, DclT);
1718    }
1719  }
1720  // If the type changed, it means we had an incomplete type that was
1721  // completed by the initializer. For example:
1722  //   int ary[] = { 1, 3, 5 };
1723  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1724  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1725    VDecl->setType(DclT);
1726    Init->setType(DclT);
1727  }
1728
1729  // Attach the initializer to the decl.
1730  VDecl->setInit(Init);
1731  return;
1732}
1733
1734void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1735  Decl *RealDecl = static_cast<Decl *>(dcl);
1736
1737  // If there is no declaration, there was an error parsing it. Just ignore it.
1738  if (RealDecl == 0)
1739    return;
1740
1741  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1742    QualType Type = Var->getType();
1743    // C++ [dcl.init.ref]p3:
1744    //   The initializer can be omitted for a reference only in a
1745    //   parameter declaration (8.3.5), in the declaration of a
1746    //   function return type, in the declaration of a class member
1747    //   within its class declaration (9.2), and where the extern
1748    //   specifier is explicitly used.
1749    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1750      Diag(Var->getLocation(),
1751           diag::err_reference_var_requires_init,
1752           Var->getName(),
1753           SourceRange(Var->getLocation(), Var->getLocation()));
1754      Var->setInvalidDecl();
1755      return;
1756    }
1757
1758    // C++ [dcl.init]p9:
1759    //
1760    //   If no initializer is specified for an object, and the object
1761    //   is of (possibly cv-qualified) non-POD class type (or array
1762    //   thereof), the object shall be default-initialized; if the
1763    //   object is of const-qualified type, the underlying class type
1764    //   shall have a user-declared default constructor.
1765    if (getLangOptions().CPlusPlus) {
1766      QualType InitType = Type;
1767      if (const ArrayType *Array = Context.getAsArrayType(Type))
1768        InitType = Array->getElementType();
1769      if (InitType->isRecordType()) {
1770        const CXXConstructorDecl *Constructor
1771          = PerformInitializationByConstructor(InitType, 0, 0,
1772                                               Var->getLocation(),
1773                                               SourceRange(Var->getLocation(),
1774                                                           Var->getLocation()),
1775                                               Var->getName(),
1776                                               IK_Default);
1777        if (!Constructor)
1778          Var->setInvalidDecl();
1779      }
1780    }
1781
1782#if 0
1783    // FIXME: Temporarily disabled because we are not properly parsing
1784    // linkage specifications on declarations, e.g.,
1785    //
1786    //   extern "C" const CGPoint CGPointerZero;
1787    //
1788    // C++ [dcl.init]p9:
1789    //
1790    //     If no initializer is specified for an object, and the
1791    //     object is of (possibly cv-qualified) non-POD class type (or
1792    //     array thereof), the object shall be default-initialized; if
1793    //     the object is of const-qualified type, the underlying class
1794    //     type shall have a user-declared default
1795    //     constructor. Otherwise, if no initializer is specified for
1796    //     an object, the object and its subobjects, if any, have an
1797    //     indeterminate initial value; if the object or any of its
1798    //     subobjects are of const-qualified type, the program is
1799    //     ill-formed.
1800    //
1801    // This isn't technically an error in C, so we don't diagnose it.
1802    //
1803    // FIXME: Actually perform the POD/user-defined default
1804    // constructor check.
1805    if (getLangOptions().CPlusPlus &&
1806        Context.getCanonicalType(Type).isConstQualified() &&
1807        Var->getStorageClass() != VarDecl::Extern)
1808      Diag(Var->getLocation(),
1809           diag::err_const_var_requires_init,
1810           Var->getName(),
1811           SourceRange(Var->getLocation(), Var->getLocation()));
1812#endif
1813  }
1814}
1815
1816/// The declarators are chained together backwards, reverse the list.
1817Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1818  // Often we have single declarators, handle them quickly.
1819  Decl *GroupDecl = static_cast<Decl*>(group);
1820  if (GroupDecl == 0)
1821    return 0;
1822
1823  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1824  ScopedDecl *NewGroup = 0;
1825  if (Group->getNextDeclarator() == 0)
1826    NewGroup = Group;
1827  else { // reverse the list.
1828    while (Group) {
1829      ScopedDecl *Next = Group->getNextDeclarator();
1830      Group->setNextDeclarator(NewGroup);
1831      NewGroup = Group;
1832      Group = Next;
1833    }
1834  }
1835  // Perform semantic analysis that depends on having fully processed both
1836  // the declarator and initializer.
1837  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1838    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1839    if (!IDecl)
1840      continue;
1841    QualType T = IDecl->getType();
1842
1843    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1844    // static storage duration, it shall not have a variable length array.
1845    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1846        IDecl->getStorageClass() == VarDecl::Static) {
1847      if (T->isVariableArrayType()) {
1848        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1849        IDecl->setInvalidDecl();
1850      }
1851    }
1852    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1853    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1854    if (IDecl->isBlockVarDecl() &&
1855        IDecl->getStorageClass() != VarDecl::Extern) {
1856      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1857        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1858             T.getAsString());
1859        IDecl->setInvalidDecl();
1860      }
1861    }
1862    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1863    // object that has file scope without an initializer, and without a
1864    // storage-class specifier or with the storage-class specifier "static",
1865    // constitutes a tentative definition. Note: A tentative definition with
1866    // external linkage is valid (C99 6.2.2p5).
1867    if (isTentativeDefinition(IDecl)) {
1868      if (T->isIncompleteArrayType()) {
1869        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1870        // array to be completed. Don't issue a diagnostic.
1871      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1872        // C99 6.9.2p3: If the declaration of an identifier for an object is
1873        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1874        // declared type shall not be an incomplete type.
1875        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1876             T.getAsString());
1877        IDecl->setInvalidDecl();
1878      }
1879    }
1880    if (IDecl->isFileVarDecl())
1881      CheckForFileScopedRedefinitions(S, IDecl);
1882  }
1883  return NewGroup;
1884}
1885
1886/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1887/// to introduce parameters into function prototype scope.
1888Sema::DeclTy *
1889Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1890  // FIXME: disallow CXXScopeSpec for param declarators.
1891  const DeclSpec &DS = D.getDeclSpec();
1892
1893  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1894  VarDecl::StorageClass StorageClass = VarDecl::None;
1895  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1896    StorageClass = VarDecl::Register;
1897  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1898    Diag(DS.getStorageClassSpecLoc(),
1899         diag::err_invalid_storage_class_in_func_decl);
1900    D.getMutableDeclSpec().ClearStorageClassSpecs();
1901  }
1902  if (DS.isThreadSpecified()) {
1903    Diag(DS.getThreadSpecLoc(),
1904         diag::err_invalid_storage_class_in_func_decl);
1905    D.getMutableDeclSpec().ClearStorageClassSpecs();
1906  }
1907
1908  // Check that there are no default arguments inside the type of this
1909  // parameter (C++ only).
1910  if (getLangOptions().CPlusPlus)
1911    CheckExtraCXXDefaultArguments(D);
1912
1913  // In this context, we *do not* check D.getInvalidType(). If the declarator
1914  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1915  // though it will not reflect the user specified type.
1916  QualType parmDeclType = GetTypeForDeclarator(D, S);
1917
1918  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1919
1920  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1921  // Can this happen for params?  We already checked that they don't conflict
1922  // among each other.  Here they can only shadow globals, which is ok.
1923  IdentifierInfo *II = D.getIdentifier();
1924  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1925    if (S->isDeclScope(PrevDecl)) {
1926      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1927           dyn_cast<NamedDecl>(PrevDecl)->getName());
1928
1929      // Recover by removing the name
1930      II = 0;
1931      D.SetIdentifier(0, D.getIdentifierLoc());
1932    }
1933  }
1934
1935  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1936  // Doing the promotion here has a win and a loss. The win is the type for
1937  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1938  // code generator). The loss is the orginal type isn't preserved. For example:
1939  //
1940  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1941  //    int blockvardecl[5];
1942  //    sizeof(parmvardecl);  // size == 4
1943  //    sizeof(blockvardecl); // size == 20
1944  // }
1945  //
1946  // For expressions, all implicit conversions are captured using the
1947  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1948  //
1949  // FIXME: If a source translation tool needs to see the original type, then
1950  // we need to consider storing both types (in ParmVarDecl)...
1951  //
1952  if (parmDeclType->isArrayType()) {
1953    // int x[restrict 4] ->  int *restrict
1954    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1955  } else if (parmDeclType->isFunctionType())
1956    parmDeclType = Context.getPointerType(parmDeclType);
1957
1958  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1959                                         D.getIdentifierLoc(), II,
1960                                         parmDeclType, StorageClass,
1961                                         0, 0);
1962
1963  if (D.getInvalidType())
1964    New->setInvalidDecl();
1965
1966  if (II)
1967    PushOnScopeChains(New, S);
1968
1969  ProcessDeclAttributes(New, D);
1970  return New;
1971
1972}
1973
1974Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1975  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1976  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1977         "Not a function declarator!");
1978  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1979
1980  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1981  // for a K&R function.
1982  if (!FTI.hasPrototype) {
1983    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1984      if (FTI.ArgInfo[i].Param == 0) {
1985        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1986             FTI.ArgInfo[i].Ident->getName());
1987        // Implicitly declare the argument as type 'int' for lack of a better
1988        // type.
1989        DeclSpec DS;
1990        const char* PrevSpec; // unused
1991        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1992                           PrevSpec);
1993        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1994        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1995        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1996      }
1997    }
1998  } else {
1999    // FIXME: Diagnose arguments without names in C.
2000  }
2001
2002  Scope *GlobalScope = FnBodyScope->getParent();
2003
2004  return ActOnStartOfFunctionDef(FnBodyScope,
2005                                 ActOnDeclarator(GlobalScope, D, 0));
2006}
2007
2008Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2009  Decl *decl = static_cast<Decl*>(D);
2010  FunctionDecl *FD = cast<FunctionDecl>(decl);
2011
2012  // See if this is a redefinition.
2013  const FunctionDecl *Definition;
2014  if (FD->getBody(Definition)) {
2015    Diag(FD->getLocation(), diag::err_redefinition,
2016         FD->getName());
2017    Diag(Definition->getLocation(), diag::err_previous_definition);
2018  }
2019
2020  PushDeclContext(FD);
2021
2022  // Check the validity of our function parameters
2023  CheckParmsForFunctionDef(FD);
2024
2025  // Introduce our parameters into the function scope
2026  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2027    ParmVarDecl *Param = FD->getParamDecl(p);
2028    // If this has an identifier, add it to the scope stack.
2029    if (Param->getIdentifier())
2030      PushOnScopeChains(Param, FnBodyScope);
2031  }
2032
2033  return FD;
2034}
2035
2036Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2037  Decl *dcl = static_cast<Decl *>(D);
2038  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2039    FD->setBody((Stmt*)Body);
2040    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2041  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2042    MD->setBody((Stmt*)Body);
2043  } else
2044    return 0;
2045  PopDeclContext();
2046  // Verify and clean out per-function state.
2047
2048  // Check goto/label use.
2049  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2050       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2051    // Verify that we have no forward references left.  If so, there was a goto
2052    // or address of a label taken, but no definition of it.  Label fwd
2053    // definitions are indicated with a null substmt.
2054    if (I->second->getSubStmt() == 0) {
2055      LabelStmt *L = I->second;
2056      // Emit error.
2057      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2058
2059      // At this point, we have gotos that use the bogus label.  Stitch it into
2060      // the function body so that they aren't leaked and that the AST is well
2061      // formed.
2062      if (Body) {
2063        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2064        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2065      } else {
2066        // The whole function wasn't parsed correctly, just delete this.
2067        delete L;
2068      }
2069    }
2070  }
2071  LabelMap.clear();
2072
2073  return D;
2074}
2075
2076/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2077/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2078ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2079                                           IdentifierInfo &II, Scope *S) {
2080  // Extension in C99.  Legal in C90, but warn about it.
2081  if (getLangOptions().C99)
2082    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
2083  else
2084    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
2085
2086  // FIXME: handle stuff like:
2087  // void foo() { extern float X(); }
2088  // void bar() { X(); }  <-- implicit decl for X in another scope.
2089
2090  // Set a Declarator for the implicit definition: int foo();
2091  const char *Dummy;
2092  DeclSpec DS;
2093  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2094  Error = Error; // Silence warning.
2095  assert(!Error && "Error setting up implicit decl!");
2096  Declarator D(DS, Declarator::BlockContext);
2097  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2098  D.SetIdentifier(&II, Loc);
2099
2100  // Insert this function into translation-unit scope.
2101
2102  DeclContext *PrevDC = CurContext;
2103  CurContext = Context.getTranslationUnitDecl();
2104
2105  FunctionDecl *FD =
2106    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2107  FD->setImplicit();
2108
2109  CurContext = PrevDC;
2110
2111  return FD;
2112}
2113
2114
2115TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2116                                    ScopedDecl *LastDeclarator) {
2117  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2118  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2119
2120  // Scope manipulation handled by caller.
2121  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2122                                           D.getIdentifierLoc(),
2123                                           D.getIdentifier(),
2124                                           T, LastDeclarator);
2125  if (D.getInvalidType())
2126    NewTD->setInvalidDecl();
2127  return NewTD;
2128}
2129
2130/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2131/// former case, Name will be non-null.  In the later case, Name will be null.
2132/// TagType indicates what kind of tag this is. TK indicates whether this is a
2133/// reference/declaration/definition of a tag.
2134Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2135                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2136                             IdentifierInfo *Name, SourceLocation NameLoc,
2137                             AttributeList *Attr) {
2138  // If this is a use of an existing tag, it must have a name.
2139  assert((Name != 0 || TK == TK_Definition) &&
2140         "Nameless record must be a definition!");
2141
2142  TagDecl::TagKind Kind;
2143  switch (TagType) {
2144  default: assert(0 && "Unknown tag type!");
2145  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2146  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2147  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2148  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2149  }
2150
2151  // Two code paths: a new one for structs/unions/classes where we create
2152  //   separate decls for forward declarations, and an old (eventually to
2153  //   be removed) code path for enums.
2154  if (Kind != TagDecl::TK_enum)
2155    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2156
2157  DeclContext *DC = CurContext;
2158  ScopedDecl *PrevDecl = 0;
2159
2160  if (Name && SS.isNotEmpty()) {
2161    // We have a nested-name tag ('struct foo::bar').
2162
2163    // Check for invalid 'foo::'.
2164    if (SS.isInvalid()) {
2165      Name = 0;
2166      goto CreateNewDecl;
2167    }
2168
2169    DC = static_cast<DeclContext*>(SS.getScopeRep());
2170    // Look-up name inside 'foo::'.
2171    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2172
2173    // A tag 'foo::bar' must already exist.
2174    if (PrevDecl == 0) {
2175      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2176           SS.getRange());
2177      Name = 0;
2178      goto CreateNewDecl;
2179    }
2180  } else {
2181    // If this is a named struct, check to see if there was a previous forward
2182    // declaration or definition.
2183    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2184    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2185  }
2186
2187  if (PrevDecl) {
2188    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2189            "unexpected Decl type");
2190    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2191      // If this is a use of a previous tag, or if the tag is already declared
2192      // in the same scope (so that the definition/declaration completes or
2193      // rementions the tag), reuse the decl.
2194      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2195        // Make sure that this wasn't declared as an enum and now used as a
2196        // struct or something similar.
2197        if (PrevTagDecl->getTagKind() != Kind) {
2198          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2199          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2200          // Recover by making this an anonymous redefinition.
2201          Name = 0;
2202          PrevDecl = 0;
2203        } else {
2204          // If this is a use or a forward declaration, we're good.
2205          if (TK != TK_Definition)
2206            return PrevDecl;
2207
2208          // Diagnose attempts to redefine a tag.
2209          if (PrevTagDecl->isDefinition()) {
2210            Diag(NameLoc, diag::err_redefinition, Name->getName());
2211            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2212            // If this is a redefinition, recover by making this struct be
2213            // anonymous, which will make any later references get the previous
2214            // definition.
2215            Name = 0;
2216          } else {
2217            // Okay, this is definition of a previously declared or referenced
2218            // tag. Move the location of the decl to be the definition site.
2219            PrevDecl->setLocation(NameLoc);
2220            return PrevDecl;
2221          }
2222        }
2223      }
2224      // If we get here, this is a definition of a new struct type in a nested
2225      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2226      // type.
2227    } else {
2228      // PrevDecl is a namespace.
2229      if (isDeclInScope(PrevDecl, DC, S)) {
2230        // The tag name clashes with a namespace name, issue an error and
2231        // recover by making this tag be anonymous.
2232        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2233        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2234        Name = 0;
2235      }
2236    }
2237  }
2238
2239  CreateNewDecl:
2240
2241  // If there is an identifier, use the location of the identifier as the
2242  // location of the decl, otherwise use the location of the struct/union
2243  // keyword.
2244  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2245
2246  // Otherwise, if this is the first time we've seen this tag, create the decl.
2247  TagDecl *New;
2248  if (Kind == TagDecl::TK_enum) {
2249    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2250    // enum X { A, B, C } D;    D should chain to X.
2251    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2252    // If this is an undefined enum, warn.
2253    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2254  } else {
2255    // struct/union/class
2256
2257    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2258    // struct X { int A; } D;    D should chain to X.
2259    if (getLangOptions().CPlusPlus)
2260      // FIXME: Look for a way to use RecordDecl for simple structs.
2261      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2262    else
2263      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2264  }
2265
2266  // If this has an identifier, add it to the scope stack.
2267  if (Name) {
2268    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2269    // we find one that is.
2270    while ((S->getFlags() & Scope::DeclScope) == 0)
2271      S = S->getParent();
2272
2273    // Add it to the decl chain.
2274    PushOnScopeChains(New, S);
2275  }
2276
2277  if (Attr)
2278    ProcessDeclAttributeList(New, Attr);
2279
2280  // Set the lexical context. If the tag has a C++ scope specifier, the
2281  // lexical context will be different from the semantic context.
2282  New->setLexicalDeclContext(CurContext);
2283
2284  return New;
2285}
2286
2287/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2288///  the logic for enums, we create separate decls for forward declarations.
2289///  This is called by ActOnTag, but eventually will replace its logic.
2290Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2291                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2292                             IdentifierInfo *Name, SourceLocation NameLoc,
2293                             AttributeList *Attr) {
2294  DeclContext *DC = CurContext;
2295  ScopedDecl *PrevDecl = 0;
2296
2297  if (Name && SS.isNotEmpty()) {
2298    // We have a nested-name tag ('struct foo::bar').
2299
2300    // Check for invalid 'foo::'.
2301    if (SS.isInvalid()) {
2302      Name = 0;
2303      goto CreateNewDecl;
2304    }
2305
2306    DC = static_cast<DeclContext*>(SS.getScopeRep());
2307    // Look-up name inside 'foo::'.
2308    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2309
2310    // A tag 'foo::bar' must already exist.
2311    if (PrevDecl == 0) {
2312      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2313           SS.getRange());
2314      Name = 0;
2315      goto CreateNewDecl;
2316    }
2317  } else {
2318    // If this is a named struct, check to see if there was a previous forward
2319    // declaration or definition.
2320    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2321    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2322  }
2323
2324  if (PrevDecl) {
2325    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2326           "unexpected Decl type");
2327
2328    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2329      // If this is a use of a previous tag, or if the tag is already declared
2330      // in the same scope (so that the definition/declaration completes or
2331      // rementions the tag), reuse the decl.
2332      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2333        // Make sure that this wasn't declared as an enum and now used as a
2334        // struct or something similar.
2335        if (PrevTagDecl->getTagKind() != Kind) {
2336          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2337          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2338          // Recover by making this an anonymous redefinition.
2339          Name = 0;
2340          PrevDecl = 0;
2341        } else {
2342          // If this is a use, return the original decl.
2343
2344          // FIXME: In the future, return a variant or some other clue
2345          //  for the consumer of this Decl to know it doesn't own it.
2346          //  For our current ASTs this shouldn't be a problem, but will
2347          //  need to be changed with DeclGroups.
2348          if (TK == TK_Reference)
2349            return PrevDecl;
2350
2351          // The new decl is a definition?
2352          if (TK == TK_Definition) {
2353            // Diagnose attempts to redefine a tag.
2354            if (RecordDecl* DefRecord =
2355                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2356              Diag(NameLoc, diag::err_redefinition, Name->getName());
2357              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2358              // If this is a redefinition, recover by making this struct be
2359              // anonymous, which will make any later references get the previous
2360              // definition.
2361              Name = 0;
2362              PrevDecl = 0;
2363            }
2364            // Okay, this is definition of a previously declared or referenced
2365            // tag.  We're going to create a new Decl.
2366          }
2367        }
2368        // If we get here we have (another) forward declaration.  Just create
2369        // a new decl.
2370      }
2371      else {
2372        // If we get here, this is a definition of a new struct type in a nested
2373        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2374        // new decl/type.  We set PrevDecl to NULL so that the Records
2375        // have distinct types.
2376        PrevDecl = 0;
2377      }
2378    } else {
2379      // PrevDecl is a namespace.
2380      if (isDeclInScope(PrevDecl, DC, S)) {
2381        // The tag name clashes with a namespace name, issue an error and
2382        // recover by making this tag be anonymous.
2383        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2384        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2385        Name = 0;
2386      }
2387    }
2388  }
2389
2390  CreateNewDecl:
2391
2392  // If there is an identifier, use the location of the identifier as the
2393  // location of the decl, otherwise use the location of the struct/union
2394  // keyword.
2395  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2396
2397  // Otherwise, if this is the first time we've seen this tag, create the decl.
2398  TagDecl *New;
2399
2400  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2401  // struct X { int A; } D;    D should chain to X.
2402  if (getLangOptions().CPlusPlus)
2403    // FIXME: Look for a way to use RecordDecl for simple structs.
2404    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2405                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2406  else
2407    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2408                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2409
2410  // If this has an identifier, add it to the scope stack.
2411  if ((TK == TK_Definition || !PrevDecl) && Name) {
2412    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2413    // we find one that is.
2414    while ((S->getFlags() & Scope::DeclScope) == 0)
2415      S = S->getParent();
2416
2417    // Add it to the decl chain.
2418    PushOnScopeChains(New, S);
2419  }
2420
2421  // Handle #pragma pack: if the #pragma pack stack has non-default
2422  // alignment, make up a packed attribute for this decl. These
2423  // attributes are checked when the ASTContext lays out the
2424  // structure.
2425  //
2426  // It is important for implementing the correct semantics that this
2427  // happen here (in act on tag decl). The #pragma pack stack is
2428  // maintained as a result of parser callbacks which can occur at
2429  // many points during the parsing of a struct declaration (because
2430  // the #pragma tokens are effectively skipped over during the
2431  // parsing of the struct).
2432  if (unsigned Alignment = PackContext.getAlignment())
2433    New->addAttr(new PackedAttr(Alignment * 8));
2434
2435  if (Attr)
2436    ProcessDeclAttributeList(New, Attr);
2437
2438  // Set the lexical context. If the tag has a C++ scope specifier, the
2439  // lexical context will be different from the semantic context.
2440  New->setLexicalDeclContext(CurContext);
2441
2442  return New;
2443}
2444
2445
2446/// Collect the instance variables declared in an Objective-C object.  Used in
2447/// the creation of structures from objects using the @defs directive.
2448static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2449                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2450  if (Class->getSuperClass())
2451    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2452
2453  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2454  for (ObjCInterfaceDecl::ivar_iterator
2455        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2456
2457    ObjCIvarDecl* ID = *I;
2458    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2459                                                ID->getIdentifier(),
2460                                                ID->getType(),
2461                                                ID->getBitWidth()));
2462  }
2463}
2464
2465/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2466/// instance variables of ClassName into Decls.
2467void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2468                     IdentifierInfo *ClassName,
2469                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2470  // Check that ClassName is a valid class
2471  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2472  if (!Class) {
2473    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2474    return;
2475  }
2476  // Collect the instance variables
2477  CollectIvars(Class, Context, Decls);
2478}
2479
2480/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2481/// types into constant array types in certain situations which would otherwise
2482/// be errors (for GCC compatibility).
2483static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2484                                                    ASTContext &Context) {
2485  // This method tries to turn a variable array into a constant
2486  // array even when the size isn't an ICE.  This is necessary
2487  // for compatibility with code that depends on gcc's buggy
2488  // constant expression folding, like struct {char x[(int)(char*)2];}
2489  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2490  if (!VLATy) return QualType();
2491
2492  APValue Result;
2493  if (!VLATy->getSizeExpr() ||
2494      !VLATy->getSizeExpr()->tryEvaluate(Result, Context))
2495    return QualType();
2496
2497  assert(Result.isInt() && "Size expressions must be integers!");
2498  llvm::APSInt &Res = Result.getInt();
2499  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2500    return Context.getConstantArrayType(VLATy->getElementType(),
2501                                        Res, ArrayType::Normal, 0);
2502  return QualType();
2503}
2504
2505/// ActOnField - Each field of a struct/union/class is passed into this in order
2506/// to create a FieldDecl object for it.
2507Sema::DeclTy *Sema::ActOnField(Scope *S,
2508                               SourceLocation DeclStart,
2509                               Declarator &D, ExprTy *BitfieldWidth) {
2510  IdentifierInfo *II = D.getIdentifier();
2511  Expr *BitWidth = (Expr*)BitfieldWidth;
2512  SourceLocation Loc = DeclStart;
2513  if (II) Loc = D.getIdentifierLoc();
2514
2515  // FIXME: Unnamed fields can be handled in various different ways, for
2516  // example, unnamed unions inject all members into the struct namespace!
2517
2518  if (BitWidth) {
2519    // TODO: Validate.
2520    //printf("WARNING: BITFIELDS IGNORED!\n");
2521
2522    // 6.7.2.1p3
2523    // 6.7.2.1p4
2524
2525  } else {
2526    // Not a bitfield.
2527
2528    // validate II.
2529
2530  }
2531
2532  QualType T = GetTypeForDeclarator(D, S);
2533  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2534  bool InvalidDecl = false;
2535
2536  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2537  // than a variably modified type.
2538  if (T->isVariablyModifiedType()) {
2539    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2540    if (!FixedTy.isNull()) {
2541      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2542      T = FixedTy;
2543    } else {
2544      Diag(Loc, diag::err_typecheck_field_variable_size, Loc);
2545      T = Context.IntTy;
2546      InvalidDecl = true;
2547    }
2548  }
2549  // FIXME: Chain fielddecls together.
2550  FieldDecl *NewFD;
2551
2552  if (getLangOptions().CPlusPlus) {
2553    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2554    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2555                                 Loc, II, T, BitWidth);
2556    if (II)
2557      PushOnScopeChains(NewFD, S);
2558  }
2559  else
2560    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2561
2562  ProcessDeclAttributes(NewFD, D);
2563
2564  if (D.getInvalidType() || InvalidDecl)
2565    NewFD->setInvalidDecl();
2566  return NewFD;
2567}
2568
2569/// TranslateIvarVisibility - Translate visibility from a token ID to an
2570///  AST enum value.
2571static ObjCIvarDecl::AccessControl
2572TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2573  switch (ivarVisibility) {
2574  default: assert(0 && "Unknown visitibility kind");
2575  case tok::objc_private: return ObjCIvarDecl::Private;
2576  case tok::objc_public: return ObjCIvarDecl::Public;
2577  case tok::objc_protected: return ObjCIvarDecl::Protected;
2578  case tok::objc_package: return ObjCIvarDecl::Package;
2579  }
2580}
2581
2582/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2583/// in order to create an IvarDecl object for it.
2584Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2585                              SourceLocation DeclStart,
2586                              Declarator &D, ExprTy *BitfieldWidth,
2587                              tok::ObjCKeywordKind Visibility) {
2588  IdentifierInfo *II = D.getIdentifier();
2589  Expr *BitWidth = (Expr*)BitfieldWidth;
2590  SourceLocation Loc = DeclStart;
2591  if (II) Loc = D.getIdentifierLoc();
2592
2593  // FIXME: Unnamed fields can be handled in various different ways, for
2594  // example, unnamed unions inject all members into the struct namespace!
2595
2596
2597  if (BitWidth) {
2598    // TODO: Validate.
2599    //printf("WARNING: BITFIELDS IGNORED!\n");
2600
2601    // 6.7.2.1p3
2602    // 6.7.2.1p4
2603
2604  } else {
2605    // Not a bitfield.
2606
2607    // validate II.
2608
2609  }
2610
2611  QualType T = GetTypeForDeclarator(D, S);
2612  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2613  bool InvalidDecl = false;
2614
2615  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2616  // than a variably modified type.
2617  if (T->isVariablyModifiedType()) {
2618    // FIXME: This diagnostic needs work
2619    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2620    InvalidDecl = true;
2621  }
2622
2623  // Get the visibility (access control) for this ivar.
2624  ObjCIvarDecl::AccessControl ac =
2625    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2626                                        : ObjCIvarDecl::None;
2627
2628  // Construct the decl.
2629  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2630                                             (Expr *)BitfieldWidth);
2631
2632  // Process attributes attached to the ivar.
2633  ProcessDeclAttributes(NewID, D);
2634
2635  if (D.getInvalidType() || InvalidDecl)
2636    NewID->setInvalidDecl();
2637
2638  return NewID;
2639}
2640
2641void Sema::ActOnFields(Scope* S,
2642                       SourceLocation RecLoc, DeclTy *RecDecl,
2643                       DeclTy **Fields, unsigned NumFields,
2644                       SourceLocation LBrac, SourceLocation RBrac,
2645                       AttributeList *Attr) {
2646  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2647  assert(EnclosingDecl && "missing record or interface decl");
2648  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2649
2650  if (Record)
2651    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2652      // Diagnose code like:
2653      //     struct S { struct S {} X; };
2654      // We discover this when we complete the outer S.  Reject and ignore the
2655      // outer S.
2656      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2657           DefRecord->getKindName());
2658      Diag(RecLoc, diag::err_previous_definition);
2659      Record->setInvalidDecl();
2660      return;
2661    }
2662
2663  // Verify that all the fields are okay.
2664  unsigned NumNamedMembers = 0;
2665  llvm::SmallVector<FieldDecl*, 32> RecFields;
2666  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2667
2668  for (unsigned i = 0; i != NumFields; ++i) {
2669
2670    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2671    assert(FD && "missing field decl");
2672
2673    // Remember all fields.
2674    RecFields.push_back(FD);
2675
2676    // Get the type for the field.
2677    Type *FDTy = FD->getType().getTypePtr();
2678
2679    // C99 6.7.2.1p2 - A field may not be a function type.
2680    if (FDTy->isFunctionType()) {
2681      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2682           FD->getName());
2683      FD->setInvalidDecl();
2684      EnclosingDecl->setInvalidDecl();
2685      continue;
2686    }
2687    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2688    if (FDTy->isIncompleteType()) {
2689      if (!Record) {  // Incomplete ivar type is always an error.
2690        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2691        FD->setInvalidDecl();
2692        EnclosingDecl->setInvalidDecl();
2693        continue;
2694      }
2695      if (i != NumFields-1 ||                   // ... that the last member ...
2696          !Record->isStruct() ||  // ... of a structure ...
2697          !FDTy->isArrayType()) {         //... may have incomplete array type.
2698        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2699        FD->setInvalidDecl();
2700        EnclosingDecl->setInvalidDecl();
2701        continue;
2702      }
2703      if (NumNamedMembers < 1) {  //... must have more than named member ...
2704        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2705             FD->getName());
2706        FD->setInvalidDecl();
2707        EnclosingDecl->setInvalidDecl();
2708        continue;
2709      }
2710      // Okay, we have a legal flexible array member at the end of the struct.
2711      if (Record)
2712        Record->setHasFlexibleArrayMember(true);
2713    }
2714    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2715    /// field of another structure or the element of an array.
2716    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2717      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2718        // If this is a member of a union, then entire union becomes "flexible".
2719        if (Record && Record->isUnion()) {
2720          Record->setHasFlexibleArrayMember(true);
2721        } else {
2722          // If this is a struct/class and this is not the last element, reject
2723          // it.  Note that GCC supports variable sized arrays in the middle of
2724          // structures.
2725          if (i != NumFields-1) {
2726            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2727                 FD->getName());
2728            FD->setInvalidDecl();
2729            EnclosingDecl->setInvalidDecl();
2730            continue;
2731          }
2732          // We support flexible arrays at the end of structs in other structs
2733          // as an extension.
2734          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2735               FD->getName());
2736          if (Record)
2737            Record->setHasFlexibleArrayMember(true);
2738        }
2739      }
2740    }
2741    /// A field cannot be an Objective-c object
2742    if (FDTy->isObjCInterfaceType()) {
2743      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2744           FD->getName());
2745      FD->setInvalidDecl();
2746      EnclosingDecl->setInvalidDecl();
2747      continue;
2748    }
2749    // Keep track of the number of named members.
2750    if (IdentifierInfo *II = FD->getIdentifier()) {
2751      // Detect duplicate member names.
2752      if (!FieldIDs.insert(II)) {
2753        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2754        // Find the previous decl.
2755        SourceLocation PrevLoc;
2756        for (unsigned i = 0; ; ++i) {
2757          assert(i != RecFields.size() && "Didn't find previous def!");
2758          if (RecFields[i]->getIdentifier() == II) {
2759            PrevLoc = RecFields[i]->getLocation();
2760            break;
2761          }
2762        }
2763        Diag(PrevLoc, diag::err_previous_definition);
2764        FD->setInvalidDecl();
2765        EnclosingDecl->setInvalidDecl();
2766        continue;
2767      }
2768      ++NumNamedMembers;
2769    }
2770  }
2771
2772  // Okay, we successfully defined 'Record'.
2773  if (Record) {
2774    Record->defineBody(Context, &RecFields[0], RecFields.size());
2775    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2776    // Sema::ActOnFinishCXXClassDef.
2777    if (!isa<CXXRecordDecl>(Record))
2778      Consumer.HandleTagDeclDefinition(Record);
2779  } else {
2780    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2781    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2782      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2783    else if (ObjCImplementationDecl *IMPDecl =
2784               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2785      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2786      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2787      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2788    }
2789  }
2790
2791  if (Attr)
2792    ProcessDeclAttributeList(Record, Attr);
2793}
2794
2795Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2796                                      DeclTy *lastEnumConst,
2797                                      SourceLocation IdLoc, IdentifierInfo *Id,
2798                                      SourceLocation EqualLoc, ExprTy *val) {
2799  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2800  EnumConstantDecl *LastEnumConst =
2801    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2802  Expr *Val = static_cast<Expr*>(val);
2803
2804  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2805  // we find one that is.
2806  while ((S->getFlags() & Scope::DeclScope) == 0)
2807    S = S->getParent();
2808
2809  // Verify that there isn't already something declared with this name in this
2810  // scope.
2811  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2812    // When in C++, we may get a TagDecl with the same name; in this case the
2813    // enum constant will 'hide' the tag.
2814    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2815           "Received TagDecl when not in C++!");
2816    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2817      if (isa<EnumConstantDecl>(PrevDecl))
2818        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2819      else
2820        Diag(IdLoc, diag::err_redefinition, Id->getName());
2821      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2822      delete Val;
2823      return 0;
2824    }
2825  }
2826
2827  llvm::APSInt EnumVal(32);
2828  QualType EltTy;
2829  if (Val) {
2830    // Make sure to promote the operand type to int.
2831    UsualUnaryConversions(Val);
2832
2833    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2834    SourceLocation ExpLoc;
2835    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2836      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2837           Id->getName());
2838      delete Val;
2839      Val = 0;  // Just forget about it.
2840    } else {
2841      EltTy = Val->getType();
2842    }
2843  }
2844
2845  if (!Val) {
2846    if (LastEnumConst) {
2847      // Assign the last value + 1.
2848      EnumVal = LastEnumConst->getInitVal();
2849      ++EnumVal;
2850
2851      // Check for overflow on increment.
2852      if (EnumVal < LastEnumConst->getInitVal())
2853        Diag(IdLoc, diag::warn_enum_value_overflow);
2854
2855      EltTy = LastEnumConst->getType();
2856    } else {
2857      // First value, set to zero.
2858      EltTy = Context.IntTy;
2859      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2860    }
2861  }
2862
2863  EnumConstantDecl *New =
2864    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2865                             Val, EnumVal,
2866                             LastEnumConst);
2867
2868  // Register this decl in the current scope stack.
2869  PushOnScopeChains(New, S);
2870  return New;
2871}
2872
2873// FIXME: For consistency with ActOnFields(), we should have the parser
2874// pass in the source location for the left/right braces.
2875void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2876                         DeclTy **Elements, unsigned NumElements) {
2877  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2878
2879  if (Enum && Enum->isDefinition()) {
2880    // Diagnose code like:
2881    //   enum e0 {
2882    //     E0 = sizeof(enum e0 { E1 })
2883    //   };
2884    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2885         Enum->getName());
2886    Diag(EnumLoc, diag::err_previous_definition);
2887    Enum->setInvalidDecl();
2888    return;
2889  }
2890  // TODO: If the result value doesn't fit in an int, it must be a long or long
2891  // long value.  ISO C does not support this, but GCC does as an extension,
2892  // emit a warning.
2893  unsigned IntWidth = Context.Target.getIntWidth();
2894
2895  // Verify that all the values are okay, compute the size of the values, and
2896  // reverse the list.
2897  unsigned NumNegativeBits = 0;
2898  unsigned NumPositiveBits = 0;
2899
2900  // Keep track of whether all elements have type int.
2901  bool AllElementsInt = true;
2902
2903  EnumConstantDecl *EltList = 0;
2904  for (unsigned i = 0; i != NumElements; ++i) {
2905    EnumConstantDecl *ECD =
2906      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2907    if (!ECD) continue;  // Already issued a diagnostic.
2908
2909    // If the enum value doesn't fit in an int, emit an extension warning.
2910    const llvm::APSInt &InitVal = ECD->getInitVal();
2911    assert(InitVal.getBitWidth() >= IntWidth &&
2912           "Should have promoted value to int");
2913    if (InitVal.getBitWidth() > IntWidth) {
2914      llvm::APSInt V(InitVal);
2915      V.trunc(IntWidth);
2916      V.extend(InitVal.getBitWidth());
2917      if (V != InitVal)
2918        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2919             InitVal.toString(10));
2920    }
2921
2922    // Keep track of the size of positive and negative values.
2923    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2924      NumPositiveBits = std::max(NumPositiveBits,
2925                                 (unsigned)InitVal.getActiveBits());
2926    else
2927      NumNegativeBits = std::max(NumNegativeBits,
2928                                 (unsigned)InitVal.getMinSignedBits());
2929
2930    // Keep track of whether every enum element has type int (very commmon).
2931    if (AllElementsInt)
2932      AllElementsInt = ECD->getType() == Context.IntTy;
2933
2934    ECD->setNextDeclarator(EltList);
2935    EltList = ECD;
2936  }
2937
2938  // Figure out the type that should be used for this enum.
2939  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2940  QualType BestType;
2941  unsigned BestWidth;
2942
2943  if (NumNegativeBits) {
2944    // If there is a negative value, figure out the smallest integer type (of
2945    // int/long/longlong) that fits.
2946    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2947      BestType = Context.IntTy;
2948      BestWidth = IntWidth;
2949    } else {
2950      BestWidth = Context.Target.getLongWidth();
2951
2952      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2953        BestType = Context.LongTy;
2954      else {
2955        BestWidth = Context.Target.getLongLongWidth();
2956
2957        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2958          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2959        BestType = Context.LongLongTy;
2960      }
2961    }
2962  } else {
2963    // If there is no negative value, figure out which of uint, ulong, ulonglong
2964    // fits.
2965    if (NumPositiveBits <= IntWidth) {
2966      BestType = Context.UnsignedIntTy;
2967      BestWidth = IntWidth;
2968    } else if (NumPositiveBits <=
2969               (BestWidth = Context.Target.getLongWidth())) {
2970      BestType = Context.UnsignedLongTy;
2971    } else {
2972      BestWidth = Context.Target.getLongLongWidth();
2973      assert(NumPositiveBits <= BestWidth &&
2974             "How could an initializer get larger than ULL?");
2975      BestType = Context.UnsignedLongLongTy;
2976    }
2977  }
2978
2979  // Loop over all of the enumerator constants, changing their types to match
2980  // the type of the enum if needed.
2981  for (unsigned i = 0; i != NumElements; ++i) {
2982    EnumConstantDecl *ECD =
2983      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2984    if (!ECD) continue;  // Already issued a diagnostic.
2985
2986    // Standard C says the enumerators have int type, but we allow, as an
2987    // extension, the enumerators to be larger than int size.  If each
2988    // enumerator value fits in an int, type it as an int, otherwise type it the
2989    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2990    // that X has type 'int', not 'unsigned'.
2991    if (ECD->getType() == Context.IntTy) {
2992      // Make sure the init value is signed.
2993      llvm::APSInt IV = ECD->getInitVal();
2994      IV.setIsSigned(true);
2995      ECD->setInitVal(IV);
2996      continue;  // Already int type.
2997    }
2998
2999    // Determine whether the value fits into an int.
3000    llvm::APSInt InitVal = ECD->getInitVal();
3001    bool FitsInInt;
3002    if (InitVal.isUnsigned() || !InitVal.isNegative())
3003      FitsInInt = InitVal.getActiveBits() < IntWidth;
3004    else
3005      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3006
3007    // If it fits into an integer type, force it.  Otherwise force it to match
3008    // the enum decl type.
3009    QualType NewTy;
3010    unsigned NewWidth;
3011    bool NewSign;
3012    if (FitsInInt) {
3013      NewTy = Context.IntTy;
3014      NewWidth = IntWidth;
3015      NewSign = true;
3016    } else if (ECD->getType() == BestType) {
3017      // Already the right type!
3018      continue;
3019    } else {
3020      NewTy = BestType;
3021      NewWidth = BestWidth;
3022      NewSign = BestType->isSignedIntegerType();
3023    }
3024
3025    // Adjust the APSInt value.
3026    InitVal.extOrTrunc(NewWidth);
3027    InitVal.setIsSigned(NewSign);
3028    ECD->setInitVal(InitVal);
3029
3030    // Adjust the Expr initializer and type.
3031    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3032                                          /*isLvalue=*/false));
3033    ECD->setType(NewTy);
3034  }
3035
3036  Enum->defineElements(EltList, BestType);
3037  Consumer.HandleTagDeclDefinition(Enum);
3038}
3039
3040Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3041                                          ExprTy *expr) {
3042  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3043
3044  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3045}
3046
3047Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3048                                     SourceLocation LBrace,
3049                                     SourceLocation RBrace,
3050                                     const char *Lang,
3051                                     unsigned StrSize,
3052                                     DeclTy *D) {
3053  LinkageSpecDecl::LanguageIDs Language;
3054  Decl *dcl = static_cast<Decl *>(D);
3055  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3056    Language = LinkageSpecDecl::lang_c;
3057  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3058    Language = LinkageSpecDecl::lang_cxx;
3059  else {
3060    Diag(Loc, diag::err_bad_language);
3061    return 0;
3062  }
3063
3064  // FIXME: Add all the various semantics of linkage specifications
3065  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3066}
3067
3068void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3069                           ExprTy *alignment, SourceLocation PragmaLoc,
3070                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3071  Expr *Alignment = static_cast<Expr *>(alignment);
3072
3073  // If specified then alignment must be a "small" power of two.
3074  unsigned AlignmentVal = 0;
3075  if (Alignment) {
3076    llvm::APSInt Val;
3077    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3078        !Val.isPowerOf2() ||
3079        Val.getZExtValue() > 16) {
3080      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3081      delete Alignment;
3082      return; // Ignore
3083    }
3084
3085    AlignmentVal = (unsigned) Val.getZExtValue();
3086  }
3087
3088  switch (Kind) {
3089  case Action::PPK_Default: // pack([n])
3090    PackContext.setAlignment(AlignmentVal);
3091    break;
3092
3093  case Action::PPK_Show: // pack(show)
3094    // Show the current alignment, making sure to show the right value
3095    // for the default.
3096    AlignmentVal = PackContext.getAlignment();
3097    // FIXME: This should come from the target.
3098    if (AlignmentVal == 0)
3099      AlignmentVal = 8;
3100    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
3101    break;
3102
3103  case Action::PPK_Push: // pack(push [, id] [, [n])
3104    PackContext.push(Name);
3105    // Set the new alignment if specified.
3106    if (Alignment)
3107      PackContext.setAlignment(AlignmentVal);
3108    break;
3109
3110  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3111    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3112    // "#pragma pack(pop, identifier, n) is undefined"
3113    if (Alignment && Name)
3114      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3115
3116    // Do the pop.
3117    if (!PackContext.pop(Name)) {
3118      // If a name was specified then failure indicates the name
3119      // wasn't found. Otherwise failure indicates the stack was
3120      // empty.
3121      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3122           Name ? "no record matching name" : "stack empty");
3123
3124      // FIXME: Warn about popping named records as MSVC does.
3125    } else {
3126      // Pop succeeded, set the new alignment if specified.
3127      if (Alignment)
3128        PackContext.setAlignment(AlignmentVal);
3129    }
3130    break;
3131
3132  default:
3133    assert(0 && "Invalid #pragma pack kind.");
3134  }
3135}
3136
3137bool PragmaPackStack::pop(IdentifierInfo *Name) {
3138  if (Stack.empty())
3139    return false;
3140
3141  // If name is empty just pop top.
3142  if (!Name) {
3143    Alignment = Stack.back().first;
3144    Stack.pop_back();
3145    return true;
3146  }
3147
3148  // Otherwise, find the named record.
3149  for (unsigned i = Stack.size(); i != 0; ) {
3150    --i;
3151    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
3152      // Found it, pop up to and including this record.
3153      Alignment = Stack[i].first;
3154      Stack.erase(Stack.begin() + i, Stack.end());
3155      return true;
3156    }
3157  }
3158
3159  return false;
3160}
3161