SemaDecl.cpp revision 6a83969807530ebdb24ed97917eb644a4e724b14
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// Used in MergeFunctionDecl to keep track of function parameters in
514/// C.
515struct GNUCompatibleParamWarning {
516  ParmVarDecl *OldParm;
517  ParmVarDecl *NewParm;
518  QualType PromotedType;
519};
520
521/// MergeFunctionDecl - We just parsed a function 'New' from
522/// declarator D which has the same name and scope as a previous
523/// declaration 'Old'.  Figure out how to resolve this situation,
524/// merging decls or emitting diagnostics as appropriate.
525///
526/// In C++, New and Old must be declarations that are not
527/// overloaded. Use IsOverload to determine whether New and Old are
528/// overloaded, and to select the Old declaration that New should be
529/// merged with.
530///
531/// Returns true if there was an error, false otherwise.
532bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
533  assert(!isa<OverloadedFunctionDecl>(OldD) &&
534         "Cannot merge with an overloaded function declaration");
535
536  // Verify the old decl was also a function.
537  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
538  if (!Old) {
539    Diag(New->getLocation(), diag::err_redefinition_different_kind)
540      << New->getDeclName();
541    Diag(OldD->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // Determine whether the previous declaration was a definition,
546  // implicit declaration, or a declaration.
547  diag::kind PrevDiag;
548  if (Old->isThisDeclarationADefinition())
549    PrevDiag = diag::note_previous_definition;
550  else if (Old->isImplicit())
551    PrevDiag = diag::note_previous_implicit_declaration;
552  else
553    PrevDiag = diag::note_previous_declaration;
554
555  QualType OldQType = Context.getCanonicalType(Old->getType());
556  QualType NewQType = Context.getCanonicalType(New->getType());
557
558  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
559      New->getStorageClass() == FunctionDecl::Static &&
560      Old->getStorageClass() != FunctionDecl::Static) {
561    Diag(New->getLocation(), diag::err_static_non_static)
562      << New;
563    Diag(Old->getLocation(), PrevDiag);
564    return true;
565  }
566
567  if (getLangOptions().CPlusPlus) {
568    // (C++98 13.1p2):
569    //   Certain function declarations cannot be overloaded:
570    //     -- Function declarations that differ only in the return type
571    //        cannot be overloaded.
572    QualType OldReturnType
573      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
574    QualType NewReturnType
575      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
576    if (OldReturnType != NewReturnType) {
577      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
578      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
579      return true;
580    }
581
582    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
583    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
584    if (OldMethod && NewMethod) {
585      //    -- Member function declarations with the same name and the
586      //       same parameter types cannot be overloaded if any of them
587      //       is a static member function declaration.
588      if (OldMethod->isStatic() || NewMethod->isStatic()) {
589        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
590        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
591        return true;
592      }
593
594      // C++ [class.mem]p1:
595      //   [...] A member shall not be declared twice in the
596      //   member-specification, except that a nested class or member
597      //   class template can be declared and then later defined.
598      if (OldMethod->getLexicalDeclContext() ==
599            NewMethod->getLexicalDeclContext()) {
600        unsigned NewDiag;
601        if (isa<CXXConstructorDecl>(OldMethod))
602          NewDiag = diag::err_constructor_redeclared;
603        else if (isa<CXXDestructorDecl>(NewMethod))
604          NewDiag = diag::err_destructor_redeclared;
605        else if (isa<CXXConversionDecl>(NewMethod))
606          NewDiag = diag::err_conv_function_redeclared;
607        else
608          NewDiag = diag::err_member_redeclared;
609
610        Diag(New->getLocation(), NewDiag);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612      }
613    }
614
615    // (C++98 8.3.5p3):
616    //   All declarations for a function shall agree exactly in both the
617    //   return type and the parameter-type-list.
618    if (OldQType == NewQType)
619      return MergeCompatibleFunctionDecls(New, Old);
620
621    // Fall through for conflicting redeclarations and redefinitions.
622  }
623
624  // C: Function types need to be compatible, not identical. This handles
625  // duplicate function decls like "void f(int); void f(enum X);" properly.
626  if (!getLangOptions().CPlusPlus &&
627      Context.typesAreCompatible(OldQType, NewQType)) {
628    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
629    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
630    const FunctionProtoType *OldProto = 0;
631    if (isa<FunctionNoProtoType>(NewFuncType) &&
632        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
633      // The old declaration provided a function prototype, but the
634      // new declaration does not. Merge in the prototype.
635      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
636                                                 OldProto->arg_type_end());
637      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
638                                         &ParamTypes[0], ParamTypes.size(),
639                                         OldProto->isVariadic(),
640                                         OldProto->getTypeQuals());
641      New->setType(NewQType);
642      New->setInheritedPrototype();
643
644      // Synthesize a parameter for each argument type.
645      llvm::SmallVector<ParmVarDecl*, 16> Params;
646      for (FunctionProtoType::arg_type_iterator
647             ParamType = OldProto->arg_type_begin(),
648             ParamEnd = OldProto->arg_type_end();
649           ParamType != ParamEnd; ++ParamType) {
650        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
651                                                 SourceLocation(), 0,
652                                                 *ParamType, VarDecl::None,
653                                                 0);
654        Param->setImplicit();
655        Params.push_back(Param);
656      }
657
658      New->setParams(Context, &Params[0], Params.size());
659    }
660
661    return MergeCompatibleFunctionDecls(New, Old);
662  }
663
664  // GNU C permits a K&R definition to follow a prototype declaration
665  // if the declared types of the parameters in the K&R definition
666  // match the types in the prototype declaration, even when the
667  // promoted types of the parameters from the K&R definition differ
668  // from the types in the prototype. GCC then keeps the types from
669  // the prototype.
670  if (!getLangOptions().CPlusPlus &&
671      !getLangOptions().NoExtensions &&
672      Old->hasPrototype() && !New->hasPrototype() &&
673      New->getType()->getAsFunctionProtoType() &&
674      Old->getNumParams() == New->getNumParams()) {
675    llvm::SmallVector<QualType, 16> ArgTypes;
676    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
677    const FunctionProtoType *OldProto
678      = Old->getType()->getAsFunctionProtoType();
679    const FunctionProtoType *NewProto
680      = New->getType()->getAsFunctionProtoType();
681
682    // Determine whether this is the GNU C extension.
683    bool GNUCompatible =
684      Context.typesAreCompatible(OldProto->getResultType(),
685                                 NewProto->getResultType()) &&
686      (OldProto->isVariadic() == NewProto->isVariadic());
687    for (unsigned Idx = 0, End = Old->getNumParams();
688         GNUCompatible && Idx != End; ++Idx) {
689      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
690      ParmVarDecl *NewParm = New->getParamDecl(Idx);
691      if (Context.typesAreCompatible(OldParm->getType(),
692                                     NewProto->getArgType(Idx))) {
693        ArgTypes.push_back(NewParm->getType());
694      } else if (Context.typesAreCompatible(OldParm->getType(),
695                                            NewParm->getType())) {
696        GNUCompatibleParamWarning Warn
697          = { OldParm, NewParm, NewProto->getArgType(Idx) };
698        Warnings.push_back(Warn);
699        ArgTypes.push_back(NewParm->getType());
700      } else
701        GNUCompatible = false;
702    }
703
704    if (GNUCompatible) {
705      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
706        Diag(Warnings[Warn].NewParm->getLocation(),
707             diag::ext_param_promoted_not_compatible_with_prototype)
708          << Warnings[Warn].PromotedType
709          << Warnings[Warn].OldParm->getType();
710        Diag(Warnings[Warn].OldParm->getLocation(),
711             diag::note_previous_declaration);
712      }
713
714      New->setType(Context.getFunctionType(NewProto->getResultType(),
715                                           &ArgTypes[0], ArgTypes.size(),
716                                           NewProto->isVariadic(),
717                                           NewProto->getTypeQuals()));
718      return MergeCompatibleFunctionDecls(New, Old);
719    }
720
721    // Fall through to diagnose conflicting types.
722  }
723
724  // A function that has already been declared has been redeclared or defined
725  // with a different type- show appropriate diagnostic
726  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
727    // The user has declared a builtin function with an incompatible
728    // signature.
729    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
730      // The function the user is redeclaring is a library-defined
731      // function like 'malloc' or 'printf'. Warn about the
732      // redeclaration, then ignore it.
733      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
734      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
735        << Old << Old->getType();
736      return true;
737    }
738
739    PrevDiag = diag::note_previous_builtin_declaration;
740  }
741
742  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
743  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
744  return true;
745}
746
747/// \brief Completes the merge of two function declarations that are
748/// known to be compatible.
749///
750/// This routine handles the merging of attributes and other
751/// properties of function declarations form the old declaration to
752/// the new declaration, once we know that New is in fact a
753/// redeclaration of Old.
754///
755/// \returns false
756bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
757  // Merge the attributes
758  MergeAttributes(New, Old, Context);
759
760  // Merge the storage class.
761  New->setStorageClass(Old->getStorageClass());
762
763  // FIXME: need to implement inline semantics
764
765  // Merge "pure" flag.
766  if (Old->isPure())
767    New->setPure();
768
769  // Merge the "deleted" flag.
770  if (Old->isDeleted())
771    New->setDeleted();
772
773  if (getLangOptions().CPlusPlus)
774    return MergeCXXFunctionDecl(New, Old);
775
776  return false;
777}
778
779/// Predicate for C "tentative" external object definitions (C99 6.9.2).
780static bool isTentativeDefinition(VarDecl *VD) {
781  if (VD->isFileVarDecl())
782    return (!VD->getInit() &&
783            (VD->getStorageClass() == VarDecl::None ||
784             VD->getStorageClass() == VarDecl::Static));
785  return false;
786}
787
788/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
789/// when dealing with C "tentative" external object definitions (C99 6.9.2).
790void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
791  bool VDIsTentative = isTentativeDefinition(VD);
792  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
793
794  // FIXME: I don't think this will actually see all of the
795  // redefinitions. Can't we check this property on-the-fly?
796  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
797                                    E = IdResolver.end();
798       I != E; ++I) {
799    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
800      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
801
802      // Handle the following case:
803      //   int a[10];
804      //   int a[];   - the code below makes sure we set the correct type.
805      //   int a[11]; - this is an error, size isn't 10.
806      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
807          OldDecl->getType()->isConstantArrayType())
808        VD->setType(OldDecl->getType());
809
810      // Check for "tentative" definitions. We can't accomplish this in
811      // MergeVarDecl since the initializer hasn't been attached.
812      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
813        continue;
814
815      // Handle __private_extern__ just like extern.
816      if (OldDecl->getStorageClass() != VarDecl::Extern &&
817          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
818          VD->getStorageClass() != VarDecl::Extern &&
819          VD->getStorageClass() != VarDecl::PrivateExtern) {
820        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
821        Diag(OldDecl->getLocation(), diag::note_previous_definition);
822        // One redefinition error is enough.
823        break;
824      }
825    }
826  }
827}
828
829/// MergeVarDecl - We just parsed a variable 'New' which has the same name
830/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
831/// situation, merging decls or emitting diagnostics as appropriate.
832///
833/// Tentative definition rules (C99 6.9.2p2) are checked by
834/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
835/// definitions here, since the initializer hasn't been attached.
836///
837bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
838  // Verify the old decl was also a variable.
839  VarDecl *Old = dyn_cast<VarDecl>(OldD);
840  if (!Old) {
841    Diag(New->getLocation(), diag::err_redefinition_different_kind)
842      << New->getDeclName();
843    Diag(OldD->getLocation(), diag::note_previous_definition);
844    return true;
845  }
846
847  MergeAttributes(New, Old, Context);
848
849  // Merge the types
850  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
851  if (MergedT.isNull()) {
852    Diag(New->getLocation(), diag::err_redefinition_different_type)
853      << New->getDeclName();
854    Diag(Old->getLocation(), diag::note_previous_definition);
855    return true;
856  }
857  New->setType(MergedT);
858  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
859  if (New->getStorageClass() == VarDecl::Static &&
860      (Old->getStorageClass() == VarDecl::None ||
861       Old->getStorageClass() == VarDecl::Extern)) {
862    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
863    Diag(Old->getLocation(), diag::note_previous_definition);
864    return true;
865  }
866  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
867  if (New->getStorageClass() != VarDecl::Static &&
868      Old->getStorageClass() == VarDecl::Static) {
869    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
870    Diag(Old->getLocation(), diag::note_previous_definition);
871    return true;
872  }
873  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
874  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
875    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
876    Diag(Old->getLocation(), diag::note_previous_definition);
877    return true;
878  }
879  return false;
880}
881
882/// CheckParmsForFunctionDef - Check that the parameters of the given
883/// function are appropriate for the definition of a function. This
884/// takes care of any checks that cannot be performed on the
885/// declaration itself, e.g., that the types of each of the function
886/// parameters are complete.
887bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
888  bool HasInvalidParm = false;
889  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
890    ParmVarDecl *Param = FD->getParamDecl(p);
891
892    // C99 6.7.5.3p4: the parameters in a parameter type list in a
893    // function declarator that is part of a function definition of
894    // that function shall not have incomplete type.
895    if (!Param->isInvalidDecl() &&
896        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
897                               diag::err_typecheck_decl_incomplete_type)) {
898      Param->setInvalidDecl();
899      HasInvalidParm = true;
900    }
901
902    // C99 6.9.1p5: If the declarator includes a parameter type list, the
903    // declaration of each parameter shall include an identifier.
904    if (Param->getIdentifier() == 0 &&
905        !Param->isImplicit() &&
906        !getLangOptions().CPlusPlus)
907      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
908  }
909
910  return HasInvalidParm;
911}
912
913/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
914/// no declarator (e.g. "struct foo;") is parsed.
915Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
916  TagDecl *Tag = 0;
917  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
918      DS.getTypeSpecType() == DeclSpec::TST_struct ||
919      DS.getTypeSpecType() == DeclSpec::TST_union ||
920      DS.getTypeSpecType() == DeclSpec::TST_enum)
921    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
922
923  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
924    if (!Record->getDeclName() && Record->isDefinition() &&
925        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
926      return BuildAnonymousStructOrUnion(S, DS, Record);
927
928    // Microsoft allows unnamed struct/union fields. Don't complain
929    // about them.
930    // FIXME: Should we support Microsoft's extensions in this area?
931    if (Record->getDeclName() && getLangOptions().Microsoft)
932      return Tag;
933  }
934
935  if (!DS.isMissingDeclaratorOk() &&
936      DS.getTypeSpecType() != DeclSpec::TST_error) {
937    // Warn about typedefs of enums without names, since this is an
938    // extension in both Microsoft an GNU.
939    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
940        Tag && isa<EnumDecl>(Tag)) {
941      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
942        << DS.getSourceRange();
943      return Tag;
944    }
945
946    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
947      << DS.getSourceRange();
948    return 0;
949  }
950
951  return Tag;
952}
953
954/// InjectAnonymousStructOrUnionMembers - Inject the members of the
955/// anonymous struct or union AnonRecord into the owning context Owner
956/// and scope S. This routine will be invoked just after we realize
957/// that an unnamed union or struct is actually an anonymous union or
958/// struct, e.g.,
959///
960/// @code
961/// union {
962///   int i;
963///   float f;
964/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
965///    // f into the surrounding scope.x
966/// @endcode
967///
968/// This routine is recursive, injecting the names of nested anonymous
969/// structs/unions into the owning context and scope as well.
970bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
971                                               RecordDecl *AnonRecord) {
972  bool Invalid = false;
973  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
974                               FEnd = AnonRecord->field_end();
975       F != FEnd; ++F) {
976    if ((*F)->getDeclName()) {
977      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
978                                                LookupOrdinaryName, true);
979      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
980        // C++ [class.union]p2:
981        //   The names of the members of an anonymous union shall be
982        //   distinct from the names of any other entity in the
983        //   scope in which the anonymous union is declared.
984        unsigned diagKind
985          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
986                                 : diag::err_anonymous_struct_member_redecl;
987        Diag((*F)->getLocation(), diagKind)
988          << (*F)->getDeclName();
989        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
990        Invalid = true;
991      } else {
992        // C++ [class.union]p2:
993        //   For the purpose of name lookup, after the anonymous union
994        //   definition, the members of the anonymous union are
995        //   considered to have been defined in the scope in which the
996        //   anonymous union is declared.
997        Owner->makeDeclVisibleInContext(*F);
998        S->AddDecl(*F);
999        IdResolver.AddDecl(*F);
1000      }
1001    } else if (const RecordType *InnerRecordType
1002                 = (*F)->getType()->getAsRecordType()) {
1003      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1004      if (InnerRecord->isAnonymousStructOrUnion())
1005        Invalid = Invalid ||
1006          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1007    }
1008  }
1009
1010  return Invalid;
1011}
1012
1013/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1014/// anonymous structure or union. Anonymous unions are a C++ feature
1015/// (C++ [class.union]) and a GNU C extension; anonymous structures
1016/// are a GNU C and GNU C++ extension.
1017Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1018                                                RecordDecl *Record) {
1019  DeclContext *Owner = Record->getDeclContext();
1020
1021  // Diagnose whether this anonymous struct/union is an extension.
1022  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1023    Diag(Record->getLocation(), diag::ext_anonymous_union);
1024  else if (!Record->isUnion())
1025    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1026
1027  // C and C++ require different kinds of checks for anonymous
1028  // structs/unions.
1029  bool Invalid = false;
1030  if (getLangOptions().CPlusPlus) {
1031    const char* PrevSpec = 0;
1032    // C++ [class.union]p3:
1033    //   Anonymous unions declared in a named namespace or in the
1034    //   global namespace shall be declared static.
1035    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1036        (isa<TranslationUnitDecl>(Owner) ||
1037         (isa<NamespaceDecl>(Owner) &&
1038          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1039      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1040      Invalid = true;
1041
1042      // Recover by adding 'static'.
1043      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1044    }
1045    // C++ [class.union]p3:
1046    //   A storage class is not allowed in a declaration of an
1047    //   anonymous union in a class scope.
1048    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1049             isa<RecordDecl>(Owner)) {
1050      Diag(DS.getStorageClassSpecLoc(),
1051           diag::err_anonymous_union_with_storage_spec);
1052      Invalid = true;
1053
1054      // Recover by removing the storage specifier.
1055      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1056                             PrevSpec);
1057    }
1058
1059    // C++ [class.union]p2:
1060    //   The member-specification of an anonymous union shall only
1061    //   define non-static data members. [Note: nested types and
1062    //   functions cannot be declared within an anonymous union. ]
1063    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1064                                 MemEnd = Record->decls_end();
1065         Mem != MemEnd; ++Mem) {
1066      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1067        // C++ [class.union]p3:
1068        //   An anonymous union shall not have private or protected
1069        //   members (clause 11).
1070        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1071          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1072            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1073          Invalid = true;
1074        }
1075      } else if ((*Mem)->isImplicit()) {
1076        // Any implicit members are fine.
1077      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1078        // This is a type that showed up in an
1079        // elaborated-type-specifier inside the anonymous struct or
1080        // union, but which actually declares a type outside of the
1081        // anonymous struct or union. It's okay.
1082      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1083        if (!MemRecord->isAnonymousStructOrUnion() &&
1084            MemRecord->getDeclName()) {
1085          // This is a nested type declaration.
1086          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1087            << (int)Record->isUnion();
1088          Invalid = true;
1089        }
1090      } else {
1091        // We have something that isn't a non-static data
1092        // member. Complain about it.
1093        unsigned DK = diag::err_anonymous_record_bad_member;
1094        if (isa<TypeDecl>(*Mem))
1095          DK = diag::err_anonymous_record_with_type;
1096        else if (isa<FunctionDecl>(*Mem))
1097          DK = diag::err_anonymous_record_with_function;
1098        else if (isa<VarDecl>(*Mem))
1099          DK = diag::err_anonymous_record_with_static;
1100        Diag((*Mem)->getLocation(), DK)
1101            << (int)Record->isUnion();
1102          Invalid = true;
1103      }
1104    }
1105  } else {
1106    // FIXME: Check GNU C semantics
1107    if (Record->isUnion() && !Owner->isRecord()) {
1108      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1109        << (int)getLangOptions().CPlusPlus;
1110      Invalid = true;
1111    }
1112  }
1113
1114  if (!Record->isUnion() && !Owner->isRecord()) {
1115    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1116      << (int)getLangOptions().CPlusPlus;
1117    Invalid = true;
1118  }
1119
1120  // Create a declaration for this anonymous struct/union.
1121  NamedDecl *Anon = 0;
1122  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1123    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1124                             /*IdentifierInfo=*/0,
1125                             Context.getTypeDeclType(Record),
1126                             /*BitWidth=*/0, /*Mutable=*/false);
1127    Anon->setAccess(AS_public);
1128    if (getLangOptions().CPlusPlus)
1129      FieldCollector->Add(cast<FieldDecl>(Anon));
1130  } else {
1131    VarDecl::StorageClass SC;
1132    switch (DS.getStorageClassSpec()) {
1133    default: assert(0 && "Unknown storage class!");
1134    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1135    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1136    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1137    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1138    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1139    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1140    case DeclSpec::SCS_mutable:
1141      // mutable can only appear on non-static class members, so it's always
1142      // an error here
1143      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1144      Invalid = true;
1145      SC = VarDecl::None;
1146      break;
1147    }
1148
1149    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1150                           /*IdentifierInfo=*/0,
1151                           Context.getTypeDeclType(Record),
1152                           SC, DS.getSourceRange().getBegin());
1153  }
1154  Anon->setImplicit();
1155
1156  // Add the anonymous struct/union object to the current
1157  // context. We'll be referencing this object when we refer to one of
1158  // its members.
1159  Owner->addDecl(Anon);
1160
1161  // Inject the members of the anonymous struct/union into the owning
1162  // context and into the identifier resolver chain for name lookup
1163  // purposes.
1164  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1165    Invalid = true;
1166
1167  // Mark this as an anonymous struct/union type. Note that we do not
1168  // do this until after we have already checked and injected the
1169  // members of this anonymous struct/union type, because otherwise
1170  // the members could be injected twice: once by DeclContext when it
1171  // builds its lookup table, and once by
1172  // InjectAnonymousStructOrUnionMembers.
1173  Record->setAnonymousStructOrUnion(true);
1174
1175  if (Invalid)
1176    Anon->setInvalidDecl();
1177
1178  return Anon;
1179}
1180
1181
1182/// GetNameForDeclarator - Determine the full declaration name for the
1183/// given Declarator.
1184DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1185  switch (D.getKind()) {
1186  case Declarator::DK_Abstract:
1187    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1188    return DeclarationName();
1189
1190  case Declarator::DK_Normal:
1191    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1192    return DeclarationName(D.getIdentifier());
1193
1194  case Declarator::DK_Constructor: {
1195    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1196    Ty = Context.getCanonicalType(Ty);
1197    return Context.DeclarationNames.getCXXConstructorName(Ty);
1198  }
1199
1200  case Declarator::DK_Destructor: {
1201    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1202    Ty = Context.getCanonicalType(Ty);
1203    return Context.DeclarationNames.getCXXDestructorName(Ty);
1204  }
1205
1206  case Declarator::DK_Conversion: {
1207    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1208    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1209    Ty = Context.getCanonicalType(Ty);
1210    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1211  }
1212
1213  case Declarator::DK_Operator:
1214    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1215    return Context.DeclarationNames.getCXXOperatorName(
1216                                                D.getOverloadedOperator());
1217  }
1218
1219  assert(false && "Unknown name kind");
1220  return DeclarationName();
1221}
1222
1223/// isNearlyMatchingFunction - Determine whether the C++ functions
1224/// Declaration and Definition are "nearly" matching. This heuristic
1225/// is used to improve diagnostics in the case where an out-of-line
1226/// function definition doesn't match any declaration within
1227/// the class or namespace.
1228static bool isNearlyMatchingFunction(ASTContext &Context,
1229                                     FunctionDecl *Declaration,
1230                                     FunctionDecl *Definition) {
1231  if (Declaration->param_size() != Definition->param_size())
1232    return false;
1233  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1234    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1235    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1236
1237    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1238    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1239    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1240      return false;
1241  }
1242
1243  return true;
1244}
1245
1246Sema::DeclTy *
1247Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1248                      bool IsFunctionDefinition) {
1249  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1250  DeclarationName Name = GetNameForDeclarator(D);
1251
1252  // All of these full declarators require an identifier.  If it doesn't have
1253  // one, the ParsedFreeStandingDeclSpec action should be used.
1254  if (!Name) {
1255    if (!D.getInvalidType())  // Reject this if we think it is valid.
1256      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1257           diag::err_declarator_need_ident)
1258        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1259    return 0;
1260  }
1261
1262  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1263  // we find one that is.
1264  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1265         (S->getFlags() & Scope::TemplateParamScope) != 0)
1266    S = S->getParent();
1267
1268  DeclContext *DC;
1269  NamedDecl *PrevDecl;
1270  NamedDecl *New;
1271  bool InvalidDecl = false;
1272
1273  QualType R = GetTypeForDeclarator(D, S);
1274  if (R.isNull()) {
1275    InvalidDecl = true;
1276    R = Context.IntTy;
1277  }
1278
1279  // See if this is a redefinition of a variable in the same scope.
1280  if (D.getCXXScopeSpec().isInvalid()) {
1281    DC = CurContext;
1282    PrevDecl = 0;
1283    InvalidDecl = true;
1284  } else if (!D.getCXXScopeSpec().isSet()) {
1285    LookupNameKind NameKind = LookupOrdinaryName;
1286
1287    // If the declaration we're planning to build will be a function
1288    // or object with linkage, then look for another declaration with
1289    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1290    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1291      /* Do nothing*/;
1292    else if (R->isFunctionType()) {
1293      if (CurContext->isFunctionOrMethod())
1294        NameKind = LookupRedeclarationWithLinkage;
1295    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1296      NameKind = LookupRedeclarationWithLinkage;
1297
1298    DC = CurContext;
1299    PrevDecl = LookupName(S, Name, NameKind, true,
1300                          D.getDeclSpec().getStorageClassSpec() !=
1301                            DeclSpec::SCS_static,
1302                          D.getIdentifierLoc());
1303  } else { // Something like "int foo::x;"
1304    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1305    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1306
1307    // C++ 7.3.1.2p2:
1308    // Members (including explicit specializations of templates) of a named
1309    // namespace can also be defined outside that namespace by explicit
1310    // qualification of the name being defined, provided that the entity being
1311    // defined was already declared in the namespace and the definition appears
1312    // after the point of declaration in a namespace that encloses the
1313    // declarations namespace.
1314    //
1315    // Note that we only check the context at this point. We don't yet
1316    // have enough information to make sure that PrevDecl is actually
1317    // the declaration we want to match. For example, given:
1318    //
1319    //   class X {
1320    //     void f();
1321    //     void f(float);
1322    //   };
1323    //
1324    //   void X::f(int) { } // ill-formed
1325    //
1326    // In this case, PrevDecl will point to the overload set
1327    // containing the two f's declared in X, but neither of them
1328    // matches.
1329
1330    // First check whether we named the global scope.
1331    if (isa<TranslationUnitDecl>(DC)) {
1332      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1333        << Name << D.getCXXScopeSpec().getRange();
1334    } else if (!CurContext->Encloses(DC)) {
1335      // The qualifying scope doesn't enclose the original declaration.
1336      // Emit diagnostic based on current scope.
1337      SourceLocation L = D.getIdentifierLoc();
1338      SourceRange R = D.getCXXScopeSpec().getRange();
1339      if (isa<FunctionDecl>(CurContext))
1340        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1341      else
1342        Diag(L, diag::err_invalid_declarator_scope)
1343          << Name << cast<NamedDecl>(DC) << R;
1344      InvalidDecl = true;
1345    }
1346  }
1347
1348  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1349    // Maybe we will complain about the shadowed template parameter.
1350    InvalidDecl = InvalidDecl
1351      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1352    // Just pretend that we didn't see the previous declaration.
1353    PrevDecl = 0;
1354  }
1355
1356  // In C++, the previous declaration we find might be a tag type
1357  // (class or enum). In this case, the new declaration will hide the
1358  // tag type. Note that this does does not apply if we're declaring a
1359  // typedef (C++ [dcl.typedef]p4).
1360  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1361      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1362    PrevDecl = 0;
1363
1364  bool Redeclaration = false;
1365  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1366    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1367                                 InvalidDecl, Redeclaration);
1368  } else if (R->isFunctionType()) {
1369    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1370                                  IsFunctionDefinition, InvalidDecl,
1371                                  Redeclaration);
1372  } else {
1373    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1374                                  InvalidDecl, Redeclaration);
1375  }
1376
1377  if (New == 0)
1378    return 0;
1379
1380  // Set the lexical context. If the declarator has a C++ scope specifier, the
1381  // lexical context will be different from the semantic context.
1382  New->setLexicalDeclContext(CurContext);
1383
1384  // If this has an identifier and is not an invalid redeclaration,
1385  // add it to the scope stack.
1386  if (Name && !(Redeclaration && InvalidDecl))
1387    PushOnScopeChains(New, S);
1388  // If any semantic error occurred, mark the decl as invalid.
1389  if (D.getInvalidType() || InvalidDecl)
1390    New->setInvalidDecl();
1391
1392  return New;
1393}
1394
1395/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1396/// types into constant array types in certain situations which would otherwise
1397/// be errors (for GCC compatibility).
1398static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1399                                                    ASTContext &Context,
1400                                                    bool &SizeIsNegative) {
1401  // This method tries to turn a variable array into a constant
1402  // array even when the size isn't an ICE.  This is necessary
1403  // for compatibility with code that depends on gcc's buggy
1404  // constant expression folding, like struct {char x[(int)(char*)2];}
1405  SizeIsNegative = false;
1406
1407  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1408    QualType Pointee = PTy->getPointeeType();
1409    QualType FixedType =
1410        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1411    if (FixedType.isNull()) return FixedType;
1412    FixedType = Context.getPointerType(FixedType);
1413    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1414    return FixedType;
1415  }
1416
1417  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1418  if (!VLATy)
1419    return QualType();
1420  // FIXME: We should probably handle this case
1421  if (VLATy->getElementType()->isVariablyModifiedType())
1422    return QualType();
1423
1424  Expr::EvalResult EvalResult;
1425  if (!VLATy->getSizeExpr() ||
1426      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1427      !EvalResult.Val.isInt())
1428    return QualType();
1429
1430  llvm::APSInt &Res = EvalResult.Val.getInt();
1431  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1432    return Context.getConstantArrayType(VLATy->getElementType(),
1433                                        Res, ArrayType::Normal, 0);
1434
1435  SizeIsNegative = true;
1436  return QualType();
1437}
1438
1439/// \brief Register the given locally-scoped external C declaration so
1440/// that it can be found later for redeclarations
1441void
1442Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1443                                       Scope *S) {
1444  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1445         "Decl is not a locally-scoped decl!");
1446  // Note that we have a locally-scoped external with this name.
1447  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1448
1449  if (!PrevDecl)
1450    return;
1451
1452  // If there was a previous declaration of this variable, it may be
1453  // in our identifier chain. Update the identifier chain with the new
1454  // declaration.
1455  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1456    // The previous declaration was found on the identifer resolver
1457    // chain, so remove it from its scope.
1458    while (S && !S->isDeclScope(PrevDecl))
1459      S = S->getParent();
1460
1461    if (S)
1462      S->RemoveDecl(PrevDecl);
1463  }
1464}
1465
1466NamedDecl*
1467Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1468                             QualType R, Decl* LastDeclarator,
1469                             Decl* PrevDecl, bool& InvalidDecl,
1470                             bool &Redeclaration) {
1471  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1472  if (D.getCXXScopeSpec().isSet()) {
1473    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1474      << D.getCXXScopeSpec().getRange();
1475    InvalidDecl = true;
1476    // Pretend we didn't see the scope specifier.
1477    DC = 0;
1478  }
1479
1480  // Check that there are no default arguments (C++ only).
1481  if (getLangOptions().CPlusPlus)
1482    CheckExtraCXXDefaultArguments(D);
1483
1484  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1485  if (!NewTD) return 0;
1486
1487  // Handle attributes prior to checking for duplicates in MergeVarDecl
1488  ProcessDeclAttributes(NewTD, D);
1489  // Merge the decl with the existing one if appropriate. If the decl is
1490  // in an outer scope, it isn't the same thing.
1491  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1492    Redeclaration = true;
1493    if (MergeTypeDefDecl(NewTD, PrevDecl))
1494      InvalidDecl = true;
1495  }
1496
1497  if (S->getFnParent() == 0) {
1498    QualType T = NewTD->getUnderlyingType();
1499    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1500    // then it shall have block scope.
1501    if (T->isVariablyModifiedType()) {
1502      bool SizeIsNegative;
1503      QualType FixedTy =
1504          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1505      if (!FixedTy.isNull()) {
1506        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1507        NewTD->setUnderlyingType(FixedTy);
1508      } else {
1509        if (SizeIsNegative)
1510          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1511        else if (T->isVariableArrayType())
1512          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1513        else
1514          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1515        InvalidDecl = true;
1516      }
1517    }
1518  }
1519  return NewTD;
1520}
1521
1522/// \brief Determines whether the given declaration is an out-of-scope
1523/// previous declaration.
1524///
1525/// This routine should be invoked when name lookup has found a
1526/// previous declaration (PrevDecl) that is not in the scope where a
1527/// new declaration by the same name is being introduced. If the new
1528/// declaration occurs in a local scope, previous declarations with
1529/// linkage may still be considered previous declarations (C99
1530/// 6.2.2p4-5, C++ [basic.link]p6).
1531///
1532/// \param PrevDecl the previous declaration found by name
1533/// lookup
1534///
1535/// \param DC the context in which the new declaration is being
1536/// declared.
1537///
1538/// \returns true if PrevDecl is an out-of-scope previous declaration
1539/// for a new delcaration with the same name.
1540static bool
1541isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1542                                ASTContext &Context) {
1543  if (!PrevDecl)
1544    return 0;
1545
1546  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1547  // case we need to check each of the overloaded functions.
1548  if (!PrevDecl->hasLinkage())
1549    return false;
1550
1551  if (Context.getLangOptions().CPlusPlus) {
1552    // C++ [basic.link]p6:
1553    //   If there is a visible declaration of an entity with linkage
1554    //   having the same name and type, ignoring entities declared
1555    //   outside the innermost enclosing namespace scope, the block
1556    //   scope declaration declares that same entity and receives the
1557    //   linkage of the previous declaration.
1558    DeclContext *OuterContext = DC->getLookupContext();
1559    if (!OuterContext->isFunctionOrMethod())
1560      // This rule only applies to block-scope declarations.
1561      return false;
1562    else {
1563      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1564      if (PrevOuterContext->isRecord())
1565        // We found a member function: ignore it.
1566        return false;
1567      else {
1568        // Find the innermost enclosing namespace for the new and
1569        // previous declarations.
1570        while (!OuterContext->isFileContext())
1571          OuterContext = OuterContext->getParent();
1572        while (!PrevOuterContext->isFileContext())
1573          PrevOuterContext = PrevOuterContext->getParent();
1574
1575        // The previous declaration is in a different namespace, so it
1576        // isn't the same function.
1577        if (OuterContext->getPrimaryContext() !=
1578            PrevOuterContext->getPrimaryContext())
1579          return false;
1580      }
1581    }
1582  }
1583
1584  return true;
1585}
1586
1587NamedDecl*
1588Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1589                              QualType R, Decl* LastDeclarator,
1590                              NamedDecl* PrevDecl, bool& InvalidDecl,
1591                              bool &Redeclaration) {
1592  DeclarationName Name = GetNameForDeclarator(D);
1593
1594  // Check that there are no default arguments (C++ only).
1595  if (getLangOptions().CPlusPlus)
1596    CheckExtraCXXDefaultArguments(D);
1597
1598  if (R.getTypePtr()->isObjCInterfaceType()) {
1599    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1600    InvalidDecl = true;
1601  }
1602
1603  VarDecl *NewVD;
1604  VarDecl::StorageClass SC;
1605  switch (D.getDeclSpec().getStorageClassSpec()) {
1606  default: assert(0 && "Unknown storage class!");
1607  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1608  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1609  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1610  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1611  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1612  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1613  case DeclSpec::SCS_mutable:
1614    // mutable can only appear on non-static class members, so it's always
1615    // an error here
1616    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1617    InvalidDecl = true;
1618    SC = VarDecl::None;
1619    break;
1620  }
1621
1622  IdentifierInfo *II = Name.getAsIdentifierInfo();
1623  if (!II) {
1624    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1625      << Name.getAsString();
1626    return 0;
1627  }
1628
1629  if (DC->isRecord()) {
1630    // This is a static data member for a C++ class.
1631    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1632                                    D.getIdentifierLoc(), II,
1633                                    R);
1634  } else {
1635    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1636    if (S->getFnParent() == 0) {
1637      // C99 6.9p2: The storage-class specifiers auto and register shall not
1638      // appear in the declaration specifiers in an external declaration.
1639      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1640        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1641        InvalidDecl = true;
1642      }
1643    }
1644    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1645                            II, R, SC,
1646                            // FIXME: Move to DeclGroup...
1647                            D.getDeclSpec().getSourceRange().getBegin());
1648    NewVD->setThreadSpecified(ThreadSpecified);
1649  }
1650  NewVD->setNextDeclarator(LastDeclarator);
1651
1652  // Handle attributes prior to checking for duplicates in MergeVarDecl
1653  ProcessDeclAttributes(NewVD, D);
1654
1655  // Handle GNU asm-label extension (encoded as an attribute).
1656  if (Expr *E = (Expr*) D.getAsmLabel()) {
1657    // The parser guarantees this is a string.
1658    StringLiteral *SE = cast<StringLiteral>(E);
1659    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1660                                                        SE->getByteLength())));
1661  }
1662
1663  // Emit an error if an address space was applied to decl with local storage.
1664  // This includes arrays of objects with address space qualifiers, but not
1665  // automatic variables that point to other address spaces.
1666  // ISO/IEC TR 18037 S5.1.2
1667  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1668    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1669    InvalidDecl = true;
1670  }
1671
1672  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1673    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1674  }
1675
1676  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1677  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1678  if (isIllegalVLA || isIllegalVM) {
1679    bool SizeIsNegative;
1680    QualType FixedTy =
1681        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1682    if (!FixedTy.isNull()) {
1683      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1684      NewVD->setType(FixedTy);
1685    } else if (R->isVariableArrayType()) {
1686      NewVD->setInvalidDecl();
1687
1688      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1689      // FIXME: This won't give the correct result for
1690      // int a[10][n];
1691      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1692
1693      if (NewVD->isFileVarDecl())
1694        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1695          << SizeRange;
1696      else if (NewVD->getStorageClass() == VarDecl::Static)
1697        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1698          << SizeRange;
1699      else
1700        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1701            << SizeRange;
1702    } else {
1703      InvalidDecl = true;
1704
1705      if (NewVD->isFileVarDecl())
1706        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1707      else
1708        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1709    }
1710  }
1711
1712  // If name lookup finds a previous declaration that is not in the
1713  // same scope as the new declaration, this may still be an
1714  // acceptable redeclaration.
1715  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1716      !(NewVD->hasLinkage() &&
1717        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1718    PrevDecl = 0;
1719
1720  if (!PrevDecl && NewVD->isExternC(Context)) {
1721    // Since we did not find anything by this name and we're declaring
1722    // an extern "C" variable, look for a non-visible extern "C"
1723    // declaration with the same name.
1724    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1725      = LocallyScopedExternalDecls.find(Name);
1726    if (Pos != LocallyScopedExternalDecls.end())
1727      PrevDecl = Pos->second;
1728  }
1729
1730  // Merge the decl with the existing one if appropriate.
1731  if (PrevDecl) {
1732    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1733      // The user tried to define a non-static data member
1734      // out-of-line (C++ [dcl.meaning]p1).
1735      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1736        << D.getCXXScopeSpec().getRange();
1737      NewVD->Destroy(Context);
1738      return 0;
1739    }
1740
1741    Redeclaration = true;
1742    if (MergeVarDecl(NewVD, PrevDecl))
1743      InvalidDecl = true;
1744
1745    if (D.getCXXScopeSpec().isSet()) {
1746      // No previous declaration in the qualifying scope.
1747      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1748        << Name << D.getCXXScopeSpec().getRange();
1749      InvalidDecl = true;
1750    }
1751  }
1752
1753  // If this is a locally-scoped extern C variable, update the map of
1754  // such variables.
1755  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1756      !InvalidDecl)
1757    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1758
1759  return NewVD;
1760}
1761
1762NamedDecl*
1763Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1764                              QualType R, Decl *LastDeclarator,
1765                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1766                              bool& InvalidDecl, bool &Redeclaration) {
1767  assert(R.getTypePtr()->isFunctionType());
1768
1769  DeclarationName Name = GetNameForDeclarator(D);
1770  FunctionDecl::StorageClass SC = FunctionDecl::None;
1771  switch (D.getDeclSpec().getStorageClassSpec()) {
1772  default: assert(0 && "Unknown storage class!");
1773  case DeclSpec::SCS_auto:
1774  case DeclSpec::SCS_register:
1775  case DeclSpec::SCS_mutable:
1776    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1777         diag::err_typecheck_sclass_func);
1778    InvalidDecl = true;
1779    break;
1780  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1781  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1782  case DeclSpec::SCS_static: {
1783    if (DC->getLookupContext()->isFunctionOrMethod()) {
1784      // C99 6.7.1p5:
1785      //   The declaration of an identifier for a function that has
1786      //   block scope shall have no explicit storage-class specifier
1787      //   other than extern
1788      // See also (C++ [dcl.stc]p4).
1789      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1790           diag::err_static_block_func);
1791      SC = FunctionDecl::None;
1792    } else
1793      SC = FunctionDecl::Static;
1794    break;
1795  }
1796  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1797  }
1798
1799  bool isInline = D.getDeclSpec().isInlineSpecified();
1800  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1801  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1802
1803  FunctionDecl *NewFD;
1804  if (D.getKind() == Declarator::DK_Constructor) {
1805    // This is a C++ constructor declaration.
1806    assert(DC->isRecord() &&
1807           "Constructors can only be declared in a member context");
1808
1809    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1810
1811    // Create the new declaration
1812    NewFD = CXXConstructorDecl::Create(Context,
1813                                       cast<CXXRecordDecl>(DC),
1814                                       D.getIdentifierLoc(), Name, R,
1815                                       isExplicit, isInline,
1816                                       /*isImplicitlyDeclared=*/false);
1817
1818    if (InvalidDecl)
1819      NewFD->setInvalidDecl();
1820  } else if (D.getKind() == Declarator::DK_Destructor) {
1821    // This is a C++ destructor declaration.
1822    if (DC->isRecord()) {
1823      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1824
1825      NewFD = CXXDestructorDecl::Create(Context,
1826                                        cast<CXXRecordDecl>(DC),
1827                                        D.getIdentifierLoc(), Name, R,
1828                                        isInline,
1829                                        /*isImplicitlyDeclared=*/false);
1830
1831      if (InvalidDecl)
1832        NewFD->setInvalidDecl();
1833    } else {
1834      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1835
1836      // Create a FunctionDecl to satisfy the function definition parsing
1837      // code path.
1838      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1839                                   Name, R, SC, isInline,
1840                                   /*hasPrototype=*/true,
1841                                   // FIXME: Move to DeclGroup...
1842                                   D.getDeclSpec().getSourceRange().getBegin());
1843      InvalidDecl = true;
1844      NewFD->setInvalidDecl();
1845    }
1846  } else if (D.getKind() == Declarator::DK_Conversion) {
1847    if (!DC->isRecord()) {
1848      Diag(D.getIdentifierLoc(),
1849           diag::err_conv_function_not_member);
1850      return 0;
1851    } else {
1852      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1853
1854      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1855                                        D.getIdentifierLoc(), Name, R,
1856                                        isInline, isExplicit);
1857
1858      if (InvalidDecl)
1859        NewFD->setInvalidDecl();
1860    }
1861  } else if (DC->isRecord()) {
1862    // This is a C++ method declaration.
1863    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1864                                  D.getIdentifierLoc(), Name, R,
1865                                  (SC == FunctionDecl::Static), isInline);
1866  } else {
1867    NewFD = FunctionDecl::Create(Context, DC,
1868                                 D.getIdentifierLoc(),
1869                                 Name, R, SC, isInline,
1870                                 /*hasPrototype=*/
1871                                   (getLangOptions().CPlusPlus ||
1872                                    (D.getNumTypeObjects() &&
1873                                     D.getTypeObject(0).Fun.hasPrototype)),
1874                                 // FIXME: Move to DeclGroup...
1875                                 D.getDeclSpec().getSourceRange().getBegin());
1876  }
1877  NewFD->setNextDeclarator(LastDeclarator);
1878
1879  // Set the lexical context. If the declarator has a C++
1880  // scope specifier, the lexical context will be different
1881  // from the semantic context.
1882  NewFD->setLexicalDeclContext(CurContext);
1883
1884  // Handle GNU asm-label extension (encoded as an attribute).
1885  if (Expr *E = (Expr*) D.getAsmLabel()) {
1886    // The parser guarantees this is a string.
1887    StringLiteral *SE = cast<StringLiteral>(E);
1888    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1889                                                        SE->getByteLength())));
1890  }
1891
1892  // Copy the parameter declarations from the declarator D to
1893  // the function declaration NewFD, if they are available.
1894  if (D.getNumTypeObjects() > 0) {
1895    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1896
1897    // Create Decl objects for each parameter, adding them to the
1898    // FunctionDecl.
1899    llvm::SmallVector<ParmVarDecl*, 16> Params;
1900
1901    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1902    // function that takes no arguments, not a function that takes a
1903    // single void argument.
1904    // We let through "const void" here because Sema::GetTypeForDeclarator
1905    // already checks for that case.
1906    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1907        FTI.ArgInfo[0].Param &&
1908        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1909      // empty arg list, don't push any params.
1910      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1911
1912      // In C++, the empty parameter-type-list must be spelled "void"; a
1913      // typedef of void is not permitted.
1914      if (getLangOptions().CPlusPlus &&
1915          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1916        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1917      }
1918    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1919      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1920        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1921    }
1922
1923    NewFD->setParams(Context, &Params[0], Params.size());
1924  } else if (R->getAsTypedefType()) {
1925    // When we're declaring a function with a typedef, as in the
1926    // following example, we'll need to synthesize (unnamed)
1927    // parameters for use in the declaration.
1928    //
1929    // @code
1930    // typedef void fn(int);
1931    // fn f;
1932    // @endcode
1933    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1934    if (!FT) {
1935      // This is a typedef of a function with no prototype, so we
1936      // don't need to do anything.
1937    } else if ((FT->getNumArgs() == 0) ||
1938               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1939                FT->getArgType(0)->isVoidType())) {
1940      // This is a zero-argument function. We don't need to do anything.
1941    } else {
1942      // Synthesize a parameter for each argument type.
1943      llvm::SmallVector<ParmVarDecl*, 16> Params;
1944      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1945           ArgType != FT->arg_type_end(); ++ArgType) {
1946        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1947                                                 SourceLocation(), 0,
1948                                                 *ArgType, VarDecl::None,
1949                                                 0);
1950        Param->setImplicit();
1951        Params.push_back(Param);
1952      }
1953
1954      NewFD->setParams(Context, &Params[0], Params.size());
1955    }
1956  }
1957
1958  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1959    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1960  else if (isa<CXXDestructorDecl>(NewFD)) {
1961    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1962    Record->setUserDeclaredDestructor(true);
1963    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1964    // user-defined destructor.
1965    Record->setPOD(false);
1966  } else if (CXXConversionDecl *Conversion =
1967             dyn_cast<CXXConversionDecl>(NewFD))
1968    ActOnConversionDeclarator(Conversion);
1969
1970  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1971  if (NewFD->isOverloadedOperator() &&
1972      CheckOverloadedOperatorDeclaration(NewFD))
1973    NewFD->setInvalidDecl();
1974
1975  // If name lookup finds a previous declaration that is not in the
1976  // same scope as the new declaration, this may still be an
1977  // acceptable redeclaration.
1978  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1979      !(NewFD->hasLinkage() &&
1980        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1981    PrevDecl = 0;
1982
1983  if (!PrevDecl && NewFD->isExternC(Context)) {
1984    // Since we did not find anything by this name and we're declaring
1985    // an extern "C" function, look for a non-visible extern "C"
1986    // declaration with the same name.
1987    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1988      = LocallyScopedExternalDecls.find(Name);
1989    if (Pos != LocallyScopedExternalDecls.end())
1990      PrevDecl = Pos->second;
1991  }
1992
1993  // Merge or overload the declaration with an existing declaration of
1994  // the same name, if appropriate.
1995  bool OverloadableAttrRequired = false;
1996  if (PrevDecl) {
1997    // Determine whether NewFD is an overload of PrevDecl or
1998    // a declaration that requires merging. If it's an overload,
1999    // there's no more work to do here; we'll just add the new
2000    // function to the scope.
2001    OverloadedFunctionDecl::function_iterator MatchedDecl;
2002
2003    if (!getLangOptions().CPlusPlus &&
2004        AllowOverloadingOfFunction(PrevDecl, Context)) {
2005      OverloadableAttrRequired = true;
2006
2007      // Functions marked "overloadable" must have a prototype (that
2008      // we can't get through declaration merging).
2009      if (!R->getAsFunctionProtoType()) {
2010        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2011          << NewFD;
2012        InvalidDecl = true;
2013        Redeclaration = true;
2014
2015        // Turn this into a variadic function with no parameters.
2016        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
2017                                    0, 0, true, 0);
2018        NewFD->setType(R);
2019      }
2020    }
2021
2022    if (PrevDecl &&
2023        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2024         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2025      Redeclaration = true;
2026      Decl *OldDecl = PrevDecl;
2027
2028      // If PrevDecl was an overloaded function, extract the
2029      // FunctionDecl that matched.
2030      if (isa<OverloadedFunctionDecl>(PrevDecl))
2031        OldDecl = *MatchedDecl;
2032
2033      // NewFD and PrevDecl represent declarations that need to be
2034      // merged.
2035      if (MergeFunctionDecl(NewFD, OldDecl))
2036        InvalidDecl = true;
2037
2038      if (!InvalidDecl) {
2039        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2040
2041        // An out-of-line member function declaration must also be a
2042        // definition (C++ [dcl.meaning]p1).
2043        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
2044            !InvalidDecl) {
2045          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2046            << D.getCXXScopeSpec().getRange();
2047          NewFD->setInvalidDecl();
2048        }
2049      }
2050    }
2051  }
2052
2053  if (D.getCXXScopeSpec().isSet() &&
2054      (!PrevDecl || !Redeclaration)) {
2055    // The user tried to provide an out-of-line definition for a
2056    // function that is a member of a class or namespace, but there
2057    // was no such member function declared (C++ [class.mfct]p2,
2058    // C++ [namespace.memdef]p2). For example:
2059    //
2060    // class X {
2061    //   void f() const;
2062    // };
2063    //
2064    // void X::f() { } // ill-formed
2065    //
2066    // Complain about this problem, and attempt to suggest close
2067    // matches (e.g., those that differ only in cv-qualifiers and
2068    // whether the parameter types are references).
2069    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2070      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2071    InvalidDecl = true;
2072
2073    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2074                                            true);
2075    assert(!Prev.isAmbiguous() &&
2076           "Cannot have an ambiguity in previous-declaration lookup");
2077    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2078         Func != FuncEnd; ++Func) {
2079      if (isa<FunctionDecl>(*Func) &&
2080          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2081        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2082    }
2083
2084    PrevDecl = 0;
2085  }
2086
2087  // Handle attributes. We need to have merged decls when handling attributes
2088  // (for example to check for conflicts, etc).
2089  ProcessDeclAttributes(NewFD, D);
2090  AddKnownFunctionAttributes(NewFD);
2091
2092  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2093    // If a function name is overloadable in C, then every function
2094    // with that name must be marked "overloadable".
2095    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2096      << Redeclaration << NewFD;
2097    if (PrevDecl)
2098      Diag(PrevDecl->getLocation(),
2099           diag::note_attribute_overloadable_prev_overload);
2100    NewFD->addAttr(::new (Context) OverloadableAttr());
2101  }
2102
2103  if (getLangOptions().CPlusPlus) {
2104    // In C++, check default arguments now that we have merged decls. Unless
2105    // the lexical context is the class, because in this case this is done
2106    // during delayed parsing anyway.
2107    if (!CurContext->isRecord())
2108      CheckCXXDefaultArguments(NewFD);
2109
2110    // An out-of-line member function declaration must also be a
2111    // definition (C++ [dcl.meaning]p1).
2112    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2113      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2114        << D.getCXXScopeSpec().getRange();
2115      InvalidDecl = true;
2116    }
2117  }
2118
2119  // If this is a locally-scoped extern C function, update the
2120  // map of such names.
2121  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2122      && !InvalidDecl)
2123    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2124
2125  return NewFD;
2126}
2127
2128bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2129  // FIXME: Need strict checking.  In C89, we need to check for
2130  // any assignment, increment, decrement, function-calls, or
2131  // commas outside of a sizeof.  In C99, it's the same list,
2132  // except that the aforementioned are allowed in unevaluated
2133  // expressions.  Everything else falls under the
2134  // "may accept other forms of constant expressions" exception.
2135  // (We never end up here for C++, so the constant expression
2136  // rules there don't matter.)
2137  if (Init->isConstantInitializer(Context))
2138    return false;
2139  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2140    << Init->getSourceRange();
2141  return true;
2142}
2143
2144void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2145  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2146}
2147
2148/// AddInitializerToDecl - Adds the initializer Init to the
2149/// declaration dcl. If DirectInit is true, this is C++ direct
2150/// initialization rather than copy initialization.
2151void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2152  Decl *RealDecl = static_cast<Decl *>(dcl);
2153  // If there is no declaration, there was an error parsing it.  Just ignore
2154  // the initializer.
2155  if (RealDecl == 0)
2156    return;
2157
2158  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2159  if (!VDecl) {
2160    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2161    RealDecl->setInvalidDecl();
2162    return;
2163  }
2164
2165  // Take ownership of the expression, now that we're sure we have somewhere
2166  // to put it.
2167  Expr *Init = static_cast<Expr *>(init.release());
2168  assert(Init && "missing initializer");
2169
2170  // Get the decls type and save a reference for later, since
2171  // CheckInitializerTypes may change it.
2172  QualType DclT = VDecl->getType(), SavT = DclT;
2173  if (VDecl->isBlockVarDecl()) {
2174    VarDecl::StorageClass SC = VDecl->getStorageClass();
2175    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2176      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2177      VDecl->setInvalidDecl();
2178    } else if (!VDecl->isInvalidDecl()) {
2179      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2180                                VDecl->getDeclName(), DirectInit))
2181        VDecl->setInvalidDecl();
2182
2183      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2184      // Don't check invalid declarations to avoid emitting useless diagnostics.
2185      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2186        if (SC == VarDecl::Static) // C99 6.7.8p4.
2187          CheckForConstantInitializer(Init, DclT);
2188      }
2189    }
2190  } else if (VDecl->isFileVarDecl()) {
2191    if (VDecl->getStorageClass() == VarDecl::Extern)
2192      Diag(VDecl->getLocation(), diag::warn_extern_init);
2193    if (!VDecl->isInvalidDecl())
2194      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2195                                VDecl->getDeclName(), DirectInit))
2196        VDecl->setInvalidDecl();
2197
2198    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2199    // Don't check invalid declarations to avoid emitting useless diagnostics.
2200    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2201      // C99 6.7.8p4. All file scoped initializers need to be constant.
2202      CheckForConstantInitializer(Init, DclT);
2203    }
2204  }
2205  // If the type changed, it means we had an incomplete type that was
2206  // completed by the initializer. For example:
2207  //   int ary[] = { 1, 3, 5 };
2208  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2209  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2210    VDecl->setType(DclT);
2211    Init->setType(DclT);
2212  }
2213
2214  // Attach the initializer to the decl.
2215  VDecl->setInit(Init);
2216  return;
2217}
2218
2219void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2220  Decl *RealDecl = static_cast<Decl *>(dcl);
2221
2222  // If there is no declaration, there was an error parsing it. Just ignore it.
2223  if (RealDecl == 0)
2224    return;
2225
2226  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2227    QualType Type = Var->getType();
2228    // C++ [dcl.init.ref]p3:
2229    //   The initializer can be omitted for a reference only in a
2230    //   parameter declaration (8.3.5), in the declaration of a
2231    //   function return type, in the declaration of a class member
2232    //   within its class declaration (9.2), and where the extern
2233    //   specifier is explicitly used.
2234    if (Type->isReferenceType() &&
2235        Var->getStorageClass() != VarDecl::Extern &&
2236        Var->getStorageClass() != VarDecl::PrivateExtern) {
2237      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2238        << Var->getDeclName()
2239        << SourceRange(Var->getLocation(), Var->getLocation());
2240      Var->setInvalidDecl();
2241      return;
2242    }
2243
2244    // C++ [dcl.init]p9:
2245    //
2246    //   If no initializer is specified for an object, and the object
2247    //   is of (possibly cv-qualified) non-POD class type (or array
2248    //   thereof), the object shall be default-initialized; if the
2249    //   object is of const-qualified type, the underlying class type
2250    //   shall have a user-declared default constructor.
2251    if (getLangOptions().CPlusPlus) {
2252      QualType InitType = Type;
2253      if (const ArrayType *Array = Context.getAsArrayType(Type))
2254        InitType = Array->getElementType();
2255      if (Var->getStorageClass() != VarDecl::Extern &&
2256          Var->getStorageClass() != VarDecl::PrivateExtern &&
2257          InitType->isRecordType()) {
2258        const CXXConstructorDecl *Constructor = 0;
2259        if (!DiagnoseIncompleteType(Var->getLocation(), InitType,
2260                                    diag::err_invalid_incomplete_type_use))
2261          Constructor
2262            = PerformInitializationByConstructor(InitType, 0, 0,
2263                                                 Var->getLocation(),
2264                                               SourceRange(Var->getLocation(),
2265                                                           Var->getLocation()),
2266                                                 Var->getDeclName(),
2267                                                 IK_Default);
2268        if (!Constructor)
2269          Var->setInvalidDecl();
2270      }
2271    }
2272
2273#if 0
2274    // FIXME: Temporarily disabled because we are not properly parsing
2275    // linkage specifications on declarations, e.g.,
2276    //
2277    //   extern "C" const CGPoint CGPointerZero;
2278    //
2279    // C++ [dcl.init]p9:
2280    //
2281    //     If no initializer is specified for an object, and the
2282    //     object is of (possibly cv-qualified) non-POD class type (or
2283    //     array thereof), the object shall be default-initialized; if
2284    //     the object is of const-qualified type, the underlying class
2285    //     type shall have a user-declared default
2286    //     constructor. Otherwise, if no initializer is specified for
2287    //     an object, the object and its subobjects, if any, have an
2288    //     indeterminate initial value; if the object or any of its
2289    //     subobjects are of const-qualified type, the program is
2290    //     ill-formed.
2291    //
2292    // This isn't technically an error in C, so we don't diagnose it.
2293    //
2294    // FIXME: Actually perform the POD/user-defined default
2295    // constructor check.
2296    if (getLangOptions().CPlusPlus &&
2297        Context.getCanonicalType(Type).isConstQualified() &&
2298        Var->getStorageClass() != VarDecl::Extern)
2299      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2300        << Var->getName()
2301        << SourceRange(Var->getLocation(), Var->getLocation());
2302#endif
2303  }
2304}
2305
2306/// The declarators are chained together backwards, reverse the list.
2307Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2308  // Often we have single declarators, handle them quickly.
2309  Decl *Group = static_cast<Decl*>(group);
2310  if (Group == 0)
2311    return 0;
2312
2313  Decl *NewGroup = 0;
2314  if (Group->getNextDeclarator() == 0)
2315    NewGroup = Group;
2316  else { // reverse the list.
2317    while (Group) {
2318      Decl *Next = Group->getNextDeclarator();
2319      Group->setNextDeclarator(NewGroup);
2320      NewGroup = Group;
2321      Group = Next;
2322    }
2323  }
2324  // Perform semantic analysis that depends on having fully processed both
2325  // the declarator and initializer.
2326  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2327    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2328    if (!IDecl)
2329      continue;
2330    QualType T = IDecl->getType();
2331
2332    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2333    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2334    if (IDecl->isBlockVarDecl() &&
2335        IDecl->getStorageClass() != VarDecl::Extern) {
2336      if (!IDecl->isInvalidDecl() &&
2337          DiagnoseIncompleteType(IDecl->getLocation(), T,
2338                                 diag::err_typecheck_decl_incomplete_type))
2339        IDecl->setInvalidDecl();
2340    }
2341    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2342    // object that has file scope without an initializer, and without a
2343    // storage-class specifier or with the storage-class specifier "static",
2344    // constitutes a tentative definition. Note: A tentative definition with
2345    // external linkage is valid (C99 6.2.2p5).
2346    if (isTentativeDefinition(IDecl)) {
2347      if (T->isIncompleteArrayType()) {
2348        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2349        // array to be completed. Don't issue a diagnostic.
2350      } else if (!IDecl->isInvalidDecl() &&
2351                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2352                                        diag::err_typecheck_decl_incomplete_type))
2353        // C99 6.9.2p3: If the declaration of an identifier for an object is
2354        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2355        // declared type shall not be an incomplete type.
2356        IDecl->setInvalidDecl();
2357    }
2358    if (IDecl->isFileVarDecl())
2359      CheckForFileScopedRedefinitions(S, IDecl);
2360  }
2361  return NewGroup;
2362}
2363
2364/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2365/// to introduce parameters into function prototype scope.
2366Sema::DeclTy *
2367Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2368  const DeclSpec &DS = D.getDeclSpec();
2369
2370  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2371  VarDecl::StorageClass StorageClass = VarDecl::None;
2372  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2373    StorageClass = VarDecl::Register;
2374  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2375    Diag(DS.getStorageClassSpecLoc(),
2376         diag::err_invalid_storage_class_in_func_decl);
2377    D.getMutableDeclSpec().ClearStorageClassSpecs();
2378  }
2379  if (DS.isThreadSpecified()) {
2380    Diag(DS.getThreadSpecLoc(),
2381         diag::err_invalid_storage_class_in_func_decl);
2382    D.getMutableDeclSpec().ClearStorageClassSpecs();
2383  }
2384
2385  // Check that there are no default arguments inside the type of this
2386  // parameter (C++ only).
2387  if (getLangOptions().CPlusPlus)
2388    CheckExtraCXXDefaultArguments(D);
2389
2390  // In this context, we *do not* check D.getInvalidType(). If the declarator
2391  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2392  // though it will not reflect the user specified type.
2393  QualType parmDeclType = GetTypeForDeclarator(D, S);
2394
2395  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2396
2397  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2398  // Can this happen for params?  We already checked that they don't conflict
2399  // among each other.  Here they can only shadow globals, which is ok.
2400  IdentifierInfo *II = D.getIdentifier();
2401  if (II) {
2402    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2403      if (PrevDecl->isTemplateParameter()) {
2404        // Maybe we will complain about the shadowed template parameter.
2405        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2406        // Just pretend that we didn't see the previous declaration.
2407        PrevDecl = 0;
2408      } else if (S->isDeclScope(PrevDecl)) {
2409        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2410
2411        // Recover by removing the name
2412        II = 0;
2413        D.SetIdentifier(0, D.getIdentifierLoc());
2414      }
2415    }
2416  }
2417
2418  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2419  // Doing the promotion here has a win and a loss. The win is the type for
2420  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2421  // code generator). The loss is the orginal type isn't preserved. For example:
2422  //
2423  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2424  //    int blockvardecl[5];
2425  //    sizeof(parmvardecl);  // size == 4
2426  //    sizeof(blockvardecl); // size == 20
2427  // }
2428  //
2429  // For expressions, all implicit conversions are captured using the
2430  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2431  //
2432  // FIXME: If a source translation tool needs to see the original type, then
2433  // we need to consider storing both types (in ParmVarDecl)...
2434  //
2435  if (parmDeclType->isArrayType()) {
2436    // int x[restrict 4] ->  int *restrict
2437    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2438  } else if (parmDeclType->isFunctionType())
2439    parmDeclType = Context.getPointerType(parmDeclType);
2440
2441  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2442                                         D.getIdentifierLoc(), II,
2443                                         parmDeclType, StorageClass,
2444                                         0);
2445
2446  if (D.getInvalidType())
2447    New->setInvalidDecl();
2448
2449  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2450  if (D.getCXXScopeSpec().isSet()) {
2451    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2452      << D.getCXXScopeSpec().getRange();
2453    New->setInvalidDecl();
2454  }
2455  // Parameter declarators cannot be interface types. All ObjC objects are
2456  // passed by reference.
2457  if (parmDeclType->isObjCInterfaceType()) {
2458    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2459         << "passed";
2460    New->setInvalidDecl();
2461  }
2462
2463  // Add the parameter declaration into this scope.
2464  S->AddDecl(New);
2465  if (II)
2466    IdResolver.AddDecl(New);
2467
2468  ProcessDeclAttributes(New, D);
2469  return New;
2470
2471}
2472
2473void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2474  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2475         "Not a function declarator!");
2476  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2477
2478  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2479  // for a K&R function.
2480  if (!FTI.hasPrototype) {
2481    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2482      if (FTI.ArgInfo[i].Param == 0) {
2483        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2484          << FTI.ArgInfo[i].Ident;
2485        // Implicitly declare the argument as type 'int' for lack of a better
2486        // type.
2487        DeclSpec DS;
2488        const char* PrevSpec; // unused
2489        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2490                           PrevSpec);
2491        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2492        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2493        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2494      }
2495    }
2496  }
2497}
2498
2499Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2500  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2501  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2502         "Not a function declarator!");
2503  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2504
2505  if (FTI.hasPrototype) {
2506    // FIXME: Diagnose arguments without names in C.
2507  }
2508
2509  Scope *ParentScope = FnBodyScope->getParent();
2510
2511  return ActOnStartOfFunctionDef(FnBodyScope,
2512                                 ActOnDeclarator(ParentScope, D, 0,
2513                                                 /*IsFunctionDefinition=*/true));
2514}
2515
2516Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2517  Decl *decl = static_cast<Decl*>(D);
2518  FunctionDecl *FD = cast<FunctionDecl>(decl);
2519
2520  ActiveScope = FnBodyScope;
2521
2522  // See if this is a redefinition.
2523  const FunctionDecl *Definition;
2524  if (FD->getBody(Definition)) {
2525    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2526    Diag(Definition->getLocation(), diag::note_previous_definition);
2527  }
2528
2529  // Builtin functions cannot be defined.
2530  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2531    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2532      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2533      FD->setInvalidDecl();
2534    }
2535  }
2536
2537  // The return type of a function definition must be complete
2538  // (C99 6.9.1p3)
2539  if (FD->getResultType()->isIncompleteType() &&
2540      !FD->getResultType()->isVoidType()) {
2541    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2542    FD->setInvalidDecl();
2543  }
2544
2545  PushDeclContext(FnBodyScope, FD);
2546
2547  // Check the validity of our function parameters
2548  CheckParmsForFunctionDef(FD);
2549
2550  // Introduce our parameters into the function scope
2551  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2552    ParmVarDecl *Param = FD->getParamDecl(p);
2553    Param->setOwningFunction(FD);
2554
2555    // If this has an identifier, add it to the scope stack.
2556    if (Param->getIdentifier())
2557      PushOnScopeChains(Param, FnBodyScope);
2558  }
2559
2560  // Checking attributes of current function definition
2561  // dllimport attribute.
2562  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2563    // dllimport attribute cannot be applied to definition.
2564    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2565      Diag(FD->getLocation(),
2566           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2567        << "dllimport";
2568      FD->setInvalidDecl();
2569      return FD;
2570    } else {
2571      // If a symbol previously declared dllimport is later defined, the
2572      // attribute is ignored in subsequent references, and a warning is
2573      // emitted.
2574      Diag(FD->getLocation(),
2575           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2576        << FD->getNameAsCString() << "dllimport";
2577    }
2578  }
2579  return FD;
2580}
2581
2582static bool StatementCreatesScope(Stmt* S) {
2583  bool result = false;
2584  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2585    for (DeclStmt::decl_iterator i = DS->decl_begin();
2586         i != DS->decl_end(); ++i) {
2587      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2588        result |= D->getType()->isVariablyModifiedType();
2589        result |= !!D->getAttr<CleanupAttr>();
2590      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2591        result |= D->getUnderlyingType()->isVariablyModifiedType();
2592      }
2593    }
2594  }
2595
2596  return result;
2597}
2598
2599void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2600                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2601                                    std::vector<void*>& ScopeStack,
2602                                    Stmt* CurStmt,
2603                                    Stmt* ParentCompoundStmt) {
2604  for (Stmt::child_iterator i = CurStmt->child_begin();
2605       i != CurStmt->child_end(); ++i) {
2606    if (!*i) continue;
2607    if (StatementCreatesScope(*i))  {
2608      ScopeStack.push_back(*i);
2609      PopScopeMap[*i] = ParentCompoundStmt;
2610    } else if (isa<LabelStmt>(CurStmt)) {
2611      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2612    }
2613    if (isa<DeclStmt>(*i)) continue;
2614    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2615    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2616                             *i, CurCompound);
2617  }
2618
2619  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2620    ScopeStack.pop_back();
2621  }
2622}
2623
2624void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2625                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2626                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2627                                   std::vector<void*>& ScopeStack,
2628                                   Stmt* CurStmt) {
2629  for (Stmt::child_iterator i = CurStmt->child_begin();
2630       i != CurStmt->child_end(); ++i) {
2631    if (!*i) continue;
2632    if (StatementCreatesScope(*i))  {
2633      ScopeStack.push_back(*i);
2634    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2635      void* LScope = LabelScopeMap[GS->getLabel()];
2636      if (LScope) {
2637        bool foundScopeInStack = false;
2638        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2639          if (LScope == ScopeStack[i-1]) {
2640            foundScopeInStack = true;
2641            break;
2642          }
2643        }
2644        if (!foundScopeInStack) {
2645          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2646        }
2647      }
2648    }
2649    if (isa<DeclStmt>(*i)) continue;
2650    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2651                            ScopeStack, *i);
2652  }
2653
2654  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2655    ScopeStack.pop_back();
2656  }
2657}
2658
2659Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2660  Decl *dcl = static_cast<Decl *>(D);
2661  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2662  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2663    FD->setBody(Body);
2664    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2665  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2666    assert(MD == getCurMethodDecl() && "Method parsing confused");
2667    MD->setBody((Stmt*)Body);
2668  } else {
2669    Body->Destroy(Context);
2670    return 0;
2671  }
2672  PopDeclContext();
2673
2674  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2675  // class C2 {
2676  //   void f() {
2677  //     class LC1 {
2678  //       int m() { return 1; }
2679  //     };
2680  //   }
2681  // };
2682  if (ActiveScope == 0)
2683    return D;
2684
2685  // Verify and clean out per-function state.
2686
2687  bool HaveLabels = !ActiveScope->LabelMap.empty();
2688  // Check goto/label use.
2689  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2690       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2691    // Verify that we have no forward references left.  If so, there was a goto
2692    // or address of a label taken, but no definition of it.  Label fwd
2693    // definitions are indicated with a null substmt.
2694    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2695    if (L->getSubStmt() == 0) {
2696      // Emit error.
2697      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2698
2699      // At this point, we have gotos that use the bogus label.  Stitch it into
2700      // the function body so that they aren't leaked and that the AST is well
2701      // formed.
2702      if (Body) {
2703#if 0
2704        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2705        // and the AST is malformed anyway.  We should just blow away 'L'.
2706        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2707        cast<CompoundStmt>(Body)->push_back(L);
2708#else
2709        L->Destroy(Context);
2710#endif
2711      } else {
2712        // The whole function wasn't parsed correctly, just delete this.
2713        L->Destroy(Context);
2714      }
2715    }
2716  }
2717  // This reset is for both functions and methods.
2718  ActiveScope = 0;
2719
2720  if (!Body) return D;
2721
2722  if (HaveLabels) {
2723    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2724    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2725    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2726    std::vector<void*> ScopeStack;
2727    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2728    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2729  }
2730
2731  return D;
2732}
2733
2734/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2735/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2736NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2737                                          IdentifierInfo &II, Scope *S) {
2738  // Before we produce a declaration for an implicitly defined
2739  // function, see whether there was a locally-scoped declaration of
2740  // this name as a function or variable. If so, use that
2741  // (non-visible) declaration, and complain about it.
2742  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2743    = LocallyScopedExternalDecls.find(&II);
2744  if (Pos != LocallyScopedExternalDecls.end()) {
2745    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2746    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2747    return Pos->second;
2748  }
2749
2750  // Extension in C99.  Legal in C90, but warn about it.
2751  if (getLangOptions().C99)
2752    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2753  else
2754    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2755
2756  // FIXME: handle stuff like:
2757  // void foo() { extern float X(); }
2758  // void bar() { X(); }  <-- implicit decl for X in another scope.
2759
2760  // Set a Declarator for the implicit definition: int foo();
2761  const char *Dummy;
2762  DeclSpec DS;
2763  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2764  Error = Error; // Silence warning.
2765  assert(!Error && "Error setting up implicit decl!");
2766  Declarator D(DS, Declarator::BlockContext);
2767  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2768                                             0, 0, 0, Loc, D),
2769                SourceLocation());
2770  D.SetIdentifier(&II, Loc);
2771
2772  // Insert this function into translation-unit scope.
2773
2774  DeclContext *PrevDC = CurContext;
2775  CurContext = Context.getTranslationUnitDecl();
2776
2777  FunctionDecl *FD =
2778    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2779  FD->setImplicit();
2780
2781  CurContext = PrevDC;
2782
2783  AddKnownFunctionAttributes(FD);
2784
2785  return FD;
2786}
2787
2788/// \brief Adds any function attributes that we know a priori based on
2789/// the declaration of this function.
2790///
2791/// These attributes can apply both to implicitly-declared builtins
2792/// (like __builtin___printf_chk) or to library-declared functions
2793/// like NSLog or printf.
2794void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2795  if (FD->isInvalidDecl())
2796    return;
2797
2798  // If this is a built-in function, map its builtin attributes to
2799  // actual attributes.
2800  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2801    // Handle printf-formatting attributes.
2802    unsigned FormatIdx;
2803    bool HasVAListArg;
2804    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2805      if (!FD->getAttr<FormatAttr>())
2806        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2807                                               FormatIdx + 2));
2808    }
2809
2810    // Mark const if we don't care about errno and that is the only
2811    // thing preventing the function from being const. This allows
2812    // IRgen to use LLVM intrinsics for such functions.
2813    if (!getLangOptions().MathErrno &&
2814        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2815      if (!FD->getAttr<ConstAttr>())
2816        FD->addAttr(::new (Context) ConstAttr());
2817    }
2818  }
2819
2820  IdentifierInfo *Name = FD->getIdentifier();
2821  if (!Name)
2822    return;
2823  if ((!getLangOptions().CPlusPlus &&
2824       FD->getDeclContext()->isTranslationUnit()) ||
2825      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2826       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2827       LinkageSpecDecl::lang_c)) {
2828    // Okay: this could be a libc/libm/Objective-C function we know
2829    // about.
2830  } else
2831    return;
2832
2833  unsigned KnownID;
2834  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2835    if (KnownFunctionIDs[KnownID] == Name)
2836      break;
2837
2838  switch (KnownID) {
2839  case id_NSLog:
2840  case id_NSLogv:
2841    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2842      // FIXME: We known better than our headers.
2843      const_cast<FormatAttr *>(Format)->setType("printf");
2844    } else
2845      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2846    break;
2847
2848  case id_asprintf:
2849  case id_vasprintf:
2850    if (!FD->getAttr<FormatAttr>())
2851      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2852    break;
2853
2854  default:
2855    // Unknown function or known function without any attributes to
2856    // add. Do nothing.
2857    break;
2858  }
2859}
2860
2861TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2862                                    Decl *LastDeclarator) {
2863  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2864  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2865
2866  // Scope manipulation handled by caller.
2867  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2868                                           D.getIdentifierLoc(),
2869                                           D.getIdentifier(),
2870                                           T);
2871  NewTD->setNextDeclarator(LastDeclarator);
2872  if (D.getInvalidType())
2873    NewTD->setInvalidDecl();
2874  return NewTD;
2875}
2876
2877/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2878/// former case, Name will be non-null.  In the later case, Name will be null.
2879/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2880/// reference/declaration/definition of a tag.
2881Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2882                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2883                             IdentifierInfo *Name, SourceLocation NameLoc,
2884                             AttributeList *Attr) {
2885  // If this is not a definition, it must have a name.
2886  assert((Name != 0 || TK == TK_Definition) &&
2887         "Nameless record must be a definition!");
2888
2889  TagDecl::TagKind Kind;
2890  switch (TagSpec) {
2891  default: assert(0 && "Unknown tag type!");
2892  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2893  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2894  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2895  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2896  }
2897
2898  DeclContext *SearchDC = CurContext;
2899  DeclContext *DC = CurContext;
2900  NamedDecl *PrevDecl = 0;
2901
2902  bool Invalid = false;
2903
2904  if (Name && SS.isNotEmpty()) {
2905    // We have a nested-name tag ('struct foo::bar').
2906
2907    // Check for invalid 'foo::'.
2908    if (SS.isInvalid()) {
2909      Name = 0;
2910      goto CreateNewDecl;
2911    }
2912
2913    DC = static_cast<DeclContext*>(SS.getScopeRep());
2914    SearchDC = DC;
2915    // Look-up name inside 'foo::'.
2916    PrevDecl = dyn_cast_or_null<TagDecl>(
2917                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2918
2919    // A tag 'foo::bar' must already exist.
2920    if (PrevDecl == 0) {
2921      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2922      Name = 0;
2923      goto CreateNewDecl;
2924    }
2925  } else if (Name) {
2926    // If this is a named struct, check to see if there was a previous forward
2927    // declaration or definition.
2928    // FIXME: We're looking into outer scopes here, even when we
2929    // shouldn't be. Doing so can result in ambiguities that we
2930    // shouldn't be diagnosing.
2931    LookupResult R = LookupName(S, Name, LookupTagName,
2932                                /*RedeclarationOnly=*/(TK != TK_Reference));
2933    if (R.isAmbiguous()) {
2934      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2935      // FIXME: This is not best way to recover from case like:
2936      //
2937      // struct S s;
2938      //
2939      // causes needless err_ovl_no_viable_function_in_init latter.
2940      Name = 0;
2941      PrevDecl = 0;
2942      Invalid = true;
2943    }
2944    else
2945      PrevDecl = R;
2946
2947    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2948      // FIXME: This makes sure that we ignore the contexts associated
2949      // with C structs, unions, and enums when looking for a matching
2950      // tag declaration or definition. See the similar lookup tweak
2951      // in Sema::LookupName; is there a better way to deal with this?
2952      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2953        SearchDC = SearchDC->getParent();
2954    }
2955  }
2956
2957  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2958    // Maybe we will complain about the shadowed template parameter.
2959    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2960    // Just pretend that we didn't see the previous declaration.
2961    PrevDecl = 0;
2962  }
2963
2964  if (PrevDecl) {
2965    // Check whether the previous declaration is usable.
2966    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2967
2968    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2969      // If this is a use of a previous tag, or if the tag is already declared
2970      // in the same scope (so that the definition/declaration completes or
2971      // rementions the tag), reuse the decl.
2972      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2973        // Make sure that this wasn't declared as an enum and now used as a
2974        // struct or something similar.
2975        if (PrevTagDecl->getTagKind() != Kind) {
2976          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2977          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2978          // Recover by making this an anonymous redefinition.
2979          Name = 0;
2980          PrevDecl = 0;
2981          Invalid = true;
2982        } else {
2983          // If this is a use, just return the declaration we found.
2984
2985          // FIXME: In the future, return a variant or some other clue
2986          // for the consumer of this Decl to know it doesn't own it.
2987          // For our current ASTs this shouldn't be a problem, but will
2988          // need to be changed with DeclGroups.
2989          if (TK == TK_Reference)
2990            return PrevDecl;
2991
2992          // Diagnose attempts to redefine a tag.
2993          if (TK == TK_Definition) {
2994            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2995              Diag(NameLoc, diag::err_redefinition) << Name;
2996              Diag(Def->getLocation(), diag::note_previous_definition);
2997              // If this is a redefinition, recover by making this
2998              // struct be anonymous, which will make any later
2999              // references get the previous definition.
3000              Name = 0;
3001              PrevDecl = 0;
3002              Invalid = true;
3003            } else {
3004              // If the type is currently being defined, complain
3005              // about a nested redefinition.
3006              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3007              if (Tag->isBeingDefined()) {
3008                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3009                Diag(PrevTagDecl->getLocation(),
3010                     diag::note_previous_definition);
3011                Name = 0;
3012                PrevDecl = 0;
3013                Invalid = true;
3014              }
3015            }
3016
3017            // Okay, this is definition of a previously declared or referenced
3018            // tag PrevDecl. We're going to create a new Decl for it.
3019          }
3020        }
3021        // If we get here we have (another) forward declaration or we
3022        // have a definition.  Just create a new decl.
3023      } else {
3024        // If we get here, this is a definition of a new tag type in a nested
3025        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3026        // new decl/type.  We set PrevDecl to NULL so that the entities
3027        // have distinct types.
3028        PrevDecl = 0;
3029      }
3030      // If we get here, we're going to create a new Decl. If PrevDecl
3031      // is non-NULL, it's a definition of the tag declared by
3032      // PrevDecl. If it's NULL, we have a new definition.
3033    } else {
3034      // PrevDecl is a namespace, template, or anything else
3035      // that lives in the IDNS_Tag identifier namespace.
3036      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3037        // The tag name clashes with a namespace name, issue an error and
3038        // recover by making this tag be anonymous.
3039        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3040        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3041        Name = 0;
3042        PrevDecl = 0;
3043        Invalid = true;
3044      } else {
3045        // The existing declaration isn't relevant to us; we're in a
3046        // new scope, so clear out the previous declaration.
3047        PrevDecl = 0;
3048      }
3049    }
3050  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3051             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3052    // C.scope.pdecl]p5:
3053    //   -- for an elaborated-type-specifier of the form
3054    //
3055    //          class-key identifier
3056    //
3057    //      if the elaborated-type-specifier is used in the
3058    //      decl-specifier-seq or parameter-declaration-clause of a
3059    //      function defined in namespace scope, the identifier is
3060    //      declared as a class-name in the namespace that contains
3061    //      the declaration; otherwise, except as a friend
3062    //      declaration, the identifier is declared in the smallest
3063    //      non-class, non-function-prototype scope that contains the
3064    //      declaration.
3065    //
3066    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3067    // C structs and unions.
3068    //
3069    // GNU C also supports this behavior as part of its incomplete
3070    // enum types extension, while GNU C++ does not.
3071    //
3072    // Find the context where we'll be declaring the tag.
3073    // FIXME: We would like to maintain the current DeclContext as the
3074    // lexical context,
3075    while (SearchDC->isRecord())
3076      SearchDC = SearchDC->getParent();
3077
3078    // Find the scope where we'll be declaring the tag.
3079    while (S->isClassScope() ||
3080           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3081           ((S->getFlags() & Scope::DeclScope) == 0) ||
3082           (S->getEntity() &&
3083            ((DeclContext *)S->getEntity())->isTransparentContext()))
3084      S = S->getParent();
3085  }
3086
3087CreateNewDecl:
3088
3089  // If there is an identifier, use the location of the identifier as the
3090  // location of the decl, otherwise use the location of the struct/union
3091  // keyword.
3092  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3093
3094  // Otherwise, create a new declaration. If there is a previous
3095  // declaration of the same entity, the two will be linked via
3096  // PrevDecl.
3097  TagDecl *New;
3098
3099  if (Kind == TagDecl::TK_enum) {
3100    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3101    // enum X { A, B, C } D;    D should chain to X.
3102    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3103                           cast_or_null<EnumDecl>(PrevDecl));
3104    // If this is an undefined enum, warn.
3105    if (TK != TK_Definition && !Invalid)  {
3106      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3107                                              : diag::ext_forward_ref_enum;
3108      Diag(Loc, DK);
3109    }
3110  } else {
3111    // struct/union/class
3112
3113    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3114    // struct X { int A; } D;    D should chain to X.
3115    if (getLangOptions().CPlusPlus)
3116      // FIXME: Look for a way to use RecordDecl for simple structs.
3117      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3118                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3119    else
3120      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3121                               cast_or_null<RecordDecl>(PrevDecl));
3122  }
3123
3124  if (Kind != TagDecl::TK_enum) {
3125    // Handle #pragma pack: if the #pragma pack stack has non-default
3126    // alignment, make up a packed attribute for this decl. These
3127    // attributes are checked when the ASTContext lays out the
3128    // structure.
3129    //
3130    // It is important for implementing the correct semantics that this
3131    // happen here (in act on tag decl). The #pragma pack stack is
3132    // maintained as a result of parser callbacks which can occur at
3133    // many points during the parsing of a struct declaration (because
3134    // the #pragma tokens are effectively skipped over during the
3135    // parsing of the struct).
3136    if (unsigned Alignment = getPragmaPackAlignment())
3137      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3138  }
3139
3140  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3141    // C++ [dcl.typedef]p3:
3142    //   [...] Similarly, in a given scope, a class or enumeration
3143    //   shall not be declared with the same name as a typedef-name
3144    //   that is declared in that scope and refers to a type other
3145    //   than the class or enumeration itself.
3146    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3147    TypedefDecl *PrevTypedef = 0;
3148    if (Lookup.getKind() == LookupResult::Found)
3149      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3150
3151    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3152        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3153          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3154      Diag(Loc, diag::err_tag_definition_of_typedef)
3155        << Context.getTypeDeclType(New)
3156        << PrevTypedef->getUnderlyingType();
3157      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3158      Invalid = true;
3159    }
3160  }
3161
3162  if (Invalid)
3163    New->setInvalidDecl();
3164
3165  if (Attr)
3166    ProcessDeclAttributeList(New, Attr);
3167
3168  // If we're declaring or defining a tag in function prototype scope
3169  // in C, note that this type can only be used within the function.
3170  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3171    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3172
3173  // Set the lexical context. If the tag has a C++ scope specifier, the
3174  // lexical context will be different from the semantic context.
3175  New->setLexicalDeclContext(CurContext);
3176
3177  if (TK == TK_Definition)
3178    New->startDefinition();
3179
3180  // If this has an identifier, add it to the scope stack.
3181  if (Name) {
3182    S = getNonFieldDeclScope(S);
3183    PushOnScopeChains(New, S);
3184  } else {
3185    CurContext->addDecl(New);
3186  }
3187
3188  return New;
3189}
3190
3191void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3192  AdjustDeclIfTemplate(TagD);
3193  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3194
3195  // Enter the tag context.
3196  PushDeclContext(S, Tag);
3197
3198  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3199    FieldCollector->StartClass();
3200
3201    if (Record->getIdentifier()) {
3202      // C++ [class]p2:
3203      //   [...] The class-name is also inserted into the scope of the
3204      //   class itself; this is known as the injected-class-name. For
3205      //   purposes of access checking, the injected-class-name is treated
3206      //   as if it were a public member name.
3207      RecordDecl *InjectedClassName
3208        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3209                                CurContext, Record->getLocation(),
3210                                Record->getIdentifier(), Record);
3211      InjectedClassName->setImplicit();
3212      PushOnScopeChains(InjectedClassName, S);
3213    }
3214  }
3215}
3216
3217void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3218  AdjustDeclIfTemplate(TagD);
3219  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3220
3221  if (isa<CXXRecordDecl>(Tag))
3222    FieldCollector->FinishClass();
3223
3224  // Exit this scope of this tag's definition.
3225  PopDeclContext();
3226
3227  // Notify the consumer that we've defined a tag.
3228  Consumer.HandleTagDeclDefinition(Tag);
3229}
3230
3231bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3232                          QualType FieldTy, const Expr *BitWidth) {
3233  // C99 6.7.2.1p4 - verify the field type.
3234  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3235  if (!FieldTy->isIntegralType()) {
3236    // Handle incomplete types with specific error.
3237    if (FieldTy->isIncompleteType())
3238      return Diag(FieldLoc, diag::err_field_incomplete)
3239        << FieldTy << BitWidth->getSourceRange();
3240    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3241      << FieldName << BitWidth->getSourceRange();
3242  }
3243
3244  llvm::APSInt Value;
3245  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3246    return true;
3247
3248  // Zero-width bitfield is ok for anonymous field.
3249  if (Value == 0 && FieldName)
3250    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3251
3252  if (Value.isNegative())
3253    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3254
3255  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3256  // FIXME: We won't need the 0 size once we check that the field type is valid.
3257  if (TypeSize && Value.getZExtValue() > TypeSize)
3258    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3259       << FieldName << (unsigned)TypeSize;
3260
3261  return false;
3262}
3263
3264/// ActOnField - Each field of a struct/union/class is passed into this in order
3265/// to create a FieldDecl object for it.
3266Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3267                               SourceLocation DeclStart,
3268                               Declarator &D, ExprTy *BitfieldWidth) {
3269  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3270                     static_cast<Expr*>(BitfieldWidth));
3271}
3272
3273/// HandleField - Analyze a field of a C struct or a C++ data member.
3274///
3275FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3276                             SourceLocation DeclStart,
3277                             Declarator &D, Expr *BitWidth) {
3278  IdentifierInfo *II = D.getIdentifier();
3279  SourceLocation Loc = DeclStart;
3280  if (II) Loc = D.getIdentifierLoc();
3281
3282  QualType T = GetTypeForDeclarator(D, S);
3283  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3284  bool InvalidDecl = false;
3285
3286  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3287  // than a variably modified type.
3288  if (T->isVariablyModifiedType()) {
3289    bool SizeIsNegative;
3290    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3291                                                           SizeIsNegative);
3292    if (!FixedTy.isNull()) {
3293      Diag(Loc, diag::warn_illegal_constant_array_size);
3294      T = FixedTy;
3295    } else {
3296      if (SizeIsNegative)
3297        Diag(Loc, diag::err_typecheck_negative_array_size);
3298      else
3299        Diag(Loc, diag::err_typecheck_field_variable_size);
3300      T = Context.IntTy;
3301      InvalidDecl = true;
3302    }
3303  }
3304
3305  if (BitWidth) {
3306    if (VerifyBitField(Loc, II, T, BitWidth)) {
3307      InvalidDecl = true;
3308      DeleteExpr(BitWidth);
3309      BitWidth = 0;
3310    }
3311  } else {
3312    // Not a bitfield.
3313
3314    // validate II.
3315
3316  }
3317
3318  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3319                                       Loc, II, T, BitWidth,
3320                                       D.getDeclSpec().getStorageClassSpec() ==
3321                                       DeclSpec::SCS_mutable);
3322
3323  if (II) {
3324    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3325    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3326        && !isa<TagDecl>(PrevDecl)) {
3327      Diag(Loc, diag::err_duplicate_member) << II;
3328      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3329      NewFD->setInvalidDecl();
3330      Record->setInvalidDecl();
3331    }
3332  }
3333
3334  if (getLangOptions().CPlusPlus) {
3335    CheckExtraCXXDefaultArguments(D);
3336    if (!T->isPODType())
3337      cast<CXXRecordDecl>(Record)->setPOD(false);
3338  }
3339
3340  ProcessDeclAttributes(NewFD, D);
3341  if (T.isObjCGCWeak())
3342    Diag(Loc, diag::warn_attribute_weak_on_field);
3343
3344  if (D.getInvalidType() || InvalidDecl)
3345    NewFD->setInvalidDecl();
3346
3347  if (II) {
3348    PushOnScopeChains(NewFD, S);
3349  } else
3350    Record->addDecl(NewFD);
3351
3352  return NewFD;
3353}
3354
3355/// TranslateIvarVisibility - Translate visibility from a token ID to an
3356///  AST enum value.
3357static ObjCIvarDecl::AccessControl
3358TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3359  switch (ivarVisibility) {
3360  default: assert(0 && "Unknown visitibility kind");
3361  case tok::objc_private: return ObjCIvarDecl::Private;
3362  case tok::objc_public: return ObjCIvarDecl::Public;
3363  case tok::objc_protected: return ObjCIvarDecl::Protected;
3364  case tok::objc_package: return ObjCIvarDecl::Package;
3365  }
3366}
3367
3368/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3369/// in order to create an IvarDecl object for it.
3370Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3371                              SourceLocation DeclStart,
3372                              Declarator &D, ExprTy *BitfieldWidth,
3373                              tok::ObjCKeywordKind Visibility) {
3374
3375  IdentifierInfo *II = D.getIdentifier();
3376  Expr *BitWidth = (Expr*)BitfieldWidth;
3377  SourceLocation Loc = DeclStart;
3378  if (II) Loc = D.getIdentifierLoc();
3379
3380  // FIXME: Unnamed fields can be handled in various different ways, for
3381  // example, unnamed unions inject all members into the struct namespace!
3382
3383  QualType T = GetTypeForDeclarator(D, S);
3384  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3385  bool InvalidDecl = false;
3386
3387  if (BitWidth) {
3388    // 6.7.2.1p3, 6.7.2.1p4
3389    if (VerifyBitField(Loc, II, T, BitWidth)) {
3390      InvalidDecl = true;
3391      DeleteExpr(BitWidth);
3392      BitWidth = 0;
3393    }
3394  } else {
3395    // Not a bitfield.
3396
3397    // validate II.
3398
3399  }
3400
3401  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3402  // than a variably modified type.
3403  if (T->isVariablyModifiedType()) {
3404    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3405    InvalidDecl = true;
3406  }
3407
3408  // Get the visibility (access control) for this ivar.
3409  ObjCIvarDecl::AccessControl ac =
3410    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3411                                        : ObjCIvarDecl::None;
3412
3413  // Construct the decl.
3414  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3415                                             (Expr *)BitfieldWidth);
3416
3417  if (II) {
3418    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3419    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3420        && !isa<TagDecl>(PrevDecl)) {
3421      Diag(Loc, diag::err_duplicate_member) << II;
3422      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3423      NewID->setInvalidDecl();
3424    }
3425  }
3426
3427  // Process attributes attached to the ivar.
3428  ProcessDeclAttributes(NewID, D);
3429
3430  if (D.getInvalidType() || InvalidDecl)
3431    NewID->setInvalidDecl();
3432
3433  if (II) {
3434    // FIXME: When interfaces are DeclContexts, we'll need to add
3435    // these to the interface.
3436    S->AddDecl(NewID);
3437    IdResolver.AddDecl(NewID);
3438  }
3439
3440  return NewID;
3441}
3442
3443void Sema::ActOnFields(Scope* S,
3444                       SourceLocation RecLoc, DeclTy *RecDecl,
3445                       DeclTy **Fields, unsigned NumFields,
3446                       SourceLocation LBrac, SourceLocation RBrac,
3447                       AttributeList *Attr) {
3448  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3449  assert(EnclosingDecl && "missing record or interface decl");
3450
3451  // If the decl this is being inserted into is invalid, then it may be a
3452  // redeclaration or some other bogus case.  Don't try to add fields to it.
3453  if (EnclosingDecl->isInvalidDecl()) {
3454    // FIXME: Deallocate fields?
3455    return;
3456  }
3457
3458
3459  // Verify that all the fields are okay.
3460  unsigned NumNamedMembers = 0;
3461  llvm::SmallVector<FieldDecl*, 32> RecFields;
3462
3463  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3464  for (unsigned i = 0; i != NumFields; ++i) {
3465    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3466    assert(FD && "missing field decl");
3467
3468    // Get the type for the field.
3469    Type *FDTy = FD->getType().getTypePtr();
3470
3471    if (!FD->isAnonymousStructOrUnion()) {
3472      // Remember all fields written by the user.
3473      RecFields.push_back(FD);
3474    }
3475
3476    // If the field is already invalid for some reason, don't emit more
3477    // diagnostics about it.
3478    if (FD->isInvalidDecl())
3479      continue;
3480
3481    // C99 6.7.2.1p2 - A field may not be a function type.
3482    if (FDTy->isFunctionType()) {
3483      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3484        << FD->getDeclName();
3485      FD->setInvalidDecl();
3486      EnclosingDecl->setInvalidDecl();
3487      continue;
3488    }
3489    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3490    if (FDTy->isIncompleteType()) {
3491      if (!Record) {  // Incomplete ivar type is always an error.
3492        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3493                               diag::err_field_incomplete);
3494        FD->setInvalidDecl();
3495        EnclosingDecl->setInvalidDecl();
3496        continue;
3497      }
3498      if (i != NumFields-1 ||                   // ... that the last member ...
3499          !Record->isStruct() ||  // ... of a structure ...
3500          !FDTy->isArrayType()) {         //... may have incomplete array type.
3501        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3502                               diag::err_field_incomplete);
3503        FD->setInvalidDecl();
3504        EnclosingDecl->setInvalidDecl();
3505        continue;
3506      }
3507      if (NumNamedMembers < 1) {  //... must have more than named member ...
3508        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3509          << FD->getDeclName();
3510        FD->setInvalidDecl();
3511        EnclosingDecl->setInvalidDecl();
3512        continue;
3513      }
3514      // Okay, we have a legal flexible array member at the end of the struct.
3515      if (Record)
3516        Record->setHasFlexibleArrayMember(true);
3517    }
3518    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3519    /// field of another structure or the element of an array.
3520    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3521      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3522        // If this is a member of a union, then entire union becomes "flexible".
3523        if (Record && Record->isUnion()) {
3524          Record->setHasFlexibleArrayMember(true);
3525        } else {
3526          // If this is a struct/class and this is not the last element, reject
3527          // it.  Note that GCC supports variable sized arrays in the middle of
3528          // structures.
3529          if (i != NumFields-1) {
3530            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3531              << FD->getDeclName();
3532            FD->setInvalidDecl();
3533            EnclosingDecl->setInvalidDecl();
3534            continue;
3535          }
3536          // We support flexible arrays at the end of structs in other structs
3537          // as an extension.
3538          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3539            << FD->getDeclName();
3540          if (Record)
3541            Record->setHasFlexibleArrayMember(true);
3542        }
3543      }
3544    }
3545    /// A field cannot be an Objective-c object
3546    if (FDTy->isObjCInterfaceType()) {
3547      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3548      FD->setInvalidDecl();
3549      EnclosingDecl->setInvalidDecl();
3550      continue;
3551    }
3552    // Keep track of the number of named members.
3553    if (FD->getIdentifier())
3554      ++NumNamedMembers;
3555  }
3556
3557  // Okay, we successfully defined 'Record'.
3558  if (Record) {
3559    Record->completeDefinition(Context);
3560  } else {
3561    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3562    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3563      ID->setIVarList(ClsFields, RecFields.size(), Context);
3564      ID->setLocEnd(RBrac);
3565
3566      // Must enforce the rule that ivars in the base classes may not be
3567      // duplicates.
3568      if (ID->getSuperClass()) {
3569        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3570             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3571          ObjCIvarDecl* Ivar = (*IVI);
3572          IdentifierInfo *II = Ivar->getIdentifier();
3573          ObjCIvarDecl* prevIvar =
3574            ID->getSuperClass()->lookupInstanceVariable(II);
3575          if (prevIvar) {
3576            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3577            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3578          }
3579        }
3580      }
3581    } else if (ObjCImplementationDecl *IMPDecl =
3582                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3583      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3584      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3585      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3586    }
3587  }
3588
3589  if (Attr)
3590    ProcessDeclAttributeList(Record, Attr);
3591}
3592
3593Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3594                                      DeclTy *lastEnumConst,
3595                                      SourceLocation IdLoc, IdentifierInfo *Id,
3596                                      SourceLocation EqualLoc, ExprTy *val) {
3597  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3598  EnumConstantDecl *LastEnumConst =
3599    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3600  Expr *Val = static_cast<Expr*>(val);
3601
3602  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3603  // we find one that is.
3604  S = getNonFieldDeclScope(S);
3605
3606  // Verify that there isn't already something declared with this name in this
3607  // scope.
3608  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3609  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3610    // Maybe we will complain about the shadowed template parameter.
3611    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3612    // Just pretend that we didn't see the previous declaration.
3613    PrevDecl = 0;
3614  }
3615
3616  if (PrevDecl) {
3617    // When in C++, we may get a TagDecl with the same name; in this case the
3618    // enum constant will 'hide' the tag.
3619    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3620           "Received TagDecl when not in C++!");
3621    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3622      if (isa<EnumConstantDecl>(PrevDecl))
3623        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3624      else
3625        Diag(IdLoc, diag::err_redefinition) << Id;
3626      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3627      if (Val) Val->Destroy(Context);
3628      return 0;
3629    }
3630  }
3631
3632  llvm::APSInt EnumVal(32);
3633  QualType EltTy;
3634  if (Val) {
3635    // Make sure to promote the operand type to int.
3636    UsualUnaryConversions(Val);
3637
3638    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3639    SourceLocation ExpLoc;
3640    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3641      Val->Destroy(Context);
3642      Val = 0;  // Just forget about it.
3643    } else {
3644      EltTy = Val->getType();
3645    }
3646  }
3647
3648  if (!Val) {
3649    if (LastEnumConst) {
3650      // Assign the last value + 1.
3651      EnumVal = LastEnumConst->getInitVal();
3652      ++EnumVal;
3653
3654      // Check for overflow on increment.
3655      if (EnumVal < LastEnumConst->getInitVal())
3656        Diag(IdLoc, diag::warn_enum_value_overflow);
3657
3658      EltTy = LastEnumConst->getType();
3659    } else {
3660      // First value, set to zero.
3661      EltTy = Context.IntTy;
3662      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3663    }
3664  }
3665
3666  EnumConstantDecl *New =
3667    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3668                             Val, EnumVal);
3669
3670  // Register this decl in the current scope stack.
3671  PushOnScopeChains(New, S);
3672
3673  return New;
3674}
3675
3676// FIXME: For consistency with ActOnFields(), we should have the parser
3677// pass in the source location for the left/right braces.
3678void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3679                         DeclTy **Elements, unsigned NumElements) {
3680  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3681  QualType EnumType = Context.getTypeDeclType(Enum);
3682
3683  // TODO: If the result value doesn't fit in an int, it must be a long or long
3684  // long value.  ISO C does not support this, but GCC does as an extension,
3685  // emit a warning.
3686  unsigned IntWidth = Context.Target.getIntWidth();
3687
3688  // Verify that all the values are okay, compute the size of the values, and
3689  // reverse the list.
3690  unsigned NumNegativeBits = 0;
3691  unsigned NumPositiveBits = 0;
3692
3693  // Keep track of whether all elements have type int.
3694  bool AllElementsInt = true;
3695
3696  for (unsigned i = 0; i != NumElements; ++i) {
3697    EnumConstantDecl *ECD =
3698      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3699    if (!ECD) continue;  // Already issued a diagnostic.
3700
3701    // If the enum value doesn't fit in an int, emit an extension warning.
3702    const llvm::APSInt &InitVal = ECD->getInitVal();
3703    assert(InitVal.getBitWidth() >= IntWidth &&
3704           "Should have promoted value to int");
3705    if (InitVal.getBitWidth() > IntWidth) {
3706      llvm::APSInt V(InitVal);
3707      V.trunc(IntWidth);
3708      V.extend(InitVal.getBitWidth());
3709      if (V != InitVal)
3710        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3711          << InitVal.toString(10);
3712    }
3713
3714    // Keep track of the size of positive and negative values.
3715    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3716      NumPositiveBits = std::max(NumPositiveBits,
3717                                 (unsigned)InitVal.getActiveBits());
3718    else
3719      NumNegativeBits = std::max(NumNegativeBits,
3720                                 (unsigned)InitVal.getMinSignedBits());
3721
3722    // Keep track of whether every enum element has type int (very commmon).
3723    if (AllElementsInt)
3724      AllElementsInt = ECD->getType() == Context.IntTy;
3725  }
3726
3727  // Figure out the type that should be used for this enum.
3728  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3729  QualType BestType;
3730  unsigned BestWidth;
3731
3732  if (NumNegativeBits) {
3733    // If there is a negative value, figure out the smallest integer type (of
3734    // int/long/longlong) that fits.
3735    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3736      BestType = Context.IntTy;
3737      BestWidth = IntWidth;
3738    } else {
3739      BestWidth = Context.Target.getLongWidth();
3740
3741      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3742        BestType = Context.LongTy;
3743      else {
3744        BestWidth = Context.Target.getLongLongWidth();
3745
3746        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3747          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3748        BestType = Context.LongLongTy;
3749      }
3750    }
3751  } else {
3752    // If there is no negative value, figure out which of uint, ulong, ulonglong
3753    // fits.
3754    if (NumPositiveBits <= IntWidth) {
3755      BestType = Context.UnsignedIntTy;
3756      BestWidth = IntWidth;
3757    } else if (NumPositiveBits <=
3758               (BestWidth = Context.Target.getLongWidth())) {
3759      BestType = Context.UnsignedLongTy;
3760    } else {
3761      BestWidth = Context.Target.getLongLongWidth();
3762      assert(NumPositiveBits <= BestWidth &&
3763             "How could an initializer get larger than ULL?");
3764      BestType = Context.UnsignedLongLongTy;
3765    }
3766  }
3767
3768  // Loop over all of the enumerator constants, changing their types to match
3769  // the type of the enum if needed.
3770  for (unsigned i = 0; i != NumElements; ++i) {
3771    EnumConstantDecl *ECD =
3772      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3773    if (!ECD) continue;  // Already issued a diagnostic.
3774
3775    // Standard C says the enumerators have int type, but we allow, as an
3776    // extension, the enumerators to be larger than int size.  If each
3777    // enumerator value fits in an int, type it as an int, otherwise type it the
3778    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3779    // that X has type 'int', not 'unsigned'.
3780    if (ECD->getType() == Context.IntTy) {
3781      // Make sure the init value is signed.
3782      llvm::APSInt IV = ECD->getInitVal();
3783      IV.setIsSigned(true);
3784      ECD->setInitVal(IV);
3785
3786      if (getLangOptions().CPlusPlus)
3787        // C++ [dcl.enum]p4: Following the closing brace of an
3788        // enum-specifier, each enumerator has the type of its
3789        // enumeration.
3790        ECD->setType(EnumType);
3791      continue;  // Already int type.
3792    }
3793
3794    // Determine whether the value fits into an int.
3795    llvm::APSInt InitVal = ECD->getInitVal();
3796    bool FitsInInt;
3797    if (InitVal.isUnsigned() || !InitVal.isNegative())
3798      FitsInInt = InitVal.getActiveBits() < IntWidth;
3799    else
3800      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3801
3802    // If it fits into an integer type, force it.  Otherwise force it to match
3803    // the enum decl type.
3804    QualType NewTy;
3805    unsigned NewWidth;
3806    bool NewSign;
3807    if (FitsInInt) {
3808      NewTy = Context.IntTy;
3809      NewWidth = IntWidth;
3810      NewSign = true;
3811    } else if (ECD->getType() == BestType) {
3812      // Already the right type!
3813      if (getLangOptions().CPlusPlus)
3814        // C++ [dcl.enum]p4: Following the closing brace of an
3815        // enum-specifier, each enumerator has the type of its
3816        // enumeration.
3817        ECD->setType(EnumType);
3818      continue;
3819    } else {
3820      NewTy = BestType;
3821      NewWidth = BestWidth;
3822      NewSign = BestType->isSignedIntegerType();
3823    }
3824
3825    // Adjust the APSInt value.
3826    InitVal.extOrTrunc(NewWidth);
3827    InitVal.setIsSigned(NewSign);
3828    ECD->setInitVal(InitVal);
3829
3830    // Adjust the Expr initializer and type.
3831    if (ECD->getInitExpr())
3832      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3833                                                      /*isLvalue=*/false));
3834    if (getLangOptions().CPlusPlus)
3835      // C++ [dcl.enum]p4: Following the closing brace of an
3836      // enum-specifier, each enumerator has the type of its
3837      // enumeration.
3838      ECD->setType(EnumType);
3839    else
3840      ECD->setType(NewTy);
3841  }
3842
3843  Enum->completeDefinition(Context, BestType);
3844}
3845
3846Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3847                                          ExprArg expr) {
3848  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3849
3850  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3851}
3852
3853