SemaDecl.cpp revision 697bbe8c8174b8ad339d9ebab8269b2bec930d87
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        // FIXME: Record somewhere that this DependentNameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getDependentNameType(ETK_None,
202                                     UUDecl->getTargetNestedNameSpecifier(),
203                                     &II);
204  } else {
205    // If it's not plausibly a type, suppress diagnostics.
206    Result.suppressDiagnostics();
207    return 0;
208  }
209
210  return T.getAsOpaquePtr();
211}
212
213/// isTagName() - This method is called *for error recovery purposes only*
214/// to determine if the specified name is a valid tag name ("struct foo").  If
215/// so, this returns the TST for the tag corresponding to it (TST_enum,
216/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217/// where the user forgot to specify the tag.
218DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219  // Do a tag name lookup in this scope.
220  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221  LookupName(R, S, false);
222  R.suppressDiagnostics();
223  if (R.getResultKind() == LookupResult::Found)
224    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225      switch (TD->getTagKind()) {
226      case TagDecl::TK_struct: return DeclSpec::TST_struct;
227      case TagDecl::TK_union:  return DeclSpec::TST_union;
228      case TagDecl::TK_class:  return DeclSpec::TST_class;
229      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
230      }
231    }
232
233  return DeclSpec::TST_unspecified;
234}
235
236bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
237                                   SourceLocation IILoc,
238                                   Scope *S,
239                                   CXXScopeSpec *SS,
240                                   TypeTy *&SuggestedType) {
241  // We don't have anything to suggest (yet).
242  SuggestedType = 0;
243
244  // There may have been a typo in the name of the type. Look up typo
245  // results, in case we have something that we can suggest.
246  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
247                      NotForRedeclaration);
248
249  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
250    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
251      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
252          !Result->isInvalidDecl()) {
253        // We found a similarly-named type or interface; suggest that.
254        if (!SS || !SS->isSet())
255          Diag(IILoc, diag::err_unknown_typename_suggest)
256            << &II << Lookup.getLookupName()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else if (DeclContext *DC = computeDeclContext(*SS, false))
260          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
261            << &II << DC << Lookup.getLookupName() << SS->getRange()
262            << FixItHint::CreateReplacement(SourceRange(IILoc),
263                                            Result->getNameAsString());
264        else
265          llvm_unreachable("could not have corrected a typo here");
266
267        Diag(Result->getLocation(), diag::note_previous_decl)
268          << Result->getDeclName();
269
270        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
271        return true;
272      }
273    } else if (Lookup.empty()) {
274      // We corrected to a keyword.
275      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
276      Diag(IILoc, diag::err_unknown_typename_suggest)
277        << &II << Corrected;
278      return true;
279    }
280  }
281
282  if (getLangOptions().CPlusPlus) {
283    // See if II is a class template that the user forgot to pass arguments to.
284    UnqualifiedId Name;
285    Name.setIdentifier(&II, IILoc);
286    CXXScopeSpec EmptySS;
287    TemplateTy TemplateResult;
288    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult)
289        == TNK_Type_template) {
290      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
291      Diag(IILoc, diag::err_template_missing_args) << TplName;
292      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
293        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
294          << TplDecl->getTemplateParameters()->getSourceRange();
295      }
296      return true;
297    }
298  }
299
300  // FIXME: Should we move the logic that tries to recover from a missing tag
301  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
302
303  if (!SS || (!SS->isSet() && !SS->isInvalid()))
304    Diag(IILoc, diag::err_unknown_typename) << &II;
305  else if (DeclContext *DC = computeDeclContext(*SS, false))
306    Diag(IILoc, diag::err_typename_nested_not_found)
307      << &II << DC << SS->getRange();
308  else if (isDependentScopeSpecifier(*SS)) {
309    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
310      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
311      << SourceRange(SS->getRange().getBegin(), IILoc)
312      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
313    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
314  } else {
315    assert(SS && SS->isInvalid() &&
316           "Invalid scope specifier has already been diagnosed");
317  }
318
319  return true;
320}
321
322// Determines the context to return to after temporarily entering a
323// context.  This depends in an unnecessarily complicated way on the
324// exact ordering of callbacks from the parser.
325DeclContext *Sema::getContainingDC(DeclContext *DC) {
326
327  // Functions defined inline within classes aren't parsed until we've
328  // finished parsing the top-level class, so the top-level class is
329  // the context we'll need to return to.
330  if (isa<FunctionDecl>(DC)) {
331    DC = DC->getLexicalParent();
332
333    // A function not defined within a class will always return to its
334    // lexical context.
335    if (!isa<CXXRecordDecl>(DC))
336      return DC;
337
338    // A C++ inline method/friend is parsed *after* the topmost class
339    // it was declared in is fully parsed ("complete");  the topmost
340    // class is the context we need to return to.
341    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
342      DC = RD;
343
344    // Return the declaration context of the topmost class the inline method is
345    // declared in.
346    return DC;
347  }
348
349  if (isa<ObjCMethodDecl>(DC))
350    return Context.getTranslationUnitDecl();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(DeclPtrTy::make(*I));
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(DeclPtrTy::make(D));
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
524  if (D->isInvalidDecl())
525    return false;
526
527  if (D->isUsed() || D->hasAttr<UnusedAttr>())
528    return false;
529
530  // White-list anything that isn't a local variable.
531  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
532      !D->getDeclContext()->isFunctionOrMethod())
533    return false;
534
535  // Types of valid local variables should be complete, so this should succeed.
536  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
537
538    // White-list anything with an __attribute__((unused)) type.
539    QualType Ty = VD->getType();
540
541    // Only look at the outermost level of typedef.
542    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
543      if (TT->getDecl()->hasAttr<UnusedAttr>())
544        return false;
545    }
546
547    if (const TagType *TT = Ty->getAs<TagType>()) {
548      const TagDecl *Tag = TT->getDecl();
549      if (Tag->hasAttr<UnusedAttr>())
550        return false;
551
552      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
553        if (!RD->hasTrivialConstructor())
554          return false;
555        if (!RD->hasTrivialDestructor())
556          return false;
557      }
558    }
559
560    // TODO: __attribute__((unused)) templates?
561  }
562
563  return true;
564}
565
566void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
567  if (S->decl_empty()) return;
568  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
569         "Scope shouldn't contain decls!");
570
571  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
572       I != E; ++I) {
573    Decl *TmpD = (*I).getAs<Decl>();
574    assert(TmpD && "This decl didn't get pushed??");
575
576    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
577    NamedDecl *D = cast<NamedDecl>(TmpD);
578
579    if (!D->getDeclName()) continue;
580
581    // Diagnose unused variables in this scope.
582    if (ShouldDiagnoseUnusedDecl(D) &&
583        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
584      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
585
586    // Remove this name from our lexical scope.
587    IdResolver.RemoveDecl(D);
588  }
589}
590
591/// \brief Look for an Objective-C class in the translation unit.
592///
593/// \param Id The name of the Objective-C class we're looking for. If
594/// typo-correction fixes this name, the Id will be updated
595/// to the fixed name.
596///
597/// \param IdLoc The location of the name in the translation unit.
598///
599/// \param TypoCorrection If true, this routine will attempt typo correction
600/// if there is no class with the given name.
601///
602/// \returns The declaration of the named Objective-C class, or NULL if the
603/// class could not be found.
604ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
605                                              SourceLocation IdLoc,
606                                              bool TypoCorrection) {
607  // The third "scope" argument is 0 since we aren't enabling lazy built-in
608  // creation from this context.
609  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
610
611  if (!IDecl && TypoCorrection) {
612    // Perform typo correction at the given location, but only if we
613    // find an Objective-C class name.
614    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
615    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
616        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
617      Diag(IdLoc, diag::err_undef_interface_suggest)
618        << Id << IDecl->getDeclName()
619        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
620      Diag(IDecl->getLocation(), diag::note_previous_decl)
621        << IDecl->getDeclName();
622
623      Id = IDecl->getIdentifier();
624    }
625  }
626
627  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
628}
629
630/// getNonFieldDeclScope - Retrieves the innermost scope, starting
631/// from S, where a non-field would be declared. This routine copes
632/// with the difference between C and C++ scoping rules in structs and
633/// unions. For example, the following code is well-formed in C but
634/// ill-formed in C++:
635/// @code
636/// struct S6 {
637///   enum { BAR } e;
638/// };
639///
640/// void test_S6() {
641///   struct S6 a;
642///   a.e = BAR;
643/// }
644/// @endcode
645/// For the declaration of BAR, this routine will return a different
646/// scope. The scope S will be the scope of the unnamed enumeration
647/// within S6. In C++, this routine will return the scope associated
648/// with S6, because the enumeration's scope is a transparent
649/// context but structures can contain non-field names. In C, this
650/// routine will return the translation unit scope, since the
651/// enumeration's scope is a transparent context and structures cannot
652/// contain non-field names.
653Scope *Sema::getNonFieldDeclScope(Scope *S) {
654  while (((S->getFlags() & Scope::DeclScope) == 0) ||
655         (S->getEntity() &&
656          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
657         (S->isClassScope() && !getLangOptions().CPlusPlus))
658    S = S->getParent();
659  return S;
660}
661
662void Sema::InitBuiltinVaListType() {
663  if (!Context.getBuiltinVaListType().isNull())
664    return;
665
666  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
667  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
668                                       LookupOrdinaryName, ForRedeclaration);
669  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
670  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
671}
672
673/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
674/// file scope.  lazily create a decl for it. ForRedeclaration is true
675/// if we're creating this built-in in anticipation of redeclaring the
676/// built-in.
677NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
678                                     Scope *S, bool ForRedeclaration,
679                                     SourceLocation Loc) {
680  Builtin::ID BID = (Builtin::ID)bid;
681
682  if (Context.BuiltinInfo.hasVAListUse(BID))
683    InitBuiltinVaListType();
684
685  ASTContext::GetBuiltinTypeError Error;
686  QualType R = Context.GetBuiltinType(BID, Error);
687  switch (Error) {
688  case ASTContext::GE_None:
689    // Okay
690    break;
691
692  case ASTContext::GE_Missing_stdio:
693    if (ForRedeclaration)
694      Diag(Loc, diag::err_implicit_decl_requires_stdio)
695        << Context.BuiltinInfo.GetName(BID);
696    return 0;
697
698  case ASTContext::GE_Missing_setjmp:
699    if (ForRedeclaration)
700      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
701        << Context.BuiltinInfo.GetName(BID);
702    return 0;
703  }
704
705  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
706    Diag(Loc, diag::ext_implicit_lib_function_decl)
707      << Context.BuiltinInfo.GetName(BID)
708      << R;
709    if (Context.BuiltinInfo.getHeaderName(BID) &&
710        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
711          != Diagnostic::Ignored)
712      Diag(Loc, diag::note_please_include_header)
713        << Context.BuiltinInfo.getHeaderName(BID)
714        << Context.BuiltinInfo.GetName(BID);
715  }
716
717  FunctionDecl *New = FunctionDecl::Create(Context,
718                                           Context.getTranslationUnitDecl(),
719                                           Loc, II, R, /*TInfo=*/0,
720                                           FunctionDecl::Extern, false,
721                                           /*hasPrototype=*/true);
722  New->setImplicit();
723
724  // Create Decl objects for each parameter, adding them to the
725  // FunctionDecl.
726  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
727    llvm::SmallVector<ParmVarDecl*, 16> Params;
728    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
729      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
730                                           FT->getArgType(i), /*TInfo=*/0,
731                                           VarDecl::None, 0));
732    New->setParams(Params.data(), Params.size());
733  }
734
735  AddKnownFunctionAttributes(New);
736
737  // TUScope is the translation-unit scope to insert this function into.
738  // FIXME: This is hideous. We need to teach PushOnScopeChains to
739  // relate Scopes to DeclContexts, and probably eliminate CurContext
740  // entirely, but we're not there yet.
741  DeclContext *SavedContext = CurContext;
742  CurContext = Context.getTranslationUnitDecl();
743  PushOnScopeChains(New, TUScope);
744  CurContext = SavedContext;
745  return New;
746}
747
748/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
749/// same name and scope as a previous declaration 'Old'.  Figure out
750/// how to resolve this situation, merging decls or emitting
751/// diagnostics as appropriate. If there was an error, set New to be invalid.
752///
753void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
754  // If the new decl is known invalid already, don't bother doing any
755  // merging checks.
756  if (New->isInvalidDecl()) return;
757
758  // Allow multiple definitions for ObjC built-in typedefs.
759  // FIXME: Verify the underlying types are equivalent!
760  if (getLangOptions().ObjC1) {
761    const IdentifierInfo *TypeID = New->getIdentifier();
762    switch (TypeID->getLength()) {
763    default: break;
764    case 2:
765      if (!TypeID->isStr("id"))
766        break;
767      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
768      // Install the built-in type for 'id', ignoring the current definition.
769      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
770      return;
771    case 5:
772      if (!TypeID->isStr("Class"))
773        break;
774      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
775      // Install the built-in type for 'Class', ignoring the current definition.
776      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
777      return;
778    case 3:
779      if (!TypeID->isStr("SEL"))
780        break;
781      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
782      // Install the built-in type for 'SEL', ignoring the current definition.
783      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
784      return;
785    case 8:
786      if (!TypeID->isStr("Protocol"))
787        break;
788      Context.setObjCProtoType(New->getUnderlyingType());
789      return;
790    }
791    // Fall through - the typedef name was not a builtin type.
792  }
793
794  // Verify the old decl was also a type.
795  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
796  if (!Old) {
797    Diag(New->getLocation(), diag::err_redefinition_different_kind)
798      << New->getDeclName();
799
800    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
801    if (OldD->getLocation().isValid())
802      Diag(OldD->getLocation(), diag::note_previous_definition);
803
804    return New->setInvalidDecl();
805  }
806
807  // If the old declaration is invalid, just give up here.
808  if (Old->isInvalidDecl())
809    return New->setInvalidDecl();
810
811  // Determine the "old" type we'll use for checking and diagnostics.
812  QualType OldType;
813  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
814    OldType = OldTypedef->getUnderlyingType();
815  else
816    OldType = Context.getTypeDeclType(Old);
817
818  // If the typedef types are not identical, reject them in all languages and
819  // with any extensions enabled.
820
821  if (OldType != New->getUnderlyingType() &&
822      Context.getCanonicalType(OldType) !=
823      Context.getCanonicalType(New->getUnderlyingType())) {
824    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
825      << New->getUnderlyingType() << OldType;
826    if (Old->getLocation().isValid())
827      Diag(Old->getLocation(), diag::note_previous_definition);
828    return New->setInvalidDecl();
829  }
830
831  // The types match.  Link up the redeclaration chain if the old
832  // declaration was a typedef.
833  // FIXME: this is a potential source of wierdness if the type
834  // spellings don't match exactly.
835  if (isa<TypedefDecl>(Old))
836    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
837
838  if (getLangOptions().Microsoft)
839    return;
840
841  if (getLangOptions().CPlusPlus) {
842    // C++ [dcl.typedef]p2:
843    //   In a given non-class scope, a typedef specifier can be used to
844    //   redefine the name of any type declared in that scope to refer
845    //   to the type to which it already refers.
846    if (!isa<CXXRecordDecl>(CurContext))
847      return;
848
849    // C++0x [dcl.typedef]p4:
850    //   In a given class scope, a typedef specifier can be used to redefine
851    //   any class-name declared in that scope that is not also a typedef-name
852    //   to refer to the type to which it already refers.
853    //
854    // This wording came in via DR424, which was a correction to the
855    // wording in DR56, which accidentally banned code like:
856    //
857    //   struct S {
858    //     typedef struct A { } A;
859    //   };
860    //
861    // in the C++03 standard. We implement the C++0x semantics, which
862    // allow the above but disallow
863    //
864    //   struct S {
865    //     typedef int I;
866    //     typedef int I;
867    //   };
868    //
869    // since that was the intent of DR56.
870    if (!isa<TypedefDecl >(Old))
871      return;
872
873    Diag(New->getLocation(), diag::err_redefinition)
874      << New->getDeclName();
875    Diag(Old->getLocation(), diag::note_previous_definition);
876    return New->setInvalidDecl();
877  }
878
879  // If we have a redefinition of a typedef in C, emit a warning.  This warning
880  // is normally mapped to an error, but can be controlled with
881  // -Wtypedef-redefinition.  If either the original or the redefinition is
882  // in a system header, don't emit this for compatibility with GCC.
883  if (getDiagnostics().getSuppressSystemWarnings() &&
884      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
885       Context.getSourceManager().isInSystemHeader(New->getLocation())))
886    return;
887
888  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
889    << New->getDeclName();
890  Diag(Old->getLocation(), diag::note_previous_definition);
891  return;
892}
893
894/// DeclhasAttr - returns true if decl Declaration already has the target
895/// attribute.
896static bool
897DeclHasAttr(const Decl *decl, const Attr *target) {
898  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
899    if (attr->getKind() == target->getKind())
900      return true;
901
902  return false;
903}
904
905/// MergeAttributes - append attributes from the Old decl to the New one.
906static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
907  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
908    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
909      Attr *NewAttr = attr->clone(C);
910      NewAttr->setInherited(true);
911      New->addAttr(NewAttr);
912    }
913  }
914}
915
916/// Used in MergeFunctionDecl to keep track of function parameters in
917/// C.
918struct GNUCompatibleParamWarning {
919  ParmVarDecl *OldParm;
920  ParmVarDecl *NewParm;
921  QualType PromotedType;
922};
923
924
925/// getSpecialMember - get the special member enum for a method.
926static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
927                                               const CXXMethodDecl *MD) {
928  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
929    if (Ctor->isDefaultConstructor())
930      return Sema::CXXDefaultConstructor;
931    if (Ctor->isCopyConstructor())
932      return Sema::CXXCopyConstructor;
933  }
934
935  if (isa<CXXDestructorDecl>(MD))
936    return Sema::CXXDestructor;
937
938  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
939  return Sema::CXXCopyAssignment;
940}
941
942/// canREdefineFunction - checks if a function can be redefined. Currently,
943/// only extern inline functions can be redefined, and even then only in
944/// GNU89 mode.
945static bool canRedefineFunction(const FunctionDecl *FD,
946                                const LangOptions& LangOpts) {
947  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
948          FD->isInlineSpecified() &&
949          FD->getStorageClass() == FunctionDecl::Extern);
950}
951
952/// MergeFunctionDecl - We just parsed a function 'New' from
953/// declarator D which has the same name and scope as a previous
954/// declaration 'Old'.  Figure out how to resolve this situation,
955/// merging decls or emitting diagnostics as appropriate.
956///
957/// In C++, New and Old must be declarations that are not
958/// overloaded. Use IsOverload to determine whether New and Old are
959/// overloaded, and to select the Old declaration that New should be
960/// merged with.
961///
962/// Returns true if there was an error, false otherwise.
963bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
964  // Verify the old decl was also a function.
965  FunctionDecl *Old = 0;
966  if (FunctionTemplateDecl *OldFunctionTemplate
967        = dyn_cast<FunctionTemplateDecl>(OldD))
968    Old = OldFunctionTemplate->getTemplatedDecl();
969  else
970    Old = dyn_cast<FunctionDecl>(OldD);
971  if (!Old) {
972    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
973      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
974      Diag(Shadow->getTargetDecl()->getLocation(),
975           diag::note_using_decl_target);
976      Diag(Shadow->getUsingDecl()->getLocation(),
977           diag::note_using_decl) << 0;
978      return true;
979    }
980
981    Diag(New->getLocation(), diag::err_redefinition_different_kind)
982      << New->getDeclName();
983    Diag(OldD->getLocation(), diag::note_previous_definition);
984    return true;
985  }
986
987  // Determine whether the previous declaration was a definition,
988  // implicit declaration, or a declaration.
989  diag::kind PrevDiag;
990  if (Old->isThisDeclarationADefinition())
991    PrevDiag = diag::note_previous_definition;
992  else if (Old->isImplicit())
993    PrevDiag = diag::note_previous_implicit_declaration;
994  else
995    PrevDiag = diag::note_previous_declaration;
996
997  QualType OldQType = Context.getCanonicalType(Old->getType());
998  QualType NewQType = Context.getCanonicalType(New->getType());
999
1000  // Don't complain about this if we're in GNU89 mode and the old function
1001  // is an extern inline function.
1002  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1003      New->getStorageClass() == FunctionDecl::Static &&
1004      Old->getStorageClass() != FunctionDecl::Static &&
1005      !canRedefineFunction(Old, getLangOptions())) {
1006    Diag(New->getLocation(), diag::err_static_non_static)
1007      << New;
1008    Diag(Old->getLocation(), PrevDiag);
1009    return true;
1010  }
1011
1012  // If a function is first declared with a calling convention, but is
1013  // later declared or defined without one, the second decl assumes the
1014  // calling convention of the first.
1015  //
1016  // For the new decl, we have to look at the NON-canonical type to tell the
1017  // difference between a function that really doesn't have a calling
1018  // convention and one that is declared cdecl. That's because in
1019  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1020  // because it is the default calling convention.
1021  //
1022  // Note also that we DO NOT return at this point, because we still have
1023  // other tests to run.
1024  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1025  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1026  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1027  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1028  if (OldTypeInfo.getCC() != CC_Default &&
1029      NewTypeInfo.getCC() == CC_Default) {
1030    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1031    New->setType(NewQType);
1032    NewQType = Context.getCanonicalType(NewQType);
1033  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1034                                     NewTypeInfo.getCC())) {
1035    // Calling conventions really aren't compatible, so complain.
1036    Diag(New->getLocation(), diag::err_cconv_change)
1037      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1038      << (OldTypeInfo.getCC() == CC_Default)
1039      << (OldTypeInfo.getCC() == CC_Default ? "" :
1040          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1041    Diag(Old->getLocation(), diag::note_previous_declaration);
1042    return true;
1043  }
1044
1045  // FIXME: diagnose the other way around?
1046  if (OldType->getNoReturnAttr() &&
1047      !NewType->getNoReturnAttr()) {
1048    NewQType = Context.getNoReturnType(NewQType);
1049    New->setType(NewQType);
1050    assert(NewQType.isCanonical());
1051  }
1052
1053  if (getLangOptions().CPlusPlus) {
1054    // (C++98 13.1p2):
1055    //   Certain function declarations cannot be overloaded:
1056    //     -- Function declarations that differ only in the return type
1057    //        cannot be overloaded.
1058    QualType OldReturnType
1059      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1060    QualType NewReturnType
1061      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1062    if (OldReturnType != NewReturnType) {
1063      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1064      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1065      return true;
1066    }
1067
1068    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1069    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1070    if (OldMethod && NewMethod) {
1071      // Preserve triviality.
1072      NewMethod->setTrivial(OldMethod->isTrivial());
1073
1074      bool isFriend = NewMethod->getFriendObjectKind();
1075
1076      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1077        //    -- Member function declarations with the same name and the
1078        //       same parameter types cannot be overloaded if any of them
1079        //       is a static member function declaration.
1080        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1081          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1082          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1083          return true;
1084        }
1085
1086        // C++ [class.mem]p1:
1087        //   [...] A member shall not be declared twice in the
1088        //   member-specification, except that a nested class or member
1089        //   class template can be declared and then later defined.
1090        unsigned NewDiag;
1091        if (isa<CXXConstructorDecl>(OldMethod))
1092          NewDiag = diag::err_constructor_redeclared;
1093        else if (isa<CXXDestructorDecl>(NewMethod))
1094          NewDiag = diag::err_destructor_redeclared;
1095        else if (isa<CXXConversionDecl>(NewMethod))
1096          NewDiag = diag::err_conv_function_redeclared;
1097        else
1098          NewDiag = diag::err_member_redeclared;
1099
1100        Diag(New->getLocation(), NewDiag);
1101        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1102
1103      // Complain if this is an explicit declaration of a special
1104      // member that was initially declared implicitly.
1105      //
1106      // As an exception, it's okay to befriend such methods in order
1107      // to permit the implicit constructor/destructor/operator calls.
1108      } else if (OldMethod->isImplicit()) {
1109        if (isFriend) {
1110          NewMethod->setImplicit();
1111        } else {
1112          Diag(NewMethod->getLocation(),
1113               diag::err_definition_of_implicitly_declared_member)
1114            << New << getSpecialMember(Context, OldMethod);
1115          return true;
1116        }
1117      }
1118    }
1119
1120    // (C++98 8.3.5p3):
1121    //   All declarations for a function shall agree exactly in both the
1122    //   return type and the parameter-type-list.
1123    // attributes should be ignored when comparing.
1124    if (Context.getNoReturnType(OldQType, false) ==
1125        Context.getNoReturnType(NewQType, false))
1126      return MergeCompatibleFunctionDecls(New, Old);
1127
1128    // Fall through for conflicting redeclarations and redefinitions.
1129  }
1130
1131  // C: Function types need to be compatible, not identical. This handles
1132  // duplicate function decls like "void f(int); void f(enum X);" properly.
1133  if (!getLangOptions().CPlusPlus &&
1134      Context.typesAreCompatible(OldQType, NewQType)) {
1135    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1136    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1137    const FunctionProtoType *OldProto = 0;
1138    if (isa<FunctionNoProtoType>(NewFuncType) &&
1139        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1140      // The old declaration provided a function prototype, but the
1141      // new declaration does not. Merge in the prototype.
1142      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1143      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1144                                                 OldProto->arg_type_end());
1145      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1146                                         ParamTypes.data(), ParamTypes.size(),
1147                                         OldProto->isVariadic(),
1148                                         OldProto->getTypeQuals(),
1149                                         false, false, 0, 0,
1150                                         OldProto->getExtInfo());
1151      New->setType(NewQType);
1152      New->setHasInheritedPrototype();
1153
1154      // Synthesize a parameter for each argument type.
1155      llvm::SmallVector<ParmVarDecl*, 16> Params;
1156      for (FunctionProtoType::arg_type_iterator
1157             ParamType = OldProto->arg_type_begin(),
1158             ParamEnd = OldProto->arg_type_end();
1159           ParamType != ParamEnd; ++ParamType) {
1160        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1161                                                 SourceLocation(), 0,
1162                                                 *ParamType, /*TInfo=*/0,
1163                                                 VarDecl::None, 0);
1164        Param->setImplicit();
1165        Params.push_back(Param);
1166      }
1167
1168      New->setParams(Params.data(), Params.size());
1169    }
1170
1171    return MergeCompatibleFunctionDecls(New, Old);
1172  }
1173
1174  // GNU C permits a K&R definition to follow a prototype declaration
1175  // if the declared types of the parameters in the K&R definition
1176  // match the types in the prototype declaration, even when the
1177  // promoted types of the parameters from the K&R definition differ
1178  // from the types in the prototype. GCC then keeps the types from
1179  // the prototype.
1180  //
1181  // If a variadic prototype is followed by a non-variadic K&R definition,
1182  // the K&R definition becomes variadic.  This is sort of an edge case, but
1183  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1184  // C99 6.9.1p8.
1185  if (!getLangOptions().CPlusPlus &&
1186      Old->hasPrototype() && !New->hasPrototype() &&
1187      New->getType()->getAs<FunctionProtoType>() &&
1188      Old->getNumParams() == New->getNumParams()) {
1189    llvm::SmallVector<QualType, 16> ArgTypes;
1190    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1191    const FunctionProtoType *OldProto
1192      = Old->getType()->getAs<FunctionProtoType>();
1193    const FunctionProtoType *NewProto
1194      = New->getType()->getAs<FunctionProtoType>();
1195
1196    // Determine whether this is the GNU C extension.
1197    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1198                                               NewProto->getResultType());
1199    bool LooseCompatible = !MergedReturn.isNull();
1200    for (unsigned Idx = 0, End = Old->getNumParams();
1201         LooseCompatible && Idx != End; ++Idx) {
1202      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1203      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1204      if (Context.typesAreCompatible(OldParm->getType(),
1205                                     NewProto->getArgType(Idx))) {
1206        ArgTypes.push_back(NewParm->getType());
1207      } else if (Context.typesAreCompatible(OldParm->getType(),
1208                                            NewParm->getType())) {
1209        GNUCompatibleParamWarning Warn
1210          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1211        Warnings.push_back(Warn);
1212        ArgTypes.push_back(NewParm->getType());
1213      } else
1214        LooseCompatible = false;
1215    }
1216
1217    if (LooseCompatible) {
1218      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1219        Diag(Warnings[Warn].NewParm->getLocation(),
1220             diag::ext_param_promoted_not_compatible_with_prototype)
1221          << Warnings[Warn].PromotedType
1222          << Warnings[Warn].OldParm->getType();
1223        Diag(Warnings[Warn].OldParm->getLocation(),
1224             diag::note_previous_declaration);
1225      }
1226
1227      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1228                                           ArgTypes.size(),
1229                                           OldProto->isVariadic(), 0,
1230                                           false, false, 0, 0,
1231                                           OldProto->getExtInfo()));
1232      return MergeCompatibleFunctionDecls(New, Old);
1233    }
1234
1235    // Fall through to diagnose conflicting types.
1236  }
1237
1238  // A function that has already been declared has been redeclared or defined
1239  // with a different type- show appropriate diagnostic
1240  if (unsigned BuiltinID = Old->getBuiltinID()) {
1241    // The user has declared a builtin function with an incompatible
1242    // signature.
1243    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1244      // The function the user is redeclaring is a library-defined
1245      // function like 'malloc' or 'printf'. Warn about the
1246      // redeclaration, then pretend that we don't know about this
1247      // library built-in.
1248      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1249      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1250        << Old << Old->getType();
1251      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1252      Old->setInvalidDecl();
1253      return false;
1254    }
1255
1256    PrevDiag = diag::note_previous_builtin_declaration;
1257  }
1258
1259  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1260  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1261  return true;
1262}
1263
1264/// \brief Completes the merge of two function declarations that are
1265/// known to be compatible.
1266///
1267/// This routine handles the merging of attributes and other
1268/// properties of function declarations form the old declaration to
1269/// the new declaration, once we know that New is in fact a
1270/// redeclaration of Old.
1271///
1272/// \returns false
1273bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1274  // Merge the attributes
1275  MergeAttributes(New, Old, Context);
1276
1277  // Merge the storage class.
1278  if (Old->getStorageClass() != FunctionDecl::Extern &&
1279      Old->getStorageClass() != FunctionDecl::None)
1280    New->setStorageClass(Old->getStorageClass());
1281
1282  // Merge "pure" flag.
1283  if (Old->isPure())
1284    New->setPure();
1285
1286  // Merge the "deleted" flag.
1287  if (Old->isDeleted())
1288    New->setDeleted();
1289
1290  if (getLangOptions().CPlusPlus)
1291    return MergeCXXFunctionDecl(New, Old);
1292
1293  return false;
1294}
1295
1296/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1297/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1298/// situation, merging decls or emitting diagnostics as appropriate.
1299///
1300/// Tentative definition rules (C99 6.9.2p2) are checked by
1301/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1302/// definitions here, since the initializer hasn't been attached.
1303///
1304void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1305  // If the new decl is already invalid, don't do any other checking.
1306  if (New->isInvalidDecl())
1307    return;
1308
1309  // Verify the old decl was also a variable.
1310  VarDecl *Old = 0;
1311  if (!Previous.isSingleResult() ||
1312      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1313    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1314      << New->getDeclName();
1315    Diag(Previous.getRepresentativeDecl()->getLocation(),
1316         diag::note_previous_definition);
1317    return New->setInvalidDecl();
1318  }
1319
1320  MergeAttributes(New, Old, Context);
1321
1322  // Merge the types
1323  QualType MergedT;
1324  if (getLangOptions().CPlusPlus) {
1325    if (Context.hasSameType(New->getType(), Old->getType()))
1326      MergedT = New->getType();
1327    // C++ [basic.link]p10:
1328    //   [...] the types specified by all declarations referring to a given
1329    //   object or function shall be identical, except that declarations for an
1330    //   array object can specify array types that differ by the presence or
1331    //   absence of a major array bound (8.3.4).
1332    else if (Old->getType()->isIncompleteArrayType() &&
1333             New->getType()->isArrayType()) {
1334      CanQual<ArrayType> OldArray
1335        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1336      CanQual<ArrayType> NewArray
1337        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1338      if (OldArray->getElementType() == NewArray->getElementType())
1339        MergedT = New->getType();
1340    } else if (Old->getType()->isArrayType() &&
1341             New->getType()->isIncompleteArrayType()) {
1342      CanQual<ArrayType> OldArray
1343        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1344      CanQual<ArrayType> NewArray
1345        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1346      if (OldArray->getElementType() == NewArray->getElementType())
1347        MergedT = Old->getType();
1348    }
1349  } else {
1350    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1351  }
1352  if (MergedT.isNull()) {
1353    Diag(New->getLocation(), diag::err_redefinition_different_type)
1354      << New->getDeclName();
1355    Diag(Old->getLocation(), diag::note_previous_definition);
1356    return New->setInvalidDecl();
1357  }
1358  New->setType(MergedT);
1359
1360  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1361  if (New->getStorageClass() == VarDecl::Static &&
1362      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1363    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1364    Diag(Old->getLocation(), diag::note_previous_definition);
1365    return New->setInvalidDecl();
1366  }
1367  // C99 6.2.2p4:
1368  //   For an identifier declared with the storage-class specifier
1369  //   extern in a scope in which a prior declaration of that
1370  //   identifier is visible,23) if the prior declaration specifies
1371  //   internal or external linkage, the linkage of the identifier at
1372  //   the later declaration is the same as the linkage specified at
1373  //   the prior declaration. If no prior declaration is visible, or
1374  //   if the prior declaration specifies no linkage, then the
1375  //   identifier has external linkage.
1376  if (New->hasExternalStorage() && Old->hasLinkage())
1377    /* Okay */;
1378  else if (New->getStorageClass() != VarDecl::Static &&
1379           Old->getStorageClass() == VarDecl::Static) {
1380    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1381    Diag(Old->getLocation(), diag::note_previous_definition);
1382    return New->setInvalidDecl();
1383  }
1384
1385  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1386
1387  // FIXME: The test for external storage here seems wrong? We still
1388  // need to check for mismatches.
1389  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1390      // Don't complain about out-of-line definitions of static members.
1391      !(Old->getLexicalDeclContext()->isRecord() &&
1392        !New->getLexicalDeclContext()->isRecord())) {
1393    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1394    Diag(Old->getLocation(), diag::note_previous_definition);
1395    return New->setInvalidDecl();
1396  }
1397
1398  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1399    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1400    Diag(Old->getLocation(), diag::note_previous_definition);
1401  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1402    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1403    Diag(Old->getLocation(), diag::note_previous_definition);
1404  }
1405
1406  // C++ doesn't have tentative definitions, so go right ahead and check here.
1407  const VarDecl *Def;
1408  if (getLangOptions().CPlusPlus &&
1409      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1410      (Def = Old->getDefinition())) {
1411    Diag(New->getLocation(), diag::err_redefinition)
1412      << New->getDeclName();
1413    Diag(Def->getLocation(), diag::note_previous_definition);
1414    New->setInvalidDecl();
1415    return;
1416  }
1417
1418  // Keep a chain of previous declarations.
1419  New->setPreviousDeclaration(Old);
1420
1421  // Inherit access appropriately.
1422  New->setAccess(Old->getAccess());
1423}
1424
1425/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1426/// no declarator (e.g. "struct foo;") is parsed.
1427Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1428  // FIXME: Error on auto/register at file scope
1429  // FIXME: Error on inline/virtual/explicit
1430  // FIXME: Warn on useless __thread
1431  // FIXME: Warn on useless const/volatile
1432  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1433  // FIXME: Warn on useless attributes
1434  Decl *TagD = 0;
1435  TagDecl *Tag = 0;
1436  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1437      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1438      DS.getTypeSpecType() == DeclSpec::TST_union ||
1439      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1440    TagD = static_cast<Decl *>(DS.getTypeRep());
1441
1442    if (!TagD) // We probably had an error
1443      return DeclPtrTy();
1444
1445    // Note that the above type specs guarantee that the
1446    // type rep is a Decl, whereas in many of the others
1447    // it's a Type.
1448    Tag = dyn_cast<TagDecl>(TagD);
1449  }
1450
1451  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1452    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1453    // or incomplete types shall not be restrict-qualified."
1454    if (TypeQuals & DeclSpec::TQ_restrict)
1455      Diag(DS.getRestrictSpecLoc(),
1456           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1457           << DS.getSourceRange();
1458  }
1459
1460  if (DS.isFriendSpecified()) {
1461    // If we're dealing with a class template decl, assume that the
1462    // template routines are handling it.
1463    if (TagD && isa<ClassTemplateDecl>(TagD))
1464      return DeclPtrTy();
1465    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1466  }
1467
1468  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1469    // If there are attributes in the DeclSpec, apply them to the record.
1470    if (const AttributeList *AL = DS.getAttributes())
1471      ProcessDeclAttributeList(S, Record, AL);
1472
1473    if (!Record->getDeclName() && Record->isDefinition() &&
1474        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1475      if (getLangOptions().CPlusPlus ||
1476          Record->getDeclContext()->isRecord())
1477        return BuildAnonymousStructOrUnion(S, DS, Record);
1478
1479      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1480        << DS.getSourceRange();
1481    }
1482
1483    // Microsoft allows unnamed struct/union fields. Don't complain
1484    // about them.
1485    // FIXME: Should we support Microsoft's extensions in this area?
1486    if (Record->getDeclName() && getLangOptions().Microsoft)
1487      return DeclPtrTy::make(Tag);
1488  }
1489
1490  if (!DS.isMissingDeclaratorOk() &&
1491      DS.getTypeSpecType() != DeclSpec::TST_error) {
1492    // Warn about typedefs of enums without names, since this is an
1493    // extension in both Microsoft an GNU.
1494    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1495        Tag && isa<EnumDecl>(Tag)) {
1496      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1497        << DS.getSourceRange();
1498      return DeclPtrTy::make(Tag);
1499    }
1500
1501    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1502      << DS.getSourceRange();
1503  }
1504
1505  return DeclPtrTy::make(Tag);
1506}
1507
1508/// We are trying to inject an anonymous member into the given scope;
1509/// check if there's an existing declaration that can't be overloaded.
1510///
1511/// \return true if this is a forbidden redeclaration
1512static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1513                                         Scope *S,
1514                                         DeclContext *Owner,
1515                                         DeclarationName Name,
1516                                         SourceLocation NameLoc,
1517                                         unsigned diagnostic) {
1518  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1519                 Sema::ForRedeclaration);
1520  if (!SemaRef.LookupName(R, S)) return false;
1521
1522  if (R.getAsSingle<TagDecl>())
1523    return false;
1524
1525  // Pick a representative declaration.
1526  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1527  if (PrevDecl && Owner->isRecord()) {
1528    RecordDecl *Record = cast<RecordDecl>(Owner);
1529    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1530      return false;
1531  }
1532
1533  SemaRef.Diag(NameLoc, diagnostic) << Name;
1534  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1535
1536  return true;
1537}
1538
1539/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1540/// anonymous struct or union AnonRecord into the owning context Owner
1541/// and scope S. This routine will be invoked just after we realize
1542/// that an unnamed union or struct is actually an anonymous union or
1543/// struct, e.g.,
1544///
1545/// @code
1546/// union {
1547///   int i;
1548///   float f;
1549/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1550///    // f into the surrounding scope.x
1551/// @endcode
1552///
1553/// This routine is recursive, injecting the names of nested anonymous
1554/// structs/unions into the owning context and scope as well.
1555bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1556                                               RecordDecl *AnonRecord) {
1557  unsigned diagKind
1558    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1559                            : diag::err_anonymous_struct_member_redecl;
1560
1561  bool Invalid = false;
1562  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1563                               FEnd = AnonRecord->field_end();
1564       F != FEnd; ++F) {
1565    if ((*F)->getDeclName()) {
1566      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1567                                       (*F)->getLocation(), diagKind)) {
1568        // C++ [class.union]p2:
1569        //   The names of the members of an anonymous union shall be
1570        //   distinct from the names of any other entity in the
1571        //   scope in which the anonymous union is declared.
1572        Invalid = true;
1573      } else {
1574        // C++ [class.union]p2:
1575        //   For the purpose of name lookup, after the anonymous union
1576        //   definition, the members of the anonymous union are
1577        //   considered to have been defined in the scope in which the
1578        //   anonymous union is declared.
1579        Owner->makeDeclVisibleInContext(*F);
1580        S->AddDecl(DeclPtrTy::make(*F));
1581        IdResolver.AddDecl(*F);
1582      }
1583    } else if (const RecordType *InnerRecordType
1584                 = (*F)->getType()->getAs<RecordType>()) {
1585      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1586      if (InnerRecord->isAnonymousStructOrUnion())
1587        Invalid = Invalid ||
1588          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1589    }
1590  }
1591
1592  return Invalid;
1593}
1594
1595/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1596/// anonymous structure or union. Anonymous unions are a C++ feature
1597/// (C++ [class.union]) and a GNU C extension; anonymous structures
1598/// are a GNU C and GNU C++ extension.
1599Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1600                                                  RecordDecl *Record) {
1601  DeclContext *Owner = Record->getDeclContext();
1602
1603  // Diagnose whether this anonymous struct/union is an extension.
1604  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1605    Diag(Record->getLocation(), diag::ext_anonymous_union);
1606  else if (!Record->isUnion())
1607    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1608
1609  // C and C++ require different kinds of checks for anonymous
1610  // structs/unions.
1611  bool Invalid = false;
1612  if (getLangOptions().CPlusPlus) {
1613    const char* PrevSpec = 0;
1614    unsigned DiagID;
1615    // C++ [class.union]p3:
1616    //   Anonymous unions declared in a named namespace or in the
1617    //   global namespace shall be declared static.
1618    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1619        (isa<TranslationUnitDecl>(Owner) ||
1620         (isa<NamespaceDecl>(Owner) &&
1621          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1622      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1623      Invalid = true;
1624
1625      // Recover by adding 'static'.
1626      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1627                             PrevSpec, DiagID);
1628    }
1629    // C++ [class.union]p3:
1630    //   A storage class is not allowed in a declaration of an
1631    //   anonymous union in a class scope.
1632    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1633             isa<RecordDecl>(Owner)) {
1634      Diag(DS.getStorageClassSpecLoc(),
1635           diag::err_anonymous_union_with_storage_spec);
1636      Invalid = true;
1637
1638      // Recover by removing the storage specifier.
1639      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1640                             PrevSpec, DiagID);
1641    }
1642
1643    // C++ [class.union]p2:
1644    //   The member-specification of an anonymous union shall only
1645    //   define non-static data members. [Note: nested types and
1646    //   functions cannot be declared within an anonymous union. ]
1647    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1648                                 MemEnd = Record->decls_end();
1649         Mem != MemEnd; ++Mem) {
1650      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1651        // C++ [class.union]p3:
1652        //   An anonymous union shall not have private or protected
1653        //   members (clause 11).
1654        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1655          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1656            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1657          Invalid = true;
1658        }
1659      } else if ((*Mem)->isImplicit()) {
1660        // Any implicit members are fine.
1661      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1662        // This is a type that showed up in an
1663        // elaborated-type-specifier inside the anonymous struct or
1664        // union, but which actually declares a type outside of the
1665        // anonymous struct or union. It's okay.
1666      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1667        if (!MemRecord->isAnonymousStructOrUnion() &&
1668            MemRecord->getDeclName()) {
1669          // This is a nested type declaration.
1670          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1671            << (int)Record->isUnion();
1672          Invalid = true;
1673        }
1674      } else {
1675        // We have something that isn't a non-static data
1676        // member. Complain about it.
1677        unsigned DK = diag::err_anonymous_record_bad_member;
1678        if (isa<TypeDecl>(*Mem))
1679          DK = diag::err_anonymous_record_with_type;
1680        else if (isa<FunctionDecl>(*Mem))
1681          DK = diag::err_anonymous_record_with_function;
1682        else if (isa<VarDecl>(*Mem))
1683          DK = diag::err_anonymous_record_with_static;
1684        Diag((*Mem)->getLocation(), DK)
1685            << (int)Record->isUnion();
1686          Invalid = true;
1687      }
1688    }
1689  }
1690
1691  if (!Record->isUnion() && !Owner->isRecord()) {
1692    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1693      << (int)getLangOptions().CPlusPlus;
1694    Invalid = true;
1695  }
1696
1697  // Mock up a declarator.
1698  Declarator Dc(DS, Declarator::TypeNameContext);
1699  TypeSourceInfo *TInfo = 0;
1700  GetTypeForDeclarator(Dc, S, &TInfo);
1701  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1702
1703  // Create a declaration for this anonymous struct/union.
1704  NamedDecl *Anon = 0;
1705  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1706    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1707                             /*IdentifierInfo=*/0,
1708                             Context.getTypeDeclType(Record),
1709                             TInfo,
1710                             /*BitWidth=*/0, /*Mutable=*/false);
1711    Anon->setAccess(AS_public);
1712    if (getLangOptions().CPlusPlus)
1713      FieldCollector->Add(cast<FieldDecl>(Anon));
1714  } else {
1715    VarDecl::StorageClass SC;
1716    switch (DS.getStorageClassSpec()) {
1717    default: assert(0 && "Unknown storage class!");
1718    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1719    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1720    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1721    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1722    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1723    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1724    case DeclSpec::SCS_mutable:
1725      // mutable can only appear on non-static class members, so it's always
1726      // an error here
1727      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1728      Invalid = true;
1729      SC = VarDecl::None;
1730      break;
1731    }
1732
1733    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1734                           /*IdentifierInfo=*/0,
1735                           Context.getTypeDeclType(Record),
1736                           TInfo,
1737                           SC);
1738  }
1739  Anon->setImplicit();
1740
1741  // Add the anonymous struct/union object to the current
1742  // context. We'll be referencing this object when we refer to one of
1743  // its members.
1744  Owner->addDecl(Anon);
1745
1746  // Inject the members of the anonymous struct/union into the owning
1747  // context and into the identifier resolver chain for name lookup
1748  // purposes.
1749  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1750    Invalid = true;
1751
1752  // Mark this as an anonymous struct/union type. Note that we do not
1753  // do this until after we have already checked and injected the
1754  // members of this anonymous struct/union type, because otherwise
1755  // the members could be injected twice: once by DeclContext when it
1756  // builds its lookup table, and once by
1757  // InjectAnonymousStructOrUnionMembers.
1758  Record->setAnonymousStructOrUnion(true);
1759
1760  if (Invalid)
1761    Anon->setInvalidDecl();
1762
1763  return DeclPtrTy::make(Anon);
1764}
1765
1766
1767/// GetNameForDeclarator - Determine the full declaration name for the
1768/// given Declarator.
1769DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1770  return GetNameFromUnqualifiedId(D.getName());
1771}
1772
1773/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1774DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1775  switch (Name.getKind()) {
1776    case UnqualifiedId::IK_Identifier:
1777      return DeclarationName(Name.Identifier);
1778
1779    case UnqualifiedId::IK_OperatorFunctionId:
1780      return Context.DeclarationNames.getCXXOperatorName(
1781                                              Name.OperatorFunctionId.Operator);
1782
1783    case UnqualifiedId::IK_LiteralOperatorId:
1784      return Context.DeclarationNames.getCXXLiteralOperatorName(
1785                                                               Name.Identifier);
1786
1787    case UnqualifiedId::IK_ConversionFunctionId: {
1788      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1789      if (Ty.isNull())
1790        return DeclarationName();
1791
1792      return Context.DeclarationNames.getCXXConversionFunctionName(
1793                                                  Context.getCanonicalType(Ty));
1794    }
1795
1796    case UnqualifiedId::IK_ConstructorName: {
1797      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1798      if (Ty.isNull())
1799        return DeclarationName();
1800
1801      return Context.DeclarationNames.getCXXConstructorName(
1802                                                  Context.getCanonicalType(Ty));
1803    }
1804
1805    case UnqualifiedId::IK_ConstructorTemplateId: {
1806      // In well-formed code, we can only have a constructor
1807      // template-id that refers to the current context, so go there
1808      // to find the actual type being constructed.
1809      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1810      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1811        return DeclarationName();
1812
1813      // Determine the type of the class being constructed.
1814      QualType CurClassType = Context.getTypeDeclType(CurClass);
1815
1816      // FIXME: Check two things: that the template-id names the same type as
1817      // CurClassType, and that the template-id does not occur when the name
1818      // was qualified.
1819
1820      return Context.DeclarationNames.getCXXConstructorName(
1821                                       Context.getCanonicalType(CurClassType));
1822    }
1823
1824    case UnqualifiedId::IK_DestructorName: {
1825      QualType Ty = GetTypeFromParser(Name.DestructorName);
1826      if (Ty.isNull())
1827        return DeclarationName();
1828
1829      return Context.DeclarationNames.getCXXDestructorName(
1830                                                           Context.getCanonicalType(Ty));
1831    }
1832
1833    case UnqualifiedId::IK_TemplateId: {
1834      TemplateName TName
1835        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1836      return Context.getNameForTemplate(TName);
1837    }
1838  }
1839
1840  assert(false && "Unknown name kind");
1841  return DeclarationName();
1842}
1843
1844/// isNearlyMatchingFunction - Determine whether the C++ functions
1845/// Declaration and Definition are "nearly" matching. This heuristic
1846/// is used to improve diagnostics in the case where an out-of-line
1847/// function definition doesn't match any declaration within
1848/// the class or namespace.
1849static bool isNearlyMatchingFunction(ASTContext &Context,
1850                                     FunctionDecl *Declaration,
1851                                     FunctionDecl *Definition) {
1852  if (Declaration->param_size() != Definition->param_size())
1853    return false;
1854  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1855    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1856    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1857
1858    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1859                                        DefParamTy.getNonReferenceType()))
1860      return false;
1861  }
1862
1863  return true;
1864}
1865
1866Sema::DeclPtrTy
1867Sema::HandleDeclarator(Scope *S, Declarator &D,
1868                       MultiTemplateParamsArg TemplateParamLists,
1869                       bool IsFunctionDefinition) {
1870  DeclarationName Name = GetNameForDeclarator(D);
1871
1872  // All of these full declarators require an identifier.  If it doesn't have
1873  // one, the ParsedFreeStandingDeclSpec action should be used.
1874  if (!Name) {
1875    if (!D.isInvalidType())  // Reject this if we think it is valid.
1876      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1877           diag::err_declarator_need_ident)
1878        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1879    return DeclPtrTy();
1880  }
1881
1882  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1883  // we find one that is.
1884  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1885         (S->getFlags() & Scope::TemplateParamScope) != 0)
1886    S = S->getParent();
1887
1888  // If this is an out-of-line definition of a member of a class template
1889  // or class template partial specialization, we may need to rebuild the
1890  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1891  // for more information.
1892  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1893  // handle expressions properly.
1894  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1895  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1896      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1897      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1898       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1899       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1900       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1901    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1902      // FIXME: Preserve type source info.
1903      QualType T = GetTypeFromParser(DS.getTypeRep());
1904
1905      DeclContext *SavedContext = CurContext;
1906      CurContext = DC;
1907      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1908      CurContext = SavedContext;
1909
1910      if (T.isNull())
1911        return DeclPtrTy();
1912      DS.UpdateTypeRep(T.getAsOpaquePtr());
1913    }
1914  }
1915
1916  DeclContext *DC;
1917  NamedDecl *New;
1918
1919  TypeSourceInfo *TInfo = 0;
1920  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1921
1922  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1923                        ForRedeclaration);
1924
1925  // See if this is a redefinition of a variable in the same scope.
1926  if (D.getCXXScopeSpec().isInvalid()) {
1927    DC = CurContext;
1928    D.setInvalidType();
1929  } else if (!D.getCXXScopeSpec().isSet()) {
1930    bool IsLinkageLookup = false;
1931
1932    // If the declaration we're planning to build will be a function
1933    // or object with linkage, then look for another declaration with
1934    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1935    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1936      /* Do nothing*/;
1937    else if (R->isFunctionType()) {
1938      if (CurContext->isFunctionOrMethod() ||
1939          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1940        IsLinkageLookup = true;
1941    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1942      IsLinkageLookup = true;
1943    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1944             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1945      IsLinkageLookup = true;
1946
1947    if (IsLinkageLookup)
1948      Previous.clear(LookupRedeclarationWithLinkage);
1949
1950    DC = CurContext;
1951    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1952  } else { // Something like "int foo::x;"
1953    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1954
1955    if (!DC) {
1956      // If we could not compute the declaration context, it's because the
1957      // declaration context is dependent but does not refer to a class,
1958      // class template, or class template partial specialization. Complain
1959      // and return early, to avoid the coming semantic disaster.
1960      Diag(D.getIdentifierLoc(),
1961           diag::err_template_qualified_declarator_no_match)
1962        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1963        << D.getCXXScopeSpec().getRange();
1964      return DeclPtrTy();
1965    }
1966
1967    if (!DC->isDependentContext() &&
1968        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1969      return DeclPtrTy();
1970
1971    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1972      Diag(D.getIdentifierLoc(),
1973           diag::err_member_def_undefined_record)
1974        << Name << DC << D.getCXXScopeSpec().getRange();
1975      D.setInvalidType();
1976    }
1977
1978    LookupQualifiedName(Previous, DC);
1979
1980    // Don't consider using declarations as previous declarations for
1981    // out-of-line members.
1982    RemoveUsingDecls(Previous);
1983
1984    // C++ 7.3.1.2p2:
1985    // Members (including explicit specializations of templates) of a named
1986    // namespace can also be defined outside that namespace by explicit
1987    // qualification of the name being defined, provided that the entity being
1988    // defined was already declared in the namespace and the definition appears
1989    // after the point of declaration in a namespace that encloses the
1990    // declarations namespace.
1991    //
1992    // Note that we only check the context at this point. We don't yet
1993    // have enough information to make sure that PrevDecl is actually
1994    // the declaration we want to match. For example, given:
1995    //
1996    //   class X {
1997    //     void f();
1998    //     void f(float);
1999    //   };
2000    //
2001    //   void X::f(int) { } // ill-formed
2002    //
2003    // In this case, PrevDecl will point to the overload set
2004    // containing the two f's declared in X, but neither of them
2005    // matches.
2006
2007    // First check whether we named the global scope.
2008    if (isa<TranslationUnitDecl>(DC)) {
2009      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2010        << Name << D.getCXXScopeSpec().getRange();
2011    } else {
2012      DeclContext *Cur = CurContext;
2013      while (isa<LinkageSpecDecl>(Cur))
2014        Cur = Cur->getParent();
2015      if (!Cur->Encloses(DC)) {
2016        // The qualifying scope doesn't enclose the original declaration.
2017        // Emit diagnostic based on current scope.
2018        SourceLocation L = D.getIdentifierLoc();
2019        SourceRange R = D.getCXXScopeSpec().getRange();
2020        if (isa<FunctionDecl>(Cur))
2021          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2022        else
2023          Diag(L, diag::err_invalid_declarator_scope)
2024            << Name << cast<NamedDecl>(DC) << R;
2025        D.setInvalidType();
2026      }
2027    }
2028  }
2029
2030  if (Previous.isSingleResult() &&
2031      Previous.getFoundDecl()->isTemplateParameter()) {
2032    // Maybe we will complain about the shadowed template parameter.
2033    if (!D.isInvalidType())
2034      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2035                                          Previous.getFoundDecl()))
2036        D.setInvalidType();
2037
2038    // Just pretend that we didn't see the previous declaration.
2039    Previous.clear();
2040  }
2041
2042  // In C++, the previous declaration we find might be a tag type
2043  // (class or enum). In this case, the new declaration will hide the
2044  // tag type. Note that this does does not apply if we're declaring a
2045  // typedef (C++ [dcl.typedef]p4).
2046  if (Previous.isSingleTagDecl() &&
2047      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2048    Previous.clear();
2049
2050  bool Redeclaration = false;
2051  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2052    if (TemplateParamLists.size()) {
2053      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2054      return DeclPtrTy();
2055    }
2056
2057    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2058  } else if (R->isFunctionType()) {
2059    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2060                                  move(TemplateParamLists),
2061                                  IsFunctionDefinition, Redeclaration);
2062  } else {
2063    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2064                                  move(TemplateParamLists),
2065                                  Redeclaration);
2066  }
2067
2068  if (New == 0)
2069    return DeclPtrTy();
2070
2071  // If this has an identifier and is not an invalid redeclaration or
2072  // function template specialization, add it to the scope stack.
2073  if (Name && !(Redeclaration && New->isInvalidDecl()))
2074    PushOnScopeChains(New, S);
2075
2076  return DeclPtrTy::make(New);
2077}
2078
2079/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2080/// types into constant array types in certain situations which would otherwise
2081/// be errors (for GCC compatibility).
2082static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2083                                                    ASTContext &Context,
2084                                                    bool &SizeIsNegative) {
2085  // This method tries to turn a variable array into a constant
2086  // array even when the size isn't an ICE.  This is necessary
2087  // for compatibility with code that depends on gcc's buggy
2088  // constant expression folding, like struct {char x[(int)(char*)2];}
2089  SizeIsNegative = false;
2090
2091  QualifierCollector Qs;
2092  const Type *Ty = Qs.strip(T);
2093
2094  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2095    QualType Pointee = PTy->getPointeeType();
2096    QualType FixedType =
2097        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2098    if (FixedType.isNull()) return FixedType;
2099    FixedType = Context.getPointerType(FixedType);
2100    return Qs.apply(FixedType);
2101  }
2102
2103  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2104  if (!VLATy)
2105    return QualType();
2106  // FIXME: We should probably handle this case
2107  if (VLATy->getElementType()->isVariablyModifiedType())
2108    return QualType();
2109
2110  Expr::EvalResult EvalResult;
2111  if (!VLATy->getSizeExpr() ||
2112      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2113      !EvalResult.Val.isInt())
2114    return QualType();
2115
2116  llvm::APSInt &Res = EvalResult.Val.getInt();
2117  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2118    // TODO: preserve the size expression in declarator info
2119    return Context.getConstantArrayType(VLATy->getElementType(),
2120                                        Res, ArrayType::Normal, 0);
2121  }
2122
2123  SizeIsNegative = true;
2124  return QualType();
2125}
2126
2127/// \brief Register the given locally-scoped external C declaration so
2128/// that it can be found later for redeclarations
2129void
2130Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2131                                       const LookupResult &Previous,
2132                                       Scope *S) {
2133  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2134         "Decl is not a locally-scoped decl!");
2135  // Note that we have a locally-scoped external with this name.
2136  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2137
2138  if (!Previous.isSingleResult())
2139    return;
2140
2141  NamedDecl *PrevDecl = Previous.getFoundDecl();
2142
2143  // If there was a previous declaration of this variable, it may be
2144  // in our identifier chain. Update the identifier chain with the new
2145  // declaration.
2146  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2147    // The previous declaration was found on the identifer resolver
2148    // chain, so remove it from its scope.
2149    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2150      S = S->getParent();
2151
2152    if (S)
2153      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2154  }
2155}
2156
2157/// \brief Diagnose function specifiers on a declaration of an identifier that
2158/// does not identify a function.
2159void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2160  // FIXME: We should probably indicate the identifier in question to avoid
2161  // confusion for constructs like "inline int a(), b;"
2162  if (D.getDeclSpec().isInlineSpecified())
2163    Diag(D.getDeclSpec().getInlineSpecLoc(),
2164         diag::err_inline_non_function);
2165
2166  if (D.getDeclSpec().isVirtualSpecified())
2167    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2168         diag::err_virtual_non_function);
2169
2170  if (D.getDeclSpec().isExplicitSpecified())
2171    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2172         diag::err_explicit_non_function);
2173}
2174
2175NamedDecl*
2176Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2177                             QualType R,  TypeSourceInfo *TInfo,
2178                             LookupResult &Previous, bool &Redeclaration) {
2179  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2180  if (D.getCXXScopeSpec().isSet()) {
2181    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2182      << D.getCXXScopeSpec().getRange();
2183    D.setInvalidType();
2184    // Pretend we didn't see the scope specifier.
2185    DC = CurContext;
2186    Previous.clear();
2187  }
2188
2189  if (getLangOptions().CPlusPlus) {
2190    // Check that there are no default arguments (C++ only).
2191    CheckExtraCXXDefaultArguments(D);
2192  }
2193
2194  DiagnoseFunctionSpecifiers(D);
2195
2196  if (D.getDeclSpec().isThreadSpecified())
2197    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2198
2199  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2200  if (!NewTD) return 0;
2201
2202  // Handle attributes prior to checking for duplicates in MergeVarDecl
2203  ProcessDeclAttributes(S, NewTD, D);
2204
2205  // Merge the decl with the existing one if appropriate. If the decl is
2206  // in an outer scope, it isn't the same thing.
2207  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2208  if (!Previous.empty()) {
2209    Redeclaration = true;
2210    MergeTypeDefDecl(NewTD, Previous);
2211  }
2212
2213  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2214  // then it shall have block scope.
2215  QualType T = NewTD->getUnderlyingType();
2216  if (T->isVariablyModifiedType()) {
2217    FunctionNeedsScopeChecking() = true;
2218
2219    if (S->getFnParent() == 0) {
2220      bool SizeIsNegative;
2221      QualType FixedTy =
2222          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2223      if (!FixedTy.isNull()) {
2224        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2225        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2226      } else {
2227        if (SizeIsNegative)
2228          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2229        else if (T->isVariableArrayType())
2230          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2231        else
2232          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2233        NewTD->setInvalidDecl();
2234      }
2235    }
2236  }
2237
2238  // If this is the C FILE type, notify the AST context.
2239  if (IdentifierInfo *II = NewTD->getIdentifier())
2240    if (!NewTD->isInvalidDecl() &&
2241        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2242      if (II->isStr("FILE"))
2243        Context.setFILEDecl(NewTD);
2244      else if (II->isStr("jmp_buf"))
2245        Context.setjmp_bufDecl(NewTD);
2246      else if (II->isStr("sigjmp_buf"))
2247        Context.setsigjmp_bufDecl(NewTD);
2248    }
2249
2250  return NewTD;
2251}
2252
2253/// \brief Determines whether the given declaration is an out-of-scope
2254/// previous declaration.
2255///
2256/// This routine should be invoked when name lookup has found a
2257/// previous declaration (PrevDecl) that is not in the scope where a
2258/// new declaration by the same name is being introduced. If the new
2259/// declaration occurs in a local scope, previous declarations with
2260/// linkage may still be considered previous declarations (C99
2261/// 6.2.2p4-5, C++ [basic.link]p6).
2262///
2263/// \param PrevDecl the previous declaration found by name
2264/// lookup
2265///
2266/// \param DC the context in which the new declaration is being
2267/// declared.
2268///
2269/// \returns true if PrevDecl is an out-of-scope previous declaration
2270/// for a new delcaration with the same name.
2271static bool
2272isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2273                                ASTContext &Context) {
2274  if (!PrevDecl)
2275    return 0;
2276
2277  if (!PrevDecl->hasLinkage())
2278    return false;
2279
2280  if (Context.getLangOptions().CPlusPlus) {
2281    // C++ [basic.link]p6:
2282    //   If there is a visible declaration of an entity with linkage
2283    //   having the same name and type, ignoring entities declared
2284    //   outside the innermost enclosing namespace scope, the block
2285    //   scope declaration declares that same entity and receives the
2286    //   linkage of the previous declaration.
2287    DeclContext *OuterContext = DC->getLookupContext();
2288    if (!OuterContext->isFunctionOrMethod())
2289      // This rule only applies to block-scope declarations.
2290      return false;
2291    else {
2292      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2293      if (PrevOuterContext->isRecord())
2294        // We found a member function: ignore it.
2295        return false;
2296      else {
2297        // Find the innermost enclosing namespace for the new and
2298        // previous declarations.
2299        while (!OuterContext->isFileContext())
2300          OuterContext = OuterContext->getParent();
2301        while (!PrevOuterContext->isFileContext())
2302          PrevOuterContext = PrevOuterContext->getParent();
2303
2304        // The previous declaration is in a different namespace, so it
2305        // isn't the same function.
2306        if (OuterContext->getPrimaryContext() !=
2307            PrevOuterContext->getPrimaryContext())
2308          return false;
2309      }
2310    }
2311  }
2312
2313  return true;
2314}
2315
2316static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2317  CXXScopeSpec &SS = D.getCXXScopeSpec();
2318  if (!SS.isSet()) return;
2319  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2320                       SS.getRange());
2321}
2322
2323NamedDecl*
2324Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2325                              QualType R, TypeSourceInfo *TInfo,
2326                              LookupResult &Previous,
2327                              MultiTemplateParamsArg TemplateParamLists,
2328                              bool &Redeclaration) {
2329  DeclarationName Name = GetNameForDeclarator(D);
2330
2331  // Check that there are no default arguments (C++ only).
2332  if (getLangOptions().CPlusPlus)
2333    CheckExtraCXXDefaultArguments(D);
2334
2335  VarDecl *NewVD;
2336  VarDecl::StorageClass SC;
2337  switch (D.getDeclSpec().getStorageClassSpec()) {
2338  default: assert(0 && "Unknown storage class!");
2339  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2340  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2341  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2342  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2343  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2344  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2345  case DeclSpec::SCS_mutable:
2346    // mutable can only appear on non-static class members, so it's always
2347    // an error here
2348    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2349    D.setInvalidType();
2350    SC = VarDecl::None;
2351    break;
2352  }
2353
2354  IdentifierInfo *II = Name.getAsIdentifierInfo();
2355  if (!II) {
2356    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2357      << Name.getAsString();
2358    return 0;
2359  }
2360
2361  DiagnoseFunctionSpecifiers(D);
2362
2363  if (!DC->isRecord() && S->getFnParent() == 0) {
2364    // C99 6.9p2: The storage-class specifiers auto and register shall not
2365    // appear in the declaration specifiers in an external declaration.
2366    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2367
2368      // If this is a register variable with an asm label specified, then this
2369      // is a GNU extension.
2370      if (SC == VarDecl::Register && D.getAsmLabel())
2371        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2372      else
2373        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2374      D.setInvalidType();
2375    }
2376  }
2377  if (DC->isRecord() && !CurContext->isRecord()) {
2378    // This is an out-of-line definition of a static data member.
2379    if (SC == VarDecl::Static) {
2380      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2381           diag::err_static_out_of_line)
2382        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2383    } else if (SC == VarDecl::None)
2384      SC = VarDecl::Static;
2385  }
2386  if (SC == VarDecl::Static) {
2387    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2388      if (RD->isLocalClass())
2389        Diag(D.getIdentifierLoc(),
2390             diag::err_static_data_member_not_allowed_in_local_class)
2391          << Name << RD->getDeclName();
2392    }
2393  }
2394
2395  // Match up the template parameter lists with the scope specifier, then
2396  // determine whether we have a template or a template specialization.
2397  bool isExplicitSpecialization = false;
2398  if (TemplateParameterList *TemplateParams
2399        = MatchTemplateParametersToScopeSpecifier(
2400                                  D.getDeclSpec().getSourceRange().getBegin(),
2401                                                  D.getCXXScopeSpec(),
2402                        (TemplateParameterList**)TemplateParamLists.get(),
2403                                                   TemplateParamLists.size(),
2404                                                  /*never a friend*/ false,
2405                                                  isExplicitSpecialization)) {
2406    if (TemplateParams->size() > 0) {
2407      // There is no such thing as a variable template.
2408      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2409        << II
2410        << SourceRange(TemplateParams->getTemplateLoc(),
2411                       TemplateParams->getRAngleLoc());
2412      return 0;
2413    } else {
2414      // There is an extraneous 'template<>' for this variable. Complain
2415      // about it, but allow the declaration of the variable.
2416      Diag(TemplateParams->getTemplateLoc(),
2417           diag::err_template_variable_noparams)
2418        << II
2419        << SourceRange(TemplateParams->getTemplateLoc(),
2420                       TemplateParams->getRAngleLoc());
2421
2422      isExplicitSpecialization = true;
2423    }
2424  }
2425
2426  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2427                          II, R, TInfo, SC);
2428
2429  if (D.isInvalidType())
2430    NewVD->setInvalidDecl();
2431
2432  SetNestedNameSpecifier(NewVD, D);
2433
2434  if (D.getDeclSpec().isThreadSpecified()) {
2435    if (NewVD->hasLocalStorage())
2436      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2437    else if (!Context.Target.isTLSSupported())
2438      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2439    else
2440      NewVD->setThreadSpecified(true);
2441  }
2442
2443  // Set the lexical context. If the declarator has a C++ scope specifier, the
2444  // lexical context will be different from the semantic context.
2445  NewVD->setLexicalDeclContext(CurContext);
2446
2447  // Handle attributes prior to checking for duplicates in MergeVarDecl
2448  ProcessDeclAttributes(S, NewVD, D);
2449
2450  // Handle GNU asm-label extension (encoded as an attribute).
2451  if (Expr *E = (Expr*) D.getAsmLabel()) {
2452    // The parser guarantees this is a string.
2453    StringLiteral *SE = cast<StringLiteral>(E);
2454    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2455  }
2456
2457  // Diagnose shadowed variables before filtering for scope.
2458  if (!D.getCXXScopeSpec().isSet())
2459    CheckShadow(S, NewVD, Previous);
2460
2461  // Don't consider existing declarations that are in a different
2462  // scope and are out-of-semantic-context declarations (if the new
2463  // declaration has linkage).
2464  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2465
2466  // Merge the decl with the existing one if appropriate.
2467  if (!Previous.empty()) {
2468    if (Previous.isSingleResult() &&
2469        isa<FieldDecl>(Previous.getFoundDecl()) &&
2470        D.getCXXScopeSpec().isSet()) {
2471      // The user tried to define a non-static data member
2472      // out-of-line (C++ [dcl.meaning]p1).
2473      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2474        << D.getCXXScopeSpec().getRange();
2475      Previous.clear();
2476      NewVD->setInvalidDecl();
2477    }
2478  } else if (D.getCXXScopeSpec().isSet()) {
2479    // No previous declaration in the qualifying scope.
2480    Diag(D.getIdentifierLoc(), diag::err_no_member)
2481      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2482      << D.getCXXScopeSpec().getRange();
2483    NewVD->setInvalidDecl();
2484  }
2485
2486  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2487
2488  // This is an explicit specialization of a static data member. Check it.
2489  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2490      CheckMemberSpecialization(NewVD, Previous))
2491    NewVD->setInvalidDecl();
2492
2493  // attributes declared post-definition are currently ignored
2494  if (Previous.isSingleResult()) {
2495    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2496    if (Def && (Def = Def->getDefinition()) &&
2497        Def != NewVD && D.hasAttributes()) {
2498      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2499      Diag(Def->getLocation(), diag::note_previous_definition);
2500    }
2501  }
2502
2503  // If this is a locally-scoped extern C variable, update the map of
2504  // such variables.
2505  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2506      !NewVD->isInvalidDecl())
2507    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2508
2509  return NewVD;
2510}
2511
2512/// \brief Diagnose variable or built-in function shadowing.  Implements
2513/// -Wshadow.
2514///
2515/// This method is called whenever a VarDecl is added to a "useful"
2516/// scope.
2517///
2518/// \param S the scope in which the shadowing name is being declared
2519/// \param R the lookup of the name
2520///
2521void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2522  // Return if warning is ignored.
2523  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2524    return;
2525
2526  // Don't diagnose declarations at file scope.  The scope might not
2527  // have a DeclContext if (e.g.) we're parsing a function prototype.
2528  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2529  if (NewDC && NewDC->isFileContext())
2530    return;
2531
2532  // Only diagnose if we're shadowing an unambiguous field or variable.
2533  if (R.getResultKind() != LookupResult::Found)
2534    return;
2535
2536  NamedDecl* ShadowedDecl = R.getFoundDecl();
2537  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2538    return;
2539
2540  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2541
2542  // Only warn about certain kinds of shadowing for class members.
2543  if (NewDC && NewDC->isRecord()) {
2544    // In particular, don't warn about shadowing non-class members.
2545    if (!OldDC->isRecord())
2546      return;
2547
2548    // TODO: should we warn about static data members shadowing
2549    // static data members from base classes?
2550
2551    // TODO: don't diagnose for inaccessible shadowed members.
2552    // This is hard to do perfectly because we might friend the
2553    // shadowing context, but that's just a false negative.
2554  }
2555
2556  // Determine what kind of declaration we're shadowing.
2557  unsigned Kind;
2558  if (isa<RecordDecl>(OldDC)) {
2559    if (isa<FieldDecl>(ShadowedDecl))
2560      Kind = 3; // field
2561    else
2562      Kind = 2; // static data member
2563  } else if (OldDC->isFileContext())
2564    Kind = 1; // global
2565  else
2566    Kind = 0; // local
2567
2568  DeclarationName Name = R.getLookupName();
2569
2570  // Emit warning and note.
2571  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2572  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2573}
2574
2575/// \brief Check -Wshadow without the advantage of a previous lookup.
2576void Sema::CheckShadow(Scope *S, VarDecl *D) {
2577  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2578                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2579  LookupName(R, S);
2580  CheckShadow(S, D, R);
2581}
2582
2583/// \brief Perform semantic checking on a newly-created variable
2584/// declaration.
2585///
2586/// This routine performs all of the type-checking required for a
2587/// variable declaration once it has been built. It is used both to
2588/// check variables after they have been parsed and their declarators
2589/// have been translated into a declaration, and to check variables
2590/// that have been instantiated from a template.
2591///
2592/// Sets NewVD->isInvalidDecl() if an error was encountered.
2593void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2594                                    LookupResult &Previous,
2595                                    bool &Redeclaration) {
2596  // If the decl is already known invalid, don't check it.
2597  if (NewVD->isInvalidDecl())
2598    return;
2599
2600  QualType T = NewVD->getType();
2601
2602  if (T->isObjCInterfaceType()) {
2603    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2604    return NewVD->setInvalidDecl();
2605  }
2606
2607  // Emit an error if an address space was applied to decl with local storage.
2608  // This includes arrays of objects with address space qualifiers, but not
2609  // automatic variables that point to other address spaces.
2610  // ISO/IEC TR 18037 S5.1.2
2611  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2612    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2613    return NewVD->setInvalidDecl();
2614  }
2615
2616  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2617      && !NewVD->hasAttr<BlocksAttr>())
2618    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2619
2620  bool isVM = T->isVariablyModifiedType();
2621  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2622      NewVD->hasAttr<BlocksAttr>() ||
2623      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2624      // However, this turns on the scope checker for everything with a variable
2625      // which may impact compile time.  See if we can find a better solution
2626      // to this, perhaps only checking functions that contain gotos in C++?
2627      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2628    FunctionNeedsScopeChecking() = true;
2629
2630  if ((isVM && NewVD->hasLinkage()) ||
2631      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2632    bool SizeIsNegative;
2633    QualType FixedTy =
2634        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2635
2636    if (FixedTy.isNull() && T->isVariableArrayType()) {
2637      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2638      // FIXME: This won't give the correct result for
2639      // int a[10][n];
2640      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2641
2642      if (NewVD->isFileVarDecl())
2643        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2644        << SizeRange;
2645      else if (NewVD->getStorageClass() == VarDecl::Static)
2646        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2647        << SizeRange;
2648      else
2649        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2650        << SizeRange;
2651      return NewVD->setInvalidDecl();
2652    }
2653
2654    if (FixedTy.isNull()) {
2655      if (NewVD->isFileVarDecl())
2656        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2657      else
2658        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2659      return NewVD->setInvalidDecl();
2660    }
2661
2662    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2663    NewVD->setType(FixedTy);
2664  }
2665
2666  if (Previous.empty() && NewVD->isExternC()) {
2667    // Since we did not find anything by this name and we're declaring
2668    // an extern "C" variable, look for a non-visible extern "C"
2669    // declaration with the same name.
2670    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2671      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2672    if (Pos != LocallyScopedExternalDecls.end())
2673      Previous.addDecl(Pos->second);
2674  }
2675
2676  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2677    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2678      << T;
2679    return NewVD->setInvalidDecl();
2680  }
2681
2682  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2683    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2684    return NewVD->setInvalidDecl();
2685  }
2686
2687  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2688    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2689    return NewVD->setInvalidDecl();
2690  }
2691
2692  if (!Previous.empty()) {
2693    Redeclaration = true;
2694    MergeVarDecl(NewVD, Previous);
2695  }
2696}
2697
2698/// \brief Data used with FindOverriddenMethod
2699struct FindOverriddenMethodData {
2700  Sema *S;
2701  CXXMethodDecl *Method;
2702};
2703
2704/// \brief Member lookup function that determines whether a given C++
2705/// method overrides a method in a base class, to be used with
2706/// CXXRecordDecl::lookupInBases().
2707static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2708                                 CXXBasePath &Path,
2709                                 void *UserData) {
2710  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2711
2712  FindOverriddenMethodData *Data
2713    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2714
2715  DeclarationName Name = Data->Method->getDeclName();
2716
2717  // FIXME: Do we care about other names here too?
2718  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2719    // We really want to find the base class constructor here.
2720    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2721    CanQualType CT = Data->S->Context.getCanonicalType(T);
2722
2723    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2724  }
2725
2726  for (Path.Decls = BaseRecord->lookup(Name);
2727       Path.Decls.first != Path.Decls.second;
2728       ++Path.Decls.first) {
2729    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2730      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2731        return true;
2732    }
2733  }
2734
2735  return false;
2736}
2737
2738/// AddOverriddenMethods - See if a method overrides any in the base classes,
2739/// and if so, check that it's a valid override and remember it.
2740void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2741  // Look for virtual methods in base classes that this method might override.
2742  CXXBasePaths Paths;
2743  FindOverriddenMethodData Data;
2744  Data.Method = MD;
2745  Data.S = this;
2746  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2747    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2748         E = Paths.found_decls_end(); I != E; ++I) {
2749      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2750        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2751            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2752            !CheckOverridingFunctionAttributes(MD, OldMD))
2753          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2754      }
2755    }
2756  }
2757}
2758
2759NamedDecl*
2760Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2761                              QualType R, TypeSourceInfo *TInfo,
2762                              LookupResult &Previous,
2763                              MultiTemplateParamsArg TemplateParamLists,
2764                              bool IsFunctionDefinition, bool &Redeclaration) {
2765  assert(R.getTypePtr()->isFunctionType());
2766
2767  DeclarationName Name = GetNameForDeclarator(D);
2768  FunctionDecl::StorageClass SC = FunctionDecl::None;
2769  switch (D.getDeclSpec().getStorageClassSpec()) {
2770  default: assert(0 && "Unknown storage class!");
2771  case DeclSpec::SCS_auto:
2772  case DeclSpec::SCS_register:
2773  case DeclSpec::SCS_mutable:
2774    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2775         diag::err_typecheck_sclass_func);
2776    D.setInvalidType();
2777    break;
2778  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2779  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2780  case DeclSpec::SCS_static: {
2781    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2782      // C99 6.7.1p5:
2783      //   The declaration of an identifier for a function that has
2784      //   block scope shall have no explicit storage-class specifier
2785      //   other than extern
2786      // See also (C++ [dcl.stc]p4).
2787      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2788           diag::err_static_block_func);
2789      SC = FunctionDecl::None;
2790    } else
2791      SC = FunctionDecl::Static;
2792    break;
2793  }
2794  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2795  }
2796
2797  if (D.getDeclSpec().isThreadSpecified())
2798    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2799
2800  bool isFriend = D.getDeclSpec().isFriendSpecified();
2801  bool isInline = D.getDeclSpec().isInlineSpecified();
2802  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2803  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2804
2805  // Check that the return type is not an abstract class type.
2806  // For record types, this is done by the AbstractClassUsageDiagnoser once
2807  // the class has been completely parsed.
2808  if (!DC->isRecord() &&
2809      RequireNonAbstractType(D.getIdentifierLoc(),
2810                             R->getAs<FunctionType>()->getResultType(),
2811                             diag::err_abstract_type_in_decl,
2812                             AbstractReturnType))
2813    D.setInvalidType();
2814
2815  // Do not allow returning a objc interface by-value.
2816  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2817    Diag(D.getIdentifierLoc(),
2818         diag::err_object_cannot_be_passed_returned_by_value) << 0
2819      << R->getAs<FunctionType>()->getResultType();
2820    D.setInvalidType();
2821  }
2822
2823  bool isVirtualOkay = false;
2824  FunctionDecl *NewFD;
2825
2826  if (isFriend) {
2827    // C++ [class.friend]p5
2828    //   A function can be defined in a friend declaration of a
2829    //   class . . . . Such a function is implicitly inline.
2830    isInline |= IsFunctionDefinition;
2831  }
2832
2833  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2834    // This is a C++ constructor declaration.
2835    assert(DC->isRecord() &&
2836           "Constructors can only be declared in a member context");
2837
2838    R = CheckConstructorDeclarator(D, R, SC);
2839
2840    // Create the new declaration
2841    NewFD = CXXConstructorDecl::Create(Context,
2842                                       cast<CXXRecordDecl>(DC),
2843                                       D.getIdentifierLoc(), Name, R, TInfo,
2844                                       isExplicit, isInline,
2845                                       /*isImplicitlyDeclared=*/false);
2846  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2847    // This is a C++ destructor declaration.
2848    if (DC->isRecord()) {
2849      R = CheckDestructorDeclarator(D, SC);
2850
2851      NewFD = CXXDestructorDecl::Create(Context,
2852                                        cast<CXXRecordDecl>(DC),
2853                                        D.getIdentifierLoc(), Name, R,
2854                                        isInline,
2855                                        /*isImplicitlyDeclared=*/false);
2856      NewFD->setTypeSourceInfo(TInfo);
2857
2858      isVirtualOkay = true;
2859    } else {
2860      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2861
2862      // Create a FunctionDecl to satisfy the function definition parsing
2863      // code path.
2864      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2865                                   Name, R, TInfo, SC, isInline,
2866                                   /*hasPrototype=*/true);
2867      D.setInvalidType();
2868    }
2869  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2870    if (!DC->isRecord()) {
2871      Diag(D.getIdentifierLoc(),
2872           diag::err_conv_function_not_member);
2873      return 0;
2874    }
2875
2876    CheckConversionDeclarator(D, R, SC);
2877    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2878                                      D.getIdentifierLoc(), Name, R, TInfo,
2879                                      isInline, isExplicit);
2880
2881    isVirtualOkay = true;
2882  } else if (DC->isRecord()) {
2883    // If the of the function is the same as the name of the record, then this
2884    // must be an invalid constructor that has a return type.
2885    // (The parser checks for a return type and makes the declarator a
2886    // constructor if it has no return type).
2887    // must have an invalid constructor that has a return type
2888    if (Name.getAsIdentifierInfo() &&
2889        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2890      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2891        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2892        << SourceRange(D.getIdentifierLoc());
2893      return 0;
2894    }
2895
2896    bool isStatic = SC == FunctionDecl::Static;
2897
2898    // [class.free]p1:
2899    // Any allocation function for a class T is a static member
2900    // (even if not explicitly declared static).
2901    if (Name.getCXXOverloadedOperator() == OO_New ||
2902        Name.getCXXOverloadedOperator() == OO_Array_New)
2903      isStatic = true;
2904
2905    // [class.free]p6 Any deallocation function for a class X is a static member
2906    // (even if not explicitly declared static).
2907    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2908        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2909      isStatic = true;
2910
2911    // This is a C++ method declaration.
2912    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2913                                  D.getIdentifierLoc(), Name, R, TInfo,
2914                                  isStatic, isInline);
2915
2916    isVirtualOkay = !isStatic;
2917  } else {
2918    // Determine whether the function was written with a
2919    // prototype. This true when:
2920    //   - we're in C++ (where every function has a prototype),
2921    //   - there is a prototype in the declarator, or
2922    //   - the type R of the function is some kind of typedef or other reference
2923    //     to a type name (which eventually refers to a function type).
2924    bool HasPrototype =
2925       getLangOptions().CPlusPlus ||
2926       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2927       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2928
2929    NewFD = FunctionDecl::Create(Context, DC,
2930                                 D.getIdentifierLoc(),
2931                                 Name, R, TInfo, SC, isInline, HasPrototype);
2932  }
2933
2934  if (D.isInvalidType())
2935    NewFD->setInvalidDecl();
2936
2937  SetNestedNameSpecifier(NewFD, D);
2938
2939  // Set the lexical context. If the declarator has a C++
2940  // scope specifier, or is the object of a friend declaration, the
2941  // lexical context will be different from the semantic context.
2942  NewFD->setLexicalDeclContext(CurContext);
2943
2944  // Match up the template parameter lists with the scope specifier, then
2945  // determine whether we have a template or a template specialization.
2946  FunctionTemplateDecl *FunctionTemplate = 0;
2947  bool isExplicitSpecialization = false;
2948  bool isFunctionTemplateSpecialization = false;
2949  if (TemplateParameterList *TemplateParams
2950        = MatchTemplateParametersToScopeSpecifier(
2951                                  D.getDeclSpec().getSourceRange().getBegin(),
2952                                  D.getCXXScopeSpec(),
2953                           (TemplateParameterList**)TemplateParamLists.get(),
2954                                                  TemplateParamLists.size(),
2955                                                  isFriend,
2956                                                  isExplicitSpecialization)) {
2957    if (TemplateParams->size() > 0) {
2958      // This is a function template
2959
2960      // Check that we can declare a template here.
2961      if (CheckTemplateDeclScope(S, TemplateParams))
2962        return 0;
2963
2964      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2965                                                      NewFD->getLocation(),
2966                                                      Name, TemplateParams,
2967                                                      NewFD);
2968      FunctionTemplate->setLexicalDeclContext(CurContext);
2969      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2970    } else {
2971      // This is a function template specialization.
2972      isFunctionTemplateSpecialization = true;
2973
2974      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
2975      if (isFriend && isFunctionTemplateSpecialization) {
2976        // We want to remove the "template<>", found here.
2977        SourceRange RemoveRange = TemplateParams->getSourceRange();
2978
2979        // If we remove the template<> and the name is not a
2980        // template-id, we're actually silently creating a problem:
2981        // the friend declaration will refer to an untemplated decl,
2982        // and clearly the user wants a template specialization.  So
2983        // we need to insert '<>' after the name.
2984        SourceLocation InsertLoc;
2985        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
2986          InsertLoc = D.getName().getSourceRange().getEnd();
2987          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
2988        }
2989
2990        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
2991          << Name << RemoveRange
2992          << FixItHint::CreateRemoval(RemoveRange)
2993          << FixItHint::CreateInsertion(InsertLoc, "<>");
2994      }
2995    }
2996
2997    // FIXME: Free this memory properly.
2998    TemplateParamLists.release();
2999  }
3000
3001  // C++ [dcl.fct.spec]p5:
3002  //   The virtual specifier shall only be used in declarations of
3003  //   nonstatic class member functions that appear within a
3004  //   member-specification of a class declaration; see 10.3.
3005  //
3006  if (isVirtual && !NewFD->isInvalidDecl()) {
3007    if (!isVirtualOkay) {
3008       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3009           diag::err_virtual_non_function);
3010    } else if (!CurContext->isRecord()) {
3011      // 'virtual' was specified outside of the class.
3012      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3013        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3014    } else {
3015      // Okay: Add virtual to the method.
3016      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3017      CurClass->setMethodAsVirtual(NewFD);
3018    }
3019  }
3020
3021  // C++ [dcl.fct.spec]p6:
3022  //  The explicit specifier shall be used only in the declaration of a
3023  //  constructor or conversion function within its class definition; see 12.3.1
3024  //  and 12.3.2.
3025  if (isExplicit && !NewFD->isInvalidDecl()) {
3026    if (!CurContext->isRecord()) {
3027      // 'explicit' was specified outside of the class.
3028      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3029           diag::err_explicit_out_of_class)
3030        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3031    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3032               !isa<CXXConversionDecl>(NewFD)) {
3033      // 'explicit' was specified on a function that wasn't a constructor
3034      // or conversion function.
3035      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3036           diag::err_explicit_non_ctor_or_conv_function)
3037        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3038    }
3039  }
3040
3041  // Filter out previous declarations that don't match the scope.
3042  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3043
3044  if (isFriend) {
3045    // DC is the namespace in which the function is being declared.
3046    assert((DC->isFileContext() || !Previous.empty()) &&
3047           "previously-undeclared friend function being created "
3048           "in a non-namespace context");
3049
3050    // For now, claim that the objects have no previous declaration.
3051    if (FunctionTemplate) {
3052      FunctionTemplate->setObjectOfFriendDecl(false);
3053      FunctionTemplate->setAccess(AS_public);
3054    }
3055    NewFD->setObjectOfFriendDecl(false);
3056    NewFD->setAccess(AS_public);
3057  }
3058
3059  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3060      !CurContext->isRecord()) {
3061    // C++ [class.static]p1:
3062    //   A data or function member of a class may be declared static
3063    //   in a class definition, in which case it is a static member of
3064    //   the class.
3065
3066    // Complain about the 'static' specifier if it's on an out-of-line
3067    // member function definition.
3068    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3069         diag::err_static_out_of_line)
3070      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3071  }
3072
3073  // Handle GNU asm-label extension (encoded as an attribute).
3074  if (Expr *E = (Expr*) D.getAsmLabel()) {
3075    // The parser guarantees this is a string.
3076    StringLiteral *SE = cast<StringLiteral>(E);
3077    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3078  }
3079
3080  // Copy the parameter declarations from the declarator D to the function
3081  // declaration NewFD, if they are available.  First scavenge them into Params.
3082  llvm::SmallVector<ParmVarDecl*, 16> Params;
3083  if (D.getNumTypeObjects() > 0) {
3084    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3085
3086    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3087    // function that takes no arguments, not a function that takes a
3088    // single void argument.
3089    // We let through "const void" here because Sema::GetTypeForDeclarator
3090    // already checks for that case.
3091    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3092        FTI.ArgInfo[0].Param &&
3093        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3094      // Empty arg list, don't push any params.
3095      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3096
3097      // In C++, the empty parameter-type-list must be spelled "void"; a
3098      // typedef of void is not permitted.
3099      if (getLangOptions().CPlusPlus &&
3100          Param->getType().getUnqualifiedType() != Context.VoidTy)
3101        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3102      // FIXME: Leaks decl?
3103    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3104      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3105        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3106        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3107        Param->setDeclContext(NewFD);
3108        Params.push_back(Param);
3109
3110        if (Param->isInvalidDecl())
3111          NewFD->setInvalidDecl();
3112      }
3113    }
3114
3115  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3116    // When we're declaring a function with a typedef, typeof, etc as in the
3117    // following example, we'll need to synthesize (unnamed)
3118    // parameters for use in the declaration.
3119    //
3120    // @code
3121    // typedef void fn(int);
3122    // fn f;
3123    // @endcode
3124
3125    // Synthesize a parameter for each argument type.
3126    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3127         AE = FT->arg_type_end(); AI != AE; ++AI) {
3128      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3129                                               SourceLocation(), 0,
3130                                               *AI, /*TInfo=*/0,
3131                                               VarDecl::None, 0);
3132      Param->setImplicit();
3133      Params.push_back(Param);
3134    }
3135  } else {
3136    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3137           "Should not need args for typedef of non-prototype fn");
3138  }
3139  // Finally, we know we have the right number of parameters, install them.
3140  NewFD->setParams(Params.data(), Params.size());
3141
3142  // If the declarator is a template-id, translate the parser's template
3143  // argument list into our AST format.
3144  bool HasExplicitTemplateArgs = false;
3145  TemplateArgumentListInfo TemplateArgs;
3146  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3147    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3148    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3149    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3150    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3151                                       TemplateId->getTemplateArgs(),
3152                                       TemplateId->NumArgs);
3153    translateTemplateArguments(TemplateArgsPtr,
3154                               TemplateArgs);
3155    TemplateArgsPtr.release();
3156
3157    HasExplicitTemplateArgs = true;
3158
3159    if (FunctionTemplate) {
3160      // FIXME: Diagnose function template with explicit template
3161      // arguments.
3162      HasExplicitTemplateArgs = false;
3163    } else if (!isFunctionTemplateSpecialization &&
3164               !D.getDeclSpec().isFriendSpecified()) {
3165      // We have encountered something that the user meant to be a
3166      // specialization (because it has explicitly-specified template
3167      // arguments) but that was not introduced with a "template<>" (or had
3168      // too few of them).
3169      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3170        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3171        << FixItHint::CreateInsertion(
3172                                   D.getDeclSpec().getSourceRange().getBegin(),
3173                                                 "template<> ");
3174      isFunctionTemplateSpecialization = true;
3175    } else {
3176      // "friend void foo<>(int);" is an implicit specialization decl.
3177      isFunctionTemplateSpecialization = true;
3178    }
3179  } else if (isFriend && isFunctionTemplateSpecialization) {
3180    // This combination is only possible in a recovery case;  the user
3181    // wrote something like:
3182    //   template <> friend void foo(int);
3183    // which we're recovering from as if the user had written:
3184    //   friend void foo<>(int);
3185    // Go ahead and fake up a template id.
3186    HasExplicitTemplateArgs = true;
3187    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3188    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3189  }
3190
3191  // If it's a friend (and only if it's a friend), it's possible
3192  // that either the specialized function type or the specialized
3193  // template is dependent, and therefore matching will fail.  In
3194  // this case, don't check the specialization yet.
3195  if (isFunctionTemplateSpecialization && isFriend &&
3196      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3197    assert(HasExplicitTemplateArgs &&
3198           "friend function specialization without template args");
3199    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3200                                                     Previous))
3201      NewFD->setInvalidDecl();
3202  } else if (isFunctionTemplateSpecialization) {
3203    if (CheckFunctionTemplateSpecialization(NewFD,
3204                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3205                                            Previous))
3206      NewFD->setInvalidDecl();
3207  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3208    if (CheckMemberSpecialization(NewFD, Previous))
3209      NewFD->setInvalidDecl();
3210  }
3211
3212  // Perform semantic checking on the function declaration.
3213  bool OverloadableAttrRequired = false; // FIXME: HACK!
3214  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3215                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3216
3217  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3218          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3219         "previous declaration set still overloaded");
3220
3221  if (isFriend && Redeclaration) {
3222    AccessSpecifier Access = AS_public;
3223    if (!NewFD->isInvalidDecl())
3224      Access = NewFD->getPreviousDeclaration()->getAccess();
3225
3226    if (FunctionTemplate) {
3227      FunctionTemplate->setObjectOfFriendDecl(true);
3228      FunctionTemplate->setAccess(Access);
3229    } else {
3230      NewFD->setObjectOfFriendDecl(true);
3231    }
3232    NewFD->setAccess(Access);
3233  }
3234
3235  // If we have a function template, check the template parameter
3236  // list. This will check and merge default template arguments.
3237  if (FunctionTemplate) {
3238    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3239    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3240                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3241             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3242                                                : TPC_FunctionTemplate);
3243  }
3244
3245  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3246    // Fake up an access specifier if it's supposed to be a class member.
3247    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3248      NewFD->setAccess(AS_public);
3249
3250    // An out-of-line member function declaration must also be a
3251    // definition (C++ [dcl.meaning]p1).
3252    // Note that this is not the case for explicit specializations of
3253    // function templates or member functions of class templates, per
3254    // C++ [temp.expl.spec]p2.
3255    if (!IsFunctionDefinition && !isFriend &&
3256        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3257      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3258        << D.getCXXScopeSpec().getRange();
3259      NewFD->setInvalidDecl();
3260    } else if (!Redeclaration &&
3261               !(isFriend && CurContext->isDependentContext())) {
3262      // The user tried to provide an out-of-line definition for a
3263      // function that is a member of a class or namespace, but there
3264      // was no such member function declared (C++ [class.mfct]p2,
3265      // C++ [namespace.memdef]p2). For example:
3266      //
3267      // class X {
3268      //   void f() const;
3269      // };
3270      //
3271      // void X::f() { } // ill-formed
3272      //
3273      // Complain about this problem, and attempt to suggest close
3274      // matches (e.g., those that differ only in cv-qualifiers and
3275      // whether the parameter types are references).
3276      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3277        << Name << DC << D.getCXXScopeSpec().getRange();
3278      NewFD->setInvalidDecl();
3279
3280      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3281                        ForRedeclaration);
3282      LookupQualifiedName(Prev, DC);
3283      assert(!Prev.isAmbiguous() &&
3284             "Cannot have an ambiguity in previous-declaration lookup");
3285      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3286           Func != FuncEnd; ++Func) {
3287        if (isa<FunctionDecl>(*Func) &&
3288            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3289          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3290      }
3291    }
3292  }
3293
3294  // Handle attributes. We need to have merged decls when handling attributes
3295  // (for example to check for conflicts, etc).
3296  // FIXME: This needs to happen before we merge declarations. Then,
3297  // let attribute merging cope with attribute conflicts.
3298  ProcessDeclAttributes(S, NewFD, D);
3299
3300  // attributes declared post-definition are currently ignored
3301  if (Redeclaration && Previous.isSingleResult()) {
3302    const FunctionDecl *Def;
3303    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3304    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3305      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3306      Diag(Def->getLocation(), diag::note_previous_definition);
3307    }
3308  }
3309
3310  AddKnownFunctionAttributes(NewFD);
3311
3312  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3313    // If a function name is overloadable in C, then every function
3314    // with that name must be marked "overloadable".
3315    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3316      << Redeclaration << NewFD;
3317    if (!Previous.empty())
3318      Diag(Previous.getRepresentativeDecl()->getLocation(),
3319           diag::note_attribute_overloadable_prev_overload);
3320    NewFD->addAttr(::new (Context) OverloadableAttr());
3321  }
3322
3323  // If this is a locally-scoped extern C function, update the
3324  // map of such names.
3325  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3326      && !NewFD->isInvalidDecl())
3327    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3328
3329  // Set this FunctionDecl's range up to the right paren.
3330  NewFD->setLocEnd(D.getSourceRange().getEnd());
3331
3332  if (FunctionTemplate && NewFD->isInvalidDecl())
3333    FunctionTemplate->setInvalidDecl();
3334
3335  if (FunctionTemplate)
3336    return FunctionTemplate;
3337
3338
3339  // Keep track of static, non-inlined function definitions that
3340  // have not been used. We will warn later.
3341  // FIXME: Also include static functions declared but not defined.
3342  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3343      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3344      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3345      && !NewFD->hasAttr<ConstructorAttr>()
3346      && !NewFD->hasAttr<DestructorAttr>())
3347    UnusedStaticFuncs.push_back(NewFD);
3348
3349  return NewFD;
3350}
3351
3352/// \brief Perform semantic checking of a new function declaration.
3353///
3354/// Performs semantic analysis of the new function declaration
3355/// NewFD. This routine performs all semantic checking that does not
3356/// require the actual declarator involved in the declaration, and is
3357/// used both for the declaration of functions as they are parsed
3358/// (called via ActOnDeclarator) and for the declaration of functions
3359/// that have been instantiated via C++ template instantiation (called
3360/// via InstantiateDecl).
3361///
3362/// \param IsExplicitSpecialiation whether this new function declaration is
3363/// an explicit specialization of the previous declaration.
3364///
3365/// This sets NewFD->isInvalidDecl() to true if there was an error.
3366void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3367                                    LookupResult &Previous,
3368                                    bool IsExplicitSpecialization,
3369                                    bool &Redeclaration,
3370                                    bool &OverloadableAttrRequired) {
3371  // If NewFD is already known erroneous, don't do any of this checking.
3372  if (NewFD->isInvalidDecl())
3373    return;
3374
3375  if (NewFD->getResultType()->isVariablyModifiedType()) {
3376    // Functions returning a variably modified type violate C99 6.7.5.2p2
3377    // because all functions have linkage.
3378    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3379    return NewFD->setInvalidDecl();
3380  }
3381
3382  if (NewFD->isMain())
3383    CheckMain(NewFD);
3384
3385  // Check for a previous declaration of this name.
3386  if (Previous.empty() && NewFD->isExternC()) {
3387    // Since we did not find anything by this name and we're declaring
3388    // an extern "C" function, look for a non-visible extern "C"
3389    // declaration with the same name.
3390    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3391      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3392    if (Pos != LocallyScopedExternalDecls.end())
3393      Previous.addDecl(Pos->second);
3394  }
3395
3396  // Merge or overload the declaration with an existing declaration of
3397  // the same name, if appropriate.
3398  if (!Previous.empty()) {
3399    // Determine whether NewFD is an overload of PrevDecl or
3400    // a declaration that requires merging. If it's an overload,
3401    // there's no more work to do here; we'll just add the new
3402    // function to the scope.
3403
3404    NamedDecl *OldDecl = 0;
3405    if (!AllowOverloadingOfFunction(Previous, Context)) {
3406      Redeclaration = true;
3407      OldDecl = Previous.getFoundDecl();
3408    } else {
3409      if (!getLangOptions().CPlusPlus) {
3410        OverloadableAttrRequired = true;
3411
3412        // Functions marked "overloadable" must have a prototype (that
3413        // we can't get through declaration merging).
3414        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3415          Diag(NewFD->getLocation(),
3416               diag::err_attribute_overloadable_no_prototype)
3417            << NewFD;
3418          Redeclaration = true;
3419
3420          // Turn this into a variadic function with no parameters.
3421          QualType R = Context.getFunctionType(
3422                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3423                     0, 0, true, 0, false, false, 0, 0,
3424                     FunctionType::ExtInfo());
3425          NewFD->setType(R);
3426          return NewFD->setInvalidDecl();
3427        }
3428      }
3429
3430      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3431      case Ovl_Match:
3432        Redeclaration = true;
3433        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3434          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3435          Redeclaration = false;
3436        }
3437        break;
3438
3439      case Ovl_NonFunction:
3440        Redeclaration = true;
3441        break;
3442
3443      case Ovl_Overload:
3444        Redeclaration = false;
3445        break;
3446      }
3447    }
3448
3449    if (Redeclaration) {
3450      // NewFD and OldDecl represent declarations that need to be
3451      // merged.
3452      if (MergeFunctionDecl(NewFD, OldDecl))
3453        return NewFD->setInvalidDecl();
3454
3455      Previous.clear();
3456      Previous.addDecl(OldDecl);
3457
3458      if (FunctionTemplateDecl *OldTemplateDecl
3459                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3460        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3461        FunctionTemplateDecl *NewTemplateDecl
3462          = NewFD->getDescribedFunctionTemplate();
3463        assert(NewTemplateDecl && "Template/non-template mismatch");
3464        if (CXXMethodDecl *Method
3465              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3466          Method->setAccess(OldTemplateDecl->getAccess());
3467          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3468        }
3469
3470        // If this is an explicit specialization of a member that is a function
3471        // template, mark it as a member specialization.
3472        if (IsExplicitSpecialization &&
3473            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3474          NewTemplateDecl->setMemberSpecialization();
3475          assert(OldTemplateDecl->isMemberSpecialization());
3476        }
3477      } else {
3478        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3479          NewFD->setAccess(OldDecl->getAccess());
3480        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3481      }
3482    }
3483  }
3484
3485  // Semantic checking for this function declaration (in isolation).
3486  if (getLangOptions().CPlusPlus) {
3487    // C++-specific checks.
3488    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3489      CheckConstructor(Constructor);
3490    } else if (CXXDestructorDecl *Destructor =
3491                dyn_cast<CXXDestructorDecl>(NewFD)) {
3492      CXXRecordDecl *Record = Destructor->getParent();
3493      QualType ClassType = Context.getTypeDeclType(Record);
3494
3495      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3496      // type is dependent? Both gcc and edg can handle that.
3497      if (!ClassType->isDependentType()) {
3498        DeclarationName Name
3499          = Context.DeclarationNames.getCXXDestructorName(
3500                                        Context.getCanonicalType(ClassType));
3501        if (NewFD->getDeclName() != Name) {
3502          Diag(NewFD->getLocation(), diag::err_destructor_name);
3503          return NewFD->setInvalidDecl();
3504        }
3505      }
3506
3507      Record->setUserDeclaredDestructor(true);
3508      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3509      // user-defined destructor.
3510      Record->setPOD(false);
3511
3512      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3513      // declared destructor.
3514      // FIXME: C++0x: don't do this for "= default" destructors
3515      Record->setHasTrivialDestructor(false);
3516    } else if (CXXConversionDecl *Conversion
3517               = dyn_cast<CXXConversionDecl>(NewFD)) {
3518      ActOnConversionDeclarator(Conversion);
3519    }
3520
3521    // Find any virtual functions that this function overrides.
3522    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3523      if (!Method->isFunctionTemplateSpecialization() &&
3524          !Method->getDescribedFunctionTemplate())
3525        AddOverriddenMethods(Method->getParent(), Method);
3526    }
3527
3528    // Additional checks for the destructor; make sure we do this after we
3529    // figure out whether the destructor is virtual.
3530    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3531      if (!Destructor->getParent()->isDependentType())
3532        CheckDestructor(Destructor);
3533
3534    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3535    if (NewFD->isOverloadedOperator() &&
3536        CheckOverloadedOperatorDeclaration(NewFD))
3537      return NewFD->setInvalidDecl();
3538
3539    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3540    if (NewFD->getLiteralIdentifier() &&
3541        CheckLiteralOperatorDeclaration(NewFD))
3542      return NewFD->setInvalidDecl();
3543
3544    // In C++, check default arguments now that we have merged decls. Unless
3545    // the lexical context is the class, because in this case this is done
3546    // during delayed parsing anyway.
3547    if (!CurContext->isRecord())
3548      CheckCXXDefaultArguments(NewFD);
3549  }
3550}
3551
3552void Sema::CheckMain(FunctionDecl* FD) {
3553  // C++ [basic.start.main]p3:  A program that declares main to be inline
3554  //   or static is ill-formed.
3555  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3556  //   shall not appear in a declaration of main.
3557  // static main is not an error under C99, but we should warn about it.
3558  bool isInline = FD->isInlineSpecified();
3559  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3560  if (isInline || isStatic) {
3561    unsigned diagID = diag::warn_unusual_main_decl;
3562    if (isInline || getLangOptions().CPlusPlus)
3563      diagID = diag::err_unusual_main_decl;
3564
3565    int which = isStatic + (isInline << 1) - 1;
3566    Diag(FD->getLocation(), diagID) << which;
3567  }
3568
3569  QualType T = FD->getType();
3570  assert(T->isFunctionType() && "function decl is not of function type");
3571  const FunctionType* FT = T->getAs<FunctionType>();
3572
3573  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3574    // TODO: add a replacement fixit to turn the return type into 'int'.
3575    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3576    FD->setInvalidDecl(true);
3577  }
3578
3579  // Treat protoless main() as nullary.
3580  if (isa<FunctionNoProtoType>(FT)) return;
3581
3582  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3583  unsigned nparams = FTP->getNumArgs();
3584  assert(FD->getNumParams() == nparams);
3585
3586  bool HasExtraParameters = (nparams > 3);
3587
3588  // Darwin passes an undocumented fourth argument of type char**.  If
3589  // other platforms start sprouting these, the logic below will start
3590  // getting shifty.
3591  if (nparams == 4 &&
3592      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3593    HasExtraParameters = false;
3594
3595  if (HasExtraParameters) {
3596    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3597    FD->setInvalidDecl(true);
3598    nparams = 3;
3599  }
3600
3601  // FIXME: a lot of the following diagnostics would be improved
3602  // if we had some location information about types.
3603
3604  QualType CharPP =
3605    Context.getPointerType(Context.getPointerType(Context.CharTy));
3606  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3607
3608  for (unsigned i = 0; i < nparams; ++i) {
3609    QualType AT = FTP->getArgType(i);
3610
3611    bool mismatch = true;
3612
3613    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3614      mismatch = false;
3615    else if (Expected[i] == CharPP) {
3616      // As an extension, the following forms are okay:
3617      //   char const **
3618      //   char const * const *
3619      //   char * const *
3620
3621      QualifierCollector qs;
3622      const PointerType* PT;
3623      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3624          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3625          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3626        qs.removeConst();
3627        mismatch = !qs.empty();
3628      }
3629    }
3630
3631    if (mismatch) {
3632      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3633      // TODO: suggest replacing given type with expected type
3634      FD->setInvalidDecl(true);
3635    }
3636  }
3637
3638  if (nparams == 1 && !FD->isInvalidDecl()) {
3639    Diag(FD->getLocation(), diag::warn_main_one_arg);
3640  }
3641}
3642
3643bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3644  // FIXME: Need strict checking.  In C89, we need to check for
3645  // any assignment, increment, decrement, function-calls, or
3646  // commas outside of a sizeof.  In C99, it's the same list,
3647  // except that the aforementioned are allowed in unevaluated
3648  // expressions.  Everything else falls under the
3649  // "may accept other forms of constant expressions" exception.
3650  // (We never end up here for C++, so the constant expression
3651  // rules there don't matter.)
3652  if (Init->isConstantInitializer(Context))
3653    return false;
3654  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3655    << Init->getSourceRange();
3656  return true;
3657}
3658
3659void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3660  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3661}
3662
3663/// AddInitializerToDecl - Adds the initializer Init to the
3664/// declaration dcl. If DirectInit is true, this is C++ direct
3665/// initialization rather than copy initialization.
3666void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3667  Decl *RealDecl = dcl.getAs<Decl>();
3668  // If there is no declaration, there was an error parsing it.  Just ignore
3669  // the initializer.
3670  if (RealDecl == 0)
3671    return;
3672
3673  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3674    // With declarators parsed the way they are, the parser cannot
3675    // distinguish between a normal initializer and a pure-specifier.
3676    // Thus this grotesque test.
3677    IntegerLiteral *IL;
3678    Expr *Init = static_cast<Expr *>(init.get());
3679    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3680        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3681      CheckPureMethod(Method, Init->getSourceRange());
3682    else {
3683      Diag(Method->getLocation(), diag::err_member_function_initialization)
3684        << Method->getDeclName() << Init->getSourceRange();
3685      Method->setInvalidDecl();
3686    }
3687    return;
3688  }
3689
3690  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3691  if (!VDecl) {
3692    if (getLangOptions().CPlusPlus &&
3693        RealDecl->getLexicalDeclContext()->isRecord() &&
3694        isa<NamedDecl>(RealDecl))
3695      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3696        << cast<NamedDecl>(RealDecl)->getDeclName();
3697    else
3698      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3699    RealDecl->setInvalidDecl();
3700    return;
3701  }
3702
3703  // A definition must end up with a complete type, which means it must be
3704  // complete with the restriction that an array type might be completed by the
3705  // initializer; note that later code assumes this restriction.
3706  QualType BaseDeclType = VDecl->getType();
3707  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3708    BaseDeclType = Array->getElementType();
3709  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3710                          diag::err_typecheck_decl_incomplete_type)) {
3711    RealDecl->setInvalidDecl();
3712    return;
3713  }
3714
3715  // The variable can not have an abstract class type.
3716  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3717                             diag::err_abstract_type_in_decl,
3718                             AbstractVariableType))
3719    VDecl->setInvalidDecl();
3720
3721  const VarDecl *Def;
3722  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3723    Diag(VDecl->getLocation(), diag::err_redefinition)
3724      << VDecl->getDeclName();
3725    Diag(Def->getLocation(), diag::note_previous_definition);
3726    VDecl->setInvalidDecl();
3727    return;
3728  }
3729
3730  // Take ownership of the expression, now that we're sure we have somewhere
3731  // to put it.
3732  Expr *Init = init.takeAs<Expr>();
3733  assert(Init && "missing initializer");
3734
3735  // Capture the variable that is being initialized and the style of
3736  // initialization.
3737  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3738
3739  // FIXME: Poor source location information.
3740  InitializationKind Kind
3741    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3742                                                   Init->getLocStart(),
3743                                                   Init->getLocEnd())
3744                : InitializationKind::CreateCopy(VDecl->getLocation(),
3745                                                 Init->getLocStart());
3746
3747  // Get the decls type and save a reference for later, since
3748  // CheckInitializerTypes may change it.
3749  QualType DclT = VDecl->getType(), SavT = DclT;
3750  if (VDecl->isBlockVarDecl()) {
3751    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3752      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3753      VDecl->setInvalidDecl();
3754    } else if (!VDecl->isInvalidDecl()) {
3755      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3756      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3757                                          MultiExprArg(*this, (void**)&Init, 1),
3758                                                &DclT);
3759      if (Result.isInvalid()) {
3760        VDecl->setInvalidDecl();
3761        return;
3762      }
3763
3764      Init = Result.takeAs<Expr>();
3765
3766      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3767      // Don't check invalid declarations to avoid emitting useless diagnostics.
3768      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3769        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3770          CheckForConstantInitializer(Init, DclT);
3771      }
3772    }
3773  } else if (VDecl->isStaticDataMember() &&
3774             VDecl->getLexicalDeclContext()->isRecord()) {
3775    // This is an in-class initialization for a static data member, e.g.,
3776    //
3777    // struct S {
3778    //   static const int value = 17;
3779    // };
3780
3781    // Attach the initializer
3782    VDecl->setInit(Init);
3783
3784    // C++ [class.mem]p4:
3785    //   A member-declarator can contain a constant-initializer only
3786    //   if it declares a static member (9.4) of const integral or
3787    //   const enumeration type, see 9.4.2.
3788    QualType T = VDecl->getType();
3789    if (!T->isDependentType() &&
3790        (!Context.getCanonicalType(T).isConstQualified() ||
3791         !T->isIntegralType())) {
3792      Diag(VDecl->getLocation(), diag::err_member_initialization)
3793        << VDecl->getDeclName() << Init->getSourceRange();
3794      VDecl->setInvalidDecl();
3795    } else {
3796      // C++ [class.static.data]p4:
3797      //   If a static data member is of const integral or const
3798      //   enumeration type, its declaration in the class definition
3799      //   can specify a constant-initializer which shall be an
3800      //   integral constant expression (5.19).
3801      if (!Init->isTypeDependent() &&
3802          !Init->getType()->isIntegralType()) {
3803        // We have a non-dependent, non-integral or enumeration type.
3804        Diag(Init->getSourceRange().getBegin(),
3805             diag::err_in_class_initializer_non_integral_type)
3806          << Init->getType() << Init->getSourceRange();
3807        VDecl->setInvalidDecl();
3808      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3809        // Check whether the expression is a constant expression.
3810        llvm::APSInt Value;
3811        SourceLocation Loc;
3812        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3813          Diag(Loc, diag::err_in_class_initializer_non_constant)
3814            << Init->getSourceRange();
3815          VDecl->setInvalidDecl();
3816        } else if (!VDecl->getType()->isDependentType())
3817          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3818      }
3819    }
3820  } else if (VDecl->isFileVarDecl()) {
3821    if (VDecl->getStorageClass() == VarDecl::Extern)
3822      Diag(VDecl->getLocation(), diag::warn_extern_init);
3823    if (!VDecl->isInvalidDecl()) {
3824      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3825      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3826                                          MultiExprArg(*this, (void**)&Init, 1),
3827                                                &DclT);
3828      if (Result.isInvalid()) {
3829        VDecl->setInvalidDecl();
3830        return;
3831      }
3832
3833      Init = Result.takeAs<Expr>();
3834    }
3835
3836    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3837    // Don't check invalid declarations to avoid emitting useless diagnostics.
3838    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3839      // C99 6.7.8p4. All file scoped initializers need to be constant.
3840      CheckForConstantInitializer(Init, DclT);
3841    }
3842  }
3843  // If the type changed, it means we had an incomplete type that was
3844  // completed by the initializer. For example:
3845  //   int ary[] = { 1, 3, 5 };
3846  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3847  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3848    VDecl->setType(DclT);
3849    Init->setType(DclT);
3850  }
3851
3852  Init = MaybeCreateCXXExprWithTemporaries(Init);
3853  // Attach the initializer to the decl.
3854  VDecl->setInit(Init);
3855
3856  if (getLangOptions().CPlusPlus) {
3857    // Make sure we mark the destructor as used if necessary.
3858    QualType InitType = VDecl->getType();
3859    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3860      InitType = Context.getBaseElementType(Array);
3861    if (const RecordType *Record = InitType->getAs<RecordType>())
3862      FinalizeVarWithDestructor(VDecl, Record);
3863  }
3864
3865  return;
3866}
3867
3868/// ActOnInitializerError - Given that there was an error parsing an
3869/// initializer for the given declaration, try to return to some form
3870/// of sanity.
3871void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3872  // Our main concern here is re-establishing invariants like "a
3873  // variable's type is either dependent or complete".
3874  Decl *D = dcl.getAs<Decl>();
3875  if (!D || D->isInvalidDecl()) return;
3876
3877  VarDecl *VD = dyn_cast<VarDecl>(D);
3878  if (!VD) return;
3879
3880  QualType Ty = VD->getType();
3881  if (Ty->isDependentType()) return;
3882
3883  // Require a complete type.
3884  if (RequireCompleteType(VD->getLocation(),
3885                          Context.getBaseElementType(Ty),
3886                          diag::err_typecheck_decl_incomplete_type)) {
3887    VD->setInvalidDecl();
3888    return;
3889  }
3890
3891  // Require an abstract type.
3892  if (RequireNonAbstractType(VD->getLocation(), Ty,
3893                             diag::err_abstract_type_in_decl,
3894                             AbstractVariableType)) {
3895    VD->setInvalidDecl();
3896    return;
3897  }
3898
3899  // Don't bother complaining about constructors or destructors,
3900  // though.
3901}
3902
3903void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3904                                  bool TypeContainsUndeducedAuto) {
3905  Decl *RealDecl = dcl.getAs<Decl>();
3906
3907  // If there is no declaration, there was an error parsing it. Just ignore it.
3908  if (RealDecl == 0)
3909    return;
3910
3911  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3912    QualType Type = Var->getType();
3913
3914    // C++0x [dcl.spec.auto]p3
3915    if (TypeContainsUndeducedAuto) {
3916      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3917        << Var->getDeclName() << Type;
3918      Var->setInvalidDecl();
3919      return;
3920    }
3921
3922    switch (Var->isThisDeclarationADefinition()) {
3923    case VarDecl::Definition:
3924      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3925        break;
3926
3927      // We have an out-of-line definition of a static data member
3928      // that has an in-class initializer, so we type-check this like
3929      // a declaration.
3930      //
3931      // Fall through
3932
3933    case VarDecl::DeclarationOnly:
3934      // It's only a declaration.
3935
3936      // Block scope. C99 6.7p7: If an identifier for an object is
3937      // declared with no linkage (C99 6.2.2p6), the type for the
3938      // object shall be complete.
3939      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3940          !Var->getLinkage() && !Var->isInvalidDecl() &&
3941          RequireCompleteType(Var->getLocation(), Type,
3942                              diag::err_typecheck_decl_incomplete_type))
3943        Var->setInvalidDecl();
3944
3945      // Make sure that the type is not abstract.
3946      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3947          RequireNonAbstractType(Var->getLocation(), Type,
3948                                 diag::err_abstract_type_in_decl,
3949                                 AbstractVariableType))
3950        Var->setInvalidDecl();
3951      return;
3952
3953    case VarDecl::TentativeDefinition:
3954      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3955      // object that has file scope without an initializer, and without a
3956      // storage-class specifier or with the storage-class specifier "static",
3957      // constitutes a tentative definition. Note: A tentative definition with
3958      // external linkage is valid (C99 6.2.2p5).
3959      if (!Var->isInvalidDecl()) {
3960        if (const IncompleteArrayType *ArrayT
3961                                    = Context.getAsIncompleteArrayType(Type)) {
3962          if (RequireCompleteType(Var->getLocation(),
3963                                  ArrayT->getElementType(),
3964                                  diag::err_illegal_decl_array_incomplete_type))
3965            Var->setInvalidDecl();
3966        } else if (Var->getStorageClass() == VarDecl::Static) {
3967          // C99 6.9.2p3: If the declaration of an identifier for an object is
3968          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3969          // declared type shall not be an incomplete type.
3970          // NOTE: code such as the following
3971          //     static struct s;
3972          //     struct s { int a; };
3973          // is accepted by gcc. Hence here we issue a warning instead of
3974          // an error and we do not invalidate the static declaration.
3975          // NOTE: to avoid multiple warnings, only check the first declaration.
3976          if (Var->getPreviousDeclaration() == 0)
3977            RequireCompleteType(Var->getLocation(), Type,
3978                                diag::ext_typecheck_decl_incomplete_type);
3979        }
3980      }
3981
3982      // Record the tentative definition; we're done.
3983      if (!Var->isInvalidDecl())
3984        TentativeDefinitions.push_back(Var);
3985      return;
3986    }
3987
3988    // Provide a specific diagnostic for uninitialized variable
3989    // definitions with incomplete array type.
3990    if (Type->isIncompleteArrayType()) {
3991      Diag(Var->getLocation(),
3992           diag::err_typecheck_incomplete_array_needs_initializer);
3993      Var->setInvalidDecl();
3994      return;
3995    }
3996
3997   // Provide a specific diagnostic for uninitialized variable
3998   // definitions with reference type.
3999   if (Type->isReferenceType()) {
4000     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4001       << Var->getDeclName()
4002       << SourceRange(Var->getLocation(), Var->getLocation());
4003     Var->setInvalidDecl();
4004     return;
4005   }
4006
4007    // Do not attempt to type-check the default initializer for a
4008    // variable with dependent type.
4009    if (Type->isDependentType())
4010      return;
4011
4012    if (Var->isInvalidDecl())
4013      return;
4014
4015    if (RequireCompleteType(Var->getLocation(),
4016                            Context.getBaseElementType(Type),
4017                            diag::err_typecheck_decl_incomplete_type)) {
4018      Var->setInvalidDecl();
4019      return;
4020    }
4021
4022    // The variable can not have an abstract class type.
4023    if (RequireNonAbstractType(Var->getLocation(), Type,
4024                               diag::err_abstract_type_in_decl,
4025                               AbstractVariableType)) {
4026      Var->setInvalidDecl();
4027      return;
4028    }
4029
4030    const RecordType *Record
4031      = Context.getBaseElementType(Type)->getAs<RecordType>();
4032    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4033        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4034      // C++03 [dcl.init]p9:
4035      //   If no initializer is specified for an object, and the
4036      //   object is of (possibly cv-qualified) non-POD class type (or
4037      //   array thereof), the object shall be default-initialized; if
4038      //   the object is of const-qualified type, the underlying class
4039      //   type shall have a user-declared default
4040      //   constructor. Otherwise, if no initializer is specified for
4041      //   a non- static object, the object and its subobjects, if
4042      //   any, have an indeterminate initial value); if the object
4043      //   or any of its subobjects are of const-qualified type, the
4044      //   program is ill-formed.
4045      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4046    } else {
4047      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4048      InitializationKind Kind
4049        = InitializationKind::CreateDefault(Var->getLocation());
4050
4051      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4052      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4053                                              MultiExprArg(*this, 0, 0));
4054      if (Init.isInvalid())
4055        Var->setInvalidDecl();
4056      else if (Init.get())
4057        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4058    }
4059
4060    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4061      FinalizeVarWithDestructor(Var, Record);
4062  }
4063}
4064
4065Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4066                                                   DeclPtrTy *Group,
4067                                                   unsigned NumDecls) {
4068  llvm::SmallVector<Decl*, 8> Decls;
4069
4070  if (DS.isTypeSpecOwned())
4071    Decls.push_back((Decl*)DS.getTypeRep());
4072
4073  for (unsigned i = 0; i != NumDecls; ++i)
4074    if (Decl *D = Group[i].getAs<Decl>())
4075      Decls.push_back(D);
4076
4077  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4078                                                   Decls.data(), Decls.size()));
4079}
4080
4081
4082/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4083/// to introduce parameters into function prototype scope.
4084Sema::DeclPtrTy
4085Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4086  const DeclSpec &DS = D.getDeclSpec();
4087
4088  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4089  VarDecl::StorageClass StorageClass = VarDecl::None;
4090  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4091    StorageClass = VarDecl::Register;
4092  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4093    Diag(DS.getStorageClassSpecLoc(),
4094         diag::err_invalid_storage_class_in_func_decl);
4095    D.getMutableDeclSpec().ClearStorageClassSpecs();
4096  }
4097
4098  if (D.getDeclSpec().isThreadSpecified())
4099    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4100
4101  DiagnoseFunctionSpecifiers(D);
4102
4103  // Check that there are no default arguments inside the type of this
4104  // parameter (C++ only).
4105  if (getLangOptions().CPlusPlus)
4106    CheckExtraCXXDefaultArguments(D);
4107
4108  TypeSourceInfo *TInfo = 0;
4109  TagDecl *OwnedDecl = 0;
4110  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4111
4112  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4113    // C++ [dcl.fct]p6:
4114    //   Types shall not be defined in return or parameter types.
4115    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4116      << Context.getTypeDeclType(OwnedDecl);
4117  }
4118
4119  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4120  IdentifierInfo *II = D.getIdentifier();
4121  if (II) {
4122    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4123                   ForRedeclaration);
4124    LookupName(R, S);
4125    if (R.isSingleResult()) {
4126      NamedDecl *PrevDecl = R.getFoundDecl();
4127      if (PrevDecl->isTemplateParameter()) {
4128        // Maybe we will complain about the shadowed template parameter.
4129        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4130        // Just pretend that we didn't see the previous declaration.
4131        PrevDecl = 0;
4132      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4133        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4134        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4135
4136        // Recover by removing the name
4137        II = 0;
4138        D.SetIdentifier(0, D.getIdentifierLoc());
4139        D.setInvalidType(true);
4140      }
4141    }
4142  }
4143
4144  // Temporarily put parameter variables in the translation unit, not
4145  // the enclosing context.  This prevents them from accidentally
4146  // looking like class members in C++.
4147  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4148                                    TInfo, parmDeclType, II,
4149                                    D.getIdentifierLoc(), StorageClass);
4150
4151  if (D.isInvalidType())
4152    New->setInvalidDecl();
4153
4154  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4155  if (D.getCXXScopeSpec().isSet()) {
4156    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4157      << D.getCXXScopeSpec().getRange();
4158    New->setInvalidDecl();
4159  }
4160
4161  // Add the parameter declaration into this scope.
4162  S->AddDecl(DeclPtrTy::make(New));
4163  if (II)
4164    IdResolver.AddDecl(New);
4165
4166  ProcessDeclAttributes(S, New, D);
4167
4168  if (New->hasAttr<BlocksAttr>()) {
4169    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4170  }
4171  return DeclPtrTy::make(New);
4172}
4173
4174ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4175                                  TypeSourceInfo *TSInfo, QualType T,
4176                                  IdentifierInfo *Name,
4177                                  SourceLocation NameLoc,
4178                                  VarDecl::StorageClass StorageClass) {
4179  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4180                                         adjustParameterType(T), TSInfo,
4181                                         StorageClass, 0);
4182
4183  // Parameters can not be abstract class types.
4184  // For record types, this is done by the AbstractClassUsageDiagnoser once
4185  // the class has been completely parsed.
4186  if (!CurContext->isRecord() &&
4187      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4188                             AbstractParamType))
4189    New->setInvalidDecl();
4190
4191  // Parameter declarators cannot be interface types. All ObjC objects are
4192  // passed by reference.
4193  if (T->isObjCInterfaceType()) {
4194    Diag(NameLoc,
4195         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4196    New->setInvalidDecl();
4197  }
4198
4199  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4200  // duration shall not be qualified by an address-space qualifier."
4201  // Since all parameters have automatic store duration, they can not have
4202  // an address space.
4203  if (T.getAddressSpace() != 0) {
4204    Diag(NameLoc, diag::err_arg_with_address_space);
4205    New->setInvalidDecl();
4206  }
4207
4208  return New;
4209}
4210
4211void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4212  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4213  Param->setDeclContext(CurContext);
4214}
4215
4216void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4217                                           SourceLocation LocAfterDecls) {
4218  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4219         "Not a function declarator!");
4220  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4221
4222  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4223  // for a K&R function.
4224  if (!FTI.hasPrototype) {
4225    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4226      --i;
4227      if (FTI.ArgInfo[i].Param == 0) {
4228        llvm::SmallString<256> Code;
4229        llvm::raw_svector_ostream(Code) << "  int "
4230                                        << FTI.ArgInfo[i].Ident->getName()
4231                                        << ";\n";
4232        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4233          << FTI.ArgInfo[i].Ident
4234          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4235
4236        // Implicitly declare the argument as type 'int' for lack of a better
4237        // type.
4238        DeclSpec DS;
4239        const char* PrevSpec; // unused
4240        unsigned DiagID; // unused
4241        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4242                           PrevSpec, DiagID);
4243        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4244        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4245        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4246      }
4247    }
4248  }
4249}
4250
4251Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4252                                              Declarator &D) {
4253  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4254  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4255         "Not a function declarator!");
4256  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4257
4258  if (FTI.hasPrototype) {
4259    // FIXME: Diagnose arguments without names in C.
4260  }
4261
4262  Scope *ParentScope = FnBodyScope->getParent();
4263
4264  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4265                                  MultiTemplateParamsArg(*this),
4266                                  /*IsFunctionDefinition=*/true);
4267  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4268}
4269
4270static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4271  // Don't warn about invalid declarations.
4272  if (FD->isInvalidDecl())
4273    return false;
4274
4275  // Or declarations that aren't global.
4276  if (!FD->isGlobal())
4277    return false;
4278
4279  // Don't warn about C++ member functions.
4280  if (isa<CXXMethodDecl>(FD))
4281    return false;
4282
4283  // Don't warn about 'main'.
4284  if (FD->isMain())
4285    return false;
4286
4287  // Don't warn about inline functions.
4288  if (FD->isInlineSpecified())
4289    return false;
4290
4291  // Don't warn about function templates.
4292  if (FD->getDescribedFunctionTemplate())
4293    return false;
4294
4295  // Don't warn about function template specializations.
4296  if (FD->isFunctionTemplateSpecialization())
4297    return false;
4298
4299  bool MissingPrototype = true;
4300  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4301       Prev; Prev = Prev->getPreviousDeclaration()) {
4302    // Ignore any declarations that occur in function or method
4303    // scope, because they aren't visible from the header.
4304    if (Prev->getDeclContext()->isFunctionOrMethod())
4305      continue;
4306
4307    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4308    break;
4309  }
4310
4311  return MissingPrototype;
4312}
4313
4314Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4315  // Clear the last template instantiation error context.
4316  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4317
4318  if (!D)
4319    return D;
4320  FunctionDecl *FD = 0;
4321
4322  if (FunctionTemplateDecl *FunTmpl
4323        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4324    FD = FunTmpl->getTemplatedDecl();
4325  else
4326    FD = cast<FunctionDecl>(D.getAs<Decl>());
4327
4328  // Enter a new function scope
4329  PushFunctionScope();
4330
4331  // See if this is a redefinition.
4332  // But don't complain if we're in GNU89 mode and the previous definition
4333  // was an extern inline function.
4334  const FunctionDecl *Definition;
4335  if (FD->getBody(Definition) &&
4336      !canRedefineFunction(Definition, getLangOptions())) {
4337    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4338    Diag(Definition->getLocation(), diag::note_previous_definition);
4339  }
4340
4341  // Builtin functions cannot be defined.
4342  if (unsigned BuiltinID = FD->getBuiltinID()) {
4343    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4344      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4345      FD->setInvalidDecl();
4346    }
4347  }
4348
4349  // The return type of a function definition must be complete
4350  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4351  QualType ResultType = FD->getResultType();
4352  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4353      !FD->isInvalidDecl() &&
4354      RequireCompleteType(FD->getLocation(), ResultType,
4355                          diag::err_func_def_incomplete_result))
4356    FD->setInvalidDecl();
4357
4358  // GNU warning -Wmissing-prototypes:
4359  //   Warn if a global function is defined without a previous
4360  //   prototype declaration. This warning is issued even if the
4361  //   definition itself provides a prototype. The aim is to detect
4362  //   global functions that fail to be declared in header files.
4363  if (ShouldWarnAboutMissingPrototype(FD))
4364    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4365
4366  if (FnBodyScope)
4367    PushDeclContext(FnBodyScope, FD);
4368
4369  // Check the validity of our function parameters
4370  CheckParmsForFunctionDef(FD);
4371
4372  bool ShouldCheckShadow =
4373    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4374
4375  // Introduce our parameters into the function scope
4376  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4377    ParmVarDecl *Param = FD->getParamDecl(p);
4378    Param->setOwningFunction(FD);
4379
4380    // If this has an identifier, add it to the scope stack.
4381    if (Param->getIdentifier() && FnBodyScope) {
4382      if (ShouldCheckShadow)
4383        CheckShadow(FnBodyScope, Param);
4384
4385      PushOnScopeChains(Param, FnBodyScope);
4386    }
4387  }
4388
4389  // Checking attributes of current function definition
4390  // dllimport attribute.
4391  if (FD->getAttr<DLLImportAttr>() &&
4392      (!FD->getAttr<DLLExportAttr>())) {
4393    // dllimport attribute cannot be applied to definition.
4394    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4395      Diag(FD->getLocation(),
4396           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4397        << "dllimport";
4398      FD->setInvalidDecl();
4399      return DeclPtrTy::make(FD);
4400    }
4401
4402    // Visual C++ appears to not think this is an issue, so only issue
4403    // a warning when Microsoft extensions are disabled.
4404    if (!LangOpts.Microsoft) {
4405      // If a symbol previously declared dllimport is later defined, the
4406      // attribute is ignored in subsequent references, and a warning is
4407      // emitted.
4408      Diag(FD->getLocation(),
4409           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4410        << FD->getNameAsCString() << "dllimport";
4411    }
4412  }
4413  return DeclPtrTy::make(FD);
4414}
4415
4416Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4417  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4418}
4419
4420Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4421                                              bool IsInstantiation) {
4422  Decl *dcl = D.getAs<Decl>();
4423  Stmt *Body = BodyArg.takeAs<Stmt>();
4424
4425  FunctionDecl *FD = 0;
4426  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4427  if (FunTmpl)
4428    FD = FunTmpl->getTemplatedDecl();
4429  else
4430    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4431
4432  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4433
4434  if (FD) {
4435    FD->setBody(Body);
4436    if (FD->isMain()) {
4437      // C and C++ allow for main to automagically return 0.
4438      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4439      FD->setHasImplicitReturnZero(true);
4440      WP.disableCheckFallThrough();
4441    }
4442
4443    if (!FD->isInvalidDecl())
4444      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4445
4446    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4447      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4448
4449    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4450  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4451    assert(MD == getCurMethodDecl() && "Method parsing confused");
4452    MD->setBody(Body);
4453    MD->setEndLoc(Body->getLocEnd());
4454    if (!MD->isInvalidDecl())
4455      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4456  } else {
4457    Body->Destroy(Context);
4458    return DeclPtrTy();
4459  }
4460
4461  // Verify and clean out per-function state.
4462
4463  // Check goto/label use.
4464  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4465       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4466    LabelStmt *L = I->second;
4467
4468    // Verify that we have no forward references left.  If so, there was a goto
4469    // or address of a label taken, but no definition of it.  Label fwd
4470    // definitions are indicated with a null substmt.
4471    if (L->getSubStmt() != 0)
4472      continue;
4473
4474    // Emit error.
4475    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4476
4477    // At this point, we have gotos that use the bogus label.  Stitch it into
4478    // the function body so that they aren't leaked and that the AST is well
4479    // formed.
4480    if (Body == 0) {
4481      // The whole function wasn't parsed correctly, just delete this.
4482      L->Destroy(Context);
4483      continue;
4484    }
4485
4486    // Otherwise, the body is valid: we want to stitch the label decl into the
4487    // function somewhere so that it is properly owned and so that the goto
4488    // has a valid target.  Do this by creating a new compound stmt with the
4489    // label in it.
4490
4491    // Give the label a sub-statement.
4492    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4493
4494    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4495                               cast<CXXTryStmt>(Body)->getTryBlock() :
4496                               cast<CompoundStmt>(Body);
4497    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4498                                          Compound->body_end());
4499    Elements.push_back(L);
4500    Compound->setStmts(Context, Elements.data(), Elements.size());
4501  }
4502
4503  if (Body) {
4504    // C++ constructors that have function-try-blocks can't have return
4505    // statements in the handlers of that block. (C++ [except.handle]p14)
4506    // Verify this.
4507    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4508      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4509
4510    // Verify that that gotos and switch cases don't jump into scopes illegally.
4511    // Verify that that gotos and switch cases don't jump into scopes illegally.
4512    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4513      DiagnoseInvalidJumps(Body);
4514
4515    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4516      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4517                                             Destructor->getParent());
4518
4519    // If any errors have occurred, clear out any temporaries that may have
4520    // been leftover. This ensures that these temporaries won't be picked up for
4521    // deletion in some later function.
4522    if (PP.getDiagnostics().hasErrorOccurred())
4523      ExprTemporaries.clear();
4524    else if (!isa<FunctionTemplateDecl>(dcl)) {
4525      // Since the body is valid, issue any analysis-based warnings that are
4526      // enabled.
4527      QualType ResultType;
4528      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4529        ResultType = FD->getResultType();
4530      }
4531      else {
4532        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4533        ResultType = MD->getResultType();
4534      }
4535      AnalysisWarnings.IssueWarnings(WP, dcl);
4536    }
4537
4538    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4539  }
4540
4541  if (!IsInstantiation)
4542    PopDeclContext();
4543
4544  PopFunctionOrBlockScope();
4545
4546  // If any errors have occurred, clear out any temporaries that may have
4547  // been leftover. This ensures that these temporaries won't be picked up for
4548  // deletion in some later function.
4549  if (getDiagnostics().hasErrorOccurred())
4550    ExprTemporaries.clear();
4551
4552  return D;
4553}
4554
4555/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4556/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4557NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4558                                          IdentifierInfo &II, Scope *S) {
4559  // Before we produce a declaration for an implicitly defined
4560  // function, see whether there was a locally-scoped declaration of
4561  // this name as a function or variable. If so, use that
4562  // (non-visible) declaration, and complain about it.
4563  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4564    = LocallyScopedExternalDecls.find(&II);
4565  if (Pos != LocallyScopedExternalDecls.end()) {
4566    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4567    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4568    return Pos->second;
4569  }
4570
4571  // Extension in C99.  Legal in C90, but warn about it.
4572  if (II.getName().startswith("__builtin_"))
4573    Diag(Loc, diag::warn_builtin_unknown) << &II;
4574  else if (getLangOptions().C99)
4575    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4576  else
4577    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4578
4579  // Set a Declarator for the implicit definition: int foo();
4580  const char *Dummy;
4581  DeclSpec DS;
4582  unsigned DiagID;
4583  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4584  Error = Error; // Silence warning.
4585  assert(!Error && "Error setting up implicit decl!");
4586  Declarator D(DS, Declarator::BlockContext);
4587  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4588                                             0, 0, false, SourceLocation(),
4589                                             false, 0,0,0, Loc, Loc, D),
4590                SourceLocation());
4591  D.SetIdentifier(&II, Loc);
4592
4593  // Insert this function into translation-unit scope.
4594
4595  DeclContext *PrevDC = CurContext;
4596  CurContext = Context.getTranslationUnitDecl();
4597
4598  FunctionDecl *FD =
4599 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4600  FD->setImplicit();
4601
4602  CurContext = PrevDC;
4603
4604  AddKnownFunctionAttributes(FD);
4605
4606  return FD;
4607}
4608
4609/// \brief Adds any function attributes that we know a priori based on
4610/// the declaration of this function.
4611///
4612/// These attributes can apply both to implicitly-declared builtins
4613/// (like __builtin___printf_chk) or to library-declared functions
4614/// like NSLog or printf.
4615void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4616  if (FD->isInvalidDecl())
4617    return;
4618
4619  // If this is a built-in function, map its builtin attributes to
4620  // actual attributes.
4621  if (unsigned BuiltinID = FD->getBuiltinID()) {
4622    // Handle printf-formatting attributes.
4623    unsigned FormatIdx;
4624    bool HasVAListArg;
4625    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4626      if (!FD->getAttr<FormatAttr>())
4627        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4628                                               HasVAListArg ? 0 : FormatIdx+2));
4629    }
4630
4631    // Mark const if we don't care about errno and that is the only
4632    // thing preventing the function from being const. This allows
4633    // IRgen to use LLVM intrinsics for such functions.
4634    if (!getLangOptions().MathErrno &&
4635        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4636      if (!FD->getAttr<ConstAttr>())
4637        FD->addAttr(::new (Context) ConstAttr());
4638    }
4639
4640    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4641      FD->setType(Context.getNoReturnType(FD->getType()));
4642    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4643      FD->addAttr(::new (Context) NoThrowAttr());
4644    if (Context.BuiltinInfo.isConst(BuiltinID))
4645      FD->addAttr(::new (Context) ConstAttr());
4646  }
4647
4648  IdentifierInfo *Name = FD->getIdentifier();
4649  if (!Name)
4650    return;
4651  if ((!getLangOptions().CPlusPlus &&
4652       FD->getDeclContext()->isTranslationUnit()) ||
4653      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4654       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4655       LinkageSpecDecl::lang_c)) {
4656    // Okay: this could be a libc/libm/Objective-C function we know
4657    // about.
4658  } else
4659    return;
4660
4661  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4662    // FIXME: NSLog and NSLogv should be target specific
4663    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4664      // FIXME: We known better than our headers.
4665      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4666    } else
4667      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4668                                             Name->isStr("NSLogv") ? 0 : 2));
4669  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4670    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4671    // target-specific builtins, perhaps?
4672    if (!FD->getAttr<FormatAttr>())
4673      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4674                                             Name->isStr("vasprintf") ? 0 : 3));
4675  }
4676}
4677
4678TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4679                                    TypeSourceInfo *TInfo) {
4680  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4681  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4682
4683  if (!TInfo) {
4684    assert(D.isInvalidType() && "no declarator info for valid type");
4685    TInfo = Context.getTrivialTypeSourceInfo(T);
4686  }
4687
4688  // Scope manipulation handled by caller.
4689  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4690                                           D.getIdentifierLoc(),
4691                                           D.getIdentifier(),
4692                                           TInfo);
4693
4694  if (const TagType *TT = T->getAs<TagType>()) {
4695    TagDecl *TD = TT->getDecl();
4696
4697    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4698    // keep track of the TypedefDecl.
4699    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4700      TD->setTypedefForAnonDecl(NewTD);
4701  }
4702
4703  if (D.isInvalidType())
4704    NewTD->setInvalidDecl();
4705  return NewTD;
4706}
4707
4708
4709/// \brief Determine whether a tag with a given kind is acceptable
4710/// as a redeclaration of the given tag declaration.
4711///
4712/// \returns true if the new tag kind is acceptable, false otherwise.
4713bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4714                                        TagDecl::TagKind NewTag,
4715                                        SourceLocation NewTagLoc,
4716                                        const IdentifierInfo &Name) {
4717  // C++ [dcl.type.elab]p3:
4718  //   The class-key or enum keyword present in the
4719  //   elaborated-type-specifier shall agree in kind with the
4720  //   declaration to which the name in theelaborated-type-specifier
4721  //   refers. This rule also applies to the form of
4722  //   elaborated-type-specifier that declares a class-name or
4723  //   friend class since it can be construed as referring to the
4724  //   definition of the class. Thus, in any
4725  //   elaborated-type-specifier, the enum keyword shall be used to
4726  //   refer to an enumeration (7.2), the union class-keyshall be
4727  //   used to refer to a union (clause 9), and either the class or
4728  //   struct class-key shall be used to refer to a class (clause 9)
4729  //   declared using the class or struct class-key.
4730  TagDecl::TagKind OldTag = Previous->getTagKind();
4731  if (OldTag == NewTag)
4732    return true;
4733
4734  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4735      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4736    // Warn about the struct/class tag mismatch.
4737    bool isTemplate = false;
4738    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4739      isTemplate = Record->getDescribedClassTemplate();
4740
4741    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4742      << (NewTag == TagDecl::TK_class)
4743      << isTemplate << &Name
4744      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4745                              OldTag == TagDecl::TK_class? "class" : "struct");
4746    Diag(Previous->getLocation(), diag::note_previous_use);
4747    return true;
4748  }
4749  return false;
4750}
4751
4752/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4753/// former case, Name will be non-null.  In the later case, Name will be null.
4754/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4755/// reference/declaration/definition of a tag.
4756Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4757                               SourceLocation KWLoc, CXXScopeSpec &SS,
4758                               IdentifierInfo *Name, SourceLocation NameLoc,
4759                               AttributeList *Attr, AccessSpecifier AS,
4760                               MultiTemplateParamsArg TemplateParameterLists,
4761                               bool &OwnedDecl, bool &IsDependent) {
4762  // If this is not a definition, it must have a name.
4763  assert((Name != 0 || TUK == TUK_Definition) &&
4764         "Nameless record must be a definition!");
4765
4766  OwnedDecl = false;
4767  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4768
4769  // FIXME: Check explicit specializations more carefully.
4770  bool isExplicitSpecialization = false;
4771  if (TUK != TUK_Reference) {
4772    if (TemplateParameterList *TemplateParams
4773          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4774                        (TemplateParameterList**)TemplateParameterLists.get(),
4775                                              TemplateParameterLists.size(),
4776                                                    TUK == TUK_Friend,
4777                                                    isExplicitSpecialization)) {
4778      if (TemplateParams->size() > 0) {
4779        // This is a declaration or definition of a class template (which may
4780        // be a member of another template).
4781        OwnedDecl = false;
4782        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4783                                               SS, Name, NameLoc, Attr,
4784                                               TemplateParams,
4785                                               AS);
4786        TemplateParameterLists.release();
4787        return Result.get();
4788      } else {
4789        // The "template<>" header is extraneous.
4790        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4791          << ElaboratedType::getNameForTagKind(Kind) << Name;
4792        isExplicitSpecialization = true;
4793      }
4794    }
4795
4796    TemplateParameterLists.release();
4797  }
4798
4799  DeclContext *SearchDC = CurContext;
4800  DeclContext *DC = CurContext;
4801  bool isStdBadAlloc = false;
4802  bool Invalid = false;
4803
4804  RedeclarationKind Redecl = ForRedeclaration;
4805  if (TUK == TUK_Friend || TUK == TUK_Reference)
4806    Redecl = NotForRedeclaration;
4807
4808  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4809
4810  if (Name && SS.isNotEmpty()) {
4811    // We have a nested-name tag ('struct foo::bar').
4812
4813    // Check for invalid 'foo::'.
4814    if (SS.isInvalid()) {
4815      Name = 0;
4816      goto CreateNewDecl;
4817    }
4818
4819    // If this is a friend or a reference to a class in a dependent
4820    // context, don't try to make a decl for it.
4821    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4822      DC = computeDeclContext(SS, false);
4823      if (!DC) {
4824        IsDependent = true;
4825        return DeclPtrTy();
4826      }
4827    }
4828
4829    if (RequireCompleteDeclContext(SS))
4830      return DeclPtrTy::make((Decl *)0);
4831
4832    DC = computeDeclContext(SS, true);
4833    SearchDC = DC;
4834    // Look-up name inside 'foo::'.
4835    LookupQualifiedName(Previous, DC);
4836
4837    if (Previous.isAmbiguous())
4838      return DeclPtrTy();
4839
4840    if (Previous.empty()) {
4841      // Name lookup did not find anything. However, if the
4842      // nested-name-specifier refers to the current instantiation,
4843      // and that current instantiation has any dependent base
4844      // classes, we might find something at instantiation time: treat
4845      // this as a dependent elaborated-type-specifier.
4846      if (Previous.wasNotFoundInCurrentInstantiation()) {
4847        IsDependent = true;
4848        return DeclPtrTy();
4849      }
4850
4851      // A tag 'foo::bar' must already exist.
4852      Diag(NameLoc, diag::err_not_tag_in_scope)
4853        << Kind << Name << DC << SS.getRange();
4854      Name = 0;
4855      Invalid = true;
4856      goto CreateNewDecl;
4857    }
4858  } else if (Name) {
4859    // If this is a named struct, check to see if there was a previous forward
4860    // declaration or definition.
4861    // FIXME: We're looking into outer scopes here, even when we
4862    // shouldn't be. Doing so can result in ambiguities that we
4863    // shouldn't be diagnosing.
4864    LookupName(Previous, S);
4865
4866    // Note:  there used to be some attempt at recovery here.
4867    if (Previous.isAmbiguous())
4868      return DeclPtrTy();
4869
4870    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4871      // FIXME: This makes sure that we ignore the contexts associated
4872      // with C structs, unions, and enums when looking for a matching
4873      // tag declaration or definition. See the similar lookup tweak
4874      // in Sema::LookupName; is there a better way to deal with this?
4875      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4876        SearchDC = SearchDC->getParent();
4877    }
4878  }
4879
4880  if (Previous.isSingleResult() &&
4881      Previous.getFoundDecl()->isTemplateParameter()) {
4882    // Maybe we will complain about the shadowed template parameter.
4883    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4884    // Just pretend that we didn't see the previous declaration.
4885    Previous.clear();
4886  }
4887
4888  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4889      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4890    // This is a declaration of or a reference to "std::bad_alloc".
4891    isStdBadAlloc = true;
4892
4893    if (Previous.empty() && StdBadAlloc) {
4894      // std::bad_alloc has been implicitly declared (but made invisible to
4895      // name lookup). Fill in this implicit declaration as the previous
4896      // declaration, so that the declarations get chained appropriately.
4897      Previous.addDecl(StdBadAlloc);
4898    }
4899  }
4900
4901  // If we didn't find a previous declaration, and this is a reference
4902  // (or friend reference), move to the correct scope.  In C++, we
4903  // also need to do a redeclaration lookup there, just in case
4904  // there's a shadow friend decl.
4905  if (Name && Previous.empty() &&
4906      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4907    if (Invalid) goto CreateNewDecl;
4908    assert(SS.isEmpty());
4909
4910    if (TUK == TUK_Reference) {
4911      // C++ [basic.scope.pdecl]p5:
4912      //   -- for an elaborated-type-specifier of the form
4913      //
4914      //          class-key identifier
4915      //
4916      //      if the elaborated-type-specifier is used in the
4917      //      decl-specifier-seq or parameter-declaration-clause of a
4918      //      function defined in namespace scope, the identifier is
4919      //      declared as a class-name in the namespace that contains
4920      //      the declaration; otherwise, except as a friend
4921      //      declaration, the identifier is declared in the smallest
4922      //      non-class, non-function-prototype scope that contains the
4923      //      declaration.
4924      //
4925      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4926      // C structs and unions.
4927      //
4928      // It is an error in C++ to declare (rather than define) an enum
4929      // type, including via an elaborated type specifier.  We'll
4930      // diagnose that later; for now, declare the enum in the same
4931      // scope as we would have picked for any other tag type.
4932      //
4933      // GNU C also supports this behavior as part of its incomplete
4934      // enum types extension, while GNU C++ does not.
4935      //
4936      // Find the context where we'll be declaring the tag.
4937      // FIXME: We would like to maintain the current DeclContext as the
4938      // lexical context,
4939      while (SearchDC->isRecord())
4940        SearchDC = SearchDC->getParent();
4941
4942      // Find the scope where we'll be declaring the tag.
4943      while (S->isClassScope() ||
4944             (getLangOptions().CPlusPlus &&
4945              S->isFunctionPrototypeScope()) ||
4946             ((S->getFlags() & Scope::DeclScope) == 0) ||
4947             (S->getEntity() &&
4948              ((DeclContext *)S->getEntity())->isTransparentContext()))
4949        S = S->getParent();
4950    } else {
4951      assert(TUK == TUK_Friend);
4952      // C++ [namespace.memdef]p3:
4953      //   If a friend declaration in a non-local class first declares a
4954      //   class or function, the friend class or function is a member of
4955      //   the innermost enclosing namespace.
4956      SearchDC = SearchDC->getEnclosingNamespaceContext();
4957    }
4958
4959    // In C++, look for a shadow friend decl.
4960    if (getLangOptions().CPlusPlus) {
4961      Previous.setRedeclarationKind(ForRedeclaration);
4962      LookupQualifiedName(Previous, SearchDC);
4963    }
4964  }
4965
4966  if (!Previous.empty()) {
4967    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
4968    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4969      // If this is a use of a previous tag, or if the tag is already declared
4970      // in the same scope (so that the definition/declaration completes or
4971      // rementions the tag), reuse the decl.
4972      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4973          isDeclInScope(PrevDecl, SearchDC, S)) {
4974        // Make sure that this wasn't declared as an enum and now used as a
4975        // struct or something similar.
4976        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4977          bool SafeToContinue
4978            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4979               Kind != TagDecl::TK_enum);
4980          if (SafeToContinue)
4981            Diag(KWLoc, diag::err_use_with_wrong_tag)
4982              << Name
4983              << FixItHint::CreateReplacement(SourceRange(KWLoc),
4984                                              PrevTagDecl->getKindName());
4985          else
4986            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4987          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4988
4989          if (SafeToContinue)
4990            Kind = PrevTagDecl->getTagKind();
4991          else {
4992            // Recover by making this an anonymous redefinition.
4993            Name = 0;
4994            Previous.clear();
4995            Invalid = true;
4996          }
4997        }
4998
4999        if (!Invalid) {
5000          // If this is a use, just return the declaration we found.
5001
5002          // FIXME: In the future, return a variant or some other clue
5003          // for the consumer of this Decl to know it doesn't own it.
5004          // For our current ASTs this shouldn't be a problem, but will
5005          // need to be changed with DeclGroups.
5006          if (TUK == TUK_Reference || TUK == TUK_Friend)
5007            return DeclPtrTy::make(PrevTagDecl);
5008
5009          // Diagnose attempts to redefine a tag.
5010          if (TUK == TUK_Definition) {
5011            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5012              // If we're defining a specialization and the previous definition
5013              // is from an implicit instantiation, don't emit an error
5014              // here; we'll catch this in the general case below.
5015              if (!isExplicitSpecialization ||
5016                  !isa<CXXRecordDecl>(Def) ||
5017                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5018                                               == TSK_ExplicitSpecialization) {
5019                Diag(NameLoc, diag::err_redefinition) << Name;
5020                Diag(Def->getLocation(), diag::note_previous_definition);
5021                // If this is a redefinition, recover by making this
5022                // struct be anonymous, which will make any later
5023                // references get the previous definition.
5024                Name = 0;
5025                Previous.clear();
5026                Invalid = true;
5027              }
5028            } else {
5029              // If the type is currently being defined, complain
5030              // about a nested redefinition.
5031              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5032              if (Tag->isBeingDefined()) {
5033                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5034                Diag(PrevTagDecl->getLocation(),
5035                     diag::note_previous_definition);
5036                Name = 0;
5037                Previous.clear();
5038                Invalid = true;
5039              }
5040            }
5041
5042            // Okay, this is definition of a previously declared or referenced
5043            // tag PrevDecl. We're going to create a new Decl for it.
5044          }
5045        }
5046        // If we get here we have (another) forward declaration or we
5047        // have a definition.  Just create a new decl.
5048
5049      } else {
5050        // If we get here, this is a definition of a new tag type in a nested
5051        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5052        // new decl/type.  We set PrevDecl to NULL so that the entities
5053        // have distinct types.
5054        Previous.clear();
5055      }
5056      // If we get here, we're going to create a new Decl. If PrevDecl
5057      // is non-NULL, it's a definition of the tag declared by
5058      // PrevDecl. If it's NULL, we have a new definition.
5059    } else {
5060      // PrevDecl is a namespace, template, or anything else
5061      // that lives in the IDNS_Tag identifier namespace.
5062      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5063          isDeclInScope(PrevDecl, SearchDC, S)) {
5064        // The tag name clashes with a namespace name, issue an error and
5065        // recover by making this tag be anonymous.
5066        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5067        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5068        Name = 0;
5069        Previous.clear();
5070        Invalid = true;
5071      } else {
5072        // The existing declaration isn't relevant to us; we're in a
5073        // new scope, so clear out the previous declaration.
5074        Previous.clear();
5075      }
5076    }
5077  }
5078
5079CreateNewDecl:
5080
5081  TagDecl *PrevDecl = 0;
5082  if (Previous.isSingleResult())
5083    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5084
5085  // If there is an identifier, use the location of the identifier as the
5086  // location of the decl, otherwise use the location of the struct/union
5087  // keyword.
5088  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5089
5090  // Otherwise, create a new declaration. If there is a previous
5091  // declaration of the same entity, the two will be linked via
5092  // PrevDecl.
5093  TagDecl *New;
5094
5095  if (Kind == TagDecl::TK_enum) {
5096    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5097    // enum X { A, B, C } D;    D should chain to X.
5098    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5099                           cast_or_null<EnumDecl>(PrevDecl));
5100    // If this is an undefined enum, warn.
5101    if (TUK != TUK_Definition && !Invalid)  {
5102      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5103                                              : diag::ext_forward_ref_enum;
5104      Diag(Loc, DK);
5105    }
5106  } else {
5107    // struct/union/class
5108
5109    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5110    // struct X { int A; } D;    D should chain to X.
5111    if (getLangOptions().CPlusPlus) {
5112      // FIXME: Look for a way to use RecordDecl for simple structs.
5113      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5114                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5115
5116      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5117        StdBadAlloc = cast<CXXRecordDecl>(New);
5118    } else
5119      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5120                               cast_or_null<RecordDecl>(PrevDecl));
5121  }
5122
5123  // Maybe add qualifier info.
5124  if (SS.isNotEmpty()) {
5125    NestedNameSpecifier *NNS
5126      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5127    New->setQualifierInfo(NNS, SS.getRange());
5128  }
5129
5130  if (Kind != TagDecl::TK_enum) {
5131    // Handle #pragma pack: if the #pragma pack stack has non-default
5132    // alignment, make up a packed attribute for this decl. These
5133    // attributes are checked when the ASTContext lays out the
5134    // structure.
5135    //
5136    // It is important for implementing the correct semantics that this
5137    // happen here (in act on tag decl). The #pragma pack stack is
5138    // maintained as a result of parser callbacks which can occur at
5139    // many points during the parsing of a struct declaration (because
5140    // the #pragma tokens are effectively skipped over during the
5141    // parsing of the struct).
5142    if (unsigned Alignment = getPragmaPackAlignment())
5143      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5144  }
5145
5146  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5147    // C++ [dcl.typedef]p3:
5148    //   [...] Similarly, in a given scope, a class or enumeration
5149    //   shall not be declared with the same name as a typedef-name
5150    //   that is declared in that scope and refers to a type other
5151    //   than the class or enumeration itself.
5152    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5153                        ForRedeclaration);
5154    LookupName(Lookup, S);
5155    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5156    NamedDecl *PrevTypedefNamed = PrevTypedef;
5157    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5158        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5159          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5160      Diag(Loc, diag::err_tag_definition_of_typedef)
5161        << Context.getTypeDeclType(New)
5162        << PrevTypedef->getUnderlyingType();
5163      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5164      Invalid = true;
5165    }
5166  }
5167
5168  // If this is a specialization of a member class (of a class template),
5169  // check the specialization.
5170  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5171    Invalid = true;
5172
5173  if (Invalid)
5174    New->setInvalidDecl();
5175
5176  if (Attr)
5177    ProcessDeclAttributeList(S, New, Attr);
5178
5179  // If we're declaring or defining a tag in function prototype scope
5180  // in C, note that this type can only be used within the function.
5181  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5182    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5183
5184  // Set the lexical context. If the tag has a C++ scope specifier, the
5185  // lexical context will be different from the semantic context.
5186  New->setLexicalDeclContext(CurContext);
5187
5188  // Mark this as a friend decl if applicable.
5189  if (TUK == TUK_Friend)
5190    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5191
5192  // Set the access specifier.
5193  if (!Invalid && SearchDC->isRecord())
5194    SetMemberAccessSpecifier(New, PrevDecl, AS);
5195
5196  if (TUK == TUK_Definition)
5197    New->startDefinition();
5198
5199  // If this has an identifier, add it to the scope stack.
5200  if (TUK == TUK_Friend) {
5201    // We might be replacing an existing declaration in the lookup tables;
5202    // if so, borrow its access specifier.
5203    if (PrevDecl)
5204      New->setAccess(PrevDecl->getAccess());
5205
5206    DeclContext *DC = New->getDeclContext()->getLookupContext();
5207    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5208    if (Name) // can be null along some error paths
5209      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5210        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5211  } else if (Name) {
5212    S = getNonFieldDeclScope(S);
5213    PushOnScopeChains(New, S);
5214  } else {
5215    CurContext->addDecl(New);
5216  }
5217
5218  // If this is the C FILE type, notify the AST context.
5219  if (IdentifierInfo *II = New->getIdentifier())
5220    if (!New->isInvalidDecl() &&
5221        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5222        II->isStr("FILE"))
5223      Context.setFILEDecl(New);
5224
5225  OwnedDecl = true;
5226  return DeclPtrTy::make(New);
5227}
5228
5229void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5230  AdjustDeclIfTemplate(TagD);
5231  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5232
5233  // Enter the tag context.
5234  PushDeclContext(S, Tag);
5235}
5236
5237void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5238                                           SourceLocation LBraceLoc) {
5239  AdjustDeclIfTemplate(TagD);
5240  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5241
5242  FieldCollector->StartClass();
5243
5244  if (!Record->getIdentifier())
5245    return;
5246
5247  // C++ [class]p2:
5248  //   [...] The class-name is also inserted into the scope of the
5249  //   class itself; this is known as the injected-class-name. For
5250  //   purposes of access checking, the injected-class-name is treated
5251  //   as if it were a public member name.
5252  CXXRecordDecl *InjectedClassName
5253    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5254                            CurContext, Record->getLocation(),
5255                            Record->getIdentifier(),
5256                            Record->getTagKeywordLoc(),
5257                            Record);
5258  InjectedClassName->setImplicit();
5259  InjectedClassName->setAccess(AS_public);
5260  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5261      InjectedClassName->setDescribedClassTemplate(Template);
5262  PushOnScopeChains(InjectedClassName, S);
5263  assert(InjectedClassName->isInjectedClassName() &&
5264         "Broken injected-class-name");
5265}
5266
5267// Traverses the class and any nested classes, making a note of any
5268// dynamic classes that have no key function so that we can mark all of
5269// their virtual member functions as "used" at the end of the translation
5270// unit. This ensures that all functions needed by the vtable will get
5271// instantiated/synthesized.
5272static void
5273RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5274                                      SourceLocation Loc) {
5275  // We don't look at dependent or undefined classes.
5276  if (Record->isDependentContext() || !Record->isDefinition())
5277    return;
5278
5279  if (Record->isDynamicClass()) {
5280    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5281
5282    if (!KeyFunction)
5283      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5284                                                                   Loc));
5285
5286    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5287        && Record->getLinkage() == ExternalLinkage)
5288      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5289  }
5290  for (DeclContext::decl_iterator D = Record->decls_begin(),
5291                               DEnd = Record->decls_end();
5292       D != DEnd; ++D) {
5293    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5294      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5295  }
5296}
5297
5298void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5299                                    SourceLocation RBraceLoc) {
5300  AdjustDeclIfTemplate(TagD);
5301  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5302  Tag->setRBraceLoc(RBraceLoc);
5303
5304  if (isa<CXXRecordDecl>(Tag))
5305    FieldCollector->FinishClass();
5306
5307  // Exit this scope of this tag's definition.
5308  PopDeclContext();
5309
5310  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5311    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5312                                          RBraceLoc);
5313
5314  // Notify the consumer that we've defined a tag.
5315  Consumer.HandleTagDeclDefinition(Tag);
5316}
5317
5318void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5319  AdjustDeclIfTemplate(TagD);
5320  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5321  Tag->setInvalidDecl();
5322
5323  // We're undoing ActOnTagStartDefinition here, not
5324  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5325  // the FieldCollector.
5326
5327  PopDeclContext();
5328}
5329
5330// Note that FieldName may be null for anonymous bitfields.
5331bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5332                          QualType FieldTy, const Expr *BitWidth,
5333                          bool *ZeroWidth) {
5334  // Default to true; that shouldn't confuse checks for emptiness
5335  if (ZeroWidth)
5336    *ZeroWidth = true;
5337
5338  // C99 6.7.2.1p4 - verify the field type.
5339  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5340  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5341    // Handle incomplete types with specific error.
5342    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5343      return true;
5344    if (FieldName)
5345      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5346        << FieldName << FieldTy << BitWidth->getSourceRange();
5347    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5348      << FieldTy << BitWidth->getSourceRange();
5349  }
5350
5351  // If the bit-width is type- or value-dependent, don't try to check
5352  // it now.
5353  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5354    return false;
5355
5356  llvm::APSInt Value;
5357  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5358    return true;
5359
5360  if (Value != 0 && ZeroWidth)
5361    *ZeroWidth = false;
5362
5363  // Zero-width bitfield is ok for anonymous field.
5364  if (Value == 0 && FieldName)
5365    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5366
5367  if (Value.isSigned() && Value.isNegative()) {
5368    if (FieldName)
5369      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5370               << FieldName << Value.toString(10);
5371    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5372      << Value.toString(10);
5373  }
5374
5375  if (!FieldTy->isDependentType()) {
5376    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5377    if (Value.getZExtValue() > TypeSize) {
5378      if (FieldName)
5379        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5380          << FieldName << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5381      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5382        << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5383    }
5384  }
5385
5386  return false;
5387}
5388
5389/// ActOnField - Each field of a struct/union/class is passed into this in order
5390/// to create a FieldDecl object for it.
5391Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5392                                 SourceLocation DeclStart,
5393                                 Declarator &D, ExprTy *BitfieldWidth) {
5394  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5395                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5396                               AS_public);
5397  return DeclPtrTy::make(Res);
5398}
5399
5400/// HandleField - Analyze a field of a C struct or a C++ data member.
5401///
5402FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5403                             SourceLocation DeclStart,
5404                             Declarator &D, Expr *BitWidth,
5405                             AccessSpecifier AS) {
5406  IdentifierInfo *II = D.getIdentifier();
5407  SourceLocation Loc = DeclStart;
5408  if (II) Loc = D.getIdentifierLoc();
5409
5410  TypeSourceInfo *TInfo = 0;
5411  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5412  if (getLangOptions().CPlusPlus)
5413    CheckExtraCXXDefaultArguments(D);
5414
5415  DiagnoseFunctionSpecifiers(D);
5416
5417  if (D.getDeclSpec().isThreadSpecified())
5418    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5419
5420  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5421                                         ForRedeclaration);
5422
5423  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5424    // Maybe we will complain about the shadowed template parameter.
5425    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5426    // Just pretend that we didn't see the previous declaration.
5427    PrevDecl = 0;
5428  }
5429
5430  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5431    PrevDecl = 0;
5432
5433  bool Mutable
5434    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5435  SourceLocation TSSL = D.getSourceRange().getBegin();
5436  FieldDecl *NewFD
5437    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5438                     AS, PrevDecl, &D);
5439
5440  if (NewFD->isInvalidDecl())
5441    Record->setInvalidDecl();
5442
5443  if (NewFD->isInvalidDecl() && PrevDecl) {
5444    // Don't introduce NewFD into scope; there's already something
5445    // with the same name in the same scope.
5446  } else if (II) {
5447    PushOnScopeChains(NewFD, S);
5448  } else
5449    Record->addDecl(NewFD);
5450
5451  return NewFD;
5452}
5453
5454/// \brief Build a new FieldDecl and check its well-formedness.
5455///
5456/// This routine builds a new FieldDecl given the fields name, type,
5457/// record, etc. \p PrevDecl should refer to any previous declaration
5458/// with the same name and in the same scope as the field to be
5459/// created.
5460///
5461/// \returns a new FieldDecl.
5462///
5463/// \todo The Declarator argument is a hack. It will be removed once
5464FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5465                                TypeSourceInfo *TInfo,
5466                                RecordDecl *Record, SourceLocation Loc,
5467                                bool Mutable, Expr *BitWidth,
5468                                SourceLocation TSSL,
5469                                AccessSpecifier AS, NamedDecl *PrevDecl,
5470                                Declarator *D) {
5471  IdentifierInfo *II = Name.getAsIdentifierInfo();
5472  bool InvalidDecl = false;
5473  if (D) InvalidDecl = D->isInvalidType();
5474
5475  // If we receive a broken type, recover by assuming 'int' and
5476  // marking this declaration as invalid.
5477  if (T.isNull()) {
5478    InvalidDecl = true;
5479    T = Context.IntTy;
5480  }
5481
5482  QualType EltTy = Context.getBaseElementType(T);
5483  if (!EltTy->isDependentType() &&
5484      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5485    InvalidDecl = true;
5486
5487  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5488  // than a variably modified type.
5489  if (!InvalidDecl && T->isVariablyModifiedType()) {
5490    bool SizeIsNegative;
5491    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5492                                                           SizeIsNegative);
5493    if (!FixedTy.isNull()) {
5494      Diag(Loc, diag::warn_illegal_constant_array_size);
5495      T = FixedTy;
5496    } else {
5497      if (SizeIsNegative)
5498        Diag(Loc, diag::err_typecheck_negative_array_size);
5499      else
5500        Diag(Loc, diag::err_typecheck_field_variable_size);
5501      InvalidDecl = true;
5502    }
5503  }
5504
5505  // Fields can not have abstract class types
5506  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5507                                             diag::err_abstract_type_in_decl,
5508                                             AbstractFieldType))
5509    InvalidDecl = true;
5510
5511  bool ZeroWidth = false;
5512  // If this is declared as a bit-field, check the bit-field.
5513  if (!InvalidDecl && BitWidth &&
5514      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5515    InvalidDecl = true;
5516    DeleteExpr(BitWidth);
5517    BitWidth = 0;
5518    ZeroWidth = false;
5519  }
5520
5521  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5522                                       BitWidth, Mutable);
5523  if (InvalidDecl)
5524    NewFD->setInvalidDecl();
5525
5526  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5527    Diag(Loc, diag::err_duplicate_member) << II;
5528    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5529    NewFD->setInvalidDecl();
5530  }
5531
5532  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5533    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5534
5535    if (!T->isPODType())
5536      CXXRecord->setPOD(false);
5537    if (!ZeroWidth)
5538      CXXRecord->setEmpty(false);
5539
5540    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5541      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5542
5543      if (!RDecl->hasTrivialConstructor())
5544        CXXRecord->setHasTrivialConstructor(false);
5545      if (!RDecl->hasTrivialCopyConstructor())
5546        CXXRecord->setHasTrivialCopyConstructor(false);
5547      if (!RDecl->hasTrivialCopyAssignment())
5548        CXXRecord->setHasTrivialCopyAssignment(false);
5549      if (!RDecl->hasTrivialDestructor())
5550        CXXRecord->setHasTrivialDestructor(false);
5551
5552      // C++ 9.5p1: An object of a class with a non-trivial
5553      // constructor, a non-trivial copy constructor, a non-trivial
5554      // destructor, or a non-trivial copy assignment operator
5555      // cannot be a member of a union, nor can an array of such
5556      // objects.
5557      // TODO: C++0x alters this restriction significantly.
5558      if (Record->isUnion()) {
5559        // We check for copy constructors before constructors
5560        // because otherwise we'll never get complaints about
5561        // copy constructors.
5562
5563        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5564
5565        CXXSpecialMember member;
5566        if (!RDecl->hasTrivialCopyConstructor())
5567          member = CXXCopyConstructor;
5568        else if (!RDecl->hasTrivialConstructor())
5569          member = CXXDefaultConstructor;
5570        else if (!RDecl->hasTrivialCopyAssignment())
5571          member = CXXCopyAssignment;
5572        else if (!RDecl->hasTrivialDestructor())
5573          member = CXXDestructor;
5574        else
5575          member = invalid;
5576
5577        if (member != invalid) {
5578          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5579          DiagnoseNontrivial(RT, member);
5580          NewFD->setInvalidDecl();
5581        }
5582      }
5583    }
5584  }
5585
5586  // FIXME: We need to pass in the attributes given an AST
5587  // representation, not a parser representation.
5588  if (D)
5589    // FIXME: What to pass instead of TUScope?
5590    ProcessDeclAttributes(TUScope, NewFD, *D);
5591
5592  if (T.isObjCGCWeak())
5593    Diag(Loc, diag::warn_attribute_weak_on_field);
5594
5595  NewFD->setAccess(AS);
5596
5597  // C++ [dcl.init.aggr]p1:
5598  //   An aggregate is an array or a class (clause 9) with [...] no
5599  //   private or protected non-static data members (clause 11).
5600  // A POD must be an aggregate.
5601  if (getLangOptions().CPlusPlus &&
5602      (AS == AS_private || AS == AS_protected)) {
5603    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5604    CXXRecord->setAggregate(false);
5605    CXXRecord->setPOD(false);
5606  }
5607
5608  return NewFD;
5609}
5610
5611/// DiagnoseNontrivial - Given that a class has a non-trivial
5612/// special member, figure out why.
5613void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5614  QualType QT(T, 0U);
5615  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5616
5617  // Check whether the member was user-declared.
5618  switch (member) {
5619  case CXXDefaultConstructor:
5620    if (RD->hasUserDeclaredConstructor()) {
5621      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5622      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5623        const FunctionDecl *body = 0;
5624        ci->getBody(body);
5625        if (!body ||
5626            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5627          SourceLocation CtorLoc = ci->getLocation();
5628          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5629          return;
5630        }
5631      }
5632
5633      assert(0 && "found no user-declared constructors");
5634      return;
5635    }
5636    break;
5637
5638  case CXXCopyConstructor:
5639    if (RD->hasUserDeclaredCopyConstructor()) {
5640      SourceLocation CtorLoc =
5641        RD->getCopyConstructor(Context, 0)->getLocation();
5642      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5643      return;
5644    }
5645    break;
5646
5647  case CXXCopyAssignment:
5648    if (RD->hasUserDeclaredCopyAssignment()) {
5649      // FIXME: this should use the location of the copy
5650      // assignment, not the type.
5651      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5652      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5653      return;
5654    }
5655    break;
5656
5657  case CXXDestructor:
5658    if (RD->hasUserDeclaredDestructor()) {
5659      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5660      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5661      return;
5662    }
5663    break;
5664  }
5665
5666  typedef CXXRecordDecl::base_class_iterator base_iter;
5667
5668  // Virtual bases and members inhibit trivial copying/construction,
5669  // but not trivial destruction.
5670  if (member != CXXDestructor) {
5671    // Check for virtual bases.  vbases includes indirect virtual bases,
5672    // so we just iterate through the direct bases.
5673    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5674      if (bi->isVirtual()) {
5675        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5676        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5677        return;
5678      }
5679
5680    // Check for virtual methods.
5681    typedef CXXRecordDecl::method_iterator meth_iter;
5682    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5683         ++mi) {
5684      if (mi->isVirtual()) {
5685        SourceLocation MLoc = mi->getSourceRange().getBegin();
5686        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5687        return;
5688      }
5689    }
5690  }
5691
5692  bool (CXXRecordDecl::*hasTrivial)() const;
5693  switch (member) {
5694  case CXXDefaultConstructor:
5695    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5696  case CXXCopyConstructor:
5697    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5698  case CXXCopyAssignment:
5699    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5700  case CXXDestructor:
5701    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5702  default:
5703    assert(0 && "unexpected special member"); return;
5704  }
5705
5706  // Check for nontrivial bases (and recurse).
5707  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5708    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5709    assert(BaseRT && "Don't know how to handle dependent bases");
5710    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5711    if (!(BaseRecTy->*hasTrivial)()) {
5712      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5713      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5714      DiagnoseNontrivial(BaseRT, member);
5715      return;
5716    }
5717  }
5718
5719  // Check for nontrivial members (and recurse).
5720  typedef RecordDecl::field_iterator field_iter;
5721  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5722       ++fi) {
5723    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5724    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5725      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5726
5727      if (!(EltRD->*hasTrivial)()) {
5728        SourceLocation FLoc = (*fi)->getLocation();
5729        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5730        DiagnoseNontrivial(EltRT, member);
5731        return;
5732      }
5733    }
5734  }
5735
5736  assert(0 && "found no explanation for non-trivial member");
5737}
5738
5739/// TranslateIvarVisibility - Translate visibility from a token ID to an
5740///  AST enum value.
5741static ObjCIvarDecl::AccessControl
5742TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5743  switch (ivarVisibility) {
5744  default: assert(0 && "Unknown visitibility kind");
5745  case tok::objc_private: return ObjCIvarDecl::Private;
5746  case tok::objc_public: return ObjCIvarDecl::Public;
5747  case tok::objc_protected: return ObjCIvarDecl::Protected;
5748  case tok::objc_package: return ObjCIvarDecl::Package;
5749  }
5750}
5751
5752/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5753/// in order to create an IvarDecl object for it.
5754Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5755                                SourceLocation DeclStart,
5756                                DeclPtrTy IntfDecl,
5757                                Declarator &D, ExprTy *BitfieldWidth,
5758                                tok::ObjCKeywordKind Visibility) {
5759
5760  IdentifierInfo *II = D.getIdentifier();
5761  Expr *BitWidth = (Expr*)BitfieldWidth;
5762  SourceLocation Loc = DeclStart;
5763  if (II) Loc = D.getIdentifierLoc();
5764
5765  // FIXME: Unnamed fields can be handled in various different ways, for
5766  // example, unnamed unions inject all members into the struct namespace!
5767
5768  TypeSourceInfo *TInfo = 0;
5769  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5770
5771  if (BitWidth) {
5772    // 6.7.2.1p3, 6.7.2.1p4
5773    if (VerifyBitField(Loc, II, T, BitWidth)) {
5774      D.setInvalidType();
5775      DeleteExpr(BitWidth);
5776      BitWidth = 0;
5777    }
5778  } else {
5779    // Not a bitfield.
5780
5781    // validate II.
5782
5783  }
5784
5785  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5786  // than a variably modified type.
5787  if (T->isVariablyModifiedType()) {
5788    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5789    D.setInvalidType();
5790  }
5791
5792  // Get the visibility (access control) for this ivar.
5793  ObjCIvarDecl::AccessControl ac =
5794    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5795                                        : ObjCIvarDecl::None;
5796  // Must set ivar's DeclContext to its enclosing interface.
5797  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
5798  ObjCContainerDecl *EnclosingContext;
5799  if (ObjCImplementationDecl *IMPDecl =
5800      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5801    // Case of ivar declared in an implementation. Context is that of its class.
5802    EnclosingContext = IMPDecl->getClassInterface();
5803    assert(EnclosingContext && "Implementation has no class interface!");
5804  } else {
5805    if (ObjCCategoryDecl *CDecl =
5806        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5807      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
5808        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5809        return DeclPtrTy();
5810      }
5811    }
5812    EnclosingContext = EnclosingDecl;
5813  }
5814
5815  // Construct the decl.
5816  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5817                                             EnclosingContext, Loc, II, T,
5818                                             TInfo, ac, (Expr *)BitfieldWidth);
5819
5820  if (II) {
5821    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5822                                           ForRedeclaration);
5823    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5824        && !isa<TagDecl>(PrevDecl)) {
5825      Diag(Loc, diag::err_duplicate_member) << II;
5826      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5827      NewID->setInvalidDecl();
5828    }
5829  }
5830
5831  // Process attributes attached to the ivar.
5832  ProcessDeclAttributes(S, NewID, D);
5833
5834  if (D.isInvalidType())
5835    NewID->setInvalidDecl();
5836
5837  if (II) {
5838    // FIXME: When interfaces are DeclContexts, we'll need to add
5839    // these to the interface.
5840    S->AddDecl(DeclPtrTy::make(NewID));
5841    IdResolver.AddDecl(NewID);
5842  }
5843
5844  return DeclPtrTy::make(NewID);
5845}
5846
5847void Sema::ActOnFields(Scope* S,
5848                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5849                       DeclPtrTy *Fields, unsigned NumFields,
5850                       SourceLocation LBrac, SourceLocation RBrac,
5851                       AttributeList *Attr) {
5852  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5853  assert(EnclosingDecl && "missing record or interface decl");
5854
5855  // If the decl this is being inserted into is invalid, then it may be a
5856  // redeclaration or some other bogus case.  Don't try to add fields to it.
5857  if (EnclosingDecl->isInvalidDecl()) {
5858    // FIXME: Deallocate fields?
5859    return;
5860  }
5861
5862
5863  // Verify that all the fields are okay.
5864  unsigned NumNamedMembers = 0;
5865  llvm::SmallVector<FieldDecl*, 32> RecFields;
5866
5867  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5868  for (unsigned i = 0; i != NumFields; ++i) {
5869    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5870
5871    // Get the type for the field.
5872    Type *FDTy = FD->getType().getTypePtr();
5873
5874    if (!FD->isAnonymousStructOrUnion()) {
5875      // Remember all fields written by the user.
5876      RecFields.push_back(FD);
5877    }
5878
5879    // If the field is already invalid for some reason, don't emit more
5880    // diagnostics about it.
5881    if (FD->isInvalidDecl()) {
5882      EnclosingDecl->setInvalidDecl();
5883      continue;
5884    }
5885
5886    // C99 6.7.2.1p2:
5887    //   A structure or union shall not contain a member with
5888    //   incomplete or function type (hence, a structure shall not
5889    //   contain an instance of itself, but may contain a pointer to
5890    //   an instance of itself), except that the last member of a
5891    //   structure with more than one named member may have incomplete
5892    //   array type; such a structure (and any union containing,
5893    //   possibly recursively, a member that is such a structure)
5894    //   shall not be a member of a structure or an element of an
5895    //   array.
5896    if (FDTy->isFunctionType()) {
5897      // Field declared as a function.
5898      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5899        << FD->getDeclName();
5900      FD->setInvalidDecl();
5901      EnclosingDecl->setInvalidDecl();
5902      continue;
5903    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5904               Record && Record->isStruct()) {
5905      // Flexible array member.
5906      if (NumNamedMembers < 1) {
5907        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5908          << FD->getDeclName();
5909        FD->setInvalidDecl();
5910        EnclosingDecl->setInvalidDecl();
5911        continue;
5912      }
5913      // Okay, we have a legal flexible array member at the end of the struct.
5914      if (Record)
5915        Record->setHasFlexibleArrayMember(true);
5916    } else if (!FDTy->isDependentType() &&
5917               RequireCompleteType(FD->getLocation(), FD->getType(),
5918                                   diag::err_field_incomplete)) {
5919      // Incomplete type
5920      FD->setInvalidDecl();
5921      EnclosingDecl->setInvalidDecl();
5922      continue;
5923    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5924      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5925        // If this is a member of a union, then entire union becomes "flexible".
5926        if (Record && Record->isUnion()) {
5927          Record->setHasFlexibleArrayMember(true);
5928        } else {
5929          // If this is a struct/class and this is not the last element, reject
5930          // it.  Note that GCC supports variable sized arrays in the middle of
5931          // structures.
5932          if (i != NumFields-1)
5933            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5934              << FD->getDeclName() << FD->getType();
5935          else {
5936            // We support flexible arrays at the end of structs in
5937            // other structs as an extension.
5938            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5939              << FD->getDeclName();
5940            if (Record)
5941              Record->setHasFlexibleArrayMember(true);
5942          }
5943        }
5944      }
5945      if (Record && FDTTy->getDecl()->hasObjectMember())
5946        Record->setHasObjectMember(true);
5947    } else if (FDTy->isObjCInterfaceType()) {
5948      /// A field cannot be an Objective-c object
5949      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5950      FD->setInvalidDecl();
5951      EnclosingDecl->setInvalidDecl();
5952      continue;
5953    } else if (getLangOptions().ObjC1 &&
5954               getLangOptions().getGCMode() != LangOptions::NonGC &&
5955               Record &&
5956               (FD->getType()->isObjCObjectPointerType() ||
5957                FD->getType().isObjCGCStrong()))
5958      Record->setHasObjectMember(true);
5959    // Keep track of the number of named members.
5960    if (FD->getIdentifier())
5961      ++NumNamedMembers;
5962  }
5963
5964  // Okay, we successfully defined 'Record'.
5965  if (Record) {
5966    Record->completeDefinition();
5967  } else {
5968    ObjCIvarDecl **ClsFields =
5969      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5970    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5971      ID->setLocEnd(RBrac);
5972      // Add ivar's to class's DeclContext.
5973      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5974        ClsFields[i]->setLexicalDeclContext(ID);
5975        ID->addDecl(ClsFields[i]);
5976      }
5977      // Must enforce the rule that ivars in the base classes may not be
5978      // duplicates.
5979      if (ID->getSuperClass())
5980        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5981    } else if (ObjCImplementationDecl *IMPDecl =
5982                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5983      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5984      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5985        // Ivar declared in @implementation never belongs to the implementation.
5986        // Only it is in implementation's lexical context.
5987        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5988      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5989    } else if (ObjCCategoryDecl *CDecl =
5990                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5991      // case of ivars in class extension; all other cases have been
5992      // reported as errors elsewhere.
5993      // FIXME. Class extension does not have a LocEnd field.
5994      // CDecl->setLocEnd(RBrac);
5995      // Add ivar's to class extension's DeclContext.
5996      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5997        ClsFields[i]->setLexicalDeclContext(CDecl);
5998        CDecl->addDecl(ClsFields[i]);
5999      }
6000    }
6001  }
6002
6003  if (Attr)
6004    ProcessDeclAttributeList(S, Record, Attr);
6005}
6006
6007/// \brief Determine whether the given integral value is representable within
6008/// the given type T.
6009static bool isRepresentableIntegerValue(ASTContext &Context,
6010                                        llvm::APSInt &Value,
6011                                        QualType T) {
6012  assert(T->isIntegralType() && "Integral type required!");
6013  unsigned BitWidth = Context.getIntWidth(T);
6014
6015  if (Value.isUnsigned() || Value.isNonNegative())
6016    return Value.getActiveBits() < BitWidth;
6017
6018  return Value.getMinSignedBits() <= BitWidth;
6019}
6020
6021// \brief Given an integral type, return the next larger integral type
6022// (or a NULL type of no such type exists).
6023static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6024  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6025  // enum checking below.
6026  assert(T->isIntegralType() && "Integral type required!");
6027  const unsigned NumTypes = 4;
6028  QualType SignedIntegralTypes[NumTypes] = {
6029    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6030  };
6031  QualType UnsignedIntegralTypes[NumTypes] = {
6032    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6033    Context.UnsignedLongLongTy
6034  };
6035
6036  unsigned BitWidth = Context.getTypeSize(T);
6037  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6038                                            : UnsignedIntegralTypes;
6039  for (unsigned I = 0; I != NumTypes; ++I)
6040    if (Context.getTypeSize(Types[I]) > BitWidth)
6041      return Types[I];
6042
6043  return QualType();
6044}
6045
6046EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6047                                          EnumConstantDecl *LastEnumConst,
6048                                          SourceLocation IdLoc,
6049                                          IdentifierInfo *Id,
6050                                          ExprArg val) {
6051  Expr *Val = (Expr *)val.get();
6052
6053  unsigned IntWidth = Context.Target.getIntWidth();
6054  llvm::APSInt EnumVal(IntWidth);
6055  QualType EltTy;
6056  if (Val) {
6057    if (Enum->isDependentType() || Val->isTypeDependent())
6058      EltTy = Context.DependentTy;
6059    else {
6060      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6061      SourceLocation ExpLoc;
6062      if (!Val->isValueDependent() &&
6063          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6064        Val = 0;
6065      } else {
6066        if (!getLangOptions().CPlusPlus) {
6067          // C99 6.7.2.2p2:
6068          //   The expression that defines the value of an enumeration constant
6069          //   shall be an integer constant expression that has a value
6070          //   representable as an int.
6071
6072          // Complain if the value is not representable in an int.
6073          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6074            Diag(IdLoc, diag::ext_enum_value_not_int)
6075              << EnumVal.toString(10) << Val->getSourceRange()
6076              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6077          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6078            // Force the type of the expression to 'int'.
6079            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6080
6081            if (Val != val.get()) {
6082              val.release();
6083              val = Val;
6084            }
6085          }
6086        }
6087
6088        // C++0x [dcl.enum]p5:
6089        //   If the underlying type is not fixed, the type of each enumerator
6090        //   is the type of its initializing value:
6091        //     - If an initializer is specified for an enumerator, the
6092        //       initializing value has the same type as the expression.
6093        EltTy = Val->getType();
6094      }
6095    }
6096  }
6097
6098  if (!Val) {
6099    if (Enum->isDependentType())
6100      EltTy = Context.DependentTy;
6101    else if (!LastEnumConst) {
6102      // C++0x [dcl.enum]p5:
6103      //   If the underlying type is not fixed, the type of each enumerator
6104      //   is the type of its initializing value:
6105      //     - If no initializer is specified for the first enumerator, the
6106      //       initializing value has an unspecified integral type.
6107      //
6108      // GCC uses 'int' for its unspecified integral type, as does
6109      // C99 6.7.2.2p3.
6110      EltTy = Context.IntTy;
6111    } else {
6112      // Assign the last value + 1.
6113      EnumVal = LastEnumConst->getInitVal();
6114      ++EnumVal;
6115      EltTy = LastEnumConst->getType();
6116
6117      // Check for overflow on increment.
6118      if (EnumVal < LastEnumConst->getInitVal()) {
6119        // C++0x [dcl.enum]p5:
6120        //   If the underlying type is not fixed, the type of each enumerator
6121        //   is the type of its initializing value:
6122        //
6123        //     - Otherwise the type of the initializing value is the same as
6124        //       the type of the initializing value of the preceding enumerator
6125        //       unless the incremented value is not representable in that type,
6126        //       in which case the type is an unspecified integral type
6127        //       sufficient to contain the incremented value. If no such type
6128        //       exists, the program is ill-formed.
6129        QualType T = getNextLargerIntegralType(Context, EltTy);
6130        if (T.isNull()) {
6131          // There is no integral type larger enough to represent this
6132          // value. Complain, then allow the value to wrap around.
6133          EnumVal = LastEnumConst->getInitVal();
6134          EnumVal.zext(EnumVal.getBitWidth() * 2);
6135          Diag(IdLoc, diag::warn_enumerator_too_large)
6136            << EnumVal.toString(10);
6137        } else {
6138          EltTy = T;
6139        }
6140
6141        // Retrieve the last enumerator's value, extent that type to the
6142        // type that is supposed to be large enough to represent the incremented
6143        // value, then increment.
6144        EnumVal = LastEnumConst->getInitVal();
6145        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6146        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6147        ++EnumVal;
6148
6149        // If we're not in C++, diagnose the overflow of enumerator values,
6150        // which in C99 means that the enumerator value is not representable in
6151        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6152        // permits enumerator values that are representable in some larger
6153        // integral type.
6154        if (!getLangOptions().CPlusPlus && !T.isNull())
6155          Diag(IdLoc, diag::warn_enum_value_overflow);
6156      } else if (!getLangOptions().CPlusPlus &&
6157                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6158        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6159        Diag(IdLoc, diag::ext_enum_value_not_int)
6160          << EnumVal.toString(10) << 1;
6161      }
6162    }
6163  }
6164
6165  if (!EltTy->isDependentType()) {
6166    // Make the enumerator value match the signedness and size of the
6167    // enumerator's type.
6168    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6169    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6170  }
6171
6172  val.release();
6173  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6174                                  Val, EnumVal);
6175}
6176
6177
6178Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6179                                        DeclPtrTy lastEnumConst,
6180                                        SourceLocation IdLoc,
6181                                        IdentifierInfo *Id,
6182                                        SourceLocation EqualLoc, ExprTy *val) {
6183  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6184  EnumConstantDecl *LastEnumConst =
6185    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6186  Expr *Val = static_cast<Expr*>(val);
6187
6188  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6189  // we find one that is.
6190  S = getNonFieldDeclScope(S);
6191
6192  // Verify that there isn't already something declared with this name in this
6193  // scope.
6194  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6195                                         ForRedeclaration);
6196  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6197    // Maybe we will complain about the shadowed template parameter.
6198    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6199    // Just pretend that we didn't see the previous declaration.
6200    PrevDecl = 0;
6201  }
6202
6203  if (PrevDecl) {
6204    // When in C++, we may get a TagDecl with the same name; in this case the
6205    // enum constant will 'hide' the tag.
6206    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6207           "Received TagDecl when not in C++!");
6208    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6209      if (isa<EnumConstantDecl>(PrevDecl))
6210        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6211      else
6212        Diag(IdLoc, diag::err_redefinition) << Id;
6213      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6214      if (Val) Val->Destroy(Context);
6215      return DeclPtrTy();
6216    }
6217  }
6218
6219  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6220                                            IdLoc, Id, Owned(Val));
6221
6222  // Register this decl in the current scope stack.
6223  if (New) {
6224    New->setAccess(TheEnumDecl->getAccess());
6225    PushOnScopeChains(New, S);
6226  }
6227
6228  return DeclPtrTy::make(New);
6229}
6230
6231void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6232                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6233                         DeclPtrTy *Elements, unsigned NumElements,
6234                         Scope *S, AttributeList *Attr) {
6235  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6236  QualType EnumType = Context.getTypeDeclType(Enum);
6237
6238  if (Attr)
6239    ProcessDeclAttributeList(S, Enum, Attr);
6240
6241  if (Enum->isDependentType()) {
6242    for (unsigned i = 0; i != NumElements; ++i) {
6243      EnumConstantDecl *ECD =
6244        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6245      if (!ECD) continue;
6246
6247      ECD->setType(EnumType);
6248    }
6249
6250    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6251    return;
6252  }
6253
6254  // TODO: If the result value doesn't fit in an int, it must be a long or long
6255  // long value.  ISO C does not support this, but GCC does as an extension,
6256  // emit a warning.
6257  unsigned IntWidth = Context.Target.getIntWidth();
6258  unsigned CharWidth = Context.Target.getCharWidth();
6259  unsigned ShortWidth = Context.Target.getShortWidth();
6260
6261  // Verify that all the values are okay, compute the size of the values, and
6262  // reverse the list.
6263  unsigned NumNegativeBits = 0;
6264  unsigned NumPositiveBits = 0;
6265
6266  // Keep track of whether all elements have type int.
6267  bool AllElementsInt = true;
6268
6269  for (unsigned i = 0; i != NumElements; ++i) {
6270    EnumConstantDecl *ECD =
6271      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6272    if (!ECD) continue;  // Already issued a diagnostic.
6273
6274    const llvm::APSInt &InitVal = ECD->getInitVal();
6275
6276    // Keep track of the size of positive and negative values.
6277    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6278      NumPositiveBits = std::max(NumPositiveBits,
6279                                 (unsigned)InitVal.getActiveBits());
6280    else
6281      NumNegativeBits = std::max(NumNegativeBits,
6282                                 (unsigned)InitVal.getMinSignedBits());
6283
6284    // Keep track of whether every enum element has type int (very commmon).
6285    if (AllElementsInt)
6286      AllElementsInt = ECD->getType() == Context.IntTy;
6287  }
6288
6289  // Figure out the type that should be used for this enum.
6290  // FIXME: Support -fshort-enums.
6291  QualType BestType;
6292  unsigned BestWidth;
6293
6294  // C++0x N3000 [conv.prom]p3:
6295  //   An rvalue of an unscoped enumeration type whose underlying
6296  //   type is not fixed can be converted to an rvalue of the first
6297  //   of the following types that can represent all the values of
6298  //   the enumeration: int, unsigned int, long int, unsigned long
6299  //   int, long long int, or unsigned long long int.
6300  // C99 6.4.4.3p2:
6301  //   An identifier declared as an enumeration constant has type int.
6302  // The C99 rule is modified by a gcc extension
6303  QualType BestPromotionType;
6304
6305  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6306
6307  if (NumNegativeBits) {
6308    // If there is a negative value, figure out the smallest integer type (of
6309    // int/long/longlong) that fits.
6310    // If it's packed, check also if it fits a char or a short.
6311    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6312      BestType = Context.SignedCharTy;
6313      BestWidth = CharWidth;
6314    } else if (Packed && NumNegativeBits <= ShortWidth &&
6315               NumPositiveBits < ShortWidth) {
6316      BestType = Context.ShortTy;
6317      BestWidth = ShortWidth;
6318    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6319      BestType = Context.IntTy;
6320      BestWidth = IntWidth;
6321    } else {
6322      BestWidth = Context.Target.getLongWidth();
6323
6324      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6325        BestType = Context.LongTy;
6326      } else {
6327        BestWidth = Context.Target.getLongLongWidth();
6328
6329        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6330          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6331        BestType = Context.LongLongTy;
6332      }
6333    }
6334    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6335  } else {
6336    // If there is no negative value, figure out the smallest type that fits
6337    // all of the enumerator values.
6338    // If it's packed, check also if it fits a char or a short.
6339    if (Packed && NumPositiveBits <= CharWidth) {
6340      BestType = Context.UnsignedCharTy;
6341      BestPromotionType = Context.IntTy;
6342      BestWidth = CharWidth;
6343    } else if (Packed && NumPositiveBits <= ShortWidth) {
6344      BestType = Context.UnsignedShortTy;
6345      BestPromotionType = Context.IntTy;
6346      BestWidth = ShortWidth;
6347    } else if (NumPositiveBits <= IntWidth) {
6348      BestType = Context.UnsignedIntTy;
6349      BestWidth = IntWidth;
6350      BestPromotionType
6351        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6352                           ? Context.UnsignedIntTy : Context.IntTy;
6353    } else if (NumPositiveBits <=
6354               (BestWidth = Context.Target.getLongWidth())) {
6355      BestType = Context.UnsignedLongTy;
6356      BestPromotionType
6357        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6358                           ? Context.UnsignedLongTy : Context.LongTy;
6359    } else {
6360      BestWidth = Context.Target.getLongLongWidth();
6361      assert(NumPositiveBits <= BestWidth &&
6362             "How could an initializer get larger than ULL?");
6363      BestType = Context.UnsignedLongLongTy;
6364      BestPromotionType
6365        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6366                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6367    }
6368  }
6369
6370  // Loop over all of the enumerator constants, changing their types to match
6371  // the type of the enum if needed.
6372  for (unsigned i = 0; i != NumElements; ++i) {
6373    EnumConstantDecl *ECD =
6374      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6375    if (!ECD) continue;  // Already issued a diagnostic.
6376
6377    // Standard C says the enumerators have int type, but we allow, as an
6378    // extension, the enumerators to be larger than int size.  If each
6379    // enumerator value fits in an int, type it as an int, otherwise type it the
6380    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6381    // that X has type 'int', not 'unsigned'.
6382
6383    // Determine whether the value fits into an int.
6384    llvm::APSInt InitVal = ECD->getInitVal();
6385
6386    // If it fits into an integer type, force it.  Otherwise force it to match
6387    // the enum decl type.
6388    QualType NewTy;
6389    unsigned NewWidth;
6390    bool NewSign;
6391    if (!getLangOptions().CPlusPlus &&
6392        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6393      NewTy = Context.IntTy;
6394      NewWidth = IntWidth;
6395      NewSign = true;
6396    } else if (ECD->getType() == BestType) {
6397      // Already the right type!
6398      if (getLangOptions().CPlusPlus)
6399        // C++ [dcl.enum]p4: Following the closing brace of an
6400        // enum-specifier, each enumerator has the type of its
6401        // enumeration.
6402        ECD->setType(EnumType);
6403      continue;
6404    } else {
6405      NewTy = BestType;
6406      NewWidth = BestWidth;
6407      NewSign = BestType->isSignedIntegerType();
6408    }
6409
6410    // Adjust the APSInt value.
6411    InitVal.extOrTrunc(NewWidth);
6412    InitVal.setIsSigned(NewSign);
6413    ECD->setInitVal(InitVal);
6414
6415    // Adjust the Expr initializer and type.
6416    if (ECD->getInitExpr())
6417      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6418                                                      CastExpr::CK_IntegralCast,
6419                                                      ECD->getInitExpr(),
6420                                                      /*isLvalue=*/false));
6421    if (getLangOptions().CPlusPlus)
6422      // C++ [dcl.enum]p4: Following the closing brace of an
6423      // enum-specifier, each enumerator has the type of its
6424      // enumeration.
6425      ECD->setType(EnumType);
6426    else
6427      ECD->setType(NewTy);
6428  }
6429
6430  Enum->completeDefinition(BestType, BestPromotionType);
6431}
6432
6433Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6434                                            ExprArg expr) {
6435  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6436
6437  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6438                                                   Loc, AsmString);
6439  CurContext->addDecl(New);
6440  return DeclPtrTy::make(New);
6441}
6442
6443void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6444                             SourceLocation PragmaLoc,
6445                             SourceLocation NameLoc) {
6446  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6447
6448  if (PrevDecl) {
6449    PrevDecl->addAttr(::new (Context) WeakAttr());
6450  } else {
6451    (void)WeakUndeclaredIdentifiers.insert(
6452      std::pair<IdentifierInfo*,WeakInfo>
6453        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6454  }
6455}
6456
6457void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6458                                IdentifierInfo* AliasName,
6459                                SourceLocation PragmaLoc,
6460                                SourceLocation NameLoc,
6461                                SourceLocation AliasNameLoc) {
6462  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6463                                    LookupOrdinaryName);
6464  WeakInfo W = WeakInfo(Name, NameLoc);
6465
6466  if (PrevDecl) {
6467    if (!PrevDecl->hasAttr<AliasAttr>())
6468      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6469        DeclApplyPragmaWeak(TUScope, ND, W);
6470  } else {
6471    (void)WeakUndeclaredIdentifiers.insert(
6472      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6473  }
6474}
6475