SemaDecl.cpp revision 6943e9befee204becfae55de1298b3d5fee87934
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type* Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::war_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374// Determines the context to return to after temporarily entering a
375// context.  This depends in an unnecessarily complicated way on the
376// exact ordering of callbacks from the parser.
377DeclContext *Sema::getContainingDC(DeclContext *DC) {
378
379  // Functions defined inline within classes aren't parsed until we've
380  // finished parsing the top-level class, so the top-level class is
381  // the context we'll need to return to.
382  if (isa<FunctionDecl>(DC)) {
383    DC = DC->getLexicalParent();
384
385    // A function not defined within a class will always return to its
386    // lexical context.
387    if (!isa<CXXRecordDecl>(DC))
388      return DC;
389
390    // A C++ inline method/friend is parsed *after* the topmost class
391    // it was declared in is fully parsed ("complete");  the topmost
392    // class is the context we need to return to.
393    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
394      DC = RD;
395
396    // Return the declaration context of the topmost class the inline method is
397    // declared in.
398    return DC;
399  }
400
401  // ObjCMethodDecls are parsed (for some reason) outside the context
402  // of the class.
403  if (isa<ObjCMethodDecl>(DC))
404    return DC->getLexicalParent()->getLexicalParent();
405
406  return DC->getLexicalParent();
407}
408
409void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
410  assert(getContainingDC(DC) == CurContext &&
411      "The next DeclContext should be lexically contained in the current one.");
412  CurContext = DC;
413  S->setEntity(DC);
414}
415
416void Sema::PopDeclContext() {
417  assert(CurContext && "DeclContext imbalance!");
418
419  CurContext = getContainingDC(CurContext);
420  assert(CurContext && "Popped translation unit!");
421}
422
423/// EnterDeclaratorContext - Used when we must lookup names in the context
424/// of a declarator's nested name specifier.
425///
426void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
427  // C++0x [basic.lookup.unqual]p13:
428  //   A name used in the definition of a static data member of class
429  //   X (after the qualified-id of the static member) is looked up as
430  //   if the name was used in a member function of X.
431  // C++0x [basic.lookup.unqual]p14:
432  //   If a variable member of a namespace is defined outside of the
433  //   scope of its namespace then any name used in the definition of
434  //   the variable member (after the declarator-id) is looked up as
435  //   if the definition of the variable member occurred in its
436  //   namespace.
437  // Both of these imply that we should push a scope whose context
438  // is the semantic context of the declaration.  We can't use
439  // PushDeclContext here because that context is not necessarily
440  // lexically contained in the current context.  Fortunately,
441  // the containing scope should have the appropriate information.
442
443  assert(!S->getEntity() && "scope already has entity");
444
445#ifndef NDEBUG
446  Scope *Ancestor = S->getParent();
447  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
448  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
449#endif
450
451  CurContext = DC;
452  S->setEntity(DC);
453}
454
455void Sema::ExitDeclaratorContext(Scope *S) {
456  assert(S->getEntity() == CurContext && "Context imbalance!");
457
458  // Switch back to the lexical context.  The safety of this is
459  // enforced by an assert in EnterDeclaratorContext.
460  Scope *Ancestor = S->getParent();
461  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
462  CurContext = (DeclContext*) Ancestor->getEntity();
463
464  // We don't need to do anything with the scope, which is going to
465  // disappear.
466}
467
468/// \brief Determine whether we allow overloading of the function
469/// PrevDecl with another declaration.
470///
471/// This routine determines whether overloading is possible, not
472/// whether some new function is actually an overload. It will return
473/// true in C++ (where we can always provide overloads) or, as an
474/// extension, in C when the previous function is already an
475/// overloaded function declaration or has the "overloadable"
476/// attribute.
477static bool AllowOverloadingOfFunction(LookupResult &Previous,
478                                       ASTContext &Context) {
479  if (Context.getLangOptions().CPlusPlus)
480    return true;
481
482  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
483    return true;
484
485  return (Previous.getResultKind() == LookupResult::Found
486          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
487}
488
489/// Add this decl to the scope shadowed decl chains.
490void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
491  // Move up the scope chain until we find the nearest enclosing
492  // non-transparent context. The declaration will be introduced into this
493  // scope.
494  while (S->getEntity() &&
495         ((DeclContext *)S->getEntity())->isTransparentContext())
496    S = S->getParent();
497
498  // Add scoped declarations into their context, so that they can be
499  // found later. Declarations without a context won't be inserted
500  // into any context.
501  if (AddToContext)
502    CurContext->addDecl(D);
503
504  // Out-of-line definitions shouldn't be pushed into scope in C++.
505  // Out-of-line variable and function definitions shouldn't even in C.
506  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
507      D->isOutOfLine())
508    return;
509
510  // Template instantiations should also not be pushed into scope.
511  if (isa<FunctionDecl>(D) &&
512      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
513    return;
514
515  // If this replaces anything in the current scope,
516  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
517                               IEnd = IdResolver.end();
518  for (; I != IEnd; ++I) {
519    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
520      S->RemoveDecl(*I);
521      IdResolver.RemoveDecl(*I);
522
523      // Should only need to replace one decl.
524      break;
525    }
526  }
527
528  S->AddDecl(D);
529
530  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
531    // Implicitly-generated labels may end up getting generated in an order that
532    // isn't strictly lexical, which breaks name lookup. Be careful to insert
533    // the label at the appropriate place in the identifier chain.
534    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
535      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
536      if (IDC == CurContext) {
537        if (!S->isDeclScope(*I))
538          continue;
539      } else if (IDC->Encloses(CurContext))
540        break;
541    }
542
543    IdResolver.InsertDeclAfter(I, D);
544  } else {
545    IdResolver.AddDecl(D);
546  }
547}
548
549bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
550                         bool ExplicitInstantiationOrSpecialization) {
551  return IdResolver.isDeclInScope(D, Ctx, Context, S,
552                                  ExplicitInstantiationOrSpecialization);
553}
554
555Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
556  DeclContext *TargetDC = DC->getPrimaryContext();
557  do {
558    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
559      if (ScopeDC->getPrimaryContext() == TargetDC)
560        return S;
561  } while ((S = S->getParent()));
562
563  return 0;
564}
565
566static bool isOutOfScopePreviousDeclaration(NamedDecl *,
567                                            DeclContext*,
568                                            ASTContext&);
569
570/// Filters out lookup results that don't fall within the given scope
571/// as determined by isDeclInScope.
572static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
573                                 DeclContext *Ctx, Scope *S,
574                                 bool ConsiderLinkage,
575                                 bool ExplicitInstantiationOrSpecialization) {
576  LookupResult::Filter F = R.makeFilter();
577  while (F.hasNext()) {
578    NamedDecl *D = F.next();
579
580    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
581      continue;
582
583    if (ConsiderLinkage &&
584        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
585      continue;
586
587    F.erase();
588  }
589
590  F.done();
591}
592
593static bool isUsingDecl(NamedDecl *D) {
594  return isa<UsingShadowDecl>(D) ||
595         isa<UnresolvedUsingTypenameDecl>(D) ||
596         isa<UnresolvedUsingValueDecl>(D);
597}
598
599/// Removes using shadow declarations from the lookup results.
600static void RemoveUsingDecls(LookupResult &R) {
601  LookupResult::Filter F = R.makeFilter();
602  while (F.hasNext())
603    if (isUsingDecl(F.next()))
604      F.erase();
605
606  F.done();
607}
608
609/// \brief Check for this common pattern:
610/// @code
611/// class S {
612///   S(const S&); // DO NOT IMPLEMENT
613///   void operator=(const S&); // DO NOT IMPLEMENT
614/// };
615/// @endcode
616static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
617  // FIXME: Should check for private access too but access is set after we get
618  // the decl here.
619  if (D->isThisDeclarationADefinition())
620    return false;
621
622  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
623    return CD->isCopyConstructor();
624  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
625    return Method->isCopyAssignmentOperator();
626  return false;
627}
628
629bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
630  assert(D);
631
632  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
633    return false;
634
635  // Ignore class templates.
636  if (D->getDeclContext()->isDependentContext() ||
637      D->getLexicalDeclContext()->isDependentContext())
638    return false;
639
640  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
641    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
642      return false;
643
644    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
645      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
646        return false;
647    } else {
648      // 'static inline' functions are used in headers; don't warn.
649      if (FD->getStorageClass() == SC_Static &&
650          FD->isInlineSpecified())
651        return false;
652    }
653
654    if (FD->isThisDeclarationADefinition() &&
655        Context.DeclMustBeEmitted(FD))
656      return false;
657
658  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
659    if (!VD->isFileVarDecl() ||
660        VD->getType().isConstant(Context) ||
661        Context.DeclMustBeEmitted(VD))
662      return false;
663
664    if (VD->isStaticDataMember() &&
665        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
666      return false;
667
668  } else {
669    return false;
670  }
671
672  // Only warn for unused decls internal to the translation unit.
673  if (D->getLinkage() == ExternalLinkage)
674    return false;
675
676  return true;
677}
678
679void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
680  if (!D)
681    return;
682
683  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
684    const FunctionDecl *First = FD->getFirstDeclaration();
685    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
686      return; // First should already be in the vector.
687  }
688
689  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
690    const VarDecl *First = VD->getFirstDeclaration();
691    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
692      return; // First should already be in the vector.
693  }
694
695   if (ShouldWarnIfUnusedFileScopedDecl(D))
696     UnusedFileScopedDecls.push_back(D);
697 }
698
699static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
700  if (D->isInvalidDecl())
701    return false;
702
703  if (D->isUsed() || D->hasAttr<UnusedAttr>())
704    return false;
705
706  if (isa<LabelDecl>(D))
707    return true;
708
709  // White-list anything that isn't a local variable.
710  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
711      !D->getDeclContext()->isFunctionOrMethod())
712    return false;
713
714  // Types of valid local variables should be complete, so this should succeed.
715  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
716
717    // White-list anything with an __attribute__((unused)) type.
718    QualType Ty = VD->getType();
719
720    // Only look at the outermost level of typedef.
721    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
722      if (TT->getDecl()->hasAttr<UnusedAttr>())
723        return false;
724    }
725
726    // If we failed to complete the type for some reason, or if the type is
727    // dependent, don't diagnose the variable.
728    if (Ty->isIncompleteType() || Ty->isDependentType())
729      return false;
730
731    if (const TagType *TT = Ty->getAs<TagType>()) {
732      const TagDecl *Tag = TT->getDecl();
733      if (Tag->hasAttr<UnusedAttr>())
734        return false;
735
736      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
737        // FIXME: Checking for the presence of a user-declared constructor
738        // isn't completely accurate; we'd prefer to check that the initializer
739        // has no side effects.
740        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
741          return false;
742      }
743    }
744
745    // TODO: __attribute__((unused)) templates?
746  }
747
748  return true;
749}
750
751/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
752/// unless they are marked attr(unused).
753void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
754  if (!ShouldDiagnoseUnusedDecl(D))
755    return;
756
757  unsigned DiagID;
758  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
759    DiagID = diag::warn_unused_exception_param;
760  else if (isa<LabelDecl>(D))
761    DiagID = diag::warn_unused_label;
762  else
763    DiagID = diag::warn_unused_variable;
764
765  Diag(D->getLocation(), DiagID) << D->getDeclName();
766}
767
768static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
769  // Verify that we have no forward references left.  If so, there was a goto
770  // or address of a label taken, but no definition of it.  Label fwd
771  // definitions are indicated with a null substmt.
772  if (L->getStmt() == 0)
773    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
774}
775
776void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
777  if (S->decl_empty()) return;
778  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
779         "Scope shouldn't contain decls!");
780
781  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
782       I != E; ++I) {
783    Decl *TmpD = (*I);
784    assert(TmpD && "This decl didn't get pushed??");
785
786    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
787    NamedDecl *D = cast<NamedDecl>(TmpD);
788
789    if (!D->getDeclName()) continue;
790
791    // Diagnose unused variables in this scope.
792    if (!S->hasErrorOccurred())
793      DiagnoseUnusedDecl(D);
794
795    // If this was a forward reference to a label, verify it was defined.
796    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
797      CheckPoppedLabel(LD, *this);
798
799    // Remove this name from our lexical scope.
800    IdResolver.RemoveDecl(D);
801  }
802}
803
804/// \brief Look for an Objective-C class in the translation unit.
805///
806/// \param Id The name of the Objective-C class we're looking for. If
807/// typo-correction fixes this name, the Id will be updated
808/// to the fixed name.
809///
810/// \param IdLoc The location of the name in the translation unit.
811///
812/// \param TypoCorrection If true, this routine will attempt typo correction
813/// if there is no class with the given name.
814///
815/// \returns The declaration of the named Objective-C class, or NULL if the
816/// class could not be found.
817ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
818                                              SourceLocation IdLoc,
819                                              bool TypoCorrection) {
820  // The third "scope" argument is 0 since we aren't enabling lazy built-in
821  // creation from this context.
822  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
823
824  if (!IDecl && TypoCorrection) {
825    // Perform typo correction at the given location, but only if we
826    // find an Objective-C class name.
827    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
828    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
829        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
830      Diag(IdLoc, diag::err_undef_interface_suggest)
831        << Id << IDecl->getDeclName()
832        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
833      Diag(IDecl->getLocation(), diag::note_previous_decl)
834        << IDecl->getDeclName();
835
836      Id = IDecl->getIdentifier();
837    }
838  }
839
840  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
841}
842
843/// getNonFieldDeclScope - Retrieves the innermost scope, starting
844/// from S, where a non-field would be declared. This routine copes
845/// with the difference between C and C++ scoping rules in structs and
846/// unions. For example, the following code is well-formed in C but
847/// ill-formed in C++:
848/// @code
849/// struct S6 {
850///   enum { BAR } e;
851/// };
852///
853/// void test_S6() {
854///   struct S6 a;
855///   a.e = BAR;
856/// }
857/// @endcode
858/// For the declaration of BAR, this routine will return a different
859/// scope. The scope S will be the scope of the unnamed enumeration
860/// within S6. In C++, this routine will return the scope associated
861/// with S6, because the enumeration's scope is a transparent
862/// context but structures can contain non-field names. In C, this
863/// routine will return the translation unit scope, since the
864/// enumeration's scope is a transparent context and structures cannot
865/// contain non-field names.
866Scope *Sema::getNonFieldDeclScope(Scope *S) {
867  while (((S->getFlags() & Scope::DeclScope) == 0) ||
868         (S->getEntity() &&
869          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
870         (S->isClassScope() && !getLangOptions().CPlusPlus))
871    S = S->getParent();
872  return S;
873}
874
875/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
876/// file scope.  lazily create a decl for it. ForRedeclaration is true
877/// if we're creating this built-in in anticipation of redeclaring the
878/// built-in.
879NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
880                                     Scope *S, bool ForRedeclaration,
881                                     SourceLocation Loc) {
882  Builtin::ID BID = (Builtin::ID)bid;
883
884  ASTContext::GetBuiltinTypeError Error;
885  QualType R = Context.GetBuiltinType(BID, Error);
886  switch (Error) {
887  case ASTContext::GE_None:
888    // Okay
889    break;
890
891  case ASTContext::GE_Missing_stdio:
892    if (ForRedeclaration)
893      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
894        << Context.BuiltinInfo.GetName(BID);
895    return 0;
896
897  case ASTContext::GE_Missing_setjmp:
898    if (ForRedeclaration)
899      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
900        << Context.BuiltinInfo.GetName(BID);
901    return 0;
902  }
903
904  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
905    Diag(Loc, diag::ext_implicit_lib_function_decl)
906      << Context.BuiltinInfo.GetName(BID)
907      << R;
908    if (Context.BuiltinInfo.getHeaderName(BID) &&
909        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
910          != Diagnostic::Ignored)
911      Diag(Loc, diag::note_please_include_header)
912        << Context.BuiltinInfo.getHeaderName(BID)
913        << Context.BuiltinInfo.GetName(BID);
914  }
915
916  FunctionDecl *New = FunctionDecl::Create(Context,
917                                           Context.getTranslationUnitDecl(),
918                                           Loc, Loc, II, R, /*TInfo=*/0,
919                                           SC_Extern,
920                                           SC_None, false,
921                                           /*hasPrototype=*/true);
922  New->setImplicit();
923
924  // Create Decl objects for each parameter, adding them to the
925  // FunctionDecl.
926  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
927    llvm::SmallVector<ParmVarDecl*, 16> Params;
928    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
929      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
930                                           SourceLocation(), 0,
931                                           FT->getArgType(i), /*TInfo=*/0,
932                                           SC_None, SC_None, 0));
933    New->setParams(Params.data(), Params.size());
934  }
935
936  AddKnownFunctionAttributes(New);
937
938  // TUScope is the translation-unit scope to insert this function into.
939  // FIXME: This is hideous. We need to teach PushOnScopeChains to
940  // relate Scopes to DeclContexts, and probably eliminate CurContext
941  // entirely, but we're not there yet.
942  DeclContext *SavedContext = CurContext;
943  CurContext = Context.getTranslationUnitDecl();
944  PushOnScopeChains(New, TUScope);
945  CurContext = SavedContext;
946  return New;
947}
948
949/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
950/// same name and scope as a previous declaration 'Old'.  Figure out
951/// how to resolve this situation, merging decls or emitting
952/// diagnostics as appropriate. If there was an error, set New to be invalid.
953///
954void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
955  // If the new decl is known invalid already, don't bother doing any
956  // merging checks.
957  if (New->isInvalidDecl()) return;
958
959  // Allow multiple definitions for ObjC built-in typedefs.
960  // FIXME: Verify the underlying types are equivalent!
961  if (getLangOptions().ObjC1) {
962    const IdentifierInfo *TypeID = New->getIdentifier();
963    switch (TypeID->getLength()) {
964    default: break;
965    case 2:
966      if (!TypeID->isStr("id"))
967        break;
968      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
969      // Install the built-in type for 'id', ignoring the current definition.
970      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
971      return;
972    case 5:
973      if (!TypeID->isStr("Class"))
974        break;
975      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
976      // Install the built-in type for 'Class', ignoring the current definition.
977      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
978      return;
979    case 3:
980      if (!TypeID->isStr("SEL"))
981        break;
982      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
983      // Install the built-in type for 'SEL', ignoring the current definition.
984      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
985      return;
986    case 8:
987      if (!TypeID->isStr("Protocol"))
988        break;
989      Context.setObjCProtoType(New->getUnderlyingType());
990      return;
991    }
992    // Fall through - the typedef name was not a builtin type.
993  }
994
995  // Verify the old decl was also a type.
996  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
997  if (!Old) {
998    Diag(New->getLocation(), diag::err_redefinition_different_kind)
999      << New->getDeclName();
1000
1001    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1002    if (OldD->getLocation().isValid())
1003      Diag(OldD->getLocation(), diag::note_previous_definition);
1004
1005    return New->setInvalidDecl();
1006  }
1007
1008  // If the old declaration is invalid, just give up here.
1009  if (Old->isInvalidDecl())
1010    return New->setInvalidDecl();
1011
1012  // Determine the "old" type we'll use for checking and diagnostics.
1013  QualType OldType;
1014  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
1015    OldType = OldTypedef->getUnderlyingType();
1016  else
1017    OldType = Context.getTypeDeclType(Old);
1018
1019  // If the typedef types are not identical, reject them in all languages and
1020  // with any extensions enabled.
1021
1022  if (OldType != New->getUnderlyingType() &&
1023      Context.getCanonicalType(OldType) !=
1024      Context.getCanonicalType(New->getUnderlyingType())) {
1025    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1026      << New->getUnderlyingType() << OldType;
1027    if (Old->getLocation().isValid())
1028      Diag(Old->getLocation(), diag::note_previous_definition);
1029    return New->setInvalidDecl();
1030  }
1031
1032  // The types match.  Link up the redeclaration chain if the old
1033  // declaration was a typedef.
1034  // FIXME: this is a potential source of wierdness if the type
1035  // spellings don't match exactly.
1036  if (isa<TypedefDecl>(Old))
1037    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
1038
1039  if (getLangOptions().Microsoft)
1040    return;
1041
1042  if (getLangOptions().CPlusPlus) {
1043    // C++ [dcl.typedef]p2:
1044    //   In a given non-class scope, a typedef specifier can be used to
1045    //   redefine the name of any type declared in that scope to refer
1046    //   to the type to which it already refers.
1047    if (!isa<CXXRecordDecl>(CurContext))
1048      return;
1049
1050    // C++0x [dcl.typedef]p4:
1051    //   In a given class scope, a typedef specifier can be used to redefine
1052    //   any class-name declared in that scope that is not also a typedef-name
1053    //   to refer to the type to which it already refers.
1054    //
1055    // This wording came in via DR424, which was a correction to the
1056    // wording in DR56, which accidentally banned code like:
1057    //
1058    //   struct S {
1059    //     typedef struct A { } A;
1060    //   };
1061    //
1062    // in the C++03 standard. We implement the C++0x semantics, which
1063    // allow the above but disallow
1064    //
1065    //   struct S {
1066    //     typedef int I;
1067    //     typedef int I;
1068    //   };
1069    //
1070    // since that was the intent of DR56.
1071    if (!isa<TypedefDecl >(Old))
1072      return;
1073
1074    Diag(New->getLocation(), diag::err_redefinition)
1075      << New->getDeclName();
1076    Diag(Old->getLocation(), diag::note_previous_definition);
1077    return New->setInvalidDecl();
1078  }
1079
1080  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1081  // is normally mapped to an error, but can be controlled with
1082  // -Wtypedef-redefinition.  If either the original or the redefinition is
1083  // in a system header, don't emit this for compatibility with GCC.
1084  if (getDiagnostics().getSuppressSystemWarnings() &&
1085      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1086       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1087    return;
1088
1089  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1090    << New->getDeclName();
1091  Diag(Old->getLocation(), diag::note_previous_definition);
1092  return;
1093}
1094
1095/// DeclhasAttr - returns true if decl Declaration already has the target
1096/// attribute.
1097static bool
1098DeclHasAttr(const Decl *D, const Attr *A) {
1099  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1100  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1101    if ((*i)->getKind() == A->getKind()) {
1102      // FIXME: Don't hardcode this check
1103      if (OA && isa<OwnershipAttr>(*i))
1104        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1105      return true;
1106    }
1107
1108  return false;
1109}
1110
1111/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1112static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1113                                ASTContext &C) {
1114  if (!oldDecl->hasAttrs())
1115    return;
1116
1117  bool foundAny = newDecl->hasAttrs();
1118
1119  // Ensure that any moving of objects within the allocated map is done before
1120  // we process them.
1121  if (!foundAny) newDecl->setAttrs(AttrVec());
1122
1123  for (specific_attr_iterator<InheritableAttr>
1124       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1125       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1126    if (!DeclHasAttr(newDecl, *i)) {
1127      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1128      newAttr->setInherited(true);
1129      newDecl->addAttr(newAttr);
1130      foundAny = true;
1131    }
1132  }
1133
1134  if (!foundAny) newDecl->dropAttrs();
1135}
1136
1137/// mergeParamDeclAttributes - Copy attributes from the old parameter
1138/// to the new one.
1139static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1140                                     const ParmVarDecl *oldDecl,
1141                                     ASTContext &C) {
1142  if (!oldDecl->hasAttrs())
1143    return;
1144
1145  bool foundAny = newDecl->hasAttrs();
1146
1147  // Ensure that any moving of objects within the allocated map is
1148  // done before we process them.
1149  if (!foundAny) newDecl->setAttrs(AttrVec());
1150
1151  for (specific_attr_iterator<InheritableParamAttr>
1152       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1153       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1154    if (!DeclHasAttr(newDecl, *i)) {
1155      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1156      newAttr->setInherited(true);
1157      newDecl->addAttr(newAttr);
1158      foundAny = true;
1159    }
1160  }
1161
1162  if (!foundAny) newDecl->dropAttrs();
1163}
1164
1165namespace {
1166
1167/// Used in MergeFunctionDecl to keep track of function parameters in
1168/// C.
1169struct GNUCompatibleParamWarning {
1170  ParmVarDecl *OldParm;
1171  ParmVarDecl *NewParm;
1172  QualType PromotedType;
1173};
1174
1175}
1176
1177/// getSpecialMember - get the special member enum for a method.
1178Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1179  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1180    if (Ctor->isCopyConstructor())
1181      return Sema::CXXCopyConstructor;
1182
1183    return Sema::CXXConstructor;
1184  }
1185
1186  if (isa<CXXDestructorDecl>(MD))
1187    return Sema::CXXDestructor;
1188
1189  assert(MD->isCopyAssignmentOperator() &&
1190         "Must have copy assignment operator");
1191  return Sema::CXXCopyAssignment;
1192}
1193
1194/// canRedefineFunction - checks if a function can be redefined. Currently,
1195/// only extern inline functions can be redefined, and even then only in
1196/// GNU89 mode.
1197static bool canRedefineFunction(const FunctionDecl *FD,
1198                                const LangOptions& LangOpts) {
1199  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1200          FD->isInlineSpecified() &&
1201          FD->getStorageClass() == SC_Extern);
1202}
1203
1204/// MergeFunctionDecl - We just parsed a function 'New' from
1205/// declarator D which has the same name and scope as a previous
1206/// declaration 'Old'.  Figure out how to resolve this situation,
1207/// merging decls or emitting diagnostics as appropriate.
1208///
1209/// In C++, New and Old must be declarations that are not
1210/// overloaded. Use IsOverload to determine whether New and Old are
1211/// overloaded, and to select the Old declaration that New should be
1212/// merged with.
1213///
1214/// Returns true if there was an error, false otherwise.
1215bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1216  // Verify the old decl was also a function.
1217  FunctionDecl *Old = 0;
1218  if (FunctionTemplateDecl *OldFunctionTemplate
1219        = dyn_cast<FunctionTemplateDecl>(OldD))
1220    Old = OldFunctionTemplate->getTemplatedDecl();
1221  else
1222    Old = dyn_cast<FunctionDecl>(OldD);
1223  if (!Old) {
1224    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1225      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1226      Diag(Shadow->getTargetDecl()->getLocation(),
1227           diag::note_using_decl_target);
1228      Diag(Shadow->getUsingDecl()->getLocation(),
1229           diag::note_using_decl) << 0;
1230      return true;
1231    }
1232
1233    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1234      << New->getDeclName();
1235    Diag(OldD->getLocation(), diag::note_previous_definition);
1236    return true;
1237  }
1238
1239  // Determine whether the previous declaration was a definition,
1240  // implicit declaration, or a declaration.
1241  diag::kind PrevDiag;
1242  if (Old->isThisDeclarationADefinition())
1243    PrevDiag = diag::note_previous_definition;
1244  else if (Old->isImplicit())
1245    PrevDiag = diag::note_previous_implicit_declaration;
1246  else
1247    PrevDiag = diag::note_previous_declaration;
1248
1249  QualType OldQType = Context.getCanonicalType(Old->getType());
1250  QualType NewQType = Context.getCanonicalType(New->getType());
1251
1252  // Don't complain about this if we're in GNU89 mode and the old function
1253  // is an extern inline function.
1254  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1255      New->getStorageClass() == SC_Static &&
1256      Old->getStorageClass() != SC_Static &&
1257      !canRedefineFunction(Old, getLangOptions())) {
1258    Diag(New->getLocation(), diag::err_static_non_static)
1259      << New;
1260    Diag(Old->getLocation(), PrevDiag);
1261    return true;
1262  }
1263
1264  // If a function is first declared with a calling convention, but is
1265  // later declared or defined without one, the second decl assumes the
1266  // calling convention of the first.
1267  //
1268  // For the new decl, we have to look at the NON-canonical type to tell the
1269  // difference between a function that really doesn't have a calling
1270  // convention and one that is declared cdecl. That's because in
1271  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1272  // because it is the default calling convention.
1273  //
1274  // Note also that we DO NOT return at this point, because we still have
1275  // other tests to run.
1276  const FunctionType *OldType = cast<FunctionType>(OldQType);
1277  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1278  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1279  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1280  bool RequiresAdjustment = false;
1281  if (OldTypeInfo.getCC() != CC_Default &&
1282      NewTypeInfo.getCC() == CC_Default) {
1283    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1284    RequiresAdjustment = true;
1285  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1286                                     NewTypeInfo.getCC())) {
1287    // Calling conventions really aren't compatible, so complain.
1288    Diag(New->getLocation(), diag::err_cconv_change)
1289      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1290      << (OldTypeInfo.getCC() == CC_Default)
1291      << (OldTypeInfo.getCC() == CC_Default ? "" :
1292          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1293    Diag(Old->getLocation(), diag::note_previous_declaration);
1294    return true;
1295  }
1296
1297  // FIXME: diagnose the other way around?
1298  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1299    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1300    RequiresAdjustment = true;
1301  }
1302
1303  // Merge regparm attribute.
1304  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1305      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1306    if (NewTypeInfo.getHasRegParm()) {
1307      Diag(New->getLocation(), diag::err_regparm_mismatch)
1308        << NewType->getRegParmType()
1309        << OldType->getRegParmType();
1310      Diag(Old->getLocation(), diag::note_previous_declaration);
1311      return true;
1312    }
1313
1314    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1315    RequiresAdjustment = true;
1316  }
1317
1318  if (RequiresAdjustment) {
1319    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1320    New->setType(QualType(NewType, 0));
1321    NewQType = Context.getCanonicalType(New->getType());
1322  }
1323
1324  if (getLangOptions().CPlusPlus) {
1325    // (C++98 13.1p2):
1326    //   Certain function declarations cannot be overloaded:
1327    //     -- Function declarations that differ only in the return type
1328    //        cannot be overloaded.
1329    QualType OldReturnType = OldType->getResultType();
1330    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1331    QualType ResQT;
1332    if (OldReturnType != NewReturnType) {
1333      if (NewReturnType->isObjCObjectPointerType()
1334          && OldReturnType->isObjCObjectPointerType())
1335        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1336      if (ResQT.isNull()) {
1337        if (New->isCXXClassMember() && New->isOutOfLine())
1338          Diag(New->getLocation(),
1339               diag::err_member_def_does_not_match_ret_type) << New;
1340        else
1341          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1342        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1343        return true;
1344      }
1345      else
1346        NewQType = ResQT;
1347    }
1348
1349    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1350    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1351    if (OldMethod && NewMethod) {
1352      // Preserve triviality.
1353      NewMethod->setTrivial(OldMethod->isTrivial());
1354
1355      bool isFriend = NewMethod->getFriendObjectKind();
1356
1357      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1358        //    -- Member function declarations with the same name and the
1359        //       same parameter types cannot be overloaded if any of them
1360        //       is a static member function declaration.
1361        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1362          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1363          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1364          return true;
1365        }
1366
1367        // C++ [class.mem]p1:
1368        //   [...] A member shall not be declared twice in the
1369        //   member-specification, except that a nested class or member
1370        //   class template can be declared and then later defined.
1371        unsigned NewDiag;
1372        if (isa<CXXConstructorDecl>(OldMethod))
1373          NewDiag = diag::err_constructor_redeclared;
1374        else if (isa<CXXDestructorDecl>(NewMethod))
1375          NewDiag = diag::err_destructor_redeclared;
1376        else if (isa<CXXConversionDecl>(NewMethod))
1377          NewDiag = diag::err_conv_function_redeclared;
1378        else
1379          NewDiag = diag::err_member_redeclared;
1380
1381        Diag(New->getLocation(), NewDiag);
1382        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1383
1384      // Complain if this is an explicit declaration of a special
1385      // member that was initially declared implicitly.
1386      //
1387      // As an exception, it's okay to befriend such methods in order
1388      // to permit the implicit constructor/destructor/operator calls.
1389      } else if (OldMethod->isImplicit()) {
1390        if (isFriend) {
1391          NewMethod->setImplicit();
1392        } else {
1393          Diag(NewMethod->getLocation(),
1394               diag::err_definition_of_implicitly_declared_member)
1395            << New << getSpecialMember(OldMethod);
1396          return true;
1397        }
1398      }
1399    }
1400
1401    // (C++98 8.3.5p3):
1402    //   All declarations for a function shall agree exactly in both the
1403    //   return type and the parameter-type-list.
1404    // We also want to respect all the extended bits except noreturn.
1405
1406    // noreturn should now match unless the old type info didn't have it.
1407    QualType OldQTypeForComparison = OldQType;
1408    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1409      assert(OldQType == QualType(OldType, 0));
1410      const FunctionType *OldTypeForComparison
1411        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1412      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1413      assert(OldQTypeForComparison.isCanonical());
1414    }
1415
1416    if (OldQTypeForComparison == NewQType)
1417      return MergeCompatibleFunctionDecls(New, Old);
1418
1419    // Fall through for conflicting redeclarations and redefinitions.
1420  }
1421
1422  // C: Function types need to be compatible, not identical. This handles
1423  // duplicate function decls like "void f(int); void f(enum X);" properly.
1424  if (!getLangOptions().CPlusPlus &&
1425      Context.typesAreCompatible(OldQType, NewQType)) {
1426    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1427    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1428    const FunctionProtoType *OldProto = 0;
1429    if (isa<FunctionNoProtoType>(NewFuncType) &&
1430        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1431      // The old declaration provided a function prototype, but the
1432      // new declaration does not. Merge in the prototype.
1433      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1434      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1435                                                 OldProto->arg_type_end());
1436      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1437                                         ParamTypes.data(), ParamTypes.size(),
1438                                         OldProto->getExtProtoInfo());
1439      New->setType(NewQType);
1440      New->setHasInheritedPrototype();
1441
1442      // Synthesize a parameter for each argument type.
1443      llvm::SmallVector<ParmVarDecl*, 16> Params;
1444      for (FunctionProtoType::arg_type_iterator
1445             ParamType = OldProto->arg_type_begin(),
1446             ParamEnd = OldProto->arg_type_end();
1447           ParamType != ParamEnd; ++ParamType) {
1448        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1449                                                 SourceLocation(),
1450                                                 SourceLocation(), 0,
1451                                                 *ParamType, /*TInfo=*/0,
1452                                                 SC_None, SC_None,
1453                                                 0);
1454        Param->setImplicit();
1455        Params.push_back(Param);
1456      }
1457
1458      New->setParams(Params.data(), Params.size());
1459    }
1460
1461    return MergeCompatibleFunctionDecls(New, Old);
1462  }
1463
1464  // GNU C permits a K&R definition to follow a prototype declaration
1465  // if the declared types of the parameters in the K&R definition
1466  // match the types in the prototype declaration, even when the
1467  // promoted types of the parameters from the K&R definition differ
1468  // from the types in the prototype. GCC then keeps the types from
1469  // the prototype.
1470  //
1471  // If a variadic prototype is followed by a non-variadic K&R definition,
1472  // the K&R definition becomes variadic.  This is sort of an edge case, but
1473  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1474  // C99 6.9.1p8.
1475  if (!getLangOptions().CPlusPlus &&
1476      Old->hasPrototype() && !New->hasPrototype() &&
1477      New->getType()->getAs<FunctionProtoType>() &&
1478      Old->getNumParams() == New->getNumParams()) {
1479    llvm::SmallVector<QualType, 16> ArgTypes;
1480    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1481    const FunctionProtoType *OldProto
1482      = Old->getType()->getAs<FunctionProtoType>();
1483    const FunctionProtoType *NewProto
1484      = New->getType()->getAs<FunctionProtoType>();
1485
1486    // Determine whether this is the GNU C extension.
1487    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1488                                               NewProto->getResultType());
1489    bool LooseCompatible = !MergedReturn.isNull();
1490    for (unsigned Idx = 0, End = Old->getNumParams();
1491         LooseCompatible && Idx != End; ++Idx) {
1492      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1493      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1494      if (Context.typesAreCompatible(OldParm->getType(),
1495                                     NewProto->getArgType(Idx))) {
1496        ArgTypes.push_back(NewParm->getType());
1497      } else if (Context.typesAreCompatible(OldParm->getType(),
1498                                            NewParm->getType(),
1499                                            /*CompareUnqualified=*/true)) {
1500        GNUCompatibleParamWarning Warn
1501          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1502        Warnings.push_back(Warn);
1503        ArgTypes.push_back(NewParm->getType());
1504      } else
1505        LooseCompatible = false;
1506    }
1507
1508    if (LooseCompatible) {
1509      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1510        Diag(Warnings[Warn].NewParm->getLocation(),
1511             diag::ext_param_promoted_not_compatible_with_prototype)
1512          << Warnings[Warn].PromotedType
1513          << Warnings[Warn].OldParm->getType();
1514        if (Warnings[Warn].OldParm->getLocation().isValid())
1515          Diag(Warnings[Warn].OldParm->getLocation(),
1516               diag::note_previous_declaration);
1517      }
1518
1519      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1520                                           ArgTypes.size(),
1521                                           OldProto->getExtProtoInfo()));
1522      return MergeCompatibleFunctionDecls(New, Old);
1523    }
1524
1525    // Fall through to diagnose conflicting types.
1526  }
1527
1528  // A function that has already been declared has been redeclared or defined
1529  // with a different type- show appropriate diagnostic
1530  if (unsigned BuiltinID = Old->getBuiltinID()) {
1531    // The user has declared a builtin function with an incompatible
1532    // signature.
1533    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1534      // The function the user is redeclaring is a library-defined
1535      // function like 'malloc' or 'printf'. Warn about the
1536      // redeclaration, then pretend that we don't know about this
1537      // library built-in.
1538      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1539      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1540        << Old << Old->getType();
1541      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1542      Old->setInvalidDecl();
1543      return false;
1544    }
1545
1546    PrevDiag = diag::note_previous_builtin_declaration;
1547  }
1548
1549  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1550  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1551  return true;
1552}
1553
1554/// \brief Completes the merge of two function declarations that are
1555/// known to be compatible.
1556///
1557/// This routine handles the merging of attributes and other
1558/// properties of function declarations form the old declaration to
1559/// the new declaration, once we know that New is in fact a
1560/// redeclaration of Old.
1561///
1562/// \returns false
1563bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1564  // Merge the attributes
1565  mergeDeclAttributes(New, Old, Context);
1566
1567  // Merge the storage class.
1568  if (Old->getStorageClass() != SC_Extern &&
1569      Old->getStorageClass() != SC_None)
1570    New->setStorageClass(Old->getStorageClass());
1571
1572  // Merge "pure" flag.
1573  if (Old->isPure())
1574    New->setPure();
1575
1576  // Merge the "deleted" flag.
1577  if (Old->isDeleted())
1578    New->setDeleted();
1579
1580  // Merge attributes from the parameters.  These can mismatch with K&R
1581  // declarations.
1582  if (New->getNumParams() == Old->getNumParams())
1583    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1584      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1585                               Context);
1586
1587  if (getLangOptions().CPlusPlus)
1588    return MergeCXXFunctionDecl(New, Old);
1589
1590  return false;
1591}
1592
1593void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1594                                const ObjCMethodDecl *oldMethod) {
1595  // Merge the attributes.
1596  mergeDeclAttributes(newMethod, oldMethod, Context);
1597
1598  // Merge attributes from the parameters.
1599  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1600         ni = newMethod->param_begin(), ne = newMethod->param_end();
1601       ni != ne; ++ni, ++oi)
1602    mergeParamDeclAttributes(*ni, *oi, Context);
1603}
1604
1605/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1606/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1607/// emitting diagnostics as appropriate.
1608///
1609/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1610/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1611/// check them before the initializer is attached.
1612///
1613void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1614  if (New->isInvalidDecl() || Old->isInvalidDecl())
1615    return;
1616
1617  QualType MergedT;
1618  if (getLangOptions().CPlusPlus) {
1619    AutoType *AT = New->getType()->getContainedAutoType();
1620    if (AT && !AT->isDeduced()) {
1621      // We don't know what the new type is until the initializer is attached.
1622      return;
1623    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1624      // These could still be something that needs exception specs checked.
1625      return MergeVarDeclExceptionSpecs(New, Old);
1626    }
1627    // C++ [basic.link]p10:
1628    //   [...] the types specified by all declarations referring to a given
1629    //   object or function shall be identical, except that declarations for an
1630    //   array object can specify array types that differ by the presence or
1631    //   absence of a major array bound (8.3.4).
1632    else if (Old->getType()->isIncompleteArrayType() &&
1633             New->getType()->isArrayType()) {
1634      CanQual<ArrayType> OldArray
1635        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1636      CanQual<ArrayType> NewArray
1637        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1638      if (OldArray->getElementType() == NewArray->getElementType())
1639        MergedT = New->getType();
1640    } else if (Old->getType()->isArrayType() &&
1641             New->getType()->isIncompleteArrayType()) {
1642      CanQual<ArrayType> OldArray
1643        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1644      CanQual<ArrayType> NewArray
1645        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1646      if (OldArray->getElementType() == NewArray->getElementType())
1647        MergedT = Old->getType();
1648    } else if (New->getType()->isObjCObjectPointerType()
1649               && Old->getType()->isObjCObjectPointerType()) {
1650        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1651                                                        Old->getType());
1652    }
1653  } else {
1654    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1655  }
1656  if (MergedT.isNull()) {
1657    Diag(New->getLocation(), diag::err_redefinition_different_type)
1658      << New->getDeclName();
1659    Diag(Old->getLocation(), diag::note_previous_definition);
1660    return New->setInvalidDecl();
1661  }
1662  New->setType(MergedT);
1663}
1664
1665/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1666/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1667/// situation, merging decls or emitting diagnostics as appropriate.
1668///
1669/// Tentative definition rules (C99 6.9.2p2) are checked by
1670/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1671/// definitions here, since the initializer hasn't been attached.
1672///
1673void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1674  // If the new decl is already invalid, don't do any other checking.
1675  if (New->isInvalidDecl())
1676    return;
1677
1678  // Verify the old decl was also a variable.
1679  VarDecl *Old = 0;
1680  if (!Previous.isSingleResult() ||
1681      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1682    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1683      << New->getDeclName();
1684    Diag(Previous.getRepresentativeDecl()->getLocation(),
1685         diag::note_previous_definition);
1686    return New->setInvalidDecl();
1687  }
1688
1689  // C++ [class.mem]p1:
1690  //   A member shall not be declared twice in the member-specification [...]
1691  //
1692  // Here, we need only consider static data members.
1693  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1694    Diag(New->getLocation(), diag::err_duplicate_member)
1695      << New->getIdentifier();
1696    Diag(Old->getLocation(), diag::note_previous_declaration);
1697    New->setInvalidDecl();
1698  }
1699
1700  mergeDeclAttributes(New, Old, Context);
1701
1702  // Merge the types.
1703  MergeVarDeclTypes(New, Old);
1704  if (New->isInvalidDecl())
1705    return;
1706
1707  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1708  if (New->getStorageClass() == SC_Static &&
1709      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1710    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1711    Diag(Old->getLocation(), diag::note_previous_definition);
1712    return New->setInvalidDecl();
1713  }
1714  // C99 6.2.2p4:
1715  //   For an identifier declared with the storage-class specifier
1716  //   extern in a scope in which a prior declaration of that
1717  //   identifier is visible,23) if the prior declaration specifies
1718  //   internal or external linkage, the linkage of the identifier at
1719  //   the later declaration is the same as the linkage specified at
1720  //   the prior declaration. If no prior declaration is visible, or
1721  //   if the prior declaration specifies no linkage, then the
1722  //   identifier has external linkage.
1723  if (New->hasExternalStorage() && Old->hasLinkage())
1724    /* Okay */;
1725  else if (New->getStorageClass() != SC_Static &&
1726           Old->getStorageClass() == SC_Static) {
1727    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1728    Diag(Old->getLocation(), diag::note_previous_definition);
1729    return New->setInvalidDecl();
1730  }
1731
1732  // Check if extern is followed by non-extern and vice-versa.
1733  if (New->hasExternalStorage() &&
1734      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1735    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1736    Diag(Old->getLocation(), diag::note_previous_definition);
1737    return New->setInvalidDecl();
1738  }
1739  if (Old->hasExternalStorage() &&
1740      !New->hasLinkage() && New->isLocalVarDecl()) {
1741    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1742    Diag(Old->getLocation(), diag::note_previous_definition);
1743    return New->setInvalidDecl();
1744  }
1745
1746  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1747
1748  // FIXME: The test for external storage here seems wrong? We still
1749  // need to check for mismatches.
1750  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1751      // Don't complain about out-of-line definitions of static members.
1752      !(Old->getLexicalDeclContext()->isRecord() &&
1753        !New->getLexicalDeclContext()->isRecord())) {
1754    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1755    Diag(Old->getLocation(), diag::note_previous_definition);
1756    return New->setInvalidDecl();
1757  }
1758
1759  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1760    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1761    Diag(Old->getLocation(), diag::note_previous_definition);
1762  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1763    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1764    Diag(Old->getLocation(), diag::note_previous_definition);
1765  }
1766
1767  // C++ doesn't have tentative definitions, so go right ahead and check here.
1768  const VarDecl *Def;
1769  if (getLangOptions().CPlusPlus &&
1770      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1771      (Def = Old->getDefinition())) {
1772    Diag(New->getLocation(), diag::err_redefinition)
1773      << New->getDeclName();
1774    Diag(Def->getLocation(), diag::note_previous_definition);
1775    New->setInvalidDecl();
1776    return;
1777  }
1778  // c99 6.2.2 P4.
1779  // For an identifier declared with the storage-class specifier extern in a
1780  // scope in which a prior declaration of that identifier is visible, if
1781  // the prior declaration specifies internal or external linkage, the linkage
1782  // of the identifier at the later declaration is the same as the linkage
1783  // specified at the prior declaration.
1784  // FIXME. revisit this code.
1785  if (New->hasExternalStorage() &&
1786      Old->getLinkage() == InternalLinkage &&
1787      New->getDeclContext() == Old->getDeclContext())
1788    New->setStorageClass(Old->getStorageClass());
1789
1790  // Keep a chain of previous declarations.
1791  New->setPreviousDeclaration(Old);
1792
1793  // Inherit access appropriately.
1794  New->setAccess(Old->getAccess());
1795}
1796
1797/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1798/// no declarator (e.g. "struct foo;") is parsed.
1799Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1800                                       DeclSpec &DS) {
1801  Decl *TagD = 0;
1802  TagDecl *Tag = 0;
1803  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1804      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1805      DS.getTypeSpecType() == DeclSpec::TST_union ||
1806      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1807    TagD = DS.getRepAsDecl();
1808
1809    if (!TagD) // We probably had an error
1810      return 0;
1811
1812    // Note that the above type specs guarantee that the
1813    // type rep is a Decl, whereas in many of the others
1814    // it's a Type.
1815    Tag = dyn_cast<TagDecl>(TagD);
1816  }
1817
1818  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1819    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1820    // or incomplete types shall not be restrict-qualified."
1821    if (TypeQuals & DeclSpec::TQ_restrict)
1822      Diag(DS.getRestrictSpecLoc(),
1823           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1824           << DS.getSourceRange();
1825  }
1826
1827  if (DS.isFriendSpecified()) {
1828    // If we're dealing with a decl but not a TagDecl, assume that
1829    // whatever routines created it handled the friendship aspect.
1830    if (TagD && !Tag)
1831      return 0;
1832    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1833  }
1834
1835  // Track whether we warned about the fact that there aren't any
1836  // declarators.
1837  bool emittedWarning = false;
1838
1839  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1840    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1841
1842    if (!Record->getDeclName() && Record->isDefinition() &&
1843        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1844      if (getLangOptions().CPlusPlus ||
1845          Record->getDeclContext()->isRecord())
1846        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1847
1848      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1849        << DS.getSourceRange();
1850      emittedWarning = true;
1851    }
1852  }
1853
1854  // Check for Microsoft C extension: anonymous struct.
1855  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1856      CurContext->isRecord() &&
1857      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1858    // Handle 2 kinds of anonymous struct:
1859    //   struct STRUCT;
1860    // and
1861    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1862    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1863    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1864        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1865         DS.getRepAsType().get()->isStructureType())) {
1866      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1867        << DS.getSourceRange();
1868      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1869    }
1870  }
1871
1872  if (getLangOptions().CPlusPlus &&
1873      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1874    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1875      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1876          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
1877        Diag(Enum->getLocation(), diag::ext_no_declarators)
1878          << DS.getSourceRange();
1879        emittedWarning = true;
1880      }
1881
1882  // Skip all the checks below if we have a type error.
1883  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
1884
1885  if (!DS.isMissingDeclaratorOk()) {
1886    // Warn about typedefs of enums without names, since this is an
1887    // extension in both Microsoft and GNU.
1888    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1889        Tag && isa<EnumDecl>(Tag)) {
1890      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1891        << DS.getSourceRange();
1892      return Tag;
1893    }
1894
1895    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1896      << DS.getSourceRange();
1897    emittedWarning = true;
1898  }
1899
1900  // We're going to complain about a bunch of spurious specifiers;
1901  // only do this if we're declaring a tag, because otherwise we
1902  // should be getting diag::ext_no_declarators.
1903  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
1904    return TagD;
1905
1906  // Note that a linkage-specification sets a storage class, but
1907  // 'extern "C" struct foo;' is actually valid and not theoretically
1908  // useless.
1909  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
1910    if (!DS.isExternInLinkageSpec())
1911      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
1912        << DeclSpec::getSpecifierName(scs);
1913
1914  if (DS.isThreadSpecified())
1915    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
1916  if (DS.getTypeQualifiers()) {
1917    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1918      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
1919    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1920      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
1921    // Restrict is covered above.
1922  }
1923  if (DS.isInlineSpecified())
1924    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
1925  if (DS.isVirtualSpecified())
1926    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
1927  if (DS.isExplicitSpecified())
1928    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
1929
1930  // FIXME: Warn on useless attributes
1931
1932  return TagD;
1933}
1934
1935/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1936/// builds a statement for it and returns it so it is evaluated.
1937StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1938  StmtResult R;
1939  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1940    Expr *Exp = DS.getRepAsExpr();
1941    QualType Ty = Exp->getType();
1942    if (Ty->isPointerType()) {
1943      do
1944        Ty = Ty->getAs<PointerType>()->getPointeeType();
1945      while (Ty->isPointerType());
1946    }
1947    if (Ty->isVariableArrayType()) {
1948      R = ActOnExprStmt(MakeFullExpr(Exp));
1949    }
1950  }
1951  return R;
1952}
1953
1954/// We are trying to inject an anonymous member into the given scope;
1955/// check if there's an existing declaration that can't be overloaded.
1956///
1957/// \return true if this is a forbidden redeclaration
1958static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1959                                         Scope *S,
1960                                         DeclContext *Owner,
1961                                         DeclarationName Name,
1962                                         SourceLocation NameLoc,
1963                                         unsigned diagnostic) {
1964  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1965                 Sema::ForRedeclaration);
1966  if (!SemaRef.LookupName(R, S)) return false;
1967
1968  if (R.getAsSingle<TagDecl>())
1969    return false;
1970
1971  // Pick a representative declaration.
1972  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1973  assert(PrevDecl && "Expected a non-null Decl");
1974
1975  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1976    return false;
1977
1978  SemaRef.Diag(NameLoc, diagnostic) << Name;
1979  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1980
1981  return true;
1982}
1983
1984/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1985/// anonymous struct or union AnonRecord into the owning context Owner
1986/// and scope S. This routine will be invoked just after we realize
1987/// that an unnamed union or struct is actually an anonymous union or
1988/// struct, e.g.,
1989///
1990/// @code
1991/// union {
1992///   int i;
1993///   float f;
1994/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1995///    // f into the surrounding scope.x
1996/// @endcode
1997///
1998/// This routine is recursive, injecting the names of nested anonymous
1999/// structs/unions into the owning context and scope as well.
2000static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2001                                                DeclContext *Owner,
2002                                                RecordDecl *AnonRecord,
2003                                                AccessSpecifier AS,
2004                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2005                                                      bool MSAnonStruct) {
2006  unsigned diagKind
2007    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2008                            : diag::err_anonymous_struct_member_redecl;
2009
2010  bool Invalid = false;
2011
2012  // Look every FieldDecl and IndirectFieldDecl with a name.
2013  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2014                               DEnd = AnonRecord->decls_end();
2015       D != DEnd; ++D) {
2016    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2017        cast<NamedDecl>(*D)->getDeclName()) {
2018      ValueDecl *VD = cast<ValueDecl>(*D);
2019      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2020                                       VD->getLocation(), diagKind)) {
2021        // C++ [class.union]p2:
2022        //   The names of the members of an anonymous union shall be
2023        //   distinct from the names of any other entity in the
2024        //   scope in which the anonymous union is declared.
2025        Invalid = true;
2026      } else {
2027        // C++ [class.union]p2:
2028        //   For the purpose of name lookup, after the anonymous union
2029        //   definition, the members of the anonymous union are
2030        //   considered to have been defined in the scope in which the
2031        //   anonymous union is declared.
2032        unsigned OldChainingSize = Chaining.size();
2033        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2034          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2035               PE = IF->chain_end(); PI != PE; ++PI)
2036            Chaining.push_back(*PI);
2037        else
2038          Chaining.push_back(VD);
2039
2040        assert(Chaining.size() >= 2);
2041        NamedDecl **NamedChain =
2042          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2043        for (unsigned i = 0; i < Chaining.size(); i++)
2044          NamedChain[i] = Chaining[i];
2045
2046        IndirectFieldDecl* IndirectField =
2047          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2048                                    VD->getIdentifier(), VD->getType(),
2049                                    NamedChain, Chaining.size());
2050
2051        IndirectField->setAccess(AS);
2052        IndirectField->setImplicit();
2053        SemaRef.PushOnScopeChains(IndirectField, S);
2054
2055        // That includes picking up the appropriate access specifier.
2056        if (AS != AS_none) IndirectField->setAccess(AS);
2057
2058        Chaining.resize(OldChainingSize);
2059      }
2060    }
2061  }
2062
2063  return Invalid;
2064}
2065
2066/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2067/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2068/// illegal input values are mapped to SC_None.
2069static StorageClass
2070StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2071  switch (StorageClassSpec) {
2072  case DeclSpec::SCS_unspecified:    return SC_None;
2073  case DeclSpec::SCS_extern:         return SC_Extern;
2074  case DeclSpec::SCS_static:         return SC_Static;
2075  case DeclSpec::SCS_auto:           return SC_Auto;
2076  case DeclSpec::SCS_register:       return SC_Register;
2077  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2078    // Illegal SCSs map to None: error reporting is up to the caller.
2079  case DeclSpec::SCS_mutable:        // Fall through.
2080  case DeclSpec::SCS_typedef:        return SC_None;
2081  }
2082  llvm_unreachable("unknown storage class specifier");
2083}
2084
2085/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2086/// a StorageClass. Any error reporting is up to the caller:
2087/// illegal input values are mapped to SC_None.
2088static StorageClass
2089StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2090  switch (StorageClassSpec) {
2091  case DeclSpec::SCS_unspecified:    return SC_None;
2092  case DeclSpec::SCS_extern:         return SC_Extern;
2093  case DeclSpec::SCS_static:         return SC_Static;
2094  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2095    // Illegal SCSs map to None: error reporting is up to the caller.
2096  case DeclSpec::SCS_auto:           // Fall through.
2097  case DeclSpec::SCS_mutable:        // Fall through.
2098  case DeclSpec::SCS_register:       // Fall through.
2099  case DeclSpec::SCS_typedef:        return SC_None;
2100  }
2101  llvm_unreachable("unknown storage class specifier");
2102}
2103
2104/// BuildAnonymousStructOrUnion - Handle the declaration of an
2105/// anonymous structure or union. Anonymous unions are a C++ feature
2106/// (C++ [class.union]) and a GNU C extension; anonymous structures
2107/// are a GNU C and GNU C++ extension.
2108Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2109                                             AccessSpecifier AS,
2110                                             RecordDecl *Record) {
2111  DeclContext *Owner = Record->getDeclContext();
2112
2113  // Diagnose whether this anonymous struct/union is an extension.
2114  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2115    Diag(Record->getLocation(), diag::ext_anonymous_union);
2116  else if (!Record->isUnion())
2117    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2118
2119  // C and C++ require different kinds of checks for anonymous
2120  // structs/unions.
2121  bool Invalid = false;
2122  if (getLangOptions().CPlusPlus) {
2123    const char* PrevSpec = 0;
2124    unsigned DiagID;
2125    // C++ [class.union]p3:
2126    //   Anonymous unions declared in a named namespace or in the
2127    //   global namespace shall be declared static.
2128    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2129        (isa<TranslationUnitDecl>(Owner) ||
2130         (isa<NamespaceDecl>(Owner) &&
2131          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2132      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2133      Invalid = true;
2134
2135      // Recover by adding 'static'.
2136      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2137                             PrevSpec, DiagID, getLangOptions());
2138    }
2139    // C++ [class.union]p3:
2140    //   A storage class is not allowed in a declaration of an
2141    //   anonymous union in a class scope.
2142    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2143             isa<RecordDecl>(Owner)) {
2144      Diag(DS.getStorageClassSpecLoc(),
2145           diag::err_anonymous_union_with_storage_spec);
2146      Invalid = true;
2147
2148      // Recover by removing the storage specifier.
2149      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2150                             PrevSpec, DiagID, getLangOptions());
2151    }
2152
2153    // C++ [class.union]p2:
2154    //   The member-specification of an anonymous union shall only
2155    //   define non-static data members. [Note: nested types and
2156    //   functions cannot be declared within an anonymous union. ]
2157    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2158                                 MemEnd = Record->decls_end();
2159         Mem != MemEnd; ++Mem) {
2160      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2161        // C++ [class.union]p3:
2162        //   An anonymous union shall not have private or protected
2163        //   members (clause 11).
2164        assert(FD->getAccess() != AS_none);
2165        if (FD->getAccess() != AS_public) {
2166          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2167            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2168          Invalid = true;
2169        }
2170
2171        if (CheckNontrivialField(FD))
2172          Invalid = true;
2173      } else if ((*Mem)->isImplicit()) {
2174        // Any implicit members are fine.
2175      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2176        // This is a type that showed up in an
2177        // elaborated-type-specifier inside the anonymous struct or
2178        // union, but which actually declares a type outside of the
2179        // anonymous struct or union. It's okay.
2180      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2181        if (!MemRecord->isAnonymousStructOrUnion() &&
2182            MemRecord->getDeclName()) {
2183          // Visual C++ allows type definition in anonymous struct or union.
2184          if (getLangOptions().Microsoft)
2185            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2186              << (int)Record->isUnion();
2187          else {
2188            // This is a nested type declaration.
2189            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2190              << (int)Record->isUnion();
2191            Invalid = true;
2192          }
2193        }
2194      } else if (isa<AccessSpecDecl>(*Mem)) {
2195        // Any access specifier is fine.
2196      } else {
2197        // We have something that isn't a non-static data
2198        // member. Complain about it.
2199        unsigned DK = diag::err_anonymous_record_bad_member;
2200        if (isa<TypeDecl>(*Mem))
2201          DK = diag::err_anonymous_record_with_type;
2202        else if (isa<FunctionDecl>(*Mem))
2203          DK = diag::err_anonymous_record_with_function;
2204        else if (isa<VarDecl>(*Mem))
2205          DK = diag::err_anonymous_record_with_static;
2206
2207        // Visual C++ allows type definition in anonymous struct or union.
2208        if (getLangOptions().Microsoft &&
2209            DK == diag::err_anonymous_record_with_type)
2210          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2211            << (int)Record->isUnion();
2212        else {
2213          Diag((*Mem)->getLocation(), DK)
2214              << (int)Record->isUnion();
2215          Invalid = true;
2216        }
2217      }
2218    }
2219  }
2220
2221  if (!Record->isUnion() && !Owner->isRecord()) {
2222    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2223      << (int)getLangOptions().CPlusPlus;
2224    Invalid = true;
2225  }
2226
2227  // Mock up a declarator.
2228  Declarator Dc(DS, Declarator::TypeNameContext);
2229  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2230  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2231
2232  // Create a declaration for this anonymous struct/union.
2233  NamedDecl *Anon = 0;
2234  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2235    Anon = FieldDecl::Create(Context, OwningClass,
2236                             DS.getSourceRange().getBegin(),
2237                             Record->getLocation(),
2238                             /*IdentifierInfo=*/0,
2239                             Context.getTypeDeclType(Record),
2240                             TInfo,
2241                             /*BitWidth=*/0, /*Mutable=*/false);
2242    Anon->setAccess(AS);
2243    if (getLangOptions().CPlusPlus)
2244      FieldCollector->Add(cast<FieldDecl>(Anon));
2245  } else {
2246    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2247    assert(SCSpec != DeclSpec::SCS_typedef &&
2248           "Parser allowed 'typedef' as storage class VarDecl.");
2249    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2250    if (SCSpec == DeclSpec::SCS_mutable) {
2251      // mutable can only appear on non-static class members, so it's always
2252      // an error here
2253      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2254      Invalid = true;
2255      SC = SC_None;
2256    }
2257    SCSpec = DS.getStorageClassSpecAsWritten();
2258    VarDecl::StorageClass SCAsWritten
2259      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2260
2261    Anon = VarDecl::Create(Context, Owner,
2262                           DS.getSourceRange().getBegin(),
2263                           Record->getLocation(), /*IdentifierInfo=*/0,
2264                           Context.getTypeDeclType(Record),
2265                           TInfo, SC, SCAsWritten);
2266  }
2267  Anon->setImplicit();
2268
2269  // Add the anonymous struct/union object to the current
2270  // context. We'll be referencing this object when we refer to one of
2271  // its members.
2272  Owner->addDecl(Anon);
2273
2274  // Inject the members of the anonymous struct/union into the owning
2275  // context and into the identifier resolver chain for name lookup
2276  // purposes.
2277  llvm::SmallVector<NamedDecl*, 2> Chain;
2278  Chain.push_back(Anon);
2279
2280  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2281                                          Chain, false))
2282    Invalid = true;
2283
2284  // Mark this as an anonymous struct/union type. Note that we do not
2285  // do this until after we have already checked and injected the
2286  // members of this anonymous struct/union type, because otherwise
2287  // the members could be injected twice: once by DeclContext when it
2288  // builds its lookup table, and once by
2289  // InjectAnonymousStructOrUnionMembers.
2290  Record->setAnonymousStructOrUnion(true);
2291
2292  if (Invalid)
2293    Anon->setInvalidDecl();
2294
2295  return Anon;
2296}
2297
2298/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2299/// Microsoft C anonymous structure.
2300/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2301/// Example:
2302///
2303/// struct A { int a; };
2304/// struct B { struct A; int b; };
2305///
2306/// void foo() {
2307///   B var;
2308///   var.a = 3;
2309/// }
2310///
2311Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2312                                           RecordDecl *Record) {
2313
2314  // If there is no Record, get the record via the typedef.
2315  if (!Record)
2316    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2317
2318  // Mock up a declarator.
2319  Declarator Dc(DS, Declarator::TypeNameContext);
2320  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2321  assert(TInfo && "couldn't build declarator info for anonymous struct");
2322
2323  // Create a declaration for this anonymous struct.
2324  NamedDecl* Anon = FieldDecl::Create(Context,
2325                             cast<RecordDecl>(CurContext),
2326                             DS.getSourceRange().getBegin(),
2327                             DS.getSourceRange().getBegin(),
2328                             /*IdentifierInfo=*/0,
2329                             Context.getTypeDeclType(Record),
2330                             TInfo,
2331                             /*BitWidth=*/0, /*Mutable=*/false);
2332  Anon->setImplicit();
2333
2334  // Add the anonymous struct object to the current context.
2335  CurContext->addDecl(Anon);
2336
2337  // Inject the members of the anonymous struct into the current
2338  // context and into the identifier resolver chain for name lookup
2339  // purposes.
2340  llvm::SmallVector<NamedDecl*, 2> Chain;
2341  Chain.push_back(Anon);
2342
2343  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2344                                          Record->getDefinition(),
2345                                          AS_none, Chain, true))
2346    Anon->setInvalidDecl();
2347
2348  return Anon;
2349}
2350
2351/// GetNameForDeclarator - Determine the full declaration name for the
2352/// given Declarator.
2353DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2354  return GetNameFromUnqualifiedId(D.getName());
2355}
2356
2357/// \brief Retrieves the declaration name from a parsed unqualified-id.
2358DeclarationNameInfo
2359Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2360  DeclarationNameInfo NameInfo;
2361  NameInfo.setLoc(Name.StartLocation);
2362
2363  switch (Name.getKind()) {
2364
2365  case UnqualifiedId::IK_Identifier:
2366    NameInfo.setName(Name.Identifier);
2367    NameInfo.setLoc(Name.StartLocation);
2368    return NameInfo;
2369
2370  case UnqualifiedId::IK_OperatorFunctionId:
2371    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2372                                           Name.OperatorFunctionId.Operator));
2373    NameInfo.setLoc(Name.StartLocation);
2374    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2375      = Name.OperatorFunctionId.SymbolLocations[0];
2376    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2377      = Name.EndLocation.getRawEncoding();
2378    return NameInfo;
2379
2380  case UnqualifiedId::IK_LiteralOperatorId:
2381    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2382                                                           Name.Identifier));
2383    NameInfo.setLoc(Name.StartLocation);
2384    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2385    return NameInfo;
2386
2387  case UnqualifiedId::IK_ConversionFunctionId: {
2388    TypeSourceInfo *TInfo;
2389    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2390    if (Ty.isNull())
2391      return DeclarationNameInfo();
2392    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2393                                               Context.getCanonicalType(Ty)));
2394    NameInfo.setLoc(Name.StartLocation);
2395    NameInfo.setNamedTypeInfo(TInfo);
2396    return NameInfo;
2397  }
2398
2399  case UnqualifiedId::IK_ConstructorName: {
2400    TypeSourceInfo *TInfo;
2401    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2402    if (Ty.isNull())
2403      return DeclarationNameInfo();
2404    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2405                                              Context.getCanonicalType(Ty)));
2406    NameInfo.setLoc(Name.StartLocation);
2407    NameInfo.setNamedTypeInfo(TInfo);
2408    return NameInfo;
2409  }
2410
2411  case UnqualifiedId::IK_ConstructorTemplateId: {
2412    // In well-formed code, we can only have a constructor
2413    // template-id that refers to the current context, so go there
2414    // to find the actual type being constructed.
2415    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2416    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2417      return DeclarationNameInfo();
2418
2419    // Determine the type of the class being constructed.
2420    QualType CurClassType = Context.getTypeDeclType(CurClass);
2421
2422    // FIXME: Check two things: that the template-id names the same type as
2423    // CurClassType, and that the template-id does not occur when the name
2424    // was qualified.
2425
2426    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2427                                    Context.getCanonicalType(CurClassType)));
2428    NameInfo.setLoc(Name.StartLocation);
2429    // FIXME: should we retrieve TypeSourceInfo?
2430    NameInfo.setNamedTypeInfo(0);
2431    return NameInfo;
2432  }
2433
2434  case UnqualifiedId::IK_DestructorName: {
2435    TypeSourceInfo *TInfo;
2436    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2437    if (Ty.isNull())
2438      return DeclarationNameInfo();
2439    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2440                                              Context.getCanonicalType(Ty)));
2441    NameInfo.setLoc(Name.StartLocation);
2442    NameInfo.setNamedTypeInfo(TInfo);
2443    return NameInfo;
2444  }
2445
2446  case UnqualifiedId::IK_TemplateId: {
2447    TemplateName TName = Name.TemplateId->Template.get();
2448    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2449    return Context.getNameForTemplate(TName, TNameLoc);
2450  }
2451
2452  } // switch (Name.getKind())
2453
2454  assert(false && "Unknown name kind");
2455  return DeclarationNameInfo();
2456}
2457
2458/// isNearlyMatchingFunction - Determine whether the C++ functions
2459/// Declaration and Definition are "nearly" matching. This heuristic
2460/// is used to improve diagnostics in the case where an out-of-line
2461/// function definition doesn't match any declaration within
2462/// the class or namespace.
2463static bool isNearlyMatchingFunction(ASTContext &Context,
2464                                     FunctionDecl *Declaration,
2465                                     FunctionDecl *Definition) {
2466  if (Declaration->param_size() != Definition->param_size())
2467    return false;
2468  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2469    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2470    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2471
2472    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2473                                        DefParamTy.getNonReferenceType()))
2474      return false;
2475  }
2476
2477  return true;
2478}
2479
2480/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2481/// declarator needs to be rebuilt in the current instantiation.
2482/// Any bits of declarator which appear before the name are valid for
2483/// consideration here.  That's specifically the type in the decl spec
2484/// and the base type in any member-pointer chunks.
2485static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2486                                                    DeclarationName Name) {
2487  // The types we specifically need to rebuild are:
2488  //   - typenames, typeofs, and decltypes
2489  //   - types which will become injected class names
2490  // Of course, we also need to rebuild any type referencing such a
2491  // type.  It's safest to just say "dependent", but we call out a
2492  // few cases here.
2493
2494  DeclSpec &DS = D.getMutableDeclSpec();
2495  switch (DS.getTypeSpecType()) {
2496  case DeclSpec::TST_typename:
2497  case DeclSpec::TST_typeofType:
2498  case DeclSpec::TST_decltype: {
2499    // Grab the type from the parser.
2500    TypeSourceInfo *TSI = 0;
2501    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2502    if (T.isNull() || !T->isDependentType()) break;
2503
2504    // Make sure there's a type source info.  This isn't really much
2505    // of a waste; most dependent types should have type source info
2506    // attached already.
2507    if (!TSI)
2508      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2509
2510    // Rebuild the type in the current instantiation.
2511    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2512    if (!TSI) return true;
2513
2514    // Store the new type back in the decl spec.
2515    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2516    DS.UpdateTypeRep(LocType);
2517    break;
2518  }
2519
2520  case DeclSpec::TST_typeofExpr: {
2521    Expr *E = DS.getRepAsExpr();
2522    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2523    if (Result.isInvalid()) return true;
2524    DS.UpdateExprRep(Result.get());
2525    break;
2526  }
2527
2528  default:
2529    // Nothing to do for these decl specs.
2530    break;
2531  }
2532
2533  // It doesn't matter what order we do this in.
2534  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2535    DeclaratorChunk &Chunk = D.getTypeObject(I);
2536
2537    // The only type information in the declarator which can come
2538    // before the declaration name is the base type of a member
2539    // pointer.
2540    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2541      continue;
2542
2543    // Rebuild the scope specifier in-place.
2544    CXXScopeSpec &SS = Chunk.Mem.Scope();
2545    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2546      return true;
2547  }
2548
2549  return false;
2550}
2551
2552Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2553  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2554}
2555
2556Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2557                             MultiTemplateParamsArg TemplateParamLists,
2558                             bool IsFunctionDefinition) {
2559  // TODO: consider using NameInfo for diagnostic.
2560  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2561  DeclarationName Name = NameInfo.getName();
2562
2563  // All of these full declarators require an identifier.  If it doesn't have
2564  // one, the ParsedFreeStandingDeclSpec action should be used.
2565  if (!Name) {
2566    if (!D.isInvalidType())  // Reject this if we think it is valid.
2567      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2568           diag::err_declarator_need_ident)
2569        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2570    return 0;
2571  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2572    return 0;
2573
2574  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2575  // we find one that is.
2576  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2577         (S->getFlags() & Scope::TemplateParamScope) != 0)
2578    S = S->getParent();
2579
2580  DeclContext *DC = CurContext;
2581  if (D.getCXXScopeSpec().isInvalid())
2582    D.setInvalidType();
2583  else if (D.getCXXScopeSpec().isSet()) {
2584    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2585                                        UPPC_DeclarationQualifier))
2586      return 0;
2587
2588    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2589    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2590    if (!DC) {
2591      // If we could not compute the declaration context, it's because the
2592      // declaration context is dependent but does not refer to a class,
2593      // class template, or class template partial specialization. Complain
2594      // and return early, to avoid the coming semantic disaster.
2595      Diag(D.getIdentifierLoc(),
2596           diag::err_template_qualified_declarator_no_match)
2597        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2598        << D.getCXXScopeSpec().getRange();
2599      return 0;
2600    }
2601
2602    bool IsDependentContext = DC->isDependentContext();
2603
2604    if (!IsDependentContext &&
2605        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2606      return 0;
2607
2608    if (isa<CXXRecordDecl>(DC)) {
2609      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2610        Diag(D.getIdentifierLoc(),
2611             diag::err_member_def_undefined_record)
2612          << Name << DC << D.getCXXScopeSpec().getRange();
2613        D.setInvalidType();
2614      } else if (isa<CXXRecordDecl>(CurContext) &&
2615                 !D.getDeclSpec().isFriendSpecified()) {
2616        // The user provided a superfluous scope specifier inside a class
2617        // definition:
2618        //
2619        // class X {
2620        //   void X::f();
2621        // };
2622        if (CurContext->Equals(DC))
2623          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2624            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2625        else
2626          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2627            << Name << D.getCXXScopeSpec().getRange();
2628
2629        // Pretend that this qualifier was not here.
2630        D.getCXXScopeSpec().clear();
2631      }
2632    }
2633
2634    // Check whether we need to rebuild the type of the given
2635    // declaration in the current instantiation.
2636    if (EnteringContext && IsDependentContext &&
2637        TemplateParamLists.size() != 0) {
2638      ContextRAII SavedContext(*this, DC);
2639      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2640        D.setInvalidType();
2641    }
2642  }
2643
2644  // C++ [class.mem]p13:
2645  //   If T is the name of a class, then each of the following shall have a
2646  //   name different from T:
2647  //     - every static data member of class T;
2648  //     - every member function of class T
2649  //     - every member of class T that is itself a type;
2650  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2651    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2652      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2653        << Name;
2654
2655      // If this is a typedef, we'll end up spewing multiple diagnostics.
2656      // Just return early; it's safer.
2657      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2658        return 0;
2659    }
2660
2661  NamedDecl *New;
2662
2663  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2664  QualType R = TInfo->getType();
2665
2666  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2667                                      UPPC_DeclarationType))
2668    D.setInvalidType();
2669
2670  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2671                        ForRedeclaration);
2672
2673  // See if this is a redefinition of a variable in the same scope.
2674  if (!D.getCXXScopeSpec().isSet()) {
2675    bool IsLinkageLookup = false;
2676
2677    // If the declaration we're planning to build will be a function
2678    // or object with linkage, then look for another declaration with
2679    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2680    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2681      /* Do nothing*/;
2682    else if (R->isFunctionType()) {
2683      if (CurContext->isFunctionOrMethod() ||
2684          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2685        IsLinkageLookup = true;
2686    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2687      IsLinkageLookup = true;
2688    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2689             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2690      IsLinkageLookup = true;
2691
2692    if (IsLinkageLookup)
2693      Previous.clear(LookupRedeclarationWithLinkage);
2694
2695    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2696  } else { // Something like "int foo::x;"
2697    LookupQualifiedName(Previous, DC);
2698
2699    // Don't consider using declarations as previous declarations for
2700    // out-of-line members.
2701    RemoveUsingDecls(Previous);
2702
2703    // C++ 7.3.1.2p2:
2704    // Members (including explicit specializations of templates) of a named
2705    // namespace can also be defined outside that namespace by explicit
2706    // qualification of the name being defined, provided that the entity being
2707    // defined was already declared in the namespace and the definition appears
2708    // after the point of declaration in a namespace that encloses the
2709    // declarations namespace.
2710    //
2711    // Note that we only check the context at this point. We don't yet
2712    // have enough information to make sure that PrevDecl is actually
2713    // the declaration we want to match. For example, given:
2714    //
2715    //   class X {
2716    //     void f();
2717    //     void f(float);
2718    //   };
2719    //
2720    //   void X::f(int) { } // ill-formed
2721    //
2722    // In this case, PrevDecl will point to the overload set
2723    // containing the two f's declared in X, but neither of them
2724    // matches.
2725
2726    // First check whether we named the global scope.
2727    if (isa<TranslationUnitDecl>(DC)) {
2728      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2729        << Name << D.getCXXScopeSpec().getRange();
2730    } else {
2731      DeclContext *Cur = CurContext;
2732      while (isa<LinkageSpecDecl>(Cur))
2733        Cur = Cur->getParent();
2734      if (!Cur->Encloses(DC)) {
2735        // The qualifying scope doesn't enclose the original declaration.
2736        // Emit diagnostic based on current scope.
2737        SourceLocation L = D.getIdentifierLoc();
2738        SourceRange R = D.getCXXScopeSpec().getRange();
2739        if (isa<FunctionDecl>(Cur))
2740          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2741        else
2742          Diag(L, diag::err_invalid_declarator_scope)
2743            << Name << cast<NamedDecl>(DC) << R;
2744        D.setInvalidType();
2745      }
2746    }
2747  }
2748
2749  if (Previous.isSingleResult() &&
2750      Previous.getFoundDecl()->isTemplateParameter()) {
2751    // Maybe we will complain about the shadowed template parameter.
2752    if (!D.isInvalidType())
2753      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2754                                          Previous.getFoundDecl()))
2755        D.setInvalidType();
2756
2757    // Just pretend that we didn't see the previous declaration.
2758    Previous.clear();
2759  }
2760
2761  // In C++, the previous declaration we find might be a tag type
2762  // (class or enum). In this case, the new declaration will hide the
2763  // tag type. Note that this does does not apply if we're declaring a
2764  // typedef (C++ [dcl.typedef]p4).
2765  if (Previous.isSingleTagDecl() &&
2766      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2767    Previous.clear();
2768
2769  bool Redeclaration = false;
2770  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2771    if (TemplateParamLists.size()) {
2772      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2773      return 0;
2774    }
2775
2776    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2777  } else if (R->isFunctionType()) {
2778    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2779                                  move(TemplateParamLists),
2780                                  IsFunctionDefinition, Redeclaration);
2781  } else {
2782    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2783                                  move(TemplateParamLists),
2784                                  Redeclaration);
2785  }
2786
2787  if (New == 0)
2788    return 0;
2789
2790  // If this has an identifier and is not an invalid redeclaration or
2791  // function template specialization, add it to the scope stack.
2792  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2793    PushOnScopeChains(New, S);
2794
2795  return New;
2796}
2797
2798/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2799/// types into constant array types in certain situations which would otherwise
2800/// be errors (for GCC compatibility).
2801static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2802                                                    ASTContext &Context,
2803                                                    bool &SizeIsNegative,
2804                                                    llvm::APSInt &Oversized) {
2805  // This method tries to turn a variable array into a constant
2806  // array even when the size isn't an ICE.  This is necessary
2807  // for compatibility with code that depends on gcc's buggy
2808  // constant expression folding, like struct {char x[(int)(char*)2];}
2809  SizeIsNegative = false;
2810  Oversized = 0;
2811
2812  if (T->isDependentType())
2813    return QualType();
2814
2815  QualifierCollector Qs;
2816  const Type *Ty = Qs.strip(T);
2817
2818  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2819    QualType Pointee = PTy->getPointeeType();
2820    QualType FixedType =
2821        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2822                                            Oversized);
2823    if (FixedType.isNull()) return FixedType;
2824    FixedType = Context.getPointerType(FixedType);
2825    return Qs.apply(Context, FixedType);
2826  }
2827  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2828    QualType Inner = PTy->getInnerType();
2829    QualType FixedType =
2830        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2831                                            Oversized);
2832    if (FixedType.isNull()) return FixedType;
2833    FixedType = Context.getParenType(FixedType);
2834    return Qs.apply(Context, FixedType);
2835  }
2836
2837  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2838  if (!VLATy)
2839    return QualType();
2840  // FIXME: We should probably handle this case
2841  if (VLATy->getElementType()->isVariablyModifiedType())
2842    return QualType();
2843
2844  Expr::EvalResult EvalResult;
2845  if (!VLATy->getSizeExpr() ||
2846      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2847      !EvalResult.Val.isInt())
2848    return QualType();
2849
2850  // Check whether the array size is negative.
2851  llvm::APSInt &Res = EvalResult.Val.getInt();
2852  if (Res.isSigned() && Res.isNegative()) {
2853    SizeIsNegative = true;
2854    return QualType();
2855  }
2856
2857  // Check whether the array is too large to be addressed.
2858  unsigned ActiveSizeBits
2859    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2860                                              Res);
2861  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2862    Oversized = Res;
2863    return QualType();
2864  }
2865
2866  return Context.getConstantArrayType(VLATy->getElementType(),
2867                                      Res, ArrayType::Normal, 0);
2868}
2869
2870/// \brief Register the given locally-scoped external C declaration so
2871/// that it can be found later for redeclarations
2872void
2873Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2874                                       const LookupResult &Previous,
2875                                       Scope *S) {
2876  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2877         "Decl is not a locally-scoped decl!");
2878  // Note that we have a locally-scoped external with this name.
2879  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2880
2881  if (!Previous.isSingleResult())
2882    return;
2883
2884  NamedDecl *PrevDecl = Previous.getFoundDecl();
2885
2886  // If there was a previous declaration of this variable, it may be
2887  // in our identifier chain. Update the identifier chain with the new
2888  // declaration.
2889  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2890    // The previous declaration was found on the identifer resolver
2891    // chain, so remove it from its scope.
2892    while (S && !S->isDeclScope(PrevDecl))
2893      S = S->getParent();
2894
2895    if (S)
2896      S->RemoveDecl(PrevDecl);
2897  }
2898}
2899
2900/// \brief Diagnose function specifiers on a declaration of an identifier that
2901/// does not identify a function.
2902void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2903  // FIXME: We should probably indicate the identifier in question to avoid
2904  // confusion for constructs like "inline int a(), b;"
2905  if (D.getDeclSpec().isInlineSpecified())
2906    Diag(D.getDeclSpec().getInlineSpecLoc(),
2907         diag::err_inline_non_function);
2908
2909  if (D.getDeclSpec().isVirtualSpecified())
2910    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2911         diag::err_virtual_non_function);
2912
2913  if (D.getDeclSpec().isExplicitSpecified())
2914    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2915         diag::err_explicit_non_function);
2916}
2917
2918NamedDecl*
2919Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2920                             QualType R,  TypeSourceInfo *TInfo,
2921                             LookupResult &Previous, bool &Redeclaration) {
2922  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2923  if (D.getCXXScopeSpec().isSet()) {
2924    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2925      << D.getCXXScopeSpec().getRange();
2926    D.setInvalidType();
2927    // Pretend we didn't see the scope specifier.
2928    DC = CurContext;
2929    Previous.clear();
2930  }
2931
2932  if (getLangOptions().CPlusPlus) {
2933    // Check that there are no default arguments (C++ only).
2934    CheckExtraCXXDefaultArguments(D);
2935  }
2936
2937  DiagnoseFunctionSpecifiers(D);
2938
2939  if (D.getDeclSpec().isThreadSpecified())
2940    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2941
2942  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2943    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2944      << D.getName().getSourceRange();
2945    return 0;
2946  }
2947
2948  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2949  if (!NewTD) return 0;
2950
2951  // Handle attributes prior to checking for duplicates in MergeVarDecl
2952  ProcessDeclAttributes(S, NewTD, D);
2953
2954  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2955  // then it shall have block scope.
2956  // Note that variably modified types must be fixed before merging the decl so
2957  // that redeclarations will match.
2958  QualType T = NewTD->getUnderlyingType();
2959  if (T->isVariablyModifiedType()) {
2960    getCurFunction()->setHasBranchProtectedScope();
2961
2962    if (S->getFnParent() == 0) {
2963      bool SizeIsNegative;
2964      llvm::APSInt Oversized;
2965      QualType FixedTy =
2966          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2967                                              Oversized);
2968      if (!FixedTy.isNull()) {
2969        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2970        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2971      } else {
2972        if (SizeIsNegative)
2973          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2974        else if (T->isVariableArrayType())
2975          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2976        else if (Oversized.getBoolValue())
2977          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2978            << Oversized.toString(10);
2979        else
2980          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2981        NewTD->setInvalidDecl();
2982      }
2983    }
2984  }
2985
2986  // Merge the decl with the existing one if appropriate. If the decl is
2987  // in an outer scope, it isn't the same thing.
2988  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2989                       /*ExplicitInstantiationOrSpecialization=*/false);
2990  if (!Previous.empty()) {
2991    Redeclaration = true;
2992    MergeTypeDefDecl(NewTD, Previous);
2993  }
2994
2995  // If this is the C FILE type, notify the AST context.
2996  if (IdentifierInfo *II = NewTD->getIdentifier())
2997    if (!NewTD->isInvalidDecl() &&
2998        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2999      if (II->isStr("FILE"))
3000        Context.setFILEDecl(NewTD);
3001      else if (II->isStr("jmp_buf"))
3002        Context.setjmp_bufDecl(NewTD);
3003      else if (II->isStr("sigjmp_buf"))
3004        Context.setsigjmp_bufDecl(NewTD);
3005      else if (II->isStr("__builtin_va_list"))
3006        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3007    }
3008
3009  return NewTD;
3010}
3011
3012/// \brief Determines whether the given declaration is an out-of-scope
3013/// previous declaration.
3014///
3015/// This routine should be invoked when name lookup has found a
3016/// previous declaration (PrevDecl) that is not in the scope where a
3017/// new declaration by the same name is being introduced. If the new
3018/// declaration occurs in a local scope, previous declarations with
3019/// linkage may still be considered previous declarations (C99
3020/// 6.2.2p4-5, C++ [basic.link]p6).
3021///
3022/// \param PrevDecl the previous declaration found by name
3023/// lookup
3024///
3025/// \param DC the context in which the new declaration is being
3026/// declared.
3027///
3028/// \returns true if PrevDecl is an out-of-scope previous declaration
3029/// for a new delcaration with the same name.
3030static bool
3031isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3032                                ASTContext &Context) {
3033  if (!PrevDecl)
3034    return false;
3035
3036  if (!PrevDecl->hasLinkage())
3037    return false;
3038
3039  if (Context.getLangOptions().CPlusPlus) {
3040    // C++ [basic.link]p6:
3041    //   If there is a visible declaration of an entity with linkage
3042    //   having the same name and type, ignoring entities declared
3043    //   outside the innermost enclosing namespace scope, the block
3044    //   scope declaration declares that same entity and receives the
3045    //   linkage of the previous declaration.
3046    DeclContext *OuterContext = DC->getRedeclContext();
3047    if (!OuterContext->isFunctionOrMethod())
3048      // This rule only applies to block-scope declarations.
3049      return false;
3050
3051    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3052    if (PrevOuterContext->isRecord())
3053      // We found a member function: ignore it.
3054      return false;
3055
3056    // Find the innermost enclosing namespace for the new and
3057    // previous declarations.
3058    OuterContext = OuterContext->getEnclosingNamespaceContext();
3059    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3060
3061    // The previous declaration is in a different namespace, so it
3062    // isn't the same function.
3063    if (!OuterContext->Equals(PrevOuterContext))
3064      return false;
3065  }
3066
3067  return true;
3068}
3069
3070static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3071  CXXScopeSpec &SS = D.getCXXScopeSpec();
3072  if (!SS.isSet()) return;
3073  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3074}
3075
3076NamedDecl*
3077Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3078                              QualType R, TypeSourceInfo *TInfo,
3079                              LookupResult &Previous,
3080                              MultiTemplateParamsArg TemplateParamLists,
3081                              bool &Redeclaration) {
3082  DeclarationName Name = GetNameForDeclarator(D).getName();
3083
3084  // Check that there are no default arguments (C++ only).
3085  if (getLangOptions().CPlusPlus)
3086    CheckExtraCXXDefaultArguments(D);
3087
3088  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3089  assert(SCSpec != DeclSpec::SCS_typedef &&
3090         "Parser allowed 'typedef' as storage class VarDecl.");
3091  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3092  if (SCSpec == DeclSpec::SCS_mutable) {
3093    // mutable can only appear on non-static class members, so it's always
3094    // an error here
3095    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3096    D.setInvalidType();
3097    SC = SC_None;
3098  }
3099  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3100  VarDecl::StorageClass SCAsWritten
3101    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3102
3103  IdentifierInfo *II = Name.getAsIdentifierInfo();
3104  if (!II) {
3105    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3106      << Name.getAsString();
3107    return 0;
3108  }
3109
3110  DiagnoseFunctionSpecifiers(D);
3111
3112  if (!DC->isRecord() && S->getFnParent() == 0) {
3113    // C99 6.9p2: The storage-class specifiers auto and register shall not
3114    // appear in the declaration specifiers in an external declaration.
3115    if (SC == SC_Auto || SC == SC_Register) {
3116
3117      // If this is a register variable with an asm label specified, then this
3118      // is a GNU extension.
3119      if (SC == SC_Register && D.getAsmLabel())
3120        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3121      else
3122        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3123      D.setInvalidType();
3124    }
3125  }
3126
3127  bool isExplicitSpecialization = false;
3128  VarDecl *NewVD;
3129  if (!getLangOptions().CPlusPlus) {
3130    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3131                            D.getIdentifierLoc(), II,
3132                            R, TInfo, SC, SCAsWritten);
3133
3134    if (D.isInvalidType())
3135      NewVD->setInvalidDecl();
3136  } else {
3137    if (DC->isRecord() && !CurContext->isRecord()) {
3138      // This is an out-of-line definition of a static data member.
3139      if (SC == SC_Static) {
3140        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3141             diag::err_static_out_of_line)
3142          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3143      } else if (SC == SC_None)
3144        SC = SC_Static;
3145    }
3146    if (SC == SC_Static) {
3147      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3148        if (RD->isLocalClass())
3149          Diag(D.getIdentifierLoc(),
3150               diag::err_static_data_member_not_allowed_in_local_class)
3151            << Name << RD->getDeclName();
3152
3153        // C++ [class.union]p1: If a union contains a static data member,
3154        // the program is ill-formed.
3155        //
3156        // We also disallow static data members in anonymous structs.
3157        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3158          Diag(D.getIdentifierLoc(),
3159               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3160            << Name << RD->isUnion();
3161      }
3162    }
3163
3164    // Match up the template parameter lists with the scope specifier, then
3165    // determine whether we have a template or a template specialization.
3166    isExplicitSpecialization = false;
3167    bool Invalid = false;
3168    if (TemplateParameterList *TemplateParams
3169        = MatchTemplateParametersToScopeSpecifier(
3170                                                  D.getDeclSpec().getSourceRange().getBegin(),
3171                                                  D.getCXXScopeSpec(),
3172                                                  TemplateParamLists.get(),
3173                                                  TemplateParamLists.size(),
3174                                                  /*never a friend*/ false,
3175                                                  isExplicitSpecialization,
3176                                                  Invalid)) {
3177      if (TemplateParams->size() > 0) {
3178        // There is no such thing as a variable template.
3179        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3180          << II
3181          << SourceRange(TemplateParams->getTemplateLoc(),
3182                         TemplateParams->getRAngleLoc());
3183        return 0;
3184      } else {
3185        // There is an extraneous 'template<>' for this variable. Complain
3186        // about it, but allow the declaration of the variable.
3187        Diag(TemplateParams->getTemplateLoc(),
3188             diag::err_template_variable_noparams)
3189          << II
3190          << SourceRange(TemplateParams->getTemplateLoc(),
3191                         TemplateParams->getRAngleLoc());
3192        isExplicitSpecialization = true;
3193      }
3194    }
3195
3196    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3197                            D.getIdentifierLoc(), II,
3198                            R, TInfo, SC, SCAsWritten);
3199
3200    // If this decl has an auto type in need of deduction, make a note of the
3201    // Decl so we can diagnose uses of it in its own initializer.
3202    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3203        R->getContainedAutoType())
3204      ParsingInitForAutoVars.insert(NewVD);
3205
3206    if (D.isInvalidType() || Invalid)
3207      NewVD->setInvalidDecl();
3208
3209    SetNestedNameSpecifier(NewVD, D);
3210
3211    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3212      NewVD->setTemplateParameterListsInfo(Context,
3213                                           TemplateParamLists.size(),
3214                                           TemplateParamLists.release());
3215    }
3216  }
3217
3218  if (D.getDeclSpec().isThreadSpecified()) {
3219    if (NewVD->hasLocalStorage())
3220      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3221    else if (!Context.Target.isTLSSupported())
3222      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3223    else
3224      NewVD->setThreadSpecified(true);
3225  }
3226
3227  // Set the lexical context. If the declarator has a C++ scope specifier, the
3228  // lexical context will be different from the semantic context.
3229  NewVD->setLexicalDeclContext(CurContext);
3230
3231  // Handle attributes prior to checking for duplicates in MergeVarDecl
3232  ProcessDeclAttributes(S, NewVD, D);
3233
3234  // Handle GNU asm-label extension (encoded as an attribute).
3235  if (Expr *E = (Expr*)D.getAsmLabel()) {
3236    // The parser guarantees this is a string.
3237    StringLiteral *SE = cast<StringLiteral>(E);
3238    llvm::StringRef Label = SE->getString();
3239    if (S->getFnParent() != 0) {
3240      switch (SC) {
3241      case SC_None:
3242      case SC_Auto:
3243        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3244        break;
3245      case SC_Register:
3246        if (!Context.Target.isValidGCCRegisterName(Label))
3247          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3248        break;
3249      case SC_Static:
3250      case SC_Extern:
3251      case SC_PrivateExtern:
3252        break;
3253      }
3254    }
3255
3256    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3257                                                Context, Label));
3258  }
3259
3260  // Diagnose shadowed variables before filtering for scope.
3261  if (!D.getCXXScopeSpec().isSet())
3262    CheckShadow(S, NewVD, Previous);
3263
3264  // Don't consider existing declarations that are in a different
3265  // scope and are out-of-semantic-context declarations (if the new
3266  // declaration has linkage).
3267  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3268                       isExplicitSpecialization);
3269
3270  if (!getLangOptions().CPlusPlus)
3271    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3272  else {
3273    // Merge the decl with the existing one if appropriate.
3274    if (!Previous.empty()) {
3275      if (Previous.isSingleResult() &&
3276          isa<FieldDecl>(Previous.getFoundDecl()) &&
3277          D.getCXXScopeSpec().isSet()) {
3278        // The user tried to define a non-static data member
3279        // out-of-line (C++ [dcl.meaning]p1).
3280        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3281          << D.getCXXScopeSpec().getRange();
3282        Previous.clear();
3283        NewVD->setInvalidDecl();
3284      }
3285    } else if (D.getCXXScopeSpec().isSet()) {
3286      // No previous declaration in the qualifying scope.
3287      Diag(D.getIdentifierLoc(), diag::err_no_member)
3288        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3289        << D.getCXXScopeSpec().getRange();
3290      NewVD->setInvalidDecl();
3291    }
3292
3293    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3294
3295    // This is an explicit specialization of a static data member. Check it.
3296    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3297        CheckMemberSpecialization(NewVD, Previous))
3298      NewVD->setInvalidDecl();
3299  }
3300
3301  // attributes declared post-definition are currently ignored
3302  // FIXME: This should be handled in attribute merging, not
3303  // here.
3304  if (Previous.isSingleResult()) {
3305    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3306    if (Def && (Def = Def->getDefinition()) &&
3307        Def != NewVD && D.hasAttributes()) {
3308      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3309      Diag(Def->getLocation(), diag::note_previous_definition);
3310    }
3311  }
3312
3313  // If this is a locally-scoped extern C variable, update the map of
3314  // such variables.
3315  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3316      !NewVD->isInvalidDecl())
3317    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3318
3319  // If there's a #pragma GCC visibility in scope, and this isn't a class
3320  // member, set the visibility of this variable.
3321  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3322    AddPushedVisibilityAttribute(NewVD);
3323
3324  MarkUnusedFileScopedDecl(NewVD);
3325
3326  return NewVD;
3327}
3328
3329/// \brief Diagnose variable or built-in function shadowing.  Implements
3330/// -Wshadow.
3331///
3332/// This method is called whenever a VarDecl is added to a "useful"
3333/// scope.
3334///
3335/// \param S the scope in which the shadowing name is being declared
3336/// \param R the lookup of the name
3337///
3338void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3339  // Return if warning is ignored.
3340  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3341        Diagnostic::Ignored)
3342    return;
3343
3344  // Don't diagnose declarations at file scope.
3345  DeclContext *NewDC = D->getDeclContext();
3346  if (NewDC->isFileContext())
3347    return;
3348
3349  // Only diagnose if we're shadowing an unambiguous field or variable.
3350  if (R.getResultKind() != LookupResult::Found)
3351    return;
3352
3353  NamedDecl* ShadowedDecl = R.getFoundDecl();
3354  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3355    return;
3356
3357  // Fields are not shadowed by variables in C++ static methods.
3358  if (isa<FieldDecl>(ShadowedDecl))
3359    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3360      if (MD->isStatic())
3361        return;
3362
3363  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3364    if (shadowedVar->isExternC()) {
3365      // Don't warn for this case:
3366      //
3367      // @code
3368      // extern int bob;
3369      // void f() {
3370      //   extern int bob;
3371      // }
3372      // @endcode
3373      if (D->isExternC())
3374        return;
3375
3376      // For shadowing external vars, make sure that we point to the global
3377      // declaration, not a locally scoped extern declaration.
3378      for (VarDecl::redecl_iterator
3379             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3380           I != E; ++I)
3381        if (I->isFileVarDecl()) {
3382          ShadowedDecl = *I;
3383          break;
3384        }
3385    }
3386
3387  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3388
3389  // Only warn about certain kinds of shadowing for class members.
3390  if (NewDC && NewDC->isRecord()) {
3391    // In particular, don't warn about shadowing non-class members.
3392    if (!OldDC->isRecord())
3393      return;
3394
3395    // TODO: should we warn about static data members shadowing
3396    // static data members from base classes?
3397
3398    // TODO: don't diagnose for inaccessible shadowed members.
3399    // This is hard to do perfectly because we might friend the
3400    // shadowing context, but that's just a false negative.
3401  }
3402
3403  // Determine what kind of declaration we're shadowing.
3404  unsigned Kind;
3405  if (isa<RecordDecl>(OldDC)) {
3406    if (isa<FieldDecl>(ShadowedDecl))
3407      Kind = 3; // field
3408    else
3409      Kind = 2; // static data member
3410  } else if (OldDC->isFileContext())
3411    Kind = 1; // global
3412  else
3413    Kind = 0; // local
3414
3415  DeclarationName Name = R.getLookupName();
3416
3417  // Emit warning and note.
3418  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3419  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3420}
3421
3422/// \brief Check -Wshadow without the advantage of a previous lookup.
3423void Sema::CheckShadow(Scope *S, VarDecl *D) {
3424  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3425        Diagnostic::Ignored)
3426    return;
3427
3428  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3429                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3430  LookupName(R, S);
3431  CheckShadow(S, D, R);
3432}
3433
3434/// \brief Perform semantic checking on a newly-created variable
3435/// declaration.
3436///
3437/// This routine performs all of the type-checking required for a
3438/// variable declaration once it has been built. It is used both to
3439/// check variables after they have been parsed and their declarators
3440/// have been translated into a declaration, and to check variables
3441/// that have been instantiated from a template.
3442///
3443/// Sets NewVD->isInvalidDecl() if an error was encountered.
3444void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3445                                    LookupResult &Previous,
3446                                    bool &Redeclaration) {
3447  // If the decl is already known invalid, don't check it.
3448  if (NewVD->isInvalidDecl())
3449    return;
3450
3451  QualType T = NewVD->getType();
3452
3453  if (T->isObjCObjectType()) {
3454    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3455    return NewVD->setInvalidDecl();
3456  }
3457
3458  // Emit an error if an address space was applied to decl with local storage.
3459  // This includes arrays of objects with address space qualifiers, but not
3460  // automatic variables that point to other address spaces.
3461  // ISO/IEC TR 18037 S5.1.2
3462  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3463    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3464    return NewVD->setInvalidDecl();
3465  }
3466
3467  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3468      && !NewVD->hasAttr<BlocksAttr>())
3469    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3470
3471  bool isVM = T->isVariablyModifiedType();
3472  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3473      NewVD->hasAttr<BlocksAttr>())
3474    getCurFunction()->setHasBranchProtectedScope();
3475
3476  if ((isVM && NewVD->hasLinkage()) ||
3477      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3478    bool SizeIsNegative;
3479    llvm::APSInt Oversized;
3480    QualType FixedTy =
3481        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3482                                            Oversized);
3483
3484    if (FixedTy.isNull() && T->isVariableArrayType()) {
3485      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3486      // FIXME: This won't give the correct result for
3487      // int a[10][n];
3488      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3489
3490      if (NewVD->isFileVarDecl())
3491        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3492        << SizeRange;
3493      else if (NewVD->getStorageClass() == SC_Static)
3494        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3495        << SizeRange;
3496      else
3497        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3498        << SizeRange;
3499      return NewVD->setInvalidDecl();
3500    }
3501
3502    if (FixedTy.isNull()) {
3503      if (NewVD->isFileVarDecl())
3504        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3505      else
3506        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3507      return NewVD->setInvalidDecl();
3508    }
3509
3510    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3511    NewVD->setType(FixedTy);
3512  }
3513
3514  if (Previous.empty() && NewVD->isExternC()) {
3515    // Since we did not find anything by this name and we're declaring
3516    // an extern "C" variable, look for a non-visible extern "C"
3517    // declaration with the same name.
3518    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3519      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3520    if (Pos != LocallyScopedExternalDecls.end())
3521      Previous.addDecl(Pos->second);
3522  }
3523
3524  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3525    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3526      << T;
3527    return NewVD->setInvalidDecl();
3528  }
3529
3530  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3531    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3532    return NewVD->setInvalidDecl();
3533  }
3534
3535  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3536    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3537    return NewVD->setInvalidDecl();
3538  }
3539
3540  // Function pointers and references cannot have qualified function type, only
3541  // function pointer-to-members can do that.
3542  QualType Pointee;
3543  unsigned PtrOrRef = 0;
3544  if (const PointerType *Ptr = T->getAs<PointerType>())
3545    Pointee = Ptr->getPointeeType();
3546  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3547    Pointee = Ref->getPointeeType();
3548    PtrOrRef = 1;
3549  }
3550  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3551      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3552    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3553        << PtrOrRef;
3554    return NewVD->setInvalidDecl();
3555  }
3556
3557  if (!Previous.empty()) {
3558    Redeclaration = true;
3559    MergeVarDecl(NewVD, Previous);
3560  }
3561}
3562
3563/// \brief Data used with FindOverriddenMethod
3564struct FindOverriddenMethodData {
3565  Sema *S;
3566  CXXMethodDecl *Method;
3567};
3568
3569/// \brief Member lookup function that determines whether a given C++
3570/// method overrides a method in a base class, to be used with
3571/// CXXRecordDecl::lookupInBases().
3572static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3573                                 CXXBasePath &Path,
3574                                 void *UserData) {
3575  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3576
3577  FindOverriddenMethodData *Data
3578    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3579
3580  DeclarationName Name = Data->Method->getDeclName();
3581
3582  // FIXME: Do we care about other names here too?
3583  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3584    // We really want to find the base class destructor here.
3585    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3586    CanQualType CT = Data->S->Context.getCanonicalType(T);
3587
3588    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3589  }
3590
3591  for (Path.Decls = BaseRecord->lookup(Name);
3592       Path.Decls.first != Path.Decls.second;
3593       ++Path.Decls.first) {
3594    NamedDecl *D = *Path.Decls.first;
3595    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3596      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3597        return true;
3598    }
3599  }
3600
3601  return false;
3602}
3603
3604/// AddOverriddenMethods - See if a method overrides any in the base classes,
3605/// and if so, check that it's a valid override and remember it.
3606bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3607  // Look for virtual methods in base classes that this method might override.
3608  CXXBasePaths Paths;
3609  FindOverriddenMethodData Data;
3610  Data.Method = MD;
3611  Data.S = this;
3612  bool AddedAny = false;
3613  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3614    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3615         E = Paths.found_decls_end(); I != E; ++I) {
3616      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3617        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3618            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3619            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3620          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3621          AddedAny = true;
3622        }
3623      }
3624    }
3625  }
3626
3627  return AddedAny;
3628}
3629
3630static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3631  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3632                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3633  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3634  assert(!Prev.isAmbiguous() &&
3635         "Cannot have an ambiguity in previous-declaration lookup");
3636  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3637       Func != FuncEnd; ++Func) {
3638    if (isa<FunctionDecl>(*Func) &&
3639        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3640      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3641  }
3642}
3643
3644NamedDecl*
3645Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3646                              QualType R, TypeSourceInfo *TInfo,
3647                              LookupResult &Previous,
3648                              MultiTemplateParamsArg TemplateParamLists,
3649                              bool IsFunctionDefinition, bool &Redeclaration) {
3650  assert(R.getTypePtr()->isFunctionType());
3651
3652  // TODO: consider using NameInfo for diagnostic.
3653  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3654  DeclarationName Name = NameInfo.getName();
3655  FunctionDecl::StorageClass SC = SC_None;
3656  switch (D.getDeclSpec().getStorageClassSpec()) {
3657  default: assert(0 && "Unknown storage class!");
3658  case DeclSpec::SCS_auto:
3659  case DeclSpec::SCS_register:
3660  case DeclSpec::SCS_mutable:
3661    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3662         diag::err_typecheck_sclass_func);
3663    D.setInvalidType();
3664    break;
3665  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3666  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3667  case DeclSpec::SCS_static: {
3668    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3669      // C99 6.7.1p5:
3670      //   The declaration of an identifier for a function that has
3671      //   block scope shall have no explicit storage-class specifier
3672      //   other than extern
3673      // See also (C++ [dcl.stc]p4).
3674      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3675           diag::err_static_block_func);
3676      SC = SC_None;
3677    } else
3678      SC = SC_Static;
3679    break;
3680  }
3681  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3682  }
3683
3684  if (D.getDeclSpec().isThreadSpecified())
3685    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3686
3687  // Do not allow returning a objc interface by-value.
3688  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3689    Diag(D.getIdentifierLoc(),
3690         diag::err_object_cannot_be_passed_returned_by_value) << 0
3691    << R->getAs<FunctionType>()->getResultType();
3692    D.setInvalidType();
3693  }
3694
3695  FunctionDecl *NewFD;
3696  bool isInline = D.getDeclSpec().isInlineSpecified();
3697  bool isFriend = false;
3698  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3699  FunctionDecl::StorageClass SCAsWritten
3700    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3701  FunctionTemplateDecl *FunctionTemplate = 0;
3702  bool isExplicitSpecialization = false;
3703  bool isFunctionTemplateSpecialization = false;
3704
3705  if (!getLangOptions().CPlusPlus) {
3706    // Determine whether the function was written with a
3707    // prototype. This true when:
3708    //   - there is a prototype in the declarator, or
3709    //   - the type R of the function is some kind of typedef or other reference
3710    //     to a type name (which eventually refers to a function type).
3711    bool HasPrototype =
3712    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3713    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3714
3715    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3716                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3717                                 HasPrototype);
3718    if (D.isInvalidType())
3719      NewFD->setInvalidDecl();
3720
3721    // Set the lexical context.
3722    NewFD->setLexicalDeclContext(CurContext);
3723    // Filter out previous declarations that don't match the scope.
3724    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3725                         /*ExplicitInstantiationOrSpecialization=*/false);
3726  } else {
3727    isFriend = D.getDeclSpec().isFriendSpecified();
3728    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3729    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3730    bool isVirtualOkay = false;
3731
3732    // Check that the return type is not an abstract class type.
3733    // For record types, this is done by the AbstractClassUsageDiagnoser once
3734    // the class has been completely parsed.
3735    if (!DC->isRecord() &&
3736      RequireNonAbstractType(D.getIdentifierLoc(),
3737                             R->getAs<FunctionType>()->getResultType(),
3738                             diag::err_abstract_type_in_decl,
3739                             AbstractReturnType))
3740      D.setInvalidType();
3741
3742    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3743      // This is a C++ constructor declaration.
3744      assert(DC->isRecord() &&
3745             "Constructors can only be declared in a member context");
3746
3747      R = CheckConstructorDeclarator(D, R, SC);
3748
3749      // Create the new declaration
3750      NewFD = CXXConstructorDecl::Create(Context,
3751                                         cast<CXXRecordDecl>(DC),
3752                                         D.getSourceRange().getBegin(),
3753                                         NameInfo, R, TInfo,
3754                                         isExplicit, isInline,
3755                                         /*isImplicitlyDeclared=*/false);
3756    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3757      // This is a C++ destructor declaration.
3758      if (DC->isRecord()) {
3759        R = CheckDestructorDeclarator(D, R, SC);
3760
3761        NewFD = CXXDestructorDecl::Create(Context,
3762                                          cast<CXXRecordDecl>(DC),
3763                                          D.getSourceRange().getBegin(),
3764                                          NameInfo, R, TInfo,
3765                                          isInline,
3766                                          /*isImplicitlyDeclared=*/false);
3767        isVirtualOkay = true;
3768      } else {
3769        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3770
3771        // Create a FunctionDecl to satisfy the function definition parsing
3772        // code path.
3773        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3774                                     D.getIdentifierLoc(), Name, R, TInfo,
3775                                     SC, SCAsWritten, isInline,
3776                                     /*hasPrototype=*/true);
3777        D.setInvalidType();
3778      }
3779    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3780      if (!DC->isRecord()) {
3781        Diag(D.getIdentifierLoc(),
3782             diag::err_conv_function_not_member);
3783        return 0;
3784      }
3785
3786      CheckConversionDeclarator(D, R, SC);
3787      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3788                                        D.getSourceRange().getBegin(),
3789                                        NameInfo, R, TInfo,
3790                                        isInline, isExplicit,
3791                                        SourceLocation());
3792
3793      isVirtualOkay = true;
3794    } else if (DC->isRecord()) {
3795      // If the of the function is the same as the name of the record, then this
3796      // must be an invalid constructor that has a return type.
3797      // (The parser checks for a return type and makes the declarator a
3798      // constructor if it has no return type).
3799      // must have an invalid constructor that has a return type
3800      if (Name.getAsIdentifierInfo() &&
3801          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3802        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3803          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3804          << SourceRange(D.getIdentifierLoc());
3805        return 0;
3806      }
3807
3808      bool isStatic = SC == SC_Static;
3809
3810      // [class.free]p1:
3811      // Any allocation function for a class T is a static member
3812      // (even if not explicitly declared static).
3813      if (Name.getCXXOverloadedOperator() == OO_New ||
3814          Name.getCXXOverloadedOperator() == OO_Array_New)
3815        isStatic = true;
3816
3817      // [class.free]p6 Any deallocation function for a class X is a static member
3818      // (even if not explicitly declared static).
3819      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3820          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3821        isStatic = true;
3822
3823      // This is a C++ method declaration.
3824      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3825                                    D.getSourceRange().getBegin(),
3826                                    NameInfo, R, TInfo,
3827                                    isStatic, SCAsWritten, isInline,
3828                                    SourceLocation());
3829
3830      isVirtualOkay = !isStatic;
3831    } else {
3832      // Determine whether the function was written with a
3833      // prototype. This true when:
3834      //   - we're in C++ (where every function has a prototype),
3835      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3836                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3837                                   true/*HasPrototype*/);
3838    }
3839
3840    if (isFriend && !isInline && IsFunctionDefinition) {
3841      // C++ [class.friend]p5
3842      //   A function can be defined in a friend declaration of a
3843      //   class . . . . Such a function is implicitly inline.
3844      NewFD->setImplicitlyInline();
3845    }
3846
3847    SetNestedNameSpecifier(NewFD, D);
3848    isExplicitSpecialization = false;
3849    isFunctionTemplateSpecialization = false;
3850    if (D.isInvalidType())
3851      NewFD->setInvalidDecl();
3852
3853    // Set the lexical context. If the declarator has a C++
3854    // scope specifier, or is the object of a friend declaration, the
3855    // lexical context will be different from the semantic context.
3856    NewFD->setLexicalDeclContext(CurContext);
3857
3858    // Match up the template parameter lists with the scope specifier, then
3859    // determine whether we have a template or a template specialization.
3860    bool Invalid = false;
3861    if (TemplateParameterList *TemplateParams
3862          = MatchTemplateParametersToScopeSpecifier(
3863                                  D.getDeclSpec().getSourceRange().getBegin(),
3864                                  D.getCXXScopeSpec(),
3865                                  TemplateParamLists.get(),
3866                                  TemplateParamLists.size(),
3867                                  isFriend,
3868                                  isExplicitSpecialization,
3869                                  Invalid)) {
3870      if (TemplateParams->size() > 0) {
3871        // This is a function template
3872
3873        // Check that we can declare a template here.
3874        if (CheckTemplateDeclScope(S, TemplateParams))
3875          return 0;
3876
3877        // A destructor cannot be a template.
3878        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3879          Diag(NewFD->getLocation(), diag::err_destructor_template);
3880          return 0;
3881        }
3882
3883        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3884                                                        NewFD->getLocation(),
3885                                                        Name, TemplateParams,
3886                                                        NewFD);
3887        FunctionTemplate->setLexicalDeclContext(CurContext);
3888        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3889
3890        // For source fidelity, store the other template param lists.
3891        if (TemplateParamLists.size() > 1) {
3892          NewFD->setTemplateParameterListsInfo(Context,
3893                                               TemplateParamLists.size() - 1,
3894                                               TemplateParamLists.release());
3895        }
3896      } else {
3897        // This is a function template specialization.
3898        isFunctionTemplateSpecialization = true;
3899        // For source fidelity, store all the template param lists.
3900        NewFD->setTemplateParameterListsInfo(Context,
3901                                             TemplateParamLists.size(),
3902                                             TemplateParamLists.release());
3903
3904        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3905        if (isFriend) {
3906          // We want to remove the "template<>", found here.
3907          SourceRange RemoveRange = TemplateParams->getSourceRange();
3908
3909          // If we remove the template<> and the name is not a
3910          // template-id, we're actually silently creating a problem:
3911          // the friend declaration will refer to an untemplated decl,
3912          // and clearly the user wants a template specialization.  So
3913          // we need to insert '<>' after the name.
3914          SourceLocation InsertLoc;
3915          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3916            InsertLoc = D.getName().getSourceRange().getEnd();
3917            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3918          }
3919
3920          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3921            << Name << RemoveRange
3922            << FixItHint::CreateRemoval(RemoveRange)
3923            << FixItHint::CreateInsertion(InsertLoc, "<>");
3924        }
3925      }
3926    }
3927    else {
3928      // All template param lists were matched against the scope specifier:
3929      // this is NOT (an explicit specialization of) a template.
3930      if (TemplateParamLists.size() > 0)
3931        // For source fidelity, store all the template param lists.
3932        NewFD->setTemplateParameterListsInfo(Context,
3933                                             TemplateParamLists.size(),
3934                                             TemplateParamLists.release());
3935    }
3936
3937    if (Invalid) {
3938      NewFD->setInvalidDecl();
3939      if (FunctionTemplate)
3940        FunctionTemplate->setInvalidDecl();
3941    }
3942
3943    // C++ [dcl.fct.spec]p5:
3944    //   The virtual specifier shall only be used in declarations of
3945    //   nonstatic class member functions that appear within a
3946    //   member-specification of a class declaration; see 10.3.
3947    //
3948    if (isVirtual && !NewFD->isInvalidDecl()) {
3949      if (!isVirtualOkay) {
3950        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3951             diag::err_virtual_non_function);
3952      } else if (!CurContext->isRecord()) {
3953        // 'virtual' was specified outside of the class.
3954        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3955             diag::err_virtual_out_of_class)
3956          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3957      } else if (NewFD->getDescribedFunctionTemplate()) {
3958        // C++ [temp.mem]p3:
3959        //  A member function template shall not be virtual.
3960        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3961             diag::err_virtual_member_function_template)
3962          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3963      } else {
3964        // Okay: Add virtual to the method.
3965        NewFD->setVirtualAsWritten(true);
3966      }
3967    }
3968
3969    // C++ [dcl.fct.spec]p3:
3970    //  The inline specifier shall not appear on a block scope function declaration.
3971    if (isInline && !NewFD->isInvalidDecl()) {
3972      if (CurContext->isFunctionOrMethod()) {
3973        // 'inline' is not allowed on block scope function declaration.
3974        Diag(D.getDeclSpec().getInlineSpecLoc(),
3975             diag::err_inline_declaration_block_scope) << Name
3976          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3977      }
3978    }
3979
3980    // C++ [dcl.fct.spec]p6:
3981    //  The explicit specifier shall be used only in the declaration of a
3982    //  constructor or conversion function within its class definition; see 12.3.1
3983    //  and 12.3.2.
3984    if (isExplicit && !NewFD->isInvalidDecl()) {
3985      if (!CurContext->isRecord()) {
3986        // 'explicit' was specified outside of the class.
3987        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3988             diag::err_explicit_out_of_class)
3989          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3990      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3991                 !isa<CXXConversionDecl>(NewFD)) {
3992        // 'explicit' was specified on a function that wasn't a constructor
3993        // or conversion function.
3994        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3995             diag::err_explicit_non_ctor_or_conv_function)
3996          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3997      }
3998    }
3999
4000    // Filter out previous declarations that don't match the scope.
4001    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4002                         isExplicitSpecialization ||
4003                         isFunctionTemplateSpecialization);
4004
4005    if (isFriend) {
4006      // For now, claim that the objects have no previous declaration.
4007      if (FunctionTemplate) {
4008        FunctionTemplate->setObjectOfFriendDecl(false);
4009        FunctionTemplate->setAccess(AS_public);
4010      }
4011      NewFD->setObjectOfFriendDecl(false);
4012      NewFD->setAccess(AS_public);
4013    }
4014
4015    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4016      // A method is implicitly inline if it's defined in its class
4017      // definition.
4018      NewFD->setImplicitlyInline();
4019    }
4020
4021    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4022        !CurContext->isRecord()) {
4023      // C++ [class.static]p1:
4024      //   A data or function member of a class may be declared static
4025      //   in a class definition, in which case it is a static member of
4026      //   the class.
4027
4028      // Complain about the 'static' specifier if it's on an out-of-line
4029      // member function definition.
4030      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4031           diag::err_static_out_of_line)
4032        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4033    }
4034  }
4035
4036  // Handle GNU asm-label extension (encoded as an attribute).
4037  if (Expr *E = (Expr*) D.getAsmLabel()) {
4038    // The parser guarantees this is a string.
4039    StringLiteral *SE = cast<StringLiteral>(E);
4040    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4041                                                SE->getString()));
4042  }
4043
4044  // Copy the parameter declarations from the declarator D to the function
4045  // declaration NewFD, if they are available.  First scavenge them into Params.
4046  llvm::SmallVector<ParmVarDecl*, 16> Params;
4047  if (D.isFunctionDeclarator()) {
4048    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4049
4050    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4051    // function that takes no arguments, not a function that takes a
4052    // single void argument.
4053    // We let through "const void" here because Sema::GetTypeForDeclarator
4054    // already checks for that case.
4055    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4056        FTI.ArgInfo[0].Param &&
4057        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4058      // Empty arg list, don't push any params.
4059      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4060
4061      // In C++, the empty parameter-type-list must be spelled "void"; a
4062      // typedef of void is not permitted.
4063      if (getLangOptions().CPlusPlus &&
4064          Param->getType().getUnqualifiedType() != Context.VoidTy)
4065        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
4066    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4067      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4068        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4069        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4070        Param->setDeclContext(NewFD);
4071        Params.push_back(Param);
4072
4073        if (Param->isInvalidDecl())
4074          NewFD->setInvalidDecl();
4075      }
4076    }
4077
4078  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4079    // When we're declaring a function with a typedef, typeof, etc as in the
4080    // following example, we'll need to synthesize (unnamed)
4081    // parameters for use in the declaration.
4082    //
4083    // @code
4084    // typedef void fn(int);
4085    // fn f;
4086    // @endcode
4087
4088    // Synthesize a parameter for each argument type.
4089    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4090         AE = FT->arg_type_end(); AI != AE; ++AI) {
4091      ParmVarDecl *Param =
4092        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4093      Params.push_back(Param);
4094    }
4095  } else {
4096    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4097           "Should not need args for typedef of non-prototype fn");
4098  }
4099  // Finally, we know we have the right number of parameters, install them.
4100  NewFD->setParams(Params.data(), Params.size());
4101
4102  // Process the non-inheritable attributes on this declaration.
4103  ProcessDeclAttributes(S, NewFD, D,
4104                        /*NonInheritable=*/true, /*Inheritable=*/false);
4105
4106  if (!getLangOptions().CPlusPlus) {
4107    // Perform semantic checking on the function declaration.
4108    bool isExplctSpecialization=false;
4109    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4110                             Redeclaration);
4111    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4112            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4113           "previous declaration set still overloaded");
4114  } else {
4115    // If the declarator is a template-id, translate the parser's template
4116    // argument list into our AST format.
4117    bool HasExplicitTemplateArgs = false;
4118    TemplateArgumentListInfo TemplateArgs;
4119    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4120      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4121      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4122      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4123      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4124                                         TemplateId->getTemplateArgs(),
4125                                         TemplateId->NumArgs);
4126      translateTemplateArguments(TemplateArgsPtr,
4127                                 TemplateArgs);
4128      TemplateArgsPtr.release();
4129
4130      HasExplicitTemplateArgs = true;
4131
4132      if (FunctionTemplate) {
4133        // Function template with explicit template arguments.
4134        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4135          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4136
4137        HasExplicitTemplateArgs = false;
4138      } else if (!isFunctionTemplateSpecialization &&
4139                 !D.getDeclSpec().isFriendSpecified()) {
4140        // We have encountered something that the user meant to be a
4141        // specialization (because it has explicitly-specified template
4142        // arguments) but that was not introduced with a "template<>" (or had
4143        // too few of them).
4144        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4145          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4146          << FixItHint::CreateInsertion(
4147                                        D.getDeclSpec().getSourceRange().getBegin(),
4148                                                  "template<> ");
4149        isFunctionTemplateSpecialization = true;
4150      } else {
4151        // "friend void foo<>(int);" is an implicit specialization decl.
4152        isFunctionTemplateSpecialization = true;
4153      }
4154    } else if (isFriend && isFunctionTemplateSpecialization) {
4155      // This combination is only possible in a recovery case;  the user
4156      // wrote something like:
4157      //   template <> friend void foo(int);
4158      // which we're recovering from as if the user had written:
4159      //   friend void foo<>(int);
4160      // Go ahead and fake up a template id.
4161      HasExplicitTemplateArgs = true;
4162        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4163      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4164    }
4165
4166    // If it's a friend (and only if it's a friend), it's possible
4167    // that either the specialized function type or the specialized
4168    // template is dependent, and therefore matching will fail.  In
4169    // this case, don't check the specialization yet.
4170    if (isFunctionTemplateSpecialization && isFriend &&
4171        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4172      assert(HasExplicitTemplateArgs &&
4173             "friend function specialization without template args");
4174      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4175                                                       Previous))
4176        NewFD->setInvalidDecl();
4177    } else if (isFunctionTemplateSpecialization) {
4178      if (CurContext->isDependentContext() && CurContext->isRecord()
4179          && !isFriend) {
4180        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4181          << NewFD->getDeclName();
4182        NewFD->setInvalidDecl();
4183        return 0;
4184      } else if (CheckFunctionTemplateSpecialization(NewFD,
4185                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4186                                                     Previous))
4187        NewFD->setInvalidDecl();
4188    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4189      if (CheckMemberSpecialization(NewFD, Previous))
4190          NewFD->setInvalidDecl();
4191    }
4192
4193    // Perform semantic checking on the function declaration.
4194    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4195                             Redeclaration);
4196
4197    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4198            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4199           "previous declaration set still overloaded");
4200
4201    NamedDecl *PrincipalDecl = (FunctionTemplate
4202                                ? cast<NamedDecl>(FunctionTemplate)
4203                                : NewFD);
4204
4205    if (isFriend && Redeclaration) {
4206      AccessSpecifier Access = AS_public;
4207      if (!NewFD->isInvalidDecl())
4208        Access = NewFD->getPreviousDeclaration()->getAccess();
4209
4210      NewFD->setAccess(Access);
4211      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4212
4213      PrincipalDecl->setObjectOfFriendDecl(true);
4214    }
4215
4216    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4217        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4218      PrincipalDecl->setNonMemberOperator();
4219
4220    // If we have a function template, check the template parameter
4221    // list. This will check and merge default template arguments.
4222    if (FunctionTemplate) {
4223      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4224      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4225                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4226                            D.getDeclSpec().isFriendSpecified()
4227                              ? (IsFunctionDefinition
4228                                   ? TPC_FriendFunctionTemplateDefinition
4229                                   : TPC_FriendFunctionTemplate)
4230                              : (D.getCXXScopeSpec().isSet() &&
4231                                 DC && DC->isRecord() &&
4232                                 DC->isDependentContext())
4233                                  ? TPC_ClassTemplateMember
4234                                  : TPC_FunctionTemplate);
4235    }
4236
4237    if (NewFD->isInvalidDecl()) {
4238      // Ignore all the rest of this.
4239    } else if (!Redeclaration) {
4240      // Fake up an access specifier if it's supposed to be a class member.
4241      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4242        NewFD->setAccess(AS_public);
4243
4244      // Qualified decls generally require a previous declaration.
4245      if (D.getCXXScopeSpec().isSet()) {
4246        // ...with the major exception of templated-scope or
4247        // dependent-scope friend declarations.
4248
4249        // TODO: we currently also suppress this check in dependent
4250        // contexts because (1) the parameter depth will be off when
4251        // matching friend templates and (2) we might actually be
4252        // selecting a friend based on a dependent factor.  But there
4253        // are situations where these conditions don't apply and we
4254        // can actually do this check immediately.
4255        if (isFriend &&
4256            (TemplateParamLists.size() ||
4257             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4258             CurContext->isDependentContext())) {
4259              // ignore these
4260            } else {
4261              // The user tried to provide an out-of-line definition for a
4262              // function that is a member of a class or namespace, but there
4263              // was no such member function declared (C++ [class.mfct]p2,
4264              // C++ [namespace.memdef]p2). For example:
4265              //
4266              // class X {
4267              //   void f() const;
4268              // };
4269              //
4270              // void X::f() { } // ill-formed
4271              //
4272              // Complain about this problem, and attempt to suggest close
4273              // matches (e.g., those that differ only in cv-qualifiers and
4274              // whether the parameter types are references).
4275              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4276              << Name << DC << D.getCXXScopeSpec().getRange();
4277              NewFD->setInvalidDecl();
4278
4279              DiagnoseInvalidRedeclaration(*this, NewFD);
4280            }
4281
4282        // Unqualified local friend declarations are required to resolve
4283        // to something.
4284        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4285          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4286          NewFD->setInvalidDecl();
4287          DiagnoseInvalidRedeclaration(*this, NewFD);
4288        }
4289
4290    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4291               !isFriend && !isFunctionTemplateSpecialization &&
4292               !isExplicitSpecialization) {
4293      // An out-of-line member function declaration must also be a
4294      // definition (C++ [dcl.meaning]p1).
4295      // Note that this is not the case for explicit specializations of
4296      // function templates or member functions of class templates, per
4297      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4298      // for compatibility with old SWIG code which likes to generate them.
4299      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4300        << D.getCXXScopeSpec().getRange();
4301    }
4302  }
4303
4304
4305  // Handle attributes. We need to have merged decls when handling attributes
4306  // (for example to check for conflicts, etc).
4307  // FIXME: This needs to happen before we merge declarations. Then,
4308  // let attribute merging cope with attribute conflicts.
4309  ProcessDeclAttributes(S, NewFD, D,
4310                        /*NonInheritable=*/false, /*Inheritable=*/true);
4311
4312  // attributes declared post-definition are currently ignored
4313  // FIXME: This should happen during attribute merging
4314  if (Redeclaration && Previous.isSingleResult()) {
4315    const FunctionDecl *Def;
4316    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4317    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4318      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4319      Diag(Def->getLocation(), diag::note_previous_definition);
4320    }
4321  }
4322
4323  AddKnownFunctionAttributes(NewFD);
4324
4325  if (NewFD->hasAttr<OverloadableAttr>() &&
4326      !NewFD->getType()->getAs<FunctionProtoType>()) {
4327    Diag(NewFD->getLocation(),
4328         diag::err_attribute_overloadable_no_prototype)
4329      << NewFD;
4330
4331    // Turn this into a variadic function with no parameters.
4332    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4333    FunctionProtoType::ExtProtoInfo EPI;
4334    EPI.Variadic = true;
4335    EPI.ExtInfo = FT->getExtInfo();
4336
4337    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4338    NewFD->setType(R);
4339  }
4340
4341  // If there's a #pragma GCC visibility in scope, and this isn't a class
4342  // member, set the visibility of this function.
4343  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4344    AddPushedVisibilityAttribute(NewFD);
4345
4346  // If this is a locally-scoped extern C function, update the
4347  // map of such names.
4348  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4349      && !NewFD->isInvalidDecl())
4350    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4351
4352  // Set this FunctionDecl's range up to the right paren.
4353  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4354
4355  if (getLangOptions().CPlusPlus) {
4356    if (FunctionTemplate) {
4357      if (NewFD->isInvalidDecl())
4358        FunctionTemplate->setInvalidDecl();
4359      return FunctionTemplate;
4360    }
4361  }
4362
4363  MarkUnusedFileScopedDecl(NewFD);
4364
4365  if (getLangOptions().CUDA)
4366    if (IdentifierInfo *II = NewFD->getIdentifier())
4367      if (!NewFD->isInvalidDecl() &&
4368          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4369        if (II->isStr("cudaConfigureCall")) {
4370          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4371            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4372
4373          Context.setcudaConfigureCallDecl(NewFD);
4374        }
4375      }
4376
4377  return NewFD;
4378}
4379
4380/// \brief Perform semantic checking of a new function declaration.
4381///
4382/// Performs semantic analysis of the new function declaration
4383/// NewFD. This routine performs all semantic checking that does not
4384/// require the actual declarator involved in the declaration, and is
4385/// used both for the declaration of functions as they are parsed
4386/// (called via ActOnDeclarator) and for the declaration of functions
4387/// that have been instantiated via C++ template instantiation (called
4388/// via InstantiateDecl).
4389///
4390/// \param IsExplicitSpecialiation whether this new function declaration is
4391/// an explicit specialization of the previous declaration.
4392///
4393/// This sets NewFD->isInvalidDecl() to true if there was an error.
4394void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4395                                    LookupResult &Previous,
4396                                    bool IsExplicitSpecialization,
4397                                    bool &Redeclaration) {
4398  // If NewFD is already known erroneous, don't do any of this checking.
4399  if (NewFD->isInvalidDecl()) {
4400    // If this is a class member, mark the class invalid immediately.
4401    // This avoids some consistency errors later.
4402    if (isa<CXXMethodDecl>(NewFD))
4403      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4404
4405    return;
4406  }
4407
4408  if (NewFD->getResultType()->isVariablyModifiedType()) {
4409    // Functions returning a variably modified type violate C99 6.7.5.2p2
4410    // because all functions have linkage.
4411    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4412    return NewFD->setInvalidDecl();
4413  }
4414
4415  if (NewFD->isMain())
4416    CheckMain(NewFD);
4417
4418  // Check for a previous declaration of this name.
4419  if (Previous.empty() && NewFD->isExternC()) {
4420    // Since we did not find anything by this name and we're declaring
4421    // an extern "C" function, look for a non-visible extern "C"
4422    // declaration with the same name.
4423    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4424      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4425    if (Pos != LocallyScopedExternalDecls.end())
4426      Previous.addDecl(Pos->second);
4427  }
4428
4429  // Merge or overload the declaration with an existing declaration of
4430  // the same name, if appropriate.
4431  if (!Previous.empty()) {
4432    // Determine whether NewFD is an overload of PrevDecl or
4433    // a declaration that requires merging. If it's an overload,
4434    // there's no more work to do here; we'll just add the new
4435    // function to the scope.
4436
4437    NamedDecl *OldDecl = 0;
4438    if (!AllowOverloadingOfFunction(Previous, Context)) {
4439      Redeclaration = true;
4440      OldDecl = Previous.getFoundDecl();
4441    } else {
4442      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4443                            /*NewIsUsingDecl*/ false)) {
4444      case Ovl_Match:
4445        Redeclaration = true;
4446        break;
4447
4448      case Ovl_NonFunction:
4449        Redeclaration = true;
4450        break;
4451
4452      case Ovl_Overload:
4453        Redeclaration = false;
4454        break;
4455      }
4456
4457      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4458        // If a function name is overloadable in C, then every function
4459        // with that name must be marked "overloadable".
4460        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4461          << Redeclaration << NewFD;
4462        NamedDecl *OverloadedDecl = 0;
4463        if (Redeclaration)
4464          OverloadedDecl = OldDecl;
4465        else if (!Previous.empty())
4466          OverloadedDecl = Previous.getRepresentativeDecl();
4467        if (OverloadedDecl)
4468          Diag(OverloadedDecl->getLocation(),
4469               diag::note_attribute_overloadable_prev_overload);
4470        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4471                                                        Context));
4472      }
4473    }
4474
4475    if (Redeclaration) {
4476      // NewFD and OldDecl represent declarations that need to be
4477      // merged.
4478      if (MergeFunctionDecl(NewFD, OldDecl))
4479        return NewFD->setInvalidDecl();
4480
4481      Previous.clear();
4482      Previous.addDecl(OldDecl);
4483
4484      if (FunctionTemplateDecl *OldTemplateDecl
4485                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4486        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4487        FunctionTemplateDecl *NewTemplateDecl
4488          = NewFD->getDescribedFunctionTemplate();
4489        assert(NewTemplateDecl && "Template/non-template mismatch");
4490        if (CXXMethodDecl *Method
4491              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4492          Method->setAccess(OldTemplateDecl->getAccess());
4493          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4494        }
4495
4496        // If this is an explicit specialization of a member that is a function
4497        // template, mark it as a member specialization.
4498        if (IsExplicitSpecialization &&
4499            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4500          NewTemplateDecl->setMemberSpecialization();
4501          assert(OldTemplateDecl->isMemberSpecialization());
4502        }
4503      } else {
4504        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4505          NewFD->setAccess(OldDecl->getAccess());
4506        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4507      }
4508    }
4509  }
4510
4511  // Semantic checking for this function declaration (in isolation).
4512  if (getLangOptions().CPlusPlus) {
4513    // C++-specific checks.
4514    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4515      CheckConstructor(Constructor);
4516    } else if (CXXDestructorDecl *Destructor =
4517                dyn_cast<CXXDestructorDecl>(NewFD)) {
4518      CXXRecordDecl *Record = Destructor->getParent();
4519      QualType ClassType = Context.getTypeDeclType(Record);
4520
4521      // FIXME: Shouldn't we be able to perform this check even when the class
4522      // type is dependent? Both gcc and edg can handle that.
4523      if (!ClassType->isDependentType()) {
4524        DeclarationName Name
4525          = Context.DeclarationNames.getCXXDestructorName(
4526                                        Context.getCanonicalType(ClassType));
4527        if (NewFD->getDeclName() != Name) {
4528          Diag(NewFD->getLocation(), diag::err_destructor_name);
4529          return NewFD->setInvalidDecl();
4530        }
4531      }
4532    } else if (CXXConversionDecl *Conversion
4533               = dyn_cast<CXXConversionDecl>(NewFD)) {
4534      ActOnConversionDeclarator(Conversion);
4535    }
4536
4537    // Find any virtual functions that this function overrides.
4538    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4539      if (!Method->isFunctionTemplateSpecialization() &&
4540          !Method->getDescribedFunctionTemplate()) {
4541        if (AddOverriddenMethods(Method->getParent(), Method)) {
4542          // If the function was marked as "static", we have a problem.
4543          if (NewFD->getStorageClass() == SC_Static) {
4544            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4545              << NewFD->getDeclName();
4546            for (CXXMethodDecl::method_iterator
4547                      Overridden = Method->begin_overridden_methods(),
4548                   OverriddenEnd = Method->end_overridden_methods();
4549                 Overridden != OverriddenEnd;
4550                 ++Overridden) {
4551              Diag((*Overridden)->getLocation(),
4552                   diag::note_overridden_virtual_function);
4553            }
4554          }
4555        }
4556      }
4557    }
4558
4559    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4560    if (NewFD->isOverloadedOperator() &&
4561        CheckOverloadedOperatorDeclaration(NewFD))
4562      return NewFD->setInvalidDecl();
4563
4564    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4565    if (NewFD->getLiteralIdentifier() &&
4566        CheckLiteralOperatorDeclaration(NewFD))
4567      return NewFD->setInvalidDecl();
4568
4569    // In C++, check default arguments now that we have merged decls. Unless
4570    // the lexical context is the class, because in this case this is done
4571    // during delayed parsing anyway.
4572    if (!CurContext->isRecord())
4573      CheckCXXDefaultArguments(NewFD);
4574
4575    // If this function declares a builtin function, check the type of this
4576    // declaration against the expected type for the builtin.
4577    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4578      ASTContext::GetBuiltinTypeError Error;
4579      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4580      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4581        // The type of this function differs from the type of the builtin,
4582        // so forget about the builtin entirely.
4583        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4584      }
4585    }
4586  }
4587}
4588
4589void Sema::CheckMain(FunctionDecl* FD) {
4590  // C++ [basic.start.main]p3:  A program that declares main to be inline
4591  //   or static is ill-formed.
4592  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4593  //   shall not appear in a declaration of main.
4594  // static main is not an error under C99, but we should warn about it.
4595  bool isInline = FD->isInlineSpecified();
4596  bool isStatic = FD->getStorageClass() == SC_Static;
4597  if (isInline || isStatic) {
4598    unsigned diagID = diag::warn_unusual_main_decl;
4599    if (isInline || getLangOptions().CPlusPlus)
4600      diagID = diag::err_unusual_main_decl;
4601
4602    int which = isStatic + (isInline << 1) - 1;
4603    Diag(FD->getLocation(), diagID) << which;
4604  }
4605
4606  QualType T = FD->getType();
4607  assert(T->isFunctionType() && "function decl is not of function type");
4608  const FunctionType* FT = T->getAs<FunctionType>();
4609
4610  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4611    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4612    FD->setInvalidDecl(true);
4613  }
4614
4615  // Treat protoless main() as nullary.
4616  if (isa<FunctionNoProtoType>(FT)) return;
4617
4618  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4619  unsigned nparams = FTP->getNumArgs();
4620  assert(FD->getNumParams() == nparams);
4621
4622  bool HasExtraParameters = (nparams > 3);
4623
4624  // Darwin passes an undocumented fourth argument of type char**.  If
4625  // other platforms start sprouting these, the logic below will start
4626  // getting shifty.
4627  if (nparams == 4 &&
4628      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4629    HasExtraParameters = false;
4630
4631  if (HasExtraParameters) {
4632    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4633    FD->setInvalidDecl(true);
4634    nparams = 3;
4635  }
4636
4637  // FIXME: a lot of the following diagnostics would be improved
4638  // if we had some location information about types.
4639
4640  QualType CharPP =
4641    Context.getPointerType(Context.getPointerType(Context.CharTy));
4642  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4643
4644  for (unsigned i = 0; i < nparams; ++i) {
4645    QualType AT = FTP->getArgType(i);
4646
4647    bool mismatch = true;
4648
4649    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4650      mismatch = false;
4651    else if (Expected[i] == CharPP) {
4652      // As an extension, the following forms are okay:
4653      //   char const **
4654      //   char const * const *
4655      //   char * const *
4656
4657      QualifierCollector qs;
4658      const PointerType* PT;
4659      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4660          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4661          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4662        qs.removeConst();
4663        mismatch = !qs.empty();
4664      }
4665    }
4666
4667    if (mismatch) {
4668      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4669      // TODO: suggest replacing given type with expected type
4670      FD->setInvalidDecl(true);
4671    }
4672  }
4673
4674  if (nparams == 1 && !FD->isInvalidDecl()) {
4675    Diag(FD->getLocation(), diag::warn_main_one_arg);
4676  }
4677
4678  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4679    Diag(FD->getLocation(), diag::err_main_template_decl);
4680    FD->setInvalidDecl();
4681  }
4682}
4683
4684bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4685  // FIXME: Need strict checking.  In C89, we need to check for
4686  // any assignment, increment, decrement, function-calls, or
4687  // commas outside of a sizeof.  In C99, it's the same list,
4688  // except that the aforementioned are allowed in unevaluated
4689  // expressions.  Everything else falls under the
4690  // "may accept other forms of constant expressions" exception.
4691  // (We never end up here for C++, so the constant expression
4692  // rules there don't matter.)
4693  if (Init->isConstantInitializer(Context, false))
4694    return false;
4695  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4696    << Init->getSourceRange();
4697  return true;
4698}
4699
4700namespace {
4701  // Visits an initialization expression to see if OrigDecl is evaluated in
4702  // its own initialization and throws a warning if it does.
4703  class SelfReferenceChecker
4704      : public EvaluatedExprVisitor<SelfReferenceChecker> {
4705    Sema &S;
4706    Decl *OrigDecl;
4707
4708  public:
4709    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
4710
4711    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
4712                                                    S(S), OrigDecl(OrigDecl) { }
4713
4714    void VisitExpr(Expr *E) {
4715      if (isa<ObjCMessageExpr>(*E)) return;
4716      Inherited::VisitExpr(E);
4717    }
4718
4719    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
4720      CheckForSelfReference(E);
4721      Inherited::VisitImplicitCastExpr(E);
4722    }
4723
4724    void CheckForSelfReference(ImplicitCastExpr *E) {
4725      if (E->getCastKind() != CK_LValueToRValue) return;
4726      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
4727      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
4728      if (!DRE) return;
4729      Decl* ReferenceDecl = DRE->getDecl();
4730      if (OrigDecl != ReferenceDecl) return;
4731      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
4732                          Sema::NotForRedeclaration);
4733      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
4734        << Result.getLookupName() << OrigDecl->getLocation()
4735        << SubExpr->getSourceRange();
4736    }
4737  };
4738}
4739
4740/// AddInitializerToDecl - Adds the initializer Init to the
4741/// declaration dcl. If DirectInit is true, this is C++ direct
4742/// initialization rather than copy initialization.
4743void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4744                                bool DirectInit, bool TypeMayContainAuto) {
4745  // If there is no declaration, there was an error parsing it.  Just ignore
4746  // the initializer.
4747  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4748    return;
4749
4750  // Check for self-references within variable initializers.
4751  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
4752    // Variables declared within a function/method body are handled
4753    // by a dataflow analysis.
4754    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
4755      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4756  }
4757  else {
4758    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4759  }
4760
4761  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4762    // With declarators parsed the way they are, the parser cannot
4763    // distinguish between a normal initializer and a pure-specifier.
4764    // Thus this grotesque test.
4765    IntegerLiteral *IL;
4766    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4767        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4768      CheckPureMethod(Method, Init->getSourceRange());
4769    else {
4770      Diag(Method->getLocation(), diag::err_member_function_initialization)
4771        << Method->getDeclName() << Init->getSourceRange();
4772      Method->setInvalidDecl();
4773    }
4774    return;
4775  }
4776
4777  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4778  if (!VDecl) {
4779    if (getLangOptions().CPlusPlus &&
4780        RealDecl->getLexicalDeclContext()->isRecord() &&
4781        isa<NamedDecl>(RealDecl))
4782      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4783    else
4784      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4785    RealDecl->setInvalidDecl();
4786    return;
4787  }
4788
4789  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4790  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4791    TypeSourceInfo *DeducedType = 0;
4792    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
4793      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4794        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4795        << Init->getSourceRange();
4796    if (!DeducedType) {
4797      RealDecl->setInvalidDecl();
4798      return;
4799    }
4800    VDecl->setTypeSourceInfo(DeducedType);
4801    VDecl->setType(DeducedType->getType());
4802
4803    // If this is a redeclaration, check that the type we just deduced matches
4804    // the previously declared type.
4805    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4806      MergeVarDeclTypes(VDecl, Old);
4807  }
4808
4809
4810  // A definition must end up with a complete type, which means it must be
4811  // complete with the restriction that an array type might be completed by the
4812  // initializer; note that later code assumes this restriction.
4813  QualType BaseDeclType = VDecl->getType();
4814  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4815    BaseDeclType = Array->getElementType();
4816  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4817                          diag::err_typecheck_decl_incomplete_type)) {
4818    RealDecl->setInvalidDecl();
4819    return;
4820  }
4821
4822  // The variable can not have an abstract class type.
4823  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4824                             diag::err_abstract_type_in_decl,
4825                             AbstractVariableType))
4826    VDecl->setInvalidDecl();
4827
4828  const VarDecl *Def;
4829  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4830    Diag(VDecl->getLocation(), diag::err_redefinition)
4831      << VDecl->getDeclName();
4832    Diag(Def->getLocation(), diag::note_previous_definition);
4833    VDecl->setInvalidDecl();
4834    return;
4835  }
4836
4837  const VarDecl* PrevInit = 0;
4838  if (getLangOptions().CPlusPlus) {
4839    // C++ [class.static.data]p4
4840    //   If a static data member is of const integral or const
4841    //   enumeration type, its declaration in the class definition can
4842    //   specify a constant-initializer which shall be an integral
4843    //   constant expression (5.19). In that case, the member can appear
4844    //   in integral constant expressions. The member shall still be
4845    //   defined in a namespace scope if it is used in the program and the
4846    //   namespace scope definition shall not contain an initializer.
4847    //
4848    // We already performed a redefinition check above, but for static
4849    // data members we also need to check whether there was an in-class
4850    // declaration with an initializer.
4851    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4852      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4853      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4854      return;
4855    }
4856
4857    if (VDecl->hasLocalStorage())
4858      getCurFunction()->setHasBranchProtectedScope();
4859
4860    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4861      VDecl->setInvalidDecl();
4862      return;
4863    }
4864  }
4865
4866  // Capture the variable that is being initialized and the style of
4867  // initialization.
4868  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4869
4870  // FIXME: Poor source location information.
4871  InitializationKind Kind
4872    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4873                                                   Init->getLocStart(),
4874                                                   Init->getLocEnd())
4875                : InitializationKind::CreateCopy(VDecl->getLocation(),
4876                                                 Init->getLocStart());
4877
4878  // Get the decls type and save a reference for later, since
4879  // CheckInitializerTypes may change it.
4880  QualType DclT = VDecl->getType(), SavT = DclT;
4881  if (VDecl->isLocalVarDecl()) {
4882    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4883      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4884      VDecl->setInvalidDecl();
4885    } else if (!VDecl->isInvalidDecl()) {
4886      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4887      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4888                                                MultiExprArg(*this, &Init, 1),
4889                                                &DclT);
4890      if (Result.isInvalid()) {
4891        VDecl->setInvalidDecl();
4892        return;
4893      }
4894
4895      Init = Result.takeAs<Expr>();
4896
4897      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4898      // Don't check invalid declarations to avoid emitting useless diagnostics.
4899      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4900        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4901          CheckForConstantInitializer(Init, DclT);
4902      }
4903    }
4904  } else if (VDecl->isStaticDataMember() &&
4905             VDecl->getLexicalDeclContext()->isRecord()) {
4906    // This is an in-class initialization for a static data member, e.g.,
4907    //
4908    // struct S {
4909    //   static const int value = 17;
4910    // };
4911
4912    // Try to perform the initialization regardless.
4913    if (!VDecl->isInvalidDecl()) {
4914      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4915      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4916                                          MultiExprArg(*this, &Init, 1),
4917                                          &DclT);
4918      if (Result.isInvalid()) {
4919        VDecl->setInvalidDecl();
4920        return;
4921      }
4922
4923      Init = Result.takeAs<Expr>();
4924    }
4925
4926    // C++ [class.mem]p4:
4927    //   A member-declarator can contain a constant-initializer only
4928    //   if it declares a static member (9.4) of const integral or
4929    //   const enumeration type, see 9.4.2.
4930    QualType T = VDecl->getType();
4931
4932    // Do nothing on dependent types.
4933    if (T->isDependentType()) {
4934
4935    // Require constness.
4936    } else if (!T.isConstQualified()) {
4937      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4938        << Init->getSourceRange();
4939      VDecl->setInvalidDecl();
4940
4941    // We allow integer constant expressions in all cases.
4942    } else if (T->isIntegralOrEnumerationType()) {
4943      if (!Init->isValueDependent()) {
4944        // Check whether the expression is a constant expression.
4945        llvm::APSInt Value;
4946        SourceLocation Loc;
4947        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4948          Diag(Loc, diag::err_in_class_initializer_non_constant)
4949            << Init->getSourceRange();
4950          VDecl->setInvalidDecl();
4951        }
4952      }
4953
4954    // We allow floating-point constants as an extension in C++03, and
4955    // C++0x has far more complicated rules that we don't really
4956    // implement fully.
4957    } else {
4958      bool Allowed = false;
4959      if (getLangOptions().CPlusPlus0x) {
4960        Allowed = T->isLiteralType();
4961      } else if (T->isFloatingType()) { // also permits complex, which is ok
4962        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4963          << T << Init->getSourceRange();
4964        Allowed = true;
4965      }
4966
4967      if (!Allowed) {
4968        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4969          << T << Init->getSourceRange();
4970        VDecl->setInvalidDecl();
4971
4972      // TODO: there are probably expressions that pass here that shouldn't.
4973      } else if (!Init->isValueDependent() &&
4974                 !Init->isConstantInitializer(Context, false)) {
4975        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4976          << Init->getSourceRange();
4977        VDecl->setInvalidDecl();
4978      }
4979    }
4980  } else if (VDecl->isFileVarDecl()) {
4981    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4982        (!getLangOptions().CPlusPlus ||
4983         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4984      Diag(VDecl->getLocation(), diag::warn_extern_init);
4985    if (!VDecl->isInvalidDecl()) {
4986      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4987      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4988                                                MultiExprArg(*this, &Init, 1),
4989                                                &DclT);
4990      if (Result.isInvalid()) {
4991        VDecl->setInvalidDecl();
4992        return;
4993      }
4994
4995      Init = Result.takeAs<Expr>();
4996    }
4997
4998    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4999    // Don't check invalid declarations to avoid emitting useless diagnostics.
5000    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5001      // C99 6.7.8p4. All file scoped initializers need to be constant.
5002      CheckForConstantInitializer(Init, DclT);
5003    }
5004  }
5005  // If the type changed, it means we had an incomplete type that was
5006  // completed by the initializer. For example:
5007  //   int ary[] = { 1, 3, 5 };
5008  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5009  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5010    VDecl->setType(DclT);
5011    Init->setType(DclT);
5012  }
5013
5014
5015  // If this variable is a local declaration with record type, make sure it
5016  // doesn't have a flexible member initialization.  We only support this as a
5017  // global/static definition.
5018  if (VDecl->hasLocalStorage())
5019    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5020      if (RT->getDecl()->hasFlexibleArrayMember()) {
5021        // Check whether the initializer tries to initialize the flexible
5022        // array member itself to anything other than an empty initializer list.
5023        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5024          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5025                                         RT->getDecl()->field_end()) - 1;
5026          if (Index < ILE->getNumInits() &&
5027              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5028                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5029            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5030            VDecl->setInvalidDecl();
5031          }
5032        }
5033      }
5034
5035  // Check any implicit conversions within the expression.
5036  CheckImplicitConversions(Init, VDecl->getLocation());
5037
5038  Init = MaybeCreateExprWithCleanups(Init);
5039  // Attach the initializer to the decl.
5040  VDecl->setInit(Init);
5041
5042  CheckCompleteVariableDeclaration(VDecl);
5043}
5044
5045/// ActOnInitializerError - Given that there was an error parsing an
5046/// initializer for the given declaration, try to return to some form
5047/// of sanity.
5048void Sema::ActOnInitializerError(Decl *D) {
5049  // Our main concern here is re-establishing invariants like "a
5050  // variable's type is either dependent or complete".
5051  if (!D || D->isInvalidDecl()) return;
5052
5053  VarDecl *VD = dyn_cast<VarDecl>(D);
5054  if (!VD) return;
5055
5056  // Auto types are meaningless if we can't make sense of the initializer.
5057  if (ParsingInitForAutoVars.count(D)) {
5058    D->setInvalidDecl();
5059    return;
5060  }
5061
5062  QualType Ty = VD->getType();
5063  if (Ty->isDependentType()) return;
5064
5065  // Require a complete type.
5066  if (RequireCompleteType(VD->getLocation(),
5067                          Context.getBaseElementType(Ty),
5068                          diag::err_typecheck_decl_incomplete_type)) {
5069    VD->setInvalidDecl();
5070    return;
5071  }
5072
5073  // Require an abstract type.
5074  if (RequireNonAbstractType(VD->getLocation(), Ty,
5075                             diag::err_abstract_type_in_decl,
5076                             AbstractVariableType)) {
5077    VD->setInvalidDecl();
5078    return;
5079  }
5080
5081  // Don't bother complaining about constructors or destructors,
5082  // though.
5083}
5084
5085void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5086                                  bool TypeMayContainAuto) {
5087  // If there is no declaration, there was an error parsing it. Just ignore it.
5088  if (RealDecl == 0)
5089    return;
5090
5091  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5092    QualType Type = Var->getType();
5093
5094    // C++0x [dcl.spec.auto]p3
5095    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5096      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5097        << Var->getDeclName() << Type;
5098      Var->setInvalidDecl();
5099      return;
5100    }
5101
5102    switch (Var->isThisDeclarationADefinition()) {
5103    case VarDecl::Definition:
5104      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5105        break;
5106
5107      // We have an out-of-line definition of a static data member
5108      // that has an in-class initializer, so we type-check this like
5109      // a declaration.
5110      //
5111      // Fall through
5112
5113    case VarDecl::DeclarationOnly:
5114      // It's only a declaration.
5115
5116      // Block scope. C99 6.7p7: If an identifier for an object is
5117      // declared with no linkage (C99 6.2.2p6), the type for the
5118      // object shall be complete.
5119      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5120          !Var->getLinkage() && !Var->isInvalidDecl() &&
5121          RequireCompleteType(Var->getLocation(), Type,
5122                              diag::err_typecheck_decl_incomplete_type))
5123        Var->setInvalidDecl();
5124
5125      // Make sure that the type is not abstract.
5126      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5127          RequireNonAbstractType(Var->getLocation(), Type,
5128                                 diag::err_abstract_type_in_decl,
5129                                 AbstractVariableType))
5130        Var->setInvalidDecl();
5131      return;
5132
5133    case VarDecl::TentativeDefinition:
5134      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5135      // object that has file scope without an initializer, and without a
5136      // storage-class specifier or with the storage-class specifier "static",
5137      // constitutes a tentative definition. Note: A tentative definition with
5138      // external linkage is valid (C99 6.2.2p5).
5139      if (!Var->isInvalidDecl()) {
5140        if (const IncompleteArrayType *ArrayT
5141                                    = Context.getAsIncompleteArrayType(Type)) {
5142          if (RequireCompleteType(Var->getLocation(),
5143                                  ArrayT->getElementType(),
5144                                  diag::err_illegal_decl_array_incomplete_type))
5145            Var->setInvalidDecl();
5146        } else if (Var->getStorageClass() == SC_Static) {
5147          // C99 6.9.2p3: If the declaration of an identifier for an object is
5148          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5149          // declared type shall not be an incomplete type.
5150          // NOTE: code such as the following
5151          //     static struct s;
5152          //     struct s { int a; };
5153          // is accepted by gcc. Hence here we issue a warning instead of
5154          // an error and we do not invalidate the static declaration.
5155          // NOTE: to avoid multiple warnings, only check the first declaration.
5156          if (Var->getPreviousDeclaration() == 0)
5157            RequireCompleteType(Var->getLocation(), Type,
5158                                diag::ext_typecheck_decl_incomplete_type);
5159        }
5160      }
5161
5162      // Record the tentative definition; we're done.
5163      if (!Var->isInvalidDecl())
5164        TentativeDefinitions.push_back(Var);
5165      return;
5166    }
5167
5168    // Provide a specific diagnostic for uninitialized variable
5169    // definitions with incomplete array type.
5170    if (Type->isIncompleteArrayType()) {
5171      Diag(Var->getLocation(),
5172           diag::err_typecheck_incomplete_array_needs_initializer);
5173      Var->setInvalidDecl();
5174      return;
5175    }
5176
5177    // Provide a specific diagnostic for uninitialized variable
5178    // definitions with reference type.
5179    if (Type->isReferenceType()) {
5180      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5181        << Var->getDeclName()
5182        << SourceRange(Var->getLocation(), Var->getLocation());
5183      Var->setInvalidDecl();
5184      return;
5185    }
5186
5187    // Do not attempt to type-check the default initializer for a
5188    // variable with dependent type.
5189    if (Type->isDependentType())
5190      return;
5191
5192    if (Var->isInvalidDecl())
5193      return;
5194
5195    if (RequireCompleteType(Var->getLocation(),
5196                            Context.getBaseElementType(Type),
5197                            diag::err_typecheck_decl_incomplete_type)) {
5198      Var->setInvalidDecl();
5199      return;
5200    }
5201
5202    // The variable can not have an abstract class type.
5203    if (RequireNonAbstractType(Var->getLocation(), Type,
5204                               diag::err_abstract_type_in_decl,
5205                               AbstractVariableType)) {
5206      Var->setInvalidDecl();
5207      return;
5208    }
5209
5210    const RecordType *Record
5211      = Context.getBaseElementType(Type)->getAs<RecordType>();
5212    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5213        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5214      // C++03 [dcl.init]p9:
5215      //   If no initializer is specified for an object, and the
5216      //   object is of (possibly cv-qualified) non-POD class type (or
5217      //   array thereof), the object shall be default-initialized; if
5218      //   the object is of const-qualified type, the underlying class
5219      //   type shall have a user-declared default
5220      //   constructor. Otherwise, if no initializer is specified for
5221      //   a non- static object, the object and its subobjects, if
5222      //   any, have an indeterminate initial value); if the object
5223      //   or any of its subobjects are of const-qualified type, the
5224      //   program is ill-formed.
5225      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5226    } else {
5227      // Check for jumps past the implicit initializer.  C++0x
5228      // clarifies that this applies to a "variable with automatic
5229      // storage duration", not a "local variable".
5230      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5231        getCurFunction()->setHasBranchProtectedScope();
5232
5233      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5234      InitializationKind Kind
5235        = InitializationKind::CreateDefault(Var->getLocation());
5236
5237      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5238      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5239                                        MultiExprArg(*this, 0, 0));
5240      if (Init.isInvalid())
5241        Var->setInvalidDecl();
5242      else if (Init.get())
5243        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5244    }
5245
5246    CheckCompleteVariableDeclaration(Var);
5247  }
5248}
5249
5250void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5251  if (var->isInvalidDecl()) return;
5252
5253  // All the following checks are C++ only.
5254  if (!getLangOptions().CPlusPlus) return;
5255
5256  QualType baseType = Context.getBaseElementType(var->getType());
5257  if (baseType->isDependentType()) return;
5258
5259  // __block variables might require us to capture a copy-initializer.
5260  if (var->hasAttr<BlocksAttr>()) {
5261    // It's currently invalid to ever have a __block variable with an
5262    // array type; should we diagnose that here?
5263
5264    // Regardless, we don't want to ignore array nesting when
5265    // constructing this copy.
5266    QualType type = var->getType();
5267
5268    if (type->isStructureOrClassType()) {
5269      SourceLocation poi = var->getLocation();
5270      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5271      ExprResult result =
5272        PerformCopyInitialization(
5273                        InitializedEntity::InitializeBlock(poi, type, false),
5274                                  poi, Owned(varRef));
5275      if (!result.isInvalid()) {
5276        result = MaybeCreateExprWithCleanups(result);
5277        Expr *init = result.takeAs<Expr>();
5278        Context.setBlockVarCopyInits(var, init);
5279      }
5280    }
5281  }
5282
5283  // Check for global constructors.
5284  if (!var->getDeclContext()->isDependentContext() &&
5285      var->hasGlobalStorage() &&
5286      !var->isStaticLocal() &&
5287      var->getInit() &&
5288      !var->getInit()->isConstantInitializer(Context,
5289                                             baseType->isReferenceType()))
5290    Diag(var->getLocation(), diag::warn_global_constructor)
5291      << var->getInit()->getSourceRange();
5292
5293  // Require the destructor.
5294  if (const RecordType *recordType = baseType->getAs<RecordType>())
5295    FinalizeVarWithDestructor(var, recordType);
5296}
5297
5298/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5299/// any semantic actions necessary after any initializer has been attached.
5300void
5301Sema::FinalizeDeclaration(Decl *ThisDecl) {
5302  // Note that we are no longer parsing the initializer for this declaration.
5303  ParsingInitForAutoVars.erase(ThisDecl);
5304}
5305
5306Sema::DeclGroupPtrTy
5307Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5308                              Decl **Group, unsigned NumDecls) {
5309  llvm::SmallVector<Decl*, 8> Decls;
5310
5311  if (DS.isTypeSpecOwned())
5312    Decls.push_back(DS.getRepAsDecl());
5313
5314  for (unsigned i = 0; i != NumDecls; ++i)
5315    if (Decl *D = Group[i])
5316      Decls.push_back(D);
5317
5318  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5319                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5320}
5321
5322/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5323/// group, performing any necessary semantic checking.
5324Sema::DeclGroupPtrTy
5325Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5326                           bool TypeMayContainAuto) {
5327  // C++0x [dcl.spec.auto]p7:
5328  //   If the type deduced for the template parameter U is not the same in each
5329  //   deduction, the program is ill-formed.
5330  // FIXME: When initializer-list support is added, a distinction is needed
5331  // between the deduced type U and the deduced type which 'auto' stands for.
5332  //   auto a = 0, b = { 1, 2, 3 };
5333  // is legal because the deduced type U is 'int' in both cases.
5334  if (TypeMayContainAuto && NumDecls > 1) {
5335    QualType Deduced;
5336    CanQualType DeducedCanon;
5337    VarDecl *DeducedDecl = 0;
5338    for (unsigned i = 0; i != NumDecls; ++i) {
5339      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5340        AutoType *AT = D->getType()->getContainedAutoType();
5341        // Don't reissue diagnostics when instantiating a template.
5342        if (AT && D->isInvalidDecl())
5343          break;
5344        if (AT && AT->isDeduced()) {
5345          QualType U = AT->getDeducedType();
5346          CanQualType UCanon = Context.getCanonicalType(U);
5347          if (Deduced.isNull()) {
5348            Deduced = U;
5349            DeducedCanon = UCanon;
5350            DeducedDecl = D;
5351          } else if (DeducedCanon != UCanon) {
5352            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5353                 diag::err_auto_different_deductions)
5354              << Deduced << DeducedDecl->getDeclName()
5355              << U << D->getDeclName()
5356              << DeducedDecl->getInit()->getSourceRange()
5357              << D->getInit()->getSourceRange();
5358            D->setInvalidDecl();
5359            break;
5360          }
5361        }
5362      }
5363    }
5364  }
5365
5366  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5367}
5368
5369
5370/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5371/// to introduce parameters into function prototype scope.
5372Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5373  const DeclSpec &DS = D.getDeclSpec();
5374
5375  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5376  VarDecl::StorageClass StorageClass = SC_None;
5377  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5378  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5379    StorageClass = SC_Register;
5380    StorageClassAsWritten = SC_Register;
5381  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5382    Diag(DS.getStorageClassSpecLoc(),
5383         diag::err_invalid_storage_class_in_func_decl);
5384    D.getMutableDeclSpec().ClearStorageClassSpecs();
5385  }
5386
5387  if (D.getDeclSpec().isThreadSpecified())
5388    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5389
5390  DiagnoseFunctionSpecifiers(D);
5391
5392  TagDecl *OwnedDecl = 0;
5393  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5394  QualType parmDeclType = TInfo->getType();
5395
5396  if (getLangOptions().CPlusPlus) {
5397    // Check that there are no default arguments inside the type of this
5398    // parameter.
5399    CheckExtraCXXDefaultArguments(D);
5400
5401    if (OwnedDecl && OwnedDecl->isDefinition()) {
5402      // C++ [dcl.fct]p6:
5403      //   Types shall not be defined in return or parameter types.
5404      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5405        << Context.getTypeDeclType(OwnedDecl);
5406    }
5407
5408    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5409    if (D.getCXXScopeSpec().isSet()) {
5410      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5411        << D.getCXXScopeSpec().getRange();
5412      D.getCXXScopeSpec().clear();
5413    }
5414  }
5415
5416  // Ensure we have a valid name
5417  IdentifierInfo *II = 0;
5418  if (D.hasName()) {
5419    II = D.getIdentifier();
5420    if (!II) {
5421      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5422        << GetNameForDeclarator(D).getName().getAsString();
5423      D.setInvalidType(true);
5424    }
5425  }
5426
5427  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5428  if (II) {
5429    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5430                   ForRedeclaration);
5431    LookupName(R, S);
5432    if (R.isSingleResult()) {
5433      NamedDecl *PrevDecl = R.getFoundDecl();
5434      if (PrevDecl->isTemplateParameter()) {
5435        // Maybe we will complain about the shadowed template parameter.
5436        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5437        // Just pretend that we didn't see the previous declaration.
5438        PrevDecl = 0;
5439      } else if (S->isDeclScope(PrevDecl)) {
5440        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5441        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5442
5443        // Recover by removing the name
5444        II = 0;
5445        D.SetIdentifier(0, D.getIdentifierLoc());
5446        D.setInvalidType(true);
5447      }
5448    }
5449  }
5450
5451  // Temporarily put parameter variables in the translation unit, not
5452  // the enclosing context.  This prevents them from accidentally
5453  // looking like class members in C++.
5454  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5455                                    D.getSourceRange().getBegin(),
5456                                    D.getIdentifierLoc(), II,
5457                                    parmDeclType, TInfo,
5458                                    StorageClass, StorageClassAsWritten);
5459
5460  if (D.isInvalidType())
5461    New->setInvalidDecl();
5462
5463  // Add the parameter declaration into this scope.
5464  S->AddDecl(New);
5465  if (II)
5466    IdResolver.AddDecl(New);
5467
5468  ProcessDeclAttributes(S, New, D);
5469
5470  if (New->hasAttr<BlocksAttr>()) {
5471    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5472  }
5473  return New;
5474}
5475
5476/// \brief Synthesizes a variable for a parameter arising from a
5477/// typedef.
5478ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5479                                              SourceLocation Loc,
5480                                              QualType T) {
5481  /* FIXME: setting StartLoc == Loc.
5482     Would it be worth to modify callers so as to provide proper source
5483     location for the unnamed parameters, embedding the parameter's type? */
5484  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5485                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5486                                           SC_None, SC_None, 0);
5487  Param->setImplicit();
5488  return Param;
5489}
5490
5491void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5492                                    ParmVarDecl * const *ParamEnd) {
5493  // Don't diagnose unused-parameter errors in template instantiations; we
5494  // will already have done so in the template itself.
5495  if (!ActiveTemplateInstantiations.empty())
5496    return;
5497
5498  for (; Param != ParamEnd; ++Param) {
5499    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5500        !(*Param)->hasAttr<UnusedAttr>()) {
5501      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5502        << (*Param)->getDeclName();
5503    }
5504  }
5505}
5506
5507void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5508                                                  ParmVarDecl * const *ParamEnd,
5509                                                  QualType ReturnTy,
5510                                                  NamedDecl *D) {
5511  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5512    return;
5513
5514  // Warn if the return value is pass-by-value and larger than the specified
5515  // threshold.
5516  if (ReturnTy->isPODType()) {
5517    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5518    if (Size > LangOpts.NumLargeByValueCopy)
5519      Diag(D->getLocation(), diag::warn_return_value_size)
5520          << D->getDeclName() << Size;
5521  }
5522
5523  // Warn if any parameter is pass-by-value and larger than the specified
5524  // threshold.
5525  for (; Param != ParamEnd; ++Param) {
5526    QualType T = (*Param)->getType();
5527    if (!T->isPODType())
5528      continue;
5529    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5530    if (Size > LangOpts.NumLargeByValueCopy)
5531      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5532          << (*Param)->getDeclName() << Size;
5533  }
5534}
5535
5536ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5537                                  SourceLocation NameLoc, IdentifierInfo *Name,
5538                                  QualType T, TypeSourceInfo *TSInfo,
5539                                  VarDecl::StorageClass StorageClass,
5540                                  VarDecl::StorageClass StorageClassAsWritten) {
5541  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5542                                         adjustParameterType(T), TSInfo,
5543                                         StorageClass, StorageClassAsWritten,
5544                                         0);
5545
5546  // Parameters can not be abstract class types.
5547  // For record types, this is done by the AbstractClassUsageDiagnoser once
5548  // the class has been completely parsed.
5549  if (!CurContext->isRecord() &&
5550      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5551                             AbstractParamType))
5552    New->setInvalidDecl();
5553
5554  // Parameter declarators cannot be interface types. All ObjC objects are
5555  // passed by reference.
5556  if (T->isObjCObjectType()) {
5557    Diag(NameLoc,
5558         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5559    New->setInvalidDecl();
5560  }
5561
5562  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5563  // duration shall not be qualified by an address-space qualifier."
5564  // Since all parameters have automatic store duration, they can not have
5565  // an address space.
5566  if (T.getAddressSpace() != 0) {
5567    Diag(NameLoc, diag::err_arg_with_address_space);
5568    New->setInvalidDecl();
5569  }
5570
5571  return New;
5572}
5573
5574void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5575                                           SourceLocation LocAfterDecls) {
5576  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5577
5578  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5579  // for a K&R function.
5580  if (!FTI.hasPrototype) {
5581    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5582      --i;
5583      if (FTI.ArgInfo[i].Param == 0) {
5584        llvm::SmallString<256> Code;
5585        llvm::raw_svector_ostream(Code) << "  int "
5586                                        << FTI.ArgInfo[i].Ident->getName()
5587                                        << ";\n";
5588        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5589          << FTI.ArgInfo[i].Ident
5590          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5591
5592        // Implicitly declare the argument as type 'int' for lack of a better
5593        // type.
5594        AttributeFactory attrs;
5595        DeclSpec DS(attrs);
5596        const char* PrevSpec; // unused
5597        unsigned DiagID; // unused
5598        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5599                           PrevSpec, DiagID);
5600        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5601        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5602        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5603      }
5604    }
5605  }
5606}
5607
5608Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5609                                         Declarator &D) {
5610  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5611  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5612  Scope *ParentScope = FnBodyScope->getParent();
5613
5614  Decl *DP = HandleDeclarator(ParentScope, D,
5615                              MultiTemplateParamsArg(*this),
5616                              /*IsFunctionDefinition=*/true);
5617  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5618}
5619
5620static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5621  // Don't warn about invalid declarations.
5622  if (FD->isInvalidDecl())
5623    return false;
5624
5625  // Or declarations that aren't global.
5626  if (!FD->isGlobal())
5627    return false;
5628
5629  // Don't warn about C++ member functions.
5630  if (isa<CXXMethodDecl>(FD))
5631    return false;
5632
5633  // Don't warn about 'main'.
5634  if (FD->isMain())
5635    return false;
5636
5637  // Don't warn about inline functions.
5638  if (FD->isInlined())
5639    return false;
5640
5641  // Don't warn about function templates.
5642  if (FD->getDescribedFunctionTemplate())
5643    return false;
5644
5645  // Don't warn about function template specializations.
5646  if (FD->isFunctionTemplateSpecialization())
5647    return false;
5648
5649  bool MissingPrototype = true;
5650  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5651       Prev; Prev = Prev->getPreviousDeclaration()) {
5652    // Ignore any declarations that occur in function or method
5653    // scope, because they aren't visible from the header.
5654    if (Prev->getDeclContext()->isFunctionOrMethod())
5655      continue;
5656
5657    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5658    break;
5659  }
5660
5661  return MissingPrototype;
5662}
5663
5664Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5665  // Clear the last template instantiation error context.
5666  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5667
5668  if (!D)
5669    return D;
5670  FunctionDecl *FD = 0;
5671
5672  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5673    FD = FunTmpl->getTemplatedDecl();
5674  else
5675    FD = cast<FunctionDecl>(D);
5676
5677  // Enter a new function scope
5678  PushFunctionScope();
5679
5680  // See if this is a redefinition.
5681  // But don't complain if we're in GNU89 mode and the previous definition
5682  // was an extern inline function.
5683  const FunctionDecl *Definition;
5684  if (FD->hasBody(Definition) &&
5685      !canRedefineFunction(Definition, getLangOptions())) {
5686    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5687        Definition->getStorageClass() == SC_Extern)
5688      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5689        << FD->getDeclName() << getLangOptions().CPlusPlus;
5690    else
5691      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5692    Diag(Definition->getLocation(), diag::note_previous_definition);
5693  }
5694
5695  // Builtin functions cannot be defined.
5696  if (unsigned BuiltinID = FD->getBuiltinID()) {
5697    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5698      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5699      FD->setInvalidDecl();
5700    }
5701  }
5702
5703  // The return type of a function definition must be complete
5704  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5705  QualType ResultType = FD->getResultType();
5706  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5707      !FD->isInvalidDecl() &&
5708      RequireCompleteType(FD->getLocation(), ResultType,
5709                          diag::err_func_def_incomplete_result))
5710    FD->setInvalidDecl();
5711
5712  // GNU warning -Wmissing-prototypes:
5713  //   Warn if a global function is defined without a previous
5714  //   prototype declaration. This warning is issued even if the
5715  //   definition itself provides a prototype. The aim is to detect
5716  //   global functions that fail to be declared in header files.
5717  if (ShouldWarnAboutMissingPrototype(FD))
5718    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5719
5720  if (FnBodyScope)
5721    PushDeclContext(FnBodyScope, FD);
5722
5723  // Check the validity of our function parameters
5724  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5725                           /*CheckParameterNames=*/true);
5726
5727  // Introduce our parameters into the function scope
5728  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5729    ParmVarDecl *Param = FD->getParamDecl(p);
5730    Param->setOwningFunction(FD);
5731
5732    // If this has an identifier, add it to the scope stack.
5733    if (Param->getIdentifier() && FnBodyScope) {
5734      CheckShadow(FnBodyScope, Param);
5735
5736      PushOnScopeChains(Param, FnBodyScope);
5737    }
5738  }
5739
5740  // Checking attributes of current function definition
5741  // dllimport attribute.
5742  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5743  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5744    // dllimport attribute cannot be directly applied to definition.
5745    // Microsoft accepts dllimport for functions defined within class scope.
5746    if (!DA->isInherited() &&
5747        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
5748      Diag(FD->getLocation(),
5749           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5750        << "dllimport";
5751      FD->setInvalidDecl();
5752      return FD;
5753    }
5754
5755    // Visual C++ appears to not think this is an issue, so only issue
5756    // a warning when Microsoft extensions are disabled.
5757    if (!LangOpts.Microsoft) {
5758      // If a symbol previously declared dllimport is later defined, the
5759      // attribute is ignored in subsequent references, and a warning is
5760      // emitted.
5761      Diag(FD->getLocation(),
5762           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5763        << FD->getName() << "dllimport";
5764    }
5765  }
5766  return FD;
5767}
5768
5769/// \brief Given the set of return statements within a function body,
5770/// compute the variables that are subject to the named return value
5771/// optimization.
5772///
5773/// Each of the variables that is subject to the named return value
5774/// optimization will be marked as NRVO variables in the AST, and any
5775/// return statement that has a marked NRVO variable as its NRVO candidate can
5776/// use the named return value optimization.
5777///
5778/// This function applies a very simplistic algorithm for NRVO: if every return
5779/// statement in the function has the same NRVO candidate, that candidate is
5780/// the NRVO variable.
5781///
5782/// FIXME: Employ a smarter algorithm that accounts for multiple return
5783/// statements and the lifetimes of the NRVO candidates. We should be able to
5784/// find a maximal set of NRVO variables.
5785static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5786  ReturnStmt **Returns = Scope->Returns.data();
5787
5788  const VarDecl *NRVOCandidate = 0;
5789  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5790    if (!Returns[I]->getNRVOCandidate())
5791      return;
5792
5793    if (!NRVOCandidate)
5794      NRVOCandidate = Returns[I]->getNRVOCandidate();
5795    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5796      return;
5797  }
5798
5799  if (NRVOCandidate)
5800    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5801}
5802
5803Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5804  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5805}
5806
5807Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5808                                    bool IsInstantiation) {
5809  FunctionDecl *FD = 0;
5810  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5811  if (FunTmpl)
5812    FD = FunTmpl->getTemplatedDecl();
5813  else
5814    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5815
5816  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5817  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5818
5819  if (FD) {
5820    FD->setBody(Body);
5821    if (FD->isMain()) {
5822      // C and C++ allow for main to automagically return 0.
5823      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5824      FD->setHasImplicitReturnZero(true);
5825      WP.disableCheckFallThrough();
5826    }
5827
5828    if (!FD->isInvalidDecl()) {
5829      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5830      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5831                                             FD->getResultType(), FD);
5832
5833      // If this is a constructor, we need a vtable.
5834      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5835        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5836
5837      ComputeNRVO(Body, getCurFunction());
5838    }
5839
5840    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5841  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5842    assert(MD == getCurMethodDecl() && "Method parsing confused");
5843    MD->setBody(Body);
5844    if (Body)
5845      MD->setEndLoc(Body->getLocEnd());
5846    if (!MD->isInvalidDecl()) {
5847      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5848      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5849                                             MD->getResultType(), MD);
5850    }
5851  } else {
5852    return 0;
5853  }
5854
5855  // Verify and clean out per-function state.
5856  if (Body) {
5857    // C++ constructors that have function-try-blocks can't have return
5858    // statements in the handlers of that block. (C++ [except.handle]p14)
5859    // Verify this.
5860    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5861      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5862
5863    // Verify that that gotos and switch cases don't jump into scopes illegally.
5864    // Verify that that gotos and switch cases don't jump into scopes illegally.
5865    if (getCurFunction()->NeedsScopeChecking() &&
5866        !dcl->isInvalidDecl() &&
5867        !hasAnyErrorsInThisFunction())
5868      DiagnoseInvalidJumps(Body);
5869
5870    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5871      if (!Destructor->getParent()->isDependentType())
5872        CheckDestructor(Destructor);
5873
5874      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5875                                             Destructor->getParent());
5876    }
5877
5878    // If any errors have occurred, clear out any temporaries that may have
5879    // been leftover. This ensures that these temporaries won't be picked up for
5880    // deletion in some later function.
5881    if (PP.getDiagnostics().hasErrorOccurred() ||
5882        PP.getDiagnostics().getSuppressAllDiagnostics())
5883      ExprTemporaries.clear();
5884    else if (!isa<FunctionTemplateDecl>(dcl)) {
5885      // Since the body is valid, issue any analysis-based warnings that are
5886      // enabled.
5887      ActivePolicy = &WP;
5888    }
5889
5890    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5891  }
5892
5893  if (!IsInstantiation)
5894    PopDeclContext();
5895
5896  PopFunctionOrBlockScope(ActivePolicy, dcl);
5897
5898  // If any errors have occurred, clear out any temporaries that may have
5899  // been leftover. This ensures that these temporaries won't be picked up for
5900  // deletion in some later function.
5901  if (getDiagnostics().hasErrorOccurred())
5902    ExprTemporaries.clear();
5903
5904  return dcl;
5905}
5906
5907/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5908/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5909NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5910                                          IdentifierInfo &II, Scope *S) {
5911  // Before we produce a declaration for an implicitly defined
5912  // function, see whether there was a locally-scoped declaration of
5913  // this name as a function or variable. If so, use that
5914  // (non-visible) declaration, and complain about it.
5915  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5916    = LocallyScopedExternalDecls.find(&II);
5917  if (Pos != LocallyScopedExternalDecls.end()) {
5918    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5919    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5920    return Pos->second;
5921  }
5922
5923  // Extension in C99.  Legal in C90, but warn about it.
5924  if (II.getName().startswith("__builtin_"))
5925    Diag(Loc, diag::warn_builtin_unknown) << &II;
5926  else if (getLangOptions().C99)
5927    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5928  else
5929    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5930
5931  // Set a Declarator for the implicit definition: int foo();
5932  const char *Dummy;
5933  AttributeFactory attrFactory;
5934  DeclSpec DS(attrFactory);
5935  unsigned DiagID;
5936  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5937  (void)Error; // Silence warning.
5938  assert(!Error && "Error setting up implicit decl!");
5939  Declarator D(DS, Declarator::BlockContext);
5940  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5941                                             0, 0, true, SourceLocation(),
5942                                             EST_None, SourceLocation(),
5943                                             0, 0, 0, 0, Loc, Loc, D),
5944                DS.getAttributes(),
5945                SourceLocation());
5946  D.SetIdentifier(&II, Loc);
5947
5948  // Insert this function into translation-unit scope.
5949
5950  DeclContext *PrevDC = CurContext;
5951  CurContext = Context.getTranslationUnitDecl();
5952
5953  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5954  FD->setImplicit();
5955
5956  CurContext = PrevDC;
5957
5958  AddKnownFunctionAttributes(FD);
5959
5960  return FD;
5961}
5962
5963/// \brief Adds any function attributes that we know a priori based on
5964/// the declaration of this function.
5965///
5966/// These attributes can apply both to implicitly-declared builtins
5967/// (like __builtin___printf_chk) or to library-declared functions
5968/// like NSLog or printf.
5969void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5970  if (FD->isInvalidDecl())
5971    return;
5972
5973  // If this is a built-in function, map its builtin attributes to
5974  // actual attributes.
5975  if (unsigned BuiltinID = FD->getBuiltinID()) {
5976    // Handle printf-formatting attributes.
5977    unsigned FormatIdx;
5978    bool HasVAListArg;
5979    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5980      if (!FD->getAttr<FormatAttr>())
5981        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5982                                                "printf", FormatIdx+1,
5983                                               HasVAListArg ? 0 : FormatIdx+2));
5984    }
5985    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5986                                             HasVAListArg)) {
5987     if (!FD->getAttr<FormatAttr>())
5988       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5989                                              "scanf", FormatIdx+1,
5990                                              HasVAListArg ? 0 : FormatIdx+2));
5991    }
5992
5993    // Mark const if we don't care about errno and that is the only
5994    // thing preventing the function from being const. This allows
5995    // IRgen to use LLVM intrinsics for such functions.
5996    if (!getLangOptions().MathErrno &&
5997        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5998      if (!FD->getAttr<ConstAttr>())
5999        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6000    }
6001
6002    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6003      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6004    if (Context.BuiltinInfo.isConst(BuiltinID))
6005      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6006  }
6007
6008  IdentifierInfo *Name = FD->getIdentifier();
6009  if (!Name)
6010    return;
6011  if ((!getLangOptions().CPlusPlus &&
6012       FD->getDeclContext()->isTranslationUnit()) ||
6013      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6014       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6015       LinkageSpecDecl::lang_c)) {
6016    // Okay: this could be a libc/libm/Objective-C function we know
6017    // about.
6018  } else
6019    return;
6020
6021  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6022    // FIXME: NSLog and NSLogv should be target specific
6023    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6024      // FIXME: We known better than our headers.
6025      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6026    } else
6027      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6028                                             "printf", 1,
6029                                             Name->isStr("NSLogv") ? 0 : 2));
6030  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6031    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6032    // target-specific builtins, perhaps?
6033    if (!FD->getAttr<FormatAttr>())
6034      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6035                                             "printf", 2,
6036                                             Name->isStr("vasprintf") ? 0 : 3));
6037  }
6038}
6039
6040TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6041                                    TypeSourceInfo *TInfo) {
6042  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6043  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6044
6045  if (!TInfo) {
6046    assert(D.isInvalidType() && "no declarator info for valid type");
6047    TInfo = Context.getTrivialTypeSourceInfo(T);
6048  }
6049
6050  // Scope manipulation handled by caller.
6051  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6052                                           D.getSourceRange().getBegin(),
6053                                           D.getIdentifierLoc(),
6054                                           D.getIdentifier(),
6055                                           TInfo);
6056
6057  // Bail out immediately if we have an invalid declaration.
6058  if (D.isInvalidType()) {
6059    NewTD->setInvalidDecl();
6060    return NewTD;
6061  }
6062
6063  // C++ [dcl.typedef]p8:
6064  //   If the typedef declaration defines an unnamed class (or
6065  //   enum), the first typedef-name declared by the declaration
6066  //   to be that class type (or enum type) is used to denote the
6067  //   class type (or enum type) for linkage purposes only.
6068  // We need to check whether the type was declared in the declaration.
6069  switch (D.getDeclSpec().getTypeSpecType()) {
6070  case TST_enum:
6071  case TST_struct:
6072  case TST_union:
6073  case TST_class: {
6074    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6075
6076    // Do nothing if the tag is not anonymous or already has an
6077    // associated typedef (from an earlier typedef in this decl group).
6078    if (tagFromDeclSpec->getIdentifier()) break;
6079    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
6080
6081    // A well-formed anonymous tag must always be a TUK_Definition.
6082    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6083
6084    // The type must match the tag exactly;  no qualifiers allowed.
6085    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6086      break;
6087
6088    // Otherwise, set this is the anon-decl typedef for the tag.
6089    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
6090    break;
6091  }
6092
6093  default:
6094    break;
6095  }
6096
6097  return NewTD;
6098}
6099
6100
6101/// \brief Determine whether a tag with a given kind is acceptable
6102/// as a redeclaration of the given tag declaration.
6103///
6104/// \returns true if the new tag kind is acceptable, false otherwise.
6105bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6106                                        TagTypeKind NewTag,
6107                                        SourceLocation NewTagLoc,
6108                                        const IdentifierInfo &Name) {
6109  // C++ [dcl.type.elab]p3:
6110  //   The class-key or enum keyword present in the
6111  //   elaborated-type-specifier shall agree in kind with the
6112  //   declaration to which the name in the elaborated-type-specifier
6113  //   refers. This rule also applies to the form of
6114  //   elaborated-type-specifier that declares a class-name or
6115  //   friend class since it can be construed as referring to the
6116  //   definition of the class. Thus, in any
6117  //   elaborated-type-specifier, the enum keyword shall be used to
6118  //   refer to an enumeration (7.2), the union class-key shall be
6119  //   used to refer to a union (clause 9), and either the class or
6120  //   struct class-key shall be used to refer to a class (clause 9)
6121  //   declared using the class or struct class-key.
6122  TagTypeKind OldTag = Previous->getTagKind();
6123  if (OldTag == NewTag)
6124    return true;
6125
6126  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6127      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6128    // Warn about the struct/class tag mismatch.
6129    bool isTemplate = false;
6130    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6131      isTemplate = Record->getDescribedClassTemplate();
6132
6133    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6134      << (NewTag == TTK_Class)
6135      << isTemplate << &Name
6136      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6137                              OldTag == TTK_Class? "class" : "struct");
6138    Diag(Previous->getLocation(), diag::note_previous_use);
6139    return true;
6140  }
6141  return false;
6142}
6143
6144/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6145/// former case, Name will be non-null.  In the later case, Name will be null.
6146/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6147/// reference/declaration/definition of a tag.
6148Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6149                     SourceLocation KWLoc, CXXScopeSpec &SS,
6150                     IdentifierInfo *Name, SourceLocation NameLoc,
6151                     AttributeList *Attr, AccessSpecifier AS,
6152                     MultiTemplateParamsArg TemplateParameterLists,
6153                     bool &OwnedDecl, bool &IsDependent,
6154                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6155                     TypeResult UnderlyingType) {
6156  // If this is not a definition, it must have a name.
6157  assert((Name != 0 || TUK == TUK_Definition) &&
6158         "Nameless record must be a definition!");
6159  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6160
6161  OwnedDecl = false;
6162  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6163
6164  // FIXME: Check explicit specializations more carefully.
6165  bool isExplicitSpecialization = false;
6166  bool Invalid = false;
6167
6168  // We only need to do this matching if we have template parameters
6169  // or a scope specifier, which also conveniently avoids this work
6170  // for non-C++ cases.
6171  if (TemplateParameterLists.size() > 0 ||
6172      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6173    if (TemplateParameterList *TemplateParams
6174          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6175                                                TemplateParameterLists.get(),
6176                                                TemplateParameterLists.size(),
6177                                                    TUK == TUK_Friend,
6178                                                    isExplicitSpecialization,
6179                                                    Invalid)) {
6180      if (TemplateParams->size() > 0) {
6181        // This is a declaration or definition of a class template (which may
6182        // be a member of another template).
6183
6184        if (Invalid)
6185          return 0;
6186
6187        OwnedDecl = false;
6188        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6189                                               SS, Name, NameLoc, Attr,
6190                                               TemplateParams, AS,
6191                                           TemplateParameterLists.size() - 1,
6192                 (TemplateParameterList**) TemplateParameterLists.release());
6193        return Result.get();
6194      } else {
6195        // The "template<>" header is extraneous.
6196        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6197          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6198        isExplicitSpecialization = true;
6199      }
6200    }
6201  }
6202
6203  // Figure out the underlying type if this a enum declaration. We need to do
6204  // this early, because it's needed to detect if this is an incompatible
6205  // redeclaration.
6206  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6207
6208  if (Kind == TTK_Enum) {
6209    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6210      // No underlying type explicitly specified, or we failed to parse the
6211      // type, default to int.
6212      EnumUnderlying = Context.IntTy.getTypePtr();
6213    else if (UnderlyingType.get()) {
6214      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6215      // integral type; any cv-qualification is ignored.
6216      TypeSourceInfo *TI = 0;
6217      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6218      EnumUnderlying = TI;
6219
6220      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6221
6222      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6223        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6224          << T;
6225        // Recover by falling back to int.
6226        EnumUnderlying = Context.IntTy.getTypePtr();
6227      }
6228
6229      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6230                                          UPPC_FixedUnderlyingType))
6231        EnumUnderlying = Context.IntTy.getTypePtr();
6232
6233    } else if (getLangOptions().Microsoft)
6234      // Microsoft enums are always of int type.
6235      EnumUnderlying = Context.IntTy.getTypePtr();
6236  }
6237
6238  DeclContext *SearchDC = CurContext;
6239  DeclContext *DC = CurContext;
6240  bool isStdBadAlloc = false;
6241
6242  RedeclarationKind Redecl = ForRedeclaration;
6243  if (TUK == TUK_Friend || TUK == TUK_Reference)
6244    Redecl = NotForRedeclaration;
6245
6246  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6247
6248  if (Name && SS.isNotEmpty()) {
6249    // We have a nested-name tag ('struct foo::bar').
6250
6251    // Check for invalid 'foo::'.
6252    if (SS.isInvalid()) {
6253      Name = 0;
6254      goto CreateNewDecl;
6255    }
6256
6257    // If this is a friend or a reference to a class in a dependent
6258    // context, don't try to make a decl for it.
6259    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6260      DC = computeDeclContext(SS, false);
6261      if (!DC) {
6262        IsDependent = true;
6263        return 0;
6264      }
6265    } else {
6266      DC = computeDeclContext(SS, true);
6267      if (!DC) {
6268        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6269          << SS.getRange();
6270        return 0;
6271      }
6272    }
6273
6274    if (RequireCompleteDeclContext(SS, DC))
6275      return 0;
6276
6277    SearchDC = DC;
6278    // Look-up name inside 'foo::'.
6279    LookupQualifiedName(Previous, DC);
6280
6281    if (Previous.isAmbiguous())
6282      return 0;
6283
6284    if (Previous.empty()) {
6285      // Name lookup did not find anything. However, if the
6286      // nested-name-specifier refers to the current instantiation,
6287      // and that current instantiation has any dependent base
6288      // classes, we might find something at instantiation time: treat
6289      // this as a dependent elaborated-type-specifier.
6290      // But this only makes any sense for reference-like lookups.
6291      if (Previous.wasNotFoundInCurrentInstantiation() &&
6292          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6293        IsDependent = true;
6294        return 0;
6295      }
6296
6297      // A tag 'foo::bar' must already exist.
6298      Diag(NameLoc, diag::err_not_tag_in_scope)
6299        << Kind << Name << DC << SS.getRange();
6300      Name = 0;
6301      Invalid = true;
6302      goto CreateNewDecl;
6303    }
6304  } else if (Name) {
6305    // If this is a named struct, check to see if there was a previous forward
6306    // declaration or definition.
6307    // FIXME: We're looking into outer scopes here, even when we
6308    // shouldn't be. Doing so can result in ambiguities that we
6309    // shouldn't be diagnosing.
6310    LookupName(Previous, S);
6311
6312    // Note:  there used to be some attempt at recovery here.
6313    if (Previous.isAmbiguous())
6314      return 0;
6315
6316    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6317      // FIXME: This makes sure that we ignore the contexts associated
6318      // with C structs, unions, and enums when looking for a matching
6319      // tag declaration or definition. See the similar lookup tweak
6320      // in Sema::LookupName; is there a better way to deal with this?
6321      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6322        SearchDC = SearchDC->getParent();
6323    }
6324  } else if (S->isFunctionPrototypeScope()) {
6325    // If this is an enum declaration in function prototype scope, set its
6326    // initial context to the translation unit.
6327    SearchDC = Context.getTranslationUnitDecl();
6328  }
6329
6330  if (Previous.isSingleResult() &&
6331      Previous.getFoundDecl()->isTemplateParameter()) {
6332    // Maybe we will complain about the shadowed template parameter.
6333    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6334    // Just pretend that we didn't see the previous declaration.
6335    Previous.clear();
6336  }
6337
6338  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6339      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6340    // This is a declaration of or a reference to "std::bad_alloc".
6341    isStdBadAlloc = true;
6342
6343    if (Previous.empty() && StdBadAlloc) {
6344      // std::bad_alloc has been implicitly declared (but made invisible to
6345      // name lookup). Fill in this implicit declaration as the previous
6346      // declaration, so that the declarations get chained appropriately.
6347      Previous.addDecl(getStdBadAlloc());
6348    }
6349  }
6350
6351  // If we didn't find a previous declaration, and this is a reference
6352  // (or friend reference), move to the correct scope.  In C++, we
6353  // also need to do a redeclaration lookup there, just in case
6354  // there's a shadow friend decl.
6355  if (Name && Previous.empty() &&
6356      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6357    if (Invalid) goto CreateNewDecl;
6358    assert(SS.isEmpty());
6359
6360    if (TUK == TUK_Reference) {
6361      // C++ [basic.scope.pdecl]p5:
6362      //   -- for an elaborated-type-specifier of the form
6363      //
6364      //          class-key identifier
6365      //
6366      //      if the elaborated-type-specifier is used in the
6367      //      decl-specifier-seq or parameter-declaration-clause of a
6368      //      function defined in namespace scope, the identifier is
6369      //      declared as a class-name in the namespace that contains
6370      //      the declaration; otherwise, except as a friend
6371      //      declaration, the identifier is declared in the smallest
6372      //      non-class, non-function-prototype scope that contains the
6373      //      declaration.
6374      //
6375      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6376      // C structs and unions.
6377      //
6378      // It is an error in C++ to declare (rather than define) an enum
6379      // type, including via an elaborated type specifier.  We'll
6380      // diagnose that later; for now, declare the enum in the same
6381      // scope as we would have picked for any other tag type.
6382      //
6383      // GNU C also supports this behavior as part of its incomplete
6384      // enum types extension, while GNU C++ does not.
6385      //
6386      // Find the context where we'll be declaring the tag.
6387      // FIXME: We would like to maintain the current DeclContext as the
6388      // lexical context,
6389      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6390        SearchDC = SearchDC->getParent();
6391
6392      // Find the scope where we'll be declaring the tag.
6393      while (S->isClassScope() ||
6394             (getLangOptions().CPlusPlus &&
6395              S->isFunctionPrototypeScope()) ||
6396             ((S->getFlags() & Scope::DeclScope) == 0) ||
6397             (S->getEntity() &&
6398              ((DeclContext *)S->getEntity())->isTransparentContext()))
6399        S = S->getParent();
6400    } else {
6401      assert(TUK == TUK_Friend);
6402      // C++ [namespace.memdef]p3:
6403      //   If a friend declaration in a non-local class first declares a
6404      //   class or function, the friend class or function is a member of
6405      //   the innermost enclosing namespace.
6406      SearchDC = SearchDC->getEnclosingNamespaceContext();
6407    }
6408
6409    // In C++, we need to do a redeclaration lookup to properly
6410    // diagnose some problems.
6411    if (getLangOptions().CPlusPlus) {
6412      Previous.setRedeclarationKind(ForRedeclaration);
6413      LookupQualifiedName(Previous, SearchDC);
6414    }
6415  }
6416
6417  if (!Previous.empty()) {
6418    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6419
6420    // It's okay to have a tag decl in the same scope as a typedef
6421    // which hides a tag decl in the same scope.  Finding this
6422    // insanity with a redeclaration lookup can only actually happen
6423    // in C++.
6424    //
6425    // This is also okay for elaborated-type-specifiers, which is
6426    // technically forbidden by the current standard but which is
6427    // okay according to the likely resolution of an open issue;
6428    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6429    if (getLangOptions().CPlusPlus) {
6430      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6431        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6432          TagDecl *Tag = TT->getDecl();
6433          if (Tag->getDeclName() == Name &&
6434              Tag->getDeclContext()->getRedeclContext()
6435                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6436            PrevDecl = Tag;
6437            Previous.clear();
6438            Previous.addDecl(Tag);
6439            Previous.resolveKind();
6440          }
6441        }
6442      }
6443    }
6444
6445    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6446      // If this is a use of a previous tag, or if the tag is already declared
6447      // in the same scope (so that the definition/declaration completes or
6448      // rementions the tag), reuse the decl.
6449      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6450          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6451        // Make sure that this wasn't declared as an enum and now used as a
6452        // struct or something similar.
6453        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6454          bool SafeToContinue
6455            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6456               Kind != TTK_Enum);
6457          if (SafeToContinue)
6458            Diag(KWLoc, diag::err_use_with_wrong_tag)
6459              << Name
6460              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6461                                              PrevTagDecl->getKindName());
6462          else
6463            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6464          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6465
6466          if (SafeToContinue)
6467            Kind = PrevTagDecl->getTagKind();
6468          else {
6469            // Recover by making this an anonymous redefinition.
6470            Name = 0;
6471            Previous.clear();
6472            Invalid = true;
6473          }
6474        }
6475
6476        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6477          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6478
6479          // All conflicts with previous declarations are recovered by
6480          // returning the previous declaration.
6481          if (ScopedEnum != PrevEnum->isScoped()) {
6482            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6483              << PrevEnum->isScoped();
6484            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6485            return PrevTagDecl;
6486          }
6487          else if (EnumUnderlying && PrevEnum->isFixed()) {
6488            QualType T;
6489            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6490                T = TI->getType();
6491            else
6492                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6493
6494            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6495              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6496                   diag::err_enum_redeclare_type_mismatch)
6497                << T
6498                << PrevEnum->getIntegerType();
6499              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6500              return PrevTagDecl;
6501            }
6502          }
6503          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6504            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6505              << PrevEnum->isFixed();
6506            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6507            return PrevTagDecl;
6508          }
6509        }
6510
6511        if (!Invalid) {
6512          // If this is a use, just return the declaration we found.
6513
6514          // FIXME: In the future, return a variant or some other clue
6515          // for the consumer of this Decl to know it doesn't own it.
6516          // For our current ASTs this shouldn't be a problem, but will
6517          // need to be changed with DeclGroups.
6518          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6519              TUK == TUK_Friend)
6520            return PrevTagDecl;
6521
6522          // Diagnose attempts to redefine a tag.
6523          if (TUK == TUK_Definition) {
6524            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6525              // If we're defining a specialization and the previous definition
6526              // is from an implicit instantiation, don't emit an error
6527              // here; we'll catch this in the general case below.
6528              if (!isExplicitSpecialization ||
6529                  !isa<CXXRecordDecl>(Def) ||
6530                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6531                                               == TSK_ExplicitSpecialization) {
6532                Diag(NameLoc, diag::err_redefinition) << Name;
6533                Diag(Def->getLocation(), diag::note_previous_definition);
6534                // If this is a redefinition, recover by making this
6535                // struct be anonymous, which will make any later
6536                // references get the previous definition.
6537                Name = 0;
6538                Previous.clear();
6539                Invalid = true;
6540              }
6541            } else {
6542              // If the type is currently being defined, complain
6543              // about a nested redefinition.
6544              const TagType *Tag
6545                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6546              if (Tag->isBeingDefined()) {
6547                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6548                Diag(PrevTagDecl->getLocation(),
6549                     diag::note_previous_definition);
6550                Name = 0;
6551                Previous.clear();
6552                Invalid = true;
6553              }
6554            }
6555
6556            // Okay, this is definition of a previously declared or referenced
6557            // tag PrevDecl. We're going to create a new Decl for it.
6558          }
6559        }
6560        // If we get here we have (another) forward declaration or we
6561        // have a definition.  Just create a new decl.
6562
6563      } else {
6564        // If we get here, this is a definition of a new tag type in a nested
6565        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6566        // new decl/type.  We set PrevDecl to NULL so that the entities
6567        // have distinct types.
6568        Previous.clear();
6569      }
6570      // If we get here, we're going to create a new Decl. If PrevDecl
6571      // is non-NULL, it's a definition of the tag declared by
6572      // PrevDecl. If it's NULL, we have a new definition.
6573
6574
6575    // Otherwise, PrevDecl is not a tag, but was found with tag
6576    // lookup.  This is only actually possible in C++, where a few
6577    // things like templates still live in the tag namespace.
6578    } else {
6579      assert(getLangOptions().CPlusPlus);
6580
6581      // Use a better diagnostic if an elaborated-type-specifier
6582      // found the wrong kind of type on the first
6583      // (non-redeclaration) lookup.
6584      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6585          !Previous.isForRedeclaration()) {
6586        unsigned Kind = 0;
6587        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6588        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6589        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6590        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6591        Invalid = true;
6592
6593      // Otherwise, only diagnose if the declaration is in scope.
6594      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6595                                isExplicitSpecialization)) {
6596        // do nothing
6597
6598      // Diagnose implicit declarations introduced by elaborated types.
6599      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6600        unsigned Kind = 0;
6601        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6602        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6603        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6604        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6605        Invalid = true;
6606
6607      // Otherwise it's a declaration.  Call out a particularly common
6608      // case here.
6609      } else if (isa<TypedefDecl>(PrevDecl)) {
6610        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6611          << Name
6612          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6613        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6614        Invalid = true;
6615
6616      // Otherwise, diagnose.
6617      } else {
6618        // The tag name clashes with something else in the target scope,
6619        // issue an error and recover by making this tag be anonymous.
6620        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6621        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6622        Name = 0;
6623        Invalid = true;
6624      }
6625
6626      // The existing declaration isn't relevant to us; we're in a
6627      // new scope, so clear out the previous declaration.
6628      Previous.clear();
6629    }
6630  }
6631
6632CreateNewDecl:
6633
6634  TagDecl *PrevDecl = 0;
6635  if (Previous.isSingleResult())
6636    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6637
6638  // If there is an identifier, use the location of the identifier as the
6639  // location of the decl, otherwise use the location of the struct/union
6640  // keyword.
6641  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6642
6643  // Otherwise, create a new declaration. If there is a previous
6644  // declaration of the same entity, the two will be linked via
6645  // PrevDecl.
6646  TagDecl *New;
6647
6648  bool IsForwardReference = false;
6649  if (Kind == TTK_Enum) {
6650    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6651    // enum X { A, B, C } D;    D should chain to X.
6652    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6653                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6654                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6655    // If this is an undefined enum, warn.
6656    if (TUK != TUK_Definition && !Invalid) {
6657      TagDecl *Def;
6658      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6659        // C++0x: 7.2p2: opaque-enum-declaration.
6660        // Conflicts are diagnosed above. Do nothing.
6661      }
6662      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6663        Diag(Loc, diag::ext_forward_ref_enum_def)
6664          << New;
6665        Diag(Def->getLocation(), diag::note_previous_definition);
6666      } else {
6667        unsigned DiagID = diag::ext_forward_ref_enum;
6668        if (getLangOptions().Microsoft)
6669          DiagID = diag::ext_ms_forward_ref_enum;
6670        else if (getLangOptions().CPlusPlus)
6671          DiagID = diag::err_forward_ref_enum;
6672        Diag(Loc, DiagID);
6673
6674        // If this is a forward-declared reference to an enumeration, make a
6675        // note of it; we won't actually be introducing the declaration into
6676        // the declaration context.
6677        if (TUK == TUK_Reference)
6678          IsForwardReference = true;
6679      }
6680    }
6681
6682    if (EnumUnderlying) {
6683      EnumDecl *ED = cast<EnumDecl>(New);
6684      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6685        ED->setIntegerTypeSourceInfo(TI);
6686      else
6687        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6688      ED->setPromotionType(ED->getIntegerType());
6689    }
6690
6691  } else {
6692    // struct/union/class
6693
6694    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6695    // struct X { int A; } D;    D should chain to X.
6696    if (getLangOptions().CPlusPlus) {
6697      // FIXME: Look for a way to use RecordDecl for simple structs.
6698      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6699                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6700
6701      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6702        StdBadAlloc = cast<CXXRecordDecl>(New);
6703    } else
6704      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6705                               cast_or_null<RecordDecl>(PrevDecl));
6706  }
6707
6708  // Maybe add qualifier info.
6709  if (SS.isNotEmpty()) {
6710    if (SS.isSet()) {
6711      New->setQualifierInfo(SS.getWithLocInContext(Context));
6712      if (TemplateParameterLists.size() > 0) {
6713        New->setTemplateParameterListsInfo(Context,
6714                                           TemplateParameterLists.size(),
6715                    (TemplateParameterList**) TemplateParameterLists.release());
6716      }
6717    }
6718    else
6719      Invalid = true;
6720  }
6721
6722  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6723    // Add alignment attributes if necessary; these attributes are checked when
6724    // the ASTContext lays out the structure.
6725    //
6726    // It is important for implementing the correct semantics that this
6727    // happen here (in act on tag decl). The #pragma pack stack is
6728    // maintained as a result of parser callbacks which can occur at
6729    // many points during the parsing of a struct declaration (because
6730    // the #pragma tokens are effectively skipped over during the
6731    // parsing of the struct).
6732    AddAlignmentAttributesForRecord(RD);
6733  }
6734
6735  // If this is a specialization of a member class (of a class template),
6736  // check the specialization.
6737  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6738    Invalid = true;
6739
6740  if (Invalid)
6741    New->setInvalidDecl();
6742
6743  if (Attr)
6744    ProcessDeclAttributeList(S, New, Attr);
6745
6746  // If we're declaring or defining a tag in function prototype scope
6747  // in C, note that this type can only be used within the function.
6748  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6749    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6750
6751  // Set the lexical context. If the tag has a C++ scope specifier, the
6752  // lexical context will be different from the semantic context.
6753  New->setLexicalDeclContext(CurContext);
6754
6755  // Mark this as a friend decl if applicable.
6756  if (TUK == TUK_Friend)
6757    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6758
6759  // Set the access specifier.
6760  if (!Invalid && SearchDC->isRecord())
6761    SetMemberAccessSpecifier(New, PrevDecl, AS);
6762
6763  if (TUK == TUK_Definition)
6764    New->startDefinition();
6765
6766  // If this has an identifier, add it to the scope stack.
6767  if (TUK == TUK_Friend) {
6768    // We might be replacing an existing declaration in the lookup tables;
6769    // if so, borrow its access specifier.
6770    if (PrevDecl)
6771      New->setAccess(PrevDecl->getAccess());
6772
6773    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6774    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6775    if (Name) // can be null along some error paths
6776      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6777        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6778  } else if (Name) {
6779    S = getNonFieldDeclScope(S);
6780    PushOnScopeChains(New, S, !IsForwardReference);
6781    if (IsForwardReference)
6782      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6783
6784  } else {
6785    CurContext->addDecl(New);
6786  }
6787
6788  // If this is the C FILE type, notify the AST context.
6789  if (IdentifierInfo *II = New->getIdentifier())
6790    if (!New->isInvalidDecl() &&
6791        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6792        II->isStr("FILE"))
6793      Context.setFILEDecl(New);
6794
6795  OwnedDecl = true;
6796  return New;
6797}
6798
6799void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6800  AdjustDeclIfTemplate(TagD);
6801  TagDecl *Tag = cast<TagDecl>(TagD);
6802
6803  // Enter the tag context.
6804  PushDeclContext(S, Tag);
6805}
6806
6807void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6808                                           SourceLocation FinalLoc,
6809                                           SourceLocation LBraceLoc) {
6810  AdjustDeclIfTemplate(TagD);
6811  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6812
6813  FieldCollector->StartClass();
6814
6815  if (!Record->getIdentifier())
6816    return;
6817
6818  if (FinalLoc.isValid())
6819    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
6820
6821  // C++ [class]p2:
6822  //   [...] The class-name is also inserted into the scope of the
6823  //   class itself; this is known as the injected-class-name. For
6824  //   purposes of access checking, the injected-class-name is treated
6825  //   as if it were a public member name.
6826  CXXRecordDecl *InjectedClassName
6827    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6828                            Record->getLocStart(), Record->getLocation(),
6829                            Record->getIdentifier(),
6830                            /*PrevDecl=*/0,
6831                            /*DelayTypeCreation=*/true);
6832  Context.getTypeDeclType(InjectedClassName, Record);
6833  InjectedClassName->setImplicit();
6834  InjectedClassName->setAccess(AS_public);
6835  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6836      InjectedClassName->setDescribedClassTemplate(Template);
6837  PushOnScopeChains(InjectedClassName, S);
6838  assert(InjectedClassName->isInjectedClassName() &&
6839         "Broken injected-class-name");
6840}
6841
6842void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6843                                    SourceLocation RBraceLoc) {
6844  AdjustDeclIfTemplate(TagD);
6845  TagDecl *Tag = cast<TagDecl>(TagD);
6846  Tag->setRBraceLoc(RBraceLoc);
6847
6848  if (isa<CXXRecordDecl>(Tag))
6849    FieldCollector->FinishClass();
6850
6851  // Exit this scope of this tag's definition.
6852  PopDeclContext();
6853
6854  // Notify the consumer that we've defined a tag.
6855  Consumer.HandleTagDeclDefinition(Tag);
6856}
6857
6858void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6859  AdjustDeclIfTemplate(TagD);
6860  TagDecl *Tag = cast<TagDecl>(TagD);
6861  Tag->setInvalidDecl();
6862
6863  // We're undoing ActOnTagStartDefinition here, not
6864  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6865  // the FieldCollector.
6866
6867  PopDeclContext();
6868}
6869
6870// Note that FieldName may be null for anonymous bitfields.
6871bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6872                          QualType FieldTy, const Expr *BitWidth,
6873                          bool *ZeroWidth) {
6874  // Default to true; that shouldn't confuse checks for emptiness
6875  if (ZeroWidth)
6876    *ZeroWidth = true;
6877
6878  // C99 6.7.2.1p4 - verify the field type.
6879  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6880  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6881    // Handle incomplete types with specific error.
6882    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6883      return true;
6884    if (FieldName)
6885      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6886        << FieldName << FieldTy << BitWidth->getSourceRange();
6887    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6888      << FieldTy << BitWidth->getSourceRange();
6889  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6890                                             UPPC_BitFieldWidth))
6891    return true;
6892
6893  // If the bit-width is type- or value-dependent, don't try to check
6894  // it now.
6895  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6896    return false;
6897
6898  llvm::APSInt Value;
6899  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6900    return true;
6901
6902  if (Value != 0 && ZeroWidth)
6903    *ZeroWidth = false;
6904
6905  // Zero-width bitfield is ok for anonymous field.
6906  if (Value == 0 && FieldName)
6907    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6908
6909  if (Value.isSigned() && Value.isNegative()) {
6910    if (FieldName)
6911      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6912               << FieldName << Value.toString(10);
6913    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6914      << Value.toString(10);
6915  }
6916
6917  if (!FieldTy->isDependentType()) {
6918    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6919    if (Value.getZExtValue() > TypeSize) {
6920      if (!getLangOptions().CPlusPlus) {
6921        if (FieldName)
6922          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6923            << FieldName << (unsigned)Value.getZExtValue()
6924            << (unsigned)TypeSize;
6925
6926        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6927          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6928      }
6929
6930      if (FieldName)
6931        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6932          << FieldName << (unsigned)Value.getZExtValue()
6933          << (unsigned)TypeSize;
6934      else
6935        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6936          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6937    }
6938  }
6939
6940  return false;
6941}
6942
6943/// ActOnField - Each field of a struct/union/class is passed into this in order
6944/// to create a FieldDecl object for it.
6945Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6946                                 SourceLocation DeclStart,
6947                                 Declarator &D, ExprTy *BitfieldWidth) {
6948  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6949                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6950                               AS_public);
6951  return Res;
6952}
6953
6954/// HandleField - Analyze a field of a C struct or a C++ data member.
6955///
6956FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6957                             SourceLocation DeclStart,
6958                             Declarator &D, Expr *BitWidth,
6959                             AccessSpecifier AS) {
6960  IdentifierInfo *II = D.getIdentifier();
6961  SourceLocation Loc = DeclStart;
6962  if (II) Loc = D.getIdentifierLoc();
6963
6964  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6965  QualType T = TInfo->getType();
6966  if (getLangOptions().CPlusPlus) {
6967    CheckExtraCXXDefaultArguments(D);
6968
6969    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6970                                        UPPC_DataMemberType)) {
6971      D.setInvalidType();
6972      T = Context.IntTy;
6973      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6974    }
6975  }
6976
6977  DiagnoseFunctionSpecifiers(D);
6978
6979  if (D.getDeclSpec().isThreadSpecified())
6980    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6981
6982  // Check to see if this name was declared as a member previously
6983  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6984  LookupName(Previous, S);
6985  assert((Previous.empty() || Previous.isOverloadedResult() ||
6986          Previous.isSingleResult())
6987    && "Lookup of member name should be either overloaded, single or null");
6988
6989  // If the name is overloaded then get any declaration else get the single result
6990  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6991    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6992
6993  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6994    // Maybe we will complain about the shadowed template parameter.
6995    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6996    // Just pretend that we didn't see the previous declaration.
6997    PrevDecl = 0;
6998  }
6999
7000  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7001    PrevDecl = 0;
7002
7003  bool Mutable
7004    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7005  SourceLocation TSSL = D.getSourceRange().getBegin();
7006  FieldDecl *NewFD
7007    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7008                     AS, PrevDecl, &D);
7009
7010  if (NewFD->isInvalidDecl())
7011    Record->setInvalidDecl();
7012
7013  if (NewFD->isInvalidDecl() && PrevDecl) {
7014    // Don't introduce NewFD into scope; there's already something
7015    // with the same name in the same scope.
7016  } else if (II) {
7017    PushOnScopeChains(NewFD, S);
7018  } else
7019    Record->addDecl(NewFD);
7020
7021  return NewFD;
7022}
7023
7024/// \brief Build a new FieldDecl and check its well-formedness.
7025///
7026/// This routine builds a new FieldDecl given the fields name, type,
7027/// record, etc. \p PrevDecl should refer to any previous declaration
7028/// with the same name and in the same scope as the field to be
7029/// created.
7030///
7031/// \returns a new FieldDecl.
7032///
7033/// \todo The Declarator argument is a hack. It will be removed once
7034FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7035                                TypeSourceInfo *TInfo,
7036                                RecordDecl *Record, SourceLocation Loc,
7037                                bool Mutable, Expr *BitWidth,
7038                                SourceLocation TSSL,
7039                                AccessSpecifier AS, NamedDecl *PrevDecl,
7040                                Declarator *D) {
7041  IdentifierInfo *II = Name.getAsIdentifierInfo();
7042  bool InvalidDecl = false;
7043  if (D) InvalidDecl = D->isInvalidType();
7044
7045  // If we receive a broken type, recover by assuming 'int' and
7046  // marking this declaration as invalid.
7047  if (T.isNull()) {
7048    InvalidDecl = true;
7049    T = Context.IntTy;
7050  }
7051
7052  QualType EltTy = Context.getBaseElementType(T);
7053  if (!EltTy->isDependentType() &&
7054      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7055    // Fields of incomplete type force their record to be invalid.
7056    Record->setInvalidDecl();
7057    InvalidDecl = true;
7058  }
7059
7060  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7061  // than a variably modified type.
7062  if (!InvalidDecl && T->isVariablyModifiedType()) {
7063    bool SizeIsNegative;
7064    llvm::APSInt Oversized;
7065    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7066                                                           SizeIsNegative,
7067                                                           Oversized);
7068    if (!FixedTy.isNull()) {
7069      Diag(Loc, diag::warn_illegal_constant_array_size);
7070      T = FixedTy;
7071    } else {
7072      if (SizeIsNegative)
7073        Diag(Loc, diag::err_typecheck_negative_array_size);
7074      else if (Oversized.getBoolValue())
7075        Diag(Loc, diag::err_array_too_large)
7076          << Oversized.toString(10);
7077      else
7078        Diag(Loc, diag::err_typecheck_field_variable_size);
7079      InvalidDecl = true;
7080    }
7081  }
7082
7083  // Fields can not have abstract class types
7084  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7085                                             diag::err_abstract_type_in_decl,
7086                                             AbstractFieldType))
7087    InvalidDecl = true;
7088
7089  bool ZeroWidth = false;
7090  // If this is declared as a bit-field, check the bit-field.
7091  if (!InvalidDecl && BitWidth &&
7092      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7093    InvalidDecl = true;
7094    BitWidth = 0;
7095    ZeroWidth = false;
7096  }
7097
7098  // Check that 'mutable' is consistent with the type of the declaration.
7099  if (!InvalidDecl && Mutable) {
7100    unsigned DiagID = 0;
7101    if (T->isReferenceType())
7102      DiagID = diag::err_mutable_reference;
7103    else if (T.isConstQualified())
7104      DiagID = diag::err_mutable_const;
7105
7106    if (DiagID) {
7107      SourceLocation ErrLoc = Loc;
7108      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7109        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7110      Diag(ErrLoc, DiagID);
7111      Mutable = false;
7112      InvalidDecl = true;
7113    }
7114  }
7115
7116  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7117                                       BitWidth, Mutable);
7118  if (InvalidDecl)
7119    NewFD->setInvalidDecl();
7120
7121  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7122    Diag(Loc, diag::err_duplicate_member) << II;
7123    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7124    NewFD->setInvalidDecl();
7125  }
7126
7127  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7128    if (Record->isUnion()) {
7129      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7130        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7131        if (RDecl->getDefinition()) {
7132          // C++ [class.union]p1: An object of a class with a non-trivial
7133          // constructor, a non-trivial copy constructor, a non-trivial
7134          // destructor, or a non-trivial copy assignment operator
7135          // cannot be a member of a union, nor can an array of such
7136          // objects.
7137          // TODO: C++0x alters this restriction significantly.
7138          if (CheckNontrivialField(NewFD))
7139            NewFD->setInvalidDecl();
7140        }
7141      }
7142
7143      // C++ [class.union]p1: If a union contains a member of reference type,
7144      // the program is ill-formed.
7145      if (EltTy->isReferenceType()) {
7146        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7147          << NewFD->getDeclName() << EltTy;
7148        NewFD->setInvalidDecl();
7149      }
7150    }
7151  }
7152
7153  // FIXME: We need to pass in the attributes given an AST
7154  // representation, not a parser representation.
7155  if (D)
7156    // FIXME: What to pass instead of TUScope?
7157    ProcessDeclAttributes(TUScope, NewFD, *D);
7158
7159  if (T.isObjCGCWeak())
7160    Diag(Loc, diag::warn_attribute_weak_on_field);
7161
7162  NewFD->setAccess(AS);
7163  return NewFD;
7164}
7165
7166bool Sema::CheckNontrivialField(FieldDecl *FD) {
7167  assert(FD);
7168  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7169
7170  if (FD->isInvalidDecl())
7171    return true;
7172
7173  QualType EltTy = Context.getBaseElementType(FD->getType());
7174  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7175    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7176    if (RDecl->getDefinition()) {
7177      // We check for copy constructors before constructors
7178      // because otherwise we'll never get complaints about
7179      // copy constructors.
7180
7181      CXXSpecialMember member = CXXInvalid;
7182      if (!RDecl->hasTrivialCopyConstructor())
7183        member = CXXCopyConstructor;
7184      else if (!RDecl->hasTrivialConstructor())
7185        member = CXXConstructor;
7186      else if (!RDecl->hasTrivialCopyAssignment())
7187        member = CXXCopyAssignment;
7188      else if (!RDecl->hasTrivialDestructor())
7189        member = CXXDestructor;
7190
7191      if (member != CXXInvalid) {
7192        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7193              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7194        DiagnoseNontrivial(RT, member);
7195        return true;
7196      }
7197    }
7198  }
7199
7200  return false;
7201}
7202
7203/// DiagnoseNontrivial - Given that a class has a non-trivial
7204/// special member, figure out why.
7205void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7206  QualType QT(T, 0U);
7207  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7208
7209  // Check whether the member was user-declared.
7210  switch (member) {
7211  case CXXInvalid:
7212    break;
7213
7214  case CXXConstructor:
7215    if (RD->hasUserDeclaredConstructor()) {
7216      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7217      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7218        const FunctionDecl *body = 0;
7219        ci->hasBody(body);
7220        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7221          SourceLocation CtorLoc = ci->getLocation();
7222          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7223          return;
7224        }
7225      }
7226
7227      assert(0 && "found no user-declared constructors");
7228      return;
7229    }
7230    break;
7231
7232  case CXXCopyConstructor:
7233    if (RD->hasUserDeclaredCopyConstructor()) {
7234      SourceLocation CtorLoc =
7235        RD->getCopyConstructor(Context, 0)->getLocation();
7236      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7237      return;
7238    }
7239    break;
7240
7241  case CXXCopyAssignment:
7242    if (RD->hasUserDeclaredCopyAssignment()) {
7243      // FIXME: this should use the location of the copy
7244      // assignment, not the type.
7245      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7246      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7247      return;
7248    }
7249    break;
7250
7251  case CXXDestructor:
7252    if (RD->hasUserDeclaredDestructor()) {
7253      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7254      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7255      return;
7256    }
7257    break;
7258  }
7259
7260  typedef CXXRecordDecl::base_class_iterator base_iter;
7261
7262  // Virtual bases and members inhibit trivial copying/construction,
7263  // but not trivial destruction.
7264  if (member != CXXDestructor) {
7265    // Check for virtual bases.  vbases includes indirect virtual bases,
7266    // so we just iterate through the direct bases.
7267    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7268      if (bi->isVirtual()) {
7269        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7270        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7271        return;
7272      }
7273
7274    // Check for virtual methods.
7275    typedef CXXRecordDecl::method_iterator meth_iter;
7276    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7277         ++mi) {
7278      if (mi->isVirtual()) {
7279        SourceLocation MLoc = mi->getSourceRange().getBegin();
7280        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7281        return;
7282      }
7283    }
7284  }
7285
7286  bool (CXXRecordDecl::*hasTrivial)() const;
7287  switch (member) {
7288  case CXXConstructor:
7289    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7290  case CXXCopyConstructor:
7291    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7292  case CXXCopyAssignment:
7293    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7294  case CXXDestructor:
7295    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7296  default:
7297    assert(0 && "unexpected special member"); return;
7298  }
7299
7300  // Check for nontrivial bases (and recurse).
7301  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7302    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7303    assert(BaseRT && "Don't know how to handle dependent bases");
7304    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7305    if (!(BaseRecTy->*hasTrivial)()) {
7306      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7307      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7308      DiagnoseNontrivial(BaseRT, member);
7309      return;
7310    }
7311  }
7312
7313  // Check for nontrivial members (and recurse).
7314  typedef RecordDecl::field_iterator field_iter;
7315  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7316       ++fi) {
7317    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7318    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7319      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7320
7321      if (!(EltRD->*hasTrivial)()) {
7322        SourceLocation FLoc = (*fi)->getLocation();
7323        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7324        DiagnoseNontrivial(EltRT, member);
7325        return;
7326      }
7327    }
7328  }
7329
7330  assert(0 && "found no explanation for non-trivial member");
7331}
7332
7333/// TranslateIvarVisibility - Translate visibility from a token ID to an
7334///  AST enum value.
7335static ObjCIvarDecl::AccessControl
7336TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7337  switch (ivarVisibility) {
7338  default: assert(0 && "Unknown visitibility kind");
7339  case tok::objc_private: return ObjCIvarDecl::Private;
7340  case tok::objc_public: return ObjCIvarDecl::Public;
7341  case tok::objc_protected: return ObjCIvarDecl::Protected;
7342  case tok::objc_package: return ObjCIvarDecl::Package;
7343  }
7344}
7345
7346/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7347/// in order to create an IvarDecl object for it.
7348Decl *Sema::ActOnIvar(Scope *S,
7349                                SourceLocation DeclStart,
7350                                Decl *IntfDecl,
7351                                Declarator &D, ExprTy *BitfieldWidth,
7352                                tok::ObjCKeywordKind Visibility) {
7353
7354  IdentifierInfo *II = D.getIdentifier();
7355  Expr *BitWidth = (Expr*)BitfieldWidth;
7356  SourceLocation Loc = DeclStart;
7357  if (II) Loc = D.getIdentifierLoc();
7358
7359  // FIXME: Unnamed fields can be handled in various different ways, for
7360  // example, unnamed unions inject all members into the struct namespace!
7361
7362  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7363  QualType T = TInfo->getType();
7364
7365  if (BitWidth) {
7366    // 6.7.2.1p3, 6.7.2.1p4
7367    if (VerifyBitField(Loc, II, T, BitWidth)) {
7368      D.setInvalidType();
7369      BitWidth = 0;
7370    }
7371  } else {
7372    // Not a bitfield.
7373
7374    // validate II.
7375
7376  }
7377  if (T->isReferenceType()) {
7378    Diag(Loc, diag::err_ivar_reference_type);
7379    D.setInvalidType();
7380  }
7381  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7382  // than a variably modified type.
7383  else if (T->isVariablyModifiedType()) {
7384    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7385    D.setInvalidType();
7386  }
7387
7388  // Get the visibility (access control) for this ivar.
7389  ObjCIvarDecl::AccessControl ac =
7390    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7391                                        : ObjCIvarDecl::None;
7392  // Must set ivar's DeclContext to its enclosing interface.
7393  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7394  ObjCContainerDecl *EnclosingContext;
7395  if (ObjCImplementationDecl *IMPDecl =
7396      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7397    if (!LangOpts.ObjCNonFragileABI2) {
7398    // Case of ivar declared in an implementation. Context is that of its class.
7399      EnclosingContext = IMPDecl->getClassInterface();
7400      assert(EnclosingContext && "Implementation has no class interface!");
7401    }
7402    else
7403      EnclosingContext = EnclosingDecl;
7404  } else {
7405    if (ObjCCategoryDecl *CDecl =
7406        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7407      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7408        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7409        return 0;
7410      }
7411    }
7412    EnclosingContext = EnclosingDecl;
7413  }
7414
7415  // Construct the decl.
7416  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7417                                             DeclStart, Loc, II, T,
7418                                             TInfo, ac, (Expr *)BitfieldWidth);
7419
7420  if (II) {
7421    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7422                                           ForRedeclaration);
7423    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7424        && !isa<TagDecl>(PrevDecl)) {
7425      Diag(Loc, diag::err_duplicate_member) << II;
7426      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7427      NewID->setInvalidDecl();
7428    }
7429  }
7430
7431  // Process attributes attached to the ivar.
7432  ProcessDeclAttributes(S, NewID, D);
7433
7434  if (D.isInvalidType())
7435    NewID->setInvalidDecl();
7436
7437  if (II) {
7438    // FIXME: When interfaces are DeclContexts, we'll need to add
7439    // these to the interface.
7440    S->AddDecl(NewID);
7441    IdResolver.AddDecl(NewID);
7442  }
7443
7444  return NewID;
7445}
7446
7447/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7448/// class and class extensions. For every class @interface and class
7449/// extension @interface, if the last ivar is a bitfield of any type,
7450/// then add an implicit `char :0` ivar to the end of that interface.
7451void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7452                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7453  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7454    return;
7455
7456  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7457  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7458
7459  if (!Ivar->isBitField())
7460    return;
7461  uint64_t BitFieldSize =
7462    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7463  if (BitFieldSize == 0)
7464    return;
7465  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7466  if (!ID) {
7467    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7468      if (!CD->IsClassExtension())
7469        return;
7470    }
7471    // No need to add this to end of @implementation.
7472    else
7473      return;
7474  }
7475  // All conditions are met. Add a new bitfield to the tail end of ivars.
7476  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7477  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7478
7479  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7480                              DeclLoc, DeclLoc, 0,
7481                              Context.CharTy,
7482                              Context.CreateTypeSourceInfo(Context.CharTy),
7483                              ObjCIvarDecl::Private, BW,
7484                              true);
7485  AllIvarDecls.push_back(Ivar);
7486}
7487
7488void Sema::ActOnFields(Scope* S,
7489                       SourceLocation RecLoc, Decl *EnclosingDecl,
7490                       Decl **Fields, unsigned NumFields,
7491                       SourceLocation LBrac, SourceLocation RBrac,
7492                       AttributeList *Attr) {
7493  assert(EnclosingDecl && "missing record or interface decl");
7494
7495  // If the decl this is being inserted into is invalid, then it may be a
7496  // redeclaration or some other bogus case.  Don't try to add fields to it.
7497  if (EnclosingDecl->isInvalidDecl()) {
7498    // FIXME: Deallocate fields?
7499    return;
7500  }
7501
7502
7503  // Verify that all the fields are okay.
7504  unsigned NumNamedMembers = 0;
7505  llvm::SmallVector<FieldDecl*, 32> RecFields;
7506
7507  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7508  for (unsigned i = 0; i != NumFields; ++i) {
7509    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7510
7511    // Get the type for the field.
7512    const Type *FDTy = FD->getType().getTypePtr();
7513
7514    if (!FD->isAnonymousStructOrUnion()) {
7515      // Remember all fields written by the user.
7516      RecFields.push_back(FD);
7517    }
7518
7519    // If the field is already invalid for some reason, don't emit more
7520    // diagnostics about it.
7521    if (FD->isInvalidDecl()) {
7522      EnclosingDecl->setInvalidDecl();
7523      continue;
7524    }
7525
7526    // C99 6.7.2.1p2:
7527    //   A structure or union shall not contain a member with
7528    //   incomplete or function type (hence, a structure shall not
7529    //   contain an instance of itself, but may contain a pointer to
7530    //   an instance of itself), except that the last member of a
7531    //   structure with more than one named member may have incomplete
7532    //   array type; such a structure (and any union containing,
7533    //   possibly recursively, a member that is such a structure)
7534    //   shall not be a member of a structure or an element of an
7535    //   array.
7536    if (FDTy->isFunctionType()) {
7537      // Field declared as a function.
7538      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7539        << FD->getDeclName();
7540      FD->setInvalidDecl();
7541      EnclosingDecl->setInvalidDecl();
7542      continue;
7543    } else if (FDTy->isIncompleteArrayType() && Record &&
7544               ((i == NumFields - 1 && !Record->isUnion()) ||
7545                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7546                 (i == NumFields - 1 || Record->isUnion())))) {
7547      // Flexible array member.
7548      // Microsoft and g++ is more permissive regarding flexible array.
7549      // It will accept flexible array in union and also
7550      // as the sole element of a struct/class.
7551      if (getLangOptions().Microsoft) {
7552        if (Record->isUnion())
7553          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7554            << FD->getDeclName();
7555        else if (NumFields == 1)
7556          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7557            << FD->getDeclName() << Record->getTagKind();
7558      } else if (getLangOptions().CPlusPlus) {
7559        if (Record->isUnion())
7560          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7561            << FD->getDeclName();
7562        else if (NumFields == 1)
7563          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7564            << FD->getDeclName() << Record->getTagKind();
7565      } else if (NumNamedMembers < 1) {
7566        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7567          << FD->getDeclName();
7568        FD->setInvalidDecl();
7569        EnclosingDecl->setInvalidDecl();
7570        continue;
7571      }
7572      if (!FD->getType()->isDependentType() &&
7573          !Context.getBaseElementType(FD->getType())->isPODType()) {
7574        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7575          << FD->getDeclName() << FD->getType();
7576        FD->setInvalidDecl();
7577        EnclosingDecl->setInvalidDecl();
7578        continue;
7579      }
7580      // Okay, we have a legal flexible array member at the end of the struct.
7581      if (Record)
7582        Record->setHasFlexibleArrayMember(true);
7583    } else if (!FDTy->isDependentType() &&
7584               RequireCompleteType(FD->getLocation(), FD->getType(),
7585                                   diag::err_field_incomplete)) {
7586      // Incomplete type
7587      FD->setInvalidDecl();
7588      EnclosingDecl->setInvalidDecl();
7589      continue;
7590    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7591      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7592        // If this is a member of a union, then entire union becomes "flexible".
7593        if (Record && Record->isUnion()) {
7594          Record->setHasFlexibleArrayMember(true);
7595        } else {
7596          // If this is a struct/class and this is not the last element, reject
7597          // it.  Note that GCC supports variable sized arrays in the middle of
7598          // structures.
7599          if (i != NumFields-1)
7600            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7601              << FD->getDeclName() << FD->getType();
7602          else {
7603            // We support flexible arrays at the end of structs in
7604            // other structs as an extension.
7605            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7606              << FD->getDeclName();
7607            if (Record)
7608              Record->setHasFlexibleArrayMember(true);
7609          }
7610        }
7611      }
7612      if (Record && FDTTy->getDecl()->hasObjectMember())
7613        Record->setHasObjectMember(true);
7614    } else if (FDTy->isObjCObjectType()) {
7615      /// A field cannot be an Objective-c object
7616      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7617      FD->setInvalidDecl();
7618      EnclosingDecl->setInvalidDecl();
7619      continue;
7620    } else if (getLangOptions().ObjC1 &&
7621               getLangOptions().getGCMode() != LangOptions::NonGC &&
7622               Record &&
7623               (FD->getType()->isObjCObjectPointerType() ||
7624                FD->getType().isObjCGCStrong()))
7625      Record->setHasObjectMember(true);
7626    else if (Context.getAsArrayType(FD->getType())) {
7627      QualType BaseType = Context.getBaseElementType(FD->getType());
7628      if (Record && BaseType->isRecordType() &&
7629          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7630        Record->setHasObjectMember(true);
7631    }
7632    // Keep track of the number of named members.
7633    if (FD->getIdentifier())
7634      ++NumNamedMembers;
7635  }
7636
7637  // Okay, we successfully defined 'Record'.
7638  if (Record) {
7639    bool Completed = false;
7640    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7641      if (!CXXRecord->isInvalidDecl()) {
7642        // Set access bits correctly on the directly-declared conversions.
7643        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7644        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7645             I != E; ++I)
7646          Convs->setAccess(I, (*I)->getAccess());
7647
7648        if (!CXXRecord->isDependentType()) {
7649          // Add any implicitly-declared members to this class.
7650          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7651
7652          // If we have virtual base classes, we may end up finding multiple
7653          // final overriders for a given virtual function. Check for this
7654          // problem now.
7655          if (CXXRecord->getNumVBases()) {
7656            CXXFinalOverriderMap FinalOverriders;
7657            CXXRecord->getFinalOverriders(FinalOverriders);
7658
7659            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7660                                             MEnd = FinalOverriders.end();
7661                 M != MEnd; ++M) {
7662              for (OverridingMethods::iterator SO = M->second.begin(),
7663                                            SOEnd = M->second.end();
7664                   SO != SOEnd; ++SO) {
7665                assert(SO->second.size() > 0 &&
7666                       "Virtual function without overridding functions?");
7667                if (SO->second.size() == 1)
7668                  continue;
7669
7670                // C++ [class.virtual]p2:
7671                //   In a derived class, if a virtual member function of a base
7672                //   class subobject has more than one final overrider the
7673                //   program is ill-formed.
7674                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7675                  << (NamedDecl *)M->first << Record;
7676                Diag(M->first->getLocation(),
7677                     diag::note_overridden_virtual_function);
7678                for (OverridingMethods::overriding_iterator
7679                          OM = SO->second.begin(),
7680                       OMEnd = SO->second.end();
7681                     OM != OMEnd; ++OM)
7682                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7683                    << (NamedDecl *)M->first << OM->Method->getParent();
7684
7685                Record->setInvalidDecl();
7686              }
7687            }
7688            CXXRecord->completeDefinition(&FinalOverriders);
7689            Completed = true;
7690          }
7691        }
7692      }
7693    }
7694
7695    if (!Completed)
7696      Record->completeDefinition();
7697  } else {
7698    ObjCIvarDecl **ClsFields =
7699      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7700    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7701      ID->setLocEnd(RBrac);
7702      // Add ivar's to class's DeclContext.
7703      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7704        ClsFields[i]->setLexicalDeclContext(ID);
7705        ID->addDecl(ClsFields[i]);
7706      }
7707      // Must enforce the rule that ivars in the base classes may not be
7708      // duplicates.
7709      if (ID->getSuperClass())
7710        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7711    } else if (ObjCImplementationDecl *IMPDecl =
7712                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7713      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7714      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7715        // Ivar declared in @implementation never belongs to the implementation.
7716        // Only it is in implementation's lexical context.
7717        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7718      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7719    } else if (ObjCCategoryDecl *CDecl =
7720                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7721      // case of ivars in class extension; all other cases have been
7722      // reported as errors elsewhere.
7723      // FIXME. Class extension does not have a LocEnd field.
7724      // CDecl->setLocEnd(RBrac);
7725      // Add ivar's to class extension's DeclContext.
7726      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7727        ClsFields[i]->setLexicalDeclContext(CDecl);
7728        CDecl->addDecl(ClsFields[i]);
7729      }
7730    }
7731  }
7732
7733  if (Attr)
7734    ProcessDeclAttributeList(S, Record, Attr);
7735
7736  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7737  // set the visibility of this record.
7738  if (Record && !Record->getDeclContext()->isRecord())
7739    AddPushedVisibilityAttribute(Record);
7740}
7741
7742/// \brief Determine whether the given integral value is representable within
7743/// the given type T.
7744static bool isRepresentableIntegerValue(ASTContext &Context,
7745                                        llvm::APSInt &Value,
7746                                        QualType T) {
7747  assert(T->isIntegralType(Context) && "Integral type required!");
7748  unsigned BitWidth = Context.getIntWidth(T);
7749
7750  if (Value.isUnsigned() || Value.isNonNegative()) {
7751    if (T->isSignedIntegerType())
7752      --BitWidth;
7753    return Value.getActiveBits() <= BitWidth;
7754  }
7755  return Value.getMinSignedBits() <= BitWidth;
7756}
7757
7758// \brief Given an integral type, return the next larger integral type
7759// (or a NULL type of no such type exists).
7760static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7761  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7762  // enum checking below.
7763  assert(T->isIntegralType(Context) && "Integral type required!");
7764  const unsigned NumTypes = 4;
7765  QualType SignedIntegralTypes[NumTypes] = {
7766    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7767  };
7768  QualType UnsignedIntegralTypes[NumTypes] = {
7769    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7770    Context.UnsignedLongLongTy
7771  };
7772
7773  unsigned BitWidth = Context.getTypeSize(T);
7774  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7775                                            : UnsignedIntegralTypes;
7776  for (unsigned I = 0; I != NumTypes; ++I)
7777    if (Context.getTypeSize(Types[I]) > BitWidth)
7778      return Types[I];
7779
7780  return QualType();
7781}
7782
7783EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7784                                          EnumConstantDecl *LastEnumConst,
7785                                          SourceLocation IdLoc,
7786                                          IdentifierInfo *Id,
7787                                          Expr *Val) {
7788  unsigned IntWidth = Context.Target.getIntWidth();
7789  llvm::APSInt EnumVal(IntWidth);
7790  QualType EltTy;
7791
7792  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7793    Val = 0;
7794
7795  if (Val) {
7796    if (Enum->isDependentType() || Val->isTypeDependent())
7797      EltTy = Context.DependentTy;
7798    else {
7799      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7800      SourceLocation ExpLoc;
7801      if (!Val->isValueDependent() &&
7802          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7803        Val = 0;
7804      } else {
7805        if (!getLangOptions().CPlusPlus) {
7806          // C99 6.7.2.2p2:
7807          //   The expression that defines the value of an enumeration constant
7808          //   shall be an integer constant expression that has a value
7809          //   representable as an int.
7810
7811          // Complain if the value is not representable in an int.
7812          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7813            Diag(IdLoc, diag::ext_enum_value_not_int)
7814              << EnumVal.toString(10) << Val->getSourceRange()
7815              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7816          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7817            // Force the type of the expression to 'int'.
7818            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
7819          }
7820        }
7821
7822        if (Enum->isFixed()) {
7823          EltTy = Enum->getIntegerType();
7824
7825          // C++0x [dcl.enum]p5:
7826          //   ... if the initializing value of an enumerator cannot be
7827          //   represented by the underlying type, the program is ill-formed.
7828          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7829            if (getLangOptions().Microsoft) {
7830              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7831              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7832            } else
7833              Diag(IdLoc, diag::err_enumerator_too_large)
7834                << EltTy;
7835          } else
7836            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7837        }
7838        else {
7839          // C++0x [dcl.enum]p5:
7840          //   If the underlying type is not fixed, the type of each enumerator
7841          //   is the type of its initializing value:
7842          //     - If an initializer is specified for an enumerator, the
7843          //       initializing value has the same type as the expression.
7844          EltTy = Val->getType();
7845        }
7846      }
7847    }
7848  }
7849
7850  if (!Val) {
7851    if (Enum->isDependentType())
7852      EltTy = Context.DependentTy;
7853    else if (!LastEnumConst) {
7854      // C++0x [dcl.enum]p5:
7855      //   If the underlying type is not fixed, the type of each enumerator
7856      //   is the type of its initializing value:
7857      //     - If no initializer is specified for the first enumerator, the
7858      //       initializing value has an unspecified integral type.
7859      //
7860      // GCC uses 'int' for its unspecified integral type, as does
7861      // C99 6.7.2.2p3.
7862      if (Enum->isFixed()) {
7863        EltTy = Enum->getIntegerType();
7864      }
7865      else {
7866        EltTy = Context.IntTy;
7867      }
7868    } else {
7869      // Assign the last value + 1.
7870      EnumVal = LastEnumConst->getInitVal();
7871      ++EnumVal;
7872      EltTy = LastEnumConst->getType();
7873
7874      // Check for overflow on increment.
7875      if (EnumVal < LastEnumConst->getInitVal()) {
7876        // C++0x [dcl.enum]p5:
7877        //   If the underlying type is not fixed, the type of each enumerator
7878        //   is the type of its initializing value:
7879        //
7880        //     - Otherwise the type of the initializing value is the same as
7881        //       the type of the initializing value of the preceding enumerator
7882        //       unless the incremented value is not representable in that type,
7883        //       in which case the type is an unspecified integral type
7884        //       sufficient to contain the incremented value. If no such type
7885        //       exists, the program is ill-formed.
7886        QualType T = getNextLargerIntegralType(Context, EltTy);
7887        if (T.isNull() || Enum->isFixed()) {
7888          // There is no integral type larger enough to represent this
7889          // value. Complain, then allow the value to wrap around.
7890          EnumVal = LastEnumConst->getInitVal();
7891          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7892          ++EnumVal;
7893          if (Enum->isFixed())
7894            // When the underlying type is fixed, this is ill-formed.
7895            Diag(IdLoc, diag::err_enumerator_wrapped)
7896              << EnumVal.toString(10)
7897              << EltTy;
7898          else
7899            Diag(IdLoc, diag::warn_enumerator_too_large)
7900              << EnumVal.toString(10);
7901        } else {
7902          EltTy = T;
7903        }
7904
7905        // Retrieve the last enumerator's value, extent that type to the
7906        // type that is supposed to be large enough to represent the incremented
7907        // value, then increment.
7908        EnumVal = LastEnumConst->getInitVal();
7909        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7910        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7911        ++EnumVal;
7912
7913        // If we're not in C++, diagnose the overflow of enumerator values,
7914        // which in C99 means that the enumerator value is not representable in
7915        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7916        // permits enumerator values that are representable in some larger
7917        // integral type.
7918        if (!getLangOptions().CPlusPlus && !T.isNull())
7919          Diag(IdLoc, diag::warn_enum_value_overflow);
7920      } else if (!getLangOptions().CPlusPlus &&
7921                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7922        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7923        Diag(IdLoc, diag::ext_enum_value_not_int)
7924          << EnumVal.toString(10) << 1;
7925      }
7926    }
7927  }
7928
7929  if (!EltTy->isDependentType()) {
7930    // Make the enumerator value match the signedness and size of the
7931    // enumerator's type.
7932    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7933    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7934  }
7935
7936  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7937                                  Val, EnumVal);
7938}
7939
7940
7941Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7942                              SourceLocation IdLoc, IdentifierInfo *Id,
7943                              AttributeList *Attr,
7944                              SourceLocation EqualLoc, ExprTy *val) {
7945  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7946  EnumConstantDecl *LastEnumConst =
7947    cast_or_null<EnumConstantDecl>(lastEnumConst);
7948  Expr *Val = static_cast<Expr*>(val);
7949
7950  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7951  // we find one that is.
7952  S = getNonFieldDeclScope(S);
7953
7954  // Verify that there isn't already something declared with this name in this
7955  // scope.
7956  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7957                                         ForRedeclaration);
7958  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7959    // Maybe we will complain about the shadowed template parameter.
7960    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7961    // Just pretend that we didn't see the previous declaration.
7962    PrevDecl = 0;
7963  }
7964
7965  if (PrevDecl) {
7966    // When in C++, we may get a TagDecl with the same name; in this case the
7967    // enum constant will 'hide' the tag.
7968    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7969           "Received TagDecl when not in C++!");
7970    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7971      if (isa<EnumConstantDecl>(PrevDecl))
7972        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7973      else
7974        Diag(IdLoc, diag::err_redefinition) << Id;
7975      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7976      return 0;
7977    }
7978  }
7979
7980  // C++ [class.mem]p13:
7981  //   If T is the name of a class, then each of the following shall have a
7982  //   name different from T:
7983  //     - every enumerator of every member of class T that is an enumerated
7984  //       type
7985  if (CXXRecordDecl *Record
7986                      = dyn_cast<CXXRecordDecl>(
7987                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7988    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7989      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7990
7991  EnumConstantDecl *New =
7992    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7993
7994  if (New) {
7995    // Process attributes.
7996    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7997
7998    // Register this decl in the current scope stack.
7999    New->setAccess(TheEnumDecl->getAccess());
8000    PushOnScopeChains(New, S);
8001  }
8002
8003  return New;
8004}
8005
8006void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8007                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8008                         Decl **Elements, unsigned NumElements,
8009                         Scope *S, AttributeList *Attr) {
8010  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8011  QualType EnumType = Context.getTypeDeclType(Enum);
8012
8013  if (Attr)
8014    ProcessDeclAttributeList(S, Enum, Attr);
8015
8016  if (Enum->isDependentType()) {
8017    for (unsigned i = 0; i != NumElements; ++i) {
8018      EnumConstantDecl *ECD =
8019        cast_or_null<EnumConstantDecl>(Elements[i]);
8020      if (!ECD) continue;
8021
8022      ECD->setType(EnumType);
8023    }
8024
8025    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8026    return;
8027  }
8028
8029  // TODO: If the result value doesn't fit in an int, it must be a long or long
8030  // long value.  ISO C does not support this, but GCC does as an extension,
8031  // emit a warning.
8032  unsigned IntWidth = Context.Target.getIntWidth();
8033  unsigned CharWidth = Context.Target.getCharWidth();
8034  unsigned ShortWidth = Context.Target.getShortWidth();
8035
8036  // Verify that all the values are okay, compute the size of the values, and
8037  // reverse the list.
8038  unsigned NumNegativeBits = 0;
8039  unsigned NumPositiveBits = 0;
8040
8041  // Keep track of whether all elements have type int.
8042  bool AllElementsInt = true;
8043
8044  for (unsigned i = 0; i != NumElements; ++i) {
8045    EnumConstantDecl *ECD =
8046      cast_or_null<EnumConstantDecl>(Elements[i]);
8047    if (!ECD) continue;  // Already issued a diagnostic.
8048
8049    const llvm::APSInt &InitVal = ECD->getInitVal();
8050
8051    // Keep track of the size of positive and negative values.
8052    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8053      NumPositiveBits = std::max(NumPositiveBits,
8054                                 (unsigned)InitVal.getActiveBits());
8055    else
8056      NumNegativeBits = std::max(NumNegativeBits,
8057                                 (unsigned)InitVal.getMinSignedBits());
8058
8059    // Keep track of whether every enum element has type int (very commmon).
8060    if (AllElementsInt)
8061      AllElementsInt = ECD->getType() == Context.IntTy;
8062  }
8063
8064  // Figure out the type that should be used for this enum.
8065  QualType BestType;
8066  unsigned BestWidth;
8067
8068  // C++0x N3000 [conv.prom]p3:
8069  //   An rvalue of an unscoped enumeration type whose underlying
8070  //   type is not fixed can be converted to an rvalue of the first
8071  //   of the following types that can represent all the values of
8072  //   the enumeration: int, unsigned int, long int, unsigned long
8073  //   int, long long int, or unsigned long long int.
8074  // C99 6.4.4.3p2:
8075  //   An identifier declared as an enumeration constant has type int.
8076  // The C99 rule is modified by a gcc extension
8077  QualType BestPromotionType;
8078
8079  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8080  // -fshort-enums is the equivalent to specifying the packed attribute on all
8081  // enum definitions.
8082  if (LangOpts.ShortEnums)
8083    Packed = true;
8084
8085  if (Enum->isFixed()) {
8086    BestType = BestPromotionType = Enum->getIntegerType();
8087    // We don't need to set BestWidth, because BestType is going to be the type
8088    // of the enumerators, but we do anyway because otherwise some compilers
8089    // warn that it might be used uninitialized.
8090    BestWidth = CharWidth;
8091  }
8092  else if (NumNegativeBits) {
8093    // If there is a negative value, figure out the smallest integer type (of
8094    // int/long/longlong) that fits.
8095    // If it's packed, check also if it fits a char or a short.
8096    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8097      BestType = Context.SignedCharTy;
8098      BestWidth = CharWidth;
8099    } else if (Packed && NumNegativeBits <= ShortWidth &&
8100               NumPositiveBits < ShortWidth) {
8101      BestType = Context.ShortTy;
8102      BestWidth = ShortWidth;
8103    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8104      BestType = Context.IntTy;
8105      BestWidth = IntWidth;
8106    } else {
8107      BestWidth = Context.Target.getLongWidth();
8108
8109      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8110        BestType = Context.LongTy;
8111      } else {
8112        BestWidth = Context.Target.getLongLongWidth();
8113
8114        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8115          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8116        BestType = Context.LongLongTy;
8117      }
8118    }
8119    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8120  } else {
8121    // If there is no negative value, figure out the smallest type that fits
8122    // all of the enumerator values.
8123    // If it's packed, check also if it fits a char or a short.
8124    if (Packed && NumPositiveBits <= CharWidth) {
8125      BestType = Context.UnsignedCharTy;
8126      BestPromotionType = Context.IntTy;
8127      BestWidth = CharWidth;
8128    } else if (Packed && NumPositiveBits <= ShortWidth) {
8129      BestType = Context.UnsignedShortTy;
8130      BestPromotionType = Context.IntTy;
8131      BestWidth = ShortWidth;
8132    } else if (NumPositiveBits <= IntWidth) {
8133      BestType = Context.UnsignedIntTy;
8134      BestWidth = IntWidth;
8135      BestPromotionType
8136        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8137                           ? Context.UnsignedIntTy : Context.IntTy;
8138    } else if (NumPositiveBits <=
8139               (BestWidth = Context.Target.getLongWidth())) {
8140      BestType = Context.UnsignedLongTy;
8141      BestPromotionType
8142        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8143                           ? Context.UnsignedLongTy : Context.LongTy;
8144    } else {
8145      BestWidth = Context.Target.getLongLongWidth();
8146      assert(NumPositiveBits <= BestWidth &&
8147             "How could an initializer get larger than ULL?");
8148      BestType = Context.UnsignedLongLongTy;
8149      BestPromotionType
8150        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8151                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8152    }
8153  }
8154
8155  // Loop over all of the enumerator constants, changing their types to match
8156  // the type of the enum if needed.
8157  for (unsigned i = 0; i != NumElements; ++i) {
8158    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8159    if (!ECD) continue;  // Already issued a diagnostic.
8160
8161    // Standard C says the enumerators have int type, but we allow, as an
8162    // extension, the enumerators to be larger than int size.  If each
8163    // enumerator value fits in an int, type it as an int, otherwise type it the
8164    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8165    // that X has type 'int', not 'unsigned'.
8166
8167    // Determine whether the value fits into an int.
8168    llvm::APSInt InitVal = ECD->getInitVal();
8169
8170    // If it fits into an integer type, force it.  Otherwise force it to match
8171    // the enum decl type.
8172    QualType NewTy;
8173    unsigned NewWidth;
8174    bool NewSign;
8175    if (!getLangOptions().CPlusPlus &&
8176        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8177      NewTy = Context.IntTy;
8178      NewWidth = IntWidth;
8179      NewSign = true;
8180    } else if (ECD->getType() == BestType) {
8181      // Already the right type!
8182      if (getLangOptions().CPlusPlus)
8183        // C++ [dcl.enum]p4: Following the closing brace of an
8184        // enum-specifier, each enumerator has the type of its
8185        // enumeration.
8186        ECD->setType(EnumType);
8187      continue;
8188    } else {
8189      NewTy = BestType;
8190      NewWidth = BestWidth;
8191      NewSign = BestType->isSignedIntegerType();
8192    }
8193
8194    // Adjust the APSInt value.
8195    InitVal = InitVal.extOrTrunc(NewWidth);
8196    InitVal.setIsSigned(NewSign);
8197    ECD->setInitVal(InitVal);
8198
8199    // Adjust the Expr initializer and type.
8200    if (ECD->getInitExpr() &&
8201	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8202      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8203                                                CK_IntegralCast,
8204                                                ECD->getInitExpr(),
8205                                                /*base paths*/ 0,
8206                                                VK_RValue));
8207    if (getLangOptions().CPlusPlus)
8208      // C++ [dcl.enum]p4: Following the closing brace of an
8209      // enum-specifier, each enumerator has the type of its
8210      // enumeration.
8211      ECD->setType(EnumType);
8212    else
8213      ECD->setType(NewTy);
8214  }
8215
8216  Enum->completeDefinition(BestType, BestPromotionType,
8217                           NumPositiveBits, NumNegativeBits);
8218}
8219
8220Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8221                                  SourceLocation StartLoc,
8222                                  SourceLocation EndLoc) {
8223  StringLiteral *AsmString = cast<StringLiteral>(expr);
8224
8225  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8226                                                   AsmString, StartLoc,
8227                                                   EndLoc);
8228  CurContext->addDecl(New);
8229  return New;
8230}
8231
8232void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8233                             SourceLocation PragmaLoc,
8234                             SourceLocation NameLoc) {
8235  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8236
8237  if (PrevDecl) {
8238    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8239  } else {
8240    (void)WeakUndeclaredIdentifiers.insert(
8241      std::pair<IdentifierInfo*,WeakInfo>
8242        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8243  }
8244}
8245
8246void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8247                                IdentifierInfo* AliasName,
8248                                SourceLocation PragmaLoc,
8249                                SourceLocation NameLoc,
8250                                SourceLocation AliasNameLoc) {
8251  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8252                                    LookupOrdinaryName);
8253  WeakInfo W = WeakInfo(Name, NameLoc);
8254
8255  if (PrevDecl) {
8256    if (!PrevDecl->hasAttr<AliasAttr>())
8257      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8258        DeclApplyPragmaWeak(TUScope, ND, W);
8259  } else {
8260    (void)WeakUndeclaredIdentifiers.insert(
8261      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8262  }
8263}
8264