SemaDecl.cpp revision 6b81b0d82a78740b3fb69bacf5d729b6f9374dac
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      case TTK_Struct: return DeclSpec::TST_struct;
295      case TTK_Union:  return DeclSpec::TST_union;
296      case TTK_Class:  return DeclSpec::TST_class;
297      case TTK_Enum:   return DeclSpec::TST_enum;
298      }
299    }
300
301  return DeclSpec::TST_unspecified;
302}
303
304/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
305/// if a CXXScopeSpec's type is equal to the type of one of the base classes
306/// then downgrade the missing typename error to a warning.
307/// This is needed for MSVC compatibility; Example:
308/// @code
309/// template<class T> class A {
310/// public:
311///   typedef int TYPE;
312/// };
313/// template<class T> class B : public A<T> {
314/// public:
315///   A<T>::TYPE a; // no typename required because A<T> is a base class.
316/// };
317/// @endcode
318bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
319  if (CurContext->isRecord()) {
320    const Type *Ty = SS->getScopeRep()->getAsType();
321
322    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
323    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
324          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
325      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
326        return true;
327    return S->isFunctionPrototypeScope();
328  }
329  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
330}
331
332bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
333                                   SourceLocation IILoc,
334                                   Scope *S,
335                                   CXXScopeSpec *SS,
336                                   ParsedType &SuggestedType) {
337  // We don't have anything to suggest (yet).
338  SuggestedType = ParsedType();
339
340  // There may have been a typo in the name of the type. Look up typo
341  // results, in case we have something that we can suggest.
342  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
343                                             LookupOrdinaryName, S, SS, NULL,
344                                             false, CTC_Type)) {
345    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
346    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
347
348    if (Corrected.isKeyword()) {
349      // We corrected to a keyword.
350      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
351      Diag(IILoc, diag::err_unknown_typename_suggest)
352        << &II << CorrectedQuotedStr;
353      return true;
354    } else {
355      NamedDecl *Result = Corrected.getCorrectionDecl();
356      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
357          !Result->isInvalidDecl()) {
358        // We found a similarly-named type or interface; suggest that.
359        if (!SS || !SS->isSet())
360          Diag(IILoc, diag::err_unknown_typename_suggest)
361            << &II << CorrectedQuotedStr
362            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
363        else if (DeclContext *DC = computeDeclContext(*SS, false))
364          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
365            << &II << DC << CorrectedQuotedStr << SS->getRange()
366            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
367        else
368          llvm_unreachable("could not have corrected a typo here");
369
370        Diag(Result->getLocation(), diag::note_previous_decl)
371          << CorrectedQuotedStr;
372
373        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
374                                    false, false, ParsedType(),
375                                    /*NonTrivialTypeSourceInfo=*/true);
376        return true;
377      }
378    }
379  }
380
381  if (getLangOptions().CPlusPlus) {
382    // See if II is a class template that the user forgot to pass arguments to.
383    UnqualifiedId Name;
384    Name.setIdentifier(&II, IILoc);
385    CXXScopeSpec EmptySS;
386    TemplateTy TemplateResult;
387    bool MemberOfUnknownSpecialization;
388    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
389                       Name, ParsedType(), true, TemplateResult,
390                       MemberOfUnknownSpecialization) == TNK_Type_template) {
391      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
392      Diag(IILoc, diag::err_template_missing_args) << TplName;
393      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
394        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
395          << TplDecl->getTemplateParameters()->getSourceRange();
396      }
397      return true;
398    }
399  }
400
401  // FIXME: Should we move the logic that tries to recover from a missing tag
402  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
403
404  if (!SS || (!SS->isSet() && !SS->isInvalid()))
405    Diag(IILoc, diag::err_unknown_typename) << &II;
406  else if (DeclContext *DC = computeDeclContext(*SS, false))
407    Diag(IILoc, diag::err_typename_nested_not_found)
408      << &II << DC << SS->getRange();
409  else if (isDependentScopeSpecifier(*SS)) {
410    unsigned DiagID = diag::err_typename_missing;
411    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
412      DiagID = diag::warn_typename_missing;
413
414    Diag(SS->getRange().getBegin(), DiagID)
415      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
416      << SourceRange(SS->getRange().getBegin(), IILoc)
417      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
418    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
419                                                                         .get();
420  } else {
421    assert(SS && SS->isInvalid() &&
422           "Invalid scope specifier has already been diagnosed");
423  }
424
425  return true;
426}
427
428/// \brief Determine whether the given result set contains either a type name
429/// or
430static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
431  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
432                       NextToken.is(tok::less);
433
434  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
435    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
436      return true;
437
438    if (CheckTemplate && isa<TemplateDecl>(*I))
439      return true;
440  }
441
442  return false;
443}
444
445Sema::NameClassification Sema::ClassifyName(Scope *S,
446                                            CXXScopeSpec &SS,
447                                            IdentifierInfo *&Name,
448                                            SourceLocation NameLoc,
449                                            const Token &NextToken) {
450  DeclarationNameInfo NameInfo(Name, NameLoc);
451  ObjCMethodDecl *CurMethod = getCurMethodDecl();
452
453  if (NextToken.is(tok::coloncolon)) {
454    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
455                                QualType(), false, SS, 0, false);
456
457  }
458
459  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
460  LookupParsedName(Result, S, &SS, !CurMethod);
461
462  // Perform lookup for Objective-C instance variables (including automatically
463  // synthesized instance variables), if we're in an Objective-C method.
464  // FIXME: This lookup really, really needs to be folded in to the normal
465  // unqualified lookup mechanism.
466  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
467    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
468    if (E.get() || E.isInvalid())
469      return E;
470  }
471
472  bool SecondTry = false;
473  bool IsFilteredTemplateName = false;
474
475Corrected:
476  switch (Result.getResultKind()) {
477  case LookupResult::NotFound:
478    // If an unqualified-id is followed by a '(', then we have a function
479    // call.
480    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
481      // In C++, this is an ADL-only call.
482      // FIXME: Reference?
483      if (getLangOptions().CPlusPlus)
484        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
485
486      // C90 6.3.2.2:
487      //   If the expression that precedes the parenthesized argument list in a
488      //   function call consists solely of an identifier, and if no
489      //   declaration is visible for this identifier, the identifier is
490      //   implicitly declared exactly as if, in the innermost block containing
491      //   the function call, the declaration
492      //
493      //     extern int identifier ();
494      //
495      //   appeared.
496      //
497      // We also allow this in C99 as an extension.
498      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
499        Result.addDecl(D);
500        Result.resolveKind();
501        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
502      }
503    }
504
505    // In C, we first see whether there is a tag type by the same name, in
506    // which case it's likely that the user just forget to write "enum",
507    // "struct", or "union".
508    if (!getLangOptions().CPlusPlus && !SecondTry) {
509      Result.clear(LookupTagName);
510      LookupParsedName(Result, S, &SS);
511      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
512        const char *TagName = 0;
513        const char *FixItTagName = 0;
514        switch (Tag->getTagKind()) {
515          case TTK_Class:
516            TagName = "class";
517            FixItTagName = "class ";
518            break;
519
520          case TTK_Enum:
521            TagName = "enum";
522            FixItTagName = "enum ";
523            break;
524
525          case TTK_Struct:
526            TagName = "struct";
527            FixItTagName = "struct ";
528            break;
529
530          case TTK_Union:
531            TagName = "union";
532            FixItTagName = "union ";
533            break;
534        }
535
536        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
537          << Name << TagName << getLangOptions().CPlusPlus
538          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
539        break;
540      }
541
542      Result.clear(LookupOrdinaryName);
543    }
544
545    // Perform typo correction to determine if there is another name that is
546    // close to this name.
547    if (!SecondTry) {
548      SecondTry = true;
549      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
550                                                 Result.getLookupKind(), S,
551                                                 &SS)) {
552        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
553        unsigned QualifiedDiag = diag::err_no_member_suggest;
554        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
555        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
556
557        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
558        NamedDecl *UnderlyingFirstDecl
559          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
560        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
561            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
562          UnqualifiedDiag = diag::err_no_template_suggest;
563          QualifiedDiag = diag::err_no_member_template_suggest;
564        } else if (UnderlyingFirstDecl &&
565                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
566                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
568           UnqualifiedDiag = diag::err_unknown_typename_suggest;
569           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
570         }
571
572        if (SS.isEmpty())
573          Diag(NameLoc, UnqualifiedDiag)
574            << Name << CorrectedQuotedStr
575            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
576        else
577          Diag(NameLoc, QualifiedDiag)
578            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
579            << SS.getRange()
580            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
581
582        // Update the name, so that the caller has the new name.
583        Name = Corrected.getCorrectionAsIdentifierInfo();
584
585        // Also update the LookupResult...
586        // FIXME: This should probably go away at some point
587        Result.clear();
588        Result.setLookupName(Corrected.getCorrection());
589        if (FirstDecl) Result.addDecl(FirstDecl);
590
591        // Typo correction corrected to a keyword.
592        if (Corrected.isKeyword())
593          return Corrected.getCorrectionAsIdentifierInfo();
594
595        if (FirstDecl)
596          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
597            << CorrectedQuotedStr;
598
599        // If we found an Objective-C instance variable, let
600        // LookupInObjCMethod build the appropriate expression to
601        // reference the ivar.
602        // FIXME: This is a gross hack.
603        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
604          Result.clear();
605          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
606          return move(E);
607        }
608
609        goto Corrected;
610      }
611    }
612
613    // We failed to correct; just fall through and let the parser deal with it.
614    Result.suppressDiagnostics();
615    return NameClassification::Unknown();
616
617  case LookupResult::NotFoundInCurrentInstantiation:
618    // We performed name lookup into the current instantiation, and there were
619    // dependent bases, so we treat this result the same way as any other
620    // dependent nested-name-specifier.
621
622    // C++ [temp.res]p2:
623    //   A name used in a template declaration or definition and that is
624    //   dependent on a template-parameter is assumed not to name a type
625    //   unless the applicable name lookup finds a type name or the name is
626    //   qualified by the keyword typename.
627    //
628    // FIXME: If the next token is '<', we might want to ask the parser to
629    // perform some heroics to see if we actually have a
630    // template-argument-list, which would indicate a missing 'template'
631    // keyword here.
632    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
633
634  case LookupResult::Found:
635  case LookupResult::FoundOverloaded:
636  case LookupResult::FoundUnresolvedValue:
637    break;
638
639  case LookupResult::Ambiguous:
640    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
641        hasAnyAcceptableTemplateNames(Result)) {
642      // C++ [temp.local]p3:
643      //   A lookup that finds an injected-class-name (10.2) can result in an
644      //   ambiguity in certain cases (for example, if it is found in more than
645      //   one base class). If all of the injected-class-names that are found
646      //   refer to specializations of the same class template, and if the name
647      //   is followed by a template-argument-list, the reference refers to the
648      //   class template itself and not a specialization thereof, and is not
649      //   ambiguous.
650      //
651      // This filtering can make an ambiguous result into an unambiguous one,
652      // so try again after filtering out template names.
653      FilterAcceptableTemplateNames(Result);
654      if (!Result.isAmbiguous()) {
655        IsFilteredTemplateName = true;
656        break;
657      }
658    }
659
660    // Diagnose the ambiguity and return an error.
661    return NameClassification::Error();
662  }
663
664  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
665      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
666    // C++ [temp.names]p3:
667    //   After name lookup (3.4) finds that a name is a template-name or that
668    //   an operator-function-id or a literal- operator-id refers to a set of
669    //   overloaded functions any member of which is a function template if
670    //   this is followed by a <, the < is always taken as the delimiter of a
671    //   template-argument-list and never as the less-than operator.
672    if (!IsFilteredTemplateName)
673      FilterAcceptableTemplateNames(Result);
674
675    if (!Result.empty()) {
676      bool IsFunctionTemplate;
677      TemplateName Template;
678      if (Result.end() - Result.begin() > 1) {
679        IsFunctionTemplate = true;
680        Template = Context.getOverloadedTemplateName(Result.begin(),
681                                                     Result.end());
682      } else {
683        TemplateDecl *TD
684          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
685        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
686
687        if (SS.isSet() && !SS.isInvalid())
688          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
689                                                    /*TemplateKeyword=*/false,
690                                                      TD);
691        else
692          Template = TemplateName(TD);
693      }
694
695      if (IsFunctionTemplate) {
696        // Function templates always go through overload resolution, at which
697        // point we'll perform the various checks (e.g., accessibility) we need
698        // to based on which function we selected.
699        Result.suppressDiagnostics();
700
701        return NameClassification::FunctionTemplate(Template);
702      }
703
704      return NameClassification::TypeTemplate(Template);
705    }
706  }
707
708  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
709  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
710    DiagnoseUseOfDecl(Type, NameLoc);
711    QualType T = Context.getTypeDeclType(Type);
712    return ParsedType::make(T);
713  }
714
715  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
716  if (!Class) {
717    // FIXME: It's unfortunate that we don't have a Type node for handling this.
718    if (ObjCCompatibleAliasDecl *Alias
719                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
720      Class = Alias->getClassInterface();
721  }
722
723  if (Class) {
724    DiagnoseUseOfDecl(Class, NameLoc);
725
726    if (NextToken.is(tok::period)) {
727      // Interface. <something> is parsed as a property reference expression.
728      // Just return "unknown" as a fall-through for now.
729      Result.suppressDiagnostics();
730      return NameClassification::Unknown();
731    }
732
733    QualType T = Context.getObjCInterfaceType(Class);
734    return ParsedType::make(T);
735  }
736
737  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
738    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
739
740  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
741  return BuildDeclarationNameExpr(SS, Result, ADL);
742}
743
744// Determines the context to return to after temporarily entering a
745// context.  This depends in an unnecessarily complicated way on the
746// exact ordering of callbacks from the parser.
747DeclContext *Sema::getContainingDC(DeclContext *DC) {
748
749  // Functions defined inline within classes aren't parsed until we've
750  // finished parsing the top-level class, so the top-level class is
751  // the context we'll need to return to.
752  if (isa<FunctionDecl>(DC)) {
753    DC = DC->getLexicalParent();
754
755    // A function not defined within a class will always return to its
756    // lexical context.
757    if (!isa<CXXRecordDecl>(DC))
758      return DC;
759
760    // A C++ inline method/friend is parsed *after* the topmost class
761    // it was declared in is fully parsed ("complete");  the topmost
762    // class is the context we need to return to.
763    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
764      DC = RD;
765
766    // Return the declaration context of the topmost class the inline method is
767    // declared in.
768    return DC;
769  }
770
771  return DC->getLexicalParent();
772}
773
774void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
775  assert(getContainingDC(DC) == CurContext &&
776      "The next DeclContext should be lexically contained in the current one.");
777  CurContext = DC;
778  S->setEntity(DC);
779}
780
781void Sema::PopDeclContext() {
782  assert(CurContext && "DeclContext imbalance!");
783
784  CurContext = getContainingDC(CurContext);
785  assert(CurContext && "Popped translation unit!");
786}
787
788/// EnterDeclaratorContext - Used when we must lookup names in the context
789/// of a declarator's nested name specifier.
790///
791void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
792  // C++0x [basic.lookup.unqual]p13:
793  //   A name used in the definition of a static data member of class
794  //   X (after the qualified-id of the static member) is looked up as
795  //   if the name was used in a member function of X.
796  // C++0x [basic.lookup.unqual]p14:
797  //   If a variable member of a namespace is defined outside of the
798  //   scope of its namespace then any name used in the definition of
799  //   the variable member (after the declarator-id) is looked up as
800  //   if the definition of the variable member occurred in its
801  //   namespace.
802  // Both of these imply that we should push a scope whose context
803  // is the semantic context of the declaration.  We can't use
804  // PushDeclContext here because that context is not necessarily
805  // lexically contained in the current context.  Fortunately,
806  // the containing scope should have the appropriate information.
807
808  assert(!S->getEntity() && "scope already has entity");
809
810#ifndef NDEBUG
811  Scope *Ancestor = S->getParent();
812  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
813  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
814#endif
815
816  CurContext = DC;
817  S->setEntity(DC);
818}
819
820void Sema::ExitDeclaratorContext(Scope *S) {
821  assert(S->getEntity() == CurContext && "Context imbalance!");
822
823  // Switch back to the lexical context.  The safety of this is
824  // enforced by an assert in EnterDeclaratorContext.
825  Scope *Ancestor = S->getParent();
826  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
827  CurContext = (DeclContext*) Ancestor->getEntity();
828
829  // We don't need to do anything with the scope, which is going to
830  // disappear.
831}
832
833
834void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
835  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
836  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
837    // We assume that the caller has already called
838    // ActOnReenterTemplateScope
839    FD = TFD->getTemplatedDecl();
840  }
841  if (!FD)
842    return;
843
844  PushDeclContext(S, FD);
845  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
846    ParmVarDecl *Param = FD->getParamDecl(P);
847    // If the parameter has an identifier, then add it to the scope
848    if (Param->getIdentifier()) {
849      S->AddDecl(Param);
850      IdResolver.AddDecl(Param);
851    }
852  }
853}
854
855
856/// \brief Determine whether we allow overloading of the function
857/// PrevDecl with another declaration.
858///
859/// This routine determines whether overloading is possible, not
860/// whether some new function is actually an overload. It will return
861/// true in C++ (where we can always provide overloads) or, as an
862/// extension, in C when the previous function is already an
863/// overloaded function declaration or has the "overloadable"
864/// attribute.
865static bool AllowOverloadingOfFunction(LookupResult &Previous,
866                                       ASTContext &Context) {
867  if (Context.getLangOptions().CPlusPlus)
868    return true;
869
870  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
871    return true;
872
873  return (Previous.getResultKind() == LookupResult::Found
874          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
875}
876
877/// Add this decl to the scope shadowed decl chains.
878void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
879  // Move up the scope chain until we find the nearest enclosing
880  // non-transparent context. The declaration will be introduced into this
881  // scope.
882  while (S->getEntity() &&
883         ((DeclContext *)S->getEntity())->isTransparentContext())
884    S = S->getParent();
885
886  // Add scoped declarations into their context, so that they can be
887  // found later. Declarations without a context won't be inserted
888  // into any context.
889  if (AddToContext)
890    CurContext->addDecl(D);
891
892  // Out-of-line definitions shouldn't be pushed into scope in C++.
893  // Out-of-line variable and function definitions shouldn't even in C.
894  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
895      D->isOutOfLine() &&
896      !D->getDeclContext()->getRedeclContext()->Equals(
897        D->getLexicalDeclContext()->getRedeclContext()))
898    return;
899
900  // Template instantiations should also not be pushed into scope.
901  if (isa<FunctionDecl>(D) &&
902      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
903    return;
904
905  // If this replaces anything in the current scope,
906  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
907                               IEnd = IdResolver.end();
908  for (; I != IEnd; ++I) {
909    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
910      S->RemoveDecl(*I);
911      IdResolver.RemoveDecl(*I);
912
913      // Should only need to replace one decl.
914      break;
915    }
916  }
917
918  S->AddDecl(D);
919
920  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
921    // Implicitly-generated labels may end up getting generated in an order that
922    // isn't strictly lexical, which breaks name lookup. Be careful to insert
923    // the label at the appropriate place in the identifier chain.
924    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
925      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
926      if (IDC == CurContext) {
927        if (!S->isDeclScope(*I))
928          continue;
929      } else if (IDC->Encloses(CurContext))
930        break;
931    }
932
933    IdResolver.InsertDeclAfter(I, D);
934  } else {
935    IdResolver.AddDecl(D);
936  }
937}
938
939void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
940  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
941    TUScope->AddDecl(D);
942}
943
944bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
945                         bool ExplicitInstantiationOrSpecialization) {
946  return IdResolver.isDeclInScope(D, Ctx, Context, S,
947                                  ExplicitInstantiationOrSpecialization);
948}
949
950Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
951  DeclContext *TargetDC = DC->getPrimaryContext();
952  do {
953    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
954      if (ScopeDC->getPrimaryContext() == TargetDC)
955        return S;
956  } while ((S = S->getParent()));
957
958  return 0;
959}
960
961static bool isOutOfScopePreviousDeclaration(NamedDecl *,
962                                            DeclContext*,
963                                            ASTContext&);
964
965/// Filters out lookup results that don't fall within the given scope
966/// as determined by isDeclInScope.
967void Sema::FilterLookupForScope(LookupResult &R,
968                                DeclContext *Ctx, Scope *S,
969                                bool ConsiderLinkage,
970                                bool ExplicitInstantiationOrSpecialization) {
971  LookupResult::Filter F = R.makeFilter();
972  while (F.hasNext()) {
973    NamedDecl *D = F.next();
974
975    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
976      continue;
977
978    if (ConsiderLinkage &&
979        isOutOfScopePreviousDeclaration(D, Ctx, Context))
980      continue;
981
982    F.erase();
983  }
984
985  F.done();
986}
987
988static bool isUsingDecl(NamedDecl *D) {
989  return isa<UsingShadowDecl>(D) ||
990         isa<UnresolvedUsingTypenameDecl>(D) ||
991         isa<UnresolvedUsingValueDecl>(D);
992}
993
994/// Removes using shadow declarations from the lookup results.
995static void RemoveUsingDecls(LookupResult &R) {
996  LookupResult::Filter F = R.makeFilter();
997  while (F.hasNext())
998    if (isUsingDecl(F.next()))
999      F.erase();
1000
1001  F.done();
1002}
1003
1004/// \brief Check for this common pattern:
1005/// @code
1006/// class S {
1007///   S(const S&); // DO NOT IMPLEMENT
1008///   void operator=(const S&); // DO NOT IMPLEMENT
1009/// };
1010/// @endcode
1011static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1012  // FIXME: Should check for private access too but access is set after we get
1013  // the decl here.
1014  if (D->doesThisDeclarationHaveABody())
1015    return false;
1016
1017  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1018    return CD->isCopyConstructor();
1019  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1020    return Method->isCopyAssignmentOperator();
1021  return false;
1022}
1023
1024bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1025  assert(D);
1026
1027  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1028    return false;
1029
1030  // Ignore class templates.
1031  if (D->getDeclContext()->isDependentContext() ||
1032      D->getLexicalDeclContext()->isDependentContext())
1033    return false;
1034
1035  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1036    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1037      return false;
1038
1039    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1040      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1041        return false;
1042    } else {
1043      // 'static inline' functions are used in headers; don't warn.
1044      if (FD->getStorageClass() == SC_Static &&
1045          FD->isInlineSpecified())
1046        return false;
1047    }
1048
1049    if (FD->doesThisDeclarationHaveABody() &&
1050        Context.DeclMustBeEmitted(FD))
1051      return false;
1052  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1053    if (!VD->isFileVarDecl() ||
1054        VD->getType().isConstant(Context) ||
1055        Context.DeclMustBeEmitted(VD))
1056      return false;
1057
1058    if (VD->isStaticDataMember() &&
1059        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1060      return false;
1061
1062  } else {
1063    return false;
1064  }
1065
1066  // Only warn for unused decls internal to the translation unit.
1067  if (D->getLinkage() == ExternalLinkage)
1068    return false;
1069
1070  return true;
1071}
1072
1073void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1074  if (!D)
1075    return;
1076
1077  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1078    const FunctionDecl *First = FD->getFirstDeclaration();
1079    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1080      return; // First should already be in the vector.
1081  }
1082
1083  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084    const VarDecl *First = VD->getFirstDeclaration();
1085    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1086      return; // First should already be in the vector.
1087  }
1088
1089   if (ShouldWarnIfUnusedFileScopedDecl(D))
1090     UnusedFileScopedDecls.push_back(D);
1091 }
1092
1093static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1094  if (D->isInvalidDecl())
1095    return false;
1096
1097  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1098    return false;
1099
1100  if (isa<LabelDecl>(D))
1101    return true;
1102
1103  // White-list anything that isn't a local variable.
1104  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1105      !D->getDeclContext()->isFunctionOrMethod())
1106    return false;
1107
1108  // Types of valid local variables should be complete, so this should succeed.
1109  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1110
1111    // White-list anything with an __attribute__((unused)) type.
1112    QualType Ty = VD->getType();
1113
1114    // Only look at the outermost level of typedef.
1115    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1116      if (TT->getDecl()->hasAttr<UnusedAttr>())
1117        return false;
1118    }
1119
1120    // If we failed to complete the type for some reason, or if the type is
1121    // dependent, don't diagnose the variable.
1122    if (Ty->isIncompleteType() || Ty->isDependentType())
1123      return false;
1124
1125    if (const TagType *TT = Ty->getAs<TagType>()) {
1126      const TagDecl *Tag = TT->getDecl();
1127      if (Tag->hasAttr<UnusedAttr>())
1128        return false;
1129
1130      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1131        if (!RD->hasTrivialDestructor())
1132          return false;
1133
1134        if (const Expr *Init = VD->getInit()) {
1135          const CXXConstructExpr *Construct =
1136            dyn_cast<CXXConstructExpr>(Init);
1137          if (Construct && !Construct->isElidable()) {
1138            CXXConstructorDecl *CD = Construct->getConstructor();
1139            if (!CD->isTrivial())
1140              return false;
1141          }
1142        }
1143      }
1144    }
1145
1146    // TODO: __attribute__((unused)) templates?
1147  }
1148
1149  return true;
1150}
1151
1152static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1153                                     FixItHint &Hint) {
1154  if (isa<LabelDecl>(D)) {
1155    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1156                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1157    if (AfterColon.isInvalid())
1158      return;
1159    Hint = FixItHint::CreateRemoval(CharSourceRange::
1160                                    getCharRange(D->getLocStart(), AfterColon));
1161  }
1162  return;
1163}
1164
1165/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1166/// unless they are marked attr(unused).
1167void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1168  FixItHint Hint;
1169  if (!ShouldDiagnoseUnusedDecl(D))
1170    return;
1171
1172  GenerateFixForUnusedDecl(D, Context, Hint);
1173
1174  unsigned DiagID;
1175  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1176    DiagID = diag::warn_unused_exception_param;
1177  else if (isa<LabelDecl>(D))
1178    DiagID = diag::warn_unused_label;
1179  else
1180    DiagID = diag::warn_unused_variable;
1181
1182  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1183}
1184
1185static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1186  // Verify that we have no forward references left.  If so, there was a goto
1187  // or address of a label taken, but no definition of it.  Label fwd
1188  // definitions are indicated with a null substmt.
1189  if (L->getStmt() == 0)
1190    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1191}
1192
1193void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1194  if (S->decl_empty()) return;
1195  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1196         "Scope shouldn't contain decls!");
1197
1198  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1199       I != E; ++I) {
1200    Decl *TmpD = (*I);
1201    assert(TmpD && "This decl didn't get pushed??");
1202
1203    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1204    NamedDecl *D = cast<NamedDecl>(TmpD);
1205
1206    if (!D->getDeclName()) continue;
1207
1208    // Diagnose unused variables in this scope.
1209    if (!S->hasErrorOccurred())
1210      DiagnoseUnusedDecl(D);
1211
1212    // If this was a forward reference to a label, verify it was defined.
1213    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1214      CheckPoppedLabel(LD, *this);
1215
1216    // Remove this name from our lexical scope.
1217    IdResolver.RemoveDecl(D);
1218  }
1219}
1220
1221/// \brief Look for an Objective-C class in the translation unit.
1222///
1223/// \param Id The name of the Objective-C class we're looking for. If
1224/// typo-correction fixes this name, the Id will be updated
1225/// to the fixed name.
1226///
1227/// \param IdLoc The location of the name in the translation unit.
1228///
1229/// \param TypoCorrection If true, this routine will attempt typo correction
1230/// if there is no class with the given name.
1231///
1232/// \returns The declaration of the named Objective-C class, or NULL if the
1233/// class could not be found.
1234ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1235                                              SourceLocation IdLoc,
1236                                              bool DoTypoCorrection) {
1237  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1238  // creation from this context.
1239  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1240
1241  if (!IDecl && DoTypoCorrection) {
1242    // Perform typo correction at the given location, but only if we
1243    // find an Objective-C class name.
1244    TypoCorrection C;
1245    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1246                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1247        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1248      Diag(IdLoc, diag::err_undef_interface_suggest)
1249        << Id << IDecl->getDeclName()
1250        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1251      Diag(IDecl->getLocation(), diag::note_previous_decl)
1252        << IDecl->getDeclName();
1253
1254      Id = IDecl->getIdentifier();
1255    }
1256  }
1257  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1258  // This routine must always return a class definition, if any.
1259  if (Def && Def->getDefinition())
1260      Def = Def->getDefinition();
1261  return Def;
1262}
1263
1264/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1265/// from S, where a non-field would be declared. This routine copes
1266/// with the difference between C and C++ scoping rules in structs and
1267/// unions. For example, the following code is well-formed in C but
1268/// ill-formed in C++:
1269/// @code
1270/// struct S6 {
1271///   enum { BAR } e;
1272/// };
1273///
1274/// void test_S6() {
1275///   struct S6 a;
1276///   a.e = BAR;
1277/// }
1278/// @endcode
1279/// For the declaration of BAR, this routine will return a different
1280/// scope. The scope S will be the scope of the unnamed enumeration
1281/// within S6. In C++, this routine will return the scope associated
1282/// with S6, because the enumeration's scope is a transparent
1283/// context but structures can contain non-field names. In C, this
1284/// routine will return the translation unit scope, since the
1285/// enumeration's scope is a transparent context and structures cannot
1286/// contain non-field names.
1287Scope *Sema::getNonFieldDeclScope(Scope *S) {
1288  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1289         (S->getEntity() &&
1290          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1291         (S->isClassScope() && !getLangOptions().CPlusPlus))
1292    S = S->getParent();
1293  return S;
1294}
1295
1296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1297/// file scope.  lazily create a decl for it. ForRedeclaration is true
1298/// if we're creating this built-in in anticipation of redeclaring the
1299/// built-in.
1300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1301                                     Scope *S, bool ForRedeclaration,
1302                                     SourceLocation Loc) {
1303  Builtin::ID BID = (Builtin::ID)bid;
1304
1305  ASTContext::GetBuiltinTypeError Error;
1306  QualType R = Context.GetBuiltinType(BID, Error);
1307  switch (Error) {
1308  case ASTContext::GE_None:
1309    // Okay
1310    break;
1311
1312  case ASTContext::GE_Missing_stdio:
1313    if (ForRedeclaration)
1314      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1315        << Context.BuiltinInfo.GetName(BID);
1316    return 0;
1317
1318  case ASTContext::GE_Missing_setjmp:
1319    if (ForRedeclaration)
1320      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1321        << Context.BuiltinInfo.GetName(BID);
1322    return 0;
1323
1324  case ASTContext::GE_Missing_ucontext:
1325    if (ForRedeclaration)
1326      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1327        << Context.BuiltinInfo.GetName(BID);
1328    return 0;
1329  }
1330
1331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1332    Diag(Loc, diag::ext_implicit_lib_function_decl)
1333      << Context.BuiltinInfo.GetName(BID)
1334      << R;
1335    if (Context.BuiltinInfo.getHeaderName(BID) &&
1336        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1337          != DiagnosticsEngine::Ignored)
1338      Diag(Loc, diag::note_please_include_header)
1339        << Context.BuiltinInfo.getHeaderName(BID)
1340        << Context.BuiltinInfo.GetName(BID);
1341  }
1342
1343  FunctionDecl *New = FunctionDecl::Create(Context,
1344                                           Context.getTranslationUnitDecl(),
1345                                           Loc, Loc, II, R, /*TInfo=*/0,
1346                                           SC_Extern,
1347                                           SC_None, false,
1348                                           /*hasPrototype=*/true);
1349  New->setImplicit();
1350
1351  // Create Decl objects for each parameter, adding them to the
1352  // FunctionDecl.
1353  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1354    SmallVector<ParmVarDecl*, 16> Params;
1355    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1356      ParmVarDecl *parm =
1357        ParmVarDecl::Create(Context, New, SourceLocation(),
1358                            SourceLocation(), 0,
1359                            FT->getArgType(i), /*TInfo=*/0,
1360                            SC_None, SC_None, 0);
1361      parm->setScopeInfo(0, i);
1362      Params.push_back(parm);
1363    }
1364    New->setParams(Params);
1365  }
1366
1367  AddKnownFunctionAttributes(New);
1368
1369  // TUScope is the translation-unit scope to insert this function into.
1370  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1371  // relate Scopes to DeclContexts, and probably eliminate CurContext
1372  // entirely, but we're not there yet.
1373  DeclContext *SavedContext = CurContext;
1374  CurContext = Context.getTranslationUnitDecl();
1375  PushOnScopeChains(New, TUScope);
1376  CurContext = SavedContext;
1377  return New;
1378}
1379
1380bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1381  QualType OldType;
1382  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1383    OldType = OldTypedef->getUnderlyingType();
1384  else
1385    OldType = Context.getTypeDeclType(Old);
1386  QualType NewType = New->getUnderlyingType();
1387
1388  if (NewType->isVariablyModifiedType()) {
1389    // Must not redefine a typedef with a variably-modified type.
1390    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1391    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1392      << Kind << NewType;
1393    if (Old->getLocation().isValid())
1394      Diag(Old->getLocation(), diag::note_previous_definition);
1395    New->setInvalidDecl();
1396    return true;
1397  }
1398
1399  if (OldType != NewType &&
1400      !OldType->isDependentType() &&
1401      !NewType->isDependentType() &&
1402      !Context.hasSameType(OldType, NewType)) {
1403    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1404    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1405      << Kind << NewType << OldType;
1406    if (Old->getLocation().isValid())
1407      Diag(Old->getLocation(), diag::note_previous_definition);
1408    New->setInvalidDecl();
1409    return true;
1410  }
1411  return false;
1412}
1413
1414/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1415/// same name and scope as a previous declaration 'Old'.  Figure out
1416/// how to resolve this situation, merging decls or emitting
1417/// diagnostics as appropriate. If there was an error, set New to be invalid.
1418///
1419void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1420  // If the new decl is known invalid already, don't bother doing any
1421  // merging checks.
1422  if (New->isInvalidDecl()) return;
1423
1424  // Allow multiple definitions for ObjC built-in typedefs.
1425  // FIXME: Verify the underlying types are equivalent!
1426  if (getLangOptions().ObjC1) {
1427    const IdentifierInfo *TypeID = New->getIdentifier();
1428    switch (TypeID->getLength()) {
1429    default: break;
1430    case 2:
1431      if (!TypeID->isStr("id"))
1432        break;
1433      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1434      // Install the built-in type for 'id', ignoring the current definition.
1435      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1436      return;
1437    case 5:
1438      if (!TypeID->isStr("Class"))
1439        break;
1440      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1441      // Install the built-in type for 'Class', ignoring the current definition.
1442      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1443      return;
1444    case 3:
1445      if (!TypeID->isStr("SEL"))
1446        break;
1447      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1448      // Install the built-in type for 'SEL', ignoring the current definition.
1449      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1450      return;
1451    }
1452    // Fall through - the typedef name was not a builtin type.
1453  }
1454
1455  // Verify the old decl was also a type.
1456  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1457  if (!Old) {
1458    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1459      << New->getDeclName();
1460
1461    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1462    if (OldD->getLocation().isValid())
1463      Diag(OldD->getLocation(), diag::note_previous_definition);
1464
1465    return New->setInvalidDecl();
1466  }
1467
1468  // If the old declaration is invalid, just give up here.
1469  if (Old->isInvalidDecl())
1470    return New->setInvalidDecl();
1471
1472  // If the typedef types are not identical, reject them in all languages and
1473  // with any extensions enabled.
1474  if (isIncompatibleTypedef(Old, New))
1475    return;
1476
1477  // The types match.  Link up the redeclaration chain if the old
1478  // declaration was a typedef.
1479  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1480    New->setPreviousDeclaration(Typedef);
1481
1482  if (getLangOptions().MicrosoftExt)
1483    return;
1484
1485  if (getLangOptions().CPlusPlus) {
1486    // C++ [dcl.typedef]p2:
1487    //   In a given non-class scope, a typedef specifier can be used to
1488    //   redefine the name of any type declared in that scope to refer
1489    //   to the type to which it already refers.
1490    if (!isa<CXXRecordDecl>(CurContext))
1491      return;
1492
1493    // C++0x [dcl.typedef]p4:
1494    //   In a given class scope, a typedef specifier can be used to redefine
1495    //   any class-name declared in that scope that is not also a typedef-name
1496    //   to refer to the type to which it already refers.
1497    //
1498    // This wording came in via DR424, which was a correction to the
1499    // wording in DR56, which accidentally banned code like:
1500    //
1501    //   struct S {
1502    //     typedef struct A { } A;
1503    //   };
1504    //
1505    // in the C++03 standard. We implement the C++0x semantics, which
1506    // allow the above but disallow
1507    //
1508    //   struct S {
1509    //     typedef int I;
1510    //     typedef int I;
1511    //   };
1512    //
1513    // since that was the intent of DR56.
1514    if (!isa<TypedefNameDecl>(Old))
1515      return;
1516
1517    Diag(New->getLocation(), diag::err_redefinition)
1518      << New->getDeclName();
1519    Diag(Old->getLocation(), diag::note_previous_definition);
1520    return New->setInvalidDecl();
1521  }
1522
1523  // Modules always permit redefinition of typedefs, as does C11.
1524  if (getLangOptions().Modules || getLangOptions().C11)
1525    return;
1526
1527  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1528  // is normally mapped to an error, but can be controlled with
1529  // -Wtypedef-redefinition.  If either the original or the redefinition is
1530  // in a system header, don't emit this for compatibility with GCC.
1531  if (getDiagnostics().getSuppressSystemWarnings() &&
1532      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1533       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1534    return;
1535
1536  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1537    << New->getDeclName();
1538  Diag(Old->getLocation(), diag::note_previous_definition);
1539  return;
1540}
1541
1542/// DeclhasAttr - returns true if decl Declaration already has the target
1543/// attribute.
1544static bool
1545DeclHasAttr(const Decl *D, const Attr *A) {
1546  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1547  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1548  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1549    if ((*i)->getKind() == A->getKind()) {
1550      if (Ann) {
1551        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1552          return true;
1553        continue;
1554      }
1555      // FIXME: Don't hardcode this check
1556      if (OA && isa<OwnershipAttr>(*i))
1557        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1558      return true;
1559    }
1560
1561  return false;
1562}
1563
1564/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1565void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1566                               bool MergeDeprecation) {
1567  if (!Old->hasAttrs())
1568    return;
1569
1570  bool foundAny = New->hasAttrs();
1571
1572  // Ensure that any moving of objects within the allocated map is done before
1573  // we process them.
1574  if (!foundAny) New->setAttrs(AttrVec());
1575
1576  for (specific_attr_iterator<InheritableAttr>
1577         i = Old->specific_attr_begin<InheritableAttr>(),
1578         e = Old->specific_attr_end<InheritableAttr>();
1579       i != e; ++i) {
1580    // Ignore deprecated/unavailable/availability attributes if requested.
1581    if (!MergeDeprecation &&
1582        (isa<DeprecatedAttr>(*i) ||
1583         isa<UnavailableAttr>(*i) ||
1584         isa<AvailabilityAttr>(*i)))
1585      continue;
1586
1587    if (!DeclHasAttr(New, *i)) {
1588      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1589      newAttr->setInherited(true);
1590      New->addAttr(newAttr);
1591      foundAny = true;
1592    }
1593  }
1594
1595  if (!foundAny) New->dropAttrs();
1596}
1597
1598/// mergeParamDeclAttributes - Copy attributes from the old parameter
1599/// to the new one.
1600static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1601                                     const ParmVarDecl *oldDecl,
1602                                     ASTContext &C) {
1603  if (!oldDecl->hasAttrs())
1604    return;
1605
1606  bool foundAny = newDecl->hasAttrs();
1607
1608  // Ensure that any moving of objects within the allocated map is
1609  // done before we process them.
1610  if (!foundAny) newDecl->setAttrs(AttrVec());
1611
1612  for (specific_attr_iterator<InheritableParamAttr>
1613       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1614       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1615    if (!DeclHasAttr(newDecl, *i)) {
1616      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1617      newAttr->setInherited(true);
1618      newDecl->addAttr(newAttr);
1619      foundAny = true;
1620    }
1621  }
1622
1623  if (!foundAny) newDecl->dropAttrs();
1624}
1625
1626namespace {
1627
1628/// Used in MergeFunctionDecl to keep track of function parameters in
1629/// C.
1630struct GNUCompatibleParamWarning {
1631  ParmVarDecl *OldParm;
1632  ParmVarDecl *NewParm;
1633  QualType PromotedType;
1634};
1635
1636}
1637
1638/// getSpecialMember - get the special member enum for a method.
1639Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1640  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1641    if (Ctor->isDefaultConstructor())
1642      return Sema::CXXDefaultConstructor;
1643
1644    if (Ctor->isCopyConstructor())
1645      return Sema::CXXCopyConstructor;
1646
1647    if (Ctor->isMoveConstructor())
1648      return Sema::CXXMoveConstructor;
1649  } else if (isa<CXXDestructorDecl>(MD)) {
1650    return Sema::CXXDestructor;
1651  } else if (MD->isCopyAssignmentOperator()) {
1652    return Sema::CXXCopyAssignment;
1653  } else if (MD->isMoveAssignmentOperator()) {
1654    return Sema::CXXMoveAssignment;
1655  }
1656
1657  return Sema::CXXInvalid;
1658}
1659
1660/// canRedefineFunction - checks if a function can be redefined. Currently,
1661/// only extern inline functions can be redefined, and even then only in
1662/// GNU89 mode.
1663static bool canRedefineFunction(const FunctionDecl *FD,
1664                                const LangOptions& LangOpts) {
1665  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1666          !LangOpts.CPlusPlus &&
1667          FD->isInlineSpecified() &&
1668          FD->getStorageClass() == SC_Extern);
1669}
1670
1671/// MergeFunctionDecl - We just parsed a function 'New' from
1672/// declarator D which has the same name and scope as a previous
1673/// declaration 'Old'.  Figure out how to resolve this situation,
1674/// merging decls or emitting diagnostics as appropriate.
1675///
1676/// In C++, New and Old must be declarations that are not
1677/// overloaded. Use IsOverload to determine whether New and Old are
1678/// overloaded, and to select the Old declaration that New should be
1679/// merged with.
1680///
1681/// Returns true if there was an error, false otherwise.
1682bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1683  // Verify the old decl was also a function.
1684  FunctionDecl *Old = 0;
1685  if (FunctionTemplateDecl *OldFunctionTemplate
1686        = dyn_cast<FunctionTemplateDecl>(OldD))
1687    Old = OldFunctionTemplate->getTemplatedDecl();
1688  else
1689    Old = dyn_cast<FunctionDecl>(OldD);
1690  if (!Old) {
1691    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1692      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1693      Diag(Shadow->getTargetDecl()->getLocation(),
1694           diag::note_using_decl_target);
1695      Diag(Shadow->getUsingDecl()->getLocation(),
1696           diag::note_using_decl) << 0;
1697      return true;
1698    }
1699
1700    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1701      << New->getDeclName();
1702    Diag(OldD->getLocation(), diag::note_previous_definition);
1703    return true;
1704  }
1705
1706  // Determine whether the previous declaration was a definition,
1707  // implicit declaration, or a declaration.
1708  diag::kind PrevDiag;
1709  if (Old->isThisDeclarationADefinition())
1710    PrevDiag = diag::note_previous_definition;
1711  else if (Old->isImplicit())
1712    PrevDiag = diag::note_previous_implicit_declaration;
1713  else
1714    PrevDiag = diag::note_previous_declaration;
1715
1716  QualType OldQType = Context.getCanonicalType(Old->getType());
1717  QualType NewQType = Context.getCanonicalType(New->getType());
1718
1719  // Don't complain about this if we're in GNU89 mode and the old function
1720  // is an extern inline function.
1721  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1722      New->getStorageClass() == SC_Static &&
1723      Old->getStorageClass() != SC_Static &&
1724      !canRedefineFunction(Old, getLangOptions())) {
1725    if (getLangOptions().MicrosoftExt) {
1726      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1727      Diag(Old->getLocation(), PrevDiag);
1728    } else {
1729      Diag(New->getLocation(), diag::err_static_non_static) << New;
1730      Diag(Old->getLocation(), PrevDiag);
1731      return true;
1732    }
1733  }
1734
1735  // If a function is first declared with a calling convention, but is
1736  // later declared or defined without one, the second decl assumes the
1737  // calling convention of the first.
1738  //
1739  // For the new decl, we have to look at the NON-canonical type to tell the
1740  // difference between a function that really doesn't have a calling
1741  // convention and one that is declared cdecl. That's because in
1742  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1743  // because it is the default calling convention.
1744  //
1745  // Note also that we DO NOT return at this point, because we still have
1746  // other tests to run.
1747  const FunctionType *OldType = cast<FunctionType>(OldQType);
1748  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1749  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1750  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1751  bool RequiresAdjustment = false;
1752  if (OldTypeInfo.getCC() != CC_Default &&
1753      NewTypeInfo.getCC() == CC_Default) {
1754    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1755    RequiresAdjustment = true;
1756  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1757                                     NewTypeInfo.getCC())) {
1758    // Calling conventions really aren't compatible, so complain.
1759    Diag(New->getLocation(), diag::err_cconv_change)
1760      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1761      << (OldTypeInfo.getCC() == CC_Default)
1762      << (OldTypeInfo.getCC() == CC_Default ? "" :
1763          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1764    Diag(Old->getLocation(), diag::note_previous_declaration);
1765    return true;
1766  }
1767
1768  // FIXME: diagnose the other way around?
1769  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1770    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1771    RequiresAdjustment = true;
1772  }
1773
1774  // Merge regparm attribute.
1775  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1776      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1777    if (NewTypeInfo.getHasRegParm()) {
1778      Diag(New->getLocation(), diag::err_regparm_mismatch)
1779        << NewType->getRegParmType()
1780        << OldType->getRegParmType();
1781      Diag(Old->getLocation(), diag::note_previous_declaration);
1782      return true;
1783    }
1784
1785    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1786    RequiresAdjustment = true;
1787  }
1788
1789  // Merge ns_returns_retained attribute.
1790  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1791    if (NewTypeInfo.getProducesResult()) {
1792      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1793      Diag(Old->getLocation(), diag::note_previous_declaration);
1794      return true;
1795    }
1796
1797    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1798    RequiresAdjustment = true;
1799  }
1800
1801  if (RequiresAdjustment) {
1802    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1803    New->setType(QualType(NewType, 0));
1804    NewQType = Context.getCanonicalType(New->getType());
1805  }
1806
1807  if (getLangOptions().CPlusPlus) {
1808    // (C++98 13.1p2):
1809    //   Certain function declarations cannot be overloaded:
1810    //     -- Function declarations that differ only in the return type
1811    //        cannot be overloaded.
1812    QualType OldReturnType = OldType->getResultType();
1813    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1814    QualType ResQT;
1815    if (OldReturnType != NewReturnType) {
1816      if (NewReturnType->isObjCObjectPointerType()
1817          && OldReturnType->isObjCObjectPointerType())
1818        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1819      if (ResQT.isNull()) {
1820        if (New->isCXXClassMember() && New->isOutOfLine())
1821          Diag(New->getLocation(),
1822               diag::err_member_def_does_not_match_ret_type) << New;
1823        else
1824          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1825        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1826        return true;
1827      }
1828      else
1829        NewQType = ResQT;
1830    }
1831
1832    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1833    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1834    if (OldMethod && NewMethod) {
1835      // Preserve triviality.
1836      NewMethod->setTrivial(OldMethod->isTrivial());
1837
1838      // MSVC allows explicit template specialization at class scope:
1839      // 2 CXMethodDecls referring to the same function will be injected.
1840      // We don't want a redeclartion error.
1841      bool IsClassScopeExplicitSpecialization =
1842                              OldMethod->isFunctionTemplateSpecialization() &&
1843                              NewMethod->isFunctionTemplateSpecialization();
1844      bool isFriend = NewMethod->getFriendObjectKind();
1845
1846      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1847          !IsClassScopeExplicitSpecialization) {
1848        //    -- Member function declarations with the same name and the
1849        //       same parameter types cannot be overloaded if any of them
1850        //       is a static member function declaration.
1851        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1852          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1853          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1854          return true;
1855        }
1856
1857        // C++ [class.mem]p1:
1858        //   [...] A member shall not be declared twice in the
1859        //   member-specification, except that a nested class or member
1860        //   class template can be declared and then later defined.
1861        unsigned NewDiag;
1862        if (isa<CXXConstructorDecl>(OldMethod))
1863          NewDiag = diag::err_constructor_redeclared;
1864        else if (isa<CXXDestructorDecl>(NewMethod))
1865          NewDiag = diag::err_destructor_redeclared;
1866        else if (isa<CXXConversionDecl>(NewMethod))
1867          NewDiag = diag::err_conv_function_redeclared;
1868        else
1869          NewDiag = diag::err_member_redeclared;
1870
1871        Diag(New->getLocation(), NewDiag);
1872        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1873
1874      // Complain if this is an explicit declaration of a special
1875      // member that was initially declared implicitly.
1876      //
1877      // As an exception, it's okay to befriend such methods in order
1878      // to permit the implicit constructor/destructor/operator calls.
1879      } else if (OldMethod->isImplicit()) {
1880        if (isFriend) {
1881          NewMethod->setImplicit();
1882        } else {
1883          Diag(NewMethod->getLocation(),
1884               diag::err_definition_of_implicitly_declared_member)
1885            << New << getSpecialMember(OldMethod);
1886          return true;
1887        }
1888      } else if (OldMethod->isExplicitlyDefaulted()) {
1889        Diag(NewMethod->getLocation(),
1890             diag::err_definition_of_explicitly_defaulted_member)
1891          << getSpecialMember(OldMethod);
1892        return true;
1893      }
1894    }
1895
1896    // (C++98 8.3.5p3):
1897    //   All declarations for a function shall agree exactly in both the
1898    //   return type and the parameter-type-list.
1899    // We also want to respect all the extended bits except noreturn.
1900
1901    // noreturn should now match unless the old type info didn't have it.
1902    QualType OldQTypeForComparison = OldQType;
1903    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1904      assert(OldQType == QualType(OldType, 0));
1905      const FunctionType *OldTypeForComparison
1906        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1907      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1908      assert(OldQTypeForComparison.isCanonical());
1909    }
1910
1911    if (OldQTypeForComparison == NewQType)
1912      return MergeCompatibleFunctionDecls(New, Old);
1913
1914    // Fall through for conflicting redeclarations and redefinitions.
1915  }
1916
1917  // C: Function types need to be compatible, not identical. This handles
1918  // duplicate function decls like "void f(int); void f(enum X);" properly.
1919  if (!getLangOptions().CPlusPlus &&
1920      Context.typesAreCompatible(OldQType, NewQType)) {
1921    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1922    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1923    const FunctionProtoType *OldProto = 0;
1924    if (isa<FunctionNoProtoType>(NewFuncType) &&
1925        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1926      // The old declaration provided a function prototype, but the
1927      // new declaration does not. Merge in the prototype.
1928      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1929      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1930                                                 OldProto->arg_type_end());
1931      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1932                                         ParamTypes.data(), ParamTypes.size(),
1933                                         OldProto->getExtProtoInfo());
1934      New->setType(NewQType);
1935      New->setHasInheritedPrototype();
1936
1937      // Synthesize a parameter for each argument type.
1938      SmallVector<ParmVarDecl*, 16> Params;
1939      for (FunctionProtoType::arg_type_iterator
1940             ParamType = OldProto->arg_type_begin(),
1941             ParamEnd = OldProto->arg_type_end();
1942           ParamType != ParamEnd; ++ParamType) {
1943        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1944                                                 SourceLocation(),
1945                                                 SourceLocation(), 0,
1946                                                 *ParamType, /*TInfo=*/0,
1947                                                 SC_None, SC_None,
1948                                                 0);
1949        Param->setScopeInfo(0, Params.size());
1950        Param->setImplicit();
1951        Params.push_back(Param);
1952      }
1953
1954      New->setParams(Params);
1955    }
1956
1957    return MergeCompatibleFunctionDecls(New, Old);
1958  }
1959
1960  // GNU C permits a K&R definition to follow a prototype declaration
1961  // if the declared types of the parameters in the K&R definition
1962  // match the types in the prototype declaration, even when the
1963  // promoted types of the parameters from the K&R definition differ
1964  // from the types in the prototype. GCC then keeps the types from
1965  // the prototype.
1966  //
1967  // If a variadic prototype is followed by a non-variadic K&R definition,
1968  // the K&R definition becomes variadic.  This is sort of an edge case, but
1969  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1970  // C99 6.9.1p8.
1971  if (!getLangOptions().CPlusPlus &&
1972      Old->hasPrototype() && !New->hasPrototype() &&
1973      New->getType()->getAs<FunctionProtoType>() &&
1974      Old->getNumParams() == New->getNumParams()) {
1975    SmallVector<QualType, 16> ArgTypes;
1976    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1977    const FunctionProtoType *OldProto
1978      = Old->getType()->getAs<FunctionProtoType>();
1979    const FunctionProtoType *NewProto
1980      = New->getType()->getAs<FunctionProtoType>();
1981
1982    // Determine whether this is the GNU C extension.
1983    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1984                                               NewProto->getResultType());
1985    bool LooseCompatible = !MergedReturn.isNull();
1986    for (unsigned Idx = 0, End = Old->getNumParams();
1987         LooseCompatible && Idx != End; ++Idx) {
1988      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1989      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1990      if (Context.typesAreCompatible(OldParm->getType(),
1991                                     NewProto->getArgType(Idx))) {
1992        ArgTypes.push_back(NewParm->getType());
1993      } else if (Context.typesAreCompatible(OldParm->getType(),
1994                                            NewParm->getType(),
1995                                            /*CompareUnqualified=*/true)) {
1996        GNUCompatibleParamWarning Warn
1997          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1998        Warnings.push_back(Warn);
1999        ArgTypes.push_back(NewParm->getType());
2000      } else
2001        LooseCompatible = false;
2002    }
2003
2004    if (LooseCompatible) {
2005      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2006        Diag(Warnings[Warn].NewParm->getLocation(),
2007             diag::ext_param_promoted_not_compatible_with_prototype)
2008          << Warnings[Warn].PromotedType
2009          << Warnings[Warn].OldParm->getType();
2010        if (Warnings[Warn].OldParm->getLocation().isValid())
2011          Diag(Warnings[Warn].OldParm->getLocation(),
2012               diag::note_previous_declaration);
2013      }
2014
2015      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2016                                           ArgTypes.size(),
2017                                           OldProto->getExtProtoInfo()));
2018      return MergeCompatibleFunctionDecls(New, Old);
2019    }
2020
2021    // Fall through to diagnose conflicting types.
2022  }
2023
2024  // A function that has already been declared has been redeclared or defined
2025  // with a different type- show appropriate diagnostic
2026  if (unsigned BuiltinID = Old->getBuiltinID()) {
2027    // The user has declared a builtin function with an incompatible
2028    // signature.
2029    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2030      // The function the user is redeclaring is a library-defined
2031      // function like 'malloc' or 'printf'. Warn about the
2032      // redeclaration, then pretend that we don't know about this
2033      // library built-in.
2034      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2035      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2036        << Old << Old->getType();
2037      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2038      Old->setInvalidDecl();
2039      return false;
2040    }
2041
2042    PrevDiag = diag::note_previous_builtin_declaration;
2043  }
2044
2045  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2046  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2047  return true;
2048}
2049
2050/// \brief Completes the merge of two function declarations that are
2051/// known to be compatible.
2052///
2053/// This routine handles the merging of attributes and other
2054/// properties of function declarations form the old declaration to
2055/// the new declaration, once we know that New is in fact a
2056/// redeclaration of Old.
2057///
2058/// \returns false
2059bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2060  // Merge the attributes
2061  mergeDeclAttributes(New, Old);
2062
2063  // Merge the storage class.
2064  if (Old->getStorageClass() != SC_Extern &&
2065      Old->getStorageClass() != SC_None)
2066    New->setStorageClass(Old->getStorageClass());
2067
2068  // Merge "pure" flag.
2069  if (Old->isPure())
2070    New->setPure();
2071
2072  // Merge attributes from the parameters.  These can mismatch with K&R
2073  // declarations.
2074  if (New->getNumParams() == Old->getNumParams())
2075    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2076      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2077                               Context);
2078
2079  if (getLangOptions().CPlusPlus)
2080    return MergeCXXFunctionDecl(New, Old);
2081
2082  return false;
2083}
2084
2085
2086void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2087                                ObjCMethodDecl *oldMethod) {
2088  // We don't want to merge unavailable and deprecated attributes
2089  // except from interface to implementation.
2090  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2091
2092  // Merge the attributes.
2093  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2094
2095  // Merge attributes from the parameters.
2096  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2097  for (ObjCMethodDecl::param_iterator
2098         ni = newMethod->param_begin(), ne = newMethod->param_end();
2099       ni != ne; ++ni, ++oi)
2100    mergeParamDeclAttributes(*ni, *oi, Context);
2101
2102  CheckObjCMethodOverride(newMethod, oldMethod, true);
2103}
2104
2105/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2106/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2107/// emitting diagnostics as appropriate.
2108///
2109/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2110/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2111/// check them before the initializer is attached.
2112///
2113void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2114  if (New->isInvalidDecl() || Old->isInvalidDecl())
2115    return;
2116
2117  QualType MergedT;
2118  if (getLangOptions().CPlusPlus) {
2119    AutoType *AT = New->getType()->getContainedAutoType();
2120    if (AT && !AT->isDeduced()) {
2121      // We don't know what the new type is until the initializer is attached.
2122      return;
2123    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2124      // These could still be something that needs exception specs checked.
2125      return MergeVarDeclExceptionSpecs(New, Old);
2126    }
2127    // C++ [basic.link]p10:
2128    //   [...] the types specified by all declarations referring to a given
2129    //   object or function shall be identical, except that declarations for an
2130    //   array object can specify array types that differ by the presence or
2131    //   absence of a major array bound (8.3.4).
2132    else if (Old->getType()->isIncompleteArrayType() &&
2133             New->getType()->isArrayType()) {
2134      CanQual<ArrayType> OldArray
2135        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2136      CanQual<ArrayType> NewArray
2137        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2138      if (OldArray->getElementType() == NewArray->getElementType())
2139        MergedT = New->getType();
2140    } else if (Old->getType()->isArrayType() &&
2141             New->getType()->isIncompleteArrayType()) {
2142      CanQual<ArrayType> OldArray
2143        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2144      CanQual<ArrayType> NewArray
2145        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2146      if (OldArray->getElementType() == NewArray->getElementType())
2147        MergedT = Old->getType();
2148    } else if (New->getType()->isObjCObjectPointerType()
2149               && Old->getType()->isObjCObjectPointerType()) {
2150        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2151                                                        Old->getType());
2152    }
2153  } else {
2154    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2155  }
2156  if (MergedT.isNull()) {
2157    Diag(New->getLocation(), diag::err_redefinition_different_type)
2158      << New->getDeclName();
2159    Diag(Old->getLocation(), diag::note_previous_definition);
2160    return New->setInvalidDecl();
2161  }
2162  New->setType(MergedT);
2163}
2164
2165/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2166/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2167/// situation, merging decls or emitting diagnostics as appropriate.
2168///
2169/// Tentative definition rules (C99 6.9.2p2) are checked by
2170/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2171/// definitions here, since the initializer hasn't been attached.
2172///
2173void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2174  // If the new decl is already invalid, don't do any other checking.
2175  if (New->isInvalidDecl())
2176    return;
2177
2178  // Verify the old decl was also a variable.
2179  VarDecl *Old = 0;
2180  if (!Previous.isSingleResult() ||
2181      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2182    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2183      << New->getDeclName();
2184    Diag(Previous.getRepresentativeDecl()->getLocation(),
2185         diag::note_previous_definition);
2186    return New->setInvalidDecl();
2187  }
2188
2189  // C++ [class.mem]p1:
2190  //   A member shall not be declared twice in the member-specification [...]
2191  //
2192  // Here, we need only consider static data members.
2193  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2194    Diag(New->getLocation(), diag::err_duplicate_member)
2195      << New->getIdentifier();
2196    Diag(Old->getLocation(), diag::note_previous_declaration);
2197    New->setInvalidDecl();
2198  }
2199
2200  mergeDeclAttributes(New, Old);
2201  // Warn if an already-declared variable is made a weak_import in a subsequent
2202  // declaration
2203  if (New->getAttr<WeakImportAttr>() &&
2204      Old->getStorageClass() == SC_None &&
2205      !Old->getAttr<WeakImportAttr>()) {
2206    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2207    Diag(Old->getLocation(), diag::note_previous_definition);
2208    // Remove weak_import attribute on new declaration.
2209    New->dropAttr<WeakImportAttr>();
2210  }
2211
2212  // Merge the types.
2213  MergeVarDeclTypes(New, Old);
2214  if (New->isInvalidDecl())
2215    return;
2216
2217  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2218  if (New->getStorageClass() == SC_Static &&
2219      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2220    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2221    Diag(Old->getLocation(), diag::note_previous_definition);
2222    return New->setInvalidDecl();
2223  }
2224  // C99 6.2.2p4:
2225  //   For an identifier declared with the storage-class specifier
2226  //   extern in a scope in which a prior declaration of that
2227  //   identifier is visible,23) if the prior declaration specifies
2228  //   internal or external linkage, the linkage of the identifier at
2229  //   the later declaration is the same as the linkage specified at
2230  //   the prior declaration. If no prior declaration is visible, or
2231  //   if the prior declaration specifies no linkage, then the
2232  //   identifier has external linkage.
2233  if (New->hasExternalStorage() && Old->hasLinkage())
2234    /* Okay */;
2235  else if (New->getStorageClass() != SC_Static &&
2236           Old->getStorageClass() == SC_Static) {
2237    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2238    Diag(Old->getLocation(), diag::note_previous_definition);
2239    return New->setInvalidDecl();
2240  }
2241
2242  // Check if extern is followed by non-extern and vice-versa.
2243  if (New->hasExternalStorage() &&
2244      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2245    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2246    Diag(Old->getLocation(), diag::note_previous_definition);
2247    return New->setInvalidDecl();
2248  }
2249  if (Old->hasExternalStorage() &&
2250      !New->hasLinkage() && New->isLocalVarDecl()) {
2251    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2252    Diag(Old->getLocation(), diag::note_previous_definition);
2253    return New->setInvalidDecl();
2254  }
2255
2256  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2257
2258  // FIXME: The test for external storage here seems wrong? We still
2259  // need to check for mismatches.
2260  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2261      // Don't complain about out-of-line definitions of static members.
2262      !(Old->getLexicalDeclContext()->isRecord() &&
2263        !New->getLexicalDeclContext()->isRecord())) {
2264    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2265    Diag(Old->getLocation(), diag::note_previous_definition);
2266    return New->setInvalidDecl();
2267  }
2268
2269  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2270    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2271    Diag(Old->getLocation(), diag::note_previous_definition);
2272  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2273    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2274    Diag(Old->getLocation(), diag::note_previous_definition);
2275  }
2276
2277  // C++ doesn't have tentative definitions, so go right ahead and check here.
2278  const VarDecl *Def;
2279  if (getLangOptions().CPlusPlus &&
2280      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2281      (Def = Old->getDefinition())) {
2282    Diag(New->getLocation(), diag::err_redefinition)
2283      << New->getDeclName();
2284    Diag(Def->getLocation(), diag::note_previous_definition);
2285    New->setInvalidDecl();
2286    return;
2287  }
2288  // c99 6.2.2 P4.
2289  // For an identifier declared with the storage-class specifier extern in a
2290  // scope in which a prior declaration of that identifier is visible, if
2291  // the prior declaration specifies internal or external linkage, the linkage
2292  // of the identifier at the later declaration is the same as the linkage
2293  // specified at the prior declaration.
2294  // FIXME. revisit this code.
2295  if (New->hasExternalStorage() &&
2296      Old->getLinkage() == InternalLinkage &&
2297      New->getDeclContext() == Old->getDeclContext())
2298    New->setStorageClass(Old->getStorageClass());
2299
2300  // Keep a chain of previous declarations.
2301  New->setPreviousDeclaration(Old);
2302
2303  // Inherit access appropriately.
2304  New->setAccess(Old->getAccess());
2305}
2306
2307/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2308/// no declarator (e.g. "struct foo;") is parsed.
2309Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2310                                       DeclSpec &DS) {
2311  return ParsedFreeStandingDeclSpec(S, AS, DS,
2312                                    MultiTemplateParamsArg(*this, 0, 0));
2313}
2314
2315/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2316/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2317/// parameters to cope with template friend declarations.
2318Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2319                                       DeclSpec &DS,
2320                                       MultiTemplateParamsArg TemplateParams) {
2321  Decl *TagD = 0;
2322  TagDecl *Tag = 0;
2323  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2324      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2325      DS.getTypeSpecType() == DeclSpec::TST_union ||
2326      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2327    TagD = DS.getRepAsDecl();
2328
2329    if (!TagD) // We probably had an error
2330      return 0;
2331
2332    // Note that the above type specs guarantee that the
2333    // type rep is a Decl, whereas in many of the others
2334    // it's a Type.
2335    if (isa<TagDecl>(TagD))
2336      Tag = cast<TagDecl>(TagD);
2337    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2338      Tag = CTD->getTemplatedDecl();
2339  }
2340
2341  if (Tag)
2342    Tag->setFreeStanding();
2343
2344  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2345    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2346    // or incomplete types shall not be restrict-qualified."
2347    if (TypeQuals & DeclSpec::TQ_restrict)
2348      Diag(DS.getRestrictSpecLoc(),
2349           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2350           << DS.getSourceRange();
2351  }
2352
2353  if (DS.isConstexprSpecified()) {
2354    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2355    // and definitions of functions and variables.
2356    if (Tag)
2357      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2358        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2359            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2360            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2361    else
2362      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2363    // Don't emit warnings after this error.
2364    return TagD;
2365  }
2366
2367  if (DS.isFriendSpecified()) {
2368    // If we're dealing with a decl but not a TagDecl, assume that
2369    // whatever routines created it handled the friendship aspect.
2370    if (TagD && !Tag)
2371      return 0;
2372    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2373  }
2374
2375  // Track whether we warned about the fact that there aren't any
2376  // declarators.
2377  bool emittedWarning = false;
2378
2379  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2380    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2381        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2382      if (getLangOptions().CPlusPlus ||
2383          Record->getDeclContext()->isRecord())
2384        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2385
2386      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2387        << DS.getSourceRange();
2388      emittedWarning = true;
2389    }
2390  }
2391
2392  // Check for Microsoft C extension: anonymous struct.
2393  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2394      CurContext->isRecord() &&
2395      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2396    // Handle 2 kinds of anonymous struct:
2397    //   struct STRUCT;
2398    // and
2399    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2400    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2401    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2402        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2403         DS.getRepAsType().get()->isStructureType())) {
2404      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2405        << DS.getSourceRange();
2406      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2407    }
2408  }
2409
2410  if (getLangOptions().CPlusPlus &&
2411      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2412    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2413      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2414          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2415        Diag(Enum->getLocation(), diag::ext_no_declarators)
2416          << DS.getSourceRange();
2417        emittedWarning = true;
2418      }
2419
2420  // Skip all the checks below if we have a type error.
2421  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2422
2423  if (!DS.isMissingDeclaratorOk()) {
2424    // Warn about typedefs of enums without names, since this is an
2425    // extension in both Microsoft and GNU.
2426    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2427        Tag && isa<EnumDecl>(Tag)) {
2428      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2429        << DS.getSourceRange();
2430      return Tag;
2431    }
2432
2433    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2434      << DS.getSourceRange();
2435    emittedWarning = true;
2436  }
2437
2438  // We're going to complain about a bunch of spurious specifiers;
2439  // only do this if we're declaring a tag, because otherwise we
2440  // should be getting diag::ext_no_declarators.
2441  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2442    return TagD;
2443
2444  // Note that a linkage-specification sets a storage class, but
2445  // 'extern "C" struct foo;' is actually valid and not theoretically
2446  // useless.
2447  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2448    if (!DS.isExternInLinkageSpec())
2449      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2450        << DeclSpec::getSpecifierName(scs);
2451
2452  if (DS.isThreadSpecified())
2453    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2454  if (DS.getTypeQualifiers()) {
2455    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2456      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2457    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2458      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2459    // Restrict is covered above.
2460  }
2461  if (DS.isInlineSpecified())
2462    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2463  if (DS.isVirtualSpecified())
2464    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2465  if (DS.isExplicitSpecified())
2466    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2467
2468  if (DS.isModulePrivateSpecified() &&
2469      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2470    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2471      << Tag->getTagKind()
2472      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2473
2474  // Warn about ignored type attributes, for example:
2475  // __attribute__((aligned)) struct A;
2476  // Attributes should be placed after tag to apply to type declaration.
2477  if (!DS.getAttributes().empty()) {
2478    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2479    if (TypeSpecType == DeclSpec::TST_class ||
2480        TypeSpecType == DeclSpec::TST_struct ||
2481        TypeSpecType == DeclSpec::TST_union ||
2482        TypeSpecType == DeclSpec::TST_enum) {
2483      AttributeList* attrs = DS.getAttributes().getList();
2484      while (attrs) {
2485        Diag(attrs->getScopeLoc(),
2486             diag::warn_declspec_attribute_ignored)
2487        << attrs->getName()
2488        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2489            TypeSpecType == DeclSpec::TST_struct ? 1 :
2490            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2491        attrs = attrs->getNext();
2492      }
2493    }
2494  }
2495
2496  return TagD;
2497}
2498
2499/// We are trying to inject an anonymous member into the given scope;
2500/// check if there's an existing declaration that can't be overloaded.
2501///
2502/// \return true if this is a forbidden redeclaration
2503static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2504                                         Scope *S,
2505                                         DeclContext *Owner,
2506                                         DeclarationName Name,
2507                                         SourceLocation NameLoc,
2508                                         unsigned diagnostic) {
2509  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2510                 Sema::ForRedeclaration);
2511  if (!SemaRef.LookupName(R, S)) return false;
2512
2513  if (R.getAsSingle<TagDecl>())
2514    return false;
2515
2516  // Pick a representative declaration.
2517  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2518  assert(PrevDecl && "Expected a non-null Decl");
2519
2520  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2521    return false;
2522
2523  SemaRef.Diag(NameLoc, diagnostic) << Name;
2524  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2525
2526  return true;
2527}
2528
2529/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2530/// anonymous struct or union AnonRecord into the owning context Owner
2531/// and scope S. This routine will be invoked just after we realize
2532/// that an unnamed union or struct is actually an anonymous union or
2533/// struct, e.g.,
2534///
2535/// @code
2536/// union {
2537///   int i;
2538///   float f;
2539/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2540///    // f into the surrounding scope.x
2541/// @endcode
2542///
2543/// This routine is recursive, injecting the names of nested anonymous
2544/// structs/unions into the owning context and scope as well.
2545static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2546                                                DeclContext *Owner,
2547                                                RecordDecl *AnonRecord,
2548                                                AccessSpecifier AS,
2549                              SmallVector<NamedDecl*, 2> &Chaining,
2550                                                      bool MSAnonStruct) {
2551  unsigned diagKind
2552    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2553                            : diag::err_anonymous_struct_member_redecl;
2554
2555  bool Invalid = false;
2556
2557  // Look every FieldDecl and IndirectFieldDecl with a name.
2558  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2559                               DEnd = AnonRecord->decls_end();
2560       D != DEnd; ++D) {
2561    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2562        cast<NamedDecl>(*D)->getDeclName()) {
2563      ValueDecl *VD = cast<ValueDecl>(*D);
2564      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2565                                       VD->getLocation(), diagKind)) {
2566        // C++ [class.union]p2:
2567        //   The names of the members of an anonymous union shall be
2568        //   distinct from the names of any other entity in the
2569        //   scope in which the anonymous union is declared.
2570        Invalid = true;
2571      } else {
2572        // C++ [class.union]p2:
2573        //   For the purpose of name lookup, after the anonymous union
2574        //   definition, the members of the anonymous union are
2575        //   considered to have been defined in the scope in which the
2576        //   anonymous union is declared.
2577        unsigned OldChainingSize = Chaining.size();
2578        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2579          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2580               PE = IF->chain_end(); PI != PE; ++PI)
2581            Chaining.push_back(*PI);
2582        else
2583          Chaining.push_back(VD);
2584
2585        assert(Chaining.size() >= 2);
2586        NamedDecl **NamedChain =
2587          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2588        for (unsigned i = 0; i < Chaining.size(); i++)
2589          NamedChain[i] = Chaining[i];
2590
2591        IndirectFieldDecl* IndirectField =
2592          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2593                                    VD->getIdentifier(), VD->getType(),
2594                                    NamedChain, Chaining.size());
2595
2596        IndirectField->setAccess(AS);
2597        IndirectField->setImplicit();
2598        SemaRef.PushOnScopeChains(IndirectField, S);
2599
2600        // That includes picking up the appropriate access specifier.
2601        if (AS != AS_none) IndirectField->setAccess(AS);
2602
2603        Chaining.resize(OldChainingSize);
2604      }
2605    }
2606  }
2607
2608  return Invalid;
2609}
2610
2611/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2612/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2613/// illegal input values are mapped to SC_None.
2614static StorageClass
2615StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2616  switch (StorageClassSpec) {
2617  case DeclSpec::SCS_unspecified:    return SC_None;
2618  case DeclSpec::SCS_extern:         return SC_Extern;
2619  case DeclSpec::SCS_static:         return SC_Static;
2620  case DeclSpec::SCS_auto:           return SC_Auto;
2621  case DeclSpec::SCS_register:       return SC_Register;
2622  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2623    // Illegal SCSs map to None: error reporting is up to the caller.
2624  case DeclSpec::SCS_mutable:        // Fall through.
2625  case DeclSpec::SCS_typedef:        return SC_None;
2626  }
2627  llvm_unreachable("unknown storage class specifier");
2628}
2629
2630/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2631/// a StorageClass. Any error reporting is up to the caller:
2632/// illegal input values are mapped to SC_None.
2633static StorageClass
2634StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2635  switch (StorageClassSpec) {
2636  case DeclSpec::SCS_unspecified:    return SC_None;
2637  case DeclSpec::SCS_extern:         return SC_Extern;
2638  case DeclSpec::SCS_static:         return SC_Static;
2639  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2640    // Illegal SCSs map to None: error reporting is up to the caller.
2641  case DeclSpec::SCS_auto:           // Fall through.
2642  case DeclSpec::SCS_mutable:        // Fall through.
2643  case DeclSpec::SCS_register:       // Fall through.
2644  case DeclSpec::SCS_typedef:        return SC_None;
2645  }
2646  llvm_unreachable("unknown storage class specifier");
2647}
2648
2649/// BuildAnonymousStructOrUnion - Handle the declaration of an
2650/// anonymous structure or union. Anonymous unions are a C++ feature
2651/// (C++ [class.union]) and a GNU C extension; anonymous structures
2652/// are a GNU C and GNU C++ extension.
2653Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2654                                             AccessSpecifier AS,
2655                                             RecordDecl *Record) {
2656  DeclContext *Owner = Record->getDeclContext();
2657
2658  // Diagnose whether this anonymous struct/union is an extension.
2659  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2660    Diag(Record->getLocation(), diag::ext_anonymous_union);
2661  else if (!Record->isUnion())
2662    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2663
2664  // C and C++ require different kinds of checks for anonymous
2665  // structs/unions.
2666  bool Invalid = false;
2667  if (getLangOptions().CPlusPlus) {
2668    const char* PrevSpec = 0;
2669    unsigned DiagID;
2670    if (Record->isUnion()) {
2671      // C++ [class.union]p6:
2672      //   Anonymous unions declared in a named namespace or in the
2673      //   global namespace shall be declared static.
2674      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2675          (isa<TranslationUnitDecl>(Owner) ||
2676           (isa<NamespaceDecl>(Owner) &&
2677            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2678        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2679          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2680
2681        // Recover by adding 'static'.
2682        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2683                               PrevSpec, DiagID);
2684      }
2685      // C++ [class.union]p6:
2686      //   A storage class is not allowed in a declaration of an
2687      //   anonymous union in a class scope.
2688      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2689               isa<RecordDecl>(Owner)) {
2690        Diag(DS.getStorageClassSpecLoc(),
2691             diag::err_anonymous_union_with_storage_spec)
2692          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2693
2694        // Recover by removing the storage specifier.
2695        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2696                               SourceLocation(),
2697                               PrevSpec, DiagID);
2698      }
2699    }
2700
2701    // Ignore const/volatile/restrict qualifiers.
2702    if (DS.getTypeQualifiers()) {
2703      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2704        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2705          << Record->isUnion() << 0
2706          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2707      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2708        Diag(DS.getVolatileSpecLoc(),
2709             diag::ext_anonymous_struct_union_qualified)
2710          << Record->isUnion() << 1
2711          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2712      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2713        Diag(DS.getRestrictSpecLoc(),
2714             diag::ext_anonymous_struct_union_qualified)
2715          << Record->isUnion() << 2
2716          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2717
2718      DS.ClearTypeQualifiers();
2719    }
2720
2721    // C++ [class.union]p2:
2722    //   The member-specification of an anonymous union shall only
2723    //   define non-static data members. [Note: nested types and
2724    //   functions cannot be declared within an anonymous union. ]
2725    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2726                                 MemEnd = Record->decls_end();
2727         Mem != MemEnd; ++Mem) {
2728      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2729        // C++ [class.union]p3:
2730        //   An anonymous union shall not have private or protected
2731        //   members (clause 11).
2732        assert(FD->getAccess() != AS_none);
2733        if (FD->getAccess() != AS_public) {
2734          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2735            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2736          Invalid = true;
2737        }
2738
2739        // C++ [class.union]p1
2740        //   An object of a class with a non-trivial constructor, a non-trivial
2741        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2742        //   assignment operator cannot be a member of a union, nor can an
2743        //   array of such objects.
2744        if (CheckNontrivialField(FD))
2745          Invalid = true;
2746      } else if ((*Mem)->isImplicit()) {
2747        // Any implicit members are fine.
2748      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2749        // This is a type that showed up in an
2750        // elaborated-type-specifier inside the anonymous struct or
2751        // union, but which actually declares a type outside of the
2752        // anonymous struct or union. It's okay.
2753      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2754        if (!MemRecord->isAnonymousStructOrUnion() &&
2755            MemRecord->getDeclName()) {
2756          // Visual C++ allows type definition in anonymous struct or union.
2757          if (getLangOptions().MicrosoftExt)
2758            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2759              << (int)Record->isUnion();
2760          else {
2761            // This is a nested type declaration.
2762            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2763              << (int)Record->isUnion();
2764            Invalid = true;
2765          }
2766        }
2767      } else if (isa<AccessSpecDecl>(*Mem)) {
2768        // Any access specifier is fine.
2769      } else {
2770        // We have something that isn't a non-static data
2771        // member. Complain about it.
2772        unsigned DK = diag::err_anonymous_record_bad_member;
2773        if (isa<TypeDecl>(*Mem))
2774          DK = diag::err_anonymous_record_with_type;
2775        else if (isa<FunctionDecl>(*Mem))
2776          DK = diag::err_anonymous_record_with_function;
2777        else if (isa<VarDecl>(*Mem))
2778          DK = diag::err_anonymous_record_with_static;
2779
2780        // Visual C++ allows type definition in anonymous struct or union.
2781        if (getLangOptions().MicrosoftExt &&
2782            DK == diag::err_anonymous_record_with_type)
2783          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2784            << (int)Record->isUnion();
2785        else {
2786          Diag((*Mem)->getLocation(), DK)
2787              << (int)Record->isUnion();
2788          Invalid = true;
2789        }
2790      }
2791    }
2792  }
2793
2794  if (!Record->isUnion() && !Owner->isRecord()) {
2795    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2796      << (int)getLangOptions().CPlusPlus;
2797    Invalid = true;
2798  }
2799
2800  // Mock up a declarator.
2801  Declarator Dc(DS, Declarator::MemberContext);
2802  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2803  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2804
2805  // Create a declaration for this anonymous struct/union.
2806  NamedDecl *Anon = 0;
2807  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2808    Anon = FieldDecl::Create(Context, OwningClass,
2809                             DS.getSourceRange().getBegin(),
2810                             Record->getLocation(),
2811                             /*IdentifierInfo=*/0,
2812                             Context.getTypeDeclType(Record),
2813                             TInfo,
2814                             /*BitWidth=*/0, /*Mutable=*/false,
2815                             /*HasInit=*/false);
2816    Anon->setAccess(AS);
2817    if (getLangOptions().CPlusPlus)
2818      FieldCollector->Add(cast<FieldDecl>(Anon));
2819  } else {
2820    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2821    assert(SCSpec != DeclSpec::SCS_typedef &&
2822           "Parser allowed 'typedef' as storage class VarDecl.");
2823    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2824    if (SCSpec == DeclSpec::SCS_mutable) {
2825      // mutable can only appear on non-static class members, so it's always
2826      // an error here
2827      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2828      Invalid = true;
2829      SC = SC_None;
2830    }
2831    SCSpec = DS.getStorageClassSpecAsWritten();
2832    VarDecl::StorageClass SCAsWritten
2833      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2834
2835    Anon = VarDecl::Create(Context, Owner,
2836                           DS.getSourceRange().getBegin(),
2837                           Record->getLocation(), /*IdentifierInfo=*/0,
2838                           Context.getTypeDeclType(Record),
2839                           TInfo, SC, SCAsWritten);
2840
2841    // Default-initialize the implicit variable. This initialization will be
2842    // trivial in almost all cases, except if a union member has an in-class
2843    // initializer:
2844    //   union { int n = 0; };
2845    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2846  }
2847  Anon->setImplicit();
2848
2849  // Add the anonymous struct/union object to the current
2850  // context. We'll be referencing this object when we refer to one of
2851  // its members.
2852  Owner->addDecl(Anon);
2853
2854  // Inject the members of the anonymous struct/union into the owning
2855  // context and into the identifier resolver chain for name lookup
2856  // purposes.
2857  SmallVector<NamedDecl*, 2> Chain;
2858  Chain.push_back(Anon);
2859
2860  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2861                                          Chain, false))
2862    Invalid = true;
2863
2864  // Mark this as an anonymous struct/union type. Note that we do not
2865  // do this until after we have already checked and injected the
2866  // members of this anonymous struct/union type, because otherwise
2867  // the members could be injected twice: once by DeclContext when it
2868  // builds its lookup table, and once by
2869  // InjectAnonymousStructOrUnionMembers.
2870  Record->setAnonymousStructOrUnion(true);
2871
2872  if (Invalid)
2873    Anon->setInvalidDecl();
2874
2875  return Anon;
2876}
2877
2878/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2879/// Microsoft C anonymous structure.
2880/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2881/// Example:
2882///
2883/// struct A { int a; };
2884/// struct B { struct A; int b; };
2885///
2886/// void foo() {
2887///   B var;
2888///   var.a = 3;
2889/// }
2890///
2891Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2892                                           RecordDecl *Record) {
2893
2894  // If there is no Record, get the record via the typedef.
2895  if (!Record)
2896    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2897
2898  // Mock up a declarator.
2899  Declarator Dc(DS, Declarator::TypeNameContext);
2900  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2901  assert(TInfo && "couldn't build declarator info for anonymous struct");
2902
2903  // Create a declaration for this anonymous struct.
2904  NamedDecl* Anon = FieldDecl::Create(Context,
2905                             cast<RecordDecl>(CurContext),
2906                             DS.getSourceRange().getBegin(),
2907                             DS.getSourceRange().getBegin(),
2908                             /*IdentifierInfo=*/0,
2909                             Context.getTypeDeclType(Record),
2910                             TInfo,
2911                             /*BitWidth=*/0, /*Mutable=*/false,
2912                             /*HasInit=*/false);
2913  Anon->setImplicit();
2914
2915  // Add the anonymous struct object to the current context.
2916  CurContext->addDecl(Anon);
2917
2918  // Inject the members of the anonymous struct into the current
2919  // context and into the identifier resolver chain for name lookup
2920  // purposes.
2921  SmallVector<NamedDecl*, 2> Chain;
2922  Chain.push_back(Anon);
2923
2924  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2925                                          Record->getDefinition(),
2926                                          AS_none, Chain, true))
2927    Anon->setInvalidDecl();
2928
2929  return Anon;
2930}
2931
2932/// GetNameForDeclarator - Determine the full declaration name for the
2933/// given Declarator.
2934DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2935  return GetNameFromUnqualifiedId(D.getName());
2936}
2937
2938/// \brief Retrieves the declaration name from a parsed unqualified-id.
2939DeclarationNameInfo
2940Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2941  DeclarationNameInfo NameInfo;
2942  NameInfo.setLoc(Name.StartLocation);
2943
2944  switch (Name.getKind()) {
2945
2946  case UnqualifiedId::IK_ImplicitSelfParam:
2947  case UnqualifiedId::IK_Identifier:
2948    NameInfo.setName(Name.Identifier);
2949    NameInfo.setLoc(Name.StartLocation);
2950    return NameInfo;
2951
2952  case UnqualifiedId::IK_OperatorFunctionId:
2953    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2954                                           Name.OperatorFunctionId.Operator));
2955    NameInfo.setLoc(Name.StartLocation);
2956    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2957      = Name.OperatorFunctionId.SymbolLocations[0];
2958    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2959      = Name.EndLocation.getRawEncoding();
2960    return NameInfo;
2961
2962  case UnqualifiedId::IK_LiteralOperatorId:
2963    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2964                                                           Name.Identifier));
2965    NameInfo.setLoc(Name.StartLocation);
2966    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2967    return NameInfo;
2968
2969  case UnqualifiedId::IK_ConversionFunctionId: {
2970    TypeSourceInfo *TInfo;
2971    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2972    if (Ty.isNull())
2973      return DeclarationNameInfo();
2974    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2975                                               Context.getCanonicalType(Ty)));
2976    NameInfo.setLoc(Name.StartLocation);
2977    NameInfo.setNamedTypeInfo(TInfo);
2978    return NameInfo;
2979  }
2980
2981  case UnqualifiedId::IK_ConstructorName: {
2982    TypeSourceInfo *TInfo;
2983    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2984    if (Ty.isNull())
2985      return DeclarationNameInfo();
2986    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2987                                              Context.getCanonicalType(Ty)));
2988    NameInfo.setLoc(Name.StartLocation);
2989    NameInfo.setNamedTypeInfo(TInfo);
2990    return NameInfo;
2991  }
2992
2993  case UnqualifiedId::IK_ConstructorTemplateId: {
2994    // In well-formed code, we can only have a constructor
2995    // template-id that refers to the current context, so go there
2996    // to find the actual type being constructed.
2997    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2998    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2999      return DeclarationNameInfo();
3000
3001    // Determine the type of the class being constructed.
3002    QualType CurClassType = Context.getTypeDeclType(CurClass);
3003
3004    // FIXME: Check two things: that the template-id names the same type as
3005    // CurClassType, and that the template-id does not occur when the name
3006    // was qualified.
3007
3008    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3009                                    Context.getCanonicalType(CurClassType)));
3010    NameInfo.setLoc(Name.StartLocation);
3011    // FIXME: should we retrieve TypeSourceInfo?
3012    NameInfo.setNamedTypeInfo(0);
3013    return NameInfo;
3014  }
3015
3016  case UnqualifiedId::IK_DestructorName: {
3017    TypeSourceInfo *TInfo;
3018    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3019    if (Ty.isNull())
3020      return DeclarationNameInfo();
3021    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3022                                              Context.getCanonicalType(Ty)));
3023    NameInfo.setLoc(Name.StartLocation);
3024    NameInfo.setNamedTypeInfo(TInfo);
3025    return NameInfo;
3026  }
3027
3028  case UnqualifiedId::IK_TemplateId: {
3029    TemplateName TName = Name.TemplateId->Template.get();
3030    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3031    return Context.getNameForTemplate(TName, TNameLoc);
3032  }
3033
3034  } // switch (Name.getKind())
3035
3036  llvm_unreachable("Unknown name kind");
3037}
3038
3039static QualType getCoreType(QualType Ty) {
3040  do {
3041    if (Ty->isPointerType() || Ty->isReferenceType())
3042      Ty = Ty->getPointeeType();
3043    else if (Ty->isArrayType())
3044      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3045    else
3046      return Ty.withoutLocalFastQualifiers();
3047  } while (true);
3048}
3049
3050/// hasSimilarParameters - Determine whether the C++ functions Declaration
3051/// and Definition have "nearly" matching parameters. This heuristic is
3052/// used to improve diagnostics in the case where an out-of-line function
3053/// definition doesn't match any declaration within the class or namespace.
3054/// Also sets Params to the list of indices to the parameters that differ
3055/// between the declaration and the definition. If hasSimilarParameters
3056/// returns true and Params is empty, then all of the parameters match.
3057static bool hasSimilarParameters(ASTContext &Context,
3058                                     FunctionDecl *Declaration,
3059                                     FunctionDecl *Definition,
3060                                     llvm::SmallVectorImpl<unsigned> &Params) {
3061  Params.clear();
3062  if (Declaration->param_size() != Definition->param_size())
3063    return false;
3064  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3065    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3066    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3067
3068    // The parameter types are identical
3069    if (Context.hasSameType(DefParamTy, DeclParamTy))
3070      continue;
3071
3072    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3073    QualType DefParamBaseTy = getCoreType(DefParamTy);
3074    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3075    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3076
3077    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3078        (DeclTyName && DeclTyName == DefTyName))
3079      Params.push_back(Idx);
3080    else  // The two parameters aren't even close
3081      return false;
3082  }
3083
3084  return true;
3085}
3086
3087/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3088/// declarator needs to be rebuilt in the current instantiation.
3089/// Any bits of declarator which appear before the name are valid for
3090/// consideration here.  That's specifically the type in the decl spec
3091/// and the base type in any member-pointer chunks.
3092static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3093                                                    DeclarationName Name) {
3094  // The types we specifically need to rebuild are:
3095  //   - typenames, typeofs, and decltypes
3096  //   - types which will become injected class names
3097  // Of course, we also need to rebuild any type referencing such a
3098  // type.  It's safest to just say "dependent", but we call out a
3099  // few cases here.
3100
3101  DeclSpec &DS = D.getMutableDeclSpec();
3102  switch (DS.getTypeSpecType()) {
3103  case DeclSpec::TST_typename:
3104  case DeclSpec::TST_typeofType:
3105  case DeclSpec::TST_decltype:
3106  case DeclSpec::TST_underlyingType:
3107  case DeclSpec::TST_atomic: {
3108    // Grab the type from the parser.
3109    TypeSourceInfo *TSI = 0;
3110    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3111    if (T.isNull() || !T->isDependentType()) break;
3112
3113    // Make sure there's a type source info.  This isn't really much
3114    // of a waste; most dependent types should have type source info
3115    // attached already.
3116    if (!TSI)
3117      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3118
3119    // Rebuild the type in the current instantiation.
3120    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3121    if (!TSI) return true;
3122
3123    // Store the new type back in the decl spec.
3124    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3125    DS.UpdateTypeRep(LocType);
3126    break;
3127  }
3128
3129  case DeclSpec::TST_typeofExpr: {
3130    Expr *E = DS.getRepAsExpr();
3131    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3132    if (Result.isInvalid()) return true;
3133    DS.UpdateExprRep(Result.get());
3134    break;
3135  }
3136
3137  default:
3138    // Nothing to do for these decl specs.
3139    break;
3140  }
3141
3142  // It doesn't matter what order we do this in.
3143  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3144    DeclaratorChunk &Chunk = D.getTypeObject(I);
3145
3146    // The only type information in the declarator which can come
3147    // before the declaration name is the base type of a member
3148    // pointer.
3149    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3150      continue;
3151
3152    // Rebuild the scope specifier in-place.
3153    CXXScopeSpec &SS = Chunk.Mem.Scope();
3154    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3155      return true;
3156  }
3157
3158  return false;
3159}
3160
3161Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3162  D.setFunctionDefinitionKind(FDK_Declaration);
3163  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3164
3165  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3166      Dcl->getDeclContext()->isFileContext())
3167    Dcl->setTopLevelDeclInObjCContainer();
3168
3169  return Dcl;
3170}
3171
3172/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3173///   If T is the name of a class, then each of the following shall have a
3174///   name different from T:
3175///     - every static data member of class T;
3176///     - every member function of class T
3177///     - every member of class T that is itself a type;
3178/// \returns true if the declaration name violates these rules.
3179bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3180                                   DeclarationNameInfo NameInfo) {
3181  DeclarationName Name = NameInfo.getName();
3182
3183  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3184    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3185      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3186      return true;
3187    }
3188
3189  return false;
3190}
3191
3192Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3193                             MultiTemplateParamsArg TemplateParamLists) {
3194  // TODO: consider using NameInfo for diagnostic.
3195  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3196  DeclarationName Name = NameInfo.getName();
3197
3198  // All of these full declarators require an identifier.  If it doesn't have
3199  // one, the ParsedFreeStandingDeclSpec action should be used.
3200  if (!Name) {
3201    if (!D.isInvalidType())  // Reject this if we think it is valid.
3202      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3203           diag::err_declarator_need_ident)
3204        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3205    return 0;
3206  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3207    return 0;
3208
3209  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3210  // we find one that is.
3211  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3212         (S->getFlags() & Scope::TemplateParamScope) != 0)
3213    S = S->getParent();
3214
3215  DeclContext *DC = CurContext;
3216  if (D.getCXXScopeSpec().isInvalid())
3217    D.setInvalidType();
3218  else if (D.getCXXScopeSpec().isSet()) {
3219    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3220                                        UPPC_DeclarationQualifier))
3221      return 0;
3222
3223    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3224    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3225    if (!DC) {
3226      // If we could not compute the declaration context, it's because the
3227      // declaration context is dependent but does not refer to a class,
3228      // class template, or class template partial specialization. Complain
3229      // and return early, to avoid the coming semantic disaster.
3230      Diag(D.getIdentifierLoc(),
3231           diag::err_template_qualified_declarator_no_match)
3232        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3233        << D.getCXXScopeSpec().getRange();
3234      return 0;
3235    }
3236    bool IsDependentContext = DC->isDependentContext();
3237
3238    if (!IsDependentContext &&
3239        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3240      return 0;
3241
3242    if (isa<CXXRecordDecl>(DC)) {
3243      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3244        Diag(D.getIdentifierLoc(),
3245             diag::err_member_def_undefined_record)
3246          << Name << DC << D.getCXXScopeSpec().getRange();
3247        D.setInvalidType();
3248      } else if (isa<CXXRecordDecl>(CurContext) &&
3249                 !D.getDeclSpec().isFriendSpecified()) {
3250        // The user provided a superfluous scope specifier inside a class
3251        // definition:
3252        //
3253        // class X {
3254        //   void X::f();
3255        // };
3256        if (CurContext->Equals(DC)) {
3257          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3258            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3259        } else {
3260          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3261            << Name << D.getCXXScopeSpec().getRange();
3262
3263          // C++ constructors and destructors with incorrect scopes can break
3264          // our AST invariants by having the wrong underlying types. If
3265          // that's the case, then drop this declaration entirely.
3266          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3267               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3268              !Context.hasSameType(Name.getCXXNameType(),
3269                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3270            return 0;
3271        }
3272
3273        // Pretend that this qualifier was not here.
3274        D.getCXXScopeSpec().clear();
3275      }
3276    }
3277
3278    // Check whether we need to rebuild the type of the given
3279    // declaration in the current instantiation.
3280    if (EnteringContext && IsDependentContext &&
3281        TemplateParamLists.size() != 0) {
3282      ContextRAII SavedContext(*this, DC);
3283      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3284        D.setInvalidType();
3285    }
3286  }
3287
3288  if (DiagnoseClassNameShadow(DC, NameInfo))
3289    // If this is a typedef, we'll end up spewing multiple diagnostics.
3290    // Just return early; it's safer.
3291    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3292      return 0;
3293
3294  NamedDecl *New;
3295
3296  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3297  QualType R = TInfo->getType();
3298
3299  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3300                                      UPPC_DeclarationType))
3301    D.setInvalidType();
3302
3303  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3304                        ForRedeclaration);
3305
3306  // See if this is a redefinition of a variable in the same scope.
3307  if (!D.getCXXScopeSpec().isSet()) {
3308    bool IsLinkageLookup = false;
3309
3310    // If the declaration we're planning to build will be a function
3311    // or object with linkage, then look for another declaration with
3312    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3313    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3314      /* Do nothing*/;
3315    else if (R->isFunctionType()) {
3316      if (CurContext->isFunctionOrMethod() ||
3317          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3318        IsLinkageLookup = true;
3319    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3320      IsLinkageLookup = true;
3321    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3322             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3323      IsLinkageLookup = true;
3324
3325    if (IsLinkageLookup)
3326      Previous.clear(LookupRedeclarationWithLinkage);
3327
3328    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3329  } else { // Something like "int foo::x;"
3330    LookupQualifiedName(Previous, DC);
3331
3332    // Don't consider using declarations as previous declarations for
3333    // out-of-line members.
3334    RemoveUsingDecls(Previous);
3335
3336    // C++ 7.3.1.2p2:
3337    // Members (including explicit specializations of templates) of a named
3338    // namespace can also be defined outside that namespace by explicit
3339    // qualification of the name being defined, provided that the entity being
3340    // defined was already declared in the namespace and the definition appears
3341    // after the point of declaration in a namespace that encloses the
3342    // declarations namespace.
3343    //
3344    // Note that we only check the context at this point. We don't yet
3345    // have enough information to make sure that PrevDecl is actually
3346    // the declaration we want to match. For example, given:
3347    //
3348    //   class X {
3349    //     void f();
3350    //     void f(float);
3351    //   };
3352    //
3353    //   void X::f(int) { } // ill-formed
3354    //
3355    // In this case, PrevDecl will point to the overload set
3356    // containing the two f's declared in X, but neither of them
3357    // matches.
3358
3359    // First check whether we named the global scope.
3360    if (isa<TranslationUnitDecl>(DC)) {
3361      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3362        << Name << D.getCXXScopeSpec().getRange();
3363    } else {
3364      DeclContext *Cur = CurContext;
3365      while (isa<LinkageSpecDecl>(Cur))
3366        Cur = Cur->getParent();
3367      if (!Cur->Encloses(DC)) {
3368        // The qualifying scope doesn't enclose the original declaration.
3369        // Emit diagnostic based on current scope.
3370        SourceLocation L = D.getIdentifierLoc();
3371        SourceRange R = D.getCXXScopeSpec().getRange();
3372        if (isa<FunctionDecl>(Cur))
3373          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3374        else
3375          Diag(L, diag::err_invalid_declarator_scope)
3376            << Name << cast<NamedDecl>(DC) << R;
3377        D.setInvalidType();
3378      }
3379
3380      // C++11 8.3p1:
3381      // ... "The nested-name-specifier of the qualified declarator-id shall
3382      // not begin with a decltype-specifer"
3383      NestedNameSpecifierLoc SpecLoc =
3384            D.getCXXScopeSpec().getWithLocInContext(Context);
3385      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3386                        "NestedNameSpecifierLoc");
3387      while (SpecLoc.getPrefix())
3388        SpecLoc = SpecLoc.getPrefix();
3389      if (dyn_cast_or_null<DecltypeType>(
3390            SpecLoc.getNestedNameSpecifier()->getAsType()))
3391        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3392          << SpecLoc.getTypeLoc().getSourceRange();
3393    }
3394  }
3395
3396  if (Previous.isSingleResult() &&
3397      Previous.getFoundDecl()->isTemplateParameter()) {
3398    // Maybe we will complain about the shadowed template parameter.
3399    if (!D.isInvalidType())
3400      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3401                                      Previous.getFoundDecl());
3402
3403    // Just pretend that we didn't see the previous declaration.
3404    Previous.clear();
3405  }
3406
3407  // In C++, the previous declaration we find might be a tag type
3408  // (class or enum). In this case, the new declaration will hide the
3409  // tag type. Note that this does does not apply if we're declaring a
3410  // typedef (C++ [dcl.typedef]p4).
3411  if (Previous.isSingleTagDecl() &&
3412      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3413    Previous.clear();
3414
3415  bool AddToScope = true;
3416  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3417    if (TemplateParamLists.size()) {
3418      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3419      return 0;
3420    }
3421
3422    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3423  } else if (R->isFunctionType()) {
3424    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3425                                  move(TemplateParamLists),
3426                                  AddToScope);
3427  } else {
3428    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3429                                  move(TemplateParamLists));
3430  }
3431
3432  if (New == 0)
3433    return 0;
3434
3435  // If this has an identifier and is not an invalid redeclaration or
3436  // function template specialization, add it to the scope stack.
3437  if (New->getDeclName() && AddToScope &&
3438       !(D.isRedeclaration() && New->isInvalidDecl()))
3439    PushOnScopeChains(New, S);
3440
3441  return New;
3442}
3443
3444/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3445/// types into constant array types in certain situations which would otherwise
3446/// be errors (for GCC compatibility).
3447static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3448                                                    ASTContext &Context,
3449                                                    bool &SizeIsNegative,
3450                                                    llvm::APSInt &Oversized) {
3451  // This method tries to turn a variable array into a constant
3452  // array even when the size isn't an ICE.  This is necessary
3453  // for compatibility with code that depends on gcc's buggy
3454  // constant expression folding, like struct {char x[(int)(char*)2];}
3455  SizeIsNegative = false;
3456  Oversized = 0;
3457
3458  if (T->isDependentType())
3459    return QualType();
3460
3461  QualifierCollector Qs;
3462  const Type *Ty = Qs.strip(T);
3463
3464  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3465    QualType Pointee = PTy->getPointeeType();
3466    QualType FixedType =
3467        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3468                                            Oversized);
3469    if (FixedType.isNull()) return FixedType;
3470    FixedType = Context.getPointerType(FixedType);
3471    return Qs.apply(Context, FixedType);
3472  }
3473  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3474    QualType Inner = PTy->getInnerType();
3475    QualType FixedType =
3476        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3477                                            Oversized);
3478    if (FixedType.isNull()) return FixedType;
3479    FixedType = Context.getParenType(FixedType);
3480    return Qs.apply(Context, FixedType);
3481  }
3482
3483  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3484  if (!VLATy)
3485    return QualType();
3486  // FIXME: We should probably handle this case
3487  if (VLATy->getElementType()->isVariablyModifiedType())
3488    return QualType();
3489
3490  llvm::APSInt Res;
3491  if (!VLATy->getSizeExpr() ||
3492      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3493    return QualType();
3494
3495  // Check whether the array size is negative.
3496  if (Res.isSigned() && Res.isNegative()) {
3497    SizeIsNegative = true;
3498    return QualType();
3499  }
3500
3501  // Check whether the array is too large to be addressed.
3502  unsigned ActiveSizeBits
3503    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3504                                              Res);
3505  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3506    Oversized = Res;
3507    return QualType();
3508  }
3509
3510  return Context.getConstantArrayType(VLATy->getElementType(),
3511                                      Res, ArrayType::Normal, 0);
3512}
3513
3514/// \brief Register the given locally-scoped external C declaration so
3515/// that it can be found later for redeclarations
3516void
3517Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3518                                       const LookupResult &Previous,
3519                                       Scope *S) {
3520  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3521         "Decl is not a locally-scoped decl!");
3522  // Note that we have a locally-scoped external with this name.
3523  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3524
3525  if (!Previous.isSingleResult())
3526    return;
3527
3528  NamedDecl *PrevDecl = Previous.getFoundDecl();
3529
3530  // If there was a previous declaration of this variable, it may be
3531  // in our identifier chain. Update the identifier chain with the new
3532  // declaration.
3533  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3534    // The previous declaration was found on the identifer resolver
3535    // chain, so remove it from its scope.
3536
3537    if (S->isDeclScope(PrevDecl)) {
3538      // Special case for redeclarations in the SAME scope.
3539      // Because this declaration is going to be added to the identifier chain
3540      // later, we should temporarily take it OFF the chain.
3541      IdResolver.RemoveDecl(ND);
3542
3543    } else {
3544      // Find the scope for the original declaration.
3545      while (S && !S->isDeclScope(PrevDecl))
3546        S = S->getParent();
3547    }
3548
3549    if (S)
3550      S->RemoveDecl(PrevDecl);
3551  }
3552}
3553
3554llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3555Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3556  if (ExternalSource) {
3557    // Load locally-scoped external decls from the external source.
3558    SmallVector<NamedDecl *, 4> Decls;
3559    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3560    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3561      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3562        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3563      if (Pos == LocallyScopedExternalDecls.end())
3564        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3565    }
3566  }
3567
3568  return LocallyScopedExternalDecls.find(Name);
3569}
3570
3571/// \brief Diagnose function specifiers on a declaration of an identifier that
3572/// does not identify a function.
3573void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3574  // FIXME: We should probably indicate the identifier in question to avoid
3575  // confusion for constructs like "inline int a(), b;"
3576  if (D.getDeclSpec().isInlineSpecified())
3577    Diag(D.getDeclSpec().getInlineSpecLoc(),
3578         diag::err_inline_non_function);
3579
3580  if (D.getDeclSpec().isVirtualSpecified())
3581    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3582         diag::err_virtual_non_function);
3583
3584  if (D.getDeclSpec().isExplicitSpecified())
3585    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3586         diag::err_explicit_non_function);
3587}
3588
3589NamedDecl*
3590Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3591                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3592  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3593  if (D.getCXXScopeSpec().isSet()) {
3594    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3595      << D.getCXXScopeSpec().getRange();
3596    D.setInvalidType();
3597    // Pretend we didn't see the scope specifier.
3598    DC = CurContext;
3599    Previous.clear();
3600  }
3601
3602  if (getLangOptions().CPlusPlus) {
3603    // Check that there are no default arguments (C++ only).
3604    CheckExtraCXXDefaultArguments(D);
3605  }
3606
3607  DiagnoseFunctionSpecifiers(D);
3608
3609  if (D.getDeclSpec().isThreadSpecified())
3610    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3611  if (D.getDeclSpec().isConstexprSpecified())
3612    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3613      << 1;
3614
3615  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3616    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3617      << D.getName().getSourceRange();
3618    return 0;
3619  }
3620
3621  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3622  if (!NewTD) return 0;
3623
3624  // Handle attributes prior to checking for duplicates in MergeVarDecl
3625  ProcessDeclAttributes(S, NewTD, D);
3626
3627  CheckTypedefForVariablyModifiedType(S, NewTD);
3628
3629  bool Redeclaration = D.isRedeclaration();
3630  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3631  D.setRedeclaration(Redeclaration);
3632  return ND;
3633}
3634
3635void
3636Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3637  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3638  // then it shall have block scope.
3639  // Note that variably modified types must be fixed before merging the decl so
3640  // that redeclarations will match.
3641  QualType T = NewTD->getUnderlyingType();
3642  if (T->isVariablyModifiedType()) {
3643    getCurFunction()->setHasBranchProtectedScope();
3644
3645    if (S->getFnParent() == 0) {
3646      bool SizeIsNegative;
3647      llvm::APSInt Oversized;
3648      QualType FixedTy =
3649          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3650                                              Oversized);
3651      if (!FixedTy.isNull()) {
3652        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3653        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3654      } else {
3655        if (SizeIsNegative)
3656          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3657        else if (T->isVariableArrayType())
3658          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3659        else if (Oversized.getBoolValue())
3660          Diag(NewTD->getLocation(), diag::err_array_too_large)
3661            << Oversized.toString(10);
3662        else
3663          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3664        NewTD->setInvalidDecl();
3665      }
3666    }
3667  }
3668}
3669
3670
3671/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3672/// declares a typedef-name, either using the 'typedef' type specifier or via
3673/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3674NamedDecl*
3675Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3676                           LookupResult &Previous, bool &Redeclaration) {
3677  // Merge the decl with the existing one if appropriate. If the decl is
3678  // in an outer scope, it isn't the same thing.
3679  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3680                       /*ExplicitInstantiationOrSpecialization=*/false);
3681  if (!Previous.empty()) {
3682    Redeclaration = true;
3683    MergeTypedefNameDecl(NewTD, Previous);
3684  }
3685
3686  // If this is the C FILE type, notify the AST context.
3687  if (IdentifierInfo *II = NewTD->getIdentifier())
3688    if (!NewTD->isInvalidDecl() &&
3689        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3690      if (II->isStr("FILE"))
3691        Context.setFILEDecl(NewTD);
3692      else if (II->isStr("jmp_buf"))
3693        Context.setjmp_bufDecl(NewTD);
3694      else if (II->isStr("sigjmp_buf"))
3695        Context.setsigjmp_bufDecl(NewTD);
3696      else if (II->isStr("ucontext_t"))
3697        Context.setucontext_tDecl(NewTD);
3698      else if (II->isStr("__builtin_va_list"))
3699        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3700    }
3701
3702  return NewTD;
3703}
3704
3705/// \brief Determines whether the given declaration is an out-of-scope
3706/// previous declaration.
3707///
3708/// This routine should be invoked when name lookup has found a
3709/// previous declaration (PrevDecl) that is not in the scope where a
3710/// new declaration by the same name is being introduced. If the new
3711/// declaration occurs in a local scope, previous declarations with
3712/// linkage may still be considered previous declarations (C99
3713/// 6.2.2p4-5, C++ [basic.link]p6).
3714///
3715/// \param PrevDecl the previous declaration found by name
3716/// lookup
3717///
3718/// \param DC the context in which the new declaration is being
3719/// declared.
3720///
3721/// \returns true if PrevDecl is an out-of-scope previous declaration
3722/// for a new delcaration with the same name.
3723static bool
3724isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3725                                ASTContext &Context) {
3726  if (!PrevDecl)
3727    return false;
3728
3729  if (!PrevDecl->hasLinkage())
3730    return false;
3731
3732  if (Context.getLangOptions().CPlusPlus) {
3733    // C++ [basic.link]p6:
3734    //   If there is a visible declaration of an entity with linkage
3735    //   having the same name and type, ignoring entities declared
3736    //   outside the innermost enclosing namespace scope, the block
3737    //   scope declaration declares that same entity and receives the
3738    //   linkage of the previous declaration.
3739    DeclContext *OuterContext = DC->getRedeclContext();
3740    if (!OuterContext->isFunctionOrMethod())
3741      // This rule only applies to block-scope declarations.
3742      return false;
3743
3744    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3745    if (PrevOuterContext->isRecord())
3746      // We found a member function: ignore it.
3747      return false;
3748
3749    // Find the innermost enclosing namespace for the new and
3750    // previous declarations.
3751    OuterContext = OuterContext->getEnclosingNamespaceContext();
3752    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3753
3754    // The previous declaration is in a different namespace, so it
3755    // isn't the same function.
3756    if (!OuterContext->Equals(PrevOuterContext))
3757      return false;
3758  }
3759
3760  return true;
3761}
3762
3763static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3764  CXXScopeSpec &SS = D.getCXXScopeSpec();
3765  if (!SS.isSet()) return;
3766  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3767}
3768
3769bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3770  QualType type = decl->getType();
3771  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3772  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3773    // Various kinds of declaration aren't allowed to be __autoreleasing.
3774    unsigned kind = -1U;
3775    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3776      if (var->hasAttr<BlocksAttr>())
3777        kind = 0; // __block
3778      else if (!var->hasLocalStorage())
3779        kind = 1; // global
3780    } else if (isa<ObjCIvarDecl>(decl)) {
3781      kind = 3; // ivar
3782    } else if (isa<FieldDecl>(decl)) {
3783      kind = 2; // field
3784    }
3785
3786    if (kind != -1U) {
3787      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3788        << kind;
3789    }
3790  } else if (lifetime == Qualifiers::OCL_None) {
3791    // Try to infer lifetime.
3792    if (!type->isObjCLifetimeType())
3793      return false;
3794
3795    lifetime = type->getObjCARCImplicitLifetime();
3796    type = Context.getLifetimeQualifiedType(type, lifetime);
3797    decl->setType(type);
3798  }
3799
3800  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3801    // Thread-local variables cannot have lifetime.
3802    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3803        var->isThreadSpecified()) {
3804      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3805        << var->getType();
3806      return true;
3807    }
3808  }
3809
3810  return false;
3811}
3812
3813NamedDecl*
3814Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3815                              TypeSourceInfo *TInfo, LookupResult &Previous,
3816                              MultiTemplateParamsArg TemplateParamLists) {
3817  QualType R = TInfo->getType();
3818  DeclarationName Name = GetNameForDeclarator(D).getName();
3819
3820  // Check that there are no default arguments (C++ only).
3821  if (getLangOptions().CPlusPlus)
3822    CheckExtraCXXDefaultArguments(D);
3823
3824  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3825  assert(SCSpec != DeclSpec::SCS_typedef &&
3826         "Parser allowed 'typedef' as storage class VarDecl.");
3827  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3828  if (SCSpec == DeclSpec::SCS_mutable) {
3829    // mutable can only appear on non-static class members, so it's always
3830    // an error here
3831    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3832    D.setInvalidType();
3833    SC = SC_None;
3834  }
3835  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3836  VarDecl::StorageClass SCAsWritten
3837    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3838
3839  IdentifierInfo *II = Name.getAsIdentifierInfo();
3840  if (!II) {
3841    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3842      << Name;
3843    return 0;
3844  }
3845
3846  DiagnoseFunctionSpecifiers(D);
3847
3848  if (!DC->isRecord() && S->getFnParent() == 0) {
3849    // C99 6.9p2: The storage-class specifiers auto and register shall not
3850    // appear in the declaration specifiers in an external declaration.
3851    if (SC == SC_Auto || SC == SC_Register) {
3852
3853      // If this is a register variable with an asm label specified, then this
3854      // is a GNU extension.
3855      if (SC == SC_Register && D.getAsmLabel())
3856        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3857      else
3858        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3859      D.setInvalidType();
3860    }
3861  }
3862
3863  if (getLangOptions().OpenCL) {
3864    // Set up the special work-group-local storage class for variables in the
3865    // OpenCL __local address space.
3866    if (R.getAddressSpace() == LangAS::opencl_local)
3867      SC = SC_OpenCLWorkGroupLocal;
3868  }
3869
3870  bool isExplicitSpecialization = false;
3871  VarDecl *NewVD;
3872  if (!getLangOptions().CPlusPlus) {
3873    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3874                            D.getIdentifierLoc(), II,
3875                            R, TInfo, SC, SCAsWritten);
3876
3877    if (D.isInvalidType())
3878      NewVD->setInvalidDecl();
3879  } else {
3880    if (DC->isRecord() && !CurContext->isRecord()) {
3881      // This is an out-of-line definition of a static data member.
3882      if (SC == SC_Static) {
3883        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3884             diag::err_static_out_of_line)
3885          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3886      } else if (SC == SC_None)
3887        SC = SC_Static;
3888    }
3889    if (SC == SC_Static) {
3890      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3891        if (RD->isLocalClass())
3892          Diag(D.getIdentifierLoc(),
3893               diag::err_static_data_member_not_allowed_in_local_class)
3894            << Name << RD->getDeclName();
3895
3896        // C++ [class.union]p1: If a union contains a static data member,
3897        // the program is ill-formed.
3898        //
3899        // We also disallow static data members in anonymous structs.
3900        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3901          Diag(D.getIdentifierLoc(),
3902               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3903            << Name << RD->isUnion();
3904      }
3905    }
3906
3907    // Match up the template parameter lists with the scope specifier, then
3908    // determine whether we have a template or a template specialization.
3909    isExplicitSpecialization = false;
3910    bool Invalid = false;
3911    if (TemplateParameterList *TemplateParams
3912        = MatchTemplateParametersToScopeSpecifier(
3913                                  D.getDeclSpec().getSourceRange().getBegin(),
3914                                                  D.getIdentifierLoc(),
3915                                                  D.getCXXScopeSpec(),
3916                                                  TemplateParamLists.get(),
3917                                                  TemplateParamLists.size(),
3918                                                  /*never a friend*/ false,
3919                                                  isExplicitSpecialization,
3920                                                  Invalid)) {
3921      if (TemplateParams->size() > 0) {
3922        // There is no such thing as a variable template.
3923        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3924          << II
3925          << SourceRange(TemplateParams->getTemplateLoc(),
3926                         TemplateParams->getRAngleLoc());
3927        return 0;
3928      } else {
3929        // There is an extraneous 'template<>' for this variable. Complain
3930        // about it, but allow the declaration of the variable.
3931        Diag(TemplateParams->getTemplateLoc(),
3932             diag::err_template_variable_noparams)
3933          << II
3934          << SourceRange(TemplateParams->getTemplateLoc(),
3935                         TemplateParams->getRAngleLoc());
3936      }
3937    }
3938
3939    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3940                            D.getIdentifierLoc(), II,
3941                            R, TInfo, SC, SCAsWritten);
3942
3943    // If this decl has an auto type in need of deduction, make a note of the
3944    // Decl so we can diagnose uses of it in its own initializer.
3945    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3946        R->getContainedAutoType())
3947      ParsingInitForAutoVars.insert(NewVD);
3948
3949    if (D.isInvalidType() || Invalid)
3950      NewVD->setInvalidDecl();
3951
3952    SetNestedNameSpecifier(NewVD, D);
3953
3954    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3955      NewVD->setTemplateParameterListsInfo(Context,
3956                                           TemplateParamLists.size(),
3957                                           TemplateParamLists.release());
3958    }
3959
3960    if (D.getDeclSpec().isConstexprSpecified())
3961      NewVD->setConstexpr(true);
3962  }
3963
3964  // Set the lexical context. If the declarator has a C++ scope specifier, the
3965  // lexical context will be different from the semantic context.
3966  NewVD->setLexicalDeclContext(CurContext);
3967
3968  if (D.getDeclSpec().isThreadSpecified()) {
3969    if (NewVD->hasLocalStorage())
3970      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3971    else if (!Context.getTargetInfo().isTLSSupported())
3972      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3973    else
3974      NewVD->setThreadSpecified(true);
3975  }
3976
3977  if (D.getDeclSpec().isModulePrivateSpecified()) {
3978    if (isExplicitSpecialization)
3979      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3980        << 2
3981        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3982    else if (NewVD->hasLocalStorage())
3983      Diag(NewVD->getLocation(), diag::err_module_private_local)
3984        << 0 << NewVD->getDeclName()
3985        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3986        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3987    else
3988      NewVD->setModulePrivate();
3989  }
3990
3991  // Handle attributes prior to checking for duplicates in MergeVarDecl
3992  ProcessDeclAttributes(S, NewVD, D);
3993
3994  // In auto-retain/release, infer strong retension for variables of
3995  // retainable type.
3996  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3997    NewVD->setInvalidDecl();
3998
3999  // Handle GNU asm-label extension (encoded as an attribute).
4000  if (Expr *E = (Expr*)D.getAsmLabel()) {
4001    // The parser guarantees this is a string.
4002    StringLiteral *SE = cast<StringLiteral>(E);
4003    StringRef Label = SE->getString();
4004    if (S->getFnParent() != 0) {
4005      switch (SC) {
4006      case SC_None:
4007      case SC_Auto:
4008        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4009        break;
4010      case SC_Register:
4011        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4012          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4013        break;
4014      case SC_Static:
4015      case SC_Extern:
4016      case SC_PrivateExtern:
4017      case SC_OpenCLWorkGroupLocal:
4018        break;
4019      }
4020    }
4021
4022    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4023                                                Context, Label));
4024  }
4025
4026  // Diagnose shadowed variables before filtering for scope.
4027  if (!D.getCXXScopeSpec().isSet())
4028    CheckShadow(S, NewVD, Previous);
4029
4030  // Don't consider existing declarations that are in a different
4031  // scope and are out-of-semantic-context declarations (if the new
4032  // declaration has linkage).
4033  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4034                       isExplicitSpecialization);
4035
4036  if (!getLangOptions().CPlusPlus) {
4037    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4038  } else {
4039    // Merge the decl with the existing one if appropriate.
4040    if (!Previous.empty()) {
4041      if (Previous.isSingleResult() &&
4042          isa<FieldDecl>(Previous.getFoundDecl()) &&
4043          D.getCXXScopeSpec().isSet()) {
4044        // The user tried to define a non-static data member
4045        // out-of-line (C++ [dcl.meaning]p1).
4046        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4047          << D.getCXXScopeSpec().getRange();
4048        Previous.clear();
4049        NewVD->setInvalidDecl();
4050      }
4051    } else if (D.getCXXScopeSpec().isSet()) {
4052      // No previous declaration in the qualifying scope.
4053      Diag(D.getIdentifierLoc(), diag::err_no_member)
4054        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4055        << D.getCXXScopeSpec().getRange();
4056      NewVD->setInvalidDecl();
4057    }
4058
4059    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4060
4061    // This is an explicit specialization of a static data member. Check it.
4062    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4063        CheckMemberSpecialization(NewVD, Previous))
4064      NewVD->setInvalidDecl();
4065  }
4066
4067  // attributes declared post-definition are currently ignored
4068  // FIXME: This should be handled in attribute merging, not
4069  // here.
4070  if (Previous.isSingleResult()) {
4071    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4072    if (Def && (Def = Def->getDefinition()) &&
4073        Def != NewVD && D.hasAttributes()) {
4074      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4075      Diag(Def->getLocation(), diag::note_previous_definition);
4076    }
4077  }
4078
4079  // If this is a locally-scoped extern C variable, update the map of
4080  // such variables.
4081  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4082      !NewVD->isInvalidDecl())
4083    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4084
4085  // If there's a #pragma GCC visibility in scope, and this isn't a class
4086  // member, set the visibility of this variable.
4087  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4088    AddPushedVisibilityAttribute(NewVD);
4089
4090  MarkUnusedFileScopedDecl(NewVD);
4091
4092  return NewVD;
4093}
4094
4095/// \brief Diagnose variable or built-in function shadowing.  Implements
4096/// -Wshadow.
4097///
4098/// This method is called whenever a VarDecl is added to a "useful"
4099/// scope.
4100///
4101/// \param S the scope in which the shadowing name is being declared
4102/// \param R the lookup of the name
4103///
4104void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4105  // Return if warning is ignored.
4106  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4107        DiagnosticsEngine::Ignored)
4108    return;
4109
4110  // Don't diagnose declarations at file scope.
4111  if (D->hasGlobalStorage())
4112    return;
4113
4114  DeclContext *NewDC = D->getDeclContext();
4115
4116  // Only diagnose if we're shadowing an unambiguous field or variable.
4117  if (R.getResultKind() != LookupResult::Found)
4118    return;
4119
4120  NamedDecl* ShadowedDecl = R.getFoundDecl();
4121  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4122    return;
4123
4124  // Fields are not shadowed by variables in C++ static methods.
4125  if (isa<FieldDecl>(ShadowedDecl))
4126    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4127      if (MD->isStatic())
4128        return;
4129
4130  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4131    if (shadowedVar->isExternC()) {
4132      // For shadowing external vars, make sure that we point to the global
4133      // declaration, not a locally scoped extern declaration.
4134      for (VarDecl::redecl_iterator
4135             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4136           I != E; ++I)
4137        if (I->isFileVarDecl()) {
4138          ShadowedDecl = *I;
4139          break;
4140        }
4141    }
4142
4143  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4144
4145  // Only warn about certain kinds of shadowing for class members.
4146  if (NewDC && NewDC->isRecord()) {
4147    // In particular, don't warn about shadowing non-class members.
4148    if (!OldDC->isRecord())
4149      return;
4150
4151    // TODO: should we warn about static data members shadowing
4152    // static data members from base classes?
4153
4154    // TODO: don't diagnose for inaccessible shadowed members.
4155    // This is hard to do perfectly because we might friend the
4156    // shadowing context, but that's just a false negative.
4157  }
4158
4159  // Determine what kind of declaration we're shadowing.
4160  unsigned Kind;
4161  if (isa<RecordDecl>(OldDC)) {
4162    if (isa<FieldDecl>(ShadowedDecl))
4163      Kind = 3; // field
4164    else
4165      Kind = 2; // static data member
4166  } else if (OldDC->isFileContext())
4167    Kind = 1; // global
4168  else
4169    Kind = 0; // local
4170
4171  DeclarationName Name = R.getLookupName();
4172
4173  // Emit warning and note.
4174  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4175  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4176}
4177
4178/// \brief Check -Wshadow without the advantage of a previous lookup.
4179void Sema::CheckShadow(Scope *S, VarDecl *D) {
4180  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4181        DiagnosticsEngine::Ignored)
4182    return;
4183
4184  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4185                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4186  LookupName(R, S);
4187  CheckShadow(S, D, R);
4188}
4189
4190/// \brief Perform semantic checking on a newly-created variable
4191/// declaration.
4192///
4193/// This routine performs all of the type-checking required for a
4194/// variable declaration once it has been built. It is used both to
4195/// check variables after they have been parsed and their declarators
4196/// have been translated into a declaration, and to check variables
4197/// that have been instantiated from a template.
4198///
4199/// Sets NewVD->isInvalidDecl() if an error was encountered.
4200///
4201/// Returns true if the variable declaration is a redeclaration.
4202bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4203                                    LookupResult &Previous) {
4204  // If the decl is already known invalid, don't check it.
4205  if (NewVD->isInvalidDecl())
4206    return false;
4207
4208  QualType T = NewVD->getType();
4209
4210  if (T->isObjCObjectType()) {
4211    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4212      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4213    T = Context.getObjCObjectPointerType(T);
4214    NewVD->setType(T);
4215  }
4216
4217  // Emit an error if an address space was applied to decl with local storage.
4218  // This includes arrays of objects with address space qualifiers, but not
4219  // automatic variables that point to other address spaces.
4220  // ISO/IEC TR 18037 S5.1.2
4221  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4222    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4223    NewVD->setInvalidDecl();
4224    return false;
4225  }
4226
4227  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4228      && !NewVD->hasAttr<BlocksAttr>()) {
4229    if (getLangOptions().getGC() != LangOptions::NonGC)
4230      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4231    else
4232      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4233  }
4234
4235  bool isVM = T->isVariablyModifiedType();
4236  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4237      NewVD->hasAttr<BlocksAttr>())
4238    getCurFunction()->setHasBranchProtectedScope();
4239
4240  if ((isVM && NewVD->hasLinkage()) ||
4241      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4242    bool SizeIsNegative;
4243    llvm::APSInt Oversized;
4244    QualType FixedTy =
4245        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4246                                            Oversized);
4247
4248    if (FixedTy.isNull() && T->isVariableArrayType()) {
4249      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4250      // FIXME: This won't give the correct result for
4251      // int a[10][n];
4252      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4253
4254      if (NewVD->isFileVarDecl())
4255        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4256        << SizeRange;
4257      else if (NewVD->getStorageClass() == SC_Static)
4258        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4259        << SizeRange;
4260      else
4261        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4262        << SizeRange;
4263      NewVD->setInvalidDecl();
4264      return false;
4265    }
4266
4267    if (FixedTy.isNull()) {
4268      if (NewVD->isFileVarDecl())
4269        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4270      else
4271        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4272      NewVD->setInvalidDecl();
4273      return false;
4274    }
4275
4276    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4277    NewVD->setType(FixedTy);
4278  }
4279
4280  if (Previous.empty() && NewVD->isExternC()) {
4281    // Since we did not find anything by this name and we're declaring
4282    // an extern "C" variable, look for a non-visible extern "C"
4283    // declaration with the same name.
4284    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4285      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4286    if (Pos != LocallyScopedExternalDecls.end())
4287      Previous.addDecl(Pos->second);
4288  }
4289
4290  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4291    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4292      << T;
4293    NewVD->setInvalidDecl();
4294    return false;
4295  }
4296
4297  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4298    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4299    NewVD->setInvalidDecl();
4300    return false;
4301  }
4302
4303  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4304    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4305    NewVD->setInvalidDecl();
4306    return false;
4307  }
4308
4309  // Function pointers and references cannot have qualified function type, only
4310  // function pointer-to-members can do that.
4311  QualType Pointee;
4312  unsigned PtrOrRef = 0;
4313  if (const PointerType *Ptr = T->getAs<PointerType>())
4314    Pointee = Ptr->getPointeeType();
4315  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4316    Pointee = Ref->getPointeeType();
4317    PtrOrRef = 1;
4318  }
4319  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4320      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4321    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4322        << PtrOrRef;
4323    NewVD->setInvalidDecl();
4324    return false;
4325  }
4326
4327  if (!Previous.empty()) {
4328    MergeVarDecl(NewVD, Previous);
4329    return true;
4330  }
4331  return false;
4332}
4333
4334/// \brief Data used with FindOverriddenMethod
4335struct FindOverriddenMethodData {
4336  Sema *S;
4337  CXXMethodDecl *Method;
4338};
4339
4340/// \brief Member lookup function that determines whether a given C++
4341/// method overrides a method in a base class, to be used with
4342/// CXXRecordDecl::lookupInBases().
4343static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4344                                 CXXBasePath &Path,
4345                                 void *UserData) {
4346  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4347
4348  FindOverriddenMethodData *Data
4349    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4350
4351  DeclarationName Name = Data->Method->getDeclName();
4352
4353  // FIXME: Do we care about other names here too?
4354  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4355    // We really want to find the base class destructor here.
4356    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4357    CanQualType CT = Data->S->Context.getCanonicalType(T);
4358
4359    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4360  }
4361
4362  for (Path.Decls = BaseRecord->lookup(Name);
4363       Path.Decls.first != Path.Decls.second;
4364       ++Path.Decls.first) {
4365    NamedDecl *D = *Path.Decls.first;
4366    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4367      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4368        return true;
4369    }
4370  }
4371
4372  return false;
4373}
4374
4375/// AddOverriddenMethods - See if a method overrides any in the base classes,
4376/// and if so, check that it's a valid override and remember it.
4377bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4378  // Look for virtual methods in base classes that this method might override.
4379  CXXBasePaths Paths;
4380  FindOverriddenMethodData Data;
4381  Data.Method = MD;
4382  Data.S = this;
4383  bool AddedAny = false;
4384  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4385    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4386         E = Paths.found_decls_end(); I != E; ++I) {
4387      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4388        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4389        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4390            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4391            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4392          AddedAny = true;
4393        }
4394      }
4395    }
4396  }
4397
4398  return AddedAny;
4399}
4400
4401namespace {
4402  // Struct for holding all of the extra arguments needed by
4403  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4404  struct ActOnFDArgs {
4405    Scope *S;
4406    Declarator &D;
4407    MultiTemplateParamsArg TemplateParamLists;
4408    bool AddToScope;
4409  };
4410}
4411
4412/// \brief Generate diagnostics for an invalid function redeclaration.
4413///
4414/// This routine handles generating the diagnostic messages for an invalid
4415/// function redeclaration, including finding possible similar declarations
4416/// or performing typo correction if there are no previous declarations with
4417/// the same name.
4418///
4419/// Returns a NamedDecl iff typo correction was performed and substituting in
4420/// the new declaration name does not cause new errors.
4421static NamedDecl* DiagnoseInvalidRedeclaration(
4422    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4423    ActOnFDArgs &ExtraArgs) {
4424  NamedDecl *Result = NULL;
4425  DeclarationName Name = NewFD->getDeclName();
4426  DeclContext *NewDC = NewFD->getDeclContext();
4427  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4428                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4429  llvm::SmallVector<unsigned, 1> MismatchedParams;
4430  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4431  TypoCorrection Correction;
4432  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4433                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4434  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4435                                  : diag::err_member_def_does_not_match;
4436
4437  NewFD->setInvalidDecl();
4438  SemaRef.LookupQualifiedName(Prev, NewDC);
4439  assert(!Prev.isAmbiguous() &&
4440         "Cannot have an ambiguity in previous-declaration lookup");
4441  if (!Prev.empty()) {
4442    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4443         Func != FuncEnd; ++Func) {
4444      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4445      if (FD &&
4446          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4447        // Add 1 to the index so that 0 can mean the mismatch didn't
4448        // involve a parameter
4449        unsigned ParamNum =
4450            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4451        NearMatches.push_back(std::make_pair(FD, ParamNum));
4452      }
4453    }
4454  // If the qualified name lookup yielded nothing, try typo correction
4455  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4456                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4457             Correction.getCorrection() != Name) {
4458    // Trap errors.
4459    Sema::SFINAETrap Trap(SemaRef);
4460
4461    // Set up everything for the call to ActOnFunctionDeclarator
4462    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4463                              ExtraArgs.D.getIdentifierLoc());
4464    Previous.clear();
4465    Previous.setLookupName(Correction.getCorrection());
4466    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4467                                    CDeclEnd = Correction.end();
4468         CDecl != CDeclEnd; ++CDecl) {
4469      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4470      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4471                                     MismatchedParams)) {
4472        Previous.addDecl(FD);
4473      }
4474    }
4475    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4476    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4477    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4478    // eliminate the need for the parameter pack ExtraArgs.
4479    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4480                                             NewFD->getDeclContext(),
4481                                             NewFD->getTypeSourceInfo(),
4482                                             Previous,
4483                                             ExtraArgs.TemplateParamLists,
4484                                             ExtraArgs.AddToScope);
4485    if (Trap.hasErrorOccurred()) {
4486      // Pretend the typo correction never occurred
4487      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4488                                ExtraArgs.D.getIdentifierLoc());
4489      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4490      Previous.clear();
4491      Previous.setLookupName(Name);
4492      Result = NULL;
4493    } else {
4494      for (LookupResult::iterator Func = Previous.begin(),
4495                               FuncEnd = Previous.end();
4496           Func != FuncEnd; ++Func) {
4497        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4498          NearMatches.push_back(std::make_pair(FD, 0));
4499      }
4500    }
4501    if (NearMatches.empty()) {
4502      // Ignore the correction if it didn't yield any close FunctionDecl matches
4503      Correction = TypoCorrection();
4504    } else {
4505      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4506                             : diag::err_member_def_does_not_match_suggest;
4507    }
4508  }
4509
4510  if (Correction)
4511    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4512        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4513        << FixItHint::CreateReplacement(
4514            NewFD->getLocation(),
4515            Correction.getAsString(SemaRef.getLangOptions()));
4516  else
4517    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4518        << Name << NewDC << NewFD->getLocation();
4519
4520  bool NewFDisConst = false;
4521  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4522    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4523
4524  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4525       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4526       NearMatch != NearMatchEnd; ++NearMatch) {
4527    FunctionDecl *FD = NearMatch->first;
4528    bool FDisConst = false;
4529    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4530      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4531
4532    if (unsigned Idx = NearMatch->second) {
4533      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4534      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4535             diag::note_member_def_close_param_match)
4536          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4537    } else if (Correction) {
4538      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4539          << Correction.getQuoted(SemaRef.getLangOptions());
4540    } else if (FDisConst != NewFDisConst) {
4541      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4542          << NewFDisConst << FD->getSourceRange().getEnd();
4543    } else
4544      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4545  }
4546  return Result;
4547}
4548
4549static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4550                                                          Declarator &D) {
4551  switch (D.getDeclSpec().getStorageClassSpec()) {
4552  default: llvm_unreachable("Unknown storage class!");
4553  case DeclSpec::SCS_auto:
4554  case DeclSpec::SCS_register:
4555  case DeclSpec::SCS_mutable:
4556    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4557                 diag::err_typecheck_sclass_func);
4558    D.setInvalidType();
4559    break;
4560  case DeclSpec::SCS_unspecified: break;
4561  case DeclSpec::SCS_extern: return SC_Extern;
4562  case DeclSpec::SCS_static: {
4563    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4564      // C99 6.7.1p5:
4565      //   The declaration of an identifier for a function that has
4566      //   block scope shall have no explicit storage-class specifier
4567      //   other than extern
4568      // See also (C++ [dcl.stc]p4).
4569      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4570                   diag::err_static_block_func);
4571      break;
4572    } else
4573      return SC_Static;
4574  }
4575  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4576  }
4577
4578  // No explicit storage class has already been returned
4579  return SC_None;
4580}
4581
4582static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4583                                           DeclContext *DC, QualType &R,
4584                                           TypeSourceInfo *TInfo,
4585                                           FunctionDecl::StorageClass SC,
4586                                           bool &IsVirtualOkay) {
4587  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4588  DeclarationName Name = NameInfo.getName();
4589
4590  FunctionDecl *NewFD = 0;
4591  bool isInline = D.getDeclSpec().isInlineSpecified();
4592  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4593  FunctionDecl::StorageClass SCAsWritten
4594    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4595
4596  if (!SemaRef.getLangOptions().CPlusPlus) {
4597    // Determine whether the function was written with a
4598    // prototype. This true when:
4599    //   - there is a prototype in the declarator, or
4600    //   - the type R of the function is some kind of typedef or other reference
4601    //     to a type name (which eventually refers to a function type).
4602    bool HasPrototype =
4603      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4604      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4605
4606    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4607                                 D.getSourceRange().getBegin(), NameInfo, R,
4608                                 TInfo, SC, SCAsWritten, isInline,
4609                                 HasPrototype);
4610    if (D.isInvalidType())
4611      NewFD->setInvalidDecl();
4612
4613    // Set the lexical context.
4614    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4615
4616    return NewFD;
4617  }
4618
4619  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4620  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4621
4622  // Check that the return type is not an abstract class type.
4623  // For record types, this is done by the AbstractClassUsageDiagnoser once
4624  // the class has been completely parsed.
4625  if (!DC->isRecord() &&
4626      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4627                                     R->getAs<FunctionType>()->getResultType(),
4628                                     diag::err_abstract_type_in_decl,
4629                                     SemaRef.AbstractReturnType))
4630    D.setInvalidType();
4631
4632  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4633    // This is a C++ constructor declaration.
4634    assert(DC->isRecord() &&
4635           "Constructors can only be declared in a member context");
4636
4637    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4638    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4639                                      D.getSourceRange().getBegin(), NameInfo,
4640                                      R, TInfo, isExplicit, isInline,
4641                                      /*isImplicitlyDeclared=*/false,
4642                                      isConstexpr);
4643
4644  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4645    // This is a C++ destructor declaration.
4646    if (DC->isRecord()) {
4647      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4648      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4649      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4650                                        SemaRef.Context, Record,
4651                                        D.getSourceRange().getBegin(),
4652                                        NameInfo, R, TInfo, isInline,
4653                                        /*isImplicitlyDeclared=*/false);
4654
4655      // If the class is complete, then we now create the implicit exception
4656      // specification. If the class is incomplete or dependent, we can't do
4657      // it yet.
4658      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4659          Record->getDefinition() && !Record->isBeingDefined() &&
4660          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4661        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4662      }
4663
4664      IsVirtualOkay = true;
4665      return NewDD;
4666
4667    } else {
4668      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4669      D.setInvalidType();
4670
4671      // Create a FunctionDecl to satisfy the function definition parsing
4672      // code path.
4673      return FunctionDecl::Create(SemaRef.Context, DC,
4674                                  D.getSourceRange().getBegin(),
4675                                  D.getIdentifierLoc(), Name, R, TInfo,
4676                                  SC, SCAsWritten, isInline,
4677                                  /*hasPrototype=*/true, isConstexpr);
4678    }
4679
4680  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4681    if (!DC->isRecord()) {
4682      SemaRef.Diag(D.getIdentifierLoc(),
4683           diag::err_conv_function_not_member);
4684      return 0;
4685    }
4686
4687    SemaRef.CheckConversionDeclarator(D, R, SC);
4688    IsVirtualOkay = true;
4689    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4690                                     D.getSourceRange().getBegin(), NameInfo,
4691                                     R, TInfo, isInline, isExplicit,
4692                                     isConstexpr, SourceLocation());
4693
4694  } else if (DC->isRecord()) {
4695    // If the name of the function is the same as the name of the record,
4696    // then this must be an invalid constructor that has a return type.
4697    // (The parser checks for a return type and makes the declarator a
4698    // constructor if it has no return type).
4699    if (Name.getAsIdentifierInfo() &&
4700        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4701      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4702        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4703        << SourceRange(D.getIdentifierLoc());
4704      return 0;
4705    }
4706
4707    bool isStatic = SC == SC_Static;
4708
4709    // [class.free]p1:
4710    // Any allocation function for a class T is a static member
4711    // (even if not explicitly declared static).
4712    if (Name.getCXXOverloadedOperator() == OO_New ||
4713        Name.getCXXOverloadedOperator() == OO_Array_New)
4714      isStatic = true;
4715
4716    // [class.free]p6 Any deallocation function for a class X is a static member
4717    // (even if not explicitly declared static).
4718    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4719        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4720      isStatic = true;
4721
4722    IsVirtualOkay = !isStatic;
4723
4724    // This is a C++ method declaration.
4725    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4726                                 D.getSourceRange().getBegin(), NameInfo, R,
4727                                 TInfo, isStatic, SCAsWritten, isInline,
4728                                 isConstexpr, SourceLocation());
4729
4730  } else {
4731    // Determine whether the function was written with a
4732    // prototype. This true when:
4733    //   - we're in C++ (where every function has a prototype),
4734    return FunctionDecl::Create(SemaRef.Context, DC,
4735                                D.getSourceRange().getBegin(),
4736                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4737                                true/*HasPrototype*/, isConstexpr);
4738  }
4739}
4740
4741NamedDecl*
4742Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4743                              TypeSourceInfo *TInfo, LookupResult &Previous,
4744                              MultiTemplateParamsArg TemplateParamLists,
4745                              bool &AddToScope) {
4746  QualType R = TInfo->getType();
4747
4748  assert(R.getTypePtr()->isFunctionType());
4749
4750  // TODO: consider using NameInfo for diagnostic.
4751  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4752  DeclarationName Name = NameInfo.getName();
4753  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4754
4755  if (D.getDeclSpec().isThreadSpecified())
4756    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4757
4758  // Do not allow returning a objc interface by-value.
4759  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4760    Diag(D.getIdentifierLoc(),
4761         diag::err_object_cannot_be_passed_returned_by_value) << 0
4762    << R->getAs<FunctionType>()->getResultType()
4763    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4764
4765    QualType T = R->getAs<FunctionType>()->getResultType();
4766    T = Context.getObjCObjectPointerType(T);
4767    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4768      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4769      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4770                                  FPT->getNumArgs(), EPI);
4771    }
4772    else if (isa<FunctionNoProtoType>(R))
4773      R = Context.getFunctionNoProtoType(T);
4774  }
4775
4776  bool isFriend = false;
4777  FunctionTemplateDecl *FunctionTemplate = 0;
4778  bool isExplicitSpecialization = false;
4779  bool isFunctionTemplateSpecialization = false;
4780  bool isDependentClassScopeExplicitSpecialization = false;
4781  bool isVirtualOkay = false;
4782
4783  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4784                                              isVirtualOkay);
4785  if (!NewFD) return 0;
4786
4787  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4788    NewFD->setTopLevelDeclInObjCContainer();
4789
4790  if (getLangOptions().CPlusPlus) {
4791    bool isInline = D.getDeclSpec().isInlineSpecified();
4792    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4793    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4794    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4795    isFriend = D.getDeclSpec().isFriendSpecified();
4796    if (isFriend && !isInline && D.isFunctionDefinition()) {
4797      // C++ [class.friend]p5
4798      //   A function can be defined in a friend declaration of a
4799      //   class . . . . Such a function is implicitly inline.
4800      NewFD->setImplicitlyInline();
4801    }
4802
4803    SetNestedNameSpecifier(NewFD, D);
4804    isExplicitSpecialization = false;
4805    isFunctionTemplateSpecialization = false;
4806    if (D.isInvalidType())
4807      NewFD->setInvalidDecl();
4808
4809    // Set the lexical context. If the declarator has a C++
4810    // scope specifier, or is the object of a friend declaration, the
4811    // lexical context will be different from the semantic context.
4812    NewFD->setLexicalDeclContext(CurContext);
4813
4814    // Match up the template parameter lists with the scope specifier, then
4815    // determine whether we have a template or a template specialization.
4816    bool Invalid = false;
4817    if (TemplateParameterList *TemplateParams
4818          = MatchTemplateParametersToScopeSpecifier(
4819                                  D.getDeclSpec().getSourceRange().getBegin(),
4820                                  D.getIdentifierLoc(),
4821                                  D.getCXXScopeSpec(),
4822                                  TemplateParamLists.get(),
4823                                  TemplateParamLists.size(),
4824                                  isFriend,
4825                                  isExplicitSpecialization,
4826                                  Invalid)) {
4827      if (TemplateParams->size() > 0) {
4828        // This is a function template
4829
4830        // Check that we can declare a template here.
4831        if (CheckTemplateDeclScope(S, TemplateParams))
4832          return 0;
4833
4834        // A destructor cannot be a template.
4835        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4836          Diag(NewFD->getLocation(), diag::err_destructor_template);
4837          return 0;
4838        }
4839
4840        // If we're adding a template to a dependent context, we may need to
4841        // rebuilding some of the types used within the template parameter list,
4842        // now that we know what the current instantiation is.
4843        if (DC->isDependentContext()) {
4844          ContextRAII SavedContext(*this, DC);
4845          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4846            Invalid = true;
4847        }
4848
4849
4850        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4851                                                        NewFD->getLocation(),
4852                                                        Name, TemplateParams,
4853                                                        NewFD);
4854        FunctionTemplate->setLexicalDeclContext(CurContext);
4855        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4856
4857        // For source fidelity, store the other template param lists.
4858        if (TemplateParamLists.size() > 1) {
4859          NewFD->setTemplateParameterListsInfo(Context,
4860                                               TemplateParamLists.size() - 1,
4861                                               TemplateParamLists.release());
4862        }
4863      } else {
4864        // This is a function template specialization.
4865        isFunctionTemplateSpecialization = true;
4866        // For source fidelity, store all the template param lists.
4867        NewFD->setTemplateParameterListsInfo(Context,
4868                                             TemplateParamLists.size(),
4869                                             TemplateParamLists.release());
4870
4871        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4872        if (isFriend) {
4873          // We want to remove the "template<>", found here.
4874          SourceRange RemoveRange = TemplateParams->getSourceRange();
4875
4876          // If we remove the template<> and the name is not a
4877          // template-id, we're actually silently creating a problem:
4878          // the friend declaration will refer to an untemplated decl,
4879          // and clearly the user wants a template specialization.  So
4880          // we need to insert '<>' after the name.
4881          SourceLocation InsertLoc;
4882          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4883            InsertLoc = D.getName().getSourceRange().getEnd();
4884            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4885          }
4886
4887          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4888            << Name << RemoveRange
4889            << FixItHint::CreateRemoval(RemoveRange)
4890            << FixItHint::CreateInsertion(InsertLoc, "<>");
4891        }
4892      }
4893    }
4894    else {
4895      // All template param lists were matched against the scope specifier:
4896      // this is NOT (an explicit specialization of) a template.
4897      if (TemplateParamLists.size() > 0)
4898        // For source fidelity, store all the template param lists.
4899        NewFD->setTemplateParameterListsInfo(Context,
4900                                             TemplateParamLists.size(),
4901                                             TemplateParamLists.release());
4902    }
4903
4904    if (Invalid) {
4905      NewFD->setInvalidDecl();
4906      if (FunctionTemplate)
4907        FunctionTemplate->setInvalidDecl();
4908    }
4909
4910    // If we see "T var();" at block scope, where T is a class type, it is
4911    // probably an attempt to initialize a variable, not a function declaration.
4912    // We don't catch this case earlier, since there is no ambiguity here.
4913    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4914        CurContext->isFunctionOrMethod() &&
4915        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4916        D.getDeclSpec().getStorageClassSpecAsWritten()
4917          == DeclSpec::SCS_unspecified) {
4918      QualType T = R->getAs<FunctionType>()->getResultType();
4919      DeclaratorChunk &C = D.getTypeObject(0);
4920      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4921          !C.Fun.TrailingReturnType &&
4922          C.Fun.getExceptionSpecType() == EST_None) {
4923        SourceRange ParenRange(C.Loc, C.EndLoc);
4924        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4925
4926        // If the declaration looks like:
4927        //   T var1,
4928        //   f();
4929        // and name lookup finds a function named 'f', then the ',' was
4930        // probably intended to be a ';'.
4931        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4932          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4933          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4934          if (Comma.getFileID() != Name.getFileID() ||
4935              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4936            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4937                                LookupOrdinaryName);
4938            if (LookupName(Result, S))
4939              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4940                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4941          }
4942        }
4943        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4944        // Empty parens mean value-initialization, and no parens mean default
4945        // initialization. These are equivalent if the default constructor is
4946        // user-provided, or if zero-initialization is a no-op.
4947        if (RD && RD->hasDefinition() &&
4948            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4949          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4950            << FixItHint::CreateRemoval(ParenRange);
4951        else if (const char *Init = getFixItZeroInitializerForType(T))
4952          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4953            << FixItHint::CreateReplacement(ParenRange, Init);
4954        else if (LangOpts.CPlusPlus0x)
4955          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4956            << FixItHint::CreateReplacement(ParenRange, "{}");
4957      }
4958    }
4959
4960    // C++ [dcl.fct.spec]p5:
4961    //   The virtual specifier shall only be used in declarations of
4962    //   nonstatic class member functions that appear within a
4963    //   member-specification of a class declaration; see 10.3.
4964    //
4965    if (isVirtual && !NewFD->isInvalidDecl()) {
4966      if (!isVirtualOkay) {
4967        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4968             diag::err_virtual_non_function);
4969      } else if (!CurContext->isRecord()) {
4970        // 'virtual' was specified outside of the class.
4971        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4972             diag::err_virtual_out_of_class)
4973          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4974      } else if (NewFD->getDescribedFunctionTemplate()) {
4975        // C++ [temp.mem]p3:
4976        //  A member function template shall not be virtual.
4977        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4978             diag::err_virtual_member_function_template)
4979          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4980      } else {
4981        // Okay: Add virtual to the method.
4982        NewFD->setVirtualAsWritten(true);
4983      }
4984    }
4985
4986    // C++ [dcl.fct.spec]p3:
4987    //  The inline specifier shall not appear on a block scope function
4988    //  declaration.
4989    if (isInline && !NewFD->isInvalidDecl()) {
4990      if (CurContext->isFunctionOrMethod()) {
4991        // 'inline' is not allowed on block scope function declaration.
4992        Diag(D.getDeclSpec().getInlineSpecLoc(),
4993             diag::err_inline_declaration_block_scope) << Name
4994          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4995      }
4996    }
4997
4998    // C++ [dcl.fct.spec]p6:
4999    //  The explicit specifier shall be used only in the declaration of a
5000    //  constructor or conversion function within its class definition;
5001    //  see 12.3.1 and 12.3.2.
5002    if (isExplicit && !NewFD->isInvalidDecl()) {
5003      if (!CurContext->isRecord()) {
5004        // 'explicit' was specified outside of the class.
5005        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5006             diag::err_explicit_out_of_class)
5007          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5008      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5009                 !isa<CXXConversionDecl>(NewFD)) {
5010        // 'explicit' was specified on a function that wasn't a constructor
5011        // or conversion function.
5012        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5013             diag::err_explicit_non_ctor_or_conv_function)
5014          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5015      }
5016    }
5017
5018    if (isConstexpr) {
5019      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5020      // are implicitly inline.
5021      NewFD->setImplicitlyInline();
5022
5023      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5024      // be either constructors or to return a literal type. Therefore,
5025      // destructors cannot be declared constexpr.
5026      if (isa<CXXDestructorDecl>(NewFD))
5027        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5028    }
5029
5030    // If __module_private__ was specified, mark the function accordingly.
5031    if (D.getDeclSpec().isModulePrivateSpecified()) {
5032      if (isFunctionTemplateSpecialization) {
5033        SourceLocation ModulePrivateLoc
5034          = D.getDeclSpec().getModulePrivateSpecLoc();
5035        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5036          << 0
5037          << FixItHint::CreateRemoval(ModulePrivateLoc);
5038      } else {
5039        NewFD->setModulePrivate();
5040        if (FunctionTemplate)
5041          FunctionTemplate->setModulePrivate();
5042      }
5043    }
5044
5045    if (isFriend) {
5046      // For now, claim that the objects have no previous declaration.
5047      if (FunctionTemplate) {
5048        FunctionTemplate->setObjectOfFriendDecl(false);
5049        FunctionTemplate->setAccess(AS_public);
5050      }
5051      NewFD->setObjectOfFriendDecl(false);
5052      NewFD->setAccess(AS_public);
5053    }
5054
5055    // If a function is defined as defaulted or deleted, mark it as such now.
5056    switch (D.getFunctionDefinitionKind()) {
5057      case FDK_Declaration:
5058      case FDK_Definition:
5059        break;
5060
5061      case FDK_Defaulted:
5062        NewFD->setDefaulted();
5063        break;
5064
5065      case FDK_Deleted:
5066        NewFD->setDeletedAsWritten();
5067        break;
5068    }
5069
5070    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5071        D.isFunctionDefinition()) {
5072      // C++ [class.mfct]p2:
5073      //   A member function may be defined (8.4) in its class definition, in
5074      //   which case it is an inline member function (7.1.2)
5075      NewFD->setImplicitlyInline();
5076    }
5077
5078    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5079        !CurContext->isRecord()) {
5080      // C++ [class.static]p1:
5081      //   A data or function member of a class may be declared static
5082      //   in a class definition, in which case it is a static member of
5083      //   the class.
5084
5085      // Complain about the 'static' specifier if it's on an out-of-line
5086      // member function definition.
5087      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5088           diag::err_static_out_of_line)
5089        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5090    }
5091  }
5092
5093  // Filter out previous declarations that don't match the scope.
5094  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5095                       isExplicitSpecialization ||
5096                       isFunctionTemplateSpecialization);
5097
5098  // Handle GNU asm-label extension (encoded as an attribute).
5099  if (Expr *E = (Expr*) D.getAsmLabel()) {
5100    // The parser guarantees this is a string.
5101    StringLiteral *SE = cast<StringLiteral>(E);
5102    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5103                                                SE->getString()));
5104  }
5105
5106  // Copy the parameter declarations from the declarator D to the function
5107  // declaration NewFD, if they are available.  First scavenge them into Params.
5108  SmallVector<ParmVarDecl*, 16> Params;
5109  if (D.isFunctionDeclarator()) {
5110    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5111
5112    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5113    // function that takes no arguments, not a function that takes a
5114    // single void argument.
5115    // We let through "const void" here because Sema::GetTypeForDeclarator
5116    // already checks for that case.
5117    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5118        FTI.ArgInfo[0].Param &&
5119        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5120      // Empty arg list, don't push any params.
5121      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5122
5123      // In C++, the empty parameter-type-list must be spelled "void"; a
5124      // typedef of void is not permitted.
5125      if (getLangOptions().CPlusPlus &&
5126          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5127        bool IsTypeAlias = false;
5128        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5129          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5130        else if (const TemplateSpecializationType *TST =
5131                   Param->getType()->getAs<TemplateSpecializationType>())
5132          IsTypeAlias = TST->isTypeAlias();
5133        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5134          << IsTypeAlias;
5135      }
5136    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5137      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5138        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5139        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5140        Param->setDeclContext(NewFD);
5141        Params.push_back(Param);
5142
5143        if (Param->isInvalidDecl())
5144          NewFD->setInvalidDecl();
5145      }
5146    }
5147
5148  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5149    // When we're declaring a function with a typedef, typeof, etc as in the
5150    // following example, we'll need to synthesize (unnamed)
5151    // parameters for use in the declaration.
5152    //
5153    // @code
5154    // typedef void fn(int);
5155    // fn f;
5156    // @endcode
5157
5158    // Synthesize a parameter for each argument type.
5159    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5160         AE = FT->arg_type_end(); AI != AE; ++AI) {
5161      ParmVarDecl *Param =
5162        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5163      Param->setScopeInfo(0, Params.size());
5164      Params.push_back(Param);
5165    }
5166  } else {
5167    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5168           "Should not need args for typedef of non-prototype fn");
5169  }
5170
5171  // Finally, we know we have the right number of parameters, install them.
5172  NewFD->setParams(Params);
5173
5174  // Process the non-inheritable attributes on this declaration.
5175  ProcessDeclAttributes(S, NewFD, D,
5176                        /*NonInheritable=*/true, /*Inheritable=*/false);
5177
5178  if (!getLangOptions().CPlusPlus) {
5179    // Perform semantic checking on the function declaration.
5180    bool isExplicitSpecialization=false;
5181    if (!NewFD->isInvalidDecl()) {
5182      if (NewFD->getResultType()->isVariablyModifiedType()) {
5183        // Functions returning a variably modified type violate C99 6.7.5.2p2
5184        // because all functions have linkage.
5185        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5186        NewFD->setInvalidDecl();
5187      } else {
5188        if (NewFD->isMain())
5189          CheckMain(NewFD, D.getDeclSpec());
5190        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5191                                                    isExplicitSpecialization));
5192      }
5193    }
5194    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5195            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5196           "previous declaration set still overloaded");
5197  } else {
5198    // If the declarator is a template-id, translate the parser's template
5199    // argument list into our AST format.
5200    bool HasExplicitTemplateArgs = false;
5201    TemplateArgumentListInfo TemplateArgs;
5202    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5203      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5204      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5205      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5206      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5207                                         TemplateId->getTemplateArgs(),
5208                                         TemplateId->NumArgs);
5209      translateTemplateArguments(TemplateArgsPtr,
5210                                 TemplateArgs);
5211      TemplateArgsPtr.release();
5212
5213      HasExplicitTemplateArgs = true;
5214
5215      if (NewFD->isInvalidDecl()) {
5216        HasExplicitTemplateArgs = false;
5217      } else if (FunctionTemplate) {
5218        // Function template with explicit template arguments.
5219        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5220          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5221
5222        HasExplicitTemplateArgs = false;
5223      } else if (!isFunctionTemplateSpecialization &&
5224                 !D.getDeclSpec().isFriendSpecified()) {
5225        // We have encountered something that the user meant to be a
5226        // specialization (because it has explicitly-specified template
5227        // arguments) but that was not introduced with a "template<>" (or had
5228        // too few of them).
5229        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5230          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5231          << FixItHint::CreateInsertion(
5232                                    D.getDeclSpec().getSourceRange().getBegin(),
5233                                        "template<> ");
5234        isFunctionTemplateSpecialization = true;
5235      } else {
5236        // "friend void foo<>(int);" is an implicit specialization decl.
5237        isFunctionTemplateSpecialization = true;
5238      }
5239    } else if (isFriend && isFunctionTemplateSpecialization) {
5240      // This combination is only possible in a recovery case;  the user
5241      // wrote something like:
5242      //   template <> friend void foo(int);
5243      // which we're recovering from as if the user had written:
5244      //   friend void foo<>(int);
5245      // Go ahead and fake up a template id.
5246      HasExplicitTemplateArgs = true;
5247        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5248      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5249    }
5250
5251    // If it's a friend (and only if it's a friend), it's possible
5252    // that either the specialized function type or the specialized
5253    // template is dependent, and therefore matching will fail.  In
5254    // this case, don't check the specialization yet.
5255    bool InstantiationDependent = false;
5256    if (isFunctionTemplateSpecialization && isFriend &&
5257        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5258         TemplateSpecializationType::anyDependentTemplateArguments(
5259            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5260            InstantiationDependent))) {
5261      assert(HasExplicitTemplateArgs &&
5262             "friend function specialization without template args");
5263      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5264                                                       Previous))
5265        NewFD->setInvalidDecl();
5266    } else if (isFunctionTemplateSpecialization) {
5267      if (CurContext->isDependentContext() && CurContext->isRecord()
5268          && !isFriend) {
5269        isDependentClassScopeExplicitSpecialization = true;
5270        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5271          diag::ext_function_specialization_in_class :
5272          diag::err_function_specialization_in_class)
5273          << NewFD->getDeclName();
5274      } else if (CheckFunctionTemplateSpecialization(NewFD,
5275                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5276                                                     Previous))
5277        NewFD->setInvalidDecl();
5278
5279      // C++ [dcl.stc]p1:
5280      //   A storage-class-specifier shall not be specified in an explicit
5281      //   specialization (14.7.3)
5282      if (SC != SC_None) {
5283        if (SC != NewFD->getStorageClass())
5284          Diag(NewFD->getLocation(),
5285               diag::err_explicit_specialization_inconsistent_storage_class)
5286            << SC
5287            << FixItHint::CreateRemoval(
5288                                      D.getDeclSpec().getStorageClassSpecLoc());
5289
5290        else
5291          Diag(NewFD->getLocation(),
5292               diag::ext_explicit_specialization_storage_class)
5293            << FixItHint::CreateRemoval(
5294                                      D.getDeclSpec().getStorageClassSpecLoc());
5295      }
5296
5297    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5298      if (CheckMemberSpecialization(NewFD, Previous))
5299          NewFD->setInvalidDecl();
5300    }
5301
5302    // Perform semantic checking on the function declaration.
5303    if (!isDependentClassScopeExplicitSpecialization) {
5304      if (NewFD->isInvalidDecl()) {
5305        // If this is a class member, mark the class invalid immediately.
5306        // This avoids some consistency errors later.
5307        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5308          methodDecl->getParent()->setInvalidDecl();
5309      } else {
5310        if (NewFD->isMain())
5311          CheckMain(NewFD, D.getDeclSpec());
5312        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5313                                                    isExplicitSpecialization));
5314      }
5315    }
5316
5317    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5318            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5319           "previous declaration set still overloaded");
5320
5321    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5322        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5323      NewFD->setInvalidDecl();
5324
5325    NamedDecl *PrincipalDecl = (FunctionTemplate
5326                                ? cast<NamedDecl>(FunctionTemplate)
5327                                : NewFD);
5328
5329    if (isFriend && D.isRedeclaration()) {
5330      AccessSpecifier Access = AS_public;
5331      if (!NewFD->isInvalidDecl())
5332        Access = NewFD->getPreviousDecl()->getAccess();
5333
5334      NewFD->setAccess(Access);
5335      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5336
5337      PrincipalDecl->setObjectOfFriendDecl(true);
5338    }
5339
5340    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5341        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5342      PrincipalDecl->setNonMemberOperator();
5343
5344    // If we have a function template, check the template parameter
5345    // list. This will check and merge default template arguments.
5346    if (FunctionTemplate) {
5347      FunctionTemplateDecl *PrevTemplate =
5348                                     FunctionTemplate->getPreviousDecl();
5349      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5350                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5351                            D.getDeclSpec().isFriendSpecified()
5352                              ? (D.isFunctionDefinition()
5353                                   ? TPC_FriendFunctionTemplateDefinition
5354                                   : TPC_FriendFunctionTemplate)
5355                              : (D.getCXXScopeSpec().isSet() &&
5356                                 DC && DC->isRecord() &&
5357                                 DC->isDependentContext())
5358                                  ? TPC_ClassTemplateMember
5359                                  : TPC_FunctionTemplate);
5360    }
5361
5362    if (NewFD->isInvalidDecl()) {
5363      // Ignore all the rest of this.
5364    } else if (!D.isRedeclaration()) {
5365      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5366                                       AddToScope };
5367      // Fake up an access specifier if it's supposed to be a class member.
5368      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5369        NewFD->setAccess(AS_public);
5370
5371      // Qualified decls generally require a previous declaration.
5372      if (D.getCXXScopeSpec().isSet()) {
5373        // ...with the major exception of templated-scope or
5374        // dependent-scope friend declarations.
5375
5376        // TODO: we currently also suppress this check in dependent
5377        // contexts because (1) the parameter depth will be off when
5378        // matching friend templates and (2) we might actually be
5379        // selecting a friend based on a dependent factor.  But there
5380        // are situations where these conditions don't apply and we
5381        // can actually do this check immediately.
5382        if (isFriend &&
5383            (TemplateParamLists.size() ||
5384             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5385             CurContext->isDependentContext())) {
5386          // ignore these
5387        } else {
5388          // The user tried to provide an out-of-line definition for a
5389          // function that is a member of a class or namespace, but there
5390          // was no such member function declared (C++ [class.mfct]p2,
5391          // C++ [namespace.memdef]p2). For example:
5392          //
5393          // class X {
5394          //   void f() const;
5395          // };
5396          //
5397          // void X::f() { } // ill-formed
5398          //
5399          // Complain about this problem, and attempt to suggest close
5400          // matches (e.g., those that differ only in cv-qualifiers and
5401          // whether the parameter types are references).
5402
5403          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5404                                                               NewFD,
5405                                                               ExtraArgs)) {
5406            AddToScope = ExtraArgs.AddToScope;
5407            return Result;
5408          }
5409        }
5410
5411        // Unqualified local friend declarations are required to resolve
5412        // to something.
5413      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5414        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5415                                                             NewFD,
5416                                                             ExtraArgs)) {
5417          AddToScope = ExtraArgs.AddToScope;
5418          return Result;
5419        }
5420      }
5421
5422    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5423               !isFriend && !isFunctionTemplateSpecialization &&
5424               !isExplicitSpecialization) {
5425      // An out-of-line member function declaration must also be a
5426      // definition (C++ [dcl.meaning]p1).
5427      // Note that this is not the case for explicit specializations of
5428      // function templates or member functions of class templates, per
5429      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5430      // extension for compatibility with old SWIG code which likes to
5431      // generate them.
5432      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5433        << D.getCXXScopeSpec().getRange();
5434    }
5435  }
5436
5437
5438  // Handle attributes. We need to have merged decls when handling attributes
5439  // (for example to check for conflicts, etc).
5440  // FIXME: This needs to happen before we merge declarations. Then,
5441  // let attribute merging cope with attribute conflicts.
5442  ProcessDeclAttributes(S, NewFD, D,
5443                        /*NonInheritable=*/false, /*Inheritable=*/true);
5444
5445  // attributes declared post-definition are currently ignored
5446  // FIXME: This should happen during attribute merging
5447  if (D.isRedeclaration() && Previous.isSingleResult()) {
5448    const FunctionDecl *Def;
5449    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5450    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5451      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5452      Diag(Def->getLocation(), diag::note_previous_definition);
5453    }
5454  }
5455
5456  AddKnownFunctionAttributes(NewFD);
5457
5458  if (NewFD->hasAttr<OverloadableAttr>() &&
5459      !NewFD->getType()->getAs<FunctionProtoType>()) {
5460    Diag(NewFD->getLocation(),
5461         diag::err_attribute_overloadable_no_prototype)
5462      << NewFD;
5463
5464    // Turn this into a variadic function with no parameters.
5465    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5466    FunctionProtoType::ExtProtoInfo EPI;
5467    EPI.Variadic = true;
5468    EPI.ExtInfo = FT->getExtInfo();
5469
5470    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5471    NewFD->setType(R);
5472  }
5473
5474  // If there's a #pragma GCC visibility in scope, and this isn't a class
5475  // member, set the visibility of this function.
5476  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5477    AddPushedVisibilityAttribute(NewFD);
5478
5479  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5480  // marking the function.
5481  AddCFAuditedAttribute(NewFD);
5482
5483  // If this is a locally-scoped extern C function, update the
5484  // map of such names.
5485  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5486      && !NewFD->isInvalidDecl())
5487    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5488
5489  // Set this FunctionDecl's range up to the right paren.
5490  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5491
5492  if (getLangOptions().CPlusPlus) {
5493    if (FunctionTemplate) {
5494      if (NewFD->isInvalidDecl())
5495        FunctionTemplate->setInvalidDecl();
5496      return FunctionTemplate;
5497    }
5498  }
5499
5500  MarkUnusedFileScopedDecl(NewFD);
5501
5502  if (getLangOptions().CUDA)
5503    if (IdentifierInfo *II = NewFD->getIdentifier())
5504      if (!NewFD->isInvalidDecl() &&
5505          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5506        if (II->isStr("cudaConfigureCall")) {
5507          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5508            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5509
5510          Context.setcudaConfigureCallDecl(NewFD);
5511        }
5512      }
5513
5514  // Here we have an function template explicit specialization at class scope.
5515  // The actually specialization will be postponed to template instatiation
5516  // time via the ClassScopeFunctionSpecializationDecl node.
5517  if (isDependentClassScopeExplicitSpecialization) {
5518    ClassScopeFunctionSpecializationDecl *NewSpec =
5519                         ClassScopeFunctionSpecializationDecl::Create(
5520                                Context, CurContext,  SourceLocation(),
5521                                cast<CXXMethodDecl>(NewFD));
5522    CurContext->addDecl(NewSpec);
5523    AddToScope = false;
5524  }
5525
5526  return NewFD;
5527}
5528
5529/// \brief Perform semantic checking of a new function declaration.
5530///
5531/// Performs semantic analysis of the new function declaration
5532/// NewFD. This routine performs all semantic checking that does not
5533/// require the actual declarator involved in the declaration, and is
5534/// used both for the declaration of functions as they are parsed
5535/// (called via ActOnDeclarator) and for the declaration of functions
5536/// that have been instantiated via C++ template instantiation (called
5537/// via InstantiateDecl).
5538///
5539/// \param IsExplicitSpecialiation whether this new function declaration is
5540/// an explicit specialization of the previous declaration.
5541///
5542/// This sets NewFD->isInvalidDecl() to true if there was an error.
5543///
5544/// Returns true if the function declaration is a redeclaration.
5545bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5546                                    LookupResult &Previous,
5547                                    bool IsExplicitSpecialization) {
5548  assert(!NewFD->getResultType()->isVariablyModifiedType()
5549         && "Variably modified return types are not handled here");
5550
5551  // Check for a previous declaration of this name.
5552  if (Previous.empty() && NewFD->isExternC()) {
5553    // Since we did not find anything by this name and we're declaring
5554    // an extern "C" function, look for a non-visible extern "C"
5555    // declaration with the same name.
5556    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5557      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5558    if (Pos != LocallyScopedExternalDecls.end())
5559      Previous.addDecl(Pos->second);
5560  }
5561
5562  bool Redeclaration = false;
5563
5564  // Merge or overload the declaration with an existing declaration of
5565  // the same name, if appropriate.
5566  if (!Previous.empty()) {
5567    // Determine whether NewFD is an overload of PrevDecl or
5568    // a declaration that requires merging. If it's an overload,
5569    // there's no more work to do here; we'll just add the new
5570    // function to the scope.
5571
5572    NamedDecl *OldDecl = 0;
5573    if (!AllowOverloadingOfFunction(Previous, Context)) {
5574      Redeclaration = true;
5575      OldDecl = Previous.getFoundDecl();
5576    } else {
5577      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5578                            /*NewIsUsingDecl*/ false)) {
5579      case Ovl_Match:
5580        Redeclaration = true;
5581        break;
5582
5583      case Ovl_NonFunction:
5584        Redeclaration = true;
5585        break;
5586
5587      case Ovl_Overload:
5588        Redeclaration = false;
5589        break;
5590      }
5591
5592      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5593        // If a function name is overloadable in C, then every function
5594        // with that name must be marked "overloadable".
5595        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5596          << Redeclaration << NewFD;
5597        NamedDecl *OverloadedDecl = 0;
5598        if (Redeclaration)
5599          OverloadedDecl = OldDecl;
5600        else if (!Previous.empty())
5601          OverloadedDecl = Previous.getRepresentativeDecl();
5602        if (OverloadedDecl)
5603          Diag(OverloadedDecl->getLocation(),
5604               diag::note_attribute_overloadable_prev_overload);
5605        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5606                                                        Context));
5607      }
5608    }
5609
5610    if (Redeclaration) {
5611      // NewFD and OldDecl represent declarations that need to be
5612      // merged.
5613      if (MergeFunctionDecl(NewFD, OldDecl)) {
5614        NewFD->setInvalidDecl();
5615        return Redeclaration;
5616      }
5617
5618      Previous.clear();
5619      Previous.addDecl(OldDecl);
5620
5621      if (FunctionTemplateDecl *OldTemplateDecl
5622                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5623        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5624        FunctionTemplateDecl *NewTemplateDecl
5625          = NewFD->getDescribedFunctionTemplate();
5626        assert(NewTemplateDecl && "Template/non-template mismatch");
5627        if (CXXMethodDecl *Method
5628              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5629          Method->setAccess(OldTemplateDecl->getAccess());
5630          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5631        }
5632
5633        // If this is an explicit specialization of a member that is a function
5634        // template, mark it as a member specialization.
5635        if (IsExplicitSpecialization &&
5636            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5637          NewTemplateDecl->setMemberSpecialization();
5638          assert(OldTemplateDecl->isMemberSpecialization());
5639        }
5640
5641      } else {
5642        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5643          NewFD->setAccess(OldDecl->getAccess());
5644        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5645      }
5646    }
5647  }
5648
5649  // Semantic checking for this function declaration (in isolation).
5650  if (getLangOptions().CPlusPlus) {
5651    // C++-specific checks.
5652    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5653      CheckConstructor(Constructor);
5654    } else if (CXXDestructorDecl *Destructor =
5655                dyn_cast<CXXDestructorDecl>(NewFD)) {
5656      CXXRecordDecl *Record = Destructor->getParent();
5657      QualType ClassType = Context.getTypeDeclType(Record);
5658
5659      // FIXME: Shouldn't we be able to perform this check even when the class
5660      // type is dependent? Both gcc and edg can handle that.
5661      if (!ClassType->isDependentType()) {
5662        DeclarationName Name
5663          = Context.DeclarationNames.getCXXDestructorName(
5664                                        Context.getCanonicalType(ClassType));
5665        if (NewFD->getDeclName() != Name) {
5666          Diag(NewFD->getLocation(), diag::err_destructor_name);
5667          NewFD->setInvalidDecl();
5668          return Redeclaration;
5669        }
5670      }
5671    } else if (CXXConversionDecl *Conversion
5672               = dyn_cast<CXXConversionDecl>(NewFD)) {
5673      ActOnConversionDeclarator(Conversion);
5674    }
5675
5676    // Find any virtual functions that this function overrides.
5677    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5678      if (!Method->isFunctionTemplateSpecialization() &&
5679          !Method->getDescribedFunctionTemplate()) {
5680        if (AddOverriddenMethods(Method->getParent(), Method)) {
5681          // If the function was marked as "static", we have a problem.
5682          if (NewFD->getStorageClass() == SC_Static) {
5683            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5684              << NewFD->getDeclName();
5685            for (CXXMethodDecl::method_iterator
5686                      Overridden = Method->begin_overridden_methods(),
5687                   OverriddenEnd = Method->end_overridden_methods();
5688                 Overridden != OverriddenEnd;
5689                 ++Overridden) {
5690              Diag((*Overridden)->getLocation(),
5691                   diag::note_overridden_virtual_function);
5692            }
5693          }
5694        }
5695      }
5696    }
5697
5698    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5699    if (NewFD->isOverloadedOperator() &&
5700        CheckOverloadedOperatorDeclaration(NewFD)) {
5701      NewFD->setInvalidDecl();
5702      return Redeclaration;
5703    }
5704
5705    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5706    if (NewFD->getLiteralIdentifier() &&
5707        CheckLiteralOperatorDeclaration(NewFD)) {
5708      NewFD->setInvalidDecl();
5709      return Redeclaration;
5710    }
5711
5712    // In C++, check default arguments now that we have merged decls. Unless
5713    // the lexical context is the class, because in this case this is done
5714    // during delayed parsing anyway.
5715    if (!CurContext->isRecord())
5716      CheckCXXDefaultArguments(NewFD);
5717
5718    // If this function declares a builtin function, check the type of this
5719    // declaration against the expected type for the builtin.
5720    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5721      ASTContext::GetBuiltinTypeError Error;
5722      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5723      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5724        // The type of this function differs from the type of the builtin,
5725        // so forget about the builtin entirely.
5726        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5727      }
5728    }
5729  }
5730  return Redeclaration;
5731}
5732
5733void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5734  // C++ [basic.start.main]p3:  A program that declares main to be inline
5735  //   or static is ill-formed.
5736  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5737  //   shall not appear in a declaration of main.
5738  // static main is not an error under C99, but we should warn about it.
5739  if (FD->getStorageClass() == SC_Static)
5740    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5741         ? diag::err_static_main : diag::warn_static_main)
5742      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5743  if (FD->isInlineSpecified())
5744    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5745      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5746
5747  QualType T = FD->getType();
5748  assert(T->isFunctionType() && "function decl is not of function type");
5749  const FunctionType* FT = T->getAs<FunctionType>();
5750
5751  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5752    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5753    FD->setInvalidDecl(true);
5754  }
5755
5756  // Treat protoless main() as nullary.
5757  if (isa<FunctionNoProtoType>(FT)) return;
5758
5759  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5760  unsigned nparams = FTP->getNumArgs();
5761  assert(FD->getNumParams() == nparams);
5762
5763  bool HasExtraParameters = (nparams > 3);
5764
5765  // Darwin passes an undocumented fourth argument of type char**.  If
5766  // other platforms start sprouting these, the logic below will start
5767  // getting shifty.
5768  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5769    HasExtraParameters = false;
5770
5771  if (HasExtraParameters) {
5772    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5773    FD->setInvalidDecl(true);
5774    nparams = 3;
5775  }
5776
5777  // FIXME: a lot of the following diagnostics would be improved
5778  // if we had some location information about types.
5779
5780  QualType CharPP =
5781    Context.getPointerType(Context.getPointerType(Context.CharTy));
5782  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5783
5784  for (unsigned i = 0; i < nparams; ++i) {
5785    QualType AT = FTP->getArgType(i);
5786
5787    bool mismatch = true;
5788
5789    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5790      mismatch = false;
5791    else if (Expected[i] == CharPP) {
5792      // As an extension, the following forms are okay:
5793      //   char const **
5794      //   char const * const *
5795      //   char * const *
5796
5797      QualifierCollector qs;
5798      const PointerType* PT;
5799      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5800          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5801          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5802        qs.removeConst();
5803        mismatch = !qs.empty();
5804      }
5805    }
5806
5807    if (mismatch) {
5808      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5809      // TODO: suggest replacing given type with expected type
5810      FD->setInvalidDecl(true);
5811    }
5812  }
5813
5814  if (nparams == 1 && !FD->isInvalidDecl()) {
5815    Diag(FD->getLocation(), diag::warn_main_one_arg);
5816  }
5817
5818  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5819    Diag(FD->getLocation(), diag::err_main_template_decl);
5820    FD->setInvalidDecl();
5821  }
5822}
5823
5824bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5825  // FIXME: Need strict checking.  In C89, we need to check for
5826  // any assignment, increment, decrement, function-calls, or
5827  // commas outside of a sizeof.  In C99, it's the same list,
5828  // except that the aforementioned are allowed in unevaluated
5829  // expressions.  Everything else falls under the
5830  // "may accept other forms of constant expressions" exception.
5831  // (We never end up here for C++, so the constant expression
5832  // rules there don't matter.)
5833  if (Init->isConstantInitializer(Context, false))
5834    return false;
5835  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5836    << Init->getSourceRange();
5837  return true;
5838}
5839
5840namespace {
5841  // Visits an initialization expression to see if OrigDecl is evaluated in
5842  // its own initialization and throws a warning if it does.
5843  class SelfReferenceChecker
5844      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5845    Sema &S;
5846    Decl *OrigDecl;
5847    bool isRecordType;
5848    bool isPODType;
5849
5850  public:
5851    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5852
5853    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5854                                                    S(S), OrigDecl(OrigDecl) {
5855      isPODType = false;
5856      isRecordType = false;
5857      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5858        isPODType = VD->getType().isPODType(S.Context);
5859        isRecordType = VD->getType()->isRecordType();
5860      }
5861    }
5862
5863    void VisitExpr(Expr *E) {
5864      if (isa<ObjCMessageExpr>(*E)) return;
5865      if (isRecordType) {
5866        Expr *expr = E;
5867        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5868          ValueDecl *VD = ME->getMemberDecl();
5869          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5870          expr = ME->getBase();
5871        }
5872        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5873          HandleDeclRefExpr(DRE);
5874          return;
5875        }
5876      }
5877      Inherited::VisitExpr(E);
5878    }
5879
5880    void VisitMemberExpr(MemberExpr *E) {
5881      if (E->getType()->canDecayToPointerType()) return;
5882      if (isa<FieldDecl>(E->getMemberDecl()))
5883        if (DeclRefExpr *DRE
5884              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5885          HandleDeclRefExpr(DRE);
5886          return;
5887        }
5888      Inherited::VisitMemberExpr(E);
5889    }
5890
5891    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5892      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5893          (isRecordType && E->getCastKind() == CK_NoOp)) {
5894        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5895        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5896          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5897        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5898          HandleDeclRefExpr(DRE);
5899          return;
5900        }
5901      }
5902      Inherited::VisitImplicitCastExpr(E);
5903    }
5904
5905    void VisitUnaryOperator(UnaryOperator *E) {
5906      // For POD record types, addresses of its own members are well-defined.
5907      if (isRecordType && isPODType) return;
5908      Inherited::VisitUnaryOperator(E);
5909    }
5910
5911    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5912      Decl* ReferenceDecl = DRE->getDecl();
5913      if (OrigDecl != ReferenceDecl) return;
5914      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5915                          Sema::NotForRedeclaration);
5916      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5917                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5918                              << Result.getLookupName()
5919                              << OrigDecl->getLocation()
5920                              << DRE->getSourceRange());
5921    }
5922  };
5923}
5924
5925/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5926void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5927  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5928}
5929
5930/// AddInitializerToDecl - Adds the initializer Init to the
5931/// declaration dcl. If DirectInit is true, this is C++ direct
5932/// initialization rather than copy initialization.
5933void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5934                                bool DirectInit, bool TypeMayContainAuto) {
5935  // If there is no declaration, there was an error parsing it.  Just ignore
5936  // the initializer.
5937  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5938    return;
5939
5940  // Check for self-references within variable initializers.
5941  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5942    // Variables declared within a function/method body are handled
5943    // by a dataflow analysis.
5944    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5945      CheckSelfReference(RealDecl, Init);
5946  }
5947  else {
5948    CheckSelfReference(RealDecl, Init);
5949  }
5950
5951  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5952    // With declarators parsed the way they are, the parser cannot
5953    // distinguish between a normal initializer and a pure-specifier.
5954    // Thus this grotesque test.
5955    IntegerLiteral *IL;
5956    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5957        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5958      CheckPureMethod(Method, Init->getSourceRange());
5959    else {
5960      Diag(Method->getLocation(), diag::err_member_function_initialization)
5961        << Method->getDeclName() << Init->getSourceRange();
5962      Method->setInvalidDecl();
5963    }
5964    return;
5965  }
5966
5967  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5968  if (!VDecl) {
5969    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5970    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5971    RealDecl->setInvalidDecl();
5972    return;
5973  }
5974
5975  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5976  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5977    TypeSourceInfo *DeducedType = 0;
5978    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5979      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5980        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5981        << Init->getSourceRange();
5982    if (!DeducedType) {
5983      RealDecl->setInvalidDecl();
5984      return;
5985    }
5986    VDecl->setTypeSourceInfo(DeducedType);
5987    VDecl->setType(DeducedType->getType());
5988
5989    // In ARC, infer lifetime.
5990    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5991      VDecl->setInvalidDecl();
5992
5993    // If this is a redeclaration, check that the type we just deduced matches
5994    // the previously declared type.
5995    if (VarDecl *Old = VDecl->getPreviousDecl())
5996      MergeVarDeclTypes(VDecl, Old);
5997  }
5998
5999  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6000    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6001    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6002    VDecl->setInvalidDecl();
6003    return;
6004  }
6005
6006
6007  // A definition must end up with a complete type, which means it must be
6008  // complete with the restriction that an array type might be completed by the
6009  // initializer; note that later code assumes this restriction.
6010  QualType BaseDeclType = VDecl->getType();
6011  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6012    BaseDeclType = Array->getElementType();
6013  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6014                          diag::err_typecheck_decl_incomplete_type)) {
6015    RealDecl->setInvalidDecl();
6016    return;
6017  }
6018
6019  // The variable can not have an abstract class type.
6020  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6021                             diag::err_abstract_type_in_decl,
6022                             AbstractVariableType))
6023    VDecl->setInvalidDecl();
6024
6025  const VarDecl *Def;
6026  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6027    Diag(VDecl->getLocation(), diag::err_redefinition)
6028      << VDecl->getDeclName();
6029    Diag(Def->getLocation(), diag::note_previous_definition);
6030    VDecl->setInvalidDecl();
6031    return;
6032  }
6033
6034  const VarDecl* PrevInit = 0;
6035  if (getLangOptions().CPlusPlus) {
6036    // C++ [class.static.data]p4
6037    //   If a static data member is of const integral or const
6038    //   enumeration type, its declaration in the class definition can
6039    //   specify a constant-initializer which shall be an integral
6040    //   constant expression (5.19). In that case, the member can appear
6041    //   in integral constant expressions. The member shall still be
6042    //   defined in a namespace scope if it is used in the program and the
6043    //   namespace scope definition shall not contain an initializer.
6044    //
6045    // We already performed a redefinition check above, but for static
6046    // data members we also need to check whether there was an in-class
6047    // declaration with an initializer.
6048    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6049      Diag(VDecl->getLocation(), diag::err_redefinition)
6050        << VDecl->getDeclName();
6051      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6052      return;
6053    }
6054
6055    if (VDecl->hasLocalStorage())
6056      getCurFunction()->setHasBranchProtectedScope();
6057
6058    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6059      VDecl->setInvalidDecl();
6060      return;
6061    }
6062  }
6063
6064  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6065  // a kernel function cannot be initialized."
6066  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6067    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6068    VDecl->setInvalidDecl();
6069    return;
6070  }
6071
6072  // Get the decls type and save a reference for later, since
6073  // CheckInitializerTypes may change it.
6074  QualType DclT = VDecl->getType(), SavT = DclT;
6075
6076  // Perform the initialization.
6077  if (!VDecl->isInvalidDecl()) {
6078    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6079    InitializationKind Kind
6080      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6081                                                      Init->getLocStart(),
6082                                                      Init->getLocEnd())
6083                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6084                                                    Init->getLocStart());
6085
6086    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6087    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6088                                              MultiExprArg(*this, &Init, 1),
6089                                              &DclT);
6090    if (Result.isInvalid()) {
6091      VDecl->setInvalidDecl();
6092      return;
6093    }
6094
6095    Init = Result.takeAs<Expr>();
6096  }
6097
6098  // If the type changed, it means we had an incomplete type that was
6099  // completed by the initializer. For example:
6100  //   int ary[] = { 1, 3, 5 };
6101  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6102  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6103    VDecl->setType(DclT);
6104    Init->setType(DclT.getNonReferenceType());
6105  }
6106
6107  // Check any implicit conversions within the expression.
6108  CheckImplicitConversions(Init, VDecl->getLocation());
6109
6110  if (!VDecl->isInvalidDecl())
6111    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6112
6113  Init = MaybeCreateExprWithCleanups(Init);
6114  // Attach the initializer to the decl.
6115  VDecl->setInit(Init);
6116
6117  if (VDecl->isLocalVarDecl()) {
6118    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6119    // static storage duration shall be constant expressions or string literals.
6120    // C++ does not have this restriction.
6121    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6122        VDecl->getStorageClass() == SC_Static)
6123      CheckForConstantInitializer(Init, DclT);
6124  } else if (VDecl->isStaticDataMember() &&
6125             VDecl->getLexicalDeclContext()->isRecord()) {
6126    // This is an in-class initialization for a static data member, e.g.,
6127    //
6128    // struct S {
6129    //   static const int value = 17;
6130    // };
6131
6132    // C++ [class.mem]p4:
6133    //   A member-declarator can contain a constant-initializer only
6134    //   if it declares a static member (9.4) of const integral or
6135    //   const enumeration type, see 9.4.2.
6136    //
6137    // C++11 [class.static.data]p3:
6138    //   If a non-volatile const static data member is of integral or
6139    //   enumeration type, its declaration in the class definition can
6140    //   specify a brace-or-equal-initializer in which every initalizer-clause
6141    //   that is an assignment-expression is a constant expression. A static
6142    //   data member of literal type can be declared in the class definition
6143    //   with the constexpr specifier; if so, its declaration shall specify a
6144    //   brace-or-equal-initializer in which every initializer-clause that is
6145    //   an assignment-expression is a constant expression.
6146
6147    // Do nothing on dependent types.
6148    if (DclT->isDependentType()) {
6149
6150    // Allow any 'static constexpr' members, whether or not they are of literal
6151    // type. We separately check that the initializer is a constant expression,
6152    // which implicitly requires the member to be of literal type.
6153    } else if (VDecl->isConstexpr()) {
6154
6155    // Require constness.
6156    } else if (!DclT.isConstQualified()) {
6157      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6158        << Init->getSourceRange();
6159      VDecl->setInvalidDecl();
6160
6161    // We allow integer constant expressions in all cases.
6162    } else if (DclT->isIntegralOrEnumerationType()) {
6163      // Check whether the expression is a constant expression.
6164      SourceLocation Loc;
6165      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6166        // In C++11, a non-constexpr const static data member with an
6167        // in-class initializer cannot be volatile.
6168        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6169      else if (Init->isValueDependent())
6170        ; // Nothing to check.
6171      else if (Init->isIntegerConstantExpr(Context, &Loc))
6172        ; // Ok, it's an ICE!
6173      else if (Init->isEvaluatable(Context)) {
6174        // If we can constant fold the initializer through heroics, accept it,
6175        // but report this as a use of an extension for -pedantic.
6176        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6177          << Init->getSourceRange();
6178      } else {
6179        // Otherwise, this is some crazy unknown case.  Report the issue at the
6180        // location provided by the isIntegerConstantExpr failed check.
6181        Diag(Loc, diag::err_in_class_initializer_non_constant)
6182          << Init->getSourceRange();
6183        VDecl->setInvalidDecl();
6184      }
6185
6186    // We allow foldable floating-point constants as an extension.
6187    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6188      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6189        << DclT << Init->getSourceRange();
6190      if (getLangOptions().CPlusPlus0x)
6191        Diag(VDecl->getLocation(),
6192             diag::note_in_class_initializer_float_type_constexpr)
6193          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6194
6195      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6196        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6197          << Init->getSourceRange();
6198        VDecl->setInvalidDecl();
6199      }
6200
6201    // Suggest adding 'constexpr' in C++11 for literal types.
6202    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6203      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6204        << DclT << Init->getSourceRange()
6205        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6206      VDecl->setConstexpr(true);
6207
6208    } else {
6209      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6210        << DclT << Init->getSourceRange();
6211      VDecl->setInvalidDecl();
6212    }
6213  } else if (VDecl->isFileVarDecl()) {
6214    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6215        (!getLangOptions().CPlusPlus ||
6216         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6217      Diag(VDecl->getLocation(), diag::warn_extern_init);
6218
6219    // C99 6.7.8p4. All file scoped initializers need to be constant.
6220    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6221      CheckForConstantInitializer(Init, DclT);
6222  }
6223
6224  CheckCompleteVariableDeclaration(VDecl);
6225}
6226
6227/// ActOnInitializerError - Given that there was an error parsing an
6228/// initializer for the given declaration, try to return to some form
6229/// of sanity.
6230void Sema::ActOnInitializerError(Decl *D) {
6231  // Our main concern here is re-establishing invariants like "a
6232  // variable's type is either dependent or complete".
6233  if (!D || D->isInvalidDecl()) return;
6234
6235  VarDecl *VD = dyn_cast<VarDecl>(D);
6236  if (!VD) return;
6237
6238  // Auto types are meaningless if we can't make sense of the initializer.
6239  if (ParsingInitForAutoVars.count(D)) {
6240    D->setInvalidDecl();
6241    return;
6242  }
6243
6244  QualType Ty = VD->getType();
6245  if (Ty->isDependentType()) return;
6246
6247  // Require a complete type.
6248  if (RequireCompleteType(VD->getLocation(),
6249                          Context.getBaseElementType(Ty),
6250                          diag::err_typecheck_decl_incomplete_type)) {
6251    VD->setInvalidDecl();
6252    return;
6253  }
6254
6255  // Require an abstract type.
6256  if (RequireNonAbstractType(VD->getLocation(), Ty,
6257                             diag::err_abstract_type_in_decl,
6258                             AbstractVariableType)) {
6259    VD->setInvalidDecl();
6260    return;
6261  }
6262
6263  // Don't bother complaining about constructors or destructors,
6264  // though.
6265}
6266
6267void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6268                                  bool TypeMayContainAuto) {
6269  // If there is no declaration, there was an error parsing it. Just ignore it.
6270  if (RealDecl == 0)
6271    return;
6272
6273  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6274    QualType Type = Var->getType();
6275
6276    // C++11 [dcl.spec.auto]p3
6277    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6278      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6279        << Var->getDeclName() << Type;
6280      Var->setInvalidDecl();
6281      return;
6282    }
6283
6284    // C++11 [class.static.data]p3: A static data member can be declared with
6285    // the constexpr specifier; if so, its declaration shall specify
6286    // a brace-or-equal-initializer.
6287    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6288    // the definition of a variable [...] or the declaration of a static data
6289    // member.
6290    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6291      if (Var->isStaticDataMember())
6292        Diag(Var->getLocation(),
6293             diag::err_constexpr_static_mem_var_requires_init)
6294          << Var->getDeclName();
6295      else
6296        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6297      Var->setInvalidDecl();
6298      return;
6299    }
6300
6301    switch (Var->isThisDeclarationADefinition()) {
6302    case VarDecl::Definition:
6303      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6304        break;
6305
6306      // We have an out-of-line definition of a static data member
6307      // that has an in-class initializer, so we type-check this like
6308      // a declaration.
6309      //
6310      // Fall through
6311
6312    case VarDecl::DeclarationOnly:
6313      // It's only a declaration.
6314
6315      // Block scope. C99 6.7p7: If an identifier for an object is
6316      // declared with no linkage (C99 6.2.2p6), the type for the
6317      // object shall be complete.
6318      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6319          !Var->getLinkage() && !Var->isInvalidDecl() &&
6320          RequireCompleteType(Var->getLocation(), Type,
6321                              diag::err_typecheck_decl_incomplete_type))
6322        Var->setInvalidDecl();
6323
6324      // Make sure that the type is not abstract.
6325      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6326          RequireNonAbstractType(Var->getLocation(), Type,
6327                                 diag::err_abstract_type_in_decl,
6328                                 AbstractVariableType))
6329        Var->setInvalidDecl();
6330      return;
6331
6332    case VarDecl::TentativeDefinition:
6333      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6334      // object that has file scope without an initializer, and without a
6335      // storage-class specifier or with the storage-class specifier "static",
6336      // constitutes a tentative definition. Note: A tentative definition with
6337      // external linkage is valid (C99 6.2.2p5).
6338      if (!Var->isInvalidDecl()) {
6339        if (const IncompleteArrayType *ArrayT
6340                                    = Context.getAsIncompleteArrayType(Type)) {
6341          if (RequireCompleteType(Var->getLocation(),
6342                                  ArrayT->getElementType(),
6343                                  diag::err_illegal_decl_array_incomplete_type))
6344            Var->setInvalidDecl();
6345        } else if (Var->getStorageClass() == SC_Static) {
6346          // C99 6.9.2p3: If the declaration of an identifier for an object is
6347          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6348          // declared type shall not be an incomplete type.
6349          // NOTE: code such as the following
6350          //     static struct s;
6351          //     struct s { int a; };
6352          // is accepted by gcc. Hence here we issue a warning instead of
6353          // an error and we do not invalidate the static declaration.
6354          // NOTE: to avoid multiple warnings, only check the first declaration.
6355          if (Var->getPreviousDecl() == 0)
6356            RequireCompleteType(Var->getLocation(), Type,
6357                                diag::ext_typecheck_decl_incomplete_type);
6358        }
6359      }
6360
6361      // Record the tentative definition; we're done.
6362      if (!Var->isInvalidDecl())
6363        TentativeDefinitions.push_back(Var);
6364      return;
6365    }
6366
6367    // Provide a specific diagnostic for uninitialized variable
6368    // definitions with incomplete array type.
6369    if (Type->isIncompleteArrayType()) {
6370      Diag(Var->getLocation(),
6371           diag::err_typecheck_incomplete_array_needs_initializer);
6372      Var->setInvalidDecl();
6373      return;
6374    }
6375
6376    // Provide a specific diagnostic for uninitialized variable
6377    // definitions with reference type.
6378    if (Type->isReferenceType()) {
6379      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6380        << Var->getDeclName()
6381        << SourceRange(Var->getLocation(), Var->getLocation());
6382      Var->setInvalidDecl();
6383      return;
6384    }
6385
6386    // Do not attempt to type-check the default initializer for a
6387    // variable with dependent type.
6388    if (Type->isDependentType())
6389      return;
6390
6391    if (Var->isInvalidDecl())
6392      return;
6393
6394    if (RequireCompleteType(Var->getLocation(),
6395                            Context.getBaseElementType(Type),
6396                            diag::err_typecheck_decl_incomplete_type)) {
6397      Var->setInvalidDecl();
6398      return;
6399    }
6400
6401    // The variable can not have an abstract class type.
6402    if (RequireNonAbstractType(Var->getLocation(), Type,
6403                               diag::err_abstract_type_in_decl,
6404                               AbstractVariableType)) {
6405      Var->setInvalidDecl();
6406      return;
6407    }
6408
6409    // Check for jumps past the implicit initializer.  C++0x
6410    // clarifies that this applies to a "variable with automatic
6411    // storage duration", not a "local variable".
6412    // C++11 [stmt.dcl]p3
6413    //   A program that jumps from a point where a variable with automatic
6414    //   storage duration is not in scope to a point where it is in scope is
6415    //   ill-formed unless the variable has scalar type, class type with a
6416    //   trivial default constructor and a trivial destructor, a cv-qualified
6417    //   version of one of these types, or an array of one of the preceding
6418    //   types and is declared without an initializer.
6419    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6420      if (const RecordType *Record
6421            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6422        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6423        // Mark the function for further checking even if the looser rules of
6424        // C++11 do not require such checks, so that we can diagnose
6425        // incompatibilities with C++98.
6426        if (!CXXRecord->isPOD())
6427          getCurFunction()->setHasBranchProtectedScope();
6428      }
6429    }
6430
6431    // C++03 [dcl.init]p9:
6432    //   If no initializer is specified for an object, and the
6433    //   object is of (possibly cv-qualified) non-POD class type (or
6434    //   array thereof), the object shall be default-initialized; if
6435    //   the object is of const-qualified type, the underlying class
6436    //   type shall have a user-declared default
6437    //   constructor. Otherwise, if no initializer is specified for
6438    //   a non- static object, the object and its subobjects, if
6439    //   any, have an indeterminate initial value); if the object
6440    //   or any of its subobjects are of const-qualified type, the
6441    //   program is ill-formed.
6442    // C++0x [dcl.init]p11:
6443    //   If no initializer is specified for an object, the object is
6444    //   default-initialized; [...].
6445    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6446    InitializationKind Kind
6447      = InitializationKind::CreateDefault(Var->getLocation());
6448
6449    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6450    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6451                                      MultiExprArg(*this, 0, 0));
6452    if (Init.isInvalid())
6453      Var->setInvalidDecl();
6454    else if (Init.get())
6455      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6456
6457    CheckCompleteVariableDeclaration(Var);
6458  }
6459}
6460
6461void Sema::ActOnCXXForRangeDecl(Decl *D) {
6462  VarDecl *VD = dyn_cast<VarDecl>(D);
6463  if (!VD) {
6464    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6465    D->setInvalidDecl();
6466    return;
6467  }
6468
6469  VD->setCXXForRangeDecl(true);
6470
6471  // for-range-declaration cannot be given a storage class specifier.
6472  int Error = -1;
6473  switch (VD->getStorageClassAsWritten()) {
6474  case SC_None:
6475    break;
6476  case SC_Extern:
6477    Error = 0;
6478    break;
6479  case SC_Static:
6480    Error = 1;
6481    break;
6482  case SC_PrivateExtern:
6483    Error = 2;
6484    break;
6485  case SC_Auto:
6486    Error = 3;
6487    break;
6488  case SC_Register:
6489    Error = 4;
6490    break;
6491  case SC_OpenCLWorkGroupLocal:
6492    llvm_unreachable("Unexpected storage class");
6493  }
6494  if (VD->isConstexpr())
6495    Error = 5;
6496  if (Error != -1) {
6497    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6498      << VD->getDeclName() << Error;
6499    D->setInvalidDecl();
6500  }
6501}
6502
6503void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6504  if (var->isInvalidDecl()) return;
6505
6506  // In ARC, don't allow jumps past the implicit initialization of a
6507  // local retaining variable.
6508  if (getLangOptions().ObjCAutoRefCount &&
6509      var->hasLocalStorage()) {
6510    switch (var->getType().getObjCLifetime()) {
6511    case Qualifiers::OCL_None:
6512    case Qualifiers::OCL_ExplicitNone:
6513    case Qualifiers::OCL_Autoreleasing:
6514      break;
6515
6516    case Qualifiers::OCL_Weak:
6517    case Qualifiers::OCL_Strong:
6518      getCurFunction()->setHasBranchProtectedScope();
6519      break;
6520    }
6521  }
6522
6523  // All the following checks are C++ only.
6524  if (!getLangOptions().CPlusPlus) return;
6525
6526  QualType baseType = Context.getBaseElementType(var->getType());
6527  if (baseType->isDependentType()) return;
6528
6529  // __block variables might require us to capture a copy-initializer.
6530  if (var->hasAttr<BlocksAttr>()) {
6531    // It's currently invalid to ever have a __block variable with an
6532    // array type; should we diagnose that here?
6533
6534    // Regardless, we don't want to ignore array nesting when
6535    // constructing this copy.
6536    QualType type = var->getType();
6537
6538    if (type->isStructureOrClassType()) {
6539      SourceLocation poi = var->getLocation();
6540      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6541      ExprResult result =
6542        PerformCopyInitialization(
6543                        InitializedEntity::InitializeBlock(poi, type, false),
6544                                  poi, Owned(varRef));
6545      if (!result.isInvalid()) {
6546        result = MaybeCreateExprWithCleanups(result);
6547        Expr *init = result.takeAs<Expr>();
6548        Context.setBlockVarCopyInits(var, init);
6549      }
6550    }
6551  }
6552
6553  Expr *Init = var->getInit();
6554  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6555
6556  if (!var->getDeclContext()->isDependentContext() && Init) {
6557    if (IsGlobal && !var->isConstexpr() &&
6558        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6559                                            var->getLocation())
6560          != DiagnosticsEngine::Ignored &&
6561        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6562      Diag(var->getLocation(), diag::warn_global_constructor)
6563        << Init->getSourceRange();
6564
6565    if (var->isConstexpr()) {
6566      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6567      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6568        SourceLocation DiagLoc = var->getLocation();
6569        // If the note doesn't add any useful information other than a source
6570        // location, fold it into the primary diagnostic.
6571        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6572              diag::note_invalid_subexpr_in_const_expr) {
6573          DiagLoc = Notes[0].first;
6574          Notes.clear();
6575        }
6576        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6577          << var << Init->getSourceRange();
6578        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6579          Diag(Notes[I].first, Notes[I].second);
6580      }
6581    } else if (var->isUsableInConstantExpressions()) {
6582      // Check whether the initializer of a const variable of integral or
6583      // enumeration type is an ICE now, since we can't tell whether it was
6584      // initialized by a constant expression if we check later.
6585      var->checkInitIsICE();
6586    }
6587  }
6588
6589  // Require the destructor.
6590  if (const RecordType *recordType = baseType->getAs<RecordType>())
6591    FinalizeVarWithDestructor(var, recordType);
6592}
6593
6594/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6595/// any semantic actions necessary after any initializer has been attached.
6596void
6597Sema::FinalizeDeclaration(Decl *ThisDecl) {
6598  // Note that we are no longer parsing the initializer for this declaration.
6599  ParsingInitForAutoVars.erase(ThisDecl);
6600}
6601
6602Sema::DeclGroupPtrTy
6603Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6604                              Decl **Group, unsigned NumDecls) {
6605  SmallVector<Decl*, 8> Decls;
6606
6607  if (DS.isTypeSpecOwned())
6608    Decls.push_back(DS.getRepAsDecl());
6609
6610  for (unsigned i = 0; i != NumDecls; ++i)
6611    if (Decl *D = Group[i])
6612      Decls.push_back(D);
6613
6614  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6615                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6616}
6617
6618/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6619/// group, performing any necessary semantic checking.
6620Sema::DeclGroupPtrTy
6621Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6622                           bool TypeMayContainAuto) {
6623  // C++0x [dcl.spec.auto]p7:
6624  //   If the type deduced for the template parameter U is not the same in each
6625  //   deduction, the program is ill-formed.
6626  // FIXME: When initializer-list support is added, a distinction is needed
6627  // between the deduced type U and the deduced type which 'auto' stands for.
6628  //   auto a = 0, b = { 1, 2, 3 };
6629  // is legal because the deduced type U is 'int' in both cases.
6630  if (TypeMayContainAuto && NumDecls > 1) {
6631    QualType Deduced;
6632    CanQualType DeducedCanon;
6633    VarDecl *DeducedDecl = 0;
6634    for (unsigned i = 0; i != NumDecls; ++i) {
6635      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6636        AutoType *AT = D->getType()->getContainedAutoType();
6637        // Don't reissue diagnostics when instantiating a template.
6638        if (AT && D->isInvalidDecl())
6639          break;
6640        if (AT && AT->isDeduced()) {
6641          QualType U = AT->getDeducedType();
6642          CanQualType UCanon = Context.getCanonicalType(U);
6643          if (Deduced.isNull()) {
6644            Deduced = U;
6645            DeducedCanon = UCanon;
6646            DeducedDecl = D;
6647          } else if (DeducedCanon != UCanon) {
6648            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6649                 diag::err_auto_different_deductions)
6650              << Deduced << DeducedDecl->getDeclName()
6651              << U << D->getDeclName()
6652              << DeducedDecl->getInit()->getSourceRange()
6653              << D->getInit()->getSourceRange();
6654            D->setInvalidDecl();
6655            break;
6656          }
6657        }
6658      }
6659    }
6660  }
6661
6662  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6663}
6664
6665
6666/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6667/// to introduce parameters into function prototype scope.
6668Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6669  const DeclSpec &DS = D.getDeclSpec();
6670
6671  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6672  // C++03 [dcl.stc]p2 also permits 'auto'.
6673  VarDecl::StorageClass StorageClass = SC_None;
6674  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6675  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6676    StorageClass = SC_Register;
6677    StorageClassAsWritten = SC_Register;
6678  } else if (getLangOptions().CPlusPlus &&
6679             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6680    StorageClass = SC_Auto;
6681    StorageClassAsWritten = SC_Auto;
6682  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6683    Diag(DS.getStorageClassSpecLoc(),
6684         diag::err_invalid_storage_class_in_func_decl);
6685    D.getMutableDeclSpec().ClearStorageClassSpecs();
6686  }
6687
6688  if (D.getDeclSpec().isThreadSpecified())
6689    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6690  if (D.getDeclSpec().isConstexprSpecified())
6691    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6692      << 0;
6693
6694  DiagnoseFunctionSpecifiers(D);
6695
6696  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6697  QualType parmDeclType = TInfo->getType();
6698
6699  if (getLangOptions().CPlusPlus) {
6700    // Check that there are no default arguments inside the type of this
6701    // parameter.
6702    CheckExtraCXXDefaultArguments(D);
6703
6704    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6705    if (D.getCXXScopeSpec().isSet()) {
6706      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6707        << D.getCXXScopeSpec().getRange();
6708      D.getCXXScopeSpec().clear();
6709    }
6710  }
6711
6712  // Ensure we have a valid name
6713  IdentifierInfo *II = 0;
6714  if (D.hasName()) {
6715    II = D.getIdentifier();
6716    if (!II) {
6717      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6718        << GetNameForDeclarator(D).getName().getAsString();
6719      D.setInvalidType(true);
6720    }
6721  }
6722
6723  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6724  if (II) {
6725    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6726                   ForRedeclaration);
6727    LookupName(R, S);
6728    if (R.isSingleResult()) {
6729      NamedDecl *PrevDecl = R.getFoundDecl();
6730      if (PrevDecl->isTemplateParameter()) {
6731        // Maybe we will complain about the shadowed template parameter.
6732        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6733        // Just pretend that we didn't see the previous declaration.
6734        PrevDecl = 0;
6735      } else if (S->isDeclScope(PrevDecl)) {
6736        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6737        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6738
6739        // Recover by removing the name
6740        II = 0;
6741        D.SetIdentifier(0, D.getIdentifierLoc());
6742        D.setInvalidType(true);
6743      }
6744    }
6745  }
6746
6747  // Temporarily put parameter variables in the translation unit, not
6748  // the enclosing context.  This prevents them from accidentally
6749  // looking like class members in C++.
6750  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6751                                    D.getSourceRange().getBegin(),
6752                                    D.getIdentifierLoc(), II,
6753                                    parmDeclType, TInfo,
6754                                    StorageClass, StorageClassAsWritten);
6755
6756  if (D.isInvalidType())
6757    New->setInvalidDecl();
6758
6759  assert(S->isFunctionPrototypeScope());
6760  assert(S->getFunctionPrototypeDepth() >= 1);
6761  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6762                    S->getNextFunctionPrototypeIndex());
6763
6764  // Add the parameter declaration into this scope.
6765  S->AddDecl(New);
6766  if (II)
6767    IdResolver.AddDecl(New);
6768
6769  ProcessDeclAttributes(S, New, D);
6770
6771  if (D.getDeclSpec().isModulePrivateSpecified())
6772    Diag(New->getLocation(), diag::err_module_private_local)
6773      << 1 << New->getDeclName()
6774      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6775      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6776
6777  if (New->hasAttr<BlocksAttr>()) {
6778    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6779  }
6780  return New;
6781}
6782
6783/// \brief Synthesizes a variable for a parameter arising from a
6784/// typedef.
6785ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6786                                              SourceLocation Loc,
6787                                              QualType T) {
6788  /* FIXME: setting StartLoc == Loc.
6789     Would it be worth to modify callers so as to provide proper source
6790     location for the unnamed parameters, embedding the parameter's type? */
6791  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6792                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6793                                           SC_None, SC_None, 0);
6794  Param->setImplicit();
6795  return Param;
6796}
6797
6798void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6799                                    ParmVarDecl * const *ParamEnd) {
6800  // Don't diagnose unused-parameter errors in template instantiations; we
6801  // will already have done so in the template itself.
6802  if (!ActiveTemplateInstantiations.empty())
6803    return;
6804
6805  for (; Param != ParamEnd; ++Param) {
6806    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6807        !(*Param)->hasAttr<UnusedAttr>()) {
6808      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6809        << (*Param)->getDeclName();
6810    }
6811  }
6812}
6813
6814void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6815                                                  ParmVarDecl * const *ParamEnd,
6816                                                  QualType ReturnTy,
6817                                                  NamedDecl *D) {
6818  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6819    return;
6820
6821  // Warn if the return value is pass-by-value and larger than the specified
6822  // threshold.
6823  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6824    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6825    if (Size > LangOpts.NumLargeByValueCopy)
6826      Diag(D->getLocation(), diag::warn_return_value_size)
6827          << D->getDeclName() << Size;
6828  }
6829
6830  // Warn if any parameter is pass-by-value and larger than the specified
6831  // threshold.
6832  for (; Param != ParamEnd; ++Param) {
6833    QualType T = (*Param)->getType();
6834    if (T->isDependentType() || !T.isPODType(Context))
6835      continue;
6836    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6837    if (Size > LangOpts.NumLargeByValueCopy)
6838      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6839          << (*Param)->getDeclName() << Size;
6840  }
6841}
6842
6843ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6844                                  SourceLocation NameLoc, IdentifierInfo *Name,
6845                                  QualType T, TypeSourceInfo *TSInfo,
6846                                  VarDecl::StorageClass StorageClass,
6847                                  VarDecl::StorageClass StorageClassAsWritten) {
6848  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6849  if (getLangOptions().ObjCAutoRefCount &&
6850      T.getObjCLifetime() == Qualifiers::OCL_None &&
6851      T->isObjCLifetimeType()) {
6852
6853    Qualifiers::ObjCLifetime lifetime;
6854
6855    // Special cases for arrays:
6856    //   - if it's const, use __unsafe_unretained
6857    //   - otherwise, it's an error
6858    if (T->isArrayType()) {
6859      if (!T.isConstQualified()) {
6860        DelayedDiagnostics.add(
6861            sema::DelayedDiagnostic::makeForbiddenType(
6862            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6863      }
6864      lifetime = Qualifiers::OCL_ExplicitNone;
6865    } else {
6866      lifetime = T->getObjCARCImplicitLifetime();
6867    }
6868    T = Context.getLifetimeQualifiedType(T, lifetime);
6869  }
6870
6871  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6872                                         Context.getAdjustedParameterType(T),
6873                                         TSInfo,
6874                                         StorageClass, StorageClassAsWritten,
6875                                         0);
6876
6877  // Parameters can not be abstract class types.
6878  // For record types, this is done by the AbstractClassUsageDiagnoser once
6879  // the class has been completely parsed.
6880  if (!CurContext->isRecord() &&
6881      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6882                             AbstractParamType))
6883    New->setInvalidDecl();
6884
6885  // Parameter declarators cannot be interface types. All ObjC objects are
6886  // passed by reference.
6887  if (T->isObjCObjectType()) {
6888    Diag(NameLoc,
6889         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6890      << FixItHint::CreateInsertion(NameLoc, "*");
6891    T = Context.getObjCObjectPointerType(T);
6892    New->setType(T);
6893  }
6894
6895  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6896  // duration shall not be qualified by an address-space qualifier."
6897  // Since all parameters have automatic store duration, they can not have
6898  // an address space.
6899  if (T.getAddressSpace() != 0) {
6900    Diag(NameLoc, diag::err_arg_with_address_space);
6901    New->setInvalidDecl();
6902  }
6903
6904  return New;
6905}
6906
6907void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6908                                           SourceLocation LocAfterDecls) {
6909  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6910
6911  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6912  // for a K&R function.
6913  if (!FTI.hasPrototype) {
6914    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6915      --i;
6916      if (FTI.ArgInfo[i].Param == 0) {
6917        llvm::SmallString<256> Code;
6918        llvm::raw_svector_ostream(Code) << "  int "
6919                                        << FTI.ArgInfo[i].Ident->getName()
6920                                        << ";\n";
6921        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6922          << FTI.ArgInfo[i].Ident
6923          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6924
6925        // Implicitly declare the argument as type 'int' for lack of a better
6926        // type.
6927        AttributeFactory attrs;
6928        DeclSpec DS(attrs);
6929        const char* PrevSpec; // unused
6930        unsigned DiagID; // unused
6931        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6932                           PrevSpec, DiagID);
6933        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6934        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6935        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6936      }
6937    }
6938  }
6939}
6940
6941Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6942                                         Declarator &D) {
6943  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6944  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6945  Scope *ParentScope = FnBodyScope->getParent();
6946
6947  D.setFunctionDefinitionKind(FDK_Definition);
6948  Decl *DP = HandleDeclarator(ParentScope, D,
6949                              MultiTemplateParamsArg(*this));
6950  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6951}
6952
6953static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6954  // Don't warn about invalid declarations.
6955  if (FD->isInvalidDecl())
6956    return false;
6957
6958  // Or declarations that aren't global.
6959  if (!FD->isGlobal())
6960    return false;
6961
6962  // Don't warn about C++ member functions.
6963  if (isa<CXXMethodDecl>(FD))
6964    return false;
6965
6966  // Don't warn about 'main'.
6967  if (FD->isMain())
6968    return false;
6969
6970  // Don't warn about inline functions.
6971  if (FD->isInlined())
6972    return false;
6973
6974  // Don't warn about function templates.
6975  if (FD->getDescribedFunctionTemplate())
6976    return false;
6977
6978  // Don't warn about function template specializations.
6979  if (FD->isFunctionTemplateSpecialization())
6980    return false;
6981
6982  bool MissingPrototype = true;
6983  for (const FunctionDecl *Prev = FD->getPreviousDecl();
6984       Prev; Prev = Prev->getPreviousDecl()) {
6985    // Ignore any declarations that occur in function or method
6986    // scope, because they aren't visible from the header.
6987    if (Prev->getDeclContext()->isFunctionOrMethod())
6988      continue;
6989
6990    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6991    break;
6992  }
6993
6994  return MissingPrototype;
6995}
6996
6997void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6998  // Don't complain if we're in GNU89 mode and the previous definition
6999  // was an extern inline function.
7000  const FunctionDecl *Definition;
7001  if (FD->isDefined(Definition) &&
7002      !canRedefineFunction(Definition, getLangOptions())) {
7003    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7004        Definition->getStorageClass() == SC_Extern)
7005      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7006        << FD->getDeclName() << getLangOptions().CPlusPlus;
7007    else
7008      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7009    Diag(Definition->getLocation(), diag::note_previous_definition);
7010  }
7011}
7012
7013Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7014  // Clear the last template instantiation error context.
7015  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7016
7017  if (!D)
7018    return D;
7019  FunctionDecl *FD = 0;
7020
7021  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7022    FD = FunTmpl->getTemplatedDecl();
7023  else
7024    FD = cast<FunctionDecl>(D);
7025
7026  // Enter a new function scope
7027  PushFunctionScope();
7028
7029  // See if this is a redefinition.
7030  if (!FD->isLateTemplateParsed())
7031    CheckForFunctionRedefinition(FD);
7032
7033  // Builtin functions cannot be defined.
7034  if (unsigned BuiltinID = FD->getBuiltinID()) {
7035    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7036      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7037      FD->setInvalidDecl();
7038    }
7039  }
7040
7041  // The return type of a function definition must be complete
7042  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7043  QualType ResultType = FD->getResultType();
7044  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7045      !FD->isInvalidDecl() &&
7046      RequireCompleteType(FD->getLocation(), ResultType,
7047                          diag::err_func_def_incomplete_result))
7048    FD->setInvalidDecl();
7049
7050  // GNU warning -Wmissing-prototypes:
7051  //   Warn if a global function is defined without a previous
7052  //   prototype declaration. This warning is issued even if the
7053  //   definition itself provides a prototype. The aim is to detect
7054  //   global functions that fail to be declared in header files.
7055  if (ShouldWarnAboutMissingPrototype(FD))
7056    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7057
7058  if (FnBodyScope)
7059    PushDeclContext(FnBodyScope, FD);
7060
7061  // Check the validity of our function parameters
7062  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7063                           /*CheckParameterNames=*/true);
7064
7065  // Introduce our parameters into the function scope
7066  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7067    ParmVarDecl *Param = FD->getParamDecl(p);
7068    Param->setOwningFunction(FD);
7069
7070    // If this has an identifier, add it to the scope stack.
7071    if (Param->getIdentifier() && FnBodyScope) {
7072      CheckShadow(FnBodyScope, Param);
7073
7074      PushOnScopeChains(Param, FnBodyScope);
7075    }
7076  }
7077
7078  // Checking attributes of current function definition
7079  // dllimport attribute.
7080  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7081  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7082    // dllimport attribute cannot be directly applied to definition.
7083    // Microsoft accepts dllimport for functions defined within class scope.
7084    if (!DA->isInherited() &&
7085        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7086      Diag(FD->getLocation(),
7087           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7088        << "dllimport";
7089      FD->setInvalidDecl();
7090      return FD;
7091    }
7092
7093    // Visual C++ appears to not think this is an issue, so only issue
7094    // a warning when Microsoft extensions are disabled.
7095    if (!LangOpts.MicrosoftExt) {
7096      // If a symbol previously declared dllimport is later defined, the
7097      // attribute is ignored in subsequent references, and a warning is
7098      // emitted.
7099      Diag(FD->getLocation(),
7100           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7101        << FD->getName() << "dllimport";
7102    }
7103  }
7104  return FD;
7105}
7106
7107/// \brief Given the set of return statements within a function body,
7108/// compute the variables that are subject to the named return value
7109/// optimization.
7110///
7111/// Each of the variables that is subject to the named return value
7112/// optimization will be marked as NRVO variables in the AST, and any
7113/// return statement that has a marked NRVO variable as its NRVO candidate can
7114/// use the named return value optimization.
7115///
7116/// This function applies a very simplistic algorithm for NRVO: if every return
7117/// statement in the function has the same NRVO candidate, that candidate is
7118/// the NRVO variable.
7119///
7120/// FIXME: Employ a smarter algorithm that accounts for multiple return
7121/// statements and the lifetimes of the NRVO candidates. We should be able to
7122/// find a maximal set of NRVO variables.
7123void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7124  ReturnStmt **Returns = Scope->Returns.data();
7125
7126  const VarDecl *NRVOCandidate = 0;
7127  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7128    if (!Returns[I]->getNRVOCandidate())
7129      return;
7130
7131    if (!NRVOCandidate)
7132      NRVOCandidate = Returns[I]->getNRVOCandidate();
7133    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7134      return;
7135  }
7136
7137  if (NRVOCandidate)
7138    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7139}
7140
7141Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7142  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7143}
7144
7145Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7146                                    bool IsInstantiation) {
7147  FunctionDecl *FD = 0;
7148  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7149  if (FunTmpl)
7150    FD = FunTmpl->getTemplatedDecl();
7151  else
7152    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7153
7154  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7155  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7156
7157  if (FD) {
7158    FD->setBody(Body);
7159    if (FD->isMain()) {
7160      // C and C++ allow for main to automagically return 0.
7161      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7162      FD->setHasImplicitReturnZero(true);
7163      WP.disableCheckFallThrough();
7164    } else if (FD->hasAttr<NakedAttr>()) {
7165      // If the function is marked 'naked', don't complain about missing return
7166      // statements.
7167      WP.disableCheckFallThrough();
7168    }
7169
7170    // MSVC permits the use of pure specifier (=0) on function definition,
7171    // defined at class scope, warn about this non standard construct.
7172    if (getLangOptions().MicrosoftExt && FD->isPure())
7173      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7174
7175    if (!FD->isInvalidDecl()) {
7176      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7177      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7178                                             FD->getResultType(), FD);
7179
7180      // If this is a constructor, we need a vtable.
7181      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7182        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7183
7184      computeNRVO(Body, getCurFunction());
7185    }
7186
7187    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7188  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7189    assert(MD == getCurMethodDecl() && "Method parsing confused");
7190    MD->setBody(Body);
7191    if (Body)
7192      MD->setEndLoc(Body->getLocEnd());
7193    if (!MD->isInvalidDecl()) {
7194      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7195      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7196                                             MD->getResultType(), MD);
7197
7198      if (Body)
7199        computeNRVO(Body, getCurFunction());
7200    }
7201    if (ObjCShouldCallSuperDealloc) {
7202      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7203      ObjCShouldCallSuperDealloc = false;
7204    }
7205    if (ObjCShouldCallSuperFinalize) {
7206      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7207      ObjCShouldCallSuperFinalize = false;
7208    }
7209  } else {
7210    return 0;
7211  }
7212
7213  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7214         "ObjC methods, which should have been handled in the block above.");
7215  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7216         "ObjC methods, which should have been handled in the block above.");
7217
7218  // Verify and clean out per-function state.
7219  if (Body) {
7220    // C++ constructors that have function-try-blocks can't have return
7221    // statements in the handlers of that block. (C++ [except.handle]p14)
7222    // Verify this.
7223    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7224      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7225
7226    // Verify that gotos and switch cases don't jump into scopes illegally.
7227    if (getCurFunction()->NeedsScopeChecking() &&
7228        !dcl->isInvalidDecl() &&
7229        !hasAnyUnrecoverableErrorsInThisFunction())
7230      DiagnoseInvalidJumps(Body);
7231
7232    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7233      if (!Destructor->getParent()->isDependentType())
7234        CheckDestructor(Destructor);
7235
7236      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7237                                             Destructor->getParent());
7238    }
7239
7240    // If any errors have occurred, clear out any temporaries that may have
7241    // been leftover. This ensures that these temporaries won't be picked up for
7242    // deletion in some later function.
7243    if (PP.getDiagnostics().hasErrorOccurred() ||
7244        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7245      DiscardCleanupsInEvaluationContext();
7246    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7247      // Since the body is valid, issue any analysis-based warnings that are
7248      // enabled.
7249      ActivePolicy = &WP;
7250    }
7251
7252    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7253        !CheckConstexprFunctionBody(FD, Body))
7254      FD->setInvalidDecl();
7255
7256    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7257    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7258  }
7259
7260  if (!IsInstantiation)
7261    PopDeclContext();
7262
7263  PopFunctionScopeInfo(ActivePolicy, dcl);
7264
7265  // If any errors have occurred, clear out any temporaries that may have
7266  // been leftover. This ensures that these temporaries won't be picked up for
7267  // deletion in some later function.
7268  if (getDiagnostics().hasErrorOccurred()) {
7269    DiscardCleanupsInEvaluationContext();
7270  }
7271
7272  return dcl;
7273}
7274
7275
7276/// When we finish delayed parsing of an attribute, we must attach it to the
7277/// relevant Decl.
7278void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7279                                       ParsedAttributes &Attrs) {
7280  ProcessDeclAttributeList(S, D, Attrs.getList());
7281}
7282
7283
7284/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7285/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7286NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7287                                          IdentifierInfo &II, Scope *S) {
7288  // Before we produce a declaration for an implicitly defined
7289  // function, see whether there was a locally-scoped declaration of
7290  // this name as a function or variable. If so, use that
7291  // (non-visible) declaration, and complain about it.
7292  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7293    = findLocallyScopedExternalDecl(&II);
7294  if (Pos != LocallyScopedExternalDecls.end()) {
7295    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7296    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7297    return Pos->second;
7298  }
7299
7300  // Extension in C99.  Legal in C90, but warn about it.
7301  unsigned diag_id;
7302  if (II.getName().startswith("__builtin_"))
7303    diag_id = diag::warn_builtin_unknown;
7304  else if (getLangOptions().C99)
7305    diag_id = diag::ext_implicit_function_decl;
7306  else
7307    diag_id = diag::warn_implicit_function_decl;
7308  Diag(Loc, diag_id) << &II;
7309
7310  // Because typo correction is expensive, only do it if the implicit
7311  // function declaration is going to be treated as an error.
7312  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7313    TypoCorrection Corrected;
7314    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7315                                      LookupOrdinaryName, S, 0))) {
7316      NamedDecl *Decl = Corrected.getCorrectionDecl();
7317      if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Decl)) {
7318        std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7319        std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7320
7321        Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7322            << FixItHint::CreateReplacement(Loc, CorrectedStr);
7323
7324        if (Func->getLocation().isValid()
7325            && !II.getName().startswith("__builtin_"))
7326          Diag(Func->getLocation(), diag::note_previous_decl)
7327              << CorrectedQuotedStr;
7328      }
7329    }
7330  }
7331
7332  // Set a Declarator for the implicit definition: int foo();
7333  const char *Dummy;
7334  AttributeFactory attrFactory;
7335  DeclSpec DS(attrFactory);
7336  unsigned DiagID;
7337  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7338  (void)Error; // Silence warning.
7339  assert(!Error && "Error setting up implicit decl!");
7340  Declarator D(DS, Declarator::BlockContext);
7341  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7342                                             0, 0, true, SourceLocation(),
7343                                             SourceLocation(), SourceLocation(),
7344                                             SourceLocation(),
7345                                             EST_None, SourceLocation(),
7346                                             0, 0, 0, 0, Loc, Loc, D),
7347                DS.getAttributes(),
7348                SourceLocation());
7349  D.SetIdentifier(&II, Loc);
7350
7351  // Insert this function into translation-unit scope.
7352
7353  DeclContext *PrevDC = CurContext;
7354  CurContext = Context.getTranslationUnitDecl();
7355
7356  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7357  FD->setImplicit();
7358
7359  CurContext = PrevDC;
7360
7361  AddKnownFunctionAttributes(FD);
7362
7363  return FD;
7364}
7365
7366/// \brief Adds any function attributes that we know a priori based on
7367/// the declaration of this function.
7368///
7369/// These attributes can apply both to implicitly-declared builtins
7370/// (like __builtin___printf_chk) or to library-declared functions
7371/// like NSLog or printf.
7372///
7373/// We need to check for duplicate attributes both here and where user-written
7374/// attributes are applied to declarations.
7375void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7376  if (FD->isInvalidDecl())
7377    return;
7378
7379  // If this is a built-in function, map its builtin attributes to
7380  // actual attributes.
7381  if (unsigned BuiltinID = FD->getBuiltinID()) {
7382    // Handle printf-formatting attributes.
7383    unsigned FormatIdx;
7384    bool HasVAListArg;
7385    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7386      if (!FD->getAttr<FormatAttr>())
7387        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7388                                                "printf", FormatIdx+1,
7389                                               HasVAListArg ? 0 : FormatIdx+2));
7390    }
7391    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7392                                             HasVAListArg)) {
7393     if (!FD->getAttr<FormatAttr>())
7394       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7395                                              "scanf", FormatIdx+1,
7396                                              HasVAListArg ? 0 : FormatIdx+2));
7397    }
7398
7399    // Mark const if we don't care about errno and that is the only
7400    // thing preventing the function from being const. This allows
7401    // IRgen to use LLVM intrinsics for such functions.
7402    if (!getLangOptions().MathErrno &&
7403        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7404      if (!FD->getAttr<ConstAttr>())
7405        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7406    }
7407
7408    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7409        !FD->getAttr<ReturnsTwiceAttr>())
7410      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7411    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7412      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7413    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7414      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7415  }
7416
7417  IdentifierInfo *Name = FD->getIdentifier();
7418  if (!Name)
7419    return;
7420  if ((!getLangOptions().CPlusPlus &&
7421       FD->getDeclContext()->isTranslationUnit()) ||
7422      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7423       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7424       LinkageSpecDecl::lang_c)) {
7425    // Okay: this could be a libc/libm/Objective-C function we know
7426    // about.
7427  } else
7428    return;
7429
7430  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7431    // FIXME: NSLog and NSLogv should be target specific
7432    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7433      // FIXME: We known better than our headers.
7434      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7435    } else
7436      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7437                                             "printf", 1,
7438                                             Name->isStr("NSLogv") ? 0 : 2));
7439  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7440    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7441    // target-specific builtins, perhaps?
7442    if (!FD->getAttr<FormatAttr>())
7443      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7444                                             "printf", 2,
7445                                             Name->isStr("vasprintf") ? 0 : 3));
7446  }
7447}
7448
7449TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7450                                    TypeSourceInfo *TInfo) {
7451  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7452  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7453
7454  if (!TInfo) {
7455    assert(D.isInvalidType() && "no declarator info for valid type");
7456    TInfo = Context.getTrivialTypeSourceInfo(T);
7457  }
7458
7459  // Scope manipulation handled by caller.
7460  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7461                                           D.getSourceRange().getBegin(),
7462                                           D.getIdentifierLoc(),
7463                                           D.getIdentifier(),
7464                                           TInfo);
7465
7466  // Bail out immediately if we have an invalid declaration.
7467  if (D.isInvalidType()) {
7468    NewTD->setInvalidDecl();
7469    return NewTD;
7470  }
7471
7472  if (D.getDeclSpec().isModulePrivateSpecified()) {
7473    if (CurContext->isFunctionOrMethod())
7474      Diag(NewTD->getLocation(), diag::err_module_private_local)
7475        << 2 << NewTD->getDeclName()
7476        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7477        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7478    else
7479      NewTD->setModulePrivate();
7480  }
7481
7482  // C++ [dcl.typedef]p8:
7483  //   If the typedef declaration defines an unnamed class (or
7484  //   enum), the first typedef-name declared by the declaration
7485  //   to be that class type (or enum type) is used to denote the
7486  //   class type (or enum type) for linkage purposes only.
7487  // We need to check whether the type was declared in the declaration.
7488  switch (D.getDeclSpec().getTypeSpecType()) {
7489  case TST_enum:
7490  case TST_struct:
7491  case TST_union:
7492  case TST_class: {
7493    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7494
7495    // Do nothing if the tag is not anonymous or already has an
7496    // associated typedef (from an earlier typedef in this decl group).
7497    if (tagFromDeclSpec->getIdentifier()) break;
7498    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7499
7500    // A well-formed anonymous tag must always be a TUK_Definition.
7501    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7502
7503    // The type must match the tag exactly;  no qualifiers allowed.
7504    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7505      break;
7506
7507    // Otherwise, set this is the anon-decl typedef for the tag.
7508    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7509    break;
7510  }
7511
7512  default:
7513    break;
7514  }
7515
7516  return NewTD;
7517}
7518
7519
7520/// \brief Determine whether a tag with a given kind is acceptable
7521/// as a redeclaration of the given tag declaration.
7522///
7523/// \returns true if the new tag kind is acceptable, false otherwise.
7524bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7525                                        TagTypeKind NewTag, bool isDefinition,
7526                                        SourceLocation NewTagLoc,
7527                                        const IdentifierInfo &Name) {
7528  // C++ [dcl.type.elab]p3:
7529  //   The class-key or enum keyword present in the
7530  //   elaborated-type-specifier shall agree in kind with the
7531  //   declaration to which the name in the elaborated-type-specifier
7532  //   refers. This rule also applies to the form of
7533  //   elaborated-type-specifier that declares a class-name or
7534  //   friend class since it can be construed as referring to the
7535  //   definition of the class. Thus, in any
7536  //   elaborated-type-specifier, the enum keyword shall be used to
7537  //   refer to an enumeration (7.2), the union class-key shall be
7538  //   used to refer to a union (clause 9), and either the class or
7539  //   struct class-key shall be used to refer to a class (clause 9)
7540  //   declared using the class or struct class-key.
7541  TagTypeKind OldTag = Previous->getTagKind();
7542  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7543    if (OldTag == NewTag)
7544      return true;
7545
7546  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7547      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7548    // Warn about the struct/class tag mismatch.
7549    bool isTemplate = false;
7550    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7551      isTemplate = Record->getDescribedClassTemplate();
7552
7553    if (!ActiveTemplateInstantiations.empty()) {
7554      // In a template instantiation, do not offer fix-its for tag mismatches
7555      // since they usually mess up the template instead of fixing the problem.
7556      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7557        << (NewTag == TTK_Class) << isTemplate << &Name;
7558      return true;
7559    }
7560
7561    if (isDefinition) {
7562      // On definitions, check previous tags and issue a fix-it for each
7563      // one that doesn't match the current tag.
7564      if (Previous->getDefinition()) {
7565        // Don't suggest fix-its for redefinitions.
7566        return true;
7567      }
7568
7569      bool previousMismatch = false;
7570      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7571           E(Previous->redecls_end()); I != E; ++I) {
7572        if (I->getTagKind() != NewTag) {
7573          if (!previousMismatch) {
7574            previousMismatch = true;
7575            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7576              << (NewTag == TTK_Class) << isTemplate << &Name;
7577          }
7578          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7579            << (NewTag == TTK_Class)
7580            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7581                                            NewTag == TTK_Class?
7582                                            "class" : "struct");
7583        }
7584      }
7585      return true;
7586    }
7587
7588    // Check for a previous definition.  If current tag and definition
7589    // are same type, do nothing.  If no definition, but disagree with
7590    // with previous tag type, give a warning, but no fix-it.
7591    const TagDecl *Redecl = Previous->getDefinition() ?
7592                            Previous->getDefinition() : Previous;
7593    if (Redecl->getTagKind() == NewTag) {
7594      return true;
7595    }
7596
7597    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7598      << (NewTag == TTK_Class)
7599      << isTemplate << &Name;
7600    Diag(Redecl->getLocation(), diag::note_previous_use);
7601
7602    // If there is a previous defintion, suggest a fix-it.
7603    if (Previous->getDefinition()) {
7604        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7605          << (Redecl->getTagKind() == TTK_Class)
7606          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7607                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7608    }
7609
7610    return true;
7611  }
7612  return false;
7613}
7614
7615/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7616/// former case, Name will be non-null.  In the later case, Name will be null.
7617/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7618/// reference/declaration/definition of a tag.
7619Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7620                     SourceLocation KWLoc, CXXScopeSpec &SS,
7621                     IdentifierInfo *Name, SourceLocation NameLoc,
7622                     AttributeList *Attr, AccessSpecifier AS,
7623                     SourceLocation ModulePrivateLoc,
7624                     MultiTemplateParamsArg TemplateParameterLists,
7625                     bool &OwnedDecl, bool &IsDependent,
7626                     SourceLocation ScopedEnumKWLoc,
7627                     bool ScopedEnumUsesClassTag,
7628                     TypeResult UnderlyingType) {
7629  // If this is not a definition, it must have a name.
7630  assert((Name != 0 || TUK == TUK_Definition) &&
7631         "Nameless record must be a definition!");
7632  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7633
7634  OwnedDecl = false;
7635  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7636  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7637
7638  // FIXME: Check explicit specializations more carefully.
7639  bool isExplicitSpecialization = false;
7640  bool Invalid = false;
7641
7642  // We only need to do this matching if we have template parameters
7643  // or a scope specifier, which also conveniently avoids this work
7644  // for non-C++ cases.
7645  if (TemplateParameterLists.size() > 0 ||
7646      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7647    if (TemplateParameterList *TemplateParams
7648          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7649                                                TemplateParameterLists.get(),
7650                                                TemplateParameterLists.size(),
7651                                                    TUK == TUK_Friend,
7652                                                    isExplicitSpecialization,
7653                                                    Invalid)) {
7654      if (TemplateParams->size() > 0) {
7655        // This is a declaration or definition of a class template (which may
7656        // be a member of another template).
7657
7658        if (Invalid)
7659          return 0;
7660
7661        OwnedDecl = false;
7662        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7663                                               SS, Name, NameLoc, Attr,
7664                                               TemplateParams, AS,
7665                                               ModulePrivateLoc,
7666                                           TemplateParameterLists.size() - 1,
7667                 (TemplateParameterList**) TemplateParameterLists.release());
7668        return Result.get();
7669      } else {
7670        // The "template<>" header is extraneous.
7671        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7672          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7673        isExplicitSpecialization = true;
7674      }
7675    }
7676  }
7677
7678  // Figure out the underlying type if this a enum declaration. We need to do
7679  // this early, because it's needed to detect if this is an incompatible
7680  // redeclaration.
7681  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7682
7683  if (Kind == TTK_Enum) {
7684    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7685      // No underlying type explicitly specified, or we failed to parse the
7686      // type, default to int.
7687      EnumUnderlying = Context.IntTy.getTypePtr();
7688    else if (UnderlyingType.get()) {
7689      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7690      // integral type; any cv-qualification is ignored.
7691      TypeSourceInfo *TI = 0;
7692      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7693      EnumUnderlying = TI;
7694
7695      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7696
7697      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7698        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7699          << T;
7700        // Recover by falling back to int.
7701        EnumUnderlying = Context.IntTy.getTypePtr();
7702      }
7703
7704      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7705                                          UPPC_FixedUnderlyingType))
7706        EnumUnderlying = Context.IntTy.getTypePtr();
7707
7708    } else if (getLangOptions().MicrosoftExt)
7709      // Microsoft enums are always of int type.
7710      EnumUnderlying = Context.IntTy.getTypePtr();
7711  }
7712
7713  DeclContext *SearchDC = CurContext;
7714  DeclContext *DC = CurContext;
7715  bool isStdBadAlloc = false;
7716
7717  RedeclarationKind Redecl = ForRedeclaration;
7718  if (TUK == TUK_Friend || TUK == TUK_Reference)
7719    Redecl = NotForRedeclaration;
7720
7721  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7722
7723  if (Name && SS.isNotEmpty()) {
7724    // We have a nested-name tag ('struct foo::bar').
7725
7726    // Check for invalid 'foo::'.
7727    if (SS.isInvalid()) {
7728      Name = 0;
7729      goto CreateNewDecl;
7730    }
7731
7732    // If this is a friend or a reference to a class in a dependent
7733    // context, don't try to make a decl for it.
7734    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7735      DC = computeDeclContext(SS, false);
7736      if (!DC) {
7737        IsDependent = true;
7738        return 0;
7739      }
7740    } else {
7741      DC = computeDeclContext(SS, true);
7742      if (!DC) {
7743        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7744          << SS.getRange();
7745        return 0;
7746      }
7747    }
7748
7749    if (RequireCompleteDeclContext(SS, DC))
7750      return 0;
7751
7752    SearchDC = DC;
7753    // Look-up name inside 'foo::'.
7754    LookupQualifiedName(Previous, DC);
7755
7756    if (Previous.isAmbiguous())
7757      return 0;
7758
7759    if (Previous.empty()) {
7760      // Name lookup did not find anything. However, if the
7761      // nested-name-specifier refers to the current instantiation,
7762      // and that current instantiation has any dependent base
7763      // classes, we might find something at instantiation time: treat
7764      // this as a dependent elaborated-type-specifier.
7765      // But this only makes any sense for reference-like lookups.
7766      if (Previous.wasNotFoundInCurrentInstantiation() &&
7767          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7768        IsDependent = true;
7769        return 0;
7770      }
7771
7772      // A tag 'foo::bar' must already exist.
7773      Diag(NameLoc, diag::err_not_tag_in_scope)
7774        << Kind << Name << DC << SS.getRange();
7775      Name = 0;
7776      Invalid = true;
7777      goto CreateNewDecl;
7778    }
7779  } else if (Name) {
7780    // If this is a named struct, check to see if there was a previous forward
7781    // declaration or definition.
7782    // FIXME: We're looking into outer scopes here, even when we
7783    // shouldn't be. Doing so can result in ambiguities that we
7784    // shouldn't be diagnosing.
7785    LookupName(Previous, S);
7786
7787    if (Previous.isAmbiguous() &&
7788        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7789      LookupResult::Filter F = Previous.makeFilter();
7790      while (F.hasNext()) {
7791        NamedDecl *ND = F.next();
7792        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7793          F.erase();
7794      }
7795      F.done();
7796    }
7797
7798    // Note:  there used to be some attempt at recovery here.
7799    if (Previous.isAmbiguous())
7800      return 0;
7801
7802    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7803      // FIXME: This makes sure that we ignore the contexts associated
7804      // with C structs, unions, and enums when looking for a matching
7805      // tag declaration or definition. See the similar lookup tweak
7806      // in Sema::LookupName; is there a better way to deal with this?
7807      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7808        SearchDC = SearchDC->getParent();
7809    }
7810  } else if (S->isFunctionPrototypeScope()) {
7811    // If this is an enum declaration in function prototype scope, set its
7812    // initial context to the translation unit.
7813    SearchDC = Context.getTranslationUnitDecl();
7814  }
7815
7816  if (Previous.isSingleResult() &&
7817      Previous.getFoundDecl()->isTemplateParameter()) {
7818    // Maybe we will complain about the shadowed template parameter.
7819    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7820    // Just pretend that we didn't see the previous declaration.
7821    Previous.clear();
7822  }
7823
7824  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7825      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7826    // This is a declaration of or a reference to "std::bad_alloc".
7827    isStdBadAlloc = true;
7828
7829    if (Previous.empty() && StdBadAlloc) {
7830      // std::bad_alloc has been implicitly declared (but made invisible to
7831      // name lookup). Fill in this implicit declaration as the previous
7832      // declaration, so that the declarations get chained appropriately.
7833      Previous.addDecl(getStdBadAlloc());
7834    }
7835  }
7836
7837  // If we didn't find a previous declaration, and this is a reference
7838  // (or friend reference), move to the correct scope.  In C++, we
7839  // also need to do a redeclaration lookup there, just in case
7840  // there's a shadow friend decl.
7841  if (Name && Previous.empty() &&
7842      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7843    if (Invalid) goto CreateNewDecl;
7844    assert(SS.isEmpty());
7845
7846    if (TUK == TUK_Reference) {
7847      // C++ [basic.scope.pdecl]p5:
7848      //   -- for an elaborated-type-specifier of the form
7849      //
7850      //          class-key identifier
7851      //
7852      //      if the elaborated-type-specifier is used in the
7853      //      decl-specifier-seq or parameter-declaration-clause of a
7854      //      function defined in namespace scope, the identifier is
7855      //      declared as a class-name in the namespace that contains
7856      //      the declaration; otherwise, except as a friend
7857      //      declaration, the identifier is declared in the smallest
7858      //      non-class, non-function-prototype scope that contains the
7859      //      declaration.
7860      //
7861      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7862      // C structs and unions.
7863      //
7864      // It is an error in C++ to declare (rather than define) an enum
7865      // type, including via an elaborated type specifier.  We'll
7866      // diagnose that later; for now, declare the enum in the same
7867      // scope as we would have picked for any other tag type.
7868      //
7869      // GNU C also supports this behavior as part of its incomplete
7870      // enum types extension, while GNU C++ does not.
7871      //
7872      // Find the context where we'll be declaring the tag.
7873      // FIXME: We would like to maintain the current DeclContext as the
7874      // lexical context,
7875      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7876             SearchDC->isObjCContainer())
7877        SearchDC = SearchDC->getParent();
7878
7879      // Find the scope where we'll be declaring the tag.
7880      while (S->isClassScope() ||
7881             (getLangOptions().CPlusPlus &&
7882              S->isFunctionPrototypeScope()) ||
7883             ((S->getFlags() & Scope::DeclScope) == 0) ||
7884             (S->getEntity() &&
7885              ((DeclContext *)S->getEntity())->isTransparentContext()))
7886        S = S->getParent();
7887    } else {
7888      assert(TUK == TUK_Friend);
7889      // C++ [namespace.memdef]p3:
7890      //   If a friend declaration in a non-local class first declares a
7891      //   class or function, the friend class or function is a member of
7892      //   the innermost enclosing namespace.
7893      SearchDC = SearchDC->getEnclosingNamespaceContext();
7894    }
7895
7896    // In C++, we need to do a redeclaration lookup to properly
7897    // diagnose some problems.
7898    if (getLangOptions().CPlusPlus) {
7899      Previous.setRedeclarationKind(ForRedeclaration);
7900      LookupQualifiedName(Previous, SearchDC);
7901    }
7902  }
7903
7904  if (!Previous.empty()) {
7905    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7906
7907    // It's okay to have a tag decl in the same scope as a typedef
7908    // which hides a tag decl in the same scope.  Finding this
7909    // insanity with a redeclaration lookup can only actually happen
7910    // in C++.
7911    //
7912    // This is also okay for elaborated-type-specifiers, which is
7913    // technically forbidden by the current standard but which is
7914    // okay according to the likely resolution of an open issue;
7915    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7916    if (getLangOptions().CPlusPlus) {
7917      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7918        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7919          TagDecl *Tag = TT->getDecl();
7920          if (Tag->getDeclName() == Name &&
7921              Tag->getDeclContext()->getRedeclContext()
7922                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7923            PrevDecl = Tag;
7924            Previous.clear();
7925            Previous.addDecl(Tag);
7926            Previous.resolveKind();
7927          }
7928        }
7929      }
7930    }
7931
7932    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7933      // If this is a use of a previous tag, or if the tag is already declared
7934      // in the same scope (so that the definition/declaration completes or
7935      // rementions the tag), reuse the decl.
7936      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7937          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7938        // Make sure that this wasn't declared as an enum and now used as a
7939        // struct or something similar.
7940        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7941                                          TUK == TUK_Definition, KWLoc,
7942                                          *Name)) {
7943          bool SafeToContinue
7944            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7945               Kind != TTK_Enum);
7946          if (SafeToContinue)
7947            Diag(KWLoc, diag::err_use_with_wrong_tag)
7948              << Name
7949              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7950                                              PrevTagDecl->getKindName());
7951          else
7952            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7953          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7954
7955          if (SafeToContinue)
7956            Kind = PrevTagDecl->getTagKind();
7957          else {
7958            // Recover by making this an anonymous redefinition.
7959            Name = 0;
7960            Previous.clear();
7961            Invalid = true;
7962          }
7963        }
7964
7965        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7966          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7967
7968          // If this is an elaborated-type-specifier for a scoped enumeration,
7969          // the 'class' keyword is not necessary and not permitted.
7970          if (TUK == TUK_Reference || TUK == TUK_Friend) {
7971            if (ScopedEnum)
7972              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
7973                << PrevEnum->isScoped()
7974                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
7975            return PrevTagDecl;
7976          }
7977
7978          // All conflicts with previous declarations are recovered by
7979          // returning the previous declaration.
7980          if (ScopedEnum != PrevEnum->isScoped()) {
7981            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7982              << PrevEnum->isScoped();
7983            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7984            return PrevTagDecl;
7985          }
7986          else if (EnumUnderlying && PrevEnum->isFixed()) {
7987            QualType T;
7988            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7989                T = TI->getType();
7990            else
7991                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7992
7993            if (!Context.hasSameUnqualifiedType(T,
7994                                                PrevEnum->getIntegerType())) {
7995              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7996                   diag::err_enum_redeclare_type_mismatch)
7997                << T
7998                << PrevEnum->getIntegerType();
7999              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8000              return PrevTagDecl;
8001            }
8002          }
8003          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8004            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8005              << PrevEnum->isFixed();
8006            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8007            return PrevTagDecl;
8008          }
8009        }
8010
8011        if (!Invalid) {
8012          // If this is a use, just return the declaration we found.
8013
8014          // FIXME: In the future, return a variant or some other clue
8015          // for the consumer of this Decl to know it doesn't own it.
8016          // For our current ASTs this shouldn't be a problem, but will
8017          // need to be changed with DeclGroups.
8018          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8019               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8020            return PrevTagDecl;
8021
8022          // Diagnose attempts to redefine a tag.
8023          if (TUK == TUK_Definition) {
8024            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8025              // If we're defining a specialization and the previous definition
8026              // is from an implicit instantiation, don't emit an error
8027              // here; we'll catch this in the general case below.
8028              if (!isExplicitSpecialization ||
8029                  !isa<CXXRecordDecl>(Def) ||
8030                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8031                                               == TSK_ExplicitSpecialization) {
8032                Diag(NameLoc, diag::err_redefinition) << Name;
8033                Diag(Def->getLocation(), diag::note_previous_definition);
8034                // If this is a redefinition, recover by making this
8035                // struct be anonymous, which will make any later
8036                // references get the previous definition.
8037                Name = 0;
8038                Previous.clear();
8039                Invalid = true;
8040              }
8041            } else {
8042              // If the type is currently being defined, complain
8043              // about a nested redefinition.
8044              const TagType *Tag
8045                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8046              if (Tag->isBeingDefined()) {
8047                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8048                Diag(PrevTagDecl->getLocation(),
8049                     diag::note_previous_definition);
8050                Name = 0;
8051                Previous.clear();
8052                Invalid = true;
8053              }
8054            }
8055
8056            // Okay, this is definition of a previously declared or referenced
8057            // tag PrevDecl. We're going to create a new Decl for it.
8058          }
8059        }
8060        // If we get here we have (another) forward declaration or we
8061        // have a definition.  Just create a new decl.
8062
8063      } else {
8064        // If we get here, this is a definition of a new tag type in a nested
8065        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8066        // new decl/type.  We set PrevDecl to NULL so that the entities
8067        // have distinct types.
8068        Previous.clear();
8069      }
8070      // If we get here, we're going to create a new Decl. If PrevDecl
8071      // is non-NULL, it's a definition of the tag declared by
8072      // PrevDecl. If it's NULL, we have a new definition.
8073
8074
8075    // Otherwise, PrevDecl is not a tag, but was found with tag
8076    // lookup.  This is only actually possible in C++, where a few
8077    // things like templates still live in the tag namespace.
8078    } else {
8079      // Use a better diagnostic if an elaborated-type-specifier
8080      // found the wrong kind of type on the first
8081      // (non-redeclaration) lookup.
8082      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8083          !Previous.isForRedeclaration()) {
8084        unsigned Kind = 0;
8085        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8086        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8087        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8088        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8089        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8090        Invalid = true;
8091
8092      // Otherwise, only diagnose if the declaration is in scope.
8093      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8094                                isExplicitSpecialization)) {
8095        // do nothing
8096
8097      // Diagnose implicit declarations introduced by elaborated types.
8098      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8099        unsigned Kind = 0;
8100        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8101        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8102        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8103        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8104        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8105        Invalid = true;
8106
8107      // Otherwise it's a declaration.  Call out a particularly common
8108      // case here.
8109      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8110        unsigned Kind = 0;
8111        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8112        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8113          << Name << Kind << TND->getUnderlyingType();
8114        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8115        Invalid = true;
8116
8117      // Otherwise, diagnose.
8118      } else {
8119        // The tag name clashes with something else in the target scope,
8120        // issue an error and recover by making this tag be anonymous.
8121        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8122        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8123        Name = 0;
8124        Invalid = true;
8125      }
8126
8127      // The existing declaration isn't relevant to us; we're in a
8128      // new scope, so clear out the previous declaration.
8129      Previous.clear();
8130    }
8131  }
8132
8133CreateNewDecl:
8134
8135  TagDecl *PrevDecl = 0;
8136  if (Previous.isSingleResult())
8137    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8138
8139  // If there is an identifier, use the location of the identifier as the
8140  // location of the decl, otherwise use the location of the struct/union
8141  // keyword.
8142  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8143
8144  // Otherwise, create a new declaration. If there is a previous
8145  // declaration of the same entity, the two will be linked via
8146  // PrevDecl.
8147  TagDecl *New;
8148
8149  bool IsForwardReference = false;
8150  if (Kind == TTK_Enum) {
8151    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8152    // enum X { A, B, C } D;    D should chain to X.
8153    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8154                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8155                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8156    // If this is an undefined enum, warn.
8157    if (TUK != TUK_Definition && !Invalid) {
8158      TagDecl *Def;
8159      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8160        // C++0x: 7.2p2: opaque-enum-declaration.
8161        // Conflicts are diagnosed above. Do nothing.
8162      }
8163      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8164        Diag(Loc, diag::ext_forward_ref_enum_def)
8165          << New;
8166        Diag(Def->getLocation(), diag::note_previous_definition);
8167      } else {
8168        unsigned DiagID = diag::ext_forward_ref_enum;
8169        if (getLangOptions().MicrosoftExt)
8170          DiagID = diag::ext_ms_forward_ref_enum;
8171        else if (getLangOptions().CPlusPlus)
8172          DiagID = diag::err_forward_ref_enum;
8173        Diag(Loc, DiagID);
8174
8175        // If this is a forward-declared reference to an enumeration, make a
8176        // note of it; we won't actually be introducing the declaration into
8177        // the declaration context.
8178        if (TUK == TUK_Reference)
8179          IsForwardReference = true;
8180      }
8181    }
8182
8183    if (EnumUnderlying) {
8184      EnumDecl *ED = cast<EnumDecl>(New);
8185      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8186        ED->setIntegerTypeSourceInfo(TI);
8187      else
8188        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8189      ED->setPromotionType(ED->getIntegerType());
8190    }
8191
8192  } else {
8193    // struct/union/class
8194
8195    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8196    // struct X { int A; } D;    D should chain to X.
8197    if (getLangOptions().CPlusPlus) {
8198      // FIXME: Look for a way to use RecordDecl for simple structs.
8199      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8200                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8201
8202      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8203        StdBadAlloc = cast<CXXRecordDecl>(New);
8204    } else
8205      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8206                               cast_or_null<RecordDecl>(PrevDecl));
8207  }
8208
8209  // Maybe add qualifier info.
8210  if (SS.isNotEmpty()) {
8211    if (SS.isSet()) {
8212      New->setQualifierInfo(SS.getWithLocInContext(Context));
8213      if (TemplateParameterLists.size() > 0) {
8214        New->setTemplateParameterListsInfo(Context,
8215                                           TemplateParameterLists.size(),
8216                    (TemplateParameterList**) TemplateParameterLists.release());
8217      }
8218    }
8219    else
8220      Invalid = true;
8221  }
8222
8223  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8224    // Add alignment attributes if necessary; these attributes are checked when
8225    // the ASTContext lays out the structure.
8226    //
8227    // It is important for implementing the correct semantics that this
8228    // happen here (in act on tag decl). The #pragma pack stack is
8229    // maintained as a result of parser callbacks which can occur at
8230    // many points during the parsing of a struct declaration (because
8231    // the #pragma tokens are effectively skipped over during the
8232    // parsing of the struct).
8233    AddAlignmentAttributesForRecord(RD);
8234
8235    AddMsStructLayoutForRecord(RD);
8236  }
8237
8238  if (ModulePrivateLoc.isValid()) {
8239    if (isExplicitSpecialization)
8240      Diag(New->getLocation(), diag::err_module_private_specialization)
8241        << 2
8242        << FixItHint::CreateRemoval(ModulePrivateLoc);
8243    // __module_private__ does not apply to local classes. However, we only
8244    // diagnose this as an error when the declaration specifiers are
8245    // freestanding. Here, we just ignore the __module_private__.
8246    else if (!SearchDC->isFunctionOrMethod())
8247      New->setModulePrivate();
8248  }
8249
8250  // If this is a specialization of a member class (of a class template),
8251  // check the specialization.
8252  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8253    Invalid = true;
8254
8255  if (Invalid)
8256    New->setInvalidDecl();
8257
8258  if (Attr)
8259    ProcessDeclAttributeList(S, New, Attr);
8260
8261  // If we're declaring or defining a tag in function prototype scope
8262  // in C, note that this type can only be used within the function.
8263  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8264    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8265
8266  // Set the lexical context. If the tag has a C++ scope specifier, the
8267  // lexical context will be different from the semantic context.
8268  New->setLexicalDeclContext(CurContext);
8269
8270  // Mark this as a friend decl if applicable.
8271  // In Microsoft mode, a friend declaration also acts as a forward
8272  // declaration so we always pass true to setObjectOfFriendDecl to make
8273  // the tag name visible.
8274  if (TUK == TUK_Friend)
8275    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8276                               getLangOptions().MicrosoftExt);
8277
8278  // Set the access specifier.
8279  if (!Invalid && SearchDC->isRecord())
8280    SetMemberAccessSpecifier(New, PrevDecl, AS);
8281
8282  if (TUK == TUK_Definition)
8283    New->startDefinition();
8284
8285  // If this has an identifier, add it to the scope stack.
8286  if (TUK == TUK_Friend) {
8287    // We might be replacing an existing declaration in the lookup tables;
8288    // if so, borrow its access specifier.
8289    if (PrevDecl)
8290      New->setAccess(PrevDecl->getAccess());
8291
8292    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8293    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8294    if (Name) // can be null along some error paths
8295      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8296        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8297  } else if (Name) {
8298    S = getNonFieldDeclScope(S);
8299    PushOnScopeChains(New, S, !IsForwardReference);
8300    if (IsForwardReference)
8301      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8302
8303  } else {
8304    CurContext->addDecl(New);
8305  }
8306
8307  // If this is the C FILE type, notify the AST context.
8308  if (IdentifierInfo *II = New->getIdentifier())
8309    if (!New->isInvalidDecl() &&
8310        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8311        II->isStr("FILE"))
8312      Context.setFILEDecl(New);
8313
8314  OwnedDecl = true;
8315  return New;
8316}
8317
8318void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8319  AdjustDeclIfTemplate(TagD);
8320  TagDecl *Tag = cast<TagDecl>(TagD);
8321
8322  // Enter the tag context.
8323  PushDeclContext(S, Tag);
8324}
8325
8326Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8327  assert(isa<ObjCContainerDecl>(IDecl) &&
8328         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8329  DeclContext *OCD = cast<DeclContext>(IDecl);
8330  assert(getContainingDC(OCD) == CurContext &&
8331      "The next DeclContext should be lexically contained in the current one.");
8332  CurContext = OCD;
8333  return IDecl;
8334}
8335
8336void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8337                                           SourceLocation FinalLoc,
8338                                           SourceLocation LBraceLoc) {
8339  AdjustDeclIfTemplate(TagD);
8340  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8341
8342  FieldCollector->StartClass();
8343
8344  if (!Record->getIdentifier())
8345    return;
8346
8347  if (FinalLoc.isValid())
8348    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8349
8350  // C++ [class]p2:
8351  //   [...] The class-name is also inserted into the scope of the
8352  //   class itself; this is known as the injected-class-name. For
8353  //   purposes of access checking, the injected-class-name is treated
8354  //   as if it were a public member name.
8355  CXXRecordDecl *InjectedClassName
8356    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8357                            Record->getLocStart(), Record->getLocation(),
8358                            Record->getIdentifier(),
8359                            /*PrevDecl=*/0,
8360                            /*DelayTypeCreation=*/true);
8361  Context.getTypeDeclType(InjectedClassName, Record);
8362  InjectedClassName->setImplicit();
8363  InjectedClassName->setAccess(AS_public);
8364  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8365      InjectedClassName->setDescribedClassTemplate(Template);
8366  PushOnScopeChains(InjectedClassName, S);
8367  assert(InjectedClassName->isInjectedClassName() &&
8368         "Broken injected-class-name");
8369}
8370
8371void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8372                                    SourceLocation RBraceLoc) {
8373  AdjustDeclIfTemplate(TagD);
8374  TagDecl *Tag = cast<TagDecl>(TagD);
8375  Tag->setRBraceLoc(RBraceLoc);
8376
8377  if (isa<CXXRecordDecl>(Tag))
8378    FieldCollector->FinishClass();
8379
8380  // Exit this scope of this tag's definition.
8381  PopDeclContext();
8382
8383  // Notify the consumer that we've defined a tag.
8384  Consumer.HandleTagDeclDefinition(Tag);
8385}
8386
8387void Sema::ActOnObjCContainerFinishDefinition() {
8388  // Exit this scope of this interface definition.
8389  PopDeclContext();
8390}
8391
8392void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8393  assert(DC == CurContext && "Mismatch of container contexts");
8394  OriginalLexicalContext = DC;
8395  ActOnObjCContainerFinishDefinition();
8396}
8397
8398void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8399  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8400  OriginalLexicalContext = 0;
8401}
8402
8403void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8404  AdjustDeclIfTemplate(TagD);
8405  TagDecl *Tag = cast<TagDecl>(TagD);
8406  Tag->setInvalidDecl();
8407
8408  // We're undoing ActOnTagStartDefinition here, not
8409  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8410  // the FieldCollector.
8411
8412  PopDeclContext();
8413}
8414
8415// Note that FieldName may be null for anonymous bitfields.
8416bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8417                          QualType FieldTy, const Expr *BitWidth,
8418                          bool *ZeroWidth) {
8419  // Default to true; that shouldn't confuse checks for emptiness
8420  if (ZeroWidth)
8421    *ZeroWidth = true;
8422
8423  // C99 6.7.2.1p4 - verify the field type.
8424  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8425  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8426    // Handle incomplete types with specific error.
8427    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8428      return true;
8429    if (FieldName)
8430      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8431        << FieldName << FieldTy << BitWidth->getSourceRange();
8432    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8433      << FieldTy << BitWidth->getSourceRange();
8434  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8435                                             UPPC_BitFieldWidth))
8436    return true;
8437
8438  // If the bit-width is type- or value-dependent, don't try to check
8439  // it now.
8440  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8441    return false;
8442
8443  llvm::APSInt Value;
8444  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8445    return true;
8446
8447  if (Value != 0 && ZeroWidth)
8448    *ZeroWidth = false;
8449
8450  // Zero-width bitfield is ok for anonymous field.
8451  if (Value == 0 && FieldName)
8452    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8453
8454  if (Value.isSigned() && Value.isNegative()) {
8455    if (FieldName)
8456      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8457               << FieldName << Value.toString(10);
8458    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8459      << Value.toString(10);
8460  }
8461
8462  if (!FieldTy->isDependentType()) {
8463    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8464    if (Value.getZExtValue() > TypeSize) {
8465      if (!getLangOptions().CPlusPlus) {
8466        if (FieldName)
8467          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8468            << FieldName << (unsigned)Value.getZExtValue()
8469            << (unsigned)TypeSize;
8470
8471        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8472          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8473      }
8474
8475      if (FieldName)
8476        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8477          << FieldName << (unsigned)Value.getZExtValue()
8478          << (unsigned)TypeSize;
8479      else
8480        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8481          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8482    }
8483  }
8484
8485  return false;
8486}
8487
8488/// ActOnField - Each field of a C struct/union is passed into this in order
8489/// to create a FieldDecl object for it.
8490Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8491                       Declarator &D, Expr *BitfieldWidth) {
8492  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8493                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8494                               /*HasInit=*/false, AS_public);
8495  return Res;
8496}
8497
8498/// HandleField - Analyze a field of a C struct or a C++ data member.
8499///
8500FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8501                             SourceLocation DeclStart,
8502                             Declarator &D, Expr *BitWidth, bool HasInit,
8503                             AccessSpecifier AS) {
8504  IdentifierInfo *II = D.getIdentifier();
8505  SourceLocation Loc = DeclStart;
8506  if (II) Loc = D.getIdentifierLoc();
8507
8508  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8509  QualType T = TInfo->getType();
8510  if (getLangOptions().CPlusPlus) {
8511    CheckExtraCXXDefaultArguments(D);
8512
8513    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8514                                        UPPC_DataMemberType)) {
8515      D.setInvalidType();
8516      T = Context.IntTy;
8517      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8518    }
8519  }
8520
8521  DiagnoseFunctionSpecifiers(D);
8522
8523  if (D.getDeclSpec().isThreadSpecified())
8524    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8525  if (D.getDeclSpec().isConstexprSpecified())
8526    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8527      << 2;
8528
8529  // Check to see if this name was declared as a member previously
8530  NamedDecl *PrevDecl = 0;
8531  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8532  LookupName(Previous, S);
8533  switch (Previous.getResultKind()) {
8534    case LookupResult::Found:
8535    case LookupResult::FoundUnresolvedValue:
8536      PrevDecl = Previous.getAsSingle<NamedDecl>();
8537      break;
8538
8539    case LookupResult::FoundOverloaded:
8540      PrevDecl = Previous.getRepresentativeDecl();
8541      break;
8542
8543    case LookupResult::NotFound:
8544    case LookupResult::NotFoundInCurrentInstantiation:
8545    case LookupResult::Ambiguous:
8546      break;
8547  }
8548  Previous.suppressDiagnostics();
8549
8550  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8551    // Maybe we will complain about the shadowed template parameter.
8552    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8553    // Just pretend that we didn't see the previous declaration.
8554    PrevDecl = 0;
8555  }
8556
8557  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8558    PrevDecl = 0;
8559
8560  bool Mutable
8561    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8562  SourceLocation TSSL = D.getSourceRange().getBegin();
8563  FieldDecl *NewFD
8564    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8565                     TSSL, AS, PrevDecl, &D);
8566
8567  if (NewFD->isInvalidDecl())
8568    Record->setInvalidDecl();
8569
8570  if (D.getDeclSpec().isModulePrivateSpecified())
8571    NewFD->setModulePrivate();
8572
8573  if (NewFD->isInvalidDecl() && PrevDecl) {
8574    // Don't introduce NewFD into scope; there's already something
8575    // with the same name in the same scope.
8576  } else if (II) {
8577    PushOnScopeChains(NewFD, S);
8578  } else
8579    Record->addDecl(NewFD);
8580
8581  return NewFD;
8582}
8583
8584/// \brief Build a new FieldDecl and check its well-formedness.
8585///
8586/// This routine builds a new FieldDecl given the fields name, type,
8587/// record, etc. \p PrevDecl should refer to any previous declaration
8588/// with the same name and in the same scope as the field to be
8589/// created.
8590///
8591/// \returns a new FieldDecl.
8592///
8593/// \todo The Declarator argument is a hack. It will be removed once
8594FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8595                                TypeSourceInfo *TInfo,
8596                                RecordDecl *Record, SourceLocation Loc,
8597                                bool Mutable, Expr *BitWidth, bool HasInit,
8598                                SourceLocation TSSL,
8599                                AccessSpecifier AS, NamedDecl *PrevDecl,
8600                                Declarator *D) {
8601  IdentifierInfo *II = Name.getAsIdentifierInfo();
8602  bool InvalidDecl = false;
8603  if (D) InvalidDecl = D->isInvalidType();
8604
8605  // If we receive a broken type, recover by assuming 'int' and
8606  // marking this declaration as invalid.
8607  if (T.isNull()) {
8608    InvalidDecl = true;
8609    T = Context.IntTy;
8610  }
8611
8612  QualType EltTy = Context.getBaseElementType(T);
8613  if (!EltTy->isDependentType() &&
8614      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8615    // Fields of incomplete type force their record to be invalid.
8616    Record->setInvalidDecl();
8617    InvalidDecl = true;
8618  }
8619
8620  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8621  // than a variably modified type.
8622  if (!InvalidDecl && T->isVariablyModifiedType()) {
8623    bool SizeIsNegative;
8624    llvm::APSInt Oversized;
8625    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8626                                                           SizeIsNegative,
8627                                                           Oversized);
8628    if (!FixedTy.isNull()) {
8629      Diag(Loc, diag::warn_illegal_constant_array_size);
8630      T = FixedTy;
8631    } else {
8632      if (SizeIsNegative)
8633        Diag(Loc, diag::err_typecheck_negative_array_size);
8634      else if (Oversized.getBoolValue())
8635        Diag(Loc, diag::err_array_too_large)
8636          << Oversized.toString(10);
8637      else
8638        Diag(Loc, diag::err_typecheck_field_variable_size);
8639      InvalidDecl = true;
8640    }
8641  }
8642
8643  // Fields can not have abstract class types
8644  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8645                                             diag::err_abstract_type_in_decl,
8646                                             AbstractFieldType))
8647    InvalidDecl = true;
8648
8649  bool ZeroWidth = false;
8650  // If this is declared as a bit-field, check the bit-field.
8651  if (!InvalidDecl && BitWidth &&
8652      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8653    InvalidDecl = true;
8654    BitWidth = 0;
8655    ZeroWidth = false;
8656  }
8657
8658  // Check that 'mutable' is consistent with the type of the declaration.
8659  if (!InvalidDecl && Mutable) {
8660    unsigned DiagID = 0;
8661    if (T->isReferenceType())
8662      DiagID = diag::err_mutable_reference;
8663    else if (T.isConstQualified())
8664      DiagID = diag::err_mutable_const;
8665
8666    if (DiagID) {
8667      SourceLocation ErrLoc = Loc;
8668      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8669        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8670      Diag(ErrLoc, DiagID);
8671      Mutable = false;
8672      InvalidDecl = true;
8673    }
8674  }
8675
8676  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8677                                       BitWidth, Mutable, HasInit);
8678  if (InvalidDecl)
8679    NewFD->setInvalidDecl();
8680
8681  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8682    Diag(Loc, diag::err_duplicate_member) << II;
8683    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8684    NewFD->setInvalidDecl();
8685  }
8686
8687  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8688    if (Record->isUnion()) {
8689      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8690        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8691        if (RDecl->getDefinition()) {
8692          // C++ [class.union]p1: An object of a class with a non-trivial
8693          // constructor, a non-trivial copy constructor, a non-trivial
8694          // destructor, or a non-trivial copy assignment operator
8695          // cannot be a member of a union, nor can an array of such
8696          // objects.
8697          if (CheckNontrivialField(NewFD))
8698            NewFD->setInvalidDecl();
8699        }
8700      }
8701
8702      // C++ [class.union]p1: If a union contains a member of reference type,
8703      // the program is ill-formed.
8704      if (EltTy->isReferenceType()) {
8705        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8706          << NewFD->getDeclName() << EltTy;
8707        NewFD->setInvalidDecl();
8708      }
8709    }
8710  }
8711
8712  // FIXME: We need to pass in the attributes given an AST
8713  // representation, not a parser representation.
8714  if (D)
8715    // FIXME: What to pass instead of TUScope?
8716    ProcessDeclAttributes(TUScope, NewFD, *D);
8717
8718  // In auto-retain/release, infer strong retension for fields of
8719  // retainable type.
8720  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8721    NewFD->setInvalidDecl();
8722
8723  if (T.isObjCGCWeak())
8724    Diag(Loc, diag::warn_attribute_weak_on_field);
8725
8726  NewFD->setAccess(AS);
8727  return NewFD;
8728}
8729
8730bool Sema::CheckNontrivialField(FieldDecl *FD) {
8731  assert(FD);
8732  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8733
8734  if (FD->isInvalidDecl())
8735    return true;
8736
8737  QualType EltTy = Context.getBaseElementType(FD->getType());
8738  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8739    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8740    if (RDecl->getDefinition()) {
8741      // We check for copy constructors before constructors
8742      // because otherwise we'll never get complaints about
8743      // copy constructors.
8744
8745      CXXSpecialMember member = CXXInvalid;
8746      if (!RDecl->hasTrivialCopyConstructor())
8747        member = CXXCopyConstructor;
8748      else if (!RDecl->hasTrivialDefaultConstructor())
8749        member = CXXDefaultConstructor;
8750      else if (!RDecl->hasTrivialCopyAssignment())
8751        member = CXXCopyAssignment;
8752      else if (!RDecl->hasTrivialDestructor())
8753        member = CXXDestructor;
8754
8755      if (member != CXXInvalid) {
8756        if (!getLangOptions().CPlusPlus0x &&
8757            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8758          // Objective-C++ ARC: it is an error to have a non-trivial field of
8759          // a union. However, system headers in Objective-C programs
8760          // occasionally have Objective-C lifetime objects within unions,
8761          // and rather than cause the program to fail, we make those
8762          // members unavailable.
8763          SourceLocation Loc = FD->getLocation();
8764          if (getSourceManager().isInSystemHeader(Loc)) {
8765            if (!FD->hasAttr<UnavailableAttr>())
8766              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8767                                  "this system field has retaining ownership"));
8768            return false;
8769          }
8770        }
8771
8772        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8773               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8774               diag::err_illegal_union_or_anon_struct_member)
8775          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8776        DiagnoseNontrivial(RT, member);
8777        return !getLangOptions().CPlusPlus0x;
8778      }
8779    }
8780  }
8781
8782  return false;
8783}
8784
8785/// DiagnoseNontrivial - Given that a class has a non-trivial
8786/// special member, figure out why.
8787void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8788  QualType QT(T, 0U);
8789  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8790
8791  // Check whether the member was user-declared.
8792  switch (member) {
8793  case CXXInvalid:
8794    break;
8795
8796  case CXXDefaultConstructor:
8797    if (RD->hasUserDeclaredConstructor()) {
8798      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8799      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8800        const FunctionDecl *body = 0;
8801        ci->hasBody(body);
8802        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8803          SourceLocation CtorLoc = ci->getLocation();
8804          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8805          return;
8806        }
8807      }
8808
8809      llvm_unreachable("found no user-declared constructors");
8810    }
8811    break;
8812
8813  case CXXCopyConstructor:
8814    if (RD->hasUserDeclaredCopyConstructor()) {
8815      SourceLocation CtorLoc =
8816        RD->getCopyConstructor(0)->getLocation();
8817      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8818      return;
8819    }
8820    break;
8821
8822  case CXXMoveConstructor:
8823    if (RD->hasUserDeclaredMoveConstructor()) {
8824      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8825      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8826      return;
8827    }
8828    break;
8829
8830  case CXXCopyAssignment:
8831    if (RD->hasUserDeclaredCopyAssignment()) {
8832      // FIXME: this should use the location of the copy
8833      // assignment, not the type.
8834      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8835      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8836      return;
8837    }
8838    break;
8839
8840  case CXXMoveAssignment:
8841    if (RD->hasUserDeclaredMoveAssignment()) {
8842      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8843      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8844      return;
8845    }
8846    break;
8847
8848  case CXXDestructor:
8849    if (RD->hasUserDeclaredDestructor()) {
8850      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8851      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8852      return;
8853    }
8854    break;
8855  }
8856
8857  typedef CXXRecordDecl::base_class_iterator base_iter;
8858
8859  // Virtual bases and members inhibit trivial copying/construction,
8860  // but not trivial destruction.
8861  if (member != CXXDestructor) {
8862    // Check for virtual bases.  vbases includes indirect virtual bases,
8863    // so we just iterate through the direct bases.
8864    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8865      if (bi->isVirtual()) {
8866        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8867        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8868        return;
8869      }
8870
8871    // Check for virtual methods.
8872    typedef CXXRecordDecl::method_iterator meth_iter;
8873    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8874         ++mi) {
8875      if (mi->isVirtual()) {
8876        SourceLocation MLoc = mi->getSourceRange().getBegin();
8877        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8878        return;
8879      }
8880    }
8881  }
8882
8883  bool (CXXRecordDecl::*hasTrivial)() const;
8884  switch (member) {
8885  case CXXDefaultConstructor:
8886    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8887  case CXXCopyConstructor:
8888    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8889  case CXXCopyAssignment:
8890    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8891  case CXXDestructor:
8892    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8893  default:
8894    llvm_unreachable("unexpected special member");
8895  }
8896
8897  // Check for nontrivial bases (and recurse).
8898  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8899    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8900    assert(BaseRT && "Don't know how to handle dependent bases");
8901    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8902    if (!(BaseRecTy->*hasTrivial)()) {
8903      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8904      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8905      DiagnoseNontrivial(BaseRT, member);
8906      return;
8907    }
8908  }
8909
8910  // Check for nontrivial members (and recurse).
8911  typedef RecordDecl::field_iterator field_iter;
8912  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8913       ++fi) {
8914    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8915    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8916      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8917
8918      if (!(EltRD->*hasTrivial)()) {
8919        SourceLocation FLoc = (*fi)->getLocation();
8920        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8921        DiagnoseNontrivial(EltRT, member);
8922        return;
8923      }
8924    }
8925
8926    if (EltTy->isObjCLifetimeType()) {
8927      switch (EltTy.getObjCLifetime()) {
8928      case Qualifiers::OCL_None:
8929      case Qualifiers::OCL_ExplicitNone:
8930        break;
8931
8932      case Qualifiers::OCL_Autoreleasing:
8933      case Qualifiers::OCL_Weak:
8934      case Qualifiers::OCL_Strong:
8935        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8936          << QT << EltTy.getObjCLifetime();
8937        return;
8938      }
8939    }
8940  }
8941
8942  llvm_unreachable("found no explanation for non-trivial member");
8943}
8944
8945/// TranslateIvarVisibility - Translate visibility from a token ID to an
8946///  AST enum value.
8947static ObjCIvarDecl::AccessControl
8948TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8949  switch (ivarVisibility) {
8950  default: llvm_unreachable("Unknown visitibility kind");
8951  case tok::objc_private: return ObjCIvarDecl::Private;
8952  case tok::objc_public: return ObjCIvarDecl::Public;
8953  case tok::objc_protected: return ObjCIvarDecl::Protected;
8954  case tok::objc_package: return ObjCIvarDecl::Package;
8955  }
8956}
8957
8958/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8959/// in order to create an IvarDecl object for it.
8960Decl *Sema::ActOnIvar(Scope *S,
8961                                SourceLocation DeclStart,
8962                                Declarator &D, Expr *BitfieldWidth,
8963                                tok::ObjCKeywordKind Visibility) {
8964
8965  IdentifierInfo *II = D.getIdentifier();
8966  Expr *BitWidth = (Expr*)BitfieldWidth;
8967  SourceLocation Loc = DeclStart;
8968  if (II) Loc = D.getIdentifierLoc();
8969
8970  // FIXME: Unnamed fields can be handled in various different ways, for
8971  // example, unnamed unions inject all members into the struct namespace!
8972
8973  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8974  QualType T = TInfo->getType();
8975
8976  if (BitWidth) {
8977    // 6.7.2.1p3, 6.7.2.1p4
8978    if (VerifyBitField(Loc, II, T, BitWidth)) {
8979      D.setInvalidType();
8980      BitWidth = 0;
8981    }
8982  } else {
8983    // Not a bitfield.
8984
8985    // validate II.
8986
8987  }
8988  if (T->isReferenceType()) {
8989    Diag(Loc, diag::err_ivar_reference_type);
8990    D.setInvalidType();
8991  }
8992  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8993  // than a variably modified type.
8994  else if (T->isVariablyModifiedType()) {
8995    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8996    D.setInvalidType();
8997  }
8998
8999  // Get the visibility (access control) for this ivar.
9000  ObjCIvarDecl::AccessControl ac =
9001    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9002                                        : ObjCIvarDecl::None;
9003  // Must set ivar's DeclContext to its enclosing interface.
9004  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9005  ObjCContainerDecl *EnclosingContext;
9006  if (ObjCImplementationDecl *IMPDecl =
9007      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9008    if (!LangOpts.ObjCNonFragileABI2) {
9009    // Case of ivar declared in an implementation. Context is that of its class.
9010      EnclosingContext = IMPDecl->getClassInterface();
9011      assert(EnclosingContext && "Implementation has no class interface!");
9012    }
9013    else
9014      EnclosingContext = EnclosingDecl;
9015  } else {
9016    if (ObjCCategoryDecl *CDecl =
9017        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9018      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9019        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9020        return 0;
9021      }
9022    }
9023    EnclosingContext = EnclosingDecl;
9024  }
9025
9026  // Construct the decl.
9027  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9028                                             DeclStart, Loc, II, T,
9029                                             TInfo, ac, (Expr *)BitfieldWidth);
9030
9031  if (II) {
9032    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9033                                           ForRedeclaration);
9034    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9035        && !isa<TagDecl>(PrevDecl)) {
9036      Diag(Loc, diag::err_duplicate_member) << II;
9037      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9038      NewID->setInvalidDecl();
9039    }
9040  }
9041
9042  // Process attributes attached to the ivar.
9043  ProcessDeclAttributes(S, NewID, D);
9044
9045  if (D.isInvalidType())
9046    NewID->setInvalidDecl();
9047
9048  // In ARC, infer 'retaining' for ivars of retainable type.
9049  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9050    NewID->setInvalidDecl();
9051
9052  if (D.getDeclSpec().isModulePrivateSpecified())
9053    NewID->setModulePrivate();
9054
9055  if (II) {
9056    // FIXME: When interfaces are DeclContexts, we'll need to add
9057    // these to the interface.
9058    S->AddDecl(NewID);
9059    IdResolver.AddDecl(NewID);
9060  }
9061
9062  return NewID;
9063}
9064
9065/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9066/// class and class extensions. For every class @interface and class
9067/// extension @interface, if the last ivar is a bitfield of any type,
9068/// then add an implicit `char :0` ivar to the end of that interface.
9069void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9070                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9071  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9072    return;
9073
9074  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9075  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9076
9077  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9078    return;
9079  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9080  if (!ID) {
9081    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9082      if (!CD->IsClassExtension())
9083        return;
9084    }
9085    // No need to add this to end of @implementation.
9086    else
9087      return;
9088  }
9089  // All conditions are met. Add a new bitfield to the tail end of ivars.
9090  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9091  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9092
9093  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9094                              DeclLoc, DeclLoc, 0,
9095                              Context.CharTy,
9096                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9097                                                               DeclLoc),
9098                              ObjCIvarDecl::Private, BW,
9099                              true);
9100  AllIvarDecls.push_back(Ivar);
9101}
9102
9103void Sema::ActOnFields(Scope* S,
9104                       SourceLocation RecLoc, Decl *EnclosingDecl,
9105                       llvm::ArrayRef<Decl *> Fields,
9106                       SourceLocation LBrac, SourceLocation RBrac,
9107                       AttributeList *Attr) {
9108  assert(EnclosingDecl && "missing record or interface decl");
9109
9110  // If the decl this is being inserted into is invalid, then it may be a
9111  // redeclaration or some other bogus case.  Don't try to add fields to it.
9112  if (EnclosingDecl->isInvalidDecl())
9113    return;
9114
9115  // Verify that all the fields are okay.
9116  unsigned NumNamedMembers = 0;
9117  SmallVector<FieldDecl*, 32> RecFields;
9118
9119  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9120  bool ARCErrReported = false;
9121  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9122       i != end; ++i) {
9123    FieldDecl *FD = cast<FieldDecl>(*i);
9124
9125    // Get the type for the field.
9126    const Type *FDTy = FD->getType().getTypePtr();
9127
9128    if (!FD->isAnonymousStructOrUnion()) {
9129      // Remember all fields written by the user.
9130      RecFields.push_back(FD);
9131    }
9132
9133    // If the field is already invalid for some reason, don't emit more
9134    // diagnostics about it.
9135    if (FD->isInvalidDecl()) {
9136      EnclosingDecl->setInvalidDecl();
9137      continue;
9138    }
9139
9140    // C99 6.7.2.1p2:
9141    //   A structure or union shall not contain a member with
9142    //   incomplete or function type (hence, a structure shall not
9143    //   contain an instance of itself, but may contain a pointer to
9144    //   an instance of itself), except that the last member of a
9145    //   structure with more than one named member may have incomplete
9146    //   array type; such a structure (and any union containing,
9147    //   possibly recursively, a member that is such a structure)
9148    //   shall not be a member of a structure or an element of an
9149    //   array.
9150    if (FDTy->isFunctionType()) {
9151      // Field declared as a function.
9152      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9153        << FD->getDeclName();
9154      FD->setInvalidDecl();
9155      EnclosingDecl->setInvalidDecl();
9156      continue;
9157    } else if (FDTy->isIncompleteArrayType() && Record &&
9158               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9159                ((getLangOptions().MicrosoftExt ||
9160                  getLangOptions().CPlusPlus) &&
9161                 (i + 1 == Fields.end() || Record->isUnion())))) {
9162      // Flexible array member.
9163      // Microsoft and g++ is more permissive regarding flexible array.
9164      // It will accept flexible array in union and also
9165      // as the sole element of a struct/class.
9166      if (getLangOptions().MicrosoftExt) {
9167        if (Record->isUnion())
9168          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9169            << FD->getDeclName();
9170        else if (Fields.size() == 1)
9171          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9172            << FD->getDeclName() << Record->getTagKind();
9173      } else if (getLangOptions().CPlusPlus) {
9174        if (Record->isUnion())
9175          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9176            << FD->getDeclName();
9177        else if (Fields.size() == 1)
9178          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9179            << FD->getDeclName() << Record->getTagKind();
9180      } else if (NumNamedMembers < 1) {
9181        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9182          << FD->getDeclName();
9183        FD->setInvalidDecl();
9184        EnclosingDecl->setInvalidDecl();
9185        continue;
9186      }
9187      if (!FD->getType()->isDependentType() &&
9188          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9189        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9190          << FD->getDeclName() << FD->getType();
9191        FD->setInvalidDecl();
9192        EnclosingDecl->setInvalidDecl();
9193        continue;
9194      }
9195      // Okay, we have a legal flexible array member at the end of the struct.
9196      if (Record)
9197        Record->setHasFlexibleArrayMember(true);
9198    } else if (!FDTy->isDependentType() &&
9199               RequireCompleteType(FD->getLocation(), FD->getType(),
9200                                   diag::err_field_incomplete)) {
9201      // Incomplete type
9202      FD->setInvalidDecl();
9203      EnclosingDecl->setInvalidDecl();
9204      continue;
9205    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9206      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9207        // If this is a member of a union, then entire union becomes "flexible".
9208        if (Record && Record->isUnion()) {
9209          Record->setHasFlexibleArrayMember(true);
9210        } else {
9211          // If this is a struct/class and this is not the last element, reject
9212          // it.  Note that GCC supports variable sized arrays in the middle of
9213          // structures.
9214          if (i + 1 != Fields.end())
9215            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9216              << FD->getDeclName() << FD->getType();
9217          else {
9218            // We support flexible arrays at the end of structs in
9219            // other structs as an extension.
9220            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9221              << FD->getDeclName();
9222            if (Record)
9223              Record->setHasFlexibleArrayMember(true);
9224          }
9225        }
9226      }
9227      if (Record && FDTTy->getDecl()->hasObjectMember())
9228        Record->setHasObjectMember(true);
9229    } else if (FDTy->isObjCObjectType()) {
9230      /// A field cannot be an Objective-c object
9231      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9232        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9233      QualType T = Context.getObjCObjectPointerType(FD->getType());
9234      FD->setType(T);
9235    }
9236    else if (!getLangOptions().CPlusPlus) {
9237      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9238        // It's an error in ARC if a field has lifetime.
9239        // We don't want to report this in a system header, though,
9240        // so we just make the field unavailable.
9241        // FIXME: that's really not sufficient; we need to make the type
9242        // itself invalid to, say, initialize or copy.
9243        QualType T = FD->getType();
9244        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9245        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9246          SourceLocation loc = FD->getLocation();
9247          if (getSourceManager().isInSystemHeader(loc)) {
9248            if (!FD->hasAttr<UnavailableAttr>()) {
9249              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9250                                "this system field has retaining ownership"));
9251            }
9252          } else {
9253            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9254              << T->isBlockPointerType();
9255          }
9256          ARCErrReported = true;
9257        }
9258      }
9259      else if (getLangOptions().ObjC1 &&
9260               getLangOptions().getGC() != LangOptions::NonGC &&
9261               Record && !Record->hasObjectMember()) {
9262        if (FD->getType()->isObjCObjectPointerType() ||
9263            FD->getType().isObjCGCStrong())
9264          Record->setHasObjectMember(true);
9265        else if (Context.getAsArrayType(FD->getType())) {
9266          QualType BaseType = Context.getBaseElementType(FD->getType());
9267          if (BaseType->isRecordType() &&
9268              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9269            Record->setHasObjectMember(true);
9270          else if (BaseType->isObjCObjectPointerType() ||
9271                   BaseType.isObjCGCStrong())
9272                 Record->setHasObjectMember(true);
9273        }
9274      }
9275    }
9276    // Keep track of the number of named members.
9277    if (FD->getIdentifier())
9278      ++NumNamedMembers;
9279  }
9280
9281  // Okay, we successfully defined 'Record'.
9282  if (Record) {
9283    bool Completed = false;
9284    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9285      if (!CXXRecord->isInvalidDecl()) {
9286        // Set access bits correctly on the directly-declared conversions.
9287        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9288        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9289             I != E; ++I)
9290          Convs->setAccess(I, (*I)->getAccess());
9291
9292        if (!CXXRecord->isDependentType()) {
9293          // Objective-C Automatic Reference Counting:
9294          //   If a class has a non-static data member of Objective-C pointer
9295          //   type (or array thereof), it is a non-POD type and its
9296          //   default constructor (if any), copy constructor, copy assignment
9297          //   operator, and destructor are non-trivial.
9298          //
9299          // This rule is also handled by CXXRecordDecl::completeDefinition().
9300          // However, here we check whether this particular class is only
9301          // non-POD because of the presence of an Objective-C pointer member.
9302          // If so, objects of this type cannot be shared between code compiled
9303          // with instant objects and code compiled with manual retain/release.
9304          if (getLangOptions().ObjCAutoRefCount &&
9305              CXXRecord->hasObjectMember() &&
9306              CXXRecord->getLinkage() == ExternalLinkage) {
9307            if (CXXRecord->isPOD()) {
9308              Diag(CXXRecord->getLocation(),
9309                   diag::warn_arc_non_pod_class_with_object_member)
9310               << CXXRecord;
9311            } else {
9312              // FIXME: Fix-Its would be nice here, but finding a good location
9313              // for them is going to be tricky.
9314              if (CXXRecord->hasTrivialCopyConstructor())
9315                Diag(CXXRecord->getLocation(),
9316                     diag::warn_arc_trivial_member_function_with_object_member)
9317                  << CXXRecord << 0;
9318              if (CXXRecord->hasTrivialCopyAssignment())
9319                Diag(CXXRecord->getLocation(),
9320                     diag::warn_arc_trivial_member_function_with_object_member)
9321                << CXXRecord << 1;
9322              if (CXXRecord->hasTrivialDestructor())
9323                Diag(CXXRecord->getLocation(),
9324                     diag::warn_arc_trivial_member_function_with_object_member)
9325                << CXXRecord << 2;
9326            }
9327          }
9328
9329          // Adjust user-defined destructor exception spec.
9330          if (getLangOptions().CPlusPlus0x &&
9331              CXXRecord->hasUserDeclaredDestructor())
9332            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9333
9334          // Add any implicitly-declared members to this class.
9335          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9336
9337          // If we have virtual base classes, we may end up finding multiple
9338          // final overriders for a given virtual function. Check for this
9339          // problem now.
9340          if (CXXRecord->getNumVBases()) {
9341            CXXFinalOverriderMap FinalOverriders;
9342            CXXRecord->getFinalOverriders(FinalOverriders);
9343
9344            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9345                                             MEnd = FinalOverriders.end();
9346                 M != MEnd; ++M) {
9347              for (OverridingMethods::iterator SO = M->second.begin(),
9348                                            SOEnd = M->second.end();
9349                   SO != SOEnd; ++SO) {
9350                assert(SO->second.size() > 0 &&
9351                       "Virtual function without overridding functions?");
9352                if (SO->second.size() == 1)
9353                  continue;
9354
9355                // C++ [class.virtual]p2:
9356                //   In a derived class, if a virtual member function of a base
9357                //   class subobject has more than one final overrider the
9358                //   program is ill-formed.
9359                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9360                  << (NamedDecl *)M->first << Record;
9361                Diag(M->first->getLocation(),
9362                     diag::note_overridden_virtual_function);
9363                for (OverridingMethods::overriding_iterator
9364                          OM = SO->second.begin(),
9365                       OMEnd = SO->second.end();
9366                     OM != OMEnd; ++OM)
9367                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9368                    << (NamedDecl *)M->first << OM->Method->getParent();
9369
9370                Record->setInvalidDecl();
9371              }
9372            }
9373            CXXRecord->completeDefinition(&FinalOverriders);
9374            Completed = true;
9375          }
9376        }
9377      }
9378    }
9379
9380    if (!Completed)
9381      Record->completeDefinition();
9382
9383    // Now that the record is complete, do any delayed exception spec checks
9384    // we were missing.
9385    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9386      const CXXDestructorDecl *Dtor =
9387              DelayedDestructorExceptionSpecChecks.back().first;
9388      if (Dtor->getParent() != Record)
9389        break;
9390
9391      assert(!Dtor->getParent()->isDependentType() &&
9392          "Should not ever add destructors of templates into the list.");
9393      CheckOverridingFunctionExceptionSpec(Dtor,
9394          DelayedDestructorExceptionSpecChecks.back().second);
9395      DelayedDestructorExceptionSpecChecks.pop_back();
9396    }
9397
9398  } else {
9399    ObjCIvarDecl **ClsFields =
9400      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9401    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9402      ID->setEndOfDefinitionLoc(RBrac);
9403      // Add ivar's to class's DeclContext.
9404      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9405        ClsFields[i]->setLexicalDeclContext(ID);
9406        ID->addDecl(ClsFields[i]);
9407      }
9408      // Must enforce the rule that ivars in the base classes may not be
9409      // duplicates.
9410      if (ID->getSuperClass())
9411        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9412    } else if (ObjCImplementationDecl *IMPDecl =
9413                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9414      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9415      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9416        // Ivar declared in @implementation never belongs to the implementation.
9417        // Only it is in implementation's lexical context.
9418        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9419      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9420    } else if (ObjCCategoryDecl *CDecl =
9421                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9422      // case of ivars in class extension; all other cases have been
9423      // reported as errors elsewhere.
9424      // FIXME. Class extension does not have a LocEnd field.
9425      // CDecl->setLocEnd(RBrac);
9426      // Add ivar's to class extension's DeclContext.
9427      // Diagnose redeclaration of private ivars.
9428      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9429      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9430        if (IDecl) {
9431          if (const ObjCIvarDecl *ClsIvar =
9432              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9433            Diag(ClsFields[i]->getLocation(),
9434                 diag::err_duplicate_ivar_declaration);
9435            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9436            continue;
9437          }
9438          for (const ObjCCategoryDecl *ClsExtDecl =
9439                IDecl->getFirstClassExtension();
9440               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9441            if (const ObjCIvarDecl *ClsExtIvar =
9442                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9443              Diag(ClsFields[i]->getLocation(),
9444                   diag::err_duplicate_ivar_declaration);
9445              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9446              continue;
9447            }
9448          }
9449        }
9450        ClsFields[i]->setLexicalDeclContext(CDecl);
9451        CDecl->addDecl(ClsFields[i]);
9452      }
9453    }
9454  }
9455
9456  if (Attr)
9457    ProcessDeclAttributeList(S, Record, Attr);
9458
9459  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9460  // set the visibility of this record.
9461  if (Record && !Record->getDeclContext()->isRecord())
9462    AddPushedVisibilityAttribute(Record);
9463}
9464
9465/// \brief Determine whether the given integral value is representable within
9466/// the given type T.
9467static bool isRepresentableIntegerValue(ASTContext &Context,
9468                                        llvm::APSInt &Value,
9469                                        QualType T) {
9470  assert(T->isIntegralType(Context) && "Integral type required!");
9471  unsigned BitWidth = Context.getIntWidth(T);
9472
9473  if (Value.isUnsigned() || Value.isNonNegative()) {
9474    if (T->isSignedIntegerOrEnumerationType())
9475      --BitWidth;
9476    return Value.getActiveBits() <= BitWidth;
9477  }
9478  return Value.getMinSignedBits() <= BitWidth;
9479}
9480
9481// \brief Given an integral type, return the next larger integral type
9482// (or a NULL type of no such type exists).
9483static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9484  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9485  // enum checking below.
9486  assert(T->isIntegralType(Context) && "Integral type required!");
9487  const unsigned NumTypes = 4;
9488  QualType SignedIntegralTypes[NumTypes] = {
9489    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9490  };
9491  QualType UnsignedIntegralTypes[NumTypes] = {
9492    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9493    Context.UnsignedLongLongTy
9494  };
9495
9496  unsigned BitWidth = Context.getTypeSize(T);
9497  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9498                                                        : UnsignedIntegralTypes;
9499  for (unsigned I = 0; I != NumTypes; ++I)
9500    if (Context.getTypeSize(Types[I]) > BitWidth)
9501      return Types[I];
9502
9503  return QualType();
9504}
9505
9506EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9507                                          EnumConstantDecl *LastEnumConst,
9508                                          SourceLocation IdLoc,
9509                                          IdentifierInfo *Id,
9510                                          Expr *Val) {
9511  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9512  llvm::APSInt EnumVal(IntWidth);
9513  QualType EltTy;
9514
9515  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9516    Val = 0;
9517
9518  if (Val)
9519    Val = DefaultLvalueConversion(Val).take();
9520
9521  if (Val) {
9522    if (Enum->isDependentType() || Val->isTypeDependent())
9523      EltTy = Context.DependentTy;
9524    else {
9525      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9526      SourceLocation ExpLoc;
9527      if (!Val->isValueDependent() &&
9528          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9529        Val = 0;
9530      } else {
9531        if (!getLangOptions().CPlusPlus) {
9532          // C99 6.7.2.2p2:
9533          //   The expression that defines the value of an enumeration constant
9534          //   shall be an integer constant expression that has a value
9535          //   representable as an int.
9536
9537          // Complain if the value is not representable in an int.
9538          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9539            Diag(IdLoc, diag::ext_enum_value_not_int)
9540              << EnumVal.toString(10) << Val->getSourceRange()
9541              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9542          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9543            // Force the type of the expression to 'int'.
9544            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9545          }
9546        }
9547
9548        if (Enum->isFixed()) {
9549          EltTy = Enum->getIntegerType();
9550
9551          // C++0x [dcl.enum]p5:
9552          //   ... if the initializing value of an enumerator cannot be
9553          //   represented by the underlying type, the program is ill-formed.
9554          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9555            if (getLangOptions().MicrosoftExt) {
9556              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9557              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9558            } else
9559              Diag(IdLoc, diag::err_enumerator_too_large)
9560                << EltTy;
9561          } else
9562            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9563        }
9564        else {
9565          // C++0x [dcl.enum]p5:
9566          //   If the underlying type is not fixed, the type of each enumerator
9567          //   is the type of its initializing value:
9568          //     - If an initializer is specified for an enumerator, the
9569          //       initializing value has the same type as the expression.
9570          EltTy = Val->getType();
9571        }
9572      }
9573    }
9574  }
9575
9576  if (!Val) {
9577    if (Enum->isDependentType())
9578      EltTy = Context.DependentTy;
9579    else if (!LastEnumConst) {
9580      // C++0x [dcl.enum]p5:
9581      //   If the underlying type is not fixed, the type of each enumerator
9582      //   is the type of its initializing value:
9583      //     - If no initializer is specified for the first enumerator, the
9584      //       initializing value has an unspecified integral type.
9585      //
9586      // GCC uses 'int' for its unspecified integral type, as does
9587      // C99 6.7.2.2p3.
9588      if (Enum->isFixed()) {
9589        EltTy = Enum->getIntegerType();
9590      }
9591      else {
9592        EltTy = Context.IntTy;
9593      }
9594    } else {
9595      // Assign the last value + 1.
9596      EnumVal = LastEnumConst->getInitVal();
9597      ++EnumVal;
9598      EltTy = LastEnumConst->getType();
9599
9600      // Check for overflow on increment.
9601      if (EnumVal < LastEnumConst->getInitVal()) {
9602        // C++0x [dcl.enum]p5:
9603        //   If the underlying type is not fixed, the type of each enumerator
9604        //   is the type of its initializing value:
9605        //
9606        //     - Otherwise the type of the initializing value is the same as
9607        //       the type of the initializing value of the preceding enumerator
9608        //       unless the incremented value is not representable in that type,
9609        //       in which case the type is an unspecified integral type
9610        //       sufficient to contain the incremented value. If no such type
9611        //       exists, the program is ill-formed.
9612        QualType T = getNextLargerIntegralType(Context, EltTy);
9613        if (T.isNull() || Enum->isFixed()) {
9614          // There is no integral type larger enough to represent this
9615          // value. Complain, then allow the value to wrap around.
9616          EnumVal = LastEnumConst->getInitVal();
9617          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9618          ++EnumVal;
9619          if (Enum->isFixed())
9620            // When the underlying type is fixed, this is ill-formed.
9621            Diag(IdLoc, diag::err_enumerator_wrapped)
9622              << EnumVal.toString(10)
9623              << EltTy;
9624          else
9625            Diag(IdLoc, diag::warn_enumerator_too_large)
9626              << EnumVal.toString(10);
9627        } else {
9628          EltTy = T;
9629        }
9630
9631        // Retrieve the last enumerator's value, extent that type to the
9632        // type that is supposed to be large enough to represent the incremented
9633        // value, then increment.
9634        EnumVal = LastEnumConst->getInitVal();
9635        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9636        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9637        ++EnumVal;
9638
9639        // If we're not in C++, diagnose the overflow of enumerator values,
9640        // which in C99 means that the enumerator value is not representable in
9641        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9642        // permits enumerator values that are representable in some larger
9643        // integral type.
9644        if (!getLangOptions().CPlusPlus && !T.isNull())
9645          Diag(IdLoc, diag::warn_enum_value_overflow);
9646      } else if (!getLangOptions().CPlusPlus &&
9647                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9648        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9649        Diag(IdLoc, diag::ext_enum_value_not_int)
9650          << EnumVal.toString(10) << 1;
9651      }
9652    }
9653  }
9654
9655  if (!EltTy->isDependentType()) {
9656    // Make the enumerator value match the signedness and size of the
9657    // enumerator's type.
9658    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9659    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9660  }
9661
9662  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9663                                  Val, EnumVal);
9664}
9665
9666
9667Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9668                              SourceLocation IdLoc, IdentifierInfo *Id,
9669                              AttributeList *Attr,
9670                              SourceLocation EqualLoc, Expr *val) {
9671  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9672  EnumConstantDecl *LastEnumConst =
9673    cast_or_null<EnumConstantDecl>(lastEnumConst);
9674  Expr *Val = static_cast<Expr*>(val);
9675
9676  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9677  // we find one that is.
9678  S = getNonFieldDeclScope(S);
9679
9680  // Verify that there isn't already something declared with this name in this
9681  // scope.
9682  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9683                                         ForRedeclaration);
9684  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9685    // Maybe we will complain about the shadowed template parameter.
9686    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9687    // Just pretend that we didn't see the previous declaration.
9688    PrevDecl = 0;
9689  }
9690
9691  if (PrevDecl) {
9692    // When in C++, we may get a TagDecl with the same name; in this case the
9693    // enum constant will 'hide' the tag.
9694    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9695           "Received TagDecl when not in C++!");
9696    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9697      if (isa<EnumConstantDecl>(PrevDecl))
9698        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9699      else
9700        Diag(IdLoc, diag::err_redefinition) << Id;
9701      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9702      return 0;
9703    }
9704  }
9705
9706  // C++ [class.mem]p13:
9707  //   If T is the name of a class, then each of the following shall have a
9708  //   name different from T:
9709  //     - every enumerator of every member of class T that is an enumerated
9710  //       type
9711  if (CXXRecordDecl *Record
9712                      = dyn_cast<CXXRecordDecl>(
9713                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9714    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9715      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9716
9717  EnumConstantDecl *New =
9718    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9719
9720  if (New) {
9721    // Process attributes.
9722    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9723
9724    // Register this decl in the current scope stack.
9725    New->setAccess(TheEnumDecl->getAccess());
9726    PushOnScopeChains(New, S);
9727  }
9728
9729  return New;
9730}
9731
9732void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9733                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9734                         Decl **Elements, unsigned NumElements,
9735                         Scope *S, AttributeList *Attr) {
9736  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9737  QualType EnumType = Context.getTypeDeclType(Enum);
9738
9739  if (Attr)
9740    ProcessDeclAttributeList(S, Enum, Attr);
9741
9742  if (Enum->isDependentType()) {
9743    for (unsigned i = 0; i != NumElements; ++i) {
9744      EnumConstantDecl *ECD =
9745        cast_or_null<EnumConstantDecl>(Elements[i]);
9746      if (!ECD) continue;
9747
9748      ECD->setType(EnumType);
9749    }
9750
9751    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9752    return;
9753  }
9754
9755  // TODO: If the result value doesn't fit in an int, it must be a long or long
9756  // long value.  ISO C does not support this, but GCC does as an extension,
9757  // emit a warning.
9758  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9759  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9760  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9761
9762  // Verify that all the values are okay, compute the size of the values, and
9763  // reverse the list.
9764  unsigned NumNegativeBits = 0;
9765  unsigned NumPositiveBits = 0;
9766
9767  // Keep track of whether all elements have type int.
9768  bool AllElementsInt = true;
9769
9770  for (unsigned i = 0; i != NumElements; ++i) {
9771    EnumConstantDecl *ECD =
9772      cast_or_null<EnumConstantDecl>(Elements[i]);
9773    if (!ECD) continue;  // Already issued a diagnostic.
9774
9775    const llvm::APSInt &InitVal = ECD->getInitVal();
9776
9777    // Keep track of the size of positive and negative values.
9778    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9779      NumPositiveBits = std::max(NumPositiveBits,
9780                                 (unsigned)InitVal.getActiveBits());
9781    else
9782      NumNegativeBits = std::max(NumNegativeBits,
9783                                 (unsigned)InitVal.getMinSignedBits());
9784
9785    // Keep track of whether every enum element has type int (very commmon).
9786    if (AllElementsInt)
9787      AllElementsInt = ECD->getType() == Context.IntTy;
9788  }
9789
9790  // Figure out the type that should be used for this enum.
9791  QualType BestType;
9792  unsigned BestWidth;
9793
9794  // C++0x N3000 [conv.prom]p3:
9795  //   An rvalue of an unscoped enumeration type whose underlying
9796  //   type is not fixed can be converted to an rvalue of the first
9797  //   of the following types that can represent all the values of
9798  //   the enumeration: int, unsigned int, long int, unsigned long
9799  //   int, long long int, or unsigned long long int.
9800  // C99 6.4.4.3p2:
9801  //   An identifier declared as an enumeration constant has type int.
9802  // The C99 rule is modified by a gcc extension
9803  QualType BestPromotionType;
9804
9805  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9806  // -fshort-enums is the equivalent to specifying the packed attribute on all
9807  // enum definitions.
9808  if (LangOpts.ShortEnums)
9809    Packed = true;
9810
9811  if (Enum->isFixed()) {
9812    BestType = Enum->getIntegerType();
9813    if (BestType->isPromotableIntegerType())
9814      BestPromotionType = Context.getPromotedIntegerType(BestType);
9815    else
9816      BestPromotionType = BestType;
9817    // We don't need to set BestWidth, because BestType is going to be the type
9818    // of the enumerators, but we do anyway because otherwise some compilers
9819    // warn that it might be used uninitialized.
9820    BestWidth = CharWidth;
9821  }
9822  else if (NumNegativeBits) {
9823    // If there is a negative value, figure out the smallest integer type (of
9824    // int/long/longlong) that fits.
9825    // If it's packed, check also if it fits a char or a short.
9826    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9827      BestType = Context.SignedCharTy;
9828      BestWidth = CharWidth;
9829    } else if (Packed && NumNegativeBits <= ShortWidth &&
9830               NumPositiveBits < ShortWidth) {
9831      BestType = Context.ShortTy;
9832      BestWidth = ShortWidth;
9833    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9834      BestType = Context.IntTy;
9835      BestWidth = IntWidth;
9836    } else {
9837      BestWidth = Context.getTargetInfo().getLongWidth();
9838
9839      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9840        BestType = Context.LongTy;
9841      } else {
9842        BestWidth = Context.getTargetInfo().getLongLongWidth();
9843
9844        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9845          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9846        BestType = Context.LongLongTy;
9847      }
9848    }
9849    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9850  } else {
9851    // If there is no negative value, figure out the smallest type that fits
9852    // all of the enumerator values.
9853    // If it's packed, check also if it fits a char or a short.
9854    if (Packed && NumPositiveBits <= CharWidth) {
9855      BestType = Context.UnsignedCharTy;
9856      BestPromotionType = Context.IntTy;
9857      BestWidth = CharWidth;
9858    } else if (Packed && NumPositiveBits <= ShortWidth) {
9859      BestType = Context.UnsignedShortTy;
9860      BestPromotionType = Context.IntTy;
9861      BestWidth = ShortWidth;
9862    } else if (NumPositiveBits <= IntWidth) {
9863      BestType = Context.UnsignedIntTy;
9864      BestWidth = IntWidth;
9865      BestPromotionType
9866        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9867                           ? Context.UnsignedIntTy : Context.IntTy;
9868    } else if (NumPositiveBits <=
9869               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9870      BestType = Context.UnsignedLongTy;
9871      BestPromotionType
9872        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9873                           ? Context.UnsignedLongTy : Context.LongTy;
9874    } else {
9875      BestWidth = Context.getTargetInfo().getLongLongWidth();
9876      assert(NumPositiveBits <= BestWidth &&
9877             "How could an initializer get larger than ULL?");
9878      BestType = Context.UnsignedLongLongTy;
9879      BestPromotionType
9880        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9881                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9882    }
9883  }
9884
9885  // Loop over all of the enumerator constants, changing their types to match
9886  // the type of the enum if needed.
9887  for (unsigned i = 0; i != NumElements; ++i) {
9888    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9889    if (!ECD) continue;  // Already issued a diagnostic.
9890
9891    // Standard C says the enumerators have int type, but we allow, as an
9892    // extension, the enumerators to be larger than int size.  If each
9893    // enumerator value fits in an int, type it as an int, otherwise type it the
9894    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9895    // that X has type 'int', not 'unsigned'.
9896
9897    // Determine whether the value fits into an int.
9898    llvm::APSInt InitVal = ECD->getInitVal();
9899
9900    // If it fits into an integer type, force it.  Otherwise force it to match
9901    // the enum decl type.
9902    QualType NewTy;
9903    unsigned NewWidth;
9904    bool NewSign;
9905    if (!getLangOptions().CPlusPlus &&
9906        !Enum->isFixed() &&
9907        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9908      NewTy = Context.IntTy;
9909      NewWidth = IntWidth;
9910      NewSign = true;
9911    } else if (ECD->getType() == BestType) {
9912      // Already the right type!
9913      if (getLangOptions().CPlusPlus)
9914        // C++ [dcl.enum]p4: Following the closing brace of an
9915        // enum-specifier, each enumerator has the type of its
9916        // enumeration.
9917        ECD->setType(EnumType);
9918      continue;
9919    } else {
9920      NewTy = BestType;
9921      NewWidth = BestWidth;
9922      NewSign = BestType->isSignedIntegerOrEnumerationType();
9923    }
9924
9925    // Adjust the APSInt value.
9926    InitVal = InitVal.extOrTrunc(NewWidth);
9927    InitVal.setIsSigned(NewSign);
9928    ECD->setInitVal(InitVal);
9929
9930    // Adjust the Expr initializer and type.
9931    if (ECD->getInitExpr() &&
9932        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9933      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9934                                                CK_IntegralCast,
9935                                                ECD->getInitExpr(),
9936                                                /*base paths*/ 0,
9937                                                VK_RValue));
9938    if (getLangOptions().CPlusPlus)
9939      // C++ [dcl.enum]p4: Following the closing brace of an
9940      // enum-specifier, each enumerator has the type of its
9941      // enumeration.
9942      ECD->setType(EnumType);
9943    else
9944      ECD->setType(NewTy);
9945  }
9946
9947  Enum->completeDefinition(BestType, BestPromotionType,
9948                           NumPositiveBits, NumNegativeBits);
9949}
9950
9951Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9952                                  SourceLocation StartLoc,
9953                                  SourceLocation EndLoc) {
9954  StringLiteral *AsmString = cast<StringLiteral>(expr);
9955
9956  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9957                                                   AsmString, StartLoc,
9958                                                   EndLoc);
9959  CurContext->addDecl(New);
9960  return New;
9961}
9962
9963DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
9964                                   SourceLocation ImportLoc,
9965                                   ModuleIdPath Path) {
9966  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9967                                                Module::AllVisible,
9968                                                /*IsIncludeDirective=*/false);
9969  if (!Mod)
9970    return true;
9971
9972  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9973  Module *ModCheck = Mod;
9974  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9975    // If we've run out of module parents, just drop the remaining identifiers.
9976    // We need the length to be consistent.
9977    if (!ModCheck)
9978      break;
9979    ModCheck = ModCheck->Parent;
9980
9981    IdentifierLocs.push_back(Path[I].second);
9982  }
9983
9984  ImportDecl *Import = ImportDecl::Create(Context,
9985                                          Context.getTranslationUnitDecl(),
9986                                          AtLoc.isValid()? AtLoc : ImportLoc,
9987                                          Mod, IdentifierLocs);
9988  Context.getTranslationUnitDecl()->addDecl(Import);
9989  return Import;
9990}
9991
9992void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9993                             SourceLocation PragmaLoc,
9994                             SourceLocation NameLoc) {
9995  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9996
9997  if (PrevDecl) {
9998    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9999  } else {
10000    (void)WeakUndeclaredIdentifiers.insert(
10001      std::pair<IdentifierInfo*,WeakInfo>
10002        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10003  }
10004}
10005
10006void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10007                                IdentifierInfo* AliasName,
10008                                SourceLocation PragmaLoc,
10009                                SourceLocation NameLoc,
10010                                SourceLocation AliasNameLoc) {
10011  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10012                                    LookupOrdinaryName);
10013  WeakInfo W = WeakInfo(Name, NameLoc);
10014
10015  if (PrevDecl) {
10016    if (!PrevDecl->hasAttr<AliasAttr>())
10017      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10018        DeclApplyPragmaWeak(TUScope, ND, W);
10019  } else {
10020    (void)WeakUndeclaredIdentifiers.insert(
10021      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10022  }
10023}
10024
10025Decl *Sema::getObjCDeclContext() const {
10026  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10027}
10028
10029AvailabilityResult Sema::getCurContextAvailability() const {
10030  const Decl *D = cast<Decl>(getCurLexicalContext());
10031  // A category implicitly has the availability of the interface.
10032  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10033    D = CatD->getClassInterface();
10034
10035  return D->getAvailability();
10036}
10037