SemaDecl.cpp revision 6933e3b037fcb15b68f41d2b91ee01db45a2d43a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->getLinkage() == ExternalLinkage)
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = (decl->getLinkage() == ExternalLinkage);
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825bool Sema::mergeDeclAttribute(NamedDecl *D, InheritableAttr *Attr,
1826                              bool Override) {
1827  InheritableAttr *NewAttr = NULL;
1828  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1829  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1830    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1831                                    AA->getIntroduced(), AA->getDeprecated(),
1832                                    AA->getObsoleted(), AA->getUnavailable(),
1833                                    AA->getMessage(), Override,
1834                                    AttrSpellingListIndex);
1835  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1836    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1837                                  AttrSpellingListIndex);
1838  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1839    NewAttr = mergeDLLImportAttr(D, ImportA->getRange(),
1840                                 AttrSpellingListIndex);
1841  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1842    NewAttr = mergeDLLExportAttr(D, ExportA->getRange(),
1843                                 AttrSpellingListIndex);
1844  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1845    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1846                              FA->getFormatIdx(), FA->getFirstArg(),
1847                              AttrSpellingListIndex);
1848  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1849    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName(),
1850                               AttrSpellingListIndex);
1851  else if (!DeclHasAttr(D, Attr))
1852    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1853
1854  if (NewAttr) {
1855    NewAttr->setInherited(true);
1856    D->addAttr(NewAttr);
1857    return true;
1858  }
1859
1860  return false;
1861}
1862
1863static const Decl *getDefinition(const Decl *D) {
1864  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1865    return TD->getDefinition();
1866  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1867    return VD->getDefinition();
1868  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1869    const FunctionDecl* Def;
1870    if (FD->hasBody(Def))
1871      return Def;
1872  }
1873  return NULL;
1874}
1875
1876static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1877  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1878       I != E; ++I) {
1879    Attr *Attribute = *I;
1880    if (Attribute->getKind() == Kind)
1881      return true;
1882  }
1883  return false;
1884}
1885
1886/// checkNewAttributesAfterDef - If we already have a definition, check that
1887/// there are no new attributes in this declaration.
1888static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1889  if (!New->hasAttrs())
1890    return;
1891
1892  const Decl *Def = getDefinition(Old);
1893  if (!Def || Def == New)
1894    return;
1895
1896  AttrVec &NewAttributes = New->getAttrs();
1897  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1898    const Attr *NewAttribute = NewAttributes[I];
1899    if (hasAttribute(Def, NewAttribute->getKind())) {
1900      ++I;
1901      continue; // regular attr merging will take care of validating this.
1902    }
1903    S.Diag(NewAttribute->getLocation(),
1904           diag::warn_attribute_precede_definition);
1905    S.Diag(Def->getLocation(), diag::note_previous_definition);
1906    NewAttributes.erase(NewAttributes.begin() + I);
1907    --E;
1908  }
1909}
1910
1911/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1912void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
1913                               AvailabilityMergeKind AMK) {
1914  if (!Old->hasAttrs() && !New->hasAttrs())
1915    return;
1916
1917  // attributes declared post-definition are currently ignored
1918  checkNewAttributesAfterDef(*this, New, Old);
1919
1920  if (!Old->hasAttrs())
1921    return;
1922
1923  bool foundAny = New->hasAttrs();
1924
1925  // Ensure that any moving of objects within the allocated map is done before
1926  // we process them.
1927  if (!foundAny) New->setAttrs(AttrVec());
1928
1929  for (specific_attr_iterator<InheritableAttr>
1930         i = Old->specific_attr_begin<InheritableAttr>(),
1931         e = Old->specific_attr_end<InheritableAttr>();
1932       i != e; ++i) {
1933    bool Override = false;
1934    // Ignore deprecated/unavailable/availability attributes if requested.
1935    if (isa<DeprecatedAttr>(*i) ||
1936        isa<UnavailableAttr>(*i) ||
1937        isa<AvailabilityAttr>(*i)) {
1938      switch (AMK) {
1939      case AMK_None:
1940        continue;
1941
1942      case AMK_Redeclaration:
1943        break;
1944
1945      case AMK_Override:
1946        Override = true;
1947        break;
1948      }
1949    }
1950
1951    if (mergeDeclAttribute(New, *i, Override))
1952      foundAny = true;
1953  }
1954
1955  if (!foundAny) New->dropAttrs();
1956}
1957
1958/// mergeParamDeclAttributes - Copy attributes from the old parameter
1959/// to the new one.
1960static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1961                                     const ParmVarDecl *oldDecl,
1962                                     Sema &S) {
1963  // C++11 [dcl.attr.depend]p2:
1964  //   The first declaration of a function shall specify the
1965  //   carries_dependency attribute for its declarator-id if any declaration
1966  //   of the function specifies the carries_dependency attribute.
1967  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
1968      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
1969    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
1970           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
1971    // Find the first declaration of the parameter.
1972    // FIXME: Should we build redeclaration chains for function parameters?
1973    const FunctionDecl *FirstFD =
1974      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
1975    const ParmVarDecl *FirstVD =
1976      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
1977    S.Diag(FirstVD->getLocation(),
1978           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
1979  }
1980
1981  if (!oldDecl->hasAttrs())
1982    return;
1983
1984  bool foundAny = newDecl->hasAttrs();
1985
1986  // Ensure that any moving of objects within the allocated map is
1987  // done before we process them.
1988  if (!foundAny) newDecl->setAttrs(AttrVec());
1989
1990  for (specific_attr_iterator<InheritableParamAttr>
1991       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1992       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1993    if (!DeclHasAttr(newDecl, *i)) {
1994      InheritableAttr *newAttr =
1995        cast<InheritableParamAttr>((*i)->clone(S.Context));
1996      newAttr->setInherited(true);
1997      newDecl->addAttr(newAttr);
1998      foundAny = true;
1999    }
2000  }
2001
2002  if (!foundAny) newDecl->dropAttrs();
2003}
2004
2005namespace {
2006
2007/// Used in MergeFunctionDecl to keep track of function parameters in
2008/// C.
2009struct GNUCompatibleParamWarning {
2010  ParmVarDecl *OldParm;
2011  ParmVarDecl *NewParm;
2012  QualType PromotedType;
2013};
2014
2015}
2016
2017/// getSpecialMember - get the special member enum for a method.
2018Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2019  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2020    if (Ctor->isDefaultConstructor())
2021      return Sema::CXXDefaultConstructor;
2022
2023    if (Ctor->isCopyConstructor())
2024      return Sema::CXXCopyConstructor;
2025
2026    if (Ctor->isMoveConstructor())
2027      return Sema::CXXMoveConstructor;
2028  } else if (isa<CXXDestructorDecl>(MD)) {
2029    return Sema::CXXDestructor;
2030  } else if (MD->isCopyAssignmentOperator()) {
2031    return Sema::CXXCopyAssignment;
2032  } else if (MD->isMoveAssignmentOperator()) {
2033    return Sema::CXXMoveAssignment;
2034  }
2035
2036  return Sema::CXXInvalid;
2037}
2038
2039/// canRedefineFunction - checks if a function can be redefined. Currently,
2040/// only extern inline functions can be redefined, and even then only in
2041/// GNU89 mode.
2042static bool canRedefineFunction(const FunctionDecl *FD,
2043                                const LangOptions& LangOpts) {
2044  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2045          !LangOpts.CPlusPlus &&
2046          FD->isInlineSpecified() &&
2047          FD->getStorageClass() == SC_Extern);
2048}
2049
2050/// Is the given calling convention the ABI default for the given
2051/// declaration?
2052static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2053  CallingConv ABIDefaultCC;
2054  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2055    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2056  } else {
2057    // Free C function or a static method.
2058    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2059  }
2060  return ABIDefaultCC == CC;
2061}
2062
2063/// MergeFunctionDecl - We just parsed a function 'New' from
2064/// declarator D which has the same name and scope as a previous
2065/// declaration 'Old'.  Figure out how to resolve this situation,
2066/// merging decls or emitting diagnostics as appropriate.
2067///
2068/// In C++, New and Old must be declarations that are not
2069/// overloaded. Use IsOverload to determine whether New and Old are
2070/// overloaded, and to select the Old declaration that New should be
2071/// merged with.
2072///
2073/// Returns true if there was an error, false otherwise.
2074bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2075  // Verify the old decl was also a function.
2076  FunctionDecl *Old = 0;
2077  if (FunctionTemplateDecl *OldFunctionTemplate
2078        = dyn_cast<FunctionTemplateDecl>(OldD))
2079    Old = OldFunctionTemplate->getTemplatedDecl();
2080  else
2081    Old = dyn_cast<FunctionDecl>(OldD);
2082  if (!Old) {
2083    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2084      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2085      Diag(Shadow->getTargetDecl()->getLocation(),
2086           diag::note_using_decl_target);
2087      Diag(Shadow->getUsingDecl()->getLocation(),
2088           diag::note_using_decl) << 0;
2089      return true;
2090    }
2091
2092    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2093      << New->getDeclName();
2094    Diag(OldD->getLocation(), diag::note_previous_definition);
2095    return true;
2096  }
2097
2098  // Determine whether the previous declaration was a definition,
2099  // implicit declaration, or a declaration.
2100  diag::kind PrevDiag;
2101  if (Old->isThisDeclarationADefinition())
2102    PrevDiag = diag::note_previous_definition;
2103  else if (Old->isImplicit())
2104    PrevDiag = diag::note_previous_implicit_declaration;
2105  else
2106    PrevDiag = diag::note_previous_declaration;
2107
2108  QualType OldQType = Context.getCanonicalType(Old->getType());
2109  QualType NewQType = Context.getCanonicalType(New->getType());
2110
2111  // Don't complain about this if we're in GNU89 mode and the old function
2112  // is an extern inline function.
2113  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2114      New->getStorageClass() == SC_Static &&
2115      Old->getStorageClass() != SC_Static &&
2116      !canRedefineFunction(Old, getLangOpts())) {
2117    if (getLangOpts().MicrosoftExt) {
2118      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2119      Diag(Old->getLocation(), PrevDiag);
2120    } else {
2121      Diag(New->getLocation(), diag::err_static_non_static) << New;
2122      Diag(Old->getLocation(), PrevDiag);
2123      return true;
2124    }
2125  }
2126
2127  // If a function is first declared with a calling convention, but is
2128  // later declared or defined without one, the second decl assumes the
2129  // calling convention of the first.
2130  //
2131  // It's OK if a function is first declared without a calling convention,
2132  // but is later declared or defined with the default calling convention.
2133  //
2134  // For the new decl, we have to look at the NON-canonical type to tell the
2135  // difference between a function that really doesn't have a calling
2136  // convention and one that is declared cdecl. That's because in
2137  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2138  // because it is the default calling convention.
2139  //
2140  // Note also that we DO NOT return at this point, because we still have
2141  // other tests to run.
2142  const FunctionType *OldType = cast<FunctionType>(OldQType);
2143  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2144  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2145  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2146  bool RequiresAdjustment = false;
2147  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2148    // Fast path: nothing to do.
2149
2150  // Inherit the CC from the previous declaration if it was specified
2151  // there but not here.
2152  } else if (NewTypeInfo.getCC() == CC_Default) {
2153    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2154    RequiresAdjustment = true;
2155
2156  // Don't complain about mismatches when the default CC is
2157  // effectively the same as the explict one.
2158  } else if (OldTypeInfo.getCC() == CC_Default &&
2159             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2160    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2161    RequiresAdjustment = true;
2162
2163  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2164                                     NewTypeInfo.getCC())) {
2165    // Calling conventions really aren't compatible, so complain.
2166    Diag(New->getLocation(), diag::err_cconv_change)
2167      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2168      << (OldTypeInfo.getCC() == CC_Default)
2169      << (OldTypeInfo.getCC() == CC_Default ? "" :
2170          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2171    Diag(Old->getLocation(), diag::note_previous_declaration);
2172    return true;
2173  }
2174
2175  // FIXME: diagnose the other way around?
2176  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2177    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2178    RequiresAdjustment = true;
2179  }
2180
2181  // Merge regparm attribute.
2182  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2183      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2184    if (NewTypeInfo.getHasRegParm()) {
2185      Diag(New->getLocation(), diag::err_regparm_mismatch)
2186        << NewType->getRegParmType()
2187        << OldType->getRegParmType();
2188      Diag(Old->getLocation(), diag::note_previous_declaration);
2189      return true;
2190    }
2191
2192    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2193    RequiresAdjustment = true;
2194  }
2195
2196  // Merge ns_returns_retained attribute.
2197  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2198    if (NewTypeInfo.getProducesResult()) {
2199      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2200      Diag(Old->getLocation(), diag::note_previous_declaration);
2201      return true;
2202    }
2203
2204    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2205    RequiresAdjustment = true;
2206  }
2207
2208  if (RequiresAdjustment) {
2209    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2210    New->setType(QualType(NewType, 0));
2211    NewQType = Context.getCanonicalType(New->getType());
2212  }
2213
2214  if (getLangOpts().CPlusPlus) {
2215    // (C++98 13.1p2):
2216    //   Certain function declarations cannot be overloaded:
2217    //     -- Function declarations that differ only in the return type
2218    //        cannot be overloaded.
2219    QualType OldReturnType = OldType->getResultType();
2220    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2221    QualType ResQT;
2222    if (OldReturnType != NewReturnType) {
2223      if (NewReturnType->isObjCObjectPointerType()
2224          && OldReturnType->isObjCObjectPointerType())
2225        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2226      if (ResQT.isNull()) {
2227        if (New->isCXXClassMember() && New->isOutOfLine())
2228          Diag(New->getLocation(),
2229               diag::err_member_def_does_not_match_ret_type) << New;
2230        else
2231          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2232        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2233        return true;
2234      }
2235      else
2236        NewQType = ResQT;
2237    }
2238
2239    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2240    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2241    if (OldMethod && NewMethod) {
2242      // Preserve triviality.
2243      NewMethod->setTrivial(OldMethod->isTrivial());
2244
2245      // MSVC allows explicit template specialization at class scope:
2246      // 2 CXMethodDecls referring to the same function will be injected.
2247      // We don't want a redeclartion error.
2248      bool IsClassScopeExplicitSpecialization =
2249                              OldMethod->isFunctionTemplateSpecialization() &&
2250                              NewMethod->isFunctionTemplateSpecialization();
2251      bool isFriend = NewMethod->getFriendObjectKind();
2252
2253      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2254          !IsClassScopeExplicitSpecialization) {
2255        //    -- Member function declarations with the same name and the
2256        //       same parameter types cannot be overloaded if any of them
2257        //       is a static member function declaration.
2258        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2259          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2260          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2261          return true;
2262        }
2263
2264        // C++ [class.mem]p1:
2265        //   [...] A member shall not be declared twice in the
2266        //   member-specification, except that a nested class or member
2267        //   class template can be declared and then later defined.
2268        if (ActiveTemplateInstantiations.empty()) {
2269          unsigned NewDiag;
2270          if (isa<CXXConstructorDecl>(OldMethod))
2271            NewDiag = diag::err_constructor_redeclared;
2272          else if (isa<CXXDestructorDecl>(NewMethod))
2273            NewDiag = diag::err_destructor_redeclared;
2274          else if (isa<CXXConversionDecl>(NewMethod))
2275            NewDiag = diag::err_conv_function_redeclared;
2276          else
2277            NewDiag = diag::err_member_redeclared;
2278
2279          Diag(New->getLocation(), NewDiag);
2280        } else {
2281          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2282            << New << New->getType();
2283        }
2284        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2285
2286      // Complain if this is an explicit declaration of a special
2287      // member that was initially declared implicitly.
2288      //
2289      // As an exception, it's okay to befriend such methods in order
2290      // to permit the implicit constructor/destructor/operator calls.
2291      } else if (OldMethod->isImplicit()) {
2292        if (isFriend) {
2293          NewMethod->setImplicit();
2294        } else {
2295          Diag(NewMethod->getLocation(),
2296               diag::err_definition_of_implicitly_declared_member)
2297            << New << getSpecialMember(OldMethod);
2298          return true;
2299        }
2300      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2301        Diag(NewMethod->getLocation(),
2302             diag::err_definition_of_explicitly_defaulted_member)
2303          << getSpecialMember(OldMethod);
2304        return true;
2305      }
2306    }
2307
2308    // C++11 [dcl.attr.noreturn]p1:
2309    //   The first declaration of a function shall specify the noreturn
2310    //   attribute if any declaration of that function specifies the noreturn
2311    //   attribute.
2312    if (New->hasAttr<CXX11NoReturnAttr>() &&
2313        !Old->hasAttr<CXX11NoReturnAttr>()) {
2314      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2315           diag::err_noreturn_missing_on_first_decl);
2316      Diag(Old->getFirstDeclaration()->getLocation(),
2317           diag::note_noreturn_missing_first_decl);
2318    }
2319
2320    // C++11 [dcl.attr.depend]p2:
2321    //   The first declaration of a function shall specify the
2322    //   carries_dependency attribute for its declarator-id if any declaration
2323    //   of the function specifies the carries_dependency attribute.
2324    if (New->hasAttr<CarriesDependencyAttr>() &&
2325        !Old->hasAttr<CarriesDependencyAttr>()) {
2326      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2327           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2328      Diag(Old->getFirstDeclaration()->getLocation(),
2329           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2330    }
2331
2332    // (C++98 8.3.5p3):
2333    //   All declarations for a function shall agree exactly in both the
2334    //   return type and the parameter-type-list.
2335    // We also want to respect all the extended bits except noreturn.
2336
2337    // noreturn should now match unless the old type info didn't have it.
2338    QualType OldQTypeForComparison = OldQType;
2339    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2340      assert(OldQType == QualType(OldType, 0));
2341      const FunctionType *OldTypeForComparison
2342        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2343      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2344      assert(OldQTypeForComparison.isCanonical());
2345    }
2346
2347    if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2348      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2349      Diag(Old->getLocation(), PrevDiag);
2350      return true;
2351    }
2352
2353    if (OldQTypeForComparison == NewQType)
2354      return MergeCompatibleFunctionDecls(New, Old, S);
2355
2356    // Fall through for conflicting redeclarations and redefinitions.
2357  }
2358
2359  // C: Function types need to be compatible, not identical. This handles
2360  // duplicate function decls like "void f(int); void f(enum X);" properly.
2361  if (!getLangOpts().CPlusPlus &&
2362      Context.typesAreCompatible(OldQType, NewQType)) {
2363    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2364    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2365    const FunctionProtoType *OldProto = 0;
2366    if (isa<FunctionNoProtoType>(NewFuncType) &&
2367        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2368      // The old declaration provided a function prototype, but the
2369      // new declaration does not. Merge in the prototype.
2370      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2371      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2372                                                 OldProto->arg_type_end());
2373      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2374                                         ParamTypes.data(), ParamTypes.size(),
2375                                         OldProto->getExtProtoInfo());
2376      New->setType(NewQType);
2377      New->setHasInheritedPrototype();
2378
2379      // Synthesize a parameter for each argument type.
2380      SmallVector<ParmVarDecl*, 16> Params;
2381      for (FunctionProtoType::arg_type_iterator
2382             ParamType = OldProto->arg_type_begin(),
2383             ParamEnd = OldProto->arg_type_end();
2384           ParamType != ParamEnd; ++ParamType) {
2385        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2386                                                 SourceLocation(),
2387                                                 SourceLocation(), 0,
2388                                                 *ParamType, /*TInfo=*/0,
2389                                                 SC_None, SC_None,
2390                                                 0);
2391        Param->setScopeInfo(0, Params.size());
2392        Param->setImplicit();
2393        Params.push_back(Param);
2394      }
2395
2396      New->setParams(Params);
2397    }
2398
2399    return MergeCompatibleFunctionDecls(New, Old, S);
2400  }
2401
2402  // GNU C permits a K&R definition to follow a prototype declaration
2403  // if the declared types of the parameters in the K&R definition
2404  // match the types in the prototype declaration, even when the
2405  // promoted types of the parameters from the K&R definition differ
2406  // from the types in the prototype. GCC then keeps the types from
2407  // the prototype.
2408  //
2409  // If a variadic prototype is followed by a non-variadic K&R definition,
2410  // the K&R definition becomes variadic.  This is sort of an edge case, but
2411  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2412  // C99 6.9.1p8.
2413  if (!getLangOpts().CPlusPlus &&
2414      Old->hasPrototype() && !New->hasPrototype() &&
2415      New->getType()->getAs<FunctionProtoType>() &&
2416      Old->getNumParams() == New->getNumParams()) {
2417    SmallVector<QualType, 16> ArgTypes;
2418    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2419    const FunctionProtoType *OldProto
2420      = Old->getType()->getAs<FunctionProtoType>();
2421    const FunctionProtoType *NewProto
2422      = New->getType()->getAs<FunctionProtoType>();
2423
2424    // Determine whether this is the GNU C extension.
2425    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2426                                               NewProto->getResultType());
2427    bool LooseCompatible = !MergedReturn.isNull();
2428    for (unsigned Idx = 0, End = Old->getNumParams();
2429         LooseCompatible && Idx != End; ++Idx) {
2430      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2431      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2432      if (Context.typesAreCompatible(OldParm->getType(),
2433                                     NewProto->getArgType(Idx))) {
2434        ArgTypes.push_back(NewParm->getType());
2435      } else if (Context.typesAreCompatible(OldParm->getType(),
2436                                            NewParm->getType(),
2437                                            /*CompareUnqualified=*/true)) {
2438        GNUCompatibleParamWarning Warn
2439          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2440        Warnings.push_back(Warn);
2441        ArgTypes.push_back(NewParm->getType());
2442      } else
2443        LooseCompatible = false;
2444    }
2445
2446    if (LooseCompatible) {
2447      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2448        Diag(Warnings[Warn].NewParm->getLocation(),
2449             diag::ext_param_promoted_not_compatible_with_prototype)
2450          << Warnings[Warn].PromotedType
2451          << Warnings[Warn].OldParm->getType();
2452        if (Warnings[Warn].OldParm->getLocation().isValid())
2453          Diag(Warnings[Warn].OldParm->getLocation(),
2454               diag::note_previous_declaration);
2455      }
2456
2457      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2458                                           ArgTypes.size(),
2459                                           OldProto->getExtProtoInfo()));
2460      return MergeCompatibleFunctionDecls(New, Old, S);
2461    }
2462
2463    // Fall through to diagnose conflicting types.
2464  }
2465
2466  // A function that has already been declared has been redeclared or defined
2467  // with a different type- show appropriate diagnostic
2468  if (unsigned BuiltinID = Old->getBuiltinID()) {
2469    // The user has declared a builtin function with an incompatible
2470    // signature.
2471    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2472      // The function the user is redeclaring is a library-defined
2473      // function like 'malloc' or 'printf'. Warn about the
2474      // redeclaration, then pretend that we don't know about this
2475      // library built-in.
2476      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2477      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2478        << Old << Old->getType();
2479      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2480      Old->setInvalidDecl();
2481      return false;
2482    }
2483
2484    PrevDiag = diag::note_previous_builtin_declaration;
2485  }
2486
2487  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2488  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2489  return true;
2490}
2491
2492/// \brief Completes the merge of two function declarations that are
2493/// known to be compatible.
2494///
2495/// This routine handles the merging of attributes and other
2496/// properties of function declarations form the old declaration to
2497/// the new declaration, once we know that New is in fact a
2498/// redeclaration of Old.
2499///
2500/// \returns false
2501bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2502                                        Scope *S) {
2503  // Merge the attributes
2504  mergeDeclAttributes(New, Old);
2505
2506  // Merge the storage class.
2507  if (Old->getStorageClass() != SC_Extern &&
2508      Old->getStorageClass() != SC_None)
2509    New->setStorageClass(Old->getStorageClass());
2510
2511  // Merge "pure" flag.
2512  if (Old->isPure())
2513    New->setPure();
2514
2515  // Merge "used" flag.
2516  if (Old->isUsed(false))
2517    New->setUsed();
2518
2519  // Merge attributes from the parameters.  These can mismatch with K&R
2520  // declarations.
2521  if (New->getNumParams() == Old->getNumParams())
2522    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2523      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2524                               *this);
2525
2526  if (getLangOpts().CPlusPlus)
2527    return MergeCXXFunctionDecl(New, Old, S);
2528
2529  // Merge the function types so the we get the composite types for the return
2530  // and argument types.
2531  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2532  if (!Merged.isNull())
2533    New->setType(Merged);
2534
2535  return false;
2536}
2537
2538
2539void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2540                                ObjCMethodDecl *oldMethod) {
2541
2542  // Merge the attributes, including deprecated/unavailable
2543  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2544
2545  // Merge attributes from the parameters.
2546  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2547                                       oe = oldMethod->param_end();
2548  for (ObjCMethodDecl::param_iterator
2549         ni = newMethod->param_begin(), ne = newMethod->param_end();
2550       ni != ne && oi != oe; ++ni, ++oi)
2551    mergeParamDeclAttributes(*ni, *oi, *this);
2552
2553  CheckObjCMethodOverride(newMethod, oldMethod);
2554}
2555
2556/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2557/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2558/// emitting diagnostics as appropriate.
2559///
2560/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2561/// to here in AddInitializerToDecl. We can't check them before the initializer
2562/// is attached.
2563void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2564  if (New->isInvalidDecl() || Old->isInvalidDecl())
2565    return;
2566
2567  QualType MergedT;
2568  if (getLangOpts().CPlusPlus) {
2569    AutoType *AT = New->getType()->getContainedAutoType();
2570    if (AT && !AT->isDeduced()) {
2571      // We don't know what the new type is until the initializer is attached.
2572      return;
2573    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2574      // These could still be something that needs exception specs checked.
2575      return MergeVarDeclExceptionSpecs(New, Old);
2576    }
2577    // C++ [basic.link]p10:
2578    //   [...] the types specified by all declarations referring to a given
2579    //   object or function shall be identical, except that declarations for an
2580    //   array object can specify array types that differ by the presence or
2581    //   absence of a major array bound (8.3.4).
2582    else if (Old->getType()->isIncompleteArrayType() &&
2583             New->getType()->isArrayType()) {
2584      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2585      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2586      if (Context.hasSameType(OldArray->getElementType(),
2587                              NewArray->getElementType()))
2588        MergedT = New->getType();
2589    } else if (Old->getType()->isArrayType() &&
2590             New->getType()->isIncompleteArrayType()) {
2591      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2592      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2593      if (Context.hasSameType(OldArray->getElementType(),
2594                              NewArray->getElementType()))
2595        MergedT = Old->getType();
2596    } else if (New->getType()->isObjCObjectPointerType()
2597               && Old->getType()->isObjCObjectPointerType()) {
2598        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2599                                                        Old->getType());
2600    }
2601  } else {
2602    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2603  }
2604  if (MergedT.isNull()) {
2605    Diag(New->getLocation(), diag::err_redefinition_different_type)
2606      << New->getDeclName() << New->getType() << Old->getType();
2607    Diag(Old->getLocation(), diag::note_previous_definition);
2608    return New->setInvalidDecl();
2609  }
2610  New->setType(MergedT);
2611}
2612
2613/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2614/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2615/// situation, merging decls or emitting diagnostics as appropriate.
2616///
2617/// Tentative definition rules (C99 6.9.2p2) are checked by
2618/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2619/// definitions here, since the initializer hasn't been attached.
2620///
2621void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2622  // If the new decl is already invalid, don't do any other checking.
2623  if (New->isInvalidDecl())
2624    return;
2625
2626  // Verify the old decl was also a variable.
2627  VarDecl *Old = 0;
2628  if (!Previous.isSingleResult() ||
2629      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2630    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2631      << New->getDeclName();
2632    Diag(Previous.getRepresentativeDecl()->getLocation(),
2633         diag::note_previous_definition);
2634    return New->setInvalidDecl();
2635  }
2636
2637  // C++ [class.mem]p1:
2638  //   A member shall not be declared twice in the member-specification [...]
2639  //
2640  // Here, we need only consider static data members.
2641  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2642    Diag(New->getLocation(), diag::err_duplicate_member)
2643      << New->getIdentifier();
2644    Diag(Old->getLocation(), diag::note_previous_declaration);
2645    New->setInvalidDecl();
2646  }
2647
2648  mergeDeclAttributes(New, Old);
2649  // Warn if an already-declared variable is made a weak_import in a subsequent
2650  // declaration
2651  if (New->getAttr<WeakImportAttr>() &&
2652      Old->getStorageClass() == SC_None &&
2653      !Old->getAttr<WeakImportAttr>()) {
2654    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2655    Diag(Old->getLocation(), diag::note_previous_definition);
2656    // Remove weak_import attribute on new declaration.
2657    New->dropAttr<WeakImportAttr>();
2658  }
2659
2660  // Merge the types.
2661  MergeVarDeclTypes(New, Old);
2662  if (New->isInvalidDecl())
2663    return;
2664
2665  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2666  if (New->getStorageClass() == SC_Static &&
2667      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2668    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2669    Diag(Old->getLocation(), diag::note_previous_definition);
2670    return New->setInvalidDecl();
2671  }
2672  // C99 6.2.2p4:
2673  //   For an identifier declared with the storage-class specifier
2674  //   extern in a scope in which a prior declaration of that
2675  //   identifier is visible,23) if the prior declaration specifies
2676  //   internal or external linkage, the linkage of the identifier at
2677  //   the later declaration is the same as the linkage specified at
2678  //   the prior declaration. If no prior declaration is visible, or
2679  //   if the prior declaration specifies no linkage, then the
2680  //   identifier has external linkage.
2681  if (New->hasExternalStorage() && Old->hasLinkage())
2682    /* Okay */;
2683  else if (New->getStorageClass() != SC_Static &&
2684           Old->getStorageClass() == SC_Static) {
2685    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2686    Diag(Old->getLocation(), diag::note_previous_definition);
2687    return New->setInvalidDecl();
2688  }
2689
2690  // Check if extern is followed by non-extern and vice-versa.
2691  if (New->hasExternalStorage() &&
2692      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2693    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2694    Diag(Old->getLocation(), diag::note_previous_definition);
2695    return New->setInvalidDecl();
2696  }
2697  if (Old->hasExternalStorage() &&
2698      !New->hasLinkage() && New->isLocalVarDecl()) {
2699    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2700    Diag(Old->getLocation(), diag::note_previous_definition);
2701    return New->setInvalidDecl();
2702  }
2703
2704  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2705
2706  // FIXME: The test for external storage here seems wrong? We still
2707  // need to check for mismatches.
2708  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2709      // Don't complain about out-of-line definitions of static members.
2710      !(Old->getLexicalDeclContext()->isRecord() &&
2711        !New->getLexicalDeclContext()->isRecord())) {
2712    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2713    Diag(Old->getLocation(), diag::note_previous_definition);
2714    return New->setInvalidDecl();
2715  }
2716
2717  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2718    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2719    Diag(Old->getLocation(), diag::note_previous_definition);
2720  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2721    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2722    Diag(Old->getLocation(), diag::note_previous_definition);
2723  }
2724
2725  // C++ doesn't have tentative definitions, so go right ahead and check here.
2726  const VarDecl *Def;
2727  if (getLangOpts().CPlusPlus &&
2728      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2729      (Def = Old->getDefinition())) {
2730    Diag(New->getLocation(), diag::err_redefinition)
2731      << New->getDeclName();
2732    Diag(Def->getLocation(), diag::note_previous_definition);
2733    New->setInvalidDecl();
2734    return;
2735  }
2736
2737  if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2738    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2739    Diag(Old->getLocation(), diag::note_previous_definition);
2740    New->setInvalidDecl();
2741    return;
2742  }
2743
2744  // c99 6.2.2 P4.
2745  // For an identifier declared with the storage-class specifier extern in a
2746  // scope in which a prior declaration of that identifier is visible, if
2747  // the prior declaration specifies internal or external linkage, the linkage
2748  // of the identifier at the later declaration is the same as the linkage
2749  // specified at the prior declaration.
2750  // FIXME. revisit this code.
2751  if (New->hasExternalStorage() &&
2752      Old->getLinkage() == InternalLinkage)
2753    New->setStorageClass(Old->getStorageClass());
2754
2755  // Merge "used" flag.
2756  if (Old->isUsed(false))
2757    New->setUsed();
2758
2759  // Keep a chain of previous declarations.
2760  New->setPreviousDeclaration(Old);
2761
2762  // Inherit access appropriately.
2763  New->setAccess(Old->getAccess());
2764}
2765
2766/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2767/// no declarator (e.g. "struct foo;") is parsed.
2768Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2769                                       DeclSpec &DS) {
2770  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2771}
2772
2773/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2774/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2775/// parameters to cope with template friend declarations.
2776Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2777                                       DeclSpec &DS,
2778                                       MultiTemplateParamsArg TemplateParams) {
2779  Decl *TagD = 0;
2780  TagDecl *Tag = 0;
2781  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2782      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2783      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2784      DS.getTypeSpecType() == DeclSpec::TST_union ||
2785      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2786    TagD = DS.getRepAsDecl();
2787
2788    if (!TagD) // We probably had an error
2789      return 0;
2790
2791    // Note that the above type specs guarantee that the
2792    // type rep is a Decl, whereas in many of the others
2793    // it's a Type.
2794    if (isa<TagDecl>(TagD))
2795      Tag = cast<TagDecl>(TagD);
2796    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2797      Tag = CTD->getTemplatedDecl();
2798  }
2799
2800  if (Tag) {
2801    getASTContext().addUnnamedTag(Tag);
2802    Tag->setFreeStanding();
2803    if (Tag->isInvalidDecl())
2804      return Tag;
2805  }
2806
2807  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2808    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2809    // or incomplete types shall not be restrict-qualified."
2810    if (TypeQuals & DeclSpec::TQ_restrict)
2811      Diag(DS.getRestrictSpecLoc(),
2812           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2813           << DS.getSourceRange();
2814  }
2815
2816  if (DS.isConstexprSpecified()) {
2817    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2818    // and definitions of functions and variables.
2819    if (Tag)
2820      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2821        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2822            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2823            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2824            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2825    else
2826      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2827    // Don't emit warnings after this error.
2828    return TagD;
2829  }
2830
2831  if (DS.isFriendSpecified()) {
2832    // If we're dealing with a decl but not a TagDecl, assume that
2833    // whatever routines created it handled the friendship aspect.
2834    if (TagD && !Tag)
2835      return 0;
2836    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2837  }
2838
2839  // Track whether we warned about the fact that there aren't any
2840  // declarators.
2841  bool emittedWarning = false;
2842
2843  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2844    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2845        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2846      if (getLangOpts().CPlusPlus ||
2847          Record->getDeclContext()->isRecord())
2848        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2849
2850      Diag(DS.getLocStart(), diag::ext_no_declarators)
2851        << DS.getSourceRange();
2852      emittedWarning = true;
2853    }
2854  }
2855
2856  // Check for Microsoft C extension: anonymous struct.
2857  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2858      CurContext->isRecord() &&
2859      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2860    // Handle 2 kinds of anonymous struct:
2861    //   struct STRUCT;
2862    // and
2863    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2864    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2865    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2866        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2867         DS.getRepAsType().get()->isStructureType())) {
2868      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2869        << DS.getSourceRange();
2870      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2871    }
2872  }
2873
2874  if (getLangOpts().CPlusPlus &&
2875      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2876    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2877      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2878          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2879        Diag(Enum->getLocation(), diag::ext_no_declarators)
2880          << DS.getSourceRange();
2881        emittedWarning = true;
2882      }
2883
2884  // Skip all the checks below if we have a type error.
2885  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2886
2887  if (!DS.isMissingDeclaratorOk()) {
2888    // Warn about typedefs of enums without names, since this is an
2889    // extension in both Microsoft and GNU.
2890    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2891        Tag && isa<EnumDecl>(Tag)) {
2892      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2893        << DS.getSourceRange();
2894      return Tag;
2895    }
2896
2897    Diag(DS.getLocStart(), diag::ext_no_declarators)
2898      << DS.getSourceRange();
2899    emittedWarning = true;
2900  }
2901
2902  // We're going to complain about a bunch of spurious specifiers;
2903  // only do this if we're declaring a tag, because otherwise we
2904  // should be getting diag::ext_no_declarators.
2905  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2906    return TagD;
2907
2908  // Note that a linkage-specification sets a storage class, but
2909  // 'extern "C" struct foo;' is actually valid and not theoretically
2910  // useless.
2911  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2912    if (!DS.isExternInLinkageSpec())
2913      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2914        << DeclSpec::getSpecifierName(scs);
2915
2916  if (DS.isThreadSpecified())
2917    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2918  if (DS.getTypeQualifiers()) {
2919    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2920      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2921    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2922      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2923    // Restrict is covered above.
2924  }
2925  if (DS.isInlineSpecified())
2926    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2927  if (DS.isVirtualSpecified())
2928    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2929  if (DS.isExplicitSpecified())
2930    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2931
2932  if (DS.isModulePrivateSpecified() &&
2933      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2934    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2935      << Tag->getTagKind()
2936      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2937
2938  // Warn about ignored type attributes, for example:
2939  // __attribute__((aligned)) struct A;
2940  // Attributes should be placed after tag to apply to type declaration.
2941  if (!DS.getAttributes().empty()) {
2942    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2943    if (TypeSpecType == DeclSpec::TST_class ||
2944        TypeSpecType == DeclSpec::TST_struct ||
2945        TypeSpecType == DeclSpec::TST_interface ||
2946        TypeSpecType == DeclSpec::TST_union ||
2947        TypeSpecType == DeclSpec::TST_enum) {
2948      AttributeList* attrs = DS.getAttributes().getList();
2949      while (attrs) {
2950        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2951        << attrs->getName()
2952        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2953            TypeSpecType == DeclSpec::TST_struct ? 1 :
2954            TypeSpecType == DeclSpec::TST_union ? 2 :
2955            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2956        attrs = attrs->getNext();
2957      }
2958    }
2959  }
2960
2961  ActOnDocumentableDecl(TagD);
2962
2963  return TagD;
2964}
2965
2966/// We are trying to inject an anonymous member into the given scope;
2967/// check if there's an existing declaration that can't be overloaded.
2968///
2969/// \return true if this is a forbidden redeclaration
2970static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2971                                         Scope *S,
2972                                         DeclContext *Owner,
2973                                         DeclarationName Name,
2974                                         SourceLocation NameLoc,
2975                                         unsigned diagnostic) {
2976  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2977                 Sema::ForRedeclaration);
2978  if (!SemaRef.LookupName(R, S)) return false;
2979
2980  if (R.getAsSingle<TagDecl>())
2981    return false;
2982
2983  // Pick a representative declaration.
2984  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2985  assert(PrevDecl && "Expected a non-null Decl");
2986
2987  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2988    return false;
2989
2990  SemaRef.Diag(NameLoc, diagnostic) << Name;
2991  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2992
2993  return true;
2994}
2995
2996/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2997/// anonymous struct or union AnonRecord into the owning context Owner
2998/// and scope S. This routine will be invoked just after we realize
2999/// that an unnamed union or struct is actually an anonymous union or
3000/// struct, e.g.,
3001///
3002/// @code
3003/// union {
3004///   int i;
3005///   float f;
3006/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3007///    // f into the surrounding scope.x
3008/// @endcode
3009///
3010/// This routine is recursive, injecting the names of nested anonymous
3011/// structs/unions into the owning context and scope as well.
3012static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3013                                                DeclContext *Owner,
3014                                                RecordDecl *AnonRecord,
3015                                                AccessSpecifier AS,
3016                              SmallVector<NamedDecl*, 2> &Chaining,
3017                                                      bool MSAnonStruct) {
3018  unsigned diagKind
3019    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3020                            : diag::err_anonymous_struct_member_redecl;
3021
3022  bool Invalid = false;
3023
3024  // Look every FieldDecl and IndirectFieldDecl with a name.
3025  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3026                               DEnd = AnonRecord->decls_end();
3027       D != DEnd; ++D) {
3028    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3029        cast<NamedDecl>(*D)->getDeclName()) {
3030      ValueDecl *VD = cast<ValueDecl>(*D);
3031      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3032                                       VD->getLocation(), diagKind)) {
3033        // C++ [class.union]p2:
3034        //   The names of the members of an anonymous union shall be
3035        //   distinct from the names of any other entity in the
3036        //   scope in which the anonymous union is declared.
3037        Invalid = true;
3038      } else {
3039        // C++ [class.union]p2:
3040        //   For the purpose of name lookup, after the anonymous union
3041        //   definition, the members of the anonymous union are
3042        //   considered to have been defined in the scope in which the
3043        //   anonymous union is declared.
3044        unsigned OldChainingSize = Chaining.size();
3045        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3046          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3047               PE = IF->chain_end(); PI != PE; ++PI)
3048            Chaining.push_back(*PI);
3049        else
3050          Chaining.push_back(VD);
3051
3052        assert(Chaining.size() >= 2);
3053        NamedDecl **NamedChain =
3054          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3055        for (unsigned i = 0; i < Chaining.size(); i++)
3056          NamedChain[i] = Chaining[i];
3057
3058        IndirectFieldDecl* IndirectField =
3059          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3060                                    VD->getIdentifier(), VD->getType(),
3061                                    NamedChain, Chaining.size());
3062
3063        IndirectField->setAccess(AS);
3064        IndirectField->setImplicit();
3065        SemaRef.PushOnScopeChains(IndirectField, S);
3066
3067        // That includes picking up the appropriate access specifier.
3068        if (AS != AS_none) IndirectField->setAccess(AS);
3069
3070        Chaining.resize(OldChainingSize);
3071      }
3072    }
3073  }
3074
3075  return Invalid;
3076}
3077
3078/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3079/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3080/// illegal input values are mapped to SC_None.
3081static StorageClass
3082StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3083  switch (StorageClassSpec) {
3084  case DeclSpec::SCS_unspecified:    return SC_None;
3085  case DeclSpec::SCS_extern:         return SC_Extern;
3086  case DeclSpec::SCS_static:         return SC_Static;
3087  case DeclSpec::SCS_auto:           return SC_Auto;
3088  case DeclSpec::SCS_register:       return SC_Register;
3089  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3090    // Illegal SCSs map to None: error reporting is up to the caller.
3091  case DeclSpec::SCS_mutable:        // Fall through.
3092  case DeclSpec::SCS_typedef:        return SC_None;
3093  }
3094  llvm_unreachable("unknown storage class specifier");
3095}
3096
3097/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3098/// a StorageClass. Any error reporting is up to the caller:
3099/// illegal input values are mapped to SC_None.
3100static StorageClass
3101StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3102  switch (StorageClassSpec) {
3103  case DeclSpec::SCS_unspecified:    return SC_None;
3104  case DeclSpec::SCS_extern:         return SC_Extern;
3105  case DeclSpec::SCS_static:         return SC_Static;
3106  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3107    // Illegal SCSs map to None: error reporting is up to the caller.
3108  case DeclSpec::SCS_auto:           // Fall through.
3109  case DeclSpec::SCS_mutable:        // Fall through.
3110  case DeclSpec::SCS_register:       // Fall through.
3111  case DeclSpec::SCS_typedef:        return SC_None;
3112  }
3113  llvm_unreachable("unknown storage class specifier");
3114}
3115
3116/// BuildAnonymousStructOrUnion - Handle the declaration of an
3117/// anonymous structure or union. Anonymous unions are a C++ feature
3118/// (C++ [class.union]) and a C11 feature; anonymous structures
3119/// are a C11 feature and GNU C++ extension.
3120Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3121                                             AccessSpecifier AS,
3122                                             RecordDecl *Record) {
3123  DeclContext *Owner = Record->getDeclContext();
3124
3125  // Diagnose whether this anonymous struct/union is an extension.
3126  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3127    Diag(Record->getLocation(), diag::ext_anonymous_union);
3128  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3129    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3130  else if (!Record->isUnion() && !getLangOpts().C11)
3131    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3132
3133  // C and C++ require different kinds of checks for anonymous
3134  // structs/unions.
3135  bool Invalid = false;
3136  if (getLangOpts().CPlusPlus) {
3137    const char* PrevSpec = 0;
3138    unsigned DiagID;
3139    if (Record->isUnion()) {
3140      // C++ [class.union]p6:
3141      //   Anonymous unions declared in a named namespace or in the
3142      //   global namespace shall be declared static.
3143      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3144          (isa<TranslationUnitDecl>(Owner) ||
3145           (isa<NamespaceDecl>(Owner) &&
3146            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3147        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3148          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3149
3150        // Recover by adding 'static'.
3151        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3152                               PrevSpec, DiagID);
3153      }
3154      // C++ [class.union]p6:
3155      //   A storage class is not allowed in a declaration of an
3156      //   anonymous union in a class scope.
3157      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3158               isa<RecordDecl>(Owner)) {
3159        Diag(DS.getStorageClassSpecLoc(),
3160             diag::err_anonymous_union_with_storage_spec)
3161          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3162
3163        // Recover by removing the storage specifier.
3164        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3165                               SourceLocation(),
3166                               PrevSpec, DiagID);
3167      }
3168    }
3169
3170    // Ignore const/volatile/restrict qualifiers.
3171    if (DS.getTypeQualifiers()) {
3172      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3173        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3174          << Record->isUnion() << 0
3175          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3176      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3177        Diag(DS.getVolatileSpecLoc(),
3178             diag::ext_anonymous_struct_union_qualified)
3179          << Record->isUnion() << 1
3180          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3181      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3182        Diag(DS.getRestrictSpecLoc(),
3183             diag::ext_anonymous_struct_union_qualified)
3184          << Record->isUnion() << 2
3185          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3186
3187      DS.ClearTypeQualifiers();
3188    }
3189
3190    // C++ [class.union]p2:
3191    //   The member-specification of an anonymous union shall only
3192    //   define non-static data members. [Note: nested types and
3193    //   functions cannot be declared within an anonymous union. ]
3194    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3195                                 MemEnd = Record->decls_end();
3196         Mem != MemEnd; ++Mem) {
3197      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3198        // C++ [class.union]p3:
3199        //   An anonymous union shall not have private or protected
3200        //   members (clause 11).
3201        assert(FD->getAccess() != AS_none);
3202        if (FD->getAccess() != AS_public) {
3203          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3204            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3205          Invalid = true;
3206        }
3207
3208        // C++ [class.union]p1
3209        //   An object of a class with a non-trivial constructor, a non-trivial
3210        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3211        //   assignment operator cannot be a member of a union, nor can an
3212        //   array of such objects.
3213        if (CheckNontrivialField(FD))
3214          Invalid = true;
3215      } else if ((*Mem)->isImplicit()) {
3216        // Any implicit members are fine.
3217      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3218        // This is a type that showed up in an
3219        // elaborated-type-specifier inside the anonymous struct or
3220        // union, but which actually declares a type outside of the
3221        // anonymous struct or union. It's okay.
3222      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3223        if (!MemRecord->isAnonymousStructOrUnion() &&
3224            MemRecord->getDeclName()) {
3225          // Visual C++ allows type definition in anonymous struct or union.
3226          if (getLangOpts().MicrosoftExt)
3227            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3228              << (int)Record->isUnion();
3229          else {
3230            // This is a nested type declaration.
3231            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3232              << (int)Record->isUnion();
3233            Invalid = true;
3234          }
3235        } else {
3236          // This is an anonymous type definition within another anonymous type.
3237          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3238          // not part of standard C++.
3239          Diag(MemRecord->getLocation(),
3240               diag::ext_anonymous_record_with_anonymous_type);
3241        }
3242      } else if (isa<AccessSpecDecl>(*Mem)) {
3243        // Any access specifier is fine.
3244      } else {
3245        // We have something that isn't a non-static data
3246        // member. Complain about it.
3247        unsigned DK = diag::err_anonymous_record_bad_member;
3248        if (isa<TypeDecl>(*Mem))
3249          DK = diag::err_anonymous_record_with_type;
3250        else if (isa<FunctionDecl>(*Mem))
3251          DK = diag::err_anonymous_record_with_function;
3252        else if (isa<VarDecl>(*Mem))
3253          DK = diag::err_anonymous_record_with_static;
3254
3255        // Visual C++ allows type definition in anonymous struct or union.
3256        if (getLangOpts().MicrosoftExt &&
3257            DK == diag::err_anonymous_record_with_type)
3258          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3259            << (int)Record->isUnion();
3260        else {
3261          Diag((*Mem)->getLocation(), DK)
3262              << (int)Record->isUnion();
3263          Invalid = true;
3264        }
3265      }
3266    }
3267  }
3268
3269  if (!Record->isUnion() && !Owner->isRecord()) {
3270    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3271      << (int)getLangOpts().CPlusPlus;
3272    Invalid = true;
3273  }
3274
3275  // Mock up a declarator.
3276  Declarator Dc(DS, Declarator::MemberContext);
3277  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3278  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3279
3280  // Create a declaration for this anonymous struct/union.
3281  NamedDecl *Anon = 0;
3282  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3283    Anon = FieldDecl::Create(Context, OwningClass,
3284                             DS.getLocStart(),
3285                             Record->getLocation(),
3286                             /*IdentifierInfo=*/0,
3287                             Context.getTypeDeclType(Record),
3288                             TInfo,
3289                             /*BitWidth=*/0, /*Mutable=*/false,
3290                             /*InitStyle=*/ICIS_NoInit);
3291    Anon->setAccess(AS);
3292    if (getLangOpts().CPlusPlus)
3293      FieldCollector->Add(cast<FieldDecl>(Anon));
3294  } else {
3295    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3296    assert(SCSpec != DeclSpec::SCS_typedef &&
3297           "Parser allowed 'typedef' as storage class VarDecl.");
3298    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3299    if (SCSpec == DeclSpec::SCS_mutable) {
3300      // mutable can only appear on non-static class members, so it's always
3301      // an error here
3302      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3303      Invalid = true;
3304      SC = SC_None;
3305    }
3306    SCSpec = DS.getStorageClassSpecAsWritten();
3307    VarDecl::StorageClass SCAsWritten
3308      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3309
3310    Anon = VarDecl::Create(Context, Owner,
3311                           DS.getLocStart(),
3312                           Record->getLocation(), /*IdentifierInfo=*/0,
3313                           Context.getTypeDeclType(Record),
3314                           TInfo, SC, SCAsWritten);
3315
3316    // Default-initialize the implicit variable. This initialization will be
3317    // trivial in almost all cases, except if a union member has an in-class
3318    // initializer:
3319    //   union { int n = 0; };
3320    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3321  }
3322  Anon->setImplicit();
3323
3324  // Add the anonymous struct/union object to the current
3325  // context. We'll be referencing this object when we refer to one of
3326  // its members.
3327  Owner->addDecl(Anon);
3328
3329  // Inject the members of the anonymous struct/union into the owning
3330  // context and into the identifier resolver chain for name lookup
3331  // purposes.
3332  SmallVector<NamedDecl*, 2> Chain;
3333  Chain.push_back(Anon);
3334
3335  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3336                                          Chain, false))
3337    Invalid = true;
3338
3339  // Mark this as an anonymous struct/union type. Note that we do not
3340  // do this until after we have already checked and injected the
3341  // members of this anonymous struct/union type, because otherwise
3342  // the members could be injected twice: once by DeclContext when it
3343  // builds its lookup table, and once by
3344  // InjectAnonymousStructOrUnionMembers.
3345  Record->setAnonymousStructOrUnion(true);
3346
3347  if (Invalid)
3348    Anon->setInvalidDecl();
3349
3350  return Anon;
3351}
3352
3353/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3354/// Microsoft C anonymous structure.
3355/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3356/// Example:
3357///
3358/// struct A { int a; };
3359/// struct B { struct A; int b; };
3360///
3361/// void foo() {
3362///   B var;
3363///   var.a = 3;
3364/// }
3365///
3366Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3367                                           RecordDecl *Record) {
3368
3369  // If there is no Record, get the record via the typedef.
3370  if (!Record)
3371    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3372
3373  // Mock up a declarator.
3374  Declarator Dc(DS, Declarator::TypeNameContext);
3375  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3376  assert(TInfo && "couldn't build declarator info for anonymous struct");
3377
3378  // Create a declaration for this anonymous struct.
3379  NamedDecl* Anon = FieldDecl::Create(Context,
3380                             cast<RecordDecl>(CurContext),
3381                             DS.getLocStart(),
3382                             DS.getLocStart(),
3383                             /*IdentifierInfo=*/0,
3384                             Context.getTypeDeclType(Record),
3385                             TInfo,
3386                             /*BitWidth=*/0, /*Mutable=*/false,
3387                             /*InitStyle=*/ICIS_NoInit);
3388  Anon->setImplicit();
3389
3390  // Add the anonymous struct object to the current context.
3391  CurContext->addDecl(Anon);
3392
3393  // Inject the members of the anonymous struct into the current
3394  // context and into the identifier resolver chain for name lookup
3395  // purposes.
3396  SmallVector<NamedDecl*, 2> Chain;
3397  Chain.push_back(Anon);
3398
3399  RecordDecl *RecordDef = Record->getDefinition();
3400  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3401                                                        RecordDef, AS_none,
3402                                                        Chain, true))
3403    Anon->setInvalidDecl();
3404
3405  return Anon;
3406}
3407
3408/// GetNameForDeclarator - Determine the full declaration name for the
3409/// given Declarator.
3410DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3411  return GetNameFromUnqualifiedId(D.getName());
3412}
3413
3414/// \brief Retrieves the declaration name from a parsed unqualified-id.
3415DeclarationNameInfo
3416Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3417  DeclarationNameInfo NameInfo;
3418  NameInfo.setLoc(Name.StartLocation);
3419
3420  switch (Name.getKind()) {
3421
3422  case UnqualifiedId::IK_ImplicitSelfParam:
3423  case UnqualifiedId::IK_Identifier:
3424    NameInfo.setName(Name.Identifier);
3425    NameInfo.setLoc(Name.StartLocation);
3426    return NameInfo;
3427
3428  case UnqualifiedId::IK_OperatorFunctionId:
3429    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3430                                           Name.OperatorFunctionId.Operator));
3431    NameInfo.setLoc(Name.StartLocation);
3432    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3433      = Name.OperatorFunctionId.SymbolLocations[0];
3434    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3435      = Name.EndLocation.getRawEncoding();
3436    return NameInfo;
3437
3438  case UnqualifiedId::IK_LiteralOperatorId:
3439    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3440                                                           Name.Identifier));
3441    NameInfo.setLoc(Name.StartLocation);
3442    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3443    return NameInfo;
3444
3445  case UnqualifiedId::IK_ConversionFunctionId: {
3446    TypeSourceInfo *TInfo;
3447    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3448    if (Ty.isNull())
3449      return DeclarationNameInfo();
3450    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3451                                               Context.getCanonicalType(Ty)));
3452    NameInfo.setLoc(Name.StartLocation);
3453    NameInfo.setNamedTypeInfo(TInfo);
3454    return NameInfo;
3455  }
3456
3457  case UnqualifiedId::IK_ConstructorName: {
3458    TypeSourceInfo *TInfo;
3459    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3460    if (Ty.isNull())
3461      return DeclarationNameInfo();
3462    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3463                                              Context.getCanonicalType(Ty)));
3464    NameInfo.setLoc(Name.StartLocation);
3465    NameInfo.setNamedTypeInfo(TInfo);
3466    return NameInfo;
3467  }
3468
3469  case UnqualifiedId::IK_ConstructorTemplateId: {
3470    // In well-formed code, we can only have a constructor
3471    // template-id that refers to the current context, so go there
3472    // to find the actual type being constructed.
3473    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3474    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3475      return DeclarationNameInfo();
3476
3477    // Determine the type of the class being constructed.
3478    QualType CurClassType = Context.getTypeDeclType(CurClass);
3479
3480    // FIXME: Check two things: that the template-id names the same type as
3481    // CurClassType, and that the template-id does not occur when the name
3482    // was qualified.
3483
3484    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3485                                    Context.getCanonicalType(CurClassType)));
3486    NameInfo.setLoc(Name.StartLocation);
3487    // FIXME: should we retrieve TypeSourceInfo?
3488    NameInfo.setNamedTypeInfo(0);
3489    return NameInfo;
3490  }
3491
3492  case UnqualifiedId::IK_DestructorName: {
3493    TypeSourceInfo *TInfo;
3494    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3495    if (Ty.isNull())
3496      return DeclarationNameInfo();
3497    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3498                                              Context.getCanonicalType(Ty)));
3499    NameInfo.setLoc(Name.StartLocation);
3500    NameInfo.setNamedTypeInfo(TInfo);
3501    return NameInfo;
3502  }
3503
3504  case UnqualifiedId::IK_TemplateId: {
3505    TemplateName TName = Name.TemplateId->Template.get();
3506    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3507    return Context.getNameForTemplate(TName, TNameLoc);
3508  }
3509
3510  } // switch (Name.getKind())
3511
3512  llvm_unreachable("Unknown name kind");
3513}
3514
3515static QualType getCoreType(QualType Ty) {
3516  do {
3517    if (Ty->isPointerType() || Ty->isReferenceType())
3518      Ty = Ty->getPointeeType();
3519    else if (Ty->isArrayType())
3520      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3521    else
3522      return Ty.withoutLocalFastQualifiers();
3523  } while (true);
3524}
3525
3526/// hasSimilarParameters - Determine whether the C++ functions Declaration
3527/// and Definition have "nearly" matching parameters. This heuristic is
3528/// used to improve diagnostics in the case where an out-of-line function
3529/// definition doesn't match any declaration within the class or namespace.
3530/// Also sets Params to the list of indices to the parameters that differ
3531/// between the declaration and the definition. If hasSimilarParameters
3532/// returns true and Params is empty, then all of the parameters match.
3533static bool hasSimilarParameters(ASTContext &Context,
3534                                     FunctionDecl *Declaration,
3535                                     FunctionDecl *Definition,
3536                                     SmallVectorImpl<unsigned> &Params) {
3537  Params.clear();
3538  if (Declaration->param_size() != Definition->param_size())
3539    return false;
3540  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3541    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3542    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3543
3544    // The parameter types are identical
3545    if (Context.hasSameType(DefParamTy, DeclParamTy))
3546      continue;
3547
3548    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3549    QualType DefParamBaseTy = getCoreType(DefParamTy);
3550    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3551    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3552
3553    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3554        (DeclTyName && DeclTyName == DefTyName))
3555      Params.push_back(Idx);
3556    else  // The two parameters aren't even close
3557      return false;
3558  }
3559
3560  return true;
3561}
3562
3563/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3564/// declarator needs to be rebuilt in the current instantiation.
3565/// Any bits of declarator which appear before the name are valid for
3566/// consideration here.  That's specifically the type in the decl spec
3567/// and the base type in any member-pointer chunks.
3568static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3569                                                    DeclarationName Name) {
3570  // The types we specifically need to rebuild are:
3571  //   - typenames, typeofs, and decltypes
3572  //   - types which will become injected class names
3573  // Of course, we also need to rebuild any type referencing such a
3574  // type.  It's safest to just say "dependent", but we call out a
3575  // few cases here.
3576
3577  DeclSpec &DS = D.getMutableDeclSpec();
3578  switch (DS.getTypeSpecType()) {
3579  case DeclSpec::TST_typename:
3580  case DeclSpec::TST_typeofType:
3581  case DeclSpec::TST_underlyingType:
3582  case DeclSpec::TST_atomic: {
3583    // Grab the type from the parser.
3584    TypeSourceInfo *TSI = 0;
3585    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3586    if (T.isNull() || !T->isDependentType()) break;
3587
3588    // Make sure there's a type source info.  This isn't really much
3589    // of a waste; most dependent types should have type source info
3590    // attached already.
3591    if (!TSI)
3592      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3593
3594    // Rebuild the type in the current instantiation.
3595    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3596    if (!TSI) return true;
3597
3598    // Store the new type back in the decl spec.
3599    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3600    DS.UpdateTypeRep(LocType);
3601    break;
3602  }
3603
3604  case DeclSpec::TST_decltype:
3605  case DeclSpec::TST_typeofExpr: {
3606    Expr *E = DS.getRepAsExpr();
3607    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3608    if (Result.isInvalid()) return true;
3609    DS.UpdateExprRep(Result.get());
3610    break;
3611  }
3612
3613  default:
3614    // Nothing to do for these decl specs.
3615    break;
3616  }
3617
3618  // It doesn't matter what order we do this in.
3619  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3620    DeclaratorChunk &Chunk = D.getTypeObject(I);
3621
3622    // The only type information in the declarator which can come
3623    // before the declaration name is the base type of a member
3624    // pointer.
3625    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3626      continue;
3627
3628    // Rebuild the scope specifier in-place.
3629    CXXScopeSpec &SS = Chunk.Mem.Scope();
3630    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3631      return true;
3632  }
3633
3634  return false;
3635}
3636
3637Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3638  D.setFunctionDefinitionKind(FDK_Declaration);
3639  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3640
3641  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3642      Dcl && Dcl->getDeclContext()->isFileContext())
3643    Dcl->setTopLevelDeclInObjCContainer();
3644
3645  return Dcl;
3646}
3647
3648/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3649///   If T is the name of a class, then each of the following shall have a
3650///   name different from T:
3651///     - every static data member of class T;
3652///     - every member function of class T
3653///     - every member of class T that is itself a type;
3654/// \returns true if the declaration name violates these rules.
3655bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3656                                   DeclarationNameInfo NameInfo) {
3657  DeclarationName Name = NameInfo.getName();
3658
3659  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3660    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3661      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3662      return true;
3663    }
3664
3665  return false;
3666}
3667
3668/// \brief Diagnose a declaration whose declarator-id has the given
3669/// nested-name-specifier.
3670///
3671/// \param SS The nested-name-specifier of the declarator-id.
3672///
3673/// \param DC The declaration context to which the nested-name-specifier
3674/// resolves.
3675///
3676/// \param Name The name of the entity being declared.
3677///
3678/// \param Loc The location of the name of the entity being declared.
3679///
3680/// \returns true if we cannot safely recover from this error, false otherwise.
3681bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3682                                        DeclarationName Name,
3683                                      SourceLocation Loc) {
3684  DeclContext *Cur = CurContext;
3685  while (isa<LinkageSpecDecl>(Cur))
3686    Cur = Cur->getParent();
3687
3688  // C++ [dcl.meaning]p1:
3689  //   A declarator-id shall not be qualified except for the definition
3690  //   of a member function (9.3) or static data member (9.4) outside of
3691  //   its class, the definition or explicit instantiation of a function
3692  //   or variable member of a namespace outside of its namespace, or the
3693  //   definition of an explicit specialization outside of its namespace,
3694  //   or the declaration of a friend function that is a member of
3695  //   another class or namespace (11.3). [...]
3696
3697  // The user provided a superfluous scope specifier that refers back to the
3698  // class or namespaces in which the entity is already declared.
3699  //
3700  // class X {
3701  //   void X::f();
3702  // };
3703  if (Cur->Equals(DC)) {
3704    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3705                                   : diag::err_member_extra_qualification)
3706      << Name << FixItHint::CreateRemoval(SS.getRange());
3707    SS.clear();
3708    return false;
3709  }
3710
3711  // Check whether the qualifying scope encloses the scope of the original
3712  // declaration.
3713  if (!Cur->Encloses(DC)) {
3714    if (Cur->isRecord())
3715      Diag(Loc, diag::err_member_qualification)
3716        << Name << SS.getRange();
3717    else if (isa<TranslationUnitDecl>(DC))
3718      Diag(Loc, diag::err_invalid_declarator_global_scope)
3719        << Name << SS.getRange();
3720    else if (isa<FunctionDecl>(Cur))
3721      Diag(Loc, diag::err_invalid_declarator_in_function)
3722        << Name << SS.getRange();
3723    else
3724      Diag(Loc, diag::err_invalid_declarator_scope)
3725      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3726
3727    return true;
3728  }
3729
3730  if (Cur->isRecord()) {
3731    // Cannot qualify members within a class.
3732    Diag(Loc, diag::err_member_qualification)
3733      << Name << SS.getRange();
3734    SS.clear();
3735
3736    // C++ constructors and destructors with incorrect scopes can break
3737    // our AST invariants by having the wrong underlying types. If
3738    // that's the case, then drop this declaration entirely.
3739    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3740         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3741        !Context.hasSameType(Name.getCXXNameType(),
3742                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3743      return true;
3744
3745    return false;
3746  }
3747
3748  // C++11 [dcl.meaning]p1:
3749  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3750  //   not begin with a decltype-specifer"
3751  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3752  while (SpecLoc.getPrefix())
3753    SpecLoc = SpecLoc.getPrefix();
3754  if (dyn_cast_or_null<DecltypeType>(
3755        SpecLoc.getNestedNameSpecifier()->getAsType()))
3756    Diag(Loc, diag::err_decltype_in_declarator)
3757      << SpecLoc.getTypeLoc().getSourceRange();
3758
3759  return false;
3760}
3761
3762NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3763                                  MultiTemplateParamsArg TemplateParamLists) {
3764  // TODO: consider using NameInfo for diagnostic.
3765  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3766  DeclarationName Name = NameInfo.getName();
3767
3768  // All of these full declarators require an identifier.  If it doesn't have
3769  // one, the ParsedFreeStandingDeclSpec action should be used.
3770  if (!Name) {
3771    if (!D.isInvalidType())  // Reject this if we think it is valid.
3772      Diag(D.getDeclSpec().getLocStart(),
3773           diag::err_declarator_need_ident)
3774        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3775    return 0;
3776  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3777    return 0;
3778
3779  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3780  // we find one that is.
3781  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3782         (S->getFlags() & Scope::TemplateParamScope) != 0)
3783    S = S->getParent();
3784
3785  DeclContext *DC = CurContext;
3786  if (D.getCXXScopeSpec().isInvalid())
3787    D.setInvalidType();
3788  else if (D.getCXXScopeSpec().isSet()) {
3789    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3790                                        UPPC_DeclarationQualifier))
3791      return 0;
3792
3793    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3794    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3795    if (!DC) {
3796      // If we could not compute the declaration context, it's because the
3797      // declaration context is dependent but does not refer to a class,
3798      // class template, or class template partial specialization. Complain
3799      // and return early, to avoid the coming semantic disaster.
3800      Diag(D.getIdentifierLoc(),
3801           diag::err_template_qualified_declarator_no_match)
3802        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3803        << D.getCXXScopeSpec().getRange();
3804      return 0;
3805    }
3806    bool IsDependentContext = DC->isDependentContext();
3807
3808    if (!IsDependentContext &&
3809        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3810      return 0;
3811
3812    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3813      Diag(D.getIdentifierLoc(),
3814           diag::err_member_def_undefined_record)
3815        << Name << DC << D.getCXXScopeSpec().getRange();
3816      D.setInvalidType();
3817    } else if (!D.getDeclSpec().isFriendSpecified()) {
3818      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3819                                      Name, D.getIdentifierLoc())) {
3820        if (DC->isRecord())
3821          return 0;
3822
3823        D.setInvalidType();
3824      }
3825    }
3826
3827    // Check whether we need to rebuild the type of the given
3828    // declaration in the current instantiation.
3829    if (EnteringContext && IsDependentContext &&
3830        TemplateParamLists.size() != 0) {
3831      ContextRAII SavedContext(*this, DC);
3832      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3833        D.setInvalidType();
3834    }
3835  }
3836
3837  if (DiagnoseClassNameShadow(DC, NameInfo))
3838    // If this is a typedef, we'll end up spewing multiple diagnostics.
3839    // Just return early; it's safer.
3840    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3841      return 0;
3842
3843  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3844  QualType R = TInfo->getType();
3845
3846  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3847                                      UPPC_DeclarationType))
3848    D.setInvalidType();
3849
3850  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3851                        ForRedeclaration);
3852
3853  // See if this is a redefinition of a variable in the same scope.
3854  if (!D.getCXXScopeSpec().isSet()) {
3855    bool IsLinkageLookup = false;
3856
3857    // If the declaration we're planning to build will be a function
3858    // or object with linkage, then look for another declaration with
3859    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3860    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3861      /* Do nothing*/;
3862    else if (R->isFunctionType()) {
3863      if (CurContext->isFunctionOrMethod() ||
3864          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3865        IsLinkageLookup = true;
3866    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3867      IsLinkageLookup = true;
3868    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3869             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3870      IsLinkageLookup = true;
3871
3872    if (IsLinkageLookup)
3873      Previous.clear(LookupRedeclarationWithLinkage);
3874
3875    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3876  } else { // Something like "int foo::x;"
3877    LookupQualifiedName(Previous, DC);
3878
3879    // C++ [dcl.meaning]p1:
3880    //   When the declarator-id is qualified, the declaration shall refer to a
3881    //  previously declared member of the class or namespace to which the
3882    //  qualifier refers (or, in the case of a namespace, of an element of the
3883    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3884    //  thereof; [...]
3885    //
3886    // Note that we already checked the context above, and that we do not have
3887    // enough information to make sure that Previous contains the declaration
3888    // we want to match. For example, given:
3889    //
3890    //   class X {
3891    //     void f();
3892    //     void f(float);
3893    //   };
3894    //
3895    //   void X::f(int) { } // ill-formed
3896    //
3897    // In this case, Previous will point to the overload set
3898    // containing the two f's declared in X, but neither of them
3899    // matches.
3900
3901    // C++ [dcl.meaning]p1:
3902    //   [...] the member shall not merely have been introduced by a
3903    //   using-declaration in the scope of the class or namespace nominated by
3904    //   the nested-name-specifier of the declarator-id.
3905    RemoveUsingDecls(Previous);
3906  }
3907
3908  if (Previous.isSingleResult() &&
3909      Previous.getFoundDecl()->isTemplateParameter()) {
3910    // Maybe we will complain about the shadowed template parameter.
3911    if (!D.isInvalidType())
3912      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3913                                      Previous.getFoundDecl());
3914
3915    // Just pretend that we didn't see the previous declaration.
3916    Previous.clear();
3917  }
3918
3919  // In C++, the previous declaration we find might be a tag type
3920  // (class or enum). In this case, the new declaration will hide the
3921  // tag type. Note that this does does not apply if we're declaring a
3922  // typedef (C++ [dcl.typedef]p4).
3923  if (Previous.isSingleTagDecl() &&
3924      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3925    Previous.clear();
3926
3927  NamedDecl *New;
3928
3929  bool AddToScope = true;
3930  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3931    if (TemplateParamLists.size()) {
3932      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3933      return 0;
3934    }
3935
3936    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3937  } else if (R->isFunctionType()) {
3938    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3939                                  TemplateParamLists,
3940                                  AddToScope);
3941  } else {
3942    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3943                                  TemplateParamLists);
3944  }
3945
3946  if (New == 0)
3947    return 0;
3948
3949  // If this has an identifier and is not an invalid redeclaration or
3950  // function template specialization, add it to the scope stack.
3951  if (New->getDeclName() && AddToScope &&
3952       !(D.isRedeclaration() && New->isInvalidDecl()))
3953    PushOnScopeChains(New, S);
3954
3955  return New;
3956}
3957
3958/// Helper method to turn variable array types into constant array
3959/// types in certain situations which would otherwise be errors (for
3960/// GCC compatibility).
3961static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3962                                                    ASTContext &Context,
3963                                                    bool &SizeIsNegative,
3964                                                    llvm::APSInt &Oversized) {
3965  // This method tries to turn a variable array into a constant
3966  // array even when the size isn't an ICE.  This is necessary
3967  // for compatibility with code that depends on gcc's buggy
3968  // constant expression folding, like struct {char x[(int)(char*)2];}
3969  SizeIsNegative = false;
3970  Oversized = 0;
3971
3972  if (T->isDependentType())
3973    return QualType();
3974
3975  QualifierCollector Qs;
3976  const Type *Ty = Qs.strip(T);
3977
3978  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3979    QualType Pointee = PTy->getPointeeType();
3980    QualType FixedType =
3981        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3982                                            Oversized);
3983    if (FixedType.isNull()) return FixedType;
3984    FixedType = Context.getPointerType(FixedType);
3985    return Qs.apply(Context, FixedType);
3986  }
3987  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3988    QualType Inner = PTy->getInnerType();
3989    QualType FixedType =
3990        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3991                                            Oversized);
3992    if (FixedType.isNull()) return FixedType;
3993    FixedType = Context.getParenType(FixedType);
3994    return Qs.apply(Context, FixedType);
3995  }
3996
3997  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3998  if (!VLATy)
3999    return QualType();
4000  // FIXME: We should probably handle this case
4001  if (VLATy->getElementType()->isVariablyModifiedType())
4002    return QualType();
4003
4004  llvm::APSInt Res;
4005  if (!VLATy->getSizeExpr() ||
4006      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4007    return QualType();
4008
4009  // Check whether the array size is negative.
4010  if (Res.isSigned() && Res.isNegative()) {
4011    SizeIsNegative = true;
4012    return QualType();
4013  }
4014
4015  // Check whether the array is too large to be addressed.
4016  unsigned ActiveSizeBits
4017    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4018                                              Res);
4019  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4020    Oversized = Res;
4021    return QualType();
4022  }
4023
4024  return Context.getConstantArrayType(VLATy->getElementType(),
4025                                      Res, ArrayType::Normal, 0);
4026}
4027
4028static void
4029FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4030  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
4031    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
4032    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
4033                                      DstPTL->getPointeeLoc());
4034    DstPTL->setStarLoc(SrcPTL->getStarLoc());
4035    return;
4036  }
4037  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
4038    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
4039    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
4040                                      DstPTL->getInnerLoc());
4041    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
4042    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
4043    return;
4044  }
4045  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
4046  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
4047  TypeLoc SrcElemTL = SrcATL->getElementLoc();
4048  TypeLoc DstElemTL = DstATL->getElementLoc();
4049  DstElemTL.initializeFullCopy(SrcElemTL);
4050  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
4051  DstATL->setSizeExpr(SrcATL->getSizeExpr());
4052  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
4053}
4054
4055/// Helper method to turn variable array types into constant array
4056/// types in certain situations which would otherwise be errors (for
4057/// GCC compatibility).
4058static TypeSourceInfo*
4059TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4060                                              ASTContext &Context,
4061                                              bool &SizeIsNegative,
4062                                              llvm::APSInt &Oversized) {
4063  QualType FixedTy
4064    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4065                                          SizeIsNegative, Oversized);
4066  if (FixedTy.isNull())
4067    return 0;
4068  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4069  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4070                                    FixedTInfo->getTypeLoc());
4071  return FixedTInfo;
4072}
4073
4074/// \brief Register the given locally-scoped extern "C" declaration so
4075/// that it can be found later for redeclarations
4076void
4077Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4078                                       const LookupResult &Previous,
4079                                       Scope *S) {
4080  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4081         "Decl is not a locally-scoped decl!");
4082  // Note that we have a locally-scoped external with this name.
4083  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4084
4085  if (!Previous.isSingleResult())
4086    return;
4087
4088  NamedDecl *PrevDecl = Previous.getFoundDecl();
4089
4090  // If there was a previous declaration of this entity, it may be in
4091  // our identifier chain. Update the identifier chain with the new
4092  // declaration.
4093  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4094    // The previous declaration was found on the identifer resolver
4095    // chain, so remove it from its scope.
4096
4097    if (S->isDeclScope(PrevDecl)) {
4098      // Special case for redeclarations in the SAME scope.
4099      // Because this declaration is going to be added to the identifier chain
4100      // later, we should temporarily take it OFF the chain.
4101      IdResolver.RemoveDecl(ND);
4102
4103    } else {
4104      // Find the scope for the original declaration.
4105      while (S && !S->isDeclScope(PrevDecl))
4106        S = S->getParent();
4107    }
4108
4109    if (S)
4110      S->RemoveDecl(PrevDecl);
4111  }
4112}
4113
4114llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4115Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4116  if (ExternalSource) {
4117    // Load locally-scoped external decls from the external source.
4118    SmallVector<NamedDecl *, 4> Decls;
4119    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4120    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4121      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4122        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4123      if (Pos == LocallyScopedExternCDecls.end())
4124        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4125    }
4126  }
4127
4128  return LocallyScopedExternCDecls.find(Name);
4129}
4130
4131/// \brief Diagnose function specifiers on a declaration of an identifier that
4132/// does not identify a function.
4133void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4134  // FIXME: We should probably indicate the identifier in question to avoid
4135  // confusion for constructs like "inline int a(), b;"
4136  if (D.getDeclSpec().isInlineSpecified())
4137    Diag(D.getDeclSpec().getInlineSpecLoc(),
4138         diag::err_inline_non_function);
4139
4140  if (D.getDeclSpec().isVirtualSpecified())
4141    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4142         diag::err_virtual_non_function);
4143
4144  if (D.getDeclSpec().isExplicitSpecified())
4145    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4146         diag::err_explicit_non_function);
4147
4148  if (D.getDeclSpec().isNoreturnSpecified())
4149    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4150         diag::err_noreturn_non_function);
4151}
4152
4153NamedDecl*
4154Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4155                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4156  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4157  if (D.getCXXScopeSpec().isSet()) {
4158    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4159      << D.getCXXScopeSpec().getRange();
4160    D.setInvalidType();
4161    // Pretend we didn't see the scope specifier.
4162    DC = CurContext;
4163    Previous.clear();
4164  }
4165
4166  if (getLangOpts().CPlusPlus) {
4167    // Check that there are no default arguments (C++ only).
4168    CheckExtraCXXDefaultArguments(D);
4169  }
4170
4171  DiagnoseFunctionSpecifiers(D);
4172
4173  if (D.getDeclSpec().isThreadSpecified())
4174    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4175  if (D.getDeclSpec().isConstexprSpecified())
4176    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4177      << 1;
4178
4179  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4180    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4181      << D.getName().getSourceRange();
4182    return 0;
4183  }
4184
4185  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4186  if (!NewTD) return 0;
4187
4188  // Handle attributes prior to checking for duplicates in MergeVarDecl
4189  ProcessDeclAttributes(S, NewTD, D);
4190
4191  CheckTypedefForVariablyModifiedType(S, NewTD);
4192
4193  bool Redeclaration = D.isRedeclaration();
4194  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4195  D.setRedeclaration(Redeclaration);
4196  return ND;
4197}
4198
4199void
4200Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4201  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4202  // then it shall have block scope.
4203  // Note that variably modified types must be fixed before merging the decl so
4204  // that redeclarations will match.
4205  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4206  QualType T = TInfo->getType();
4207  if (T->isVariablyModifiedType()) {
4208    getCurFunction()->setHasBranchProtectedScope();
4209
4210    if (S->getFnParent() == 0) {
4211      bool SizeIsNegative;
4212      llvm::APSInt Oversized;
4213      TypeSourceInfo *FixedTInfo =
4214        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4215                                                      SizeIsNegative,
4216                                                      Oversized);
4217      if (FixedTInfo) {
4218        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4219        NewTD->setTypeSourceInfo(FixedTInfo);
4220      } else {
4221        if (SizeIsNegative)
4222          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4223        else if (T->isVariableArrayType())
4224          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4225        else if (Oversized.getBoolValue())
4226          Diag(NewTD->getLocation(), diag::err_array_too_large)
4227            << Oversized.toString(10);
4228        else
4229          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4230        NewTD->setInvalidDecl();
4231      }
4232    }
4233  }
4234}
4235
4236
4237/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4238/// declares a typedef-name, either using the 'typedef' type specifier or via
4239/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4240NamedDecl*
4241Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4242                           LookupResult &Previous, bool &Redeclaration) {
4243  // Merge the decl with the existing one if appropriate. If the decl is
4244  // in an outer scope, it isn't the same thing.
4245  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4246                       /*ExplicitInstantiationOrSpecialization=*/false);
4247  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4248  if (!Previous.empty()) {
4249    Redeclaration = true;
4250    MergeTypedefNameDecl(NewTD, Previous);
4251  }
4252
4253  // If this is the C FILE type, notify the AST context.
4254  if (IdentifierInfo *II = NewTD->getIdentifier())
4255    if (!NewTD->isInvalidDecl() &&
4256        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4257      if (II->isStr("FILE"))
4258        Context.setFILEDecl(NewTD);
4259      else if (II->isStr("jmp_buf"))
4260        Context.setjmp_bufDecl(NewTD);
4261      else if (II->isStr("sigjmp_buf"))
4262        Context.setsigjmp_bufDecl(NewTD);
4263      else if (II->isStr("ucontext_t"))
4264        Context.setucontext_tDecl(NewTD);
4265    }
4266
4267  return NewTD;
4268}
4269
4270/// \brief Determines whether the given declaration is an out-of-scope
4271/// previous declaration.
4272///
4273/// This routine should be invoked when name lookup has found a
4274/// previous declaration (PrevDecl) that is not in the scope where a
4275/// new declaration by the same name is being introduced. If the new
4276/// declaration occurs in a local scope, previous declarations with
4277/// linkage may still be considered previous declarations (C99
4278/// 6.2.2p4-5, C++ [basic.link]p6).
4279///
4280/// \param PrevDecl the previous declaration found by name
4281/// lookup
4282///
4283/// \param DC the context in which the new declaration is being
4284/// declared.
4285///
4286/// \returns true if PrevDecl is an out-of-scope previous declaration
4287/// for a new delcaration with the same name.
4288static bool
4289isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4290                                ASTContext &Context) {
4291  if (!PrevDecl)
4292    return false;
4293
4294  if (!PrevDecl->hasLinkage())
4295    return false;
4296
4297  if (Context.getLangOpts().CPlusPlus) {
4298    // C++ [basic.link]p6:
4299    //   If there is a visible declaration of an entity with linkage
4300    //   having the same name and type, ignoring entities declared
4301    //   outside the innermost enclosing namespace scope, the block
4302    //   scope declaration declares that same entity and receives the
4303    //   linkage of the previous declaration.
4304    DeclContext *OuterContext = DC->getRedeclContext();
4305    if (!OuterContext->isFunctionOrMethod())
4306      // This rule only applies to block-scope declarations.
4307      return false;
4308
4309    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4310    if (PrevOuterContext->isRecord())
4311      // We found a member function: ignore it.
4312      return false;
4313
4314    // Find the innermost enclosing namespace for the new and
4315    // previous declarations.
4316    OuterContext = OuterContext->getEnclosingNamespaceContext();
4317    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4318
4319    // The previous declaration is in a different namespace, so it
4320    // isn't the same function.
4321    if (!OuterContext->Equals(PrevOuterContext))
4322      return false;
4323  }
4324
4325  return true;
4326}
4327
4328static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4329  CXXScopeSpec &SS = D.getCXXScopeSpec();
4330  if (!SS.isSet()) return;
4331  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4332}
4333
4334bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4335  QualType type = decl->getType();
4336  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4337  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4338    // Various kinds of declaration aren't allowed to be __autoreleasing.
4339    unsigned kind = -1U;
4340    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4341      if (var->hasAttr<BlocksAttr>())
4342        kind = 0; // __block
4343      else if (!var->hasLocalStorage())
4344        kind = 1; // global
4345    } else if (isa<ObjCIvarDecl>(decl)) {
4346      kind = 3; // ivar
4347    } else if (isa<FieldDecl>(decl)) {
4348      kind = 2; // field
4349    }
4350
4351    if (kind != -1U) {
4352      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4353        << kind;
4354    }
4355  } else if (lifetime == Qualifiers::OCL_None) {
4356    // Try to infer lifetime.
4357    if (!type->isObjCLifetimeType())
4358      return false;
4359
4360    lifetime = type->getObjCARCImplicitLifetime();
4361    type = Context.getLifetimeQualifiedType(type, lifetime);
4362    decl->setType(type);
4363  }
4364
4365  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4366    // Thread-local variables cannot have lifetime.
4367    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4368        var->isThreadSpecified()) {
4369      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4370        << var->getType();
4371      return true;
4372    }
4373  }
4374
4375  return false;
4376}
4377
4378static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4379  // 'weak' only applies to declarations with external linkage.
4380  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4381    if (ND.getLinkage() != ExternalLinkage) {
4382      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4383      ND.dropAttr<WeakAttr>();
4384    }
4385  }
4386  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4387    if (ND.getLinkage() == ExternalLinkage) {
4388      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4389      ND.dropAttr<WeakRefAttr>();
4390    }
4391  }
4392}
4393
4394NamedDecl*
4395Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4396                              TypeSourceInfo *TInfo, LookupResult &Previous,
4397                              MultiTemplateParamsArg TemplateParamLists) {
4398  QualType R = TInfo->getType();
4399  DeclarationName Name = GetNameForDeclarator(D).getName();
4400
4401  // Check that there are no default arguments (C++ only).
4402  if (getLangOpts().CPlusPlus)
4403    CheckExtraCXXDefaultArguments(D);
4404
4405  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4406  assert(SCSpec != DeclSpec::SCS_typedef &&
4407         "Parser allowed 'typedef' as storage class VarDecl.");
4408  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4409
4410  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4411  {
4412    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4413    // half array type (unless the cl_khr_fp16 extension is enabled).
4414    if (Context.getBaseElementType(R)->isHalfType()) {
4415      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4416      D.setInvalidType();
4417    }
4418  }
4419
4420  if (SCSpec == DeclSpec::SCS_mutable) {
4421    // mutable can only appear on non-static class members, so it's always
4422    // an error here
4423    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4424    D.setInvalidType();
4425    SC = SC_None;
4426  }
4427  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4428  VarDecl::StorageClass SCAsWritten
4429    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4430
4431  IdentifierInfo *II = Name.getAsIdentifierInfo();
4432  if (!II) {
4433    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4434      << Name;
4435    return 0;
4436  }
4437
4438  DiagnoseFunctionSpecifiers(D);
4439
4440  if (!DC->isRecord() && S->getFnParent() == 0) {
4441    // C99 6.9p2: The storage-class specifiers auto and register shall not
4442    // appear in the declaration specifiers in an external declaration.
4443    if (SC == SC_Auto || SC == SC_Register) {
4444
4445      // If this is a register variable with an asm label specified, then this
4446      // is a GNU extension.
4447      if (SC == SC_Register && D.getAsmLabel())
4448        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4449      else
4450        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4451      D.setInvalidType();
4452    }
4453  }
4454
4455  if (getLangOpts().OpenCL) {
4456    // Set up the special work-group-local storage class for variables in the
4457    // OpenCL __local address space.
4458    if (R.getAddressSpace() == LangAS::opencl_local) {
4459      SC = SC_OpenCLWorkGroupLocal;
4460      SCAsWritten = SC_OpenCLWorkGroupLocal;
4461    }
4462
4463    // OpenCL 1.2 spec, p6.9 r:
4464    // The event type cannot be used to declare a program scope variable.
4465    // The event type cannot be used with the __local, __constant and __global
4466    // address space qualifiers.
4467    if (R->isEventT()) {
4468      if (S->getParent() == 0) {
4469        Diag(D.getLocStart(), diag::err_event_t_global_var);
4470        D.setInvalidType();
4471      }
4472
4473      if (R.getAddressSpace()) {
4474        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4475        D.setInvalidType();
4476      }
4477    }
4478  }
4479
4480  bool isExplicitSpecialization = false;
4481  VarDecl *NewVD;
4482  if (!getLangOpts().CPlusPlus) {
4483    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4484                            D.getIdentifierLoc(), II,
4485                            R, TInfo, SC, SCAsWritten);
4486
4487    if (D.isInvalidType())
4488      NewVD->setInvalidDecl();
4489  } else {
4490    if (DC->isRecord() && !CurContext->isRecord()) {
4491      // This is an out-of-line definition of a static data member.
4492      if (SC == SC_Static) {
4493        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4494             diag::err_static_out_of_line)
4495          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4496      } else if (SC == SC_None)
4497        SC = SC_Static;
4498    }
4499    if (SC == SC_Static && CurContext->isRecord()) {
4500      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4501        if (RD->isLocalClass())
4502          Diag(D.getIdentifierLoc(),
4503               diag::err_static_data_member_not_allowed_in_local_class)
4504            << Name << RD->getDeclName();
4505
4506        // C++98 [class.union]p1: If a union contains a static data member,
4507        // the program is ill-formed. C++11 drops this restriction.
4508        if (RD->isUnion())
4509          Diag(D.getIdentifierLoc(),
4510               getLangOpts().CPlusPlus11
4511                 ? diag::warn_cxx98_compat_static_data_member_in_union
4512                 : diag::ext_static_data_member_in_union) << Name;
4513        // We conservatively disallow static data members in anonymous structs.
4514        else if (!RD->getDeclName())
4515          Diag(D.getIdentifierLoc(),
4516               diag::err_static_data_member_not_allowed_in_anon_struct)
4517            << Name << RD->isUnion();
4518      }
4519    }
4520
4521    // Match up the template parameter lists with the scope specifier, then
4522    // determine whether we have a template or a template specialization.
4523    isExplicitSpecialization = false;
4524    bool Invalid = false;
4525    if (TemplateParameterList *TemplateParams
4526        = MatchTemplateParametersToScopeSpecifier(
4527                                  D.getDeclSpec().getLocStart(),
4528                                                  D.getIdentifierLoc(),
4529                                                  D.getCXXScopeSpec(),
4530                                                  TemplateParamLists.data(),
4531                                                  TemplateParamLists.size(),
4532                                                  /*never a friend*/ false,
4533                                                  isExplicitSpecialization,
4534                                                  Invalid)) {
4535      if (TemplateParams->size() > 0) {
4536        // There is no such thing as a variable template.
4537        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4538          << II
4539          << SourceRange(TemplateParams->getTemplateLoc(),
4540                         TemplateParams->getRAngleLoc());
4541        return 0;
4542      } else {
4543        // There is an extraneous 'template<>' for this variable. Complain
4544        // about it, but allow the declaration of the variable.
4545        Diag(TemplateParams->getTemplateLoc(),
4546             diag::err_template_variable_noparams)
4547          << II
4548          << SourceRange(TemplateParams->getTemplateLoc(),
4549                         TemplateParams->getRAngleLoc());
4550      }
4551    }
4552
4553    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4554                            D.getIdentifierLoc(), II,
4555                            R, TInfo, SC, SCAsWritten);
4556
4557    // If this decl has an auto type in need of deduction, make a note of the
4558    // Decl so we can diagnose uses of it in its own initializer.
4559    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4560        R->getContainedAutoType())
4561      ParsingInitForAutoVars.insert(NewVD);
4562
4563    if (D.isInvalidType() || Invalid)
4564      NewVD->setInvalidDecl();
4565
4566    SetNestedNameSpecifier(NewVD, D);
4567
4568    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4569      NewVD->setTemplateParameterListsInfo(Context,
4570                                           TemplateParamLists.size(),
4571                                           TemplateParamLists.data());
4572    }
4573
4574    if (D.getDeclSpec().isConstexprSpecified())
4575      NewVD->setConstexpr(true);
4576  }
4577
4578  // Set the lexical context. If the declarator has a C++ scope specifier, the
4579  // lexical context will be different from the semantic context.
4580  NewVD->setLexicalDeclContext(CurContext);
4581
4582  if (D.getDeclSpec().isThreadSpecified()) {
4583    if (NewVD->hasLocalStorage())
4584      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4585    else if (!Context.getTargetInfo().isTLSSupported())
4586      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4587    else
4588      NewVD->setThreadSpecified(true);
4589  }
4590
4591  if (D.getDeclSpec().isModulePrivateSpecified()) {
4592    if (isExplicitSpecialization)
4593      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4594        << 2
4595        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4596    else if (NewVD->hasLocalStorage())
4597      Diag(NewVD->getLocation(), diag::err_module_private_local)
4598        << 0 << NewVD->getDeclName()
4599        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4600        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4601    else
4602      NewVD->setModulePrivate();
4603  }
4604
4605  // Handle attributes prior to checking for duplicates in MergeVarDecl
4606  ProcessDeclAttributes(S, NewVD, D);
4607
4608  if (getLangOpts().CUDA) {
4609    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4610    // storage [duration]."
4611    if (SC == SC_None && S->getFnParent() != 0 &&
4612        (NewVD->hasAttr<CUDASharedAttr>() ||
4613         NewVD->hasAttr<CUDAConstantAttr>())) {
4614      NewVD->setStorageClass(SC_Static);
4615      NewVD->setStorageClassAsWritten(SC_Static);
4616    }
4617  }
4618
4619  // In auto-retain/release, infer strong retension for variables of
4620  // retainable type.
4621  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4622    NewVD->setInvalidDecl();
4623
4624  // Handle GNU asm-label extension (encoded as an attribute).
4625  if (Expr *E = (Expr*)D.getAsmLabel()) {
4626    // The parser guarantees this is a string.
4627    StringLiteral *SE = cast<StringLiteral>(E);
4628    StringRef Label = SE->getString();
4629    if (S->getFnParent() != 0) {
4630      switch (SC) {
4631      case SC_None:
4632      case SC_Auto:
4633        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4634        break;
4635      case SC_Register:
4636        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4637          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4638        break;
4639      case SC_Static:
4640      case SC_Extern:
4641      case SC_PrivateExtern:
4642      case SC_OpenCLWorkGroupLocal:
4643        break;
4644      }
4645    }
4646
4647    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4648                                                Context, Label));
4649  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4650    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4651      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4652    if (I != ExtnameUndeclaredIdentifiers.end()) {
4653      NewVD->addAttr(I->second);
4654      ExtnameUndeclaredIdentifiers.erase(I);
4655    }
4656  }
4657
4658  // Diagnose shadowed variables before filtering for scope.
4659  if (!D.getCXXScopeSpec().isSet())
4660    CheckShadow(S, NewVD, Previous);
4661
4662  // Don't consider existing declarations that are in a different
4663  // scope and are out-of-semantic-context declarations (if the new
4664  // declaration has linkage).
4665  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4666                       isExplicitSpecialization);
4667
4668  if (!getLangOpts().CPlusPlus) {
4669    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4670  } else {
4671    // Merge the decl with the existing one if appropriate.
4672    if (!Previous.empty()) {
4673      if (Previous.isSingleResult() &&
4674          isa<FieldDecl>(Previous.getFoundDecl()) &&
4675          D.getCXXScopeSpec().isSet()) {
4676        // The user tried to define a non-static data member
4677        // out-of-line (C++ [dcl.meaning]p1).
4678        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4679          << D.getCXXScopeSpec().getRange();
4680        Previous.clear();
4681        NewVD->setInvalidDecl();
4682      }
4683    } else if (D.getCXXScopeSpec().isSet()) {
4684      // No previous declaration in the qualifying scope.
4685      Diag(D.getIdentifierLoc(), diag::err_no_member)
4686        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4687        << D.getCXXScopeSpec().getRange();
4688      NewVD->setInvalidDecl();
4689    }
4690
4691    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4692
4693    // This is an explicit specialization of a static data member. Check it.
4694    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4695        CheckMemberSpecialization(NewVD, Previous))
4696      NewVD->setInvalidDecl();
4697  }
4698
4699  checkAttributesAfterMerging(*this, *NewVD);
4700
4701  // If this is a locally-scoped extern C variable, update the map of
4702  // such variables.
4703  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4704      !NewVD->isInvalidDecl())
4705    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4706
4707  // If there's a #pragma GCC visibility in scope, and this isn't a class
4708  // member, set the visibility of this variable.
4709  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4710    AddPushedVisibilityAttribute(NewVD);
4711
4712  return NewVD;
4713}
4714
4715/// \brief Diagnose variable or built-in function shadowing.  Implements
4716/// -Wshadow.
4717///
4718/// This method is called whenever a VarDecl is added to a "useful"
4719/// scope.
4720///
4721/// \param S the scope in which the shadowing name is being declared
4722/// \param R the lookup of the name
4723///
4724void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4725  // Return if warning is ignored.
4726  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4727        DiagnosticsEngine::Ignored)
4728    return;
4729
4730  // Don't diagnose declarations at file scope.
4731  if (D->hasGlobalStorage())
4732    return;
4733
4734  DeclContext *NewDC = D->getDeclContext();
4735
4736  // Only diagnose if we're shadowing an unambiguous field or variable.
4737  if (R.getResultKind() != LookupResult::Found)
4738    return;
4739
4740  NamedDecl* ShadowedDecl = R.getFoundDecl();
4741  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4742    return;
4743
4744  // Fields are not shadowed by variables in C++ static methods.
4745  if (isa<FieldDecl>(ShadowedDecl))
4746    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4747      if (MD->isStatic())
4748        return;
4749
4750  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4751    if (shadowedVar->isExternC()) {
4752      // For shadowing external vars, make sure that we point to the global
4753      // declaration, not a locally scoped extern declaration.
4754      for (VarDecl::redecl_iterator
4755             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4756           I != E; ++I)
4757        if (I->isFileVarDecl()) {
4758          ShadowedDecl = *I;
4759          break;
4760        }
4761    }
4762
4763  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4764
4765  // Only warn about certain kinds of shadowing for class members.
4766  if (NewDC && NewDC->isRecord()) {
4767    // In particular, don't warn about shadowing non-class members.
4768    if (!OldDC->isRecord())
4769      return;
4770
4771    // TODO: should we warn about static data members shadowing
4772    // static data members from base classes?
4773
4774    // TODO: don't diagnose for inaccessible shadowed members.
4775    // This is hard to do perfectly because we might friend the
4776    // shadowing context, but that's just a false negative.
4777  }
4778
4779  // Determine what kind of declaration we're shadowing.
4780  unsigned Kind;
4781  if (isa<RecordDecl>(OldDC)) {
4782    if (isa<FieldDecl>(ShadowedDecl))
4783      Kind = 3; // field
4784    else
4785      Kind = 2; // static data member
4786  } else if (OldDC->isFileContext())
4787    Kind = 1; // global
4788  else
4789    Kind = 0; // local
4790
4791  DeclarationName Name = R.getLookupName();
4792
4793  // Emit warning and note.
4794  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4795  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4796}
4797
4798/// \brief Check -Wshadow without the advantage of a previous lookup.
4799void Sema::CheckShadow(Scope *S, VarDecl *D) {
4800  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4801        DiagnosticsEngine::Ignored)
4802    return;
4803
4804  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4805                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4806  LookupName(R, S);
4807  CheckShadow(S, D, R);
4808}
4809
4810template<typename T>
4811static bool mayConflictWithNonVisibleExternC(const T *ND) {
4812  VarDecl::StorageClass SC = ND->getStorageClass();
4813  if (ND->hasCLanguageLinkage() && (SC == SC_Extern || SC == SC_PrivateExtern))
4814    return true;
4815  return ND->getDeclContext()->isTranslationUnit();
4816}
4817
4818/// \brief Perform semantic checking on a newly-created variable
4819/// declaration.
4820///
4821/// This routine performs all of the type-checking required for a
4822/// variable declaration once it has been built. It is used both to
4823/// check variables after they have been parsed and their declarators
4824/// have been translated into a declaration, and to check variables
4825/// that have been instantiated from a template.
4826///
4827/// Sets NewVD->isInvalidDecl() if an error was encountered.
4828///
4829/// Returns true if the variable declaration is a redeclaration.
4830bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4831                                    LookupResult &Previous) {
4832  // If the decl is already known invalid, don't check it.
4833  if (NewVD->isInvalidDecl())
4834    return false;
4835
4836  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4837  QualType T = TInfo->getType();
4838
4839  if (T->isObjCObjectType()) {
4840    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4841      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4842    T = Context.getObjCObjectPointerType(T);
4843    NewVD->setType(T);
4844  }
4845
4846  // Emit an error if an address space was applied to decl with local storage.
4847  // This includes arrays of objects with address space qualifiers, but not
4848  // automatic variables that point to other address spaces.
4849  // ISO/IEC TR 18037 S5.1.2
4850  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4851    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4852    NewVD->setInvalidDecl();
4853    return false;
4854  }
4855
4856  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4857  // scope.
4858  if ((getLangOpts().OpenCLVersion >= 120)
4859      && NewVD->isStaticLocal()) {
4860    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4861    NewVD->setInvalidDecl();
4862    return false;
4863  }
4864
4865  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4866      && !NewVD->hasAttr<BlocksAttr>()) {
4867    if (getLangOpts().getGC() != LangOptions::NonGC)
4868      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4869    else {
4870      assert(!getLangOpts().ObjCAutoRefCount);
4871      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4872    }
4873  }
4874
4875  bool isVM = T->isVariablyModifiedType();
4876  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4877      NewVD->hasAttr<BlocksAttr>())
4878    getCurFunction()->setHasBranchProtectedScope();
4879
4880  if ((isVM && NewVD->hasLinkage()) ||
4881      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4882    bool SizeIsNegative;
4883    llvm::APSInt Oversized;
4884    TypeSourceInfo *FixedTInfo =
4885      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4886                                                    SizeIsNegative, Oversized);
4887    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4888      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4889      // FIXME: This won't give the correct result for
4890      // int a[10][n];
4891      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4892
4893      if (NewVD->isFileVarDecl())
4894        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4895        << SizeRange;
4896      else if (NewVD->getStorageClass() == SC_Static)
4897        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4898        << SizeRange;
4899      else
4900        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4901        << SizeRange;
4902      NewVD->setInvalidDecl();
4903      return false;
4904    }
4905
4906    if (FixedTInfo == 0) {
4907      if (NewVD->isFileVarDecl())
4908        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4909      else
4910        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4911      NewVD->setInvalidDecl();
4912      return false;
4913    }
4914
4915    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4916    NewVD->setType(FixedTInfo->getType());
4917    NewVD->setTypeSourceInfo(FixedTInfo);
4918  }
4919
4920  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
4921    // Since we did not find anything by this name, look for a non-visible
4922    // extern "C" declaration with the same name.
4923    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4924      = findLocallyScopedExternCDecl(NewVD->getDeclName());
4925    if (Pos != LocallyScopedExternCDecls.end())
4926      Previous.addDecl(Pos->second);
4927  }
4928
4929  // Filter out any non-conflicting previous declarations.
4930  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
4931
4932  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4933    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4934      << T;
4935    NewVD->setInvalidDecl();
4936    return false;
4937  }
4938
4939  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4940    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4941    NewVD->setInvalidDecl();
4942    return false;
4943  }
4944
4945  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4946    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4947    NewVD->setInvalidDecl();
4948    return false;
4949  }
4950
4951  if (NewVD->isConstexpr() && !T->isDependentType() &&
4952      RequireLiteralType(NewVD->getLocation(), T,
4953                         diag::err_constexpr_var_non_literal)) {
4954    NewVD->setInvalidDecl();
4955    return false;
4956  }
4957
4958  if (!Previous.empty()) {
4959    MergeVarDecl(NewVD, Previous);
4960    return true;
4961  }
4962  return false;
4963}
4964
4965/// \brief Data used with FindOverriddenMethod
4966struct FindOverriddenMethodData {
4967  Sema *S;
4968  CXXMethodDecl *Method;
4969};
4970
4971/// \brief Member lookup function that determines whether a given C++
4972/// method overrides a method in a base class, to be used with
4973/// CXXRecordDecl::lookupInBases().
4974static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4975                                 CXXBasePath &Path,
4976                                 void *UserData) {
4977  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4978
4979  FindOverriddenMethodData *Data
4980    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4981
4982  DeclarationName Name = Data->Method->getDeclName();
4983
4984  // FIXME: Do we care about other names here too?
4985  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4986    // We really want to find the base class destructor here.
4987    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4988    CanQualType CT = Data->S->Context.getCanonicalType(T);
4989
4990    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4991  }
4992
4993  for (Path.Decls = BaseRecord->lookup(Name);
4994       !Path.Decls.empty();
4995       Path.Decls = Path.Decls.slice(1)) {
4996    NamedDecl *D = Path.Decls.front();
4997    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4998      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4999        return true;
5000    }
5001  }
5002
5003  return false;
5004}
5005
5006namespace {
5007  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5008}
5009/// \brief Report an error regarding overriding, along with any relevant
5010/// overriden methods.
5011///
5012/// \param DiagID the primary error to report.
5013/// \param MD the overriding method.
5014/// \param OEK which overrides to include as notes.
5015static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5016                            OverrideErrorKind OEK = OEK_All) {
5017  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5018  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5019                                      E = MD->end_overridden_methods();
5020       I != E; ++I) {
5021    // This check (& the OEK parameter) could be replaced by a predicate, but
5022    // without lambdas that would be overkill. This is still nicer than writing
5023    // out the diag loop 3 times.
5024    if ((OEK == OEK_All) ||
5025        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5026        (OEK == OEK_Deleted && (*I)->isDeleted()))
5027      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5028  }
5029}
5030
5031/// AddOverriddenMethods - See if a method overrides any in the base classes,
5032/// and if so, check that it's a valid override and remember it.
5033bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5034  // Look for virtual methods in base classes that this method might override.
5035  CXXBasePaths Paths;
5036  FindOverriddenMethodData Data;
5037  Data.Method = MD;
5038  Data.S = this;
5039  bool hasDeletedOverridenMethods = false;
5040  bool hasNonDeletedOverridenMethods = false;
5041  bool AddedAny = false;
5042  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5043    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5044         E = Paths.found_decls_end(); I != E; ++I) {
5045      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5046        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5047        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5048            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5049            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5050            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5051          hasDeletedOverridenMethods |= OldMD->isDeleted();
5052          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5053          AddedAny = true;
5054        }
5055      }
5056    }
5057  }
5058
5059  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5060    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5061  }
5062  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5063    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5064  }
5065
5066  return AddedAny;
5067}
5068
5069namespace {
5070  // Struct for holding all of the extra arguments needed by
5071  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5072  struct ActOnFDArgs {
5073    Scope *S;
5074    Declarator &D;
5075    MultiTemplateParamsArg TemplateParamLists;
5076    bool AddToScope;
5077  };
5078}
5079
5080namespace {
5081
5082// Callback to only accept typo corrections that have a non-zero edit distance.
5083// Also only accept corrections that have the same parent decl.
5084class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5085 public:
5086  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5087                            CXXRecordDecl *Parent)
5088      : Context(Context), OriginalFD(TypoFD),
5089        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5090
5091  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5092    if (candidate.getEditDistance() == 0)
5093      return false;
5094
5095    SmallVector<unsigned, 1> MismatchedParams;
5096    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5097                                          CDeclEnd = candidate.end();
5098         CDecl != CDeclEnd; ++CDecl) {
5099      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5100
5101      if (FD && !FD->hasBody() &&
5102          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5103        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5104          CXXRecordDecl *Parent = MD->getParent();
5105          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5106            return true;
5107        } else if (!ExpectedParent) {
5108          return true;
5109        }
5110      }
5111    }
5112
5113    return false;
5114  }
5115
5116 private:
5117  ASTContext &Context;
5118  FunctionDecl *OriginalFD;
5119  CXXRecordDecl *ExpectedParent;
5120};
5121
5122}
5123
5124/// \brief Generate diagnostics for an invalid function redeclaration.
5125///
5126/// This routine handles generating the diagnostic messages for an invalid
5127/// function redeclaration, including finding possible similar declarations
5128/// or performing typo correction if there are no previous declarations with
5129/// the same name.
5130///
5131/// Returns a NamedDecl iff typo correction was performed and substituting in
5132/// the new declaration name does not cause new errors.
5133static NamedDecl* DiagnoseInvalidRedeclaration(
5134    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5135    ActOnFDArgs &ExtraArgs) {
5136  NamedDecl *Result = NULL;
5137  DeclarationName Name = NewFD->getDeclName();
5138  DeclContext *NewDC = NewFD->getDeclContext();
5139  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5140                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5141  SmallVector<unsigned, 1> MismatchedParams;
5142  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5143  TypoCorrection Correction;
5144  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5145                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5146  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5147                                  : diag::err_member_def_does_not_match;
5148
5149  NewFD->setInvalidDecl();
5150  SemaRef.LookupQualifiedName(Prev, NewDC);
5151  assert(!Prev.isAmbiguous() &&
5152         "Cannot have an ambiguity in previous-declaration lookup");
5153  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5154  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5155                                      MD ? MD->getParent() : 0);
5156  if (!Prev.empty()) {
5157    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5158         Func != FuncEnd; ++Func) {
5159      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5160      if (FD &&
5161          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5162        // Add 1 to the index so that 0 can mean the mismatch didn't
5163        // involve a parameter
5164        unsigned ParamNum =
5165            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5166        NearMatches.push_back(std::make_pair(FD, ParamNum));
5167      }
5168    }
5169  // If the qualified name lookup yielded nothing, try typo correction
5170  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5171                                         Prev.getLookupKind(), 0, 0,
5172                                         Validator, NewDC))) {
5173    // Trap errors.
5174    Sema::SFINAETrap Trap(SemaRef);
5175
5176    // Set up everything for the call to ActOnFunctionDeclarator
5177    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5178                              ExtraArgs.D.getIdentifierLoc());
5179    Previous.clear();
5180    Previous.setLookupName(Correction.getCorrection());
5181    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5182                                    CDeclEnd = Correction.end();
5183         CDecl != CDeclEnd; ++CDecl) {
5184      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5185      if (FD && !FD->hasBody() &&
5186          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5187        Previous.addDecl(FD);
5188      }
5189    }
5190    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5191    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5192    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5193    // eliminate the need for the parameter pack ExtraArgs.
5194    Result = SemaRef.ActOnFunctionDeclarator(
5195        ExtraArgs.S, ExtraArgs.D,
5196        Correction.getCorrectionDecl()->getDeclContext(),
5197        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5198        ExtraArgs.AddToScope);
5199    if (Trap.hasErrorOccurred()) {
5200      // Pretend the typo correction never occurred
5201      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5202                                ExtraArgs.D.getIdentifierLoc());
5203      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5204      Previous.clear();
5205      Previous.setLookupName(Name);
5206      Result = NULL;
5207    } else {
5208      for (LookupResult::iterator Func = Previous.begin(),
5209                               FuncEnd = Previous.end();
5210           Func != FuncEnd; ++Func) {
5211        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5212          NearMatches.push_back(std::make_pair(FD, 0));
5213      }
5214    }
5215    if (NearMatches.empty()) {
5216      // Ignore the correction if it didn't yield any close FunctionDecl matches
5217      Correction = TypoCorrection();
5218    } else {
5219      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5220                             : diag::err_member_def_does_not_match_suggest;
5221    }
5222  }
5223
5224  if (Correction) {
5225    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5226    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5227    // turn causes the correction to fully qualify the name. If we fix
5228    // CorrectTypo to minimally qualify then this change should be good.
5229    SourceRange FixItLoc(NewFD->getLocation());
5230    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5231    if (Correction.getCorrectionSpecifier() && SS.isValid())
5232      FixItLoc.setBegin(SS.getBeginLoc());
5233    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5234        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5235        << FixItHint::CreateReplacement(
5236            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5237  } else {
5238    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5239        << Name << NewDC << NewFD->getLocation();
5240  }
5241
5242  bool NewFDisConst = false;
5243  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5244    NewFDisConst = NewMD->isConst();
5245
5246  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5247       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5248       NearMatch != NearMatchEnd; ++NearMatch) {
5249    FunctionDecl *FD = NearMatch->first;
5250    bool FDisConst = false;
5251    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5252      FDisConst = MD->isConst();
5253
5254    if (unsigned Idx = NearMatch->second) {
5255      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5256      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5257      if (Loc.isInvalid()) Loc = FD->getLocation();
5258      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5259          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5260    } else if (Correction) {
5261      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5262          << Correction.getQuoted(SemaRef.getLangOpts());
5263    } else if (FDisConst != NewFDisConst) {
5264      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5265          << NewFDisConst << FD->getSourceRange().getEnd();
5266    } else
5267      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5268  }
5269  return Result;
5270}
5271
5272static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5273                                                          Declarator &D) {
5274  switch (D.getDeclSpec().getStorageClassSpec()) {
5275  default: llvm_unreachable("Unknown storage class!");
5276  case DeclSpec::SCS_auto:
5277  case DeclSpec::SCS_register:
5278  case DeclSpec::SCS_mutable:
5279    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5280                 diag::err_typecheck_sclass_func);
5281    D.setInvalidType();
5282    break;
5283  case DeclSpec::SCS_unspecified: break;
5284  case DeclSpec::SCS_extern: return SC_Extern;
5285  case DeclSpec::SCS_static: {
5286    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5287      // C99 6.7.1p5:
5288      //   The declaration of an identifier for a function that has
5289      //   block scope shall have no explicit storage-class specifier
5290      //   other than extern
5291      // See also (C++ [dcl.stc]p4).
5292      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5293                   diag::err_static_block_func);
5294      break;
5295    } else
5296      return SC_Static;
5297  }
5298  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5299  }
5300
5301  // No explicit storage class has already been returned
5302  return SC_None;
5303}
5304
5305static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5306                                           DeclContext *DC, QualType &R,
5307                                           TypeSourceInfo *TInfo,
5308                                           FunctionDecl::StorageClass SC,
5309                                           bool &IsVirtualOkay) {
5310  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5311  DeclarationName Name = NameInfo.getName();
5312
5313  FunctionDecl *NewFD = 0;
5314  bool isInline = D.getDeclSpec().isInlineSpecified();
5315  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5316  FunctionDecl::StorageClass SCAsWritten
5317    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5318
5319  if (!SemaRef.getLangOpts().CPlusPlus) {
5320    // Determine whether the function was written with a
5321    // prototype. This true when:
5322    //   - there is a prototype in the declarator, or
5323    //   - the type R of the function is some kind of typedef or other reference
5324    //     to a type name (which eventually refers to a function type).
5325    bool HasPrototype =
5326      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5327      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5328
5329    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5330                                 D.getLocStart(), NameInfo, R,
5331                                 TInfo, SC, SCAsWritten, isInline,
5332                                 HasPrototype);
5333    if (D.isInvalidType())
5334      NewFD->setInvalidDecl();
5335
5336    // Set the lexical context.
5337    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5338
5339    return NewFD;
5340  }
5341
5342  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5343  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5344
5345  // Check that the return type is not an abstract class type.
5346  // For record types, this is done by the AbstractClassUsageDiagnoser once
5347  // the class has been completely parsed.
5348  if (!DC->isRecord() &&
5349      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5350                                     R->getAs<FunctionType>()->getResultType(),
5351                                     diag::err_abstract_type_in_decl,
5352                                     SemaRef.AbstractReturnType))
5353    D.setInvalidType();
5354
5355  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5356    // This is a C++ constructor declaration.
5357    assert(DC->isRecord() &&
5358           "Constructors can only be declared in a member context");
5359
5360    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5361    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5362                                      D.getLocStart(), NameInfo,
5363                                      R, TInfo, isExplicit, isInline,
5364                                      /*isImplicitlyDeclared=*/false,
5365                                      isConstexpr);
5366
5367  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5368    // This is a C++ destructor declaration.
5369    if (DC->isRecord()) {
5370      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5371      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5372      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5373                                        SemaRef.Context, Record,
5374                                        D.getLocStart(),
5375                                        NameInfo, R, TInfo, isInline,
5376                                        /*isImplicitlyDeclared=*/false);
5377
5378      // If the class is complete, then we now create the implicit exception
5379      // specification. If the class is incomplete or dependent, we can't do
5380      // it yet.
5381      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5382          Record->getDefinition() && !Record->isBeingDefined() &&
5383          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5384        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5385      }
5386
5387      IsVirtualOkay = true;
5388      return NewDD;
5389
5390    } else {
5391      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5392      D.setInvalidType();
5393
5394      // Create a FunctionDecl to satisfy the function definition parsing
5395      // code path.
5396      return FunctionDecl::Create(SemaRef.Context, DC,
5397                                  D.getLocStart(),
5398                                  D.getIdentifierLoc(), Name, R, TInfo,
5399                                  SC, SCAsWritten, isInline,
5400                                  /*hasPrototype=*/true, isConstexpr);
5401    }
5402
5403  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5404    if (!DC->isRecord()) {
5405      SemaRef.Diag(D.getIdentifierLoc(),
5406           diag::err_conv_function_not_member);
5407      return 0;
5408    }
5409
5410    SemaRef.CheckConversionDeclarator(D, R, SC);
5411    IsVirtualOkay = true;
5412    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5413                                     D.getLocStart(), NameInfo,
5414                                     R, TInfo, isInline, isExplicit,
5415                                     isConstexpr, SourceLocation());
5416
5417  } else if (DC->isRecord()) {
5418    // If the name of the function is the same as the name of the record,
5419    // then this must be an invalid constructor that has a return type.
5420    // (The parser checks for a return type and makes the declarator a
5421    // constructor if it has no return type).
5422    if (Name.getAsIdentifierInfo() &&
5423        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5424      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5425        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5426        << SourceRange(D.getIdentifierLoc());
5427      return 0;
5428    }
5429
5430    bool isStatic = SC == SC_Static;
5431
5432    // [class.free]p1:
5433    // Any allocation function for a class T is a static member
5434    // (even if not explicitly declared static).
5435    if (Name.getCXXOverloadedOperator() == OO_New ||
5436        Name.getCXXOverloadedOperator() == OO_Array_New)
5437      isStatic = true;
5438
5439    // [class.free]p6 Any deallocation function for a class X is a static member
5440    // (even if not explicitly declared static).
5441    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5442        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5443      isStatic = true;
5444
5445    IsVirtualOkay = !isStatic;
5446
5447    // This is a C++ method declaration.
5448    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5449                                 D.getLocStart(), NameInfo, R,
5450                                 TInfo, isStatic, SCAsWritten, isInline,
5451                                 isConstexpr, SourceLocation());
5452
5453  } else {
5454    // Determine whether the function was written with a
5455    // prototype. This true when:
5456    //   - we're in C++ (where every function has a prototype),
5457    return FunctionDecl::Create(SemaRef.Context, DC,
5458                                D.getLocStart(),
5459                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5460                                true/*HasPrototype*/, isConstexpr);
5461  }
5462}
5463
5464void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5465  // In C++, the empty parameter-type-list must be spelled "void"; a
5466  // typedef of void is not permitted.
5467  if (getLangOpts().CPlusPlus &&
5468      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5469    bool IsTypeAlias = false;
5470    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5471      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5472    else if (const TemplateSpecializationType *TST =
5473               Param->getType()->getAs<TemplateSpecializationType>())
5474      IsTypeAlias = TST->isTypeAlias();
5475    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5476      << IsTypeAlias;
5477  }
5478}
5479
5480NamedDecl*
5481Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5482                              TypeSourceInfo *TInfo, LookupResult &Previous,
5483                              MultiTemplateParamsArg TemplateParamLists,
5484                              bool &AddToScope) {
5485  QualType R = TInfo->getType();
5486
5487  assert(R.getTypePtr()->isFunctionType());
5488
5489  // TODO: consider using NameInfo for diagnostic.
5490  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5491  DeclarationName Name = NameInfo.getName();
5492  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5493
5494  if (D.getDeclSpec().isThreadSpecified())
5495    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5496
5497  // Do not allow returning a objc interface by-value.
5498  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5499    Diag(D.getIdentifierLoc(),
5500         diag::err_object_cannot_be_passed_returned_by_value) << 0
5501    << R->getAs<FunctionType>()->getResultType()
5502    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5503
5504    QualType T = R->getAs<FunctionType>()->getResultType();
5505    T = Context.getObjCObjectPointerType(T);
5506    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5507      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5508      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5509                                  FPT->getNumArgs(), EPI);
5510    }
5511    else if (isa<FunctionNoProtoType>(R))
5512      R = Context.getFunctionNoProtoType(T);
5513  }
5514
5515  bool isFriend = false;
5516  FunctionTemplateDecl *FunctionTemplate = 0;
5517  bool isExplicitSpecialization = false;
5518  bool isFunctionTemplateSpecialization = false;
5519
5520  bool isDependentClassScopeExplicitSpecialization = false;
5521  bool HasExplicitTemplateArgs = false;
5522  TemplateArgumentListInfo TemplateArgs;
5523
5524  bool isVirtualOkay = false;
5525
5526  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5527                                              isVirtualOkay);
5528  if (!NewFD) return 0;
5529
5530  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5531    NewFD->setTopLevelDeclInObjCContainer();
5532
5533  if (getLangOpts().CPlusPlus) {
5534    bool isInline = D.getDeclSpec().isInlineSpecified();
5535    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5536    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5537    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5538    isFriend = D.getDeclSpec().isFriendSpecified();
5539    if (isFriend && !isInline && D.isFunctionDefinition()) {
5540      // C++ [class.friend]p5
5541      //   A function can be defined in a friend declaration of a
5542      //   class . . . . Such a function is implicitly inline.
5543      NewFD->setImplicitlyInline();
5544    }
5545
5546    // If this is a method defined in an __interface, and is not a constructor
5547    // or an overloaded operator, then set the pure flag (isVirtual will already
5548    // return true).
5549    if (const CXXRecordDecl *Parent =
5550          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5551      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5552        NewFD->setPure(true);
5553    }
5554
5555    SetNestedNameSpecifier(NewFD, D);
5556    isExplicitSpecialization = false;
5557    isFunctionTemplateSpecialization = false;
5558    if (D.isInvalidType())
5559      NewFD->setInvalidDecl();
5560
5561    // Set the lexical context. If the declarator has a C++
5562    // scope specifier, or is the object of a friend declaration, the
5563    // lexical context will be different from the semantic context.
5564    NewFD->setLexicalDeclContext(CurContext);
5565
5566    // Match up the template parameter lists with the scope specifier, then
5567    // determine whether we have a template or a template specialization.
5568    bool Invalid = false;
5569    if (TemplateParameterList *TemplateParams
5570          = MatchTemplateParametersToScopeSpecifier(
5571                                  D.getDeclSpec().getLocStart(),
5572                                  D.getIdentifierLoc(),
5573                                  D.getCXXScopeSpec(),
5574                                  TemplateParamLists.data(),
5575                                  TemplateParamLists.size(),
5576                                  isFriend,
5577                                  isExplicitSpecialization,
5578                                  Invalid)) {
5579      if (TemplateParams->size() > 0) {
5580        // This is a function template
5581
5582        // Check that we can declare a template here.
5583        if (CheckTemplateDeclScope(S, TemplateParams))
5584          return 0;
5585
5586        // A destructor cannot be a template.
5587        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5588          Diag(NewFD->getLocation(), diag::err_destructor_template);
5589          return 0;
5590        }
5591
5592        // If we're adding a template to a dependent context, we may need to
5593        // rebuilding some of the types used within the template parameter list,
5594        // now that we know what the current instantiation is.
5595        if (DC->isDependentContext()) {
5596          ContextRAII SavedContext(*this, DC);
5597          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5598            Invalid = true;
5599        }
5600
5601
5602        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5603                                                        NewFD->getLocation(),
5604                                                        Name, TemplateParams,
5605                                                        NewFD);
5606        FunctionTemplate->setLexicalDeclContext(CurContext);
5607        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5608
5609        // For source fidelity, store the other template param lists.
5610        if (TemplateParamLists.size() > 1) {
5611          NewFD->setTemplateParameterListsInfo(Context,
5612                                               TemplateParamLists.size() - 1,
5613                                               TemplateParamLists.data());
5614        }
5615      } else {
5616        // This is a function template specialization.
5617        isFunctionTemplateSpecialization = true;
5618        // For source fidelity, store all the template param lists.
5619        NewFD->setTemplateParameterListsInfo(Context,
5620                                             TemplateParamLists.size(),
5621                                             TemplateParamLists.data());
5622
5623        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5624        if (isFriend) {
5625          // We want to remove the "template<>", found here.
5626          SourceRange RemoveRange = TemplateParams->getSourceRange();
5627
5628          // If we remove the template<> and the name is not a
5629          // template-id, we're actually silently creating a problem:
5630          // the friend declaration will refer to an untemplated decl,
5631          // and clearly the user wants a template specialization.  So
5632          // we need to insert '<>' after the name.
5633          SourceLocation InsertLoc;
5634          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5635            InsertLoc = D.getName().getSourceRange().getEnd();
5636            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5637          }
5638
5639          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5640            << Name << RemoveRange
5641            << FixItHint::CreateRemoval(RemoveRange)
5642            << FixItHint::CreateInsertion(InsertLoc, "<>");
5643        }
5644      }
5645    }
5646    else {
5647      // All template param lists were matched against the scope specifier:
5648      // this is NOT (an explicit specialization of) a template.
5649      if (TemplateParamLists.size() > 0)
5650        // For source fidelity, store all the template param lists.
5651        NewFD->setTemplateParameterListsInfo(Context,
5652                                             TemplateParamLists.size(),
5653                                             TemplateParamLists.data());
5654    }
5655
5656    if (Invalid) {
5657      NewFD->setInvalidDecl();
5658      if (FunctionTemplate)
5659        FunctionTemplate->setInvalidDecl();
5660    }
5661
5662    // C++ [dcl.fct.spec]p5:
5663    //   The virtual specifier shall only be used in declarations of
5664    //   nonstatic class member functions that appear within a
5665    //   member-specification of a class declaration; see 10.3.
5666    //
5667    if (isVirtual && !NewFD->isInvalidDecl()) {
5668      if (!isVirtualOkay) {
5669        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5670             diag::err_virtual_non_function);
5671      } else if (!CurContext->isRecord()) {
5672        // 'virtual' was specified outside of the class.
5673        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5674             diag::err_virtual_out_of_class)
5675          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5676      } else if (NewFD->getDescribedFunctionTemplate()) {
5677        // C++ [temp.mem]p3:
5678        //  A member function template shall not be virtual.
5679        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5680             diag::err_virtual_member_function_template)
5681          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5682      } else {
5683        // Okay: Add virtual to the method.
5684        NewFD->setVirtualAsWritten(true);
5685      }
5686    }
5687
5688    // C++ [dcl.fct.spec]p3:
5689    //  The inline specifier shall not appear on a block scope function
5690    //  declaration.
5691    if (isInline && !NewFD->isInvalidDecl()) {
5692      if (CurContext->isFunctionOrMethod()) {
5693        // 'inline' is not allowed on block scope function declaration.
5694        Diag(D.getDeclSpec().getInlineSpecLoc(),
5695             diag::err_inline_declaration_block_scope) << Name
5696          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5697      }
5698    }
5699
5700    // C++ [dcl.fct.spec]p6:
5701    //  The explicit specifier shall be used only in the declaration of a
5702    //  constructor or conversion function within its class definition;
5703    //  see 12.3.1 and 12.3.2.
5704    if (isExplicit && !NewFD->isInvalidDecl()) {
5705      if (!CurContext->isRecord()) {
5706        // 'explicit' was specified outside of the class.
5707        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5708             diag::err_explicit_out_of_class)
5709          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5710      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5711                 !isa<CXXConversionDecl>(NewFD)) {
5712        // 'explicit' was specified on a function that wasn't a constructor
5713        // or conversion function.
5714        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5715             diag::err_explicit_non_ctor_or_conv_function)
5716          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5717      }
5718    }
5719
5720    if (isConstexpr) {
5721      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5722      // are implicitly inline.
5723      NewFD->setImplicitlyInline();
5724
5725      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5726      // be either constructors or to return a literal type. Therefore,
5727      // destructors cannot be declared constexpr.
5728      if (isa<CXXDestructorDecl>(NewFD))
5729        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5730    }
5731
5732    // If __module_private__ was specified, mark the function accordingly.
5733    if (D.getDeclSpec().isModulePrivateSpecified()) {
5734      if (isFunctionTemplateSpecialization) {
5735        SourceLocation ModulePrivateLoc
5736          = D.getDeclSpec().getModulePrivateSpecLoc();
5737        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5738          << 0
5739          << FixItHint::CreateRemoval(ModulePrivateLoc);
5740      } else {
5741        NewFD->setModulePrivate();
5742        if (FunctionTemplate)
5743          FunctionTemplate->setModulePrivate();
5744      }
5745    }
5746
5747    if (isFriend) {
5748      // For now, claim that the objects have no previous declaration.
5749      if (FunctionTemplate) {
5750        FunctionTemplate->setObjectOfFriendDecl(false);
5751        FunctionTemplate->setAccess(AS_public);
5752      }
5753      NewFD->setObjectOfFriendDecl(false);
5754      NewFD->setAccess(AS_public);
5755    }
5756
5757    // If a function is defined as defaulted or deleted, mark it as such now.
5758    switch (D.getFunctionDefinitionKind()) {
5759      case FDK_Declaration:
5760      case FDK_Definition:
5761        break;
5762
5763      case FDK_Defaulted:
5764        NewFD->setDefaulted();
5765        break;
5766
5767      case FDK_Deleted:
5768        NewFD->setDeletedAsWritten();
5769        break;
5770    }
5771
5772    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5773        D.isFunctionDefinition()) {
5774      // C++ [class.mfct]p2:
5775      //   A member function may be defined (8.4) in its class definition, in
5776      //   which case it is an inline member function (7.1.2)
5777      NewFD->setImplicitlyInline();
5778    }
5779
5780    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5781        !CurContext->isRecord()) {
5782      // C++ [class.static]p1:
5783      //   A data or function member of a class may be declared static
5784      //   in a class definition, in which case it is a static member of
5785      //   the class.
5786
5787      // Complain about the 'static' specifier if it's on an out-of-line
5788      // member function definition.
5789      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5790           diag::err_static_out_of_line)
5791        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5792    }
5793
5794    // C++11 [except.spec]p15:
5795    //   A deallocation function with no exception-specification is treated
5796    //   as if it were specified with noexcept(true).
5797    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5798    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5799         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5800        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5801      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5802      EPI.ExceptionSpecType = EST_BasicNoexcept;
5803      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5804                                             FPT->arg_type_begin(),
5805                                             FPT->getNumArgs(), EPI));
5806    }
5807  }
5808
5809  // Filter out previous declarations that don't match the scope.
5810  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5811                       isExplicitSpecialization ||
5812                       isFunctionTemplateSpecialization);
5813
5814  // Handle GNU asm-label extension (encoded as an attribute).
5815  if (Expr *E = (Expr*) D.getAsmLabel()) {
5816    // The parser guarantees this is a string.
5817    StringLiteral *SE = cast<StringLiteral>(E);
5818    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5819                                                SE->getString()));
5820  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5821    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5822      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5823    if (I != ExtnameUndeclaredIdentifiers.end()) {
5824      NewFD->addAttr(I->second);
5825      ExtnameUndeclaredIdentifiers.erase(I);
5826    }
5827  }
5828
5829  // Copy the parameter declarations from the declarator D to the function
5830  // declaration NewFD, if they are available.  First scavenge them into Params.
5831  SmallVector<ParmVarDecl*, 16> Params;
5832  if (D.isFunctionDeclarator()) {
5833    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5834
5835    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5836    // function that takes no arguments, not a function that takes a
5837    // single void argument.
5838    // We let through "const void" here because Sema::GetTypeForDeclarator
5839    // already checks for that case.
5840    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5841        FTI.ArgInfo[0].Param &&
5842        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5843      // Empty arg list, don't push any params.
5844      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5845    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5846      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5847        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5848        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5849        Param->setDeclContext(NewFD);
5850        Params.push_back(Param);
5851
5852        if (Param->isInvalidDecl())
5853          NewFD->setInvalidDecl();
5854      }
5855    }
5856
5857  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5858    // When we're declaring a function with a typedef, typeof, etc as in the
5859    // following example, we'll need to synthesize (unnamed)
5860    // parameters for use in the declaration.
5861    //
5862    // @code
5863    // typedef void fn(int);
5864    // fn f;
5865    // @endcode
5866
5867    // Synthesize a parameter for each argument type.
5868    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5869         AE = FT->arg_type_end(); AI != AE; ++AI) {
5870      ParmVarDecl *Param =
5871        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5872      Param->setScopeInfo(0, Params.size());
5873      Params.push_back(Param);
5874    }
5875  } else {
5876    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5877           "Should not need args for typedef of non-prototype fn");
5878  }
5879
5880  // Finally, we know we have the right number of parameters, install them.
5881  NewFD->setParams(Params);
5882
5883  // Find all anonymous symbols defined during the declaration of this function
5884  // and add to NewFD. This lets us track decls such 'enum Y' in:
5885  //
5886  //   void f(enum Y {AA} x) {}
5887  //
5888  // which would otherwise incorrectly end up in the translation unit scope.
5889  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5890  DeclsInPrototypeScope.clear();
5891
5892  // Process the non-inheritable attributes on this declaration.
5893  ProcessDeclAttributes(S, NewFD, D,
5894                        /*NonInheritable=*/true, /*Inheritable=*/false);
5895
5896  // Functions returning a variably modified type violate C99 6.7.5.2p2
5897  // because all functions have linkage.
5898  if (!NewFD->isInvalidDecl() &&
5899      NewFD->getResultType()->isVariablyModifiedType()) {
5900    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5901    NewFD->setInvalidDecl();
5902  }
5903
5904  // Handle attributes.
5905  ProcessDeclAttributes(S, NewFD, D,
5906                        /*NonInheritable=*/false, /*Inheritable=*/true);
5907
5908  QualType RetType = NewFD->getResultType();
5909  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5910      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5911  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5912      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5913    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5914    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5915      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5916                                                        Context));
5917    }
5918  }
5919
5920  if (!getLangOpts().CPlusPlus) {
5921    // Perform semantic checking on the function declaration.
5922    bool isExplicitSpecialization=false;
5923    if (!NewFD->isInvalidDecl()) {
5924      if (NewFD->isMain())
5925        CheckMain(NewFD, D.getDeclSpec());
5926      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5927                                                  isExplicitSpecialization));
5928    }
5929    // Make graceful recovery from an invalid redeclaration.
5930    else if (!Previous.empty())
5931           D.setRedeclaration(true);
5932    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5933            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5934           "previous declaration set still overloaded");
5935  } else {
5936    // If the declarator is a template-id, translate the parser's template
5937    // argument list into our AST format.
5938    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5939      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5940      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5941      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5942      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5943                                         TemplateId->NumArgs);
5944      translateTemplateArguments(TemplateArgsPtr,
5945                                 TemplateArgs);
5946
5947      HasExplicitTemplateArgs = true;
5948
5949      if (NewFD->isInvalidDecl()) {
5950        HasExplicitTemplateArgs = false;
5951      } else if (FunctionTemplate) {
5952        // Function template with explicit template arguments.
5953        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5954          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5955
5956        HasExplicitTemplateArgs = false;
5957      } else if (!isFunctionTemplateSpecialization &&
5958                 !D.getDeclSpec().isFriendSpecified()) {
5959        // We have encountered something that the user meant to be a
5960        // specialization (because it has explicitly-specified template
5961        // arguments) but that was not introduced with a "template<>" (or had
5962        // too few of them).
5963        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5964          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5965          << FixItHint::CreateInsertion(
5966                                    D.getDeclSpec().getLocStart(),
5967                                        "template<> ");
5968        isFunctionTemplateSpecialization = true;
5969      } else {
5970        // "friend void foo<>(int);" is an implicit specialization decl.
5971        isFunctionTemplateSpecialization = true;
5972      }
5973    } else if (isFriend && isFunctionTemplateSpecialization) {
5974      // This combination is only possible in a recovery case;  the user
5975      // wrote something like:
5976      //   template <> friend void foo(int);
5977      // which we're recovering from as if the user had written:
5978      //   friend void foo<>(int);
5979      // Go ahead and fake up a template id.
5980      HasExplicitTemplateArgs = true;
5981        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5982      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5983    }
5984
5985    // If it's a friend (and only if it's a friend), it's possible
5986    // that either the specialized function type or the specialized
5987    // template is dependent, and therefore matching will fail.  In
5988    // this case, don't check the specialization yet.
5989    bool InstantiationDependent = false;
5990    if (isFunctionTemplateSpecialization && isFriend &&
5991        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5992         TemplateSpecializationType::anyDependentTemplateArguments(
5993            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5994            InstantiationDependent))) {
5995      assert(HasExplicitTemplateArgs &&
5996             "friend function specialization without template args");
5997      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5998                                                       Previous))
5999        NewFD->setInvalidDecl();
6000    } else if (isFunctionTemplateSpecialization) {
6001      if (CurContext->isDependentContext() && CurContext->isRecord()
6002          && !isFriend) {
6003        isDependentClassScopeExplicitSpecialization = true;
6004        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6005          diag::ext_function_specialization_in_class :
6006          diag::err_function_specialization_in_class)
6007          << NewFD->getDeclName();
6008      } else if (CheckFunctionTemplateSpecialization(NewFD,
6009                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6010                                                     Previous))
6011        NewFD->setInvalidDecl();
6012
6013      // C++ [dcl.stc]p1:
6014      //   A storage-class-specifier shall not be specified in an explicit
6015      //   specialization (14.7.3)
6016      if (SC != SC_None) {
6017        if (SC != NewFD->getStorageClass())
6018          Diag(NewFD->getLocation(),
6019               diag::err_explicit_specialization_inconsistent_storage_class)
6020            << SC
6021            << FixItHint::CreateRemoval(
6022                                      D.getDeclSpec().getStorageClassSpecLoc());
6023
6024        else
6025          Diag(NewFD->getLocation(),
6026               diag::ext_explicit_specialization_storage_class)
6027            << FixItHint::CreateRemoval(
6028                                      D.getDeclSpec().getStorageClassSpecLoc());
6029      }
6030
6031    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6032      if (CheckMemberSpecialization(NewFD, Previous))
6033          NewFD->setInvalidDecl();
6034    }
6035
6036    // Perform semantic checking on the function declaration.
6037    if (!isDependentClassScopeExplicitSpecialization) {
6038      if (NewFD->isInvalidDecl()) {
6039        // If this is a class member, mark the class invalid immediately.
6040        // This avoids some consistency errors later.
6041        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6042          methodDecl->getParent()->setInvalidDecl();
6043      } else {
6044        if (NewFD->isMain())
6045          CheckMain(NewFD, D.getDeclSpec());
6046        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6047                                                    isExplicitSpecialization));
6048      }
6049    }
6050
6051    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6052            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6053           "previous declaration set still overloaded");
6054
6055    NamedDecl *PrincipalDecl = (FunctionTemplate
6056                                ? cast<NamedDecl>(FunctionTemplate)
6057                                : NewFD);
6058
6059    if (isFriend && D.isRedeclaration()) {
6060      AccessSpecifier Access = AS_public;
6061      if (!NewFD->isInvalidDecl())
6062        Access = NewFD->getPreviousDecl()->getAccess();
6063
6064      NewFD->setAccess(Access);
6065      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6066
6067      PrincipalDecl->setObjectOfFriendDecl(true);
6068    }
6069
6070    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6071        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6072      PrincipalDecl->setNonMemberOperator();
6073
6074    // If we have a function template, check the template parameter
6075    // list. This will check and merge default template arguments.
6076    if (FunctionTemplate) {
6077      FunctionTemplateDecl *PrevTemplate =
6078                                     FunctionTemplate->getPreviousDecl();
6079      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6080                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6081                            D.getDeclSpec().isFriendSpecified()
6082                              ? (D.isFunctionDefinition()
6083                                   ? TPC_FriendFunctionTemplateDefinition
6084                                   : TPC_FriendFunctionTemplate)
6085                              : (D.getCXXScopeSpec().isSet() &&
6086                                 DC && DC->isRecord() &&
6087                                 DC->isDependentContext())
6088                                  ? TPC_ClassTemplateMember
6089                                  : TPC_FunctionTemplate);
6090    }
6091
6092    if (NewFD->isInvalidDecl()) {
6093      // Ignore all the rest of this.
6094    } else if (!D.isRedeclaration()) {
6095      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6096                                       AddToScope };
6097      // Fake up an access specifier if it's supposed to be a class member.
6098      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6099        NewFD->setAccess(AS_public);
6100
6101      // Qualified decls generally require a previous declaration.
6102      if (D.getCXXScopeSpec().isSet()) {
6103        // ...with the major exception of templated-scope or
6104        // dependent-scope friend declarations.
6105
6106        // TODO: we currently also suppress this check in dependent
6107        // contexts because (1) the parameter depth will be off when
6108        // matching friend templates and (2) we might actually be
6109        // selecting a friend based on a dependent factor.  But there
6110        // are situations where these conditions don't apply and we
6111        // can actually do this check immediately.
6112        if (isFriend &&
6113            (TemplateParamLists.size() ||
6114             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6115             CurContext->isDependentContext())) {
6116          // ignore these
6117        } else {
6118          // The user tried to provide an out-of-line definition for a
6119          // function that is a member of a class or namespace, but there
6120          // was no such member function declared (C++ [class.mfct]p2,
6121          // C++ [namespace.memdef]p2). For example:
6122          //
6123          // class X {
6124          //   void f() const;
6125          // };
6126          //
6127          // void X::f() { } // ill-formed
6128          //
6129          // Complain about this problem, and attempt to suggest close
6130          // matches (e.g., those that differ only in cv-qualifiers and
6131          // whether the parameter types are references).
6132
6133          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6134                                                               NewFD,
6135                                                               ExtraArgs)) {
6136            AddToScope = ExtraArgs.AddToScope;
6137            return Result;
6138          }
6139        }
6140
6141        // Unqualified local friend declarations are required to resolve
6142        // to something.
6143      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6144        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6145                                                             NewFD,
6146                                                             ExtraArgs)) {
6147          AddToScope = ExtraArgs.AddToScope;
6148          return Result;
6149        }
6150      }
6151
6152    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6153               !isFriend && !isFunctionTemplateSpecialization &&
6154               !isExplicitSpecialization) {
6155      // An out-of-line member function declaration must also be a
6156      // definition (C++ [dcl.meaning]p1).
6157      // Note that this is not the case for explicit specializations of
6158      // function templates or member functions of class templates, per
6159      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6160      // extension for compatibility with old SWIG code which likes to
6161      // generate them.
6162      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6163        << D.getCXXScopeSpec().getRange();
6164    }
6165  }
6166
6167  checkAttributesAfterMerging(*this, *NewFD);
6168
6169  AddKnownFunctionAttributes(NewFD);
6170
6171  if (NewFD->hasAttr<OverloadableAttr>() &&
6172      !NewFD->getType()->getAs<FunctionProtoType>()) {
6173    Diag(NewFD->getLocation(),
6174         diag::err_attribute_overloadable_no_prototype)
6175      << NewFD;
6176
6177    // Turn this into a variadic function with no parameters.
6178    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6179    FunctionProtoType::ExtProtoInfo EPI;
6180    EPI.Variadic = true;
6181    EPI.ExtInfo = FT->getExtInfo();
6182
6183    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
6184    NewFD->setType(R);
6185  }
6186
6187  // If there's a #pragma GCC visibility in scope, and this isn't a class
6188  // member, set the visibility of this function.
6189  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
6190    AddPushedVisibilityAttribute(NewFD);
6191
6192  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6193  // marking the function.
6194  AddCFAuditedAttribute(NewFD);
6195
6196  // If this is a locally-scoped extern C function, update the
6197  // map of such names.
6198  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6199      && !NewFD->isInvalidDecl())
6200    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6201
6202  // Set this FunctionDecl's range up to the right paren.
6203  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6204
6205  if (getLangOpts().CPlusPlus) {
6206    if (FunctionTemplate) {
6207      if (NewFD->isInvalidDecl())
6208        FunctionTemplate->setInvalidDecl();
6209      return FunctionTemplate;
6210    }
6211  }
6212
6213  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6214    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6215    if ((getLangOpts().OpenCLVersion >= 120)
6216        && (SC == SC_Static)) {
6217      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6218      D.setInvalidType();
6219    }
6220
6221    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6222         PE = NewFD->param_end(); PI != PE; ++PI) {
6223      ParmVarDecl *Param = *PI;
6224      QualType PT = Param->getType();
6225
6226      // OpenCL v1.2 s6.9.a:
6227      // A kernel function argument cannot be declared as a
6228      // pointer to a pointer type.
6229      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6230        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6231        D.setInvalidType();
6232      }
6233
6234      // OpenCL v1.2 s6.8 n:
6235      // A kernel function argument cannot be declared
6236      // of event_t type.
6237      if (PT->isEventT()) {
6238        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6239        D.setInvalidType();
6240      }
6241    }
6242  }
6243
6244  MarkUnusedFileScopedDecl(NewFD);
6245
6246  if (getLangOpts().CUDA)
6247    if (IdentifierInfo *II = NewFD->getIdentifier())
6248      if (!NewFD->isInvalidDecl() &&
6249          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6250        if (II->isStr("cudaConfigureCall")) {
6251          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6252            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6253
6254          Context.setcudaConfigureCallDecl(NewFD);
6255        }
6256      }
6257
6258  // Here we have an function template explicit specialization at class scope.
6259  // The actually specialization will be postponed to template instatiation
6260  // time via the ClassScopeFunctionSpecializationDecl node.
6261  if (isDependentClassScopeExplicitSpecialization) {
6262    ClassScopeFunctionSpecializationDecl *NewSpec =
6263                         ClassScopeFunctionSpecializationDecl::Create(
6264                                Context, CurContext, SourceLocation(),
6265                                cast<CXXMethodDecl>(NewFD),
6266                                HasExplicitTemplateArgs, TemplateArgs);
6267    CurContext->addDecl(NewSpec);
6268    AddToScope = false;
6269  }
6270
6271  return NewFD;
6272}
6273
6274/// \brief Perform semantic checking of a new function declaration.
6275///
6276/// Performs semantic analysis of the new function declaration
6277/// NewFD. This routine performs all semantic checking that does not
6278/// require the actual declarator involved in the declaration, and is
6279/// used both for the declaration of functions as they are parsed
6280/// (called via ActOnDeclarator) and for the declaration of functions
6281/// that have been instantiated via C++ template instantiation (called
6282/// via InstantiateDecl).
6283///
6284/// \param IsExplicitSpecialization whether this new function declaration is
6285/// an explicit specialization of the previous declaration.
6286///
6287/// This sets NewFD->isInvalidDecl() to true if there was an error.
6288///
6289/// \returns true if the function declaration is a redeclaration.
6290bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6291                                    LookupResult &Previous,
6292                                    bool IsExplicitSpecialization) {
6293  assert(!NewFD->getResultType()->isVariablyModifiedType()
6294         && "Variably modified return types are not handled here");
6295
6296  // Check for a previous declaration of this name.
6297  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6298    // Since we did not find anything by this name, look for a non-visible
6299    // extern "C" declaration with the same name.
6300    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6301      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6302    if (Pos != LocallyScopedExternCDecls.end())
6303      Previous.addDecl(Pos->second);
6304  }
6305
6306  // Filter out any non-conflicting previous declarations.
6307  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6308
6309  bool Redeclaration = false;
6310  NamedDecl *OldDecl = 0;
6311
6312  // Merge or overload the declaration with an existing declaration of
6313  // the same name, if appropriate.
6314  if (!Previous.empty()) {
6315    // Determine whether NewFD is an overload of PrevDecl or
6316    // a declaration that requires merging. If it's an overload,
6317    // there's no more work to do here; we'll just add the new
6318    // function to the scope.
6319    if (!AllowOverloadingOfFunction(Previous, Context)) {
6320      Redeclaration = true;
6321      OldDecl = Previous.getFoundDecl();
6322    } else {
6323      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6324                            /*NewIsUsingDecl*/ false)) {
6325      case Ovl_Match:
6326        Redeclaration = true;
6327        break;
6328
6329      case Ovl_NonFunction:
6330        Redeclaration = true;
6331        break;
6332
6333      case Ovl_Overload:
6334        Redeclaration = false;
6335        break;
6336      }
6337
6338      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6339        // If a function name is overloadable in C, then every function
6340        // with that name must be marked "overloadable".
6341        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6342          << Redeclaration << NewFD;
6343        NamedDecl *OverloadedDecl = 0;
6344        if (Redeclaration)
6345          OverloadedDecl = OldDecl;
6346        else if (!Previous.empty())
6347          OverloadedDecl = Previous.getRepresentativeDecl();
6348        if (OverloadedDecl)
6349          Diag(OverloadedDecl->getLocation(),
6350               diag::note_attribute_overloadable_prev_overload);
6351        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6352                                                        Context));
6353      }
6354    }
6355  }
6356
6357  // C++11 [dcl.constexpr]p8:
6358  //   A constexpr specifier for a non-static member function that is not
6359  //   a constructor declares that member function to be const.
6360  //
6361  // This needs to be delayed until we know whether this is an out-of-line
6362  // definition of a static member function.
6363  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6364  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6365      !isa<CXXConstructorDecl>(MD) &&
6366      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6367    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6368    if (FunctionTemplateDecl *OldTD =
6369          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6370      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6371    if (!OldMD || !OldMD->isStatic()) {
6372      const FunctionProtoType *FPT =
6373        MD->getType()->castAs<FunctionProtoType>();
6374      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6375      EPI.TypeQuals |= Qualifiers::Const;
6376      MD->setType(Context.getFunctionType(FPT->getResultType(),
6377                                          FPT->arg_type_begin(),
6378                                          FPT->getNumArgs(), EPI));
6379    }
6380  }
6381
6382  if (Redeclaration) {
6383    // NewFD and OldDecl represent declarations that need to be
6384    // merged.
6385    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6386      NewFD->setInvalidDecl();
6387      return Redeclaration;
6388    }
6389
6390    Previous.clear();
6391    Previous.addDecl(OldDecl);
6392
6393    if (FunctionTemplateDecl *OldTemplateDecl
6394                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6395      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6396      FunctionTemplateDecl *NewTemplateDecl
6397        = NewFD->getDescribedFunctionTemplate();
6398      assert(NewTemplateDecl && "Template/non-template mismatch");
6399      if (CXXMethodDecl *Method
6400            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6401        Method->setAccess(OldTemplateDecl->getAccess());
6402        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6403      }
6404
6405      // If this is an explicit specialization of a member that is a function
6406      // template, mark it as a member specialization.
6407      if (IsExplicitSpecialization &&
6408          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6409        NewTemplateDecl->setMemberSpecialization();
6410        assert(OldTemplateDecl->isMemberSpecialization());
6411      }
6412
6413    } else {
6414      // This needs to happen first so that 'inline' propagates.
6415      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6416
6417      if (isa<CXXMethodDecl>(NewFD)) {
6418        // A valid redeclaration of a C++ method must be out-of-line,
6419        // but (unfortunately) it's not necessarily a definition
6420        // because of templates, which means that the previous
6421        // declaration is not necessarily from the class definition.
6422
6423        // For just setting the access, that doesn't matter.
6424        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6425        NewFD->setAccess(oldMethod->getAccess());
6426
6427        // Update the key-function state if necessary for this ABI.
6428        if (NewFD->isInlined() &&
6429            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6430          // setNonKeyFunction needs to work with the original
6431          // declaration from the class definition, and isVirtual() is
6432          // just faster in that case, so map back to that now.
6433          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6434          if (oldMethod->isVirtual()) {
6435            Context.setNonKeyFunction(oldMethod);
6436          }
6437        }
6438      }
6439    }
6440  }
6441
6442  // Semantic checking for this function declaration (in isolation).
6443  if (getLangOpts().CPlusPlus) {
6444    // C++-specific checks.
6445    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6446      CheckConstructor(Constructor);
6447    } else if (CXXDestructorDecl *Destructor =
6448                dyn_cast<CXXDestructorDecl>(NewFD)) {
6449      CXXRecordDecl *Record = Destructor->getParent();
6450      QualType ClassType = Context.getTypeDeclType(Record);
6451
6452      // FIXME: Shouldn't we be able to perform this check even when the class
6453      // type is dependent? Both gcc and edg can handle that.
6454      if (!ClassType->isDependentType()) {
6455        DeclarationName Name
6456          = Context.DeclarationNames.getCXXDestructorName(
6457                                        Context.getCanonicalType(ClassType));
6458        if (NewFD->getDeclName() != Name) {
6459          Diag(NewFD->getLocation(), diag::err_destructor_name);
6460          NewFD->setInvalidDecl();
6461          return Redeclaration;
6462        }
6463      }
6464    } else if (CXXConversionDecl *Conversion
6465               = dyn_cast<CXXConversionDecl>(NewFD)) {
6466      ActOnConversionDeclarator(Conversion);
6467    }
6468
6469    // Find any virtual functions that this function overrides.
6470    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6471      if (!Method->isFunctionTemplateSpecialization() &&
6472          !Method->getDescribedFunctionTemplate() &&
6473          Method->isCanonicalDecl()) {
6474        if (AddOverriddenMethods(Method->getParent(), Method)) {
6475          // If the function was marked as "static", we have a problem.
6476          if (NewFD->getStorageClass() == SC_Static) {
6477            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6478          }
6479        }
6480      }
6481
6482      if (Method->isStatic())
6483        checkThisInStaticMemberFunctionType(Method);
6484    }
6485
6486    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6487    if (NewFD->isOverloadedOperator() &&
6488        CheckOverloadedOperatorDeclaration(NewFD)) {
6489      NewFD->setInvalidDecl();
6490      return Redeclaration;
6491    }
6492
6493    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6494    if (NewFD->getLiteralIdentifier() &&
6495        CheckLiteralOperatorDeclaration(NewFD)) {
6496      NewFD->setInvalidDecl();
6497      return Redeclaration;
6498    }
6499
6500    // In C++, check default arguments now that we have merged decls. Unless
6501    // the lexical context is the class, because in this case this is done
6502    // during delayed parsing anyway.
6503    if (!CurContext->isRecord())
6504      CheckCXXDefaultArguments(NewFD);
6505
6506    // If this function declares a builtin function, check the type of this
6507    // declaration against the expected type for the builtin.
6508    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6509      ASTContext::GetBuiltinTypeError Error;
6510      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6511      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6512      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6513        // The type of this function differs from the type of the builtin,
6514        // so forget about the builtin entirely.
6515        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6516      }
6517    }
6518
6519    // If this function is declared as being extern "C", then check to see if
6520    // the function returns a UDT (class, struct, or union type) that is not C
6521    // compatible, and if it does, warn the user.
6522    if (NewFD->hasCLanguageLinkage()) {
6523      QualType R = NewFD->getResultType();
6524      if (R->isIncompleteType() && !R->isVoidType())
6525        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6526            << NewFD << R;
6527      else if (!R.isPODType(Context) && !R->isVoidType() &&
6528               !R->isObjCObjectPointerType())
6529        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6530    }
6531  }
6532  return Redeclaration;
6533}
6534
6535static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6536  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6537  if (!TSI)
6538    return SourceRange();
6539
6540  TypeLoc TL = TSI->getTypeLoc();
6541  FunctionTypeLoc *FunctionTL = dyn_cast<FunctionTypeLoc>(&TL);
6542  if (!FunctionTL)
6543    return SourceRange();
6544
6545  TypeLoc ResultTL = FunctionTL->getResultLoc();
6546  if (isa<BuiltinTypeLoc>(ResultTL.getUnqualifiedLoc()))
6547    return ResultTL.getSourceRange();
6548
6549  return SourceRange();
6550}
6551
6552void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6553  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6554  //   static or constexpr is ill-formed.
6555  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6556  //   appear in a declaration of main.
6557  // static main is not an error under C99, but we should warn about it.
6558  // We accept _Noreturn main as an extension.
6559  if (FD->getStorageClass() == SC_Static)
6560    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6561         ? diag::err_static_main : diag::warn_static_main)
6562      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6563  if (FD->isInlineSpecified())
6564    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6565      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6566  if (DS.isNoreturnSpecified()) {
6567    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6568    SourceRange NoreturnRange(NoreturnLoc,
6569                              PP.getLocForEndOfToken(NoreturnLoc));
6570    Diag(NoreturnLoc, diag::ext_noreturn_main);
6571    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6572      << FixItHint::CreateRemoval(NoreturnRange);
6573  }
6574  if (FD->isConstexpr()) {
6575    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6576      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6577    FD->setConstexpr(false);
6578  }
6579
6580  QualType T = FD->getType();
6581  assert(T->isFunctionType() && "function decl is not of function type");
6582  const FunctionType* FT = T->castAs<FunctionType>();
6583
6584  // All the standards say that main() should should return 'int'.
6585  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6586    // In C and C++, main magically returns 0 if you fall off the end;
6587    // set the flag which tells us that.
6588    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6589    FD->setHasImplicitReturnZero(true);
6590
6591  // In C with GNU extensions we allow main() to have non-integer return
6592  // type, but we should warn about the extension, and we disable the
6593  // implicit-return-zero rule.
6594  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6595    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6596
6597    SourceRange ResultRange = getResultSourceRange(FD);
6598    if (ResultRange.isValid())
6599      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6600          << FixItHint::CreateReplacement(ResultRange, "int");
6601
6602  // Otherwise, this is just a flat-out error.
6603  } else {
6604    SourceRange ResultRange = getResultSourceRange(FD);
6605    if (ResultRange.isValid())
6606      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6607          << FixItHint::CreateReplacement(ResultRange, "int");
6608    else
6609      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6610
6611    FD->setInvalidDecl(true);
6612  }
6613
6614  // Treat protoless main() as nullary.
6615  if (isa<FunctionNoProtoType>(FT)) return;
6616
6617  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6618  unsigned nparams = FTP->getNumArgs();
6619  assert(FD->getNumParams() == nparams);
6620
6621  bool HasExtraParameters = (nparams > 3);
6622
6623  // Darwin passes an undocumented fourth argument of type char**.  If
6624  // other platforms start sprouting these, the logic below will start
6625  // getting shifty.
6626  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6627    HasExtraParameters = false;
6628
6629  if (HasExtraParameters) {
6630    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6631    FD->setInvalidDecl(true);
6632    nparams = 3;
6633  }
6634
6635  // FIXME: a lot of the following diagnostics would be improved
6636  // if we had some location information about types.
6637
6638  QualType CharPP =
6639    Context.getPointerType(Context.getPointerType(Context.CharTy));
6640  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6641
6642  for (unsigned i = 0; i < nparams; ++i) {
6643    QualType AT = FTP->getArgType(i);
6644
6645    bool mismatch = true;
6646
6647    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6648      mismatch = false;
6649    else if (Expected[i] == CharPP) {
6650      // As an extension, the following forms are okay:
6651      //   char const **
6652      //   char const * const *
6653      //   char * const *
6654
6655      QualifierCollector qs;
6656      const PointerType* PT;
6657      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6658          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6659          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6660                              Context.CharTy)) {
6661        qs.removeConst();
6662        mismatch = !qs.empty();
6663      }
6664    }
6665
6666    if (mismatch) {
6667      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6668      // TODO: suggest replacing given type with expected type
6669      FD->setInvalidDecl(true);
6670    }
6671  }
6672
6673  if (nparams == 1 && !FD->isInvalidDecl()) {
6674    Diag(FD->getLocation(), diag::warn_main_one_arg);
6675  }
6676
6677  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6678    Diag(FD->getLocation(), diag::err_main_template_decl);
6679    FD->setInvalidDecl();
6680  }
6681}
6682
6683bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6684  // FIXME: Need strict checking.  In C89, we need to check for
6685  // any assignment, increment, decrement, function-calls, or
6686  // commas outside of a sizeof.  In C99, it's the same list,
6687  // except that the aforementioned are allowed in unevaluated
6688  // expressions.  Everything else falls under the
6689  // "may accept other forms of constant expressions" exception.
6690  // (We never end up here for C++, so the constant expression
6691  // rules there don't matter.)
6692  if (Init->isConstantInitializer(Context, false))
6693    return false;
6694  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6695    << Init->getSourceRange();
6696  return true;
6697}
6698
6699namespace {
6700  // Visits an initialization expression to see if OrigDecl is evaluated in
6701  // its own initialization and throws a warning if it does.
6702  class SelfReferenceChecker
6703      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6704    Sema &S;
6705    Decl *OrigDecl;
6706    bool isRecordType;
6707    bool isPODType;
6708    bool isReferenceType;
6709
6710  public:
6711    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6712
6713    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6714                                                    S(S), OrigDecl(OrigDecl) {
6715      isPODType = false;
6716      isRecordType = false;
6717      isReferenceType = false;
6718      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6719        isPODType = VD->getType().isPODType(S.Context);
6720        isRecordType = VD->getType()->isRecordType();
6721        isReferenceType = VD->getType()->isReferenceType();
6722      }
6723    }
6724
6725    // For most expressions, the cast is directly above the DeclRefExpr.
6726    // For conditional operators, the cast can be outside the conditional
6727    // operator if both expressions are DeclRefExpr's.
6728    void HandleValue(Expr *E) {
6729      if (isReferenceType)
6730        return;
6731      E = E->IgnoreParenImpCasts();
6732      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6733        HandleDeclRefExpr(DRE);
6734        return;
6735      }
6736
6737      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6738        HandleValue(CO->getTrueExpr());
6739        HandleValue(CO->getFalseExpr());
6740        return;
6741      }
6742
6743      if (isa<MemberExpr>(E)) {
6744        Expr *Base = E->IgnoreParenImpCasts();
6745        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6746          // Check for static member variables and don't warn on them.
6747          if (!isa<FieldDecl>(ME->getMemberDecl()))
6748            return;
6749          Base = ME->getBase()->IgnoreParenImpCasts();
6750        }
6751        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6752          HandleDeclRefExpr(DRE);
6753        return;
6754      }
6755    }
6756
6757    // Reference types are handled here since all uses of references are
6758    // bad, not just r-value uses.
6759    void VisitDeclRefExpr(DeclRefExpr *E) {
6760      if (isReferenceType)
6761        HandleDeclRefExpr(E);
6762    }
6763
6764    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6765      if (E->getCastKind() == CK_LValueToRValue ||
6766          (isRecordType && E->getCastKind() == CK_NoOp))
6767        HandleValue(E->getSubExpr());
6768
6769      Inherited::VisitImplicitCastExpr(E);
6770    }
6771
6772    void VisitMemberExpr(MemberExpr *E) {
6773      // Don't warn on arrays since they can be treated as pointers.
6774      if (E->getType()->canDecayToPointerType()) return;
6775
6776      // Warn when a non-static method call is followed by non-static member
6777      // field accesses, which is followed by a DeclRefExpr.
6778      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6779      bool Warn = (MD && !MD->isStatic());
6780      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6781      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6782        if (!isa<FieldDecl>(ME->getMemberDecl()))
6783          Warn = false;
6784        Base = ME->getBase()->IgnoreParenImpCasts();
6785      }
6786
6787      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6788        if (Warn)
6789          HandleDeclRefExpr(DRE);
6790        return;
6791      }
6792
6793      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6794      // Visit that expression.
6795      Visit(Base);
6796    }
6797
6798    void VisitUnaryOperator(UnaryOperator *E) {
6799      // For POD record types, addresses of its own members are well-defined.
6800      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6801          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6802        if (!isPODType)
6803          HandleValue(E->getSubExpr());
6804        return;
6805      }
6806      Inherited::VisitUnaryOperator(E);
6807    }
6808
6809    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6810
6811    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6812      Decl* ReferenceDecl = DRE->getDecl();
6813      if (OrigDecl != ReferenceDecl) return;
6814      unsigned diag;
6815      if (isReferenceType) {
6816        diag = diag::warn_uninit_self_reference_in_reference_init;
6817      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
6818        diag = diag::warn_static_self_reference_in_init;
6819      } else {
6820        diag = diag::warn_uninit_self_reference_in_init;
6821      }
6822
6823      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6824                            S.PDiag(diag)
6825                              << DRE->getNameInfo().getName()
6826                              << OrigDecl->getLocation()
6827                              << DRE->getSourceRange());
6828    }
6829  };
6830
6831  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6832  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6833                                 bool DirectInit) {
6834    // Parameters arguments are occassionially constructed with itself,
6835    // for instance, in recursive functions.  Skip them.
6836    if (isa<ParmVarDecl>(OrigDecl))
6837      return;
6838
6839    E = E->IgnoreParens();
6840
6841    // Skip checking T a = a where T is not a record or reference type.
6842    // Doing so is a way to silence uninitialized warnings.
6843    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6844      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6845        if (ICE->getCastKind() == CK_LValueToRValue)
6846          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6847            if (DRE->getDecl() == OrigDecl)
6848              return;
6849
6850    SelfReferenceChecker(S, OrigDecl).Visit(E);
6851  }
6852}
6853
6854/// AddInitializerToDecl - Adds the initializer Init to the
6855/// declaration dcl. If DirectInit is true, this is C++ direct
6856/// initialization rather than copy initialization.
6857void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6858                                bool DirectInit, bool TypeMayContainAuto) {
6859  // If there is no declaration, there was an error parsing it.  Just ignore
6860  // the initializer.
6861  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6862    return;
6863
6864  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6865    // With declarators parsed the way they are, the parser cannot
6866    // distinguish between a normal initializer and a pure-specifier.
6867    // Thus this grotesque test.
6868    IntegerLiteral *IL;
6869    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6870        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6871      CheckPureMethod(Method, Init->getSourceRange());
6872    else {
6873      Diag(Method->getLocation(), diag::err_member_function_initialization)
6874        << Method->getDeclName() << Init->getSourceRange();
6875      Method->setInvalidDecl();
6876    }
6877    return;
6878  }
6879
6880  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6881  if (!VDecl) {
6882    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6883    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6884    RealDecl->setInvalidDecl();
6885    return;
6886  }
6887
6888  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6889
6890  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6891  AutoType *Auto = 0;
6892  if (TypeMayContainAuto &&
6893      (Auto = VDecl->getType()->getContainedAutoType()) &&
6894      !Auto->isDeduced()) {
6895    Expr *DeduceInit = Init;
6896    // Initializer could be a C++ direct-initializer. Deduction only works if it
6897    // contains exactly one expression.
6898    if (CXXDirectInit) {
6899      if (CXXDirectInit->getNumExprs() == 0) {
6900        // It isn't possible to write this directly, but it is possible to
6901        // end up in this situation with "auto x(some_pack...);"
6902        Diag(CXXDirectInit->getLocStart(),
6903             diag::err_auto_var_init_no_expression)
6904          << VDecl->getDeclName() << VDecl->getType()
6905          << VDecl->getSourceRange();
6906        RealDecl->setInvalidDecl();
6907        return;
6908      } else if (CXXDirectInit->getNumExprs() > 1) {
6909        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6910             diag::err_auto_var_init_multiple_expressions)
6911          << VDecl->getDeclName() << VDecl->getType()
6912          << VDecl->getSourceRange();
6913        RealDecl->setInvalidDecl();
6914        return;
6915      } else {
6916        DeduceInit = CXXDirectInit->getExpr(0);
6917      }
6918    }
6919    TypeSourceInfo *DeducedType = 0;
6920    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6921            DAR_Failed)
6922      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6923    if (!DeducedType) {
6924      RealDecl->setInvalidDecl();
6925      return;
6926    }
6927    VDecl->setTypeSourceInfo(DeducedType);
6928    VDecl->setType(DeducedType->getType());
6929    VDecl->ClearLinkageCache();
6930
6931    // In ARC, infer lifetime.
6932    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6933      VDecl->setInvalidDecl();
6934
6935    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6936    // 'id' instead of a specific object type prevents most of our usual checks.
6937    // We only want to warn outside of template instantiations, though:
6938    // inside a template, the 'id' could have come from a parameter.
6939    if (ActiveTemplateInstantiations.empty() &&
6940        DeducedType->getType()->isObjCIdType()) {
6941      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6942      Diag(Loc, diag::warn_auto_var_is_id)
6943        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6944    }
6945
6946    // If this is a redeclaration, check that the type we just deduced matches
6947    // the previously declared type.
6948    if (VarDecl *Old = VDecl->getPreviousDecl())
6949      MergeVarDeclTypes(VDecl, Old);
6950  }
6951
6952  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6953    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6954    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6955    VDecl->setInvalidDecl();
6956    return;
6957  }
6958
6959  if (!VDecl->getType()->isDependentType()) {
6960    // A definition must end up with a complete type, which means it must be
6961    // complete with the restriction that an array type might be completed by
6962    // the initializer; note that later code assumes this restriction.
6963    QualType BaseDeclType = VDecl->getType();
6964    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6965      BaseDeclType = Array->getElementType();
6966    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6967                            diag::err_typecheck_decl_incomplete_type)) {
6968      RealDecl->setInvalidDecl();
6969      return;
6970    }
6971
6972    // The variable can not have an abstract class type.
6973    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6974                               diag::err_abstract_type_in_decl,
6975                               AbstractVariableType))
6976      VDecl->setInvalidDecl();
6977  }
6978
6979  const VarDecl *Def;
6980  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6981    Diag(VDecl->getLocation(), diag::err_redefinition)
6982      << VDecl->getDeclName();
6983    Diag(Def->getLocation(), diag::note_previous_definition);
6984    VDecl->setInvalidDecl();
6985    return;
6986  }
6987
6988  const VarDecl* PrevInit = 0;
6989  if (getLangOpts().CPlusPlus) {
6990    // C++ [class.static.data]p4
6991    //   If a static data member is of const integral or const
6992    //   enumeration type, its declaration in the class definition can
6993    //   specify a constant-initializer which shall be an integral
6994    //   constant expression (5.19). In that case, the member can appear
6995    //   in integral constant expressions. The member shall still be
6996    //   defined in a namespace scope if it is used in the program and the
6997    //   namespace scope definition shall not contain an initializer.
6998    //
6999    // We already performed a redefinition check above, but for static
7000    // data members we also need to check whether there was an in-class
7001    // declaration with an initializer.
7002    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7003      Diag(VDecl->getLocation(), diag::err_redefinition)
7004        << VDecl->getDeclName();
7005      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7006      return;
7007    }
7008
7009    if (VDecl->hasLocalStorage())
7010      getCurFunction()->setHasBranchProtectedScope();
7011
7012    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7013      VDecl->setInvalidDecl();
7014      return;
7015    }
7016  }
7017
7018  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7019  // a kernel function cannot be initialized."
7020  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7021    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7022    VDecl->setInvalidDecl();
7023    return;
7024  }
7025
7026  // Get the decls type and save a reference for later, since
7027  // CheckInitializerTypes may change it.
7028  QualType DclT = VDecl->getType(), SavT = DclT;
7029
7030  // Top-level message sends default to 'id' when we're in a debugger
7031  // and we are assigning it to a variable of 'id' type.
7032  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
7033    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
7034      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7035      if (Result.isInvalid()) {
7036        VDecl->setInvalidDecl();
7037        return;
7038      }
7039      Init = Result.take();
7040    }
7041
7042  // Perform the initialization.
7043  if (!VDecl->isInvalidDecl()) {
7044    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7045    InitializationKind Kind
7046      = DirectInit ?
7047          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7048                                                           Init->getLocStart(),
7049                                                           Init->getLocEnd())
7050                        : InitializationKind::CreateDirectList(
7051                                                          VDecl->getLocation())
7052                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7053                                                    Init->getLocStart());
7054
7055    Expr **Args = &Init;
7056    unsigned NumArgs = 1;
7057    if (CXXDirectInit) {
7058      Args = CXXDirectInit->getExprs();
7059      NumArgs = CXXDirectInit->getNumExprs();
7060    }
7061    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7062    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7063                                        MultiExprArg(Args, NumArgs), &DclT);
7064    if (Result.isInvalid()) {
7065      VDecl->setInvalidDecl();
7066      return;
7067    }
7068
7069    Init = Result.takeAs<Expr>();
7070  }
7071
7072  // Check for self-references within variable initializers.
7073  // Variables declared within a function/method body (except for references)
7074  // are handled by a dataflow analysis.
7075  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7076      VDecl->getType()->isReferenceType()) {
7077    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7078  }
7079
7080  // If the type changed, it means we had an incomplete type that was
7081  // completed by the initializer. For example:
7082  //   int ary[] = { 1, 3, 5 };
7083  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7084  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7085    VDecl->setType(DclT);
7086
7087  if (!VDecl->isInvalidDecl()) {
7088    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7089
7090    if (VDecl->hasAttr<BlocksAttr>())
7091      checkRetainCycles(VDecl, Init);
7092
7093    // It is safe to assign a weak reference into a strong variable.
7094    // Although this code can still have problems:
7095    //   id x = self.weakProp;
7096    //   id y = self.weakProp;
7097    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7098    // paths through the function. This should be revisited if
7099    // -Wrepeated-use-of-weak is made flow-sensitive.
7100    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7101      DiagnosticsEngine::Level Level =
7102        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7103                                 Init->getLocStart());
7104      if (Level != DiagnosticsEngine::Ignored)
7105        getCurFunction()->markSafeWeakUse(Init);
7106    }
7107  }
7108
7109  // The initialization is usually a full-expression.
7110  //
7111  // FIXME: If this is a braced initialization of an aggregate, it is not
7112  // an expression, and each individual field initializer is a separate
7113  // full-expression. For instance, in:
7114  //
7115  //   struct Temp { ~Temp(); };
7116  //   struct S { S(Temp); };
7117  //   struct T { S a, b; } t = { Temp(), Temp() }
7118  //
7119  // we should destroy the first Temp before constructing the second.
7120  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7121                                          false,
7122                                          VDecl->isConstexpr());
7123  if (Result.isInvalid()) {
7124    VDecl->setInvalidDecl();
7125    return;
7126  }
7127  Init = Result.take();
7128
7129  // Attach the initializer to the decl.
7130  VDecl->setInit(Init);
7131
7132  if (VDecl->isLocalVarDecl()) {
7133    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7134    // static storage duration shall be constant expressions or string literals.
7135    // C++ does not have this restriction.
7136    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7137        VDecl->getStorageClass() == SC_Static)
7138      CheckForConstantInitializer(Init, DclT);
7139  } else if (VDecl->isStaticDataMember() &&
7140             VDecl->getLexicalDeclContext()->isRecord()) {
7141    // This is an in-class initialization for a static data member, e.g.,
7142    //
7143    // struct S {
7144    //   static const int value = 17;
7145    // };
7146
7147    // C++ [class.mem]p4:
7148    //   A member-declarator can contain a constant-initializer only
7149    //   if it declares a static member (9.4) of const integral or
7150    //   const enumeration type, see 9.4.2.
7151    //
7152    // C++11 [class.static.data]p3:
7153    //   If a non-volatile const static data member is of integral or
7154    //   enumeration type, its declaration in the class definition can
7155    //   specify a brace-or-equal-initializer in which every initalizer-clause
7156    //   that is an assignment-expression is a constant expression. A static
7157    //   data member of literal type can be declared in the class definition
7158    //   with the constexpr specifier; if so, its declaration shall specify a
7159    //   brace-or-equal-initializer in which every initializer-clause that is
7160    //   an assignment-expression is a constant expression.
7161
7162    // Do nothing on dependent types.
7163    if (DclT->isDependentType()) {
7164
7165    // Allow any 'static constexpr' members, whether or not they are of literal
7166    // type. We separately check that every constexpr variable is of literal
7167    // type.
7168    } else if (VDecl->isConstexpr()) {
7169
7170    // Require constness.
7171    } else if (!DclT.isConstQualified()) {
7172      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7173        << Init->getSourceRange();
7174      VDecl->setInvalidDecl();
7175
7176    // We allow integer constant expressions in all cases.
7177    } else if (DclT->isIntegralOrEnumerationType()) {
7178      // Check whether the expression is a constant expression.
7179      SourceLocation Loc;
7180      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7181        // In C++11, a non-constexpr const static data member with an
7182        // in-class initializer cannot be volatile.
7183        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7184      else if (Init->isValueDependent())
7185        ; // Nothing to check.
7186      else if (Init->isIntegerConstantExpr(Context, &Loc))
7187        ; // Ok, it's an ICE!
7188      else if (Init->isEvaluatable(Context)) {
7189        // If we can constant fold the initializer through heroics, accept it,
7190        // but report this as a use of an extension for -pedantic.
7191        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7192          << Init->getSourceRange();
7193      } else {
7194        // Otherwise, this is some crazy unknown case.  Report the issue at the
7195        // location provided by the isIntegerConstantExpr failed check.
7196        Diag(Loc, diag::err_in_class_initializer_non_constant)
7197          << Init->getSourceRange();
7198        VDecl->setInvalidDecl();
7199      }
7200
7201    // We allow foldable floating-point constants as an extension.
7202    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7203      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7204      // it anyway and provide a fixit to add the 'constexpr'.
7205      if (getLangOpts().CPlusPlus11) {
7206        SemaDiagnosticBuilder D = Diag(VDecl->getLocation(),
7207             diag::ext_in_class_initializer_float_type_cxx11);
7208        D << DclT << Init->getSourceRange();
7209        if (Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
7210                                     VDecl->getLocation()) >=
7211            DiagnosticsEngine::Error) {
7212          D << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7213          VDecl->setConstexpr(true);
7214        }
7215      } else {
7216        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7217          << DclT << Init->getSourceRange();
7218
7219        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7220          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7221            << Init->getSourceRange();
7222          VDecl->setInvalidDecl();
7223        }
7224      }
7225
7226    // Suggest adding 'constexpr' in C++11 for literal types.
7227    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7228      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7229        << DclT << Init->getSourceRange()
7230        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7231      VDecl->setConstexpr(true);
7232
7233    } else {
7234      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7235        << DclT << Init->getSourceRange();
7236      VDecl->setInvalidDecl();
7237    }
7238  } else if (VDecl->isFileVarDecl()) {
7239    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7240        (!getLangOpts().CPlusPlus ||
7241         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7242      Diag(VDecl->getLocation(), diag::warn_extern_init);
7243
7244    // C99 6.7.8p4. All file scoped initializers need to be constant.
7245    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7246      CheckForConstantInitializer(Init, DclT);
7247  }
7248
7249  // We will represent direct-initialization similarly to copy-initialization:
7250  //    int x(1);  -as-> int x = 1;
7251  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7252  //
7253  // Clients that want to distinguish between the two forms, can check for
7254  // direct initializer using VarDecl::getInitStyle().
7255  // A major benefit is that clients that don't particularly care about which
7256  // exactly form was it (like the CodeGen) can handle both cases without
7257  // special case code.
7258
7259  // C++ 8.5p11:
7260  // The form of initialization (using parentheses or '=') is generally
7261  // insignificant, but does matter when the entity being initialized has a
7262  // class type.
7263  if (CXXDirectInit) {
7264    assert(DirectInit && "Call-style initializer must be direct init.");
7265    VDecl->setInitStyle(VarDecl::CallInit);
7266  } else if (DirectInit) {
7267    // This must be list-initialization. No other way is direct-initialization.
7268    VDecl->setInitStyle(VarDecl::ListInit);
7269  }
7270
7271  CheckCompleteVariableDeclaration(VDecl);
7272}
7273
7274/// ActOnInitializerError - Given that there was an error parsing an
7275/// initializer for the given declaration, try to return to some form
7276/// of sanity.
7277void Sema::ActOnInitializerError(Decl *D) {
7278  // Our main concern here is re-establishing invariants like "a
7279  // variable's type is either dependent or complete".
7280  if (!D || D->isInvalidDecl()) return;
7281
7282  VarDecl *VD = dyn_cast<VarDecl>(D);
7283  if (!VD) return;
7284
7285  // Auto types are meaningless if we can't make sense of the initializer.
7286  if (ParsingInitForAutoVars.count(D)) {
7287    D->setInvalidDecl();
7288    return;
7289  }
7290
7291  QualType Ty = VD->getType();
7292  if (Ty->isDependentType()) return;
7293
7294  // Require a complete type.
7295  if (RequireCompleteType(VD->getLocation(),
7296                          Context.getBaseElementType(Ty),
7297                          diag::err_typecheck_decl_incomplete_type)) {
7298    VD->setInvalidDecl();
7299    return;
7300  }
7301
7302  // Require an abstract type.
7303  if (RequireNonAbstractType(VD->getLocation(), Ty,
7304                             diag::err_abstract_type_in_decl,
7305                             AbstractVariableType)) {
7306    VD->setInvalidDecl();
7307    return;
7308  }
7309
7310  // Don't bother complaining about constructors or destructors,
7311  // though.
7312}
7313
7314void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7315                                  bool TypeMayContainAuto) {
7316  // If there is no declaration, there was an error parsing it. Just ignore it.
7317  if (RealDecl == 0)
7318    return;
7319
7320  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7321    QualType Type = Var->getType();
7322
7323    // C++11 [dcl.spec.auto]p3
7324    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7325      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7326        << Var->getDeclName() << Type;
7327      Var->setInvalidDecl();
7328      return;
7329    }
7330
7331    // C++11 [class.static.data]p3: A static data member can be declared with
7332    // the constexpr specifier; if so, its declaration shall specify
7333    // a brace-or-equal-initializer.
7334    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7335    // the definition of a variable [...] or the declaration of a static data
7336    // member.
7337    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7338      if (Var->isStaticDataMember())
7339        Diag(Var->getLocation(),
7340             diag::err_constexpr_static_mem_var_requires_init)
7341          << Var->getDeclName();
7342      else
7343        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7344      Var->setInvalidDecl();
7345      return;
7346    }
7347
7348    switch (Var->isThisDeclarationADefinition()) {
7349    case VarDecl::Definition:
7350      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7351        break;
7352
7353      // We have an out-of-line definition of a static data member
7354      // that has an in-class initializer, so we type-check this like
7355      // a declaration.
7356      //
7357      // Fall through
7358
7359    case VarDecl::DeclarationOnly:
7360      // It's only a declaration.
7361
7362      // Block scope. C99 6.7p7: If an identifier for an object is
7363      // declared with no linkage (C99 6.2.2p6), the type for the
7364      // object shall be complete.
7365      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7366          !Var->getLinkage() && !Var->isInvalidDecl() &&
7367          RequireCompleteType(Var->getLocation(), Type,
7368                              diag::err_typecheck_decl_incomplete_type))
7369        Var->setInvalidDecl();
7370
7371      // Make sure that the type is not abstract.
7372      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7373          RequireNonAbstractType(Var->getLocation(), Type,
7374                                 diag::err_abstract_type_in_decl,
7375                                 AbstractVariableType))
7376        Var->setInvalidDecl();
7377      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7378          Var->getStorageClass() == SC_PrivateExtern) {
7379        Diag(Var->getLocation(), diag::warn_private_extern);
7380        Diag(Var->getLocation(), diag::note_private_extern);
7381      }
7382
7383      return;
7384
7385    case VarDecl::TentativeDefinition:
7386      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7387      // object that has file scope without an initializer, and without a
7388      // storage-class specifier or with the storage-class specifier "static",
7389      // constitutes a tentative definition. Note: A tentative definition with
7390      // external linkage is valid (C99 6.2.2p5).
7391      if (!Var->isInvalidDecl()) {
7392        if (const IncompleteArrayType *ArrayT
7393                                    = Context.getAsIncompleteArrayType(Type)) {
7394          if (RequireCompleteType(Var->getLocation(),
7395                                  ArrayT->getElementType(),
7396                                  diag::err_illegal_decl_array_incomplete_type))
7397            Var->setInvalidDecl();
7398        } else if (Var->getStorageClass() == SC_Static) {
7399          // C99 6.9.2p3: If the declaration of an identifier for an object is
7400          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7401          // declared type shall not be an incomplete type.
7402          // NOTE: code such as the following
7403          //     static struct s;
7404          //     struct s { int a; };
7405          // is accepted by gcc. Hence here we issue a warning instead of
7406          // an error and we do not invalidate the static declaration.
7407          // NOTE: to avoid multiple warnings, only check the first declaration.
7408          if (Var->getPreviousDecl() == 0)
7409            RequireCompleteType(Var->getLocation(), Type,
7410                                diag::ext_typecheck_decl_incomplete_type);
7411        }
7412      }
7413
7414      // Record the tentative definition; we're done.
7415      if (!Var->isInvalidDecl())
7416        TentativeDefinitions.push_back(Var);
7417      return;
7418    }
7419
7420    // Provide a specific diagnostic for uninitialized variable
7421    // definitions with incomplete array type.
7422    if (Type->isIncompleteArrayType()) {
7423      Diag(Var->getLocation(),
7424           diag::err_typecheck_incomplete_array_needs_initializer);
7425      Var->setInvalidDecl();
7426      return;
7427    }
7428
7429    // Provide a specific diagnostic for uninitialized variable
7430    // definitions with reference type.
7431    if (Type->isReferenceType()) {
7432      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7433        << Var->getDeclName()
7434        << SourceRange(Var->getLocation(), Var->getLocation());
7435      Var->setInvalidDecl();
7436      return;
7437    }
7438
7439    // Do not attempt to type-check the default initializer for a
7440    // variable with dependent type.
7441    if (Type->isDependentType())
7442      return;
7443
7444    if (Var->isInvalidDecl())
7445      return;
7446
7447    if (RequireCompleteType(Var->getLocation(),
7448                            Context.getBaseElementType(Type),
7449                            diag::err_typecheck_decl_incomplete_type)) {
7450      Var->setInvalidDecl();
7451      return;
7452    }
7453
7454    // The variable can not have an abstract class type.
7455    if (RequireNonAbstractType(Var->getLocation(), Type,
7456                               diag::err_abstract_type_in_decl,
7457                               AbstractVariableType)) {
7458      Var->setInvalidDecl();
7459      return;
7460    }
7461
7462    // Check for jumps past the implicit initializer.  C++0x
7463    // clarifies that this applies to a "variable with automatic
7464    // storage duration", not a "local variable".
7465    // C++11 [stmt.dcl]p3
7466    //   A program that jumps from a point where a variable with automatic
7467    //   storage duration is not in scope to a point where it is in scope is
7468    //   ill-formed unless the variable has scalar type, class type with a
7469    //   trivial default constructor and a trivial destructor, a cv-qualified
7470    //   version of one of these types, or an array of one of the preceding
7471    //   types and is declared without an initializer.
7472    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7473      if (const RecordType *Record
7474            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7475        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7476        // Mark the function for further checking even if the looser rules of
7477        // C++11 do not require such checks, so that we can diagnose
7478        // incompatibilities with C++98.
7479        if (!CXXRecord->isPOD())
7480          getCurFunction()->setHasBranchProtectedScope();
7481      }
7482    }
7483
7484    // C++03 [dcl.init]p9:
7485    //   If no initializer is specified for an object, and the
7486    //   object is of (possibly cv-qualified) non-POD class type (or
7487    //   array thereof), the object shall be default-initialized; if
7488    //   the object is of const-qualified type, the underlying class
7489    //   type shall have a user-declared default
7490    //   constructor. Otherwise, if no initializer is specified for
7491    //   a non- static object, the object and its subobjects, if
7492    //   any, have an indeterminate initial value); if the object
7493    //   or any of its subobjects are of const-qualified type, the
7494    //   program is ill-formed.
7495    // C++0x [dcl.init]p11:
7496    //   If no initializer is specified for an object, the object is
7497    //   default-initialized; [...].
7498    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7499    InitializationKind Kind
7500      = InitializationKind::CreateDefault(Var->getLocation());
7501
7502    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7503    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7504    if (Init.isInvalid())
7505      Var->setInvalidDecl();
7506    else if (Init.get()) {
7507      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7508      // This is important for template substitution.
7509      Var->setInitStyle(VarDecl::CallInit);
7510    }
7511
7512    CheckCompleteVariableDeclaration(Var);
7513  }
7514}
7515
7516void Sema::ActOnCXXForRangeDecl(Decl *D) {
7517  VarDecl *VD = dyn_cast<VarDecl>(D);
7518  if (!VD) {
7519    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7520    D->setInvalidDecl();
7521    return;
7522  }
7523
7524  VD->setCXXForRangeDecl(true);
7525
7526  // for-range-declaration cannot be given a storage class specifier.
7527  int Error = -1;
7528  switch (VD->getStorageClassAsWritten()) {
7529  case SC_None:
7530    break;
7531  case SC_Extern:
7532    Error = 0;
7533    break;
7534  case SC_Static:
7535    Error = 1;
7536    break;
7537  case SC_PrivateExtern:
7538    Error = 2;
7539    break;
7540  case SC_Auto:
7541    Error = 3;
7542    break;
7543  case SC_Register:
7544    Error = 4;
7545    break;
7546  case SC_OpenCLWorkGroupLocal:
7547    llvm_unreachable("Unexpected storage class");
7548  }
7549  if (VD->isConstexpr())
7550    Error = 5;
7551  if (Error != -1) {
7552    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7553      << VD->getDeclName() << Error;
7554    D->setInvalidDecl();
7555  }
7556}
7557
7558void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7559  if (var->isInvalidDecl()) return;
7560
7561  // In ARC, don't allow jumps past the implicit initialization of a
7562  // local retaining variable.
7563  if (getLangOpts().ObjCAutoRefCount &&
7564      var->hasLocalStorage()) {
7565    switch (var->getType().getObjCLifetime()) {
7566    case Qualifiers::OCL_None:
7567    case Qualifiers::OCL_ExplicitNone:
7568    case Qualifiers::OCL_Autoreleasing:
7569      break;
7570
7571    case Qualifiers::OCL_Weak:
7572    case Qualifiers::OCL_Strong:
7573      getCurFunction()->setHasBranchProtectedScope();
7574      break;
7575    }
7576  }
7577
7578  if (var->isThisDeclarationADefinition() &&
7579      var->getLinkage() == ExternalLinkage &&
7580      getDiagnostics().getDiagnosticLevel(
7581                       diag::warn_missing_variable_declarations,
7582                       var->getLocation())) {
7583    // Find a previous declaration that's not a definition.
7584    VarDecl *prev = var->getPreviousDecl();
7585    while (prev && prev->isThisDeclarationADefinition())
7586      prev = prev->getPreviousDecl();
7587
7588    if (!prev)
7589      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7590  }
7591
7592  // All the following checks are C++ only.
7593  if (!getLangOpts().CPlusPlus) return;
7594
7595  QualType type = var->getType();
7596  if (type->isDependentType()) return;
7597
7598  // __block variables might require us to capture a copy-initializer.
7599  if (var->hasAttr<BlocksAttr>()) {
7600    // It's currently invalid to ever have a __block variable with an
7601    // array type; should we diagnose that here?
7602
7603    // Regardless, we don't want to ignore array nesting when
7604    // constructing this copy.
7605    if (type->isStructureOrClassType()) {
7606      SourceLocation poi = var->getLocation();
7607      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7608      ExprResult result =
7609        PerformCopyInitialization(
7610                        InitializedEntity::InitializeBlock(poi, type, false),
7611                                  poi, Owned(varRef));
7612      if (!result.isInvalid()) {
7613        result = MaybeCreateExprWithCleanups(result);
7614        Expr *init = result.takeAs<Expr>();
7615        Context.setBlockVarCopyInits(var, init);
7616      }
7617    }
7618  }
7619
7620  Expr *Init = var->getInit();
7621  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7622  QualType baseType = Context.getBaseElementType(type);
7623
7624  if (!var->getDeclContext()->isDependentContext() &&
7625      Init && !Init->isValueDependent()) {
7626    if (IsGlobal && !var->isConstexpr() &&
7627        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7628                                            var->getLocation())
7629          != DiagnosticsEngine::Ignored &&
7630        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7631      Diag(var->getLocation(), diag::warn_global_constructor)
7632        << Init->getSourceRange();
7633
7634    if (var->isConstexpr()) {
7635      SmallVector<PartialDiagnosticAt, 8> Notes;
7636      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7637        SourceLocation DiagLoc = var->getLocation();
7638        // If the note doesn't add any useful information other than a source
7639        // location, fold it into the primary diagnostic.
7640        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7641              diag::note_invalid_subexpr_in_const_expr) {
7642          DiagLoc = Notes[0].first;
7643          Notes.clear();
7644        }
7645        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7646          << var << Init->getSourceRange();
7647        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7648          Diag(Notes[I].first, Notes[I].second);
7649      }
7650    } else if (var->isUsableInConstantExpressions(Context)) {
7651      // Check whether the initializer of a const variable of integral or
7652      // enumeration type is an ICE now, since we can't tell whether it was
7653      // initialized by a constant expression if we check later.
7654      var->checkInitIsICE();
7655    }
7656  }
7657
7658  // Require the destructor.
7659  if (const RecordType *recordType = baseType->getAs<RecordType>())
7660    FinalizeVarWithDestructor(var, recordType);
7661}
7662
7663/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7664/// any semantic actions necessary after any initializer has been attached.
7665void
7666Sema::FinalizeDeclaration(Decl *ThisDecl) {
7667  // Note that we are no longer parsing the initializer for this declaration.
7668  ParsingInitForAutoVars.erase(ThisDecl);
7669
7670  const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7671  if (!VD)
7672    return;
7673
7674  if (VD->isFileVarDecl())
7675    MarkUnusedFileScopedDecl(VD);
7676
7677  // Now we have parsed the initializer and can update the table of magic
7678  // tag values.
7679  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7680      !VD->getType()->isIntegralOrEnumerationType())
7681    return;
7682
7683  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7684         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7685         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7686       I != E; ++I) {
7687    const Expr *MagicValueExpr = VD->getInit();
7688    if (!MagicValueExpr) {
7689      continue;
7690    }
7691    llvm::APSInt MagicValueInt;
7692    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7693      Diag(I->getRange().getBegin(),
7694           diag::err_type_tag_for_datatype_not_ice)
7695        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7696      continue;
7697    }
7698    if (MagicValueInt.getActiveBits() > 64) {
7699      Diag(I->getRange().getBegin(),
7700           diag::err_type_tag_for_datatype_too_large)
7701        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7702      continue;
7703    }
7704    uint64_t MagicValue = MagicValueInt.getZExtValue();
7705    RegisterTypeTagForDatatype(I->getArgumentKind(),
7706                               MagicValue,
7707                               I->getMatchingCType(),
7708                               I->getLayoutCompatible(),
7709                               I->getMustBeNull());
7710  }
7711}
7712
7713Sema::DeclGroupPtrTy
7714Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7715                              Decl **Group, unsigned NumDecls) {
7716  SmallVector<Decl*, 8> Decls;
7717
7718  if (DS.isTypeSpecOwned())
7719    Decls.push_back(DS.getRepAsDecl());
7720
7721  for (unsigned i = 0; i != NumDecls; ++i)
7722    if (Decl *D = Group[i])
7723      Decls.push_back(D);
7724
7725  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7726    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7727      getASTContext().addUnnamedTag(Tag);
7728
7729  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7730                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7731}
7732
7733/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7734/// group, performing any necessary semantic checking.
7735Sema::DeclGroupPtrTy
7736Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7737                           bool TypeMayContainAuto) {
7738  // C++0x [dcl.spec.auto]p7:
7739  //   If the type deduced for the template parameter U is not the same in each
7740  //   deduction, the program is ill-formed.
7741  // FIXME: When initializer-list support is added, a distinction is needed
7742  // between the deduced type U and the deduced type which 'auto' stands for.
7743  //   auto a = 0, b = { 1, 2, 3 };
7744  // is legal because the deduced type U is 'int' in both cases.
7745  if (TypeMayContainAuto && NumDecls > 1) {
7746    QualType Deduced;
7747    CanQualType DeducedCanon;
7748    VarDecl *DeducedDecl = 0;
7749    for (unsigned i = 0; i != NumDecls; ++i) {
7750      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7751        AutoType *AT = D->getType()->getContainedAutoType();
7752        // Don't reissue diagnostics when instantiating a template.
7753        if (AT && D->isInvalidDecl())
7754          break;
7755        if (AT && AT->isDeduced()) {
7756          QualType U = AT->getDeducedType();
7757          CanQualType UCanon = Context.getCanonicalType(U);
7758          if (Deduced.isNull()) {
7759            Deduced = U;
7760            DeducedCanon = UCanon;
7761            DeducedDecl = D;
7762          } else if (DeducedCanon != UCanon) {
7763            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7764                 diag::err_auto_different_deductions)
7765              << Deduced << DeducedDecl->getDeclName()
7766              << U << D->getDeclName()
7767              << DeducedDecl->getInit()->getSourceRange()
7768              << D->getInit()->getSourceRange();
7769            D->setInvalidDecl();
7770            break;
7771          }
7772        }
7773      }
7774    }
7775  }
7776
7777  ActOnDocumentableDecls(Group, NumDecls);
7778
7779  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7780}
7781
7782void Sema::ActOnDocumentableDecl(Decl *D) {
7783  ActOnDocumentableDecls(&D, 1);
7784}
7785
7786void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7787  // Don't parse the comment if Doxygen diagnostics are ignored.
7788  if (NumDecls == 0 || !Group[0])
7789   return;
7790
7791  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7792                               Group[0]->getLocation())
7793        == DiagnosticsEngine::Ignored)
7794    return;
7795
7796  if (NumDecls >= 2) {
7797    // This is a decl group.  Normally it will contain only declarations
7798    // procuded from declarator list.  But in case we have any definitions or
7799    // additional declaration references:
7800    //   'typedef struct S {} S;'
7801    //   'typedef struct S *S;'
7802    //   'struct S *pS;'
7803    // FinalizeDeclaratorGroup adds these as separate declarations.
7804    Decl *MaybeTagDecl = Group[0];
7805    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7806      Group++;
7807      NumDecls--;
7808    }
7809  }
7810
7811  // See if there are any new comments that are not attached to a decl.
7812  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7813  if (!Comments.empty() &&
7814      !Comments.back()->isAttached()) {
7815    // There is at least one comment that not attached to a decl.
7816    // Maybe it should be attached to one of these decls?
7817    //
7818    // Note that this way we pick up not only comments that precede the
7819    // declaration, but also comments that *follow* the declaration -- thanks to
7820    // the lookahead in the lexer: we've consumed the semicolon and looked
7821    // ahead through comments.
7822    for (unsigned i = 0; i != NumDecls; ++i)
7823      Context.getCommentForDecl(Group[i], &PP);
7824  }
7825}
7826
7827/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7828/// to introduce parameters into function prototype scope.
7829Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7830  const DeclSpec &DS = D.getDeclSpec();
7831
7832  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7833  // C++03 [dcl.stc]p2 also permits 'auto'.
7834  VarDecl::StorageClass StorageClass = SC_None;
7835  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7836  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7837    StorageClass = SC_Register;
7838    StorageClassAsWritten = SC_Register;
7839  } else if (getLangOpts().CPlusPlus &&
7840             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7841    StorageClass = SC_Auto;
7842    StorageClassAsWritten = SC_Auto;
7843  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7844    Diag(DS.getStorageClassSpecLoc(),
7845         diag::err_invalid_storage_class_in_func_decl);
7846    D.getMutableDeclSpec().ClearStorageClassSpecs();
7847  }
7848
7849  if (D.getDeclSpec().isThreadSpecified())
7850    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7851  if (D.getDeclSpec().isConstexprSpecified())
7852    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7853      << 0;
7854
7855  DiagnoseFunctionSpecifiers(D);
7856
7857  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7858  QualType parmDeclType = TInfo->getType();
7859
7860  if (getLangOpts().CPlusPlus) {
7861    // Check that there are no default arguments inside the type of this
7862    // parameter.
7863    CheckExtraCXXDefaultArguments(D);
7864
7865    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7866    if (D.getCXXScopeSpec().isSet()) {
7867      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7868        << D.getCXXScopeSpec().getRange();
7869      D.getCXXScopeSpec().clear();
7870    }
7871  }
7872
7873  // Ensure we have a valid name
7874  IdentifierInfo *II = 0;
7875  if (D.hasName()) {
7876    II = D.getIdentifier();
7877    if (!II) {
7878      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7879        << GetNameForDeclarator(D).getName().getAsString();
7880      D.setInvalidType(true);
7881    }
7882  }
7883
7884  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7885  if (II) {
7886    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7887                   ForRedeclaration);
7888    LookupName(R, S);
7889    if (R.isSingleResult()) {
7890      NamedDecl *PrevDecl = R.getFoundDecl();
7891      if (PrevDecl->isTemplateParameter()) {
7892        // Maybe we will complain about the shadowed template parameter.
7893        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7894        // Just pretend that we didn't see the previous declaration.
7895        PrevDecl = 0;
7896      } else if (S->isDeclScope(PrevDecl)) {
7897        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7898        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7899
7900        // Recover by removing the name
7901        II = 0;
7902        D.SetIdentifier(0, D.getIdentifierLoc());
7903        D.setInvalidType(true);
7904      }
7905    }
7906  }
7907
7908  // Temporarily put parameter variables in the translation unit, not
7909  // the enclosing context.  This prevents them from accidentally
7910  // looking like class members in C++.
7911  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7912                                    D.getLocStart(),
7913                                    D.getIdentifierLoc(), II,
7914                                    parmDeclType, TInfo,
7915                                    StorageClass, StorageClassAsWritten);
7916
7917  if (D.isInvalidType())
7918    New->setInvalidDecl();
7919
7920  assert(S->isFunctionPrototypeScope());
7921  assert(S->getFunctionPrototypeDepth() >= 1);
7922  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7923                    S->getNextFunctionPrototypeIndex());
7924
7925  // Add the parameter declaration into this scope.
7926  S->AddDecl(New);
7927  if (II)
7928    IdResolver.AddDecl(New);
7929
7930  ProcessDeclAttributes(S, New, D);
7931
7932  if (D.getDeclSpec().isModulePrivateSpecified())
7933    Diag(New->getLocation(), diag::err_module_private_local)
7934      << 1 << New->getDeclName()
7935      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7936      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7937
7938  if (New->hasAttr<BlocksAttr>()) {
7939    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7940  }
7941  return New;
7942}
7943
7944/// \brief Synthesizes a variable for a parameter arising from a
7945/// typedef.
7946ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7947                                              SourceLocation Loc,
7948                                              QualType T) {
7949  /* FIXME: setting StartLoc == Loc.
7950     Would it be worth to modify callers so as to provide proper source
7951     location for the unnamed parameters, embedding the parameter's type? */
7952  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7953                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7954                                           SC_None, SC_None, 0);
7955  Param->setImplicit();
7956  return Param;
7957}
7958
7959void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7960                                    ParmVarDecl * const *ParamEnd) {
7961  // Don't diagnose unused-parameter errors in template instantiations; we
7962  // will already have done so in the template itself.
7963  if (!ActiveTemplateInstantiations.empty())
7964    return;
7965
7966  for (; Param != ParamEnd; ++Param) {
7967    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7968        !(*Param)->hasAttr<UnusedAttr>()) {
7969      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7970        << (*Param)->getDeclName();
7971    }
7972  }
7973}
7974
7975void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7976                                                  ParmVarDecl * const *ParamEnd,
7977                                                  QualType ReturnTy,
7978                                                  NamedDecl *D) {
7979  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7980    return;
7981
7982  // Warn if the return value is pass-by-value and larger than the specified
7983  // threshold.
7984  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7985    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7986    if (Size > LangOpts.NumLargeByValueCopy)
7987      Diag(D->getLocation(), diag::warn_return_value_size)
7988          << D->getDeclName() << Size;
7989  }
7990
7991  // Warn if any parameter is pass-by-value and larger than the specified
7992  // threshold.
7993  for (; Param != ParamEnd; ++Param) {
7994    QualType T = (*Param)->getType();
7995    if (T->isDependentType() || !T.isPODType(Context))
7996      continue;
7997    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7998    if (Size > LangOpts.NumLargeByValueCopy)
7999      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8000          << (*Param)->getDeclName() << Size;
8001  }
8002}
8003
8004ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8005                                  SourceLocation NameLoc, IdentifierInfo *Name,
8006                                  QualType T, TypeSourceInfo *TSInfo,
8007                                  VarDecl::StorageClass StorageClass,
8008                                  VarDecl::StorageClass StorageClassAsWritten) {
8009  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8010  if (getLangOpts().ObjCAutoRefCount &&
8011      T.getObjCLifetime() == Qualifiers::OCL_None &&
8012      T->isObjCLifetimeType()) {
8013
8014    Qualifiers::ObjCLifetime lifetime;
8015
8016    // Special cases for arrays:
8017    //   - if it's const, use __unsafe_unretained
8018    //   - otherwise, it's an error
8019    if (T->isArrayType()) {
8020      if (!T.isConstQualified()) {
8021        DelayedDiagnostics.add(
8022            sema::DelayedDiagnostic::makeForbiddenType(
8023            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8024      }
8025      lifetime = Qualifiers::OCL_ExplicitNone;
8026    } else {
8027      lifetime = T->getObjCARCImplicitLifetime();
8028    }
8029    T = Context.getLifetimeQualifiedType(T, lifetime);
8030  }
8031
8032  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8033                                         Context.getAdjustedParameterType(T),
8034                                         TSInfo,
8035                                         StorageClass, StorageClassAsWritten,
8036                                         0);
8037
8038  // Parameters can not be abstract class types.
8039  // For record types, this is done by the AbstractClassUsageDiagnoser once
8040  // the class has been completely parsed.
8041  if (!CurContext->isRecord() &&
8042      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8043                             AbstractParamType))
8044    New->setInvalidDecl();
8045
8046  // Parameter declarators cannot be interface types. All ObjC objects are
8047  // passed by reference.
8048  if (T->isObjCObjectType()) {
8049    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8050    Diag(NameLoc,
8051         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8052      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8053    T = Context.getObjCObjectPointerType(T);
8054    New->setType(T);
8055  }
8056
8057  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8058  // duration shall not be qualified by an address-space qualifier."
8059  // Since all parameters have automatic store duration, they can not have
8060  // an address space.
8061  if (T.getAddressSpace() != 0) {
8062    Diag(NameLoc, diag::err_arg_with_address_space);
8063    New->setInvalidDecl();
8064  }
8065
8066  return New;
8067}
8068
8069void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8070                                           SourceLocation LocAfterDecls) {
8071  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8072
8073  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8074  // for a K&R function.
8075  if (!FTI.hasPrototype) {
8076    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8077      --i;
8078      if (FTI.ArgInfo[i].Param == 0) {
8079        SmallString<256> Code;
8080        llvm::raw_svector_ostream(Code) << "  int "
8081                                        << FTI.ArgInfo[i].Ident->getName()
8082                                        << ";\n";
8083        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8084          << FTI.ArgInfo[i].Ident
8085          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8086
8087        // Implicitly declare the argument as type 'int' for lack of a better
8088        // type.
8089        AttributeFactory attrs;
8090        DeclSpec DS(attrs);
8091        const char* PrevSpec; // unused
8092        unsigned DiagID; // unused
8093        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8094                           PrevSpec, DiagID);
8095        // Use the identifier location for the type source range.
8096        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8097        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8098        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8099        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8100        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8101      }
8102    }
8103  }
8104}
8105
8106Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8107  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8108  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8109  Scope *ParentScope = FnBodyScope->getParent();
8110
8111  D.setFunctionDefinitionKind(FDK_Definition);
8112  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8113  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8114}
8115
8116static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8117                             const FunctionDecl*& PossibleZeroParamPrototype) {
8118  // Don't warn about invalid declarations.
8119  if (FD->isInvalidDecl())
8120    return false;
8121
8122  // Or declarations that aren't global.
8123  if (!FD->isGlobal())
8124    return false;
8125
8126  // Don't warn about C++ member functions.
8127  if (isa<CXXMethodDecl>(FD))
8128    return false;
8129
8130  // Don't warn about 'main'.
8131  if (FD->isMain())
8132    return false;
8133
8134  // Don't warn about inline functions.
8135  if (FD->isInlined())
8136    return false;
8137
8138  // Don't warn about function templates.
8139  if (FD->getDescribedFunctionTemplate())
8140    return false;
8141
8142  // Don't warn about function template specializations.
8143  if (FD->isFunctionTemplateSpecialization())
8144    return false;
8145
8146  // Don't warn for OpenCL kernels.
8147  if (FD->hasAttr<OpenCLKernelAttr>())
8148    return false;
8149
8150  bool MissingPrototype = true;
8151  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8152       Prev; Prev = Prev->getPreviousDecl()) {
8153    // Ignore any declarations that occur in function or method
8154    // scope, because they aren't visible from the header.
8155    if (Prev->getDeclContext()->isFunctionOrMethod())
8156      continue;
8157
8158    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8159    if (FD->getNumParams() == 0)
8160      PossibleZeroParamPrototype = Prev;
8161    break;
8162  }
8163
8164  return MissingPrototype;
8165}
8166
8167void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8168  // Don't complain if we're in GNU89 mode and the previous definition
8169  // was an extern inline function.
8170  const FunctionDecl *Definition;
8171  if (FD->isDefined(Definition) &&
8172      !canRedefineFunction(Definition, getLangOpts())) {
8173    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8174        Definition->getStorageClass() == SC_Extern)
8175      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8176        << FD->getDeclName() << getLangOpts().CPlusPlus;
8177    else
8178      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8179    Diag(Definition->getLocation(), diag::note_previous_definition);
8180    FD->setInvalidDecl();
8181  }
8182}
8183
8184Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8185  // Clear the last template instantiation error context.
8186  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8187
8188  if (!D)
8189    return D;
8190  FunctionDecl *FD = 0;
8191
8192  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8193    FD = FunTmpl->getTemplatedDecl();
8194  else
8195    FD = cast<FunctionDecl>(D);
8196
8197  // Enter a new function scope
8198  PushFunctionScope();
8199
8200  // See if this is a redefinition.
8201  if (!FD->isLateTemplateParsed())
8202    CheckForFunctionRedefinition(FD);
8203
8204  // Builtin functions cannot be defined.
8205  if (unsigned BuiltinID = FD->getBuiltinID()) {
8206    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8207      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8208      FD->setInvalidDecl();
8209    }
8210  }
8211
8212  // The return type of a function definition must be complete
8213  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8214  QualType ResultType = FD->getResultType();
8215  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8216      !FD->isInvalidDecl() &&
8217      RequireCompleteType(FD->getLocation(), ResultType,
8218                          diag::err_func_def_incomplete_result))
8219    FD->setInvalidDecl();
8220
8221  // GNU warning -Wmissing-prototypes:
8222  //   Warn if a global function is defined without a previous
8223  //   prototype declaration. This warning is issued even if the
8224  //   definition itself provides a prototype. The aim is to detect
8225  //   global functions that fail to be declared in header files.
8226  const FunctionDecl *PossibleZeroParamPrototype = 0;
8227  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8228    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8229
8230    if (PossibleZeroParamPrototype) {
8231      // We found a declaration that is not a prototype,
8232      // but that could be a zero-parameter prototype
8233      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8234      TypeLoc TL = TI->getTypeLoc();
8235      if (FunctionNoProtoTypeLoc* FTL = dyn_cast<FunctionNoProtoTypeLoc>(&TL))
8236        Diag(PossibleZeroParamPrototype->getLocation(),
8237             diag::note_declaration_not_a_prototype)
8238          << PossibleZeroParamPrototype
8239          << FixItHint::CreateInsertion(FTL->getRParenLoc(), "void");
8240    }
8241  }
8242
8243  if (FnBodyScope)
8244    PushDeclContext(FnBodyScope, FD);
8245
8246  // Check the validity of our function parameters
8247  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8248                           /*CheckParameterNames=*/true);
8249
8250  // Introduce our parameters into the function scope
8251  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8252    ParmVarDecl *Param = FD->getParamDecl(p);
8253    Param->setOwningFunction(FD);
8254
8255    // If this has an identifier, add it to the scope stack.
8256    if (Param->getIdentifier() && FnBodyScope) {
8257      CheckShadow(FnBodyScope, Param);
8258
8259      PushOnScopeChains(Param, FnBodyScope);
8260    }
8261  }
8262
8263  // If we had any tags defined in the function prototype,
8264  // introduce them into the function scope.
8265  if (FnBodyScope) {
8266    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8267           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8268      NamedDecl *D = *I;
8269
8270      // Some of these decls (like enums) may have been pinned to the translation unit
8271      // for lack of a real context earlier. If so, remove from the translation unit
8272      // and reattach to the current context.
8273      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8274        // Is the decl actually in the context?
8275        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8276               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8277          if (*DI == D) {
8278            Context.getTranslationUnitDecl()->removeDecl(D);
8279            break;
8280          }
8281        }
8282        // Either way, reassign the lexical decl context to our FunctionDecl.
8283        D->setLexicalDeclContext(CurContext);
8284      }
8285
8286      // If the decl has a non-null name, make accessible in the current scope.
8287      if (!D->getName().empty())
8288        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8289
8290      // Similarly, dive into enums and fish their constants out, making them
8291      // accessible in this scope.
8292      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8293        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8294               EE = ED->enumerator_end(); EI != EE; ++EI)
8295          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8296      }
8297    }
8298  }
8299
8300  // Ensure that the function's exception specification is instantiated.
8301  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8302    ResolveExceptionSpec(D->getLocation(), FPT);
8303
8304  // Checking attributes of current function definition
8305  // dllimport attribute.
8306  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8307  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8308    // dllimport attribute cannot be directly applied to definition.
8309    // Microsoft accepts dllimport for functions defined within class scope.
8310    if (!DA->isInherited() &&
8311        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8312      Diag(FD->getLocation(),
8313           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8314        << "dllimport";
8315      FD->setInvalidDecl();
8316      return D;
8317    }
8318
8319    // Visual C++ appears to not think this is an issue, so only issue
8320    // a warning when Microsoft extensions are disabled.
8321    if (!LangOpts.MicrosoftExt) {
8322      // If a symbol previously declared dllimport is later defined, the
8323      // attribute is ignored in subsequent references, and a warning is
8324      // emitted.
8325      Diag(FD->getLocation(),
8326           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8327        << FD->getName() << "dllimport";
8328    }
8329  }
8330  // We want to attach documentation to original Decl (which might be
8331  // a function template).
8332  ActOnDocumentableDecl(D);
8333  return D;
8334}
8335
8336/// \brief Given the set of return statements within a function body,
8337/// compute the variables that are subject to the named return value
8338/// optimization.
8339///
8340/// Each of the variables that is subject to the named return value
8341/// optimization will be marked as NRVO variables in the AST, and any
8342/// return statement that has a marked NRVO variable as its NRVO candidate can
8343/// use the named return value optimization.
8344///
8345/// This function applies a very simplistic algorithm for NRVO: if every return
8346/// statement in the function has the same NRVO candidate, that candidate is
8347/// the NRVO variable.
8348///
8349/// FIXME: Employ a smarter algorithm that accounts for multiple return
8350/// statements and the lifetimes of the NRVO candidates. We should be able to
8351/// find a maximal set of NRVO variables.
8352void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8353  ReturnStmt **Returns = Scope->Returns.data();
8354
8355  const VarDecl *NRVOCandidate = 0;
8356  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8357    if (!Returns[I]->getNRVOCandidate())
8358      return;
8359
8360    if (!NRVOCandidate)
8361      NRVOCandidate = Returns[I]->getNRVOCandidate();
8362    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8363      return;
8364  }
8365
8366  if (NRVOCandidate)
8367    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8368}
8369
8370bool Sema::canSkipFunctionBody(Decl *D) {
8371  if (!Consumer.shouldSkipFunctionBody(D))
8372    return false;
8373
8374  if (isa<ObjCMethodDecl>(D))
8375    return true;
8376
8377  FunctionDecl *FD = 0;
8378  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8379    FD = FTD->getTemplatedDecl();
8380  else
8381    FD = cast<FunctionDecl>(D);
8382
8383  // We cannot skip the body of a function (or function template) which is
8384  // constexpr, since we may need to evaluate its body in order to parse the
8385  // rest of the file.
8386  return !FD->isConstexpr();
8387}
8388
8389Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8390  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
8391    FD->setHasSkippedBody();
8392  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
8393    MD->setHasSkippedBody();
8394  return ActOnFinishFunctionBody(Decl, 0);
8395}
8396
8397Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8398  return ActOnFinishFunctionBody(D, BodyArg, false);
8399}
8400
8401Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8402                                    bool IsInstantiation) {
8403  FunctionDecl *FD = 0;
8404  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8405  if (FunTmpl)
8406    FD = FunTmpl->getTemplatedDecl();
8407  else
8408    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8409
8410  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8411  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8412
8413  if (FD) {
8414    FD->setBody(Body);
8415
8416    // If the function implicitly returns zero (like 'main') or is naked,
8417    // don't complain about missing return statements.
8418    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8419      WP.disableCheckFallThrough();
8420
8421    // MSVC permits the use of pure specifier (=0) on function definition,
8422    // defined at class scope, warn about this non standard construct.
8423    if (getLangOpts().MicrosoftExt && FD->isPure())
8424      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8425
8426    if (!FD->isInvalidDecl()) {
8427      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8428      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8429                                             FD->getResultType(), FD);
8430
8431      // If this is a constructor, we need a vtable.
8432      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8433        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8434
8435      // Try to apply the named return value optimization. We have to check
8436      // if we can do this here because lambdas keep return statements around
8437      // to deduce an implicit return type.
8438      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8439          !FD->isDependentContext())
8440        computeNRVO(Body, getCurFunction());
8441    }
8442
8443    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8444           "Function parsing confused");
8445  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8446    assert(MD == getCurMethodDecl() && "Method parsing confused");
8447    MD->setBody(Body);
8448    if (!MD->isInvalidDecl()) {
8449      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8450      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8451                                             MD->getResultType(), MD);
8452
8453      if (Body)
8454        computeNRVO(Body, getCurFunction());
8455    }
8456    if (getCurFunction()->ObjCShouldCallSuper) {
8457      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8458        << MD->getSelector().getAsString();
8459      getCurFunction()->ObjCShouldCallSuper = false;
8460    }
8461  } else {
8462    return 0;
8463  }
8464
8465  assert(!getCurFunction()->ObjCShouldCallSuper &&
8466         "This should only be set for ObjC methods, which should have been "
8467         "handled in the block above.");
8468
8469  // Verify and clean out per-function state.
8470  if (Body) {
8471    // C++ constructors that have function-try-blocks can't have return
8472    // statements in the handlers of that block. (C++ [except.handle]p14)
8473    // Verify this.
8474    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8475      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8476
8477    // Verify that gotos and switch cases don't jump into scopes illegally.
8478    if (getCurFunction()->NeedsScopeChecking() &&
8479        !dcl->isInvalidDecl() &&
8480        !hasAnyUnrecoverableErrorsInThisFunction() &&
8481        !PP.isCodeCompletionEnabled())
8482      DiagnoseInvalidJumps(Body);
8483
8484    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8485      if (!Destructor->getParent()->isDependentType())
8486        CheckDestructor(Destructor);
8487
8488      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8489                                             Destructor->getParent());
8490    }
8491
8492    // If any errors have occurred, clear out any temporaries that may have
8493    // been leftover. This ensures that these temporaries won't be picked up for
8494    // deletion in some later function.
8495    if (PP.getDiagnostics().hasErrorOccurred() ||
8496        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8497      DiscardCleanupsInEvaluationContext();
8498    }
8499    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8500        !isa<FunctionTemplateDecl>(dcl)) {
8501      // Since the body is valid, issue any analysis-based warnings that are
8502      // enabled.
8503      ActivePolicy = &WP;
8504    }
8505
8506    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8507        (!CheckConstexprFunctionDecl(FD) ||
8508         !CheckConstexprFunctionBody(FD, Body)))
8509      FD->setInvalidDecl();
8510
8511    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8512    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8513    assert(MaybeODRUseExprs.empty() &&
8514           "Leftover expressions for odr-use checking");
8515  }
8516
8517  if (!IsInstantiation)
8518    PopDeclContext();
8519
8520  PopFunctionScopeInfo(ActivePolicy, dcl);
8521
8522  // If any errors have occurred, clear out any temporaries that may have
8523  // been leftover. This ensures that these temporaries won't be picked up for
8524  // deletion in some later function.
8525  if (getDiagnostics().hasErrorOccurred()) {
8526    DiscardCleanupsInEvaluationContext();
8527  }
8528
8529  return dcl;
8530}
8531
8532
8533/// When we finish delayed parsing of an attribute, we must attach it to the
8534/// relevant Decl.
8535void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8536                                       ParsedAttributes &Attrs) {
8537  // Always attach attributes to the underlying decl.
8538  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8539    D = TD->getTemplatedDecl();
8540  ProcessDeclAttributeList(S, D, Attrs.getList());
8541
8542  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8543    if (Method->isStatic())
8544      checkThisInStaticMemberFunctionAttributes(Method);
8545}
8546
8547
8548/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8549/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8550NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8551                                          IdentifierInfo &II, Scope *S) {
8552  // Before we produce a declaration for an implicitly defined
8553  // function, see whether there was a locally-scoped declaration of
8554  // this name as a function or variable. If so, use that
8555  // (non-visible) declaration, and complain about it.
8556  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8557    = findLocallyScopedExternCDecl(&II);
8558  if (Pos != LocallyScopedExternCDecls.end()) {
8559    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8560    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8561    return Pos->second;
8562  }
8563
8564  // Extension in C99.  Legal in C90, but warn about it.
8565  unsigned diag_id;
8566  if (II.getName().startswith("__builtin_"))
8567    diag_id = diag::warn_builtin_unknown;
8568  else if (getLangOpts().C99)
8569    diag_id = diag::ext_implicit_function_decl;
8570  else
8571    diag_id = diag::warn_implicit_function_decl;
8572  Diag(Loc, diag_id) << &II;
8573
8574  // Because typo correction is expensive, only do it if the implicit
8575  // function declaration is going to be treated as an error.
8576  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8577    TypoCorrection Corrected;
8578    DeclFilterCCC<FunctionDecl> Validator;
8579    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8580                                      LookupOrdinaryName, S, 0, Validator))) {
8581      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8582      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8583      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8584
8585      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8586          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8587
8588      if (Func->getLocation().isValid()
8589          && !II.getName().startswith("__builtin_"))
8590        Diag(Func->getLocation(), diag::note_previous_decl)
8591            << CorrectedQuotedStr;
8592    }
8593  }
8594
8595  // Set a Declarator for the implicit definition: int foo();
8596  const char *Dummy;
8597  AttributeFactory attrFactory;
8598  DeclSpec DS(attrFactory);
8599  unsigned DiagID;
8600  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8601  (void)Error; // Silence warning.
8602  assert(!Error && "Error setting up implicit decl!");
8603  SourceLocation NoLoc;
8604  Declarator D(DS, Declarator::BlockContext);
8605  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8606                                             /*IsAmbiguous=*/false,
8607                                             /*RParenLoc=*/NoLoc,
8608                                             /*ArgInfo=*/0,
8609                                             /*NumArgs=*/0,
8610                                             /*EllipsisLoc=*/NoLoc,
8611                                             /*RParenLoc=*/NoLoc,
8612                                             /*TypeQuals=*/0,
8613                                             /*RefQualifierIsLvalueRef=*/true,
8614                                             /*RefQualifierLoc=*/NoLoc,
8615                                             /*ConstQualifierLoc=*/NoLoc,
8616                                             /*VolatileQualifierLoc=*/NoLoc,
8617                                             /*MutableLoc=*/NoLoc,
8618                                             EST_None,
8619                                             /*ESpecLoc=*/NoLoc,
8620                                             /*Exceptions=*/0,
8621                                             /*ExceptionRanges=*/0,
8622                                             /*NumExceptions=*/0,
8623                                             /*NoexceptExpr=*/0,
8624                                             Loc, Loc, D),
8625                DS.getAttributes(),
8626                SourceLocation());
8627  D.SetIdentifier(&II, Loc);
8628
8629  // Insert this function into translation-unit scope.
8630
8631  DeclContext *PrevDC = CurContext;
8632  CurContext = Context.getTranslationUnitDecl();
8633
8634  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8635  FD->setImplicit();
8636
8637  CurContext = PrevDC;
8638
8639  AddKnownFunctionAttributes(FD);
8640
8641  return FD;
8642}
8643
8644/// \brief Adds any function attributes that we know a priori based on
8645/// the declaration of this function.
8646///
8647/// These attributes can apply both to implicitly-declared builtins
8648/// (like __builtin___printf_chk) or to library-declared functions
8649/// like NSLog or printf.
8650///
8651/// We need to check for duplicate attributes both here and where user-written
8652/// attributes are applied to declarations.
8653void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8654  if (FD->isInvalidDecl())
8655    return;
8656
8657  // If this is a built-in function, map its builtin attributes to
8658  // actual attributes.
8659  if (unsigned BuiltinID = FD->getBuiltinID()) {
8660    // Handle printf-formatting attributes.
8661    unsigned FormatIdx;
8662    bool HasVAListArg;
8663    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8664      if (!FD->getAttr<FormatAttr>()) {
8665        const char *fmt = "printf";
8666        unsigned int NumParams = FD->getNumParams();
8667        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8668            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8669          fmt = "NSString";
8670        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8671                                               fmt, FormatIdx+1,
8672                                               HasVAListArg ? 0 : FormatIdx+2));
8673      }
8674    }
8675    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8676                                             HasVAListArg)) {
8677     if (!FD->getAttr<FormatAttr>())
8678       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8679                                              "scanf", FormatIdx+1,
8680                                              HasVAListArg ? 0 : FormatIdx+2));
8681    }
8682
8683    // Mark const if we don't care about errno and that is the only
8684    // thing preventing the function from being const. This allows
8685    // IRgen to use LLVM intrinsics for such functions.
8686    if (!getLangOpts().MathErrno &&
8687        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8688      if (!FD->getAttr<ConstAttr>())
8689        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8690    }
8691
8692    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8693        !FD->getAttr<ReturnsTwiceAttr>())
8694      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8695    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8696      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8697    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8698      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8699  }
8700
8701  IdentifierInfo *Name = FD->getIdentifier();
8702  if (!Name)
8703    return;
8704  if ((!getLangOpts().CPlusPlus &&
8705       FD->getDeclContext()->isTranslationUnit()) ||
8706      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8707       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8708       LinkageSpecDecl::lang_c)) {
8709    // Okay: this could be a libc/libm/Objective-C function we know
8710    // about.
8711  } else
8712    return;
8713
8714  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8715    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8716    // target-specific builtins, perhaps?
8717    if (!FD->getAttr<FormatAttr>())
8718      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8719                                             "printf", 2,
8720                                             Name->isStr("vasprintf") ? 0 : 3));
8721  }
8722
8723  if (Name->isStr("__CFStringMakeConstantString")) {
8724    // We already have a __builtin___CFStringMakeConstantString,
8725    // but builds that use -fno-constant-cfstrings don't go through that.
8726    if (!FD->getAttr<FormatArgAttr>())
8727      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8728  }
8729}
8730
8731TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8732                                    TypeSourceInfo *TInfo) {
8733  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8734  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8735
8736  if (!TInfo) {
8737    assert(D.isInvalidType() && "no declarator info for valid type");
8738    TInfo = Context.getTrivialTypeSourceInfo(T);
8739  }
8740
8741  // Scope manipulation handled by caller.
8742  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8743                                           D.getLocStart(),
8744                                           D.getIdentifierLoc(),
8745                                           D.getIdentifier(),
8746                                           TInfo);
8747
8748  // Bail out immediately if we have an invalid declaration.
8749  if (D.isInvalidType()) {
8750    NewTD->setInvalidDecl();
8751    return NewTD;
8752  }
8753
8754  if (D.getDeclSpec().isModulePrivateSpecified()) {
8755    if (CurContext->isFunctionOrMethod())
8756      Diag(NewTD->getLocation(), diag::err_module_private_local)
8757        << 2 << NewTD->getDeclName()
8758        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8759        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8760    else
8761      NewTD->setModulePrivate();
8762  }
8763
8764  // C++ [dcl.typedef]p8:
8765  //   If the typedef declaration defines an unnamed class (or
8766  //   enum), the first typedef-name declared by the declaration
8767  //   to be that class type (or enum type) is used to denote the
8768  //   class type (or enum type) for linkage purposes only.
8769  // We need to check whether the type was declared in the declaration.
8770  switch (D.getDeclSpec().getTypeSpecType()) {
8771  case TST_enum:
8772  case TST_struct:
8773  case TST_interface:
8774  case TST_union:
8775  case TST_class: {
8776    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8777
8778    // Do nothing if the tag is not anonymous or already has an
8779    // associated typedef (from an earlier typedef in this decl group).
8780    if (tagFromDeclSpec->getIdentifier()) break;
8781    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8782
8783    // A well-formed anonymous tag must always be a TUK_Definition.
8784    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8785
8786    // The type must match the tag exactly;  no qualifiers allowed.
8787    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8788      break;
8789
8790    // Otherwise, set this is the anon-decl typedef for the tag.
8791    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8792    break;
8793  }
8794
8795  default:
8796    break;
8797  }
8798
8799  return NewTD;
8800}
8801
8802
8803/// \brief Check that this is a valid underlying type for an enum declaration.
8804bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8805  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8806  QualType T = TI->getType();
8807
8808  if (T->isDependentType())
8809    return false;
8810
8811  if (const BuiltinType *BT = T->getAs<BuiltinType>())
8812    if (BT->isInteger())
8813      return false;
8814
8815  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8816  return true;
8817}
8818
8819/// Check whether this is a valid redeclaration of a previous enumeration.
8820/// \return true if the redeclaration was invalid.
8821bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8822                                  QualType EnumUnderlyingTy,
8823                                  const EnumDecl *Prev) {
8824  bool IsFixed = !EnumUnderlyingTy.isNull();
8825
8826  if (IsScoped != Prev->isScoped()) {
8827    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8828      << Prev->isScoped();
8829    Diag(Prev->getLocation(), diag::note_previous_use);
8830    return true;
8831  }
8832
8833  if (IsFixed && Prev->isFixed()) {
8834    if (!EnumUnderlyingTy->isDependentType() &&
8835        !Prev->getIntegerType()->isDependentType() &&
8836        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8837                                        Prev->getIntegerType())) {
8838      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8839        << EnumUnderlyingTy << Prev->getIntegerType();
8840      Diag(Prev->getLocation(), diag::note_previous_use);
8841      return true;
8842    }
8843  } else if (IsFixed != Prev->isFixed()) {
8844    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8845      << Prev->isFixed();
8846    Diag(Prev->getLocation(), diag::note_previous_use);
8847    return true;
8848  }
8849
8850  return false;
8851}
8852
8853/// \brief Get diagnostic %select index for tag kind for
8854/// redeclaration diagnostic message.
8855/// WARNING: Indexes apply to particular diagnostics only!
8856///
8857/// \returns diagnostic %select index.
8858static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8859  switch (Tag) {
8860  case TTK_Struct: return 0;
8861  case TTK_Interface: return 1;
8862  case TTK_Class:  return 2;
8863  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8864  }
8865}
8866
8867/// \brief Determine if tag kind is a class-key compatible with
8868/// class for redeclaration (class, struct, or __interface).
8869///
8870/// \returns true iff the tag kind is compatible.
8871static bool isClassCompatTagKind(TagTypeKind Tag)
8872{
8873  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8874}
8875
8876/// \brief Determine whether a tag with a given kind is acceptable
8877/// as a redeclaration of the given tag declaration.
8878///
8879/// \returns true if the new tag kind is acceptable, false otherwise.
8880bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8881                                        TagTypeKind NewTag, bool isDefinition,
8882                                        SourceLocation NewTagLoc,
8883                                        const IdentifierInfo &Name) {
8884  // C++ [dcl.type.elab]p3:
8885  //   The class-key or enum keyword present in the
8886  //   elaborated-type-specifier shall agree in kind with the
8887  //   declaration to which the name in the elaborated-type-specifier
8888  //   refers. This rule also applies to the form of
8889  //   elaborated-type-specifier that declares a class-name or
8890  //   friend class since it can be construed as referring to the
8891  //   definition of the class. Thus, in any
8892  //   elaborated-type-specifier, the enum keyword shall be used to
8893  //   refer to an enumeration (7.2), the union class-key shall be
8894  //   used to refer to a union (clause 9), and either the class or
8895  //   struct class-key shall be used to refer to a class (clause 9)
8896  //   declared using the class or struct class-key.
8897  TagTypeKind OldTag = Previous->getTagKind();
8898  if (!isDefinition || !isClassCompatTagKind(NewTag))
8899    if (OldTag == NewTag)
8900      return true;
8901
8902  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8903    // Warn about the struct/class tag mismatch.
8904    bool isTemplate = false;
8905    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8906      isTemplate = Record->getDescribedClassTemplate();
8907
8908    if (!ActiveTemplateInstantiations.empty()) {
8909      // In a template instantiation, do not offer fix-its for tag mismatches
8910      // since they usually mess up the template instead of fixing the problem.
8911      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8912        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8913        << getRedeclDiagFromTagKind(OldTag);
8914      return true;
8915    }
8916
8917    if (isDefinition) {
8918      // On definitions, check previous tags and issue a fix-it for each
8919      // one that doesn't match the current tag.
8920      if (Previous->getDefinition()) {
8921        // Don't suggest fix-its for redefinitions.
8922        return true;
8923      }
8924
8925      bool previousMismatch = false;
8926      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8927           E(Previous->redecls_end()); I != E; ++I) {
8928        if (I->getTagKind() != NewTag) {
8929          if (!previousMismatch) {
8930            previousMismatch = true;
8931            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8932              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8933              << getRedeclDiagFromTagKind(I->getTagKind());
8934          }
8935          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8936            << getRedeclDiagFromTagKind(NewTag)
8937            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8938                 TypeWithKeyword::getTagTypeKindName(NewTag));
8939        }
8940      }
8941      return true;
8942    }
8943
8944    // Check for a previous definition.  If current tag and definition
8945    // are same type, do nothing.  If no definition, but disagree with
8946    // with previous tag type, give a warning, but no fix-it.
8947    const TagDecl *Redecl = Previous->getDefinition() ?
8948                            Previous->getDefinition() : Previous;
8949    if (Redecl->getTagKind() == NewTag) {
8950      return true;
8951    }
8952
8953    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8954      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8955      << getRedeclDiagFromTagKind(OldTag);
8956    Diag(Redecl->getLocation(), diag::note_previous_use);
8957
8958    // If there is a previous defintion, suggest a fix-it.
8959    if (Previous->getDefinition()) {
8960        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8961          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8962          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8963               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8964    }
8965
8966    return true;
8967  }
8968  return false;
8969}
8970
8971/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8972/// former case, Name will be non-null.  In the later case, Name will be null.
8973/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8974/// reference/declaration/definition of a tag.
8975Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8976                     SourceLocation KWLoc, CXXScopeSpec &SS,
8977                     IdentifierInfo *Name, SourceLocation NameLoc,
8978                     AttributeList *Attr, AccessSpecifier AS,
8979                     SourceLocation ModulePrivateLoc,
8980                     MultiTemplateParamsArg TemplateParameterLists,
8981                     bool &OwnedDecl, bool &IsDependent,
8982                     SourceLocation ScopedEnumKWLoc,
8983                     bool ScopedEnumUsesClassTag,
8984                     TypeResult UnderlyingType) {
8985  // If this is not a definition, it must have a name.
8986  IdentifierInfo *OrigName = Name;
8987  assert((Name != 0 || TUK == TUK_Definition) &&
8988         "Nameless record must be a definition!");
8989  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8990
8991  OwnedDecl = false;
8992  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8993  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8994
8995  // FIXME: Check explicit specializations more carefully.
8996  bool isExplicitSpecialization = false;
8997  bool Invalid = false;
8998
8999  // We only need to do this matching if we have template parameters
9000  // or a scope specifier, which also conveniently avoids this work
9001  // for non-C++ cases.
9002  if (TemplateParameterLists.size() > 0 ||
9003      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9004    if (TemplateParameterList *TemplateParams
9005          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9006                                                TemplateParameterLists.data(),
9007                                                TemplateParameterLists.size(),
9008                                                    TUK == TUK_Friend,
9009                                                    isExplicitSpecialization,
9010                                                    Invalid)) {
9011      if (TemplateParams->size() > 0) {
9012        // This is a declaration or definition of a class template (which may
9013        // be a member of another template).
9014
9015        if (Invalid)
9016          return 0;
9017
9018        OwnedDecl = false;
9019        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9020                                               SS, Name, NameLoc, Attr,
9021                                               TemplateParams, AS,
9022                                               ModulePrivateLoc,
9023                                               TemplateParameterLists.size()-1,
9024                                               TemplateParameterLists.data());
9025        return Result.get();
9026      } else {
9027        // The "template<>" header is extraneous.
9028        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9029          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9030        isExplicitSpecialization = true;
9031      }
9032    }
9033  }
9034
9035  // Figure out the underlying type if this a enum declaration. We need to do
9036  // this early, because it's needed to detect if this is an incompatible
9037  // redeclaration.
9038  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9039
9040  if (Kind == TTK_Enum) {
9041    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9042      // No underlying type explicitly specified, or we failed to parse the
9043      // type, default to int.
9044      EnumUnderlying = Context.IntTy.getTypePtr();
9045    else if (UnderlyingType.get()) {
9046      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9047      // integral type; any cv-qualification is ignored.
9048      TypeSourceInfo *TI = 0;
9049      GetTypeFromParser(UnderlyingType.get(), &TI);
9050      EnumUnderlying = TI;
9051
9052      if (CheckEnumUnderlyingType(TI))
9053        // Recover by falling back to int.
9054        EnumUnderlying = Context.IntTy.getTypePtr();
9055
9056      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9057                                          UPPC_FixedUnderlyingType))
9058        EnumUnderlying = Context.IntTy.getTypePtr();
9059
9060    } else if (getLangOpts().MicrosoftMode)
9061      // Microsoft enums are always of int type.
9062      EnumUnderlying = Context.IntTy.getTypePtr();
9063  }
9064
9065  DeclContext *SearchDC = CurContext;
9066  DeclContext *DC = CurContext;
9067  bool isStdBadAlloc = false;
9068
9069  RedeclarationKind Redecl = ForRedeclaration;
9070  if (TUK == TUK_Friend || TUK == TUK_Reference)
9071    Redecl = NotForRedeclaration;
9072
9073  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9074
9075  if (Name && SS.isNotEmpty()) {
9076    // We have a nested-name tag ('struct foo::bar').
9077
9078    // Check for invalid 'foo::'.
9079    if (SS.isInvalid()) {
9080      Name = 0;
9081      goto CreateNewDecl;
9082    }
9083
9084    // If this is a friend or a reference to a class in a dependent
9085    // context, don't try to make a decl for it.
9086    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9087      DC = computeDeclContext(SS, false);
9088      if (!DC) {
9089        IsDependent = true;
9090        return 0;
9091      }
9092    } else {
9093      DC = computeDeclContext(SS, true);
9094      if (!DC) {
9095        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9096          << SS.getRange();
9097        return 0;
9098      }
9099    }
9100
9101    if (RequireCompleteDeclContext(SS, DC))
9102      return 0;
9103
9104    SearchDC = DC;
9105    // Look-up name inside 'foo::'.
9106    LookupQualifiedName(Previous, DC);
9107
9108    if (Previous.isAmbiguous())
9109      return 0;
9110
9111    if (Previous.empty()) {
9112      // Name lookup did not find anything. However, if the
9113      // nested-name-specifier refers to the current instantiation,
9114      // and that current instantiation has any dependent base
9115      // classes, we might find something at instantiation time: treat
9116      // this as a dependent elaborated-type-specifier.
9117      // But this only makes any sense for reference-like lookups.
9118      if (Previous.wasNotFoundInCurrentInstantiation() &&
9119          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9120        IsDependent = true;
9121        return 0;
9122      }
9123
9124      // A tag 'foo::bar' must already exist.
9125      Diag(NameLoc, diag::err_not_tag_in_scope)
9126        << Kind << Name << DC << SS.getRange();
9127      Name = 0;
9128      Invalid = true;
9129      goto CreateNewDecl;
9130    }
9131  } else if (Name) {
9132    // If this is a named struct, check to see if there was a previous forward
9133    // declaration or definition.
9134    // FIXME: We're looking into outer scopes here, even when we
9135    // shouldn't be. Doing so can result in ambiguities that we
9136    // shouldn't be diagnosing.
9137    LookupName(Previous, S);
9138
9139    if (Previous.isAmbiguous() &&
9140        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9141      LookupResult::Filter F = Previous.makeFilter();
9142      while (F.hasNext()) {
9143        NamedDecl *ND = F.next();
9144        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9145          F.erase();
9146      }
9147      F.done();
9148    }
9149
9150    // Note:  there used to be some attempt at recovery here.
9151    if (Previous.isAmbiguous())
9152      return 0;
9153
9154    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9155      // FIXME: This makes sure that we ignore the contexts associated
9156      // with C structs, unions, and enums when looking for a matching
9157      // tag declaration or definition. See the similar lookup tweak
9158      // in Sema::LookupName; is there a better way to deal with this?
9159      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9160        SearchDC = SearchDC->getParent();
9161    }
9162  } else if (S->isFunctionPrototypeScope()) {
9163    // If this is an enum declaration in function prototype scope, set its
9164    // initial context to the translation unit.
9165    // FIXME: [citation needed]
9166    SearchDC = Context.getTranslationUnitDecl();
9167  }
9168
9169  if (Previous.isSingleResult() &&
9170      Previous.getFoundDecl()->isTemplateParameter()) {
9171    // Maybe we will complain about the shadowed template parameter.
9172    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9173    // Just pretend that we didn't see the previous declaration.
9174    Previous.clear();
9175  }
9176
9177  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9178      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9179    // This is a declaration of or a reference to "std::bad_alloc".
9180    isStdBadAlloc = true;
9181
9182    if (Previous.empty() && StdBadAlloc) {
9183      // std::bad_alloc has been implicitly declared (but made invisible to
9184      // name lookup). Fill in this implicit declaration as the previous
9185      // declaration, so that the declarations get chained appropriately.
9186      Previous.addDecl(getStdBadAlloc());
9187    }
9188  }
9189
9190  // If we didn't find a previous declaration, and this is a reference
9191  // (or friend reference), move to the correct scope.  In C++, we
9192  // also need to do a redeclaration lookup there, just in case
9193  // there's a shadow friend decl.
9194  if (Name && Previous.empty() &&
9195      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9196    if (Invalid) goto CreateNewDecl;
9197    assert(SS.isEmpty());
9198
9199    if (TUK == TUK_Reference) {
9200      // C++ [basic.scope.pdecl]p5:
9201      //   -- for an elaborated-type-specifier of the form
9202      //
9203      //          class-key identifier
9204      //
9205      //      if the elaborated-type-specifier is used in the
9206      //      decl-specifier-seq or parameter-declaration-clause of a
9207      //      function defined in namespace scope, the identifier is
9208      //      declared as a class-name in the namespace that contains
9209      //      the declaration; otherwise, except as a friend
9210      //      declaration, the identifier is declared in the smallest
9211      //      non-class, non-function-prototype scope that contains the
9212      //      declaration.
9213      //
9214      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9215      // C structs and unions.
9216      //
9217      // It is an error in C++ to declare (rather than define) an enum
9218      // type, including via an elaborated type specifier.  We'll
9219      // diagnose that later; for now, declare the enum in the same
9220      // scope as we would have picked for any other tag type.
9221      //
9222      // GNU C also supports this behavior as part of its incomplete
9223      // enum types extension, while GNU C++ does not.
9224      //
9225      // Find the context where we'll be declaring the tag.
9226      // FIXME: We would like to maintain the current DeclContext as the
9227      // lexical context,
9228      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9229        SearchDC = SearchDC->getParent();
9230
9231      // Find the scope where we'll be declaring the tag.
9232      while (S->isClassScope() ||
9233             (getLangOpts().CPlusPlus &&
9234              S->isFunctionPrototypeScope()) ||
9235             ((S->getFlags() & Scope::DeclScope) == 0) ||
9236             (S->getEntity() &&
9237              ((DeclContext *)S->getEntity())->isTransparentContext()))
9238        S = S->getParent();
9239    } else {
9240      assert(TUK == TUK_Friend);
9241      // C++ [namespace.memdef]p3:
9242      //   If a friend declaration in a non-local class first declares a
9243      //   class or function, the friend class or function is a member of
9244      //   the innermost enclosing namespace.
9245      SearchDC = SearchDC->getEnclosingNamespaceContext();
9246    }
9247
9248    // In C++, we need to do a redeclaration lookup to properly
9249    // diagnose some problems.
9250    if (getLangOpts().CPlusPlus) {
9251      Previous.setRedeclarationKind(ForRedeclaration);
9252      LookupQualifiedName(Previous, SearchDC);
9253    }
9254  }
9255
9256  if (!Previous.empty()) {
9257    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9258
9259    // It's okay to have a tag decl in the same scope as a typedef
9260    // which hides a tag decl in the same scope.  Finding this
9261    // insanity with a redeclaration lookup can only actually happen
9262    // in C++.
9263    //
9264    // This is also okay for elaborated-type-specifiers, which is
9265    // technically forbidden by the current standard but which is
9266    // okay according to the likely resolution of an open issue;
9267    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9268    if (getLangOpts().CPlusPlus) {
9269      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9270        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9271          TagDecl *Tag = TT->getDecl();
9272          if (Tag->getDeclName() == Name &&
9273              Tag->getDeclContext()->getRedeclContext()
9274                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9275            PrevDecl = Tag;
9276            Previous.clear();
9277            Previous.addDecl(Tag);
9278            Previous.resolveKind();
9279          }
9280        }
9281      }
9282    }
9283
9284    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9285      // If this is a use of a previous tag, or if the tag is already declared
9286      // in the same scope (so that the definition/declaration completes or
9287      // rementions the tag), reuse the decl.
9288      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9289          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9290        // Make sure that this wasn't declared as an enum and now used as a
9291        // struct or something similar.
9292        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9293                                          TUK == TUK_Definition, KWLoc,
9294                                          *Name)) {
9295          bool SafeToContinue
9296            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9297               Kind != TTK_Enum);
9298          if (SafeToContinue)
9299            Diag(KWLoc, diag::err_use_with_wrong_tag)
9300              << Name
9301              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9302                                              PrevTagDecl->getKindName());
9303          else
9304            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9305          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9306
9307          if (SafeToContinue)
9308            Kind = PrevTagDecl->getTagKind();
9309          else {
9310            // Recover by making this an anonymous redefinition.
9311            Name = 0;
9312            Previous.clear();
9313            Invalid = true;
9314          }
9315        }
9316
9317        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9318          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9319
9320          // If this is an elaborated-type-specifier for a scoped enumeration,
9321          // the 'class' keyword is not necessary and not permitted.
9322          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9323            if (ScopedEnum)
9324              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9325                << PrevEnum->isScoped()
9326                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9327            return PrevTagDecl;
9328          }
9329
9330          QualType EnumUnderlyingTy;
9331          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9332            EnumUnderlyingTy = TI->getType();
9333          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9334            EnumUnderlyingTy = QualType(T, 0);
9335
9336          // All conflicts with previous declarations are recovered by
9337          // returning the previous declaration, unless this is a definition,
9338          // in which case we want the caller to bail out.
9339          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9340                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9341            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9342        }
9343
9344        if (!Invalid) {
9345          // If this is a use, just return the declaration we found.
9346
9347          // FIXME: In the future, return a variant or some other clue
9348          // for the consumer of this Decl to know it doesn't own it.
9349          // For our current ASTs this shouldn't be a problem, but will
9350          // need to be changed with DeclGroups.
9351          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9352               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9353            return PrevTagDecl;
9354
9355          // Diagnose attempts to redefine a tag.
9356          if (TUK == TUK_Definition) {
9357            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9358              // If we're defining a specialization and the previous definition
9359              // is from an implicit instantiation, don't emit an error
9360              // here; we'll catch this in the general case below.
9361              bool IsExplicitSpecializationAfterInstantiation = false;
9362              if (isExplicitSpecialization) {
9363                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9364                  IsExplicitSpecializationAfterInstantiation =
9365                    RD->getTemplateSpecializationKind() !=
9366                    TSK_ExplicitSpecialization;
9367                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9368                  IsExplicitSpecializationAfterInstantiation =
9369                    ED->getTemplateSpecializationKind() !=
9370                    TSK_ExplicitSpecialization;
9371              }
9372
9373              if (!IsExplicitSpecializationAfterInstantiation) {
9374                // A redeclaration in function prototype scope in C isn't
9375                // visible elsewhere, so merely issue a warning.
9376                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9377                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9378                else
9379                  Diag(NameLoc, diag::err_redefinition) << Name;
9380                Diag(Def->getLocation(), diag::note_previous_definition);
9381                // If this is a redefinition, recover by making this
9382                // struct be anonymous, which will make any later
9383                // references get the previous definition.
9384                Name = 0;
9385                Previous.clear();
9386                Invalid = true;
9387              }
9388            } else {
9389              // If the type is currently being defined, complain
9390              // about a nested redefinition.
9391              const TagType *Tag
9392                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9393              if (Tag->isBeingDefined()) {
9394                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9395                Diag(PrevTagDecl->getLocation(),
9396                     diag::note_previous_definition);
9397                Name = 0;
9398                Previous.clear();
9399                Invalid = true;
9400              }
9401            }
9402
9403            // Okay, this is definition of a previously declared or referenced
9404            // tag PrevDecl. We're going to create a new Decl for it.
9405          }
9406        }
9407        // If we get here we have (another) forward declaration or we
9408        // have a definition.  Just create a new decl.
9409
9410      } else {
9411        // If we get here, this is a definition of a new tag type in a nested
9412        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9413        // new decl/type.  We set PrevDecl to NULL so that the entities
9414        // have distinct types.
9415        Previous.clear();
9416      }
9417      // If we get here, we're going to create a new Decl. If PrevDecl
9418      // is non-NULL, it's a definition of the tag declared by
9419      // PrevDecl. If it's NULL, we have a new definition.
9420
9421
9422    // Otherwise, PrevDecl is not a tag, but was found with tag
9423    // lookup.  This is only actually possible in C++, where a few
9424    // things like templates still live in the tag namespace.
9425    } else {
9426      // Use a better diagnostic if an elaborated-type-specifier
9427      // found the wrong kind of type on the first
9428      // (non-redeclaration) lookup.
9429      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9430          !Previous.isForRedeclaration()) {
9431        unsigned Kind = 0;
9432        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9433        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9434        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9435        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9436        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9437        Invalid = true;
9438
9439      // Otherwise, only diagnose if the declaration is in scope.
9440      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9441                                isExplicitSpecialization)) {
9442        // do nothing
9443
9444      // Diagnose implicit declarations introduced by elaborated types.
9445      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9446        unsigned Kind = 0;
9447        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9448        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9449        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9450        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9451        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9452        Invalid = true;
9453
9454      // Otherwise it's a declaration.  Call out a particularly common
9455      // case here.
9456      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9457        unsigned Kind = 0;
9458        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9459        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9460          << Name << Kind << TND->getUnderlyingType();
9461        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9462        Invalid = true;
9463
9464      // Otherwise, diagnose.
9465      } else {
9466        // The tag name clashes with something else in the target scope,
9467        // issue an error and recover by making this tag be anonymous.
9468        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9469        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9470        Name = 0;
9471        Invalid = true;
9472      }
9473
9474      // The existing declaration isn't relevant to us; we're in a
9475      // new scope, so clear out the previous declaration.
9476      Previous.clear();
9477    }
9478  }
9479
9480CreateNewDecl:
9481
9482  TagDecl *PrevDecl = 0;
9483  if (Previous.isSingleResult())
9484    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9485
9486  // If there is an identifier, use the location of the identifier as the
9487  // location of the decl, otherwise use the location of the struct/union
9488  // keyword.
9489  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9490
9491  // Otherwise, create a new declaration. If there is a previous
9492  // declaration of the same entity, the two will be linked via
9493  // PrevDecl.
9494  TagDecl *New;
9495
9496  bool IsForwardReference = false;
9497  if (Kind == TTK_Enum) {
9498    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9499    // enum X { A, B, C } D;    D should chain to X.
9500    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9501                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9502                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9503    // If this is an undefined enum, warn.
9504    if (TUK != TUK_Definition && !Invalid) {
9505      TagDecl *Def;
9506      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9507        // C++0x: 7.2p2: opaque-enum-declaration.
9508        // Conflicts are diagnosed above. Do nothing.
9509      }
9510      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9511        Diag(Loc, diag::ext_forward_ref_enum_def)
9512          << New;
9513        Diag(Def->getLocation(), diag::note_previous_definition);
9514      } else {
9515        unsigned DiagID = diag::ext_forward_ref_enum;
9516        if (getLangOpts().MicrosoftMode)
9517          DiagID = diag::ext_ms_forward_ref_enum;
9518        else if (getLangOpts().CPlusPlus)
9519          DiagID = diag::err_forward_ref_enum;
9520        Diag(Loc, DiagID);
9521
9522        // If this is a forward-declared reference to an enumeration, make a
9523        // note of it; we won't actually be introducing the declaration into
9524        // the declaration context.
9525        if (TUK == TUK_Reference)
9526          IsForwardReference = true;
9527      }
9528    }
9529
9530    if (EnumUnderlying) {
9531      EnumDecl *ED = cast<EnumDecl>(New);
9532      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9533        ED->setIntegerTypeSourceInfo(TI);
9534      else
9535        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9536      ED->setPromotionType(ED->getIntegerType());
9537    }
9538
9539  } else {
9540    // struct/union/class
9541
9542    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9543    // struct X { int A; } D;    D should chain to X.
9544    if (getLangOpts().CPlusPlus) {
9545      // FIXME: Look for a way to use RecordDecl for simple structs.
9546      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9547                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9548
9549      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9550        StdBadAlloc = cast<CXXRecordDecl>(New);
9551    } else
9552      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9553                               cast_or_null<RecordDecl>(PrevDecl));
9554  }
9555
9556  // Maybe add qualifier info.
9557  if (SS.isNotEmpty()) {
9558    if (SS.isSet()) {
9559      // If this is either a declaration or a definition, check the
9560      // nested-name-specifier against the current context. We don't do this
9561      // for explicit specializations, because they have similar checking
9562      // (with more specific diagnostics) in the call to
9563      // CheckMemberSpecialization, below.
9564      if (!isExplicitSpecialization &&
9565          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9566          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9567        Invalid = true;
9568
9569      New->setQualifierInfo(SS.getWithLocInContext(Context));
9570      if (TemplateParameterLists.size() > 0) {
9571        New->setTemplateParameterListsInfo(Context,
9572                                           TemplateParameterLists.size(),
9573                                           TemplateParameterLists.data());
9574      }
9575    }
9576    else
9577      Invalid = true;
9578  }
9579
9580  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9581    // Add alignment attributes if necessary; these attributes are checked when
9582    // the ASTContext lays out the structure.
9583    //
9584    // It is important for implementing the correct semantics that this
9585    // happen here (in act on tag decl). The #pragma pack stack is
9586    // maintained as a result of parser callbacks which can occur at
9587    // many points during the parsing of a struct declaration (because
9588    // the #pragma tokens are effectively skipped over during the
9589    // parsing of the struct).
9590    if (TUK == TUK_Definition) {
9591      AddAlignmentAttributesForRecord(RD);
9592      AddMsStructLayoutForRecord(RD);
9593    }
9594  }
9595
9596  if (ModulePrivateLoc.isValid()) {
9597    if (isExplicitSpecialization)
9598      Diag(New->getLocation(), diag::err_module_private_specialization)
9599        << 2
9600        << FixItHint::CreateRemoval(ModulePrivateLoc);
9601    // __module_private__ does not apply to local classes. However, we only
9602    // diagnose this as an error when the declaration specifiers are
9603    // freestanding. Here, we just ignore the __module_private__.
9604    else if (!SearchDC->isFunctionOrMethod())
9605      New->setModulePrivate();
9606  }
9607
9608  // If this is a specialization of a member class (of a class template),
9609  // check the specialization.
9610  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9611    Invalid = true;
9612
9613  if (Invalid)
9614    New->setInvalidDecl();
9615
9616  if (Attr)
9617    ProcessDeclAttributeList(S, New, Attr);
9618
9619  // If we're declaring or defining a tag in function prototype scope
9620  // in C, note that this type can only be used within the function.
9621  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9622    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9623
9624  // Set the lexical context. If the tag has a C++ scope specifier, the
9625  // lexical context will be different from the semantic context.
9626  New->setLexicalDeclContext(CurContext);
9627
9628  // Mark this as a friend decl if applicable.
9629  // In Microsoft mode, a friend declaration also acts as a forward
9630  // declaration so we always pass true to setObjectOfFriendDecl to make
9631  // the tag name visible.
9632  if (TUK == TUK_Friend)
9633    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9634                               getLangOpts().MicrosoftExt);
9635
9636  // Set the access specifier.
9637  if (!Invalid && SearchDC->isRecord())
9638    SetMemberAccessSpecifier(New, PrevDecl, AS);
9639
9640  if (TUK == TUK_Definition)
9641    New->startDefinition();
9642
9643  // If this has an identifier, add it to the scope stack.
9644  if (TUK == TUK_Friend) {
9645    // We might be replacing an existing declaration in the lookup tables;
9646    // if so, borrow its access specifier.
9647    if (PrevDecl)
9648      New->setAccess(PrevDecl->getAccess());
9649
9650    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9651    DC->makeDeclVisibleInContext(New);
9652    if (Name) // can be null along some error paths
9653      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9654        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9655  } else if (Name) {
9656    S = getNonFieldDeclScope(S);
9657    PushOnScopeChains(New, S, !IsForwardReference);
9658    if (IsForwardReference)
9659      SearchDC->makeDeclVisibleInContext(New);
9660
9661  } else {
9662    CurContext->addDecl(New);
9663  }
9664
9665  // If this is the C FILE type, notify the AST context.
9666  if (IdentifierInfo *II = New->getIdentifier())
9667    if (!New->isInvalidDecl() &&
9668        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9669        II->isStr("FILE"))
9670      Context.setFILEDecl(New);
9671
9672  // If we were in function prototype scope (and not in C++ mode), add this
9673  // tag to the list of decls to inject into the function definition scope.
9674  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9675      InFunctionDeclarator && Name)
9676    DeclsInPrototypeScope.push_back(New);
9677
9678  if (PrevDecl)
9679    mergeDeclAttributes(New, PrevDecl);
9680
9681  // If there's a #pragma GCC visibility in scope, set the visibility of this
9682  // record.
9683  AddPushedVisibilityAttribute(New);
9684
9685  OwnedDecl = true;
9686  // In C++, don't return an invalid declaration. We can't recover well from
9687  // the cases where we make the type anonymous.
9688  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9689}
9690
9691void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9692  AdjustDeclIfTemplate(TagD);
9693  TagDecl *Tag = cast<TagDecl>(TagD);
9694
9695  // Enter the tag context.
9696  PushDeclContext(S, Tag);
9697
9698  ActOnDocumentableDecl(TagD);
9699
9700  // If there's a #pragma GCC visibility in scope, set the visibility of this
9701  // record.
9702  AddPushedVisibilityAttribute(Tag);
9703}
9704
9705Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9706  assert(isa<ObjCContainerDecl>(IDecl) &&
9707         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9708  DeclContext *OCD = cast<DeclContext>(IDecl);
9709  assert(getContainingDC(OCD) == CurContext &&
9710      "The next DeclContext should be lexically contained in the current one.");
9711  CurContext = OCD;
9712  return IDecl;
9713}
9714
9715void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9716                                           SourceLocation FinalLoc,
9717                                           SourceLocation LBraceLoc) {
9718  AdjustDeclIfTemplate(TagD);
9719  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9720
9721  FieldCollector->StartClass();
9722
9723  if (!Record->getIdentifier())
9724    return;
9725
9726  if (FinalLoc.isValid())
9727    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9728
9729  // C++ [class]p2:
9730  //   [...] The class-name is also inserted into the scope of the
9731  //   class itself; this is known as the injected-class-name. For
9732  //   purposes of access checking, the injected-class-name is treated
9733  //   as if it were a public member name.
9734  CXXRecordDecl *InjectedClassName
9735    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9736                            Record->getLocStart(), Record->getLocation(),
9737                            Record->getIdentifier(),
9738                            /*PrevDecl=*/0,
9739                            /*DelayTypeCreation=*/true);
9740  Context.getTypeDeclType(InjectedClassName, Record);
9741  InjectedClassName->setImplicit();
9742  InjectedClassName->setAccess(AS_public);
9743  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9744      InjectedClassName->setDescribedClassTemplate(Template);
9745  PushOnScopeChains(InjectedClassName, S);
9746  assert(InjectedClassName->isInjectedClassName() &&
9747         "Broken injected-class-name");
9748}
9749
9750void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9751                                    SourceLocation RBraceLoc) {
9752  AdjustDeclIfTemplate(TagD);
9753  TagDecl *Tag = cast<TagDecl>(TagD);
9754  Tag->setRBraceLoc(RBraceLoc);
9755
9756  // Make sure we "complete" the definition even it is invalid.
9757  if (Tag->isBeingDefined()) {
9758    assert(Tag->isInvalidDecl() && "We should already have completed it");
9759    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9760      RD->completeDefinition();
9761  }
9762
9763  if (isa<CXXRecordDecl>(Tag))
9764    FieldCollector->FinishClass();
9765
9766  // Exit this scope of this tag's definition.
9767  PopDeclContext();
9768
9769  if (getCurLexicalContext()->isObjCContainer() &&
9770      Tag->getDeclContext()->isFileContext())
9771    Tag->setTopLevelDeclInObjCContainer();
9772
9773  // Notify the consumer that we've defined a tag.
9774  Consumer.HandleTagDeclDefinition(Tag);
9775}
9776
9777void Sema::ActOnObjCContainerFinishDefinition() {
9778  // Exit this scope of this interface definition.
9779  PopDeclContext();
9780}
9781
9782void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9783  assert(DC == CurContext && "Mismatch of container contexts");
9784  OriginalLexicalContext = DC;
9785  ActOnObjCContainerFinishDefinition();
9786}
9787
9788void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9789  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9790  OriginalLexicalContext = 0;
9791}
9792
9793void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9794  AdjustDeclIfTemplate(TagD);
9795  TagDecl *Tag = cast<TagDecl>(TagD);
9796  Tag->setInvalidDecl();
9797
9798  // Make sure we "complete" the definition even it is invalid.
9799  if (Tag->isBeingDefined()) {
9800    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9801      RD->completeDefinition();
9802  }
9803
9804  // We're undoing ActOnTagStartDefinition here, not
9805  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9806  // the FieldCollector.
9807
9808  PopDeclContext();
9809}
9810
9811// Note that FieldName may be null for anonymous bitfields.
9812ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9813                                IdentifierInfo *FieldName,
9814                                QualType FieldTy, Expr *BitWidth,
9815                                bool *ZeroWidth) {
9816  // Default to true; that shouldn't confuse checks for emptiness
9817  if (ZeroWidth)
9818    *ZeroWidth = true;
9819
9820  // C99 6.7.2.1p4 - verify the field type.
9821  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9822  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9823    // Handle incomplete types with specific error.
9824    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9825      return ExprError();
9826    if (FieldName)
9827      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9828        << FieldName << FieldTy << BitWidth->getSourceRange();
9829    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9830      << FieldTy << BitWidth->getSourceRange();
9831  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9832                                             UPPC_BitFieldWidth))
9833    return ExprError();
9834
9835  // If the bit-width is type- or value-dependent, don't try to check
9836  // it now.
9837  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9838    return Owned(BitWidth);
9839
9840  llvm::APSInt Value;
9841  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9842  if (ICE.isInvalid())
9843    return ICE;
9844  BitWidth = ICE.take();
9845
9846  if (Value != 0 && ZeroWidth)
9847    *ZeroWidth = false;
9848
9849  // Zero-width bitfield is ok for anonymous field.
9850  if (Value == 0 && FieldName)
9851    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9852
9853  if (Value.isSigned() && Value.isNegative()) {
9854    if (FieldName)
9855      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9856               << FieldName << Value.toString(10);
9857    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9858      << Value.toString(10);
9859  }
9860
9861  if (!FieldTy->isDependentType()) {
9862    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9863    if (Value.getZExtValue() > TypeSize) {
9864      if (!getLangOpts().CPlusPlus) {
9865        if (FieldName)
9866          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9867            << FieldName << (unsigned)Value.getZExtValue()
9868            << (unsigned)TypeSize;
9869
9870        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9871          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9872      }
9873
9874      if (FieldName)
9875        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9876          << FieldName << (unsigned)Value.getZExtValue()
9877          << (unsigned)TypeSize;
9878      else
9879        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9880          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9881    }
9882  }
9883
9884  return Owned(BitWidth);
9885}
9886
9887/// ActOnField - Each field of a C struct/union is passed into this in order
9888/// to create a FieldDecl object for it.
9889Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9890                       Declarator &D, Expr *BitfieldWidth) {
9891  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9892                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9893                               /*InitStyle=*/ICIS_NoInit, AS_public);
9894  return Res;
9895}
9896
9897/// HandleField - Analyze a field of a C struct or a C++ data member.
9898///
9899FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9900                             SourceLocation DeclStart,
9901                             Declarator &D, Expr *BitWidth,
9902                             InClassInitStyle InitStyle,
9903                             AccessSpecifier AS) {
9904  IdentifierInfo *II = D.getIdentifier();
9905  SourceLocation Loc = DeclStart;
9906  if (II) Loc = D.getIdentifierLoc();
9907
9908  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9909  QualType T = TInfo->getType();
9910  if (getLangOpts().CPlusPlus) {
9911    CheckExtraCXXDefaultArguments(D);
9912
9913    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9914                                        UPPC_DataMemberType)) {
9915      D.setInvalidType();
9916      T = Context.IntTy;
9917      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9918    }
9919  }
9920
9921  // OpenCL 1.2 spec, s6.9 r:
9922  // The event type cannot be used to declare a structure or union field.
9923  if (LangOpts.OpenCL && T->isEventT()) {
9924    Diag(Loc, diag::err_event_t_struct_field);
9925    D.setInvalidType();
9926  }
9927
9928
9929  DiagnoseFunctionSpecifiers(D);
9930
9931  if (D.getDeclSpec().isThreadSpecified())
9932    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9933  if (D.getDeclSpec().isConstexprSpecified())
9934    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9935      << 2;
9936
9937  // Check to see if this name was declared as a member previously
9938  NamedDecl *PrevDecl = 0;
9939  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9940  LookupName(Previous, S);
9941  switch (Previous.getResultKind()) {
9942    case LookupResult::Found:
9943    case LookupResult::FoundUnresolvedValue:
9944      PrevDecl = Previous.getAsSingle<NamedDecl>();
9945      break;
9946
9947    case LookupResult::FoundOverloaded:
9948      PrevDecl = Previous.getRepresentativeDecl();
9949      break;
9950
9951    case LookupResult::NotFound:
9952    case LookupResult::NotFoundInCurrentInstantiation:
9953    case LookupResult::Ambiguous:
9954      break;
9955  }
9956  Previous.suppressDiagnostics();
9957
9958  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9959    // Maybe we will complain about the shadowed template parameter.
9960    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9961    // Just pretend that we didn't see the previous declaration.
9962    PrevDecl = 0;
9963  }
9964
9965  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9966    PrevDecl = 0;
9967
9968  bool Mutable
9969    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9970  SourceLocation TSSL = D.getLocStart();
9971  FieldDecl *NewFD
9972    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9973                     TSSL, AS, PrevDecl, &D);
9974
9975  if (NewFD->isInvalidDecl())
9976    Record->setInvalidDecl();
9977
9978  if (D.getDeclSpec().isModulePrivateSpecified())
9979    NewFD->setModulePrivate();
9980
9981  if (NewFD->isInvalidDecl() && PrevDecl) {
9982    // Don't introduce NewFD into scope; there's already something
9983    // with the same name in the same scope.
9984  } else if (II) {
9985    PushOnScopeChains(NewFD, S);
9986  } else
9987    Record->addDecl(NewFD);
9988
9989  return NewFD;
9990}
9991
9992/// \brief Build a new FieldDecl and check its well-formedness.
9993///
9994/// This routine builds a new FieldDecl given the fields name, type,
9995/// record, etc. \p PrevDecl should refer to any previous declaration
9996/// with the same name and in the same scope as the field to be
9997/// created.
9998///
9999/// \returns a new FieldDecl.
10000///
10001/// \todo The Declarator argument is a hack. It will be removed once
10002FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10003                                TypeSourceInfo *TInfo,
10004                                RecordDecl *Record, SourceLocation Loc,
10005                                bool Mutable, Expr *BitWidth,
10006                                InClassInitStyle InitStyle,
10007                                SourceLocation TSSL,
10008                                AccessSpecifier AS, NamedDecl *PrevDecl,
10009                                Declarator *D) {
10010  IdentifierInfo *II = Name.getAsIdentifierInfo();
10011  bool InvalidDecl = false;
10012  if (D) InvalidDecl = D->isInvalidType();
10013
10014  // If we receive a broken type, recover by assuming 'int' and
10015  // marking this declaration as invalid.
10016  if (T.isNull()) {
10017    InvalidDecl = true;
10018    T = Context.IntTy;
10019  }
10020
10021  QualType EltTy = Context.getBaseElementType(T);
10022  if (!EltTy->isDependentType()) {
10023    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10024      // Fields of incomplete type force their record to be invalid.
10025      Record->setInvalidDecl();
10026      InvalidDecl = true;
10027    } else {
10028      NamedDecl *Def;
10029      EltTy->isIncompleteType(&Def);
10030      if (Def && Def->isInvalidDecl()) {
10031        Record->setInvalidDecl();
10032        InvalidDecl = true;
10033      }
10034    }
10035  }
10036
10037  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10038  if (BitWidth && getLangOpts().OpenCL) {
10039    Diag(Loc, diag::err_opencl_bitfields);
10040    InvalidDecl = true;
10041  }
10042
10043  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10044  // than a variably modified type.
10045  if (!InvalidDecl && T->isVariablyModifiedType()) {
10046    bool SizeIsNegative;
10047    llvm::APSInt Oversized;
10048
10049    TypeSourceInfo *FixedTInfo =
10050      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10051                                                    SizeIsNegative,
10052                                                    Oversized);
10053    if (FixedTInfo) {
10054      Diag(Loc, diag::warn_illegal_constant_array_size);
10055      TInfo = FixedTInfo;
10056      T = FixedTInfo->getType();
10057    } else {
10058      if (SizeIsNegative)
10059        Diag(Loc, diag::err_typecheck_negative_array_size);
10060      else if (Oversized.getBoolValue())
10061        Diag(Loc, diag::err_array_too_large)
10062          << Oversized.toString(10);
10063      else
10064        Diag(Loc, diag::err_typecheck_field_variable_size);
10065      InvalidDecl = true;
10066    }
10067  }
10068
10069  // Fields can not have abstract class types
10070  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10071                                             diag::err_abstract_type_in_decl,
10072                                             AbstractFieldType))
10073    InvalidDecl = true;
10074
10075  bool ZeroWidth = false;
10076  // If this is declared as a bit-field, check the bit-field.
10077  if (!InvalidDecl && BitWidth) {
10078    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10079    if (!BitWidth) {
10080      InvalidDecl = true;
10081      BitWidth = 0;
10082      ZeroWidth = false;
10083    }
10084  }
10085
10086  // Check that 'mutable' is consistent with the type of the declaration.
10087  if (!InvalidDecl && Mutable) {
10088    unsigned DiagID = 0;
10089    if (T->isReferenceType())
10090      DiagID = diag::err_mutable_reference;
10091    else if (T.isConstQualified())
10092      DiagID = diag::err_mutable_const;
10093
10094    if (DiagID) {
10095      SourceLocation ErrLoc = Loc;
10096      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10097        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10098      Diag(ErrLoc, DiagID);
10099      Mutable = false;
10100      InvalidDecl = true;
10101    }
10102  }
10103
10104  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10105                                       BitWidth, Mutable, InitStyle);
10106  if (InvalidDecl)
10107    NewFD->setInvalidDecl();
10108
10109  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10110    Diag(Loc, diag::err_duplicate_member) << II;
10111    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10112    NewFD->setInvalidDecl();
10113  }
10114
10115  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10116    if (Record->isUnion()) {
10117      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10118        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10119        if (RDecl->getDefinition()) {
10120          // C++ [class.union]p1: An object of a class with a non-trivial
10121          // constructor, a non-trivial copy constructor, a non-trivial
10122          // destructor, or a non-trivial copy assignment operator
10123          // cannot be a member of a union, nor can an array of such
10124          // objects.
10125          if (CheckNontrivialField(NewFD))
10126            NewFD->setInvalidDecl();
10127        }
10128      }
10129
10130      // C++ [class.union]p1: If a union contains a member of reference type,
10131      // the program is ill-formed.
10132      if (EltTy->isReferenceType()) {
10133        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10134          << NewFD->getDeclName() << EltTy;
10135        NewFD->setInvalidDecl();
10136      }
10137    }
10138  }
10139
10140  // FIXME: We need to pass in the attributes given an AST
10141  // representation, not a parser representation.
10142  if (D)
10143    // FIXME: What to pass instead of TUScope?
10144    ProcessDeclAttributes(TUScope, NewFD, *D);
10145
10146  // In auto-retain/release, infer strong retension for fields of
10147  // retainable type.
10148  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10149    NewFD->setInvalidDecl();
10150
10151  if (T.isObjCGCWeak())
10152    Diag(Loc, diag::warn_attribute_weak_on_field);
10153
10154  NewFD->setAccess(AS);
10155  return NewFD;
10156}
10157
10158bool Sema::CheckNontrivialField(FieldDecl *FD) {
10159  assert(FD);
10160  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10161
10162  if (FD->isInvalidDecl())
10163    return true;
10164
10165  QualType EltTy = Context.getBaseElementType(FD->getType());
10166  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10167    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10168    if (RDecl->getDefinition()) {
10169      // We check for copy constructors before constructors
10170      // because otherwise we'll never get complaints about
10171      // copy constructors.
10172
10173      CXXSpecialMember member = CXXInvalid;
10174      // We're required to check for any non-trivial constructors. Since the
10175      // implicit default constructor is suppressed if there are any
10176      // user-declared constructors, we just need to check that there is a
10177      // trivial default constructor and a trivial copy constructor. (We don't
10178      // worry about move constructors here, since this is a C++98 check.)
10179      if (RDecl->hasNonTrivialCopyConstructor())
10180        member = CXXCopyConstructor;
10181      else if (!RDecl->hasTrivialDefaultConstructor())
10182        member = CXXDefaultConstructor;
10183      else if (RDecl->hasNonTrivialCopyAssignment())
10184        member = CXXCopyAssignment;
10185      else if (RDecl->hasNonTrivialDestructor())
10186        member = CXXDestructor;
10187
10188      if (member != CXXInvalid) {
10189        if (!getLangOpts().CPlusPlus11 &&
10190            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10191          // Objective-C++ ARC: it is an error to have a non-trivial field of
10192          // a union. However, system headers in Objective-C programs
10193          // occasionally have Objective-C lifetime objects within unions,
10194          // and rather than cause the program to fail, we make those
10195          // members unavailable.
10196          SourceLocation Loc = FD->getLocation();
10197          if (getSourceManager().isInSystemHeader(Loc)) {
10198            if (!FD->hasAttr<UnavailableAttr>())
10199              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10200                                  "this system field has retaining ownership"));
10201            return false;
10202          }
10203        }
10204
10205        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10206               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10207               diag::err_illegal_union_or_anon_struct_member)
10208          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10209        DiagnoseNontrivial(RDecl, member);
10210        return !getLangOpts().CPlusPlus11;
10211      }
10212    }
10213  }
10214
10215  return false;
10216}
10217
10218/// TranslateIvarVisibility - Translate visibility from a token ID to an
10219///  AST enum value.
10220static ObjCIvarDecl::AccessControl
10221TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10222  switch (ivarVisibility) {
10223  default: llvm_unreachable("Unknown visitibility kind");
10224  case tok::objc_private: return ObjCIvarDecl::Private;
10225  case tok::objc_public: return ObjCIvarDecl::Public;
10226  case tok::objc_protected: return ObjCIvarDecl::Protected;
10227  case tok::objc_package: return ObjCIvarDecl::Package;
10228  }
10229}
10230
10231/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10232/// in order to create an IvarDecl object for it.
10233Decl *Sema::ActOnIvar(Scope *S,
10234                                SourceLocation DeclStart,
10235                                Declarator &D, Expr *BitfieldWidth,
10236                                tok::ObjCKeywordKind Visibility) {
10237
10238  IdentifierInfo *II = D.getIdentifier();
10239  Expr *BitWidth = (Expr*)BitfieldWidth;
10240  SourceLocation Loc = DeclStart;
10241  if (II) Loc = D.getIdentifierLoc();
10242
10243  // FIXME: Unnamed fields can be handled in various different ways, for
10244  // example, unnamed unions inject all members into the struct namespace!
10245
10246  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10247  QualType T = TInfo->getType();
10248
10249  if (BitWidth) {
10250    // 6.7.2.1p3, 6.7.2.1p4
10251    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10252    if (!BitWidth)
10253      D.setInvalidType();
10254  } else {
10255    // Not a bitfield.
10256
10257    // validate II.
10258
10259  }
10260  if (T->isReferenceType()) {
10261    Diag(Loc, diag::err_ivar_reference_type);
10262    D.setInvalidType();
10263  }
10264  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10265  // than a variably modified type.
10266  else if (T->isVariablyModifiedType()) {
10267    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10268    D.setInvalidType();
10269  }
10270
10271  // Get the visibility (access control) for this ivar.
10272  ObjCIvarDecl::AccessControl ac =
10273    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10274                                        : ObjCIvarDecl::None;
10275  // Must set ivar's DeclContext to its enclosing interface.
10276  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10277  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10278    return 0;
10279  ObjCContainerDecl *EnclosingContext;
10280  if (ObjCImplementationDecl *IMPDecl =
10281      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10282    if (LangOpts.ObjCRuntime.isFragile()) {
10283    // Case of ivar declared in an implementation. Context is that of its class.
10284      EnclosingContext = IMPDecl->getClassInterface();
10285      assert(EnclosingContext && "Implementation has no class interface!");
10286    }
10287    else
10288      EnclosingContext = EnclosingDecl;
10289  } else {
10290    if (ObjCCategoryDecl *CDecl =
10291        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10292      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10293        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10294        return 0;
10295      }
10296    }
10297    EnclosingContext = EnclosingDecl;
10298  }
10299
10300  // Construct the decl.
10301  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10302                                             DeclStart, Loc, II, T,
10303                                             TInfo, ac, (Expr *)BitfieldWidth);
10304
10305  if (II) {
10306    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10307                                           ForRedeclaration);
10308    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10309        && !isa<TagDecl>(PrevDecl)) {
10310      Diag(Loc, diag::err_duplicate_member) << II;
10311      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10312      NewID->setInvalidDecl();
10313    }
10314  }
10315
10316  // Process attributes attached to the ivar.
10317  ProcessDeclAttributes(S, NewID, D);
10318
10319  if (D.isInvalidType())
10320    NewID->setInvalidDecl();
10321
10322  // In ARC, infer 'retaining' for ivars of retainable type.
10323  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10324    NewID->setInvalidDecl();
10325
10326  if (D.getDeclSpec().isModulePrivateSpecified())
10327    NewID->setModulePrivate();
10328
10329  if (II) {
10330    // FIXME: When interfaces are DeclContexts, we'll need to add
10331    // these to the interface.
10332    S->AddDecl(NewID);
10333    IdResolver.AddDecl(NewID);
10334  }
10335
10336  if (LangOpts.ObjCRuntime.isNonFragile() &&
10337      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10338    Diag(Loc, diag::warn_ivars_in_interface);
10339
10340  return NewID;
10341}
10342
10343/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10344/// class and class extensions. For every class @interface and class
10345/// extension @interface, if the last ivar is a bitfield of any type,
10346/// then add an implicit `char :0` ivar to the end of that interface.
10347void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10348                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10349  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10350    return;
10351
10352  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10353  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10354
10355  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10356    return;
10357  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10358  if (!ID) {
10359    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10360      if (!CD->IsClassExtension())
10361        return;
10362    }
10363    // No need to add this to end of @implementation.
10364    else
10365      return;
10366  }
10367  // All conditions are met. Add a new bitfield to the tail end of ivars.
10368  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10369  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10370
10371  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10372                              DeclLoc, DeclLoc, 0,
10373                              Context.CharTy,
10374                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10375                                                               DeclLoc),
10376                              ObjCIvarDecl::Private, BW,
10377                              true);
10378  AllIvarDecls.push_back(Ivar);
10379}
10380
10381void Sema::ActOnFields(Scope* S,
10382                       SourceLocation RecLoc, Decl *EnclosingDecl,
10383                       llvm::ArrayRef<Decl *> Fields,
10384                       SourceLocation LBrac, SourceLocation RBrac,
10385                       AttributeList *Attr) {
10386  assert(EnclosingDecl && "missing record or interface decl");
10387
10388  // If this is an Objective-C @implementation or category and we have
10389  // new fields here we should reset the layout of the interface since
10390  // it will now change.
10391  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10392    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10393    switch (DC->getKind()) {
10394    default: break;
10395    case Decl::ObjCCategory:
10396      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10397      break;
10398    case Decl::ObjCImplementation:
10399      Context.
10400        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10401      break;
10402    }
10403  }
10404
10405  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10406
10407  // Start counting up the number of named members; make sure to include
10408  // members of anonymous structs and unions in the total.
10409  unsigned NumNamedMembers = 0;
10410  if (Record) {
10411    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10412                                   e = Record->decls_end(); i != e; i++) {
10413      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10414        if (IFD->getDeclName())
10415          ++NumNamedMembers;
10416    }
10417  }
10418
10419  // Verify that all the fields are okay.
10420  SmallVector<FieldDecl*, 32> RecFields;
10421
10422  bool ARCErrReported = false;
10423  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10424       i != end; ++i) {
10425    FieldDecl *FD = cast<FieldDecl>(*i);
10426
10427    // Get the type for the field.
10428    const Type *FDTy = FD->getType().getTypePtr();
10429
10430    if (!FD->isAnonymousStructOrUnion()) {
10431      // Remember all fields written by the user.
10432      RecFields.push_back(FD);
10433    }
10434
10435    // If the field is already invalid for some reason, don't emit more
10436    // diagnostics about it.
10437    if (FD->isInvalidDecl()) {
10438      EnclosingDecl->setInvalidDecl();
10439      continue;
10440    }
10441
10442    // C99 6.7.2.1p2:
10443    //   A structure or union shall not contain a member with
10444    //   incomplete or function type (hence, a structure shall not
10445    //   contain an instance of itself, but may contain a pointer to
10446    //   an instance of itself), except that the last member of a
10447    //   structure with more than one named member may have incomplete
10448    //   array type; such a structure (and any union containing,
10449    //   possibly recursively, a member that is such a structure)
10450    //   shall not be a member of a structure or an element of an
10451    //   array.
10452    if (FDTy->isFunctionType()) {
10453      // Field declared as a function.
10454      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10455        << FD->getDeclName();
10456      FD->setInvalidDecl();
10457      EnclosingDecl->setInvalidDecl();
10458      continue;
10459    } else if (FDTy->isIncompleteArrayType() && Record &&
10460               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10461                ((getLangOpts().MicrosoftExt ||
10462                  getLangOpts().CPlusPlus) &&
10463                 (i + 1 == Fields.end() || Record->isUnion())))) {
10464      // Flexible array member.
10465      // Microsoft and g++ is more permissive regarding flexible array.
10466      // It will accept flexible array in union and also
10467      // as the sole element of a struct/class.
10468      if (getLangOpts().MicrosoftExt) {
10469        if (Record->isUnion())
10470          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10471            << FD->getDeclName();
10472        else if (Fields.size() == 1)
10473          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10474            << FD->getDeclName() << Record->getTagKind();
10475      } else if (getLangOpts().CPlusPlus) {
10476        if (Record->isUnion())
10477          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10478            << FD->getDeclName();
10479        else if (Fields.size() == 1)
10480          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10481            << FD->getDeclName() << Record->getTagKind();
10482      } else if (!getLangOpts().C99) {
10483      if (Record->isUnion())
10484        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10485          << FD->getDeclName();
10486      else
10487        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10488          << FD->getDeclName() << Record->getTagKind();
10489      } else if (NumNamedMembers < 1) {
10490        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10491          << FD->getDeclName();
10492        FD->setInvalidDecl();
10493        EnclosingDecl->setInvalidDecl();
10494        continue;
10495      }
10496      if (!FD->getType()->isDependentType() &&
10497          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10498        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10499          << FD->getDeclName() << FD->getType();
10500        FD->setInvalidDecl();
10501        EnclosingDecl->setInvalidDecl();
10502        continue;
10503      }
10504      // Okay, we have a legal flexible array member at the end of the struct.
10505      if (Record)
10506        Record->setHasFlexibleArrayMember(true);
10507    } else if (!FDTy->isDependentType() &&
10508               RequireCompleteType(FD->getLocation(), FD->getType(),
10509                                   diag::err_field_incomplete)) {
10510      // Incomplete type
10511      FD->setInvalidDecl();
10512      EnclosingDecl->setInvalidDecl();
10513      continue;
10514    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10515      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10516        // If this is a member of a union, then entire union becomes "flexible".
10517        if (Record && Record->isUnion()) {
10518          Record->setHasFlexibleArrayMember(true);
10519        } else {
10520          // If this is a struct/class and this is not the last element, reject
10521          // it.  Note that GCC supports variable sized arrays in the middle of
10522          // structures.
10523          if (i + 1 != Fields.end())
10524            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10525              << FD->getDeclName() << FD->getType();
10526          else {
10527            // We support flexible arrays at the end of structs in
10528            // other structs as an extension.
10529            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10530              << FD->getDeclName();
10531            if (Record)
10532              Record->setHasFlexibleArrayMember(true);
10533          }
10534        }
10535      }
10536      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10537          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10538                                 diag::err_abstract_type_in_decl,
10539                                 AbstractIvarType)) {
10540        // Ivars can not have abstract class types
10541        FD->setInvalidDecl();
10542      }
10543      if (Record && FDTTy->getDecl()->hasObjectMember())
10544        Record->setHasObjectMember(true);
10545      if (Record && FDTTy->getDecl()->hasVolatileMember())
10546        Record->setHasVolatileMember(true);
10547    } else if (FDTy->isObjCObjectType()) {
10548      /// A field cannot be an Objective-c object
10549      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10550        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10551      QualType T = Context.getObjCObjectPointerType(FD->getType());
10552      FD->setType(T);
10553    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10554               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10555      // It's an error in ARC if a field has lifetime.
10556      // We don't want to report this in a system header, though,
10557      // so we just make the field unavailable.
10558      // FIXME: that's really not sufficient; we need to make the type
10559      // itself invalid to, say, initialize or copy.
10560      QualType T = FD->getType();
10561      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10562      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10563        SourceLocation loc = FD->getLocation();
10564        if (getSourceManager().isInSystemHeader(loc)) {
10565          if (!FD->hasAttr<UnavailableAttr>()) {
10566            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10567                              "this system field has retaining ownership"));
10568          }
10569        } else {
10570          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10571            << T->isBlockPointerType() << Record->getTagKind();
10572        }
10573        ARCErrReported = true;
10574      }
10575    } else if (getLangOpts().ObjC1 &&
10576               getLangOpts().getGC() != LangOptions::NonGC &&
10577               Record && !Record->hasObjectMember()) {
10578      if (FD->getType()->isObjCObjectPointerType() ||
10579          FD->getType().isObjCGCStrong())
10580        Record->setHasObjectMember(true);
10581      else if (Context.getAsArrayType(FD->getType())) {
10582        QualType BaseType = Context.getBaseElementType(FD->getType());
10583        if (BaseType->isRecordType() &&
10584            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10585          Record->setHasObjectMember(true);
10586        else if (BaseType->isObjCObjectPointerType() ||
10587                 BaseType.isObjCGCStrong())
10588               Record->setHasObjectMember(true);
10589      }
10590    }
10591    if (Record && FD->getType().isVolatileQualified())
10592      Record->setHasVolatileMember(true);
10593    // Keep track of the number of named members.
10594    if (FD->getIdentifier())
10595      ++NumNamedMembers;
10596  }
10597
10598  // Okay, we successfully defined 'Record'.
10599  if (Record) {
10600    bool Completed = false;
10601    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10602      if (!CXXRecord->isInvalidDecl()) {
10603        // Set access bits correctly on the directly-declared conversions.
10604        for (CXXRecordDecl::conversion_iterator
10605               I = CXXRecord->conversion_begin(),
10606               E = CXXRecord->conversion_end(); I != E; ++I)
10607          I.setAccess((*I)->getAccess());
10608
10609        if (!CXXRecord->isDependentType()) {
10610          // Adjust user-defined destructor exception spec.
10611          if (getLangOpts().CPlusPlus11 &&
10612              CXXRecord->hasUserDeclaredDestructor())
10613            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10614
10615          // Add any implicitly-declared members to this class.
10616          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10617
10618          // If we have virtual base classes, we may end up finding multiple
10619          // final overriders for a given virtual function. Check for this
10620          // problem now.
10621          if (CXXRecord->getNumVBases()) {
10622            CXXFinalOverriderMap FinalOverriders;
10623            CXXRecord->getFinalOverriders(FinalOverriders);
10624
10625            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10626                                             MEnd = FinalOverriders.end();
10627                 M != MEnd; ++M) {
10628              for (OverridingMethods::iterator SO = M->second.begin(),
10629                                            SOEnd = M->second.end();
10630                   SO != SOEnd; ++SO) {
10631                assert(SO->second.size() > 0 &&
10632                       "Virtual function without overridding functions?");
10633                if (SO->second.size() == 1)
10634                  continue;
10635
10636                // C++ [class.virtual]p2:
10637                //   In a derived class, if a virtual member function of a base
10638                //   class subobject has more than one final overrider the
10639                //   program is ill-formed.
10640                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10641                  << (const NamedDecl *)M->first << Record;
10642                Diag(M->first->getLocation(),
10643                     diag::note_overridden_virtual_function);
10644                for (OverridingMethods::overriding_iterator
10645                          OM = SO->second.begin(),
10646                       OMEnd = SO->second.end();
10647                     OM != OMEnd; ++OM)
10648                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10649                    << (const NamedDecl *)M->first << OM->Method->getParent();
10650
10651                Record->setInvalidDecl();
10652              }
10653            }
10654            CXXRecord->completeDefinition(&FinalOverriders);
10655            Completed = true;
10656          }
10657        }
10658      }
10659    }
10660
10661    if (!Completed)
10662      Record->completeDefinition();
10663
10664  } else {
10665    ObjCIvarDecl **ClsFields =
10666      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10667    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10668      ID->setEndOfDefinitionLoc(RBrac);
10669      // Add ivar's to class's DeclContext.
10670      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10671        ClsFields[i]->setLexicalDeclContext(ID);
10672        ID->addDecl(ClsFields[i]);
10673      }
10674      // Must enforce the rule that ivars in the base classes may not be
10675      // duplicates.
10676      if (ID->getSuperClass())
10677        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10678    } else if (ObjCImplementationDecl *IMPDecl =
10679                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10680      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10681      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10682        // Ivar declared in @implementation never belongs to the implementation.
10683        // Only it is in implementation's lexical context.
10684        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10685      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10686      IMPDecl->setIvarLBraceLoc(LBrac);
10687      IMPDecl->setIvarRBraceLoc(RBrac);
10688    } else if (ObjCCategoryDecl *CDecl =
10689                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10690      // case of ivars in class extension; all other cases have been
10691      // reported as errors elsewhere.
10692      // FIXME. Class extension does not have a LocEnd field.
10693      // CDecl->setLocEnd(RBrac);
10694      // Add ivar's to class extension's DeclContext.
10695      // Diagnose redeclaration of private ivars.
10696      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10697      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10698        if (IDecl) {
10699          if (const ObjCIvarDecl *ClsIvar =
10700              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10701            Diag(ClsFields[i]->getLocation(),
10702                 diag::err_duplicate_ivar_declaration);
10703            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10704            continue;
10705          }
10706          for (ObjCInterfaceDecl::known_extensions_iterator
10707                 Ext = IDecl->known_extensions_begin(),
10708                 ExtEnd = IDecl->known_extensions_end();
10709               Ext != ExtEnd; ++Ext) {
10710            if (const ObjCIvarDecl *ClsExtIvar
10711                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
10712              Diag(ClsFields[i]->getLocation(),
10713                   diag::err_duplicate_ivar_declaration);
10714              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10715              continue;
10716            }
10717          }
10718        }
10719        ClsFields[i]->setLexicalDeclContext(CDecl);
10720        CDecl->addDecl(ClsFields[i]);
10721      }
10722      CDecl->setIvarLBraceLoc(LBrac);
10723      CDecl->setIvarRBraceLoc(RBrac);
10724    }
10725  }
10726
10727  if (Attr)
10728    ProcessDeclAttributeList(S, Record, Attr);
10729}
10730
10731/// \brief Determine whether the given integral value is representable within
10732/// the given type T.
10733static bool isRepresentableIntegerValue(ASTContext &Context,
10734                                        llvm::APSInt &Value,
10735                                        QualType T) {
10736  assert(T->isIntegralType(Context) && "Integral type required!");
10737  unsigned BitWidth = Context.getIntWidth(T);
10738
10739  if (Value.isUnsigned() || Value.isNonNegative()) {
10740    if (T->isSignedIntegerOrEnumerationType())
10741      --BitWidth;
10742    return Value.getActiveBits() <= BitWidth;
10743  }
10744  return Value.getMinSignedBits() <= BitWidth;
10745}
10746
10747// \brief Given an integral type, return the next larger integral type
10748// (or a NULL type of no such type exists).
10749static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10750  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10751  // enum checking below.
10752  assert(T->isIntegralType(Context) && "Integral type required!");
10753  const unsigned NumTypes = 4;
10754  QualType SignedIntegralTypes[NumTypes] = {
10755    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10756  };
10757  QualType UnsignedIntegralTypes[NumTypes] = {
10758    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10759    Context.UnsignedLongLongTy
10760  };
10761
10762  unsigned BitWidth = Context.getTypeSize(T);
10763  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10764                                                        : UnsignedIntegralTypes;
10765  for (unsigned I = 0; I != NumTypes; ++I)
10766    if (Context.getTypeSize(Types[I]) > BitWidth)
10767      return Types[I];
10768
10769  return QualType();
10770}
10771
10772EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10773                                          EnumConstantDecl *LastEnumConst,
10774                                          SourceLocation IdLoc,
10775                                          IdentifierInfo *Id,
10776                                          Expr *Val) {
10777  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10778  llvm::APSInt EnumVal(IntWidth);
10779  QualType EltTy;
10780
10781  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10782    Val = 0;
10783
10784  if (Val)
10785    Val = DefaultLvalueConversion(Val).take();
10786
10787  if (Val) {
10788    if (Enum->isDependentType() || Val->isTypeDependent())
10789      EltTy = Context.DependentTy;
10790    else {
10791      SourceLocation ExpLoc;
10792      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
10793          !getLangOpts().MicrosoftMode) {
10794        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10795        // constant-expression in the enumerator-definition shall be a converted
10796        // constant expression of the underlying type.
10797        EltTy = Enum->getIntegerType();
10798        ExprResult Converted =
10799          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10800                                           CCEK_Enumerator);
10801        if (Converted.isInvalid())
10802          Val = 0;
10803        else
10804          Val = Converted.take();
10805      } else if (!Val->isValueDependent() &&
10806                 !(Val = VerifyIntegerConstantExpression(Val,
10807                                                         &EnumVal).take())) {
10808        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10809      } else {
10810        if (Enum->isFixed()) {
10811          EltTy = Enum->getIntegerType();
10812
10813          // In Obj-C and Microsoft mode, require the enumeration value to be
10814          // representable in the underlying type of the enumeration. In C++11,
10815          // we perform a non-narrowing conversion as part of converted constant
10816          // expression checking.
10817          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10818            if (getLangOpts().MicrosoftMode) {
10819              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10820              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10821            } else
10822              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10823          } else
10824            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10825        } else if (getLangOpts().CPlusPlus) {
10826          // C++11 [dcl.enum]p5:
10827          //   If the underlying type is not fixed, the type of each enumerator
10828          //   is the type of its initializing value:
10829          //     - If an initializer is specified for an enumerator, the
10830          //       initializing value has the same type as the expression.
10831          EltTy = Val->getType();
10832        } else {
10833          // C99 6.7.2.2p2:
10834          //   The expression that defines the value of an enumeration constant
10835          //   shall be an integer constant expression that has a value
10836          //   representable as an int.
10837
10838          // Complain if the value is not representable in an int.
10839          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10840            Diag(IdLoc, diag::ext_enum_value_not_int)
10841              << EnumVal.toString(10) << Val->getSourceRange()
10842              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10843          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10844            // Force the type of the expression to 'int'.
10845            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10846          }
10847          EltTy = Val->getType();
10848        }
10849      }
10850    }
10851  }
10852
10853  if (!Val) {
10854    if (Enum->isDependentType())
10855      EltTy = Context.DependentTy;
10856    else if (!LastEnumConst) {
10857      // C++0x [dcl.enum]p5:
10858      //   If the underlying type is not fixed, the type of each enumerator
10859      //   is the type of its initializing value:
10860      //     - If no initializer is specified for the first enumerator, the
10861      //       initializing value has an unspecified integral type.
10862      //
10863      // GCC uses 'int' for its unspecified integral type, as does
10864      // C99 6.7.2.2p3.
10865      if (Enum->isFixed()) {
10866        EltTy = Enum->getIntegerType();
10867      }
10868      else {
10869        EltTy = Context.IntTy;
10870      }
10871    } else {
10872      // Assign the last value + 1.
10873      EnumVal = LastEnumConst->getInitVal();
10874      ++EnumVal;
10875      EltTy = LastEnumConst->getType();
10876
10877      // Check for overflow on increment.
10878      if (EnumVal < LastEnumConst->getInitVal()) {
10879        // C++0x [dcl.enum]p5:
10880        //   If the underlying type is not fixed, the type of each enumerator
10881        //   is the type of its initializing value:
10882        //
10883        //     - Otherwise the type of the initializing value is the same as
10884        //       the type of the initializing value of the preceding enumerator
10885        //       unless the incremented value is not representable in that type,
10886        //       in which case the type is an unspecified integral type
10887        //       sufficient to contain the incremented value. If no such type
10888        //       exists, the program is ill-formed.
10889        QualType T = getNextLargerIntegralType(Context, EltTy);
10890        if (T.isNull() || Enum->isFixed()) {
10891          // There is no integral type larger enough to represent this
10892          // value. Complain, then allow the value to wrap around.
10893          EnumVal = LastEnumConst->getInitVal();
10894          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10895          ++EnumVal;
10896          if (Enum->isFixed())
10897            // When the underlying type is fixed, this is ill-formed.
10898            Diag(IdLoc, diag::err_enumerator_wrapped)
10899              << EnumVal.toString(10)
10900              << EltTy;
10901          else
10902            Diag(IdLoc, diag::warn_enumerator_too_large)
10903              << EnumVal.toString(10);
10904        } else {
10905          EltTy = T;
10906        }
10907
10908        // Retrieve the last enumerator's value, extent that type to the
10909        // type that is supposed to be large enough to represent the incremented
10910        // value, then increment.
10911        EnumVal = LastEnumConst->getInitVal();
10912        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10913        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10914        ++EnumVal;
10915
10916        // If we're not in C++, diagnose the overflow of enumerator values,
10917        // which in C99 means that the enumerator value is not representable in
10918        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10919        // permits enumerator values that are representable in some larger
10920        // integral type.
10921        if (!getLangOpts().CPlusPlus && !T.isNull())
10922          Diag(IdLoc, diag::warn_enum_value_overflow);
10923      } else if (!getLangOpts().CPlusPlus &&
10924                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10925        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10926        Diag(IdLoc, diag::ext_enum_value_not_int)
10927          << EnumVal.toString(10) << 1;
10928      }
10929    }
10930  }
10931
10932  if (!EltTy->isDependentType()) {
10933    // Make the enumerator value match the signedness and size of the
10934    // enumerator's type.
10935    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10936    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10937  }
10938
10939  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10940                                  Val, EnumVal);
10941}
10942
10943
10944Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10945                              SourceLocation IdLoc, IdentifierInfo *Id,
10946                              AttributeList *Attr,
10947                              SourceLocation EqualLoc, Expr *Val) {
10948  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10949  EnumConstantDecl *LastEnumConst =
10950    cast_or_null<EnumConstantDecl>(lastEnumConst);
10951
10952  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10953  // we find one that is.
10954  S = getNonFieldDeclScope(S);
10955
10956  // Verify that there isn't already something declared with this name in this
10957  // scope.
10958  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10959                                         ForRedeclaration);
10960  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10961    // Maybe we will complain about the shadowed template parameter.
10962    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10963    // Just pretend that we didn't see the previous declaration.
10964    PrevDecl = 0;
10965  }
10966
10967  if (PrevDecl) {
10968    // When in C++, we may get a TagDecl with the same name; in this case the
10969    // enum constant will 'hide' the tag.
10970    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10971           "Received TagDecl when not in C++!");
10972    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10973      if (isa<EnumConstantDecl>(PrevDecl))
10974        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10975      else
10976        Diag(IdLoc, diag::err_redefinition) << Id;
10977      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10978      return 0;
10979    }
10980  }
10981
10982  // C++ [class.mem]p15:
10983  // If T is the name of a class, then each of the following shall have a name
10984  // different from T:
10985  // - every enumerator of every member of class T that is an unscoped
10986  // enumerated type
10987  if (CXXRecordDecl *Record
10988                      = dyn_cast<CXXRecordDecl>(
10989                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10990    if (!TheEnumDecl->isScoped() &&
10991        Record->getIdentifier() && Record->getIdentifier() == Id)
10992      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10993
10994  EnumConstantDecl *New =
10995    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10996
10997  if (New) {
10998    // Process attributes.
10999    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11000
11001    // Register this decl in the current scope stack.
11002    New->setAccess(TheEnumDecl->getAccess());
11003    PushOnScopeChains(New, S);
11004  }
11005
11006  ActOnDocumentableDecl(New);
11007
11008  return New;
11009}
11010
11011// Returns true when the enum initial expression does not trigger the
11012// duplicate enum warning.  A few common cases are exempted as follows:
11013// Element2 = Element1
11014// Element2 = Element1 + 1
11015// Element2 = Element1 - 1
11016// Where Element2 and Element1 are from the same enum.
11017static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11018  Expr *InitExpr = ECD->getInitExpr();
11019  if (!InitExpr)
11020    return true;
11021  InitExpr = InitExpr->IgnoreImpCasts();
11022
11023  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11024    if (!BO->isAdditiveOp())
11025      return true;
11026    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11027    if (!IL)
11028      return true;
11029    if (IL->getValue() != 1)
11030      return true;
11031
11032    InitExpr = BO->getLHS();
11033  }
11034
11035  // This checks if the elements are from the same enum.
11036  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11037  if (!DRE)
11038    return true;
11039
11040  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11041  if (!EnumConstant)
11042    return true;
11043
11044  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11045      Enum)
11046    return true;
11047
11048  return false;
11049}
11050
11051struct DupKey {
11052  int64_t val;
11053  bool isTombstoneOrEmptyKey;
11054  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11055    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11056};
11057
11058static DupKey GetDupKey(const llvm::APSInt& Val) {
11059  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11060                false);
11061}
11062
11063struct DenseMapInfoDupKey {
11064  static DupKey getEmptyKey() { return DupKey(0, true); }
11065  static DupKey getTombstoneKey() { return DupKey(1, true); }
11066  static unsigned getHashValue(const DupKey Key) {
11067    return (unsigned)(Key.val * 37);
11068  }
11069  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11070    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11071           LHS.val == RHS.val;
11072  }
11073};
11074
11075// Emits a warning when an element is implicitly set a value that
11076// a previous element has already been set to.
11077static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11078                                        unsigned NumElements, EnumDecl *Enum,
11079                                        QualType EnumType) {
11080  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11081                                 Enum->getLocation()) ==
11082      DiagnosticsEngine::Ignored)
11083    return;
11084  // Avoid anonymous enums
11085  if (!Enum->getIdentifier())
11086    return;
11087
11088  // Only check for small enums.
11089  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11090    return;
11091
11092  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11093  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11094
11095  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11096  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11097          ValueToVectorMap;
11098
11099  DuplicatesVector DupVector;
11100  ValueToVectorMap EnumMap;
11101
11102  // Populate the EnumMap with all values represented by enum constants without
11103  // an initialier.
11104  for (unsigned i = 0; i < NumElements; ++i) {
11105    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11106
11107    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11108    // this constant.  Skip this enum since it may be ill-formed.
11109    if (!ECD) {
11110      return;
11111    }
11112
11113    if (ECD->getInitExpr())
11114      continue;
11115
11116    DupKey Key = GetDupKey(ECD->getInitVal());
11117    DeclOrVector &Entry = EnumMap[Key];
11118
11119    // First time encountering this value.
11120    if (Entry.isNull())
11121      Entry = ECD;
11122  }
11123
11124  // Create vectors for any values that has duplicates.
11125  for (unsigned i = 0; i < NumElements; ++i) {
11126    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11127    if (!ValidDuplicateEnum(ECD, Enum))
11128      continue;
11129
11130    DupKey Key = GetDupKey(ECD->getInitVal());
11131
11132    DeclOrVector& Entry = EnumMap[Key];
11133    if (Entry.isNull())
11134      continue;
11135
11136    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11137      // Ensure constants are different.
11138      if (D == ECD)
11139        continue;
11140
11141      // Create new vector and push values onto it.
11142      ECDVector *Vec = new ECDVector();
11143      Vec->push_back(D);
11144      Vec->push_back(ECD);
11145
11146      // Update entry to point to the duplicates vector.
11147      Entry = Vec;
11148
11149      // Store the vector somewhere we can consult later for quick emission of
11150      // diagnostics.
11151      DupVector.push_back(Vec);
11152      continue;
11153    }
11154
11155    ECDVector *Vec = Entry.get<ECDVector*>();
11156    // Make sure constants are not added more than once.
11157    if (*Vec->begin() == ECD)
11158      continue;
11159
11160    Vec->push_back(ECD);
11161  }
11162
11163  // Emit diagnostics.
11164  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11165                                  DupVectorEnd = DupVector.end();
11166       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11167    ECDVector *Vec = *DupVectorIter;
11168    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11169
11170    // Emit warning for one enum constant.
11171    ECDVector::iterator I = Vec->begin();
11172    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11173      << (*I)->getName() << (*I)->getInitVal().toString(10)
11174      << (*I)->getSourceRange();
11175    ++I;
11176
11177    // Emit one note for each of the remaining enum constants with
11178    // the same value.
11179    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11180      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11181        << (*I)->getName() << (*I)->getInitVal().toString(10)
11182        << (*I)->getSourceRange();
11183    delete Vec;
11184  }
11185}
11186
11187void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11188                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11189                         Decl **Elements, unsigned NumElements,
11190                         Scope *S, AttributeList *Attr) {
11191  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11192  QualType EnumType = Context.getTypeDeclType(Enum);
11193
11194  if (Attr)
11195    ProcessDeclAttributeList(S, Enum, Attr);
11196
11197  if (Enum->isDependentType()) {
11198    for (unsigned i = 0; i != NumElements; ++i) {
11199      EnumConstantDecl *ECD =
11200        cast_or_null<EnumConstantDecl>(Elements[i]);
11201      if (!ECD) continue;
11202
11203      ECD->setType(EnumType);
11204    }
11205
11206    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11207    return;
11208  }
11209
11210  // TODO: If the result value doesn't fit in an int, it must be a long or long
11211  // long value.  ISO C does not support this, but GCC does as an extension,
11212  // emit a warning.
11213  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11214  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11215  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11216
11217  // Verify that all the values are okay, compute the size of the values, and
11218  // reverse the list.
11219  unsigned NumNegativeBits = 0;
11220  unsigned NumPositiveBits = 0;
11221
11222  // Keep track of whether all elements have type int.
11223  bool AllElementsInt = true;
11224
11225  for (unsigned i = 0; i != NumElements; ++i) {
11226    EnumConstantDecl *ECD =
11227      cast_or_null<EnumConstantDecl>(Elements[i]);
11228    if (!ECD) continue;  // Already issued a diagnostic.
11229
11230    const llvm::APSInt &InitVal = ECD->getInitVal();
11231
11232    // Keep track of the size of positive and negative values.
11233    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11234      NumPositiveBits = std::max(NumPositiveBits,
11235                                 (unsigned)InitVal.getActiveBits());
11236    else
11237      NumNegativeBits = std::max(NumNegativeBits,
11238                                 (unsigned)InitVal.getMinSignedBits());
11239
11240    // Keep track of whether every enum element has type int (very commmon).
11241    if (AllElementsInt)
11242      AllElementsInt = ECD->getType() == Context.IntTy;
11243  }
11244
11245  // Figure out the type that should be used for this enum.
11246  QualType BestType;
11247  unsigned BestWidth;
11248
11249  // C++0x N3000 [conv.prom]p3:
11250  //   An rvalue of an unscoped enumeration type whose underlying
11251  //   type is not fixed can be converted to an rvalue of the first
11252  //   of the following types that can represent all the values of
11253  //   the enumeration: int, unsigned int, long int, unsigned long
11254  //   int, long long int, or unsigned long long int.
11255  // C99 6.4.4.3p2:
11256  //   An identifier declared as an enumeration constant has type int.
11257  // The C99 rule is modified by a gcc extension
11258  QualType BestPromotionType;
11259
11260  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11261  // -fshort-enums is the equivalent to specifying the packed attribute on all
11262  // enum definitions.
11263  if (LangOpts.ShortEnums)
11264    Packed = true;
11265
11266  if (Enum->isFixed()) {
11267    BestType = Enum->getIntegerType();
11268    if (BestType->isPromotableIntegerType())
11269      BestPromotionType = Context.getPromotedIntegerType(BestType);
11270    else
11271      BestPromotionType = BestType;
11272    // We don't need to set BestWidth, because BestType is going to be the type
11273    // of the enumerators, but we do anyway because otherwise some compilers
11274    // warn that it might be used uninitialized.
11275    BestWidth = CharWidth;
11276  }
11277  else if (NumNegativeBits) {
11278    // If there is a negative value, figure out the smallest integer type (of
11279    // int/long/longlong) that fits.
11280    // If it's packed, check also if it fits a char or a short.
11281    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11282      BestType = Context.SignedCharTy;
11283      BestWidth = CharWidth;
11284    } else if (Packed && NumNegativeBits <= ShortWidth &&
11285               NumPositiveBits < ShortWidth) {
11286      BestType = Context.ShortTy;
11287      BestWidth = ShortWidth;
11288    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11289      BestType = Context.IntTy;
11290      BestWidth = IntWidth;
11291    } else {
11292      BestWidth = Context.getTargetInfo().getLongWidth();
11293
11294      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11295        BestType = Context.LongTy;
11296      } else {
11297        BestWidth = Context.getTargetInfo().getLongLongWidth();
11298
11299        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11300          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11301        BestType = Context.LongLongTy;
11302      }
11303    }
11304    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11305  } else {
11306    // If there is no negative value, figure out the smallest type that fits
11307    // all of the enumerator values.
11308    // If it's packed, check also if it fits a char or a short.
11309    if (Packed && NumPositiveBits <= CharWidth) {
11310      BestType = Context.UnsignedCharTy;
11311      BestPromotionType = Context.IntTy;
11312      BestWidth = CharWidth;
11313    } else if (Packed && NumPositiveBits <= ShortWidth) {
11314      BestType = Context.UnsignedShortTy;
11315      BestPromotionType = Context.IntTy;
11316      BestWidth = ShortWidth;
11317    } else if (NumPositiveBits <= IntWidth) {
11318      BestType = Context.UnsignedIntTy;
11319      BestWidth = IntWidth;
11320      BestPromotionType
11321        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11322                           ? Context.UnsignedIntTy : Context.IntTy;
11323    } else if (NumPositiveBits <=
11324               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11325      BestType = Context.UnsignedLongTy;
11326      BestPromotionType
11327        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11328                           ? Context.UnsignedLongTy : Context.LongTy;
11329    } else {
11330      BestWidth = Context.getTargetInfo().getLongLongWidth();
11331      assert(NumPositiveBits <= BestWidth &&
11332             "How could an initializer get larger than ULL?");
11333      BestType = Context.UnsignedLongLongTy;
11334      BestPromotionType
11335        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11336                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11337    }
11338  }
11339
11340  // Loop over all of the enumerator constants, changing their types to match
11341  // the type of the enum if needed.
11342  for (unsigned i = 0; i != NumElements; ++i) {
11343    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11344    if (!ECD) continue;  // Already issued a diagnostic.
11345
11346    // Standard C says the enumerators have int type, but we allow, as an
11347    // extension, the enumerators to be larger than int size.  If each
11348    // enumerator value fits in an int, type it as an int, otherwise type it the
11349    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11350    // that X has type 'int', not 'unsigned'.
11351
11352    // Determine whether the value fits into an int.
11353    llvm::APSInt InitVal = ECD->getInitVal();
11354
11355    // If it fits into an integer type, force it.  Otherwise force it to match
11356    // the enum decl type.
11357    QualType NewTy;
11358    unsigned NewWidth;
11359    bool NewSign;
11360    if (!getLangOpts().CPlusPlus &&
11361        !Enum->isFixed() &&
11362        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11363      NewTy = Context.IntTy;
11364      NewWidth = IntWidth;
11365      NewSign = true;
11366    } else if (ECD->getType() == BestType) {
11367      // Already the right type!
11368      if (getLangOpts().CPlusPlus)
11369        // C++ [dcl.enum]p4: Following the closing brace of an
11370        // enum-specifier, each enumerator has the type of its
11371        // enumeration.
11372        ECD->setType(EnumType);
11373      continue;
11374    } else {
11375      NewTy = BestType;
11376      NewWidth = BestWidth;
11377      NewSign = BestType->isSignedIntegerOrEnumerationType();
11378    }
11379
11380    // Adjust the APSInt value.
11381    InitVal = InitVal.extOrTrunc(NewWidth);
11382    InitVal.setIsSigned(NewSign);
11383    ECD->setInitVal(InitVal);
11384
11385    // Adjust the Expr initializer and type.
11386    if (ECD->getInitExpr() &&
11387        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11388      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11389                                                CK_IntegralCast,
11390                                                ECD->getInitExpr(),
11391                                                /*base paths*/ 0,
11392                                                VK_RValue));
11393    if (getLangOpts().CPlusPlus)
11394      // C++ [dcl.enum]p4: Following the closing brace of an
11395      // enum-specifier, each enumerator has the type of its
11396      // enumeration.
11397      ECD->setType(EnumType);
11398    else
11399      ECD->setType(NewTy);
11400  }
11401
11402  Enum->completeDefinition(BestType, BestPromotionType,
11403                           NumPositiveBits, NumNegativeBits);
11404
11405  // If we're declaring a function, ensure this decl isn't forgotten about -
11406  // it needs to go into the function scope.
11407  if (InFunctionDeclarator)
11408    DeclsInPrototypeScope.push_back(Enum);
11409
11410  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11411}
11412
11413Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11414                                  SourceLocation StartLoc,
11415                                  SourceLocation EndLoc) {
11416  StringLiteral *AsmString = cast<StringLiteral>(expr);
11417
11418  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11419                                                   AsmString, StartLoc,
11420                                                   EndLoc);
11421  CurContext->addDecl(New);
11422  return New;
11423}
11424
11425DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11426                                   SourceLocation ImportLoc,
11427                                   ModuleIdPath Path) {
11428  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11429                                                Module::AllVisible,
11430                                                /*IsIncludeDirective=*/false);
11431  if (!Mod)
11432    return true;
11433
11434  SmallVector<SourceLocation, 2> IdentifierLocs;
11435  Module *ModCheck = Mod;
11436  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11437    // If we've run out of module parents, just drop the remaining identifiers.
11438    // We need the length to be consistent.
11439    if (!ModCheck)
11440      break;
11441    ModCheck = ModCheck->Parent;
11442
11443    IdentifierLocs.push_back(Path[I].second);
11444  }
11445
11446  ImportDecl *Import = ImportDecl::Create(Context,
11447                                          Context.getTranslationUnitDecl(),
11448                                          AtLoc.isValid()? AtLoc : ImportLoc,
11449                                          Mod, IdentifierLocs);
11450  Context.getTranslationUnitDecl()->addDecl(Import);
11451  return Import;
11452}
11453
11454void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11455  // Create the implicit import declaration.
11456  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11457  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11458                                                   Loc, Mod, Loc);
11459  TU->addDecl(ImportD);
11460  Consumer.HandleImplicitImportDecl(ImportD);
11461
11462  // Make the module visible.
11463  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible);
11464}
11465
11466void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11467                                      IdentifierInfo* AliasName,
11468                                      SourceLocation PragmaLoc,
11469                                      SourceLocation NameLoc,
11470                                      SourceLocation AliasNameLoc) {
11471  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11472                                    LookupOrdinaryName);
11473  AsmLabelAttr *Attr =
11474     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11475
11476  if (PrevDecl)
11477    PrevDecl->addAttr(Attr);
11478  else
11479    (void)ExtnameUndeclaredIdentifiers.insert(
11480      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11481}
11482
11483void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11484                             SourceLocation PragmaLoc,
11485                             SourceLocation NameLoc) {
11486  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11487
11488  if (PrevDecl) {
11489    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11490  } else {
11491    (void)WeakUndeclaredIdentifiers.insert(
11492      std::pair<IdentifierInfo*,WeakInfo>
11493        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11494  }
11495}
11496
11497void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11498                                IdentifierInfo* AliasName,
11499                                SourceLocation PragmaLoc,
11500                                SourceLocation NameLoc,
11501                                SourceLocation AliasNameLoc) {
11502  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11503                                    LookupOrdinaryName);
11504  WeakInfo W = WeakInfo(Name, NameLoc);
11505
11506  if (PrevDecl) {
11507    if (!PrevDecl->hasAttr<AliasAttr>())
11508      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11509        DeclApplyPragmaWeak(TUScope, ND, W);
11510  } else {
11511    (void)WeakUndeclaredIdentifiers.insert(
11512      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11513  }
11514}
11515
11516Decl *Sema::getObjCDeclContext() const {
11517  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11518}
11519
11520AvailabilityResult Sema::getCurContextAvailability() const {
11521  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11522  return D->getAvailability();
11523}
11524