SemaDecl.cpp revision 6d5fd14c02db3b2d5532337eb6bce737b12fb7a9
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Parse/Template.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Lex/HeaderSearch.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include <algorithm>
38#include <cstring>
39#include <functional>
40#include <queue>
41using namespace clang;
42
43/// getDeclName - Return a pretty name for the specified decl if possible, or
44/// an empty string if not.  This is used for pretty crash reporting.
45std::string Sema::getDeclName(DeclPtrTy d) {
46  Decl *D = d.getAs<Decl>();
47  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
48    return DN->getQualifiedNameAsString();
49  return "";
50}
51
52Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
53  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
54}
55
56/// \brief If the identifier refers to a type name within this scope,
57/// return the declaration of that type.
58///
59/// This routine performs ordinary name lookup of the identifier II
60/// within the given scope, with optional C++ scope specifier SS, to
61/// determine whether the name refers to a type. If so, returns an
62/// opaque pointer (actually a QualType) corresponding to that
63/// type. Otherwise, returns NULL.
64///
65/// If name lookup results in an ambiguity, this routine will complain
66/// and then return NULL.
67Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
68                                Scope *S, const CXXScopeSpec *SS,
69                                bool isClassName,
70                                TypeTy *ObjectTypePtr) {
71  // Determine where we will perform name lookup.
72  DeclContext *LookupCtx = 0;
73  if (ObjectTypePtr) {
74    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
75    if (ObjectType->isRecordType())
76      LookupCtx = computeDeclContext(ObjectType);
77  } else if (SS && SS->isSet()) {
78    LookupCtx = computeDeclContext(*SS, false);
79
80    if (!LookupCtx) {
81      if (isDependentScopeSpecifier(*SS)) {
82        // C++ [temp.res]p3:
83        //   A qualified-id that refers to a type and in which the
84        //   nested-name-specifier depends on a template-parameter (14.6.2)
85        //   shall be prefixed by the keyword typename to indicate that the
86        //   qualified-id denotes a type, forming an
87        //   elaborated-type-specifier (7.1.5.3).
88        //
89        // We therefore do not perform any name lookup if the result would
90        // refer to a member of an unknown specialization.
91        if (!isClassName)
92          return 0;
93
94        // We know from the grammar that this name refers to a type, so build a
95        // TypenameType node to describe the type.
96        // FIXME: Record somewhere that this TypenameType node has no "typename"
97        // keyword associated with it.
98        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
99                                 II, SS->getRange()).getAsOpaquePtr();
100      }
101
102      return 0;
103    }
104
105    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
106      return 0;
107  }
108
109  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    return 0;
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return 0;
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return 0;
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    // C++ [temp.local]p2:
189    //   Within the scope of a class template specialization or
190    //   partial specialization, when the injected-class-name is
191    //   not followed by a <, it is equivalent to the
192    //   injected-class-name followed by the template-argument s
193    //   of the class template specialization or partial
194    //   specialization enclosed in <>.
195    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
196      if (RD->isInjectedClassName())
197        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
198          T = Template->getInjectedClassNameType(Context);
199
200    if (T.isNull())
201      T = Context.getTypeDeclType(TD);
202
203    if (SS)
204      T = getQualifiedNameType(*SS, T);
205
206  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
207    T = Context.getObjCInterfaceType(IDecl);
208  } else if (UnresolvedUsingTypenameDecl *UUDecl =
209               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
210    // FIXME: preserve source structure information.
211    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
212  } else {
213    // If it's not plausibly a type, suppress diagnostics.
214    Result.suppressDiagnostics();
215    return 0;
216  }
217
218  return T.getAsOpaquePtr();
219}
220
221/// isTagName() - This method is called *for error recovery purposes only*
222/// to determine if the specified name is a valid tag name ("struct foo").  If
223/// so, this returns the TST for the tag corresponding to it (TST_enum,
224/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
225/// where the user forgot to specify the tag.
226DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
227  // Do a tag name lookup in this scope.
228  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
229  LookupName(R, S, false);
230  R.suppressDiagnostics();
231  if (R.getResultKind() == LookupResult::Found)
232    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
233      switch (TD->getTagKind()) {
234      case TagDecl::TK_struct: return DeclSpec::TST_struct;
235      case TagDecl::TK_union:  return DeclSpec::TST_union;
236      case TagDecl::TK_class:  return DeclSpec::TST_class;
237      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
238      }
239    }
240
241  return DeclSpec::TST_unspecified;
242}
243
244bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
245                                   SourceLocation IILoc,
246                                   Scope *S,
247                                   const CXXScopeSpec *SS,
248                                   TypeTy *&SuggestedType) {
249  // We don't have anything to suggest (yet).
250  SuggestedType = 0;
251
252  // FIXME: Should we move the logic that tries to recover from a missing tag
253  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
254
255  if (!SS)
256    Diag(IILoc, diag::err_unknown_typename) << &II;
257  else if (DeclContext *DC = computeDeclContext(*SS, false))
258    Diag(IILoc, diag::err_typename_nested_not_found)
259      << &II << DC << SS->getRange();
260  else if (isDependentScopeSpecifier(*SS)) {
261    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
262      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
263      << SourceRange(SS->getRange().getBegin(), IILoc)
264      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
265                                               "typename ");
266    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
267  } else {
268    assert(SS && SS->isInvalid() &&
269           "Invalid scope specifier has already been diagnosed");
270  }
271
272  return true;
273}
274
275// Determines the context to return to after temporarily entering a
276// context.  This depends in an unnecessarily complicated way on the
277// exact ordering of callbacks from the parser.
278DeclContext *Sema::getContainingDC(DeclContext *DC) {
279
280  // Functions defined inline within classes aren't parsed until we've
281  // finished parsing the top-level class, so the top-level class is
282  // the context we'll need to return to.
283  if (isa<FunctionDecl>(DC)) {
284    DC = DC->getLexicalParent();
285
286    // A function not defined within a class will always return to its
287    // lexical context.
288    if (!isa<CXXRecordDecl>(DC))
289      return DC;
290
291    // A C++ inline method/friend is parsed *after* the topmost class
292    // it was declared in is fully parsed ("complete");  the topmost
293    // class is the context we need to return to.
294    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
295      DC = RD;
296
297    // Return the declaration context of the topmost class the inline method is
298    // declared in.
299    return DC;
300  }
301
302  if (isa<ObjCMethodDecl>(DC))
303    return Context.getTranslationUnitDecl();
304
305  return DC->getLexicalParent();
306}
307
308void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
309  assert(getContainingDC(DC) == CurContext &&
310      "The next DeclContext should be lexically contained in the current one.");
311  CurContext = DC;
312  S->setEntity(DC);
313}
314
315void Sema::PopDeclContext() {
316  assert(CurContext && "DeclContext imbalance!");
317
318  CurContext = getContainingDC(CurContext);
319}
320
321/// EnterDeclaratorContext - Used when we must lookup names in the context
322/// of a declarator's nested name specifier.
323void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
324  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
325  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
326  CurContext = DC;
327  assert(CurContext && "No context?");
328  S->setEntity(CurContext);
329}
330
331void Sema::ExitDeclaratorContext(Scope *S) {
332  S->setEntity(PreDeclaratorDC);
333  PreDeclaratorDC = 0;
334
335  // Reset CurContext to the nearest enclosing context.
336  while (!S->getEntity() && S->getParent())
337    S = S->getParent();
338  CurContext = static_cast<DeclContext*>(S->getEntity());
339  assert(CurContext && "No context?");
340}
341
342/// \brief Determine whether we allow overloading of the function
343/// PrevDecl with another declaration.
344///
345/// This routine determines whether overloading is possible, not
346/// whether some new function is actually an overload. It will return
347/// true in C++ (where we can always provide overloads) or, as an
348/// extension, in C when the previous function is already an
349/// overloaded function declaration or has the "overloadable"
350/// attribute.
351static bool AllowOverloadingOfFunction(LookupResult &Previous,
352                                       ASTContext &Context) {
353  if (Context.getLangOptions().CPlusPlus)
354    return true;
355
356  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
357    return true;
358
359  return (Previous.getResultKind() == LookupResult::Found
360          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
361}
362
363/// Add this decl to the scope shadowed decl chains.
364void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
365  // Move up the scope chain until we find the nearest enclosing
366  // non-transparent context. The declaration will be introduced into this
367  // scope.
368  while (S->getEntity() &&
369         ((DeclContext *)S->getEntity())->isTransparentContext())
370    S = S->getParent();
371
372  // Add scoped declarations into their context, so that they can be
373  // found later. Declarations without a context won't be inserted
374  // into any context.
375  if (AddToContext)
376    CurContext->addDecl(D);
377
378  // Out-of-line function and variable definitions should not be pushed into
379  // scope.
380  if ((isa<FunctionTemplateDecl>(D) &&
381       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
382      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
383      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
384    return;
385
386  // If this replaces anything in the current scope,
387  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
388                               IEnd = IdResolver.end();
389  for (; I != IEnd; ++I) {
390    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
391      S->RemoveDecl(DeclPtrTy::make(*I));
392      IdResolver.RemoveDecl(*I);
393
394      // Should only need to replace one decl.
395      break;
396    }
397  }
398
399  S->AddDecl(DeclPtrTy::make(D));
400  IdResolver.AddDecl(D);
401}
402
403bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
404  return IdResolver.isDeclInScope(D, Ctx, Context, S);
405}
406
407static bool isOutOfScopePreviousDeclaration(NamedDecl *,
408                                            DeclContext*,
409                                            ASTContext&);
410
411/// Filters out lookup results that don't fall within the given scope
412/// as determined by isDeclInScope.
413static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
414                                 DeclContext *Ctx, Scope *S,
415                                 bool ConsiderLinkage) {
416  LookupResult::Filter F = R.makeFilter();
417  while (F.hasNext()) {
418    NamedDecl *D = F.next();
419
420    if (SemaRef.isDeclInScope(D, Ctx, S))
421      continue;
422
423    if (ConsiderLinkage &&
424        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
425      continue;
426
427    F.erase();
428  }
429
430  F.done();
431}
432
433static bool isUsingDecl(NamedDecl *D) {
434  return isa<UsingShadowDecl>(D) ||
435         isa<UnresolvedUsingTypenameDecl>(D) ||
436         isa<UnresolvedUsingValueDecl>(D);
437}
438
439/// Removes using shadow declarations from the lookup results.
440static void RemoveUsingDecls(LookupResult &R) {
441  LookupResult::Filter F = R.makeFilter();
442  while (F.hasNext())
443    if (isUsingDecl(F.next()))
444      F.erase();
445
446  F.done();
447}
448
449static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
450  if (D->isUsed() || D->hasAttr<UnusedAttr>())
451    return false;
452
453  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
454    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
455      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
456        if (!RD->hasTrivialConstructor())
457          return false;
458        if (!RD->hasTrivialDestructor())
459          return false;
460      }
461    }
462  }
463
464  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
465          !isa<ImplicitParamDecl>(D) &&
466          D->getDeclContext()->isFunctionOrMethod());
467}
468
469void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
470  if (S->decl_empty()) return;
471  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
472         "Scope shouldn't contain decls!");
473
474  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
475       I != E; ++I) {
476    Decl *TmpD = (*I).getAs<Decl>();
477    assert(TmpD && "This decl didn't get pushed??");
478
479    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
480    NamedDecl *D = cast<NamedDecl>(TmpD);
481
482    if (!D->getDeclName()) continue;
483
484    // Diagnose unused variables in this scope.
485    if (ShouldDiagnoseUnusedDecl(D))
486      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
487
488    // Remove this name from our lexical scope.
489    IdResolver.RemoveDecl(D);
490  }
491}
492
493/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
494/// return 0 if one not found.
495ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
496  // The third "scope" argument is 0 since we aren't enabling lazy built-in
497  // creation from this context.
498  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
499
500  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
501}
502
503/// getNonFieldDeclScope - Retrieves the innermost scope, starting
504/// from S, where a non-field would be declared. This routine copes
505/// with the difference between C and C++ scoping rules in structs and
506/// unions. For example, the following code is well-formed in C but
507/// ill-formed in C++:
508/// @code
509/// struct S6 {
510///   enum { BAR } e;
511/// };
512///
513/// void test_S6() {
514///   struct S6 a;
515///   a.e = BAR;
516/// }
517/// @endcode
518/// For the declaration of BAR, this routine will return a different
519/// scope. The scope S will be the scope of the unnamed enumeration
520/// within S6. In C++, this routine will return the scope associated
521/// with S6, because the enumeration's scope is a transparent
522/// context but structures can contain non-field names. In C, this
523/// routine will return the translation unit scope, since the
524/// enumeration's scope is a transparent context and structures cannot
525/// contain non-field names.
526Scope *Sema::getNonFieldDeclScope(Scope *S) {
527  while (((S->getFlags() & Scope::DeclScope) == 0) ||
528         (S->getEntity() &&
529          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
530         (S->isClassScope() && !getLangOptions().CPlusPlus))
531    S = S->getParent();
532  return S;
533}
534
535void Sema::InitBuiltinVaListType() {
536  if (!Context.getBuiltinVaListType().isNull())
537    return;
538
539  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
540  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
541  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
542  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
543}
544
545/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
546/// file scope.  lazily create a decl for it. ForRedeclaration is true
547/// if we're creating this built-in in anticipation of redeclaring the
548/// built-in.
549NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
550                                     Scope *S, bool ForRedeclaration,
551                                     SourceLocation Loc) {
552  Builtin::ID BID = (Builtin::ID)bid;
553
554  if (Context.BuiltinInfo.hasVAListUse(BID))
555    InitBuiltinVaListType();
556
557  ASTContext::GetBuiltinTypeError Error;
558  QualType R = Context.GetBuiltinType(BID, Error);
559  switch (Error) {
560  case ASTContext::GE_None:
561    // Okay
562    break;
563
564  case ASTContext::GE_Missing_stdio:
565    if (ForRedeclaration)
566      Diag(Loc, diag::err_implicit_decl_requires_stdio)
567        << Context.BuiltinInfo.GetName(BID);
568    return 0;
569
570  case ASTContext::GE_Missing_setjmp:
571    if (ForRedeclaration)
572      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
573        << Context.BuiltinInfo.GetName(BID);
574    return 0;
575  }
576
577  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
578    Diag(Loc, diag::ext_implicit_lib_function_decl)
579      << Context.BuiltinInfo.GetName(BID)
580      << R;
581    if (Context.BuiltinInfo.getHeaderName(BID) &&
582        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
583          != Diagnostic::Ignored)
584      Diag(Loc, diag::note_please_include_header)
585        << Context.BuiltinInfo.getHeaderName(BID)
586        << Context.BuiltinInfo.GetName(BID);
587  }
588
589  FunctionDecl *New = FunctionDecl::Create(Context,
590                                           Context.getTranslationUnitDecl(),
591                                           Loc, II, R, /*DInfo=*/0,
592                                           FunctionDecl::Extern, false,
593                                           /*hasPrototype=*/true);
594  New->setImplicit();
595
596  // Create Decl objects for each parameter, adding them to the
597  // FunctionDecl.
598  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
599    llvm::SmallVector<ParmVarDecl*, 16> Params;
600    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
601      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
602                                           FT->getArgType(i), /*DInfo=*/0,
603                                           VarDecl::None, 0));
604    New->setParams(Context, Params.data(), Params.size());
605  }
606
607  AddKnownFunctionAttributes(New);
608
609  // TUScope is the translation-unit scope to insert this function into.
610  // FIXME: This is hideous. We need to teach PushOnScopeChains to
611  // relate Scopes to DeclContexts, and probably eliminate CurContext
612  // entirely, but we're not there yet.
613  DeclContext *SavedContext = CurContext;
614  CurContext = Context.getTranslationUnitDecl();
615  PushOnScopeChains(New, TUScope);
616  CurContext = SavedContext;
617  return New;
618}
619
620/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
621/// same name and scope as a previous declaration 'Old'.  Figure out
622/// how to resolve this situation, merging decls or emitting
623/// diagnostics as appropriate. If there was an error, set New to be invalid.
624///
625void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
626  // If the new decl is known invalid already, don't bother doing any
627  // merging checks.
628  if (New->isInvalidDecl()) return;
629
630  // Allow multiple definitions for ObjC built-in typedefs.
631  // FIXME: Verify the underlying types are equivalent!
632  if (getLangOptions().ObjC1) {
633    const IdentifierInfo *TypeID = New->getIdentifier();
634    switch (TypeID->getLength()) {
635    default: break;
636    case 2:
637      if (!TypeID->isStr("id"))
638        break;
639      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
640      // Install the built-in type for 'id', ignoring the current definition.
641      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
642      return;
643    case 5:
644      if (!TypeID->isStr("Class"))
645        break;
646      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
647      // Install the built-in type for 'Class', ignoring the current definition.
648      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
649      return;
650    case 3:
651      if (!TypeID->isStr("SEL"))
652        break;
653      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
654      // Install the built-in type for 'SEL', ignoring the current definition.
655      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
656      return;
657    case 8:
658      if (!TypeID->isStr("Protocol"))
659        break;
660      Context.setObjCProtoType(New->getUnderlyingType());
661      return;
662    }
663    // Fall through - the typedef name was not a builtin type.
664  }
665
666  // Verify the old decl was also a type.
667  TypeDecl *Old = 0;
668  if (!OldDecls.isSingleResult() ||
669      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
670    Diag(New->getLocation(), diag::err_redefinition_different_kind)
671      << New->getDeclName();
672
673    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
674    if (OldD->getLocation().isValid())
675      Diag(OldD->getLocation(), diag::note_previous_definition);
676
677    return New->setInvalidDecl();
678  }
679
680  // If the old declaration is invalid, just give up here.
681  if (Old->isInvalidDecl())
682    return New->setInvalidDecl();
683
684  // Determine the "old" type we'll use for checking and diagnostics.
685  QualType OldType;
686  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
687    OldType = OldTypedef->getUnderlyingType();
688  else
689    OldType = Context.getTypeDeclType(Old);
690
691  // If the typedef types are not identical, reject them in all languages and
692  // with any extensions enabled.
693
694  if (OldType != New->getUnderlyingType() &&
695      Context.getCanonicalType(OldType) !=
696      Context.getCanonicalType(New->getUnderlyingType())) {
697    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
698      << New->getUnderlyingType() << OldType;
699    if (Old->getLocation().isValid())
700      Diag(Old->getLocation(), diag::note_previous_definition);
701    return New->setInvalidDecl();
702  }
703
704  if (getLangOptions().Microsoft)
705    return;
706
707  // C++ [dcl.typedef]p2:
708  //   In a given non-class scope, a typedef specifier can be used to
709  //   redefine the name of any type declared in that scope to refer
710  //   to the type to which it already refers.
711  if (getLangOptions().CPlusPlus) {
712    if (!isa<CXXRecordDecl>(CurContext))
713      return;
714    Diag(New->getLocation(), diag::err_redefinition)
715      << New->getDeclName();
716    Diag(Old->getLocation(), diag::note_previous_definition);
717    return New->setInvalidDecl();
718  }
719
720  // If we have a redefinition of a typedef in C, emit a warning.  This warning
721  // is normally mapped to an error, but can be controlled with
722  // -Wtypedef-redefinition.  If either the original or the redefinition is
723  // in a system header, don't emit this for compatibility with GCC.
724  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
725      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
726       Context.getSourceManager().isInSystemHeader(New->getLocation())))
727    return;
728
729  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
730    << New->getDeclName();
731  Diag(Old->getLocation(), diag::note_previous_definition);
732  return;
733}
734
735/// DeclhasAttr - returns true if decl Declaration already has the target
736/// attribute.
737static bool
738DeclHasAttr(const Decl *decl, const Attr *target) {
739  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
740    if (attr->getKind() == target->getKind())
741      return true;
742
743  return false;
744}
745
746/// MergeAttributes - append attributes from the Old decl to the New one.
747static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
748  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
749    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
750      Attr *NewAttr = attr->clone(C);
751      NewAttr->setInherited(true);
752      New->addAttr(NewAttr);
753    }
754  }
755}
756
757/// Used in MergeFunctionDecl to keep track of function parameters in
758/// C.
759struct GNUCompatibleParamWarning {
760  ParmVarDecl *OldParm;
761  ParmVarDecl *NewParm;
762  QualType PromotedType;
763};
764
765/// MergeFunctionDecl - We just parsed a function 'New' from
766/// declarator D which has the same name and scope as a previous
767/// declaration 'Old'.  Figure out how to resolve this situation,
768/// merging decls or emitting diagnostics as appropriate.
769///
770/// In C++, New and Old must be declarations that are not
771/// overloaded. Use IsOverload to determine whether New and Old are
772/// overloaded, and to select the Old declaration that New should be
773/// merged with.
774///
775/// Returns true if there was an error, false otherwise.
776bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
777  // Verify the old decl was also a function.
778  FunctionDecl *Old = 0;
779  if (FunctionTemplateDecl *OldFunctionTemplate
780        = dyn_cast<FunctionTemplateDecl>(OldD))
781    Old = OldFunctionTemplate->getTemplatedDecl();
782  else
783    Old = dyn_cast<FunctionDecl>(OldD);
784  if (!Old) {
785    Diag(New->getLocation(), diag::err_redefinition_different_kind)
786      << New->getDeclName();
787    Diag(OldD->getLocation(), diag::note_previous_definition);
788    return true;
789  }
790
791  // Determine whether the previous declaration was a definition,
792  // implicit declaration, or a declaration.
793  diag::kind PrevDiag;
794  if (Old->isThisDeclarationADefinition())
795    PrevDiag = diag::note_previous_definition;
796  else if (Old->isImplicit())
797    PrevDiag = diag::note_previous_implicit_declaration;
798  else
799    PrevDiag = diag::note_previous_declaration;
800
801  QualType OldQType = Context.getCanonicalType(Old->getType());
802  QualType NewQType = Context.getCanonicalType(New->getType());
803
804  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
805      New->getStorageClass() == FunctionDecl::Static &&
806      Old->getStorageClass() != FunctionDecl::Static) {
807    Diag(New->getLocation(), diag::err_static_non_static)
808      << New;
809    Diag(Old->getLocation(), PrevDiag);
810    return true;
811  }
812
813  if (getLangOptions().CPlusPlus) {
814    // (C++98 13.1p2):
815    //   Certain function declarations cannot be overloaded:
816    //     -- Function declarations that differ only in the return type
817    //        cannot be overloaded.
818    QualType OldReturnType
819      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
820    QualType NewReturnType
821      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
822    if (OldReturnType != NewReturnType) {
823      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
824      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
825      return true;
826    }
827
828    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
829    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
830    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
831        NewMethod->getLexicalDeclContext()->isRecord()) {
832      //    -- Member function declarations with the same name and the
833      //       same parameter types cannot be overloaded if any of them
834      //       is a static member function declaration.
835      if (OldMethod->isStatic() || NewMethod->isStatic()) {
836        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
837        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
838        return true;
839      }
840
841      // C++ [class.mem]p1:
842      //   [...] A member shall not be declared twice in the
843      //   member-specification, except that a nested class or member
844      //   class template can be declared and then later defined.
845      unsigned NewDiag;
846      if (isa<CXXConstructorDecl>(OldMethod))
847        NewDiag = diag::err_constructor_redeclared;
848      else if (isa<CXXDestructorDecl>(NewMethod))
849        NewDiag = diag::err_destructor_redeclared;
850      else if (isa<CXXConversionDecl>(NewMethod))
851        NewDiag = diag::err_conv_function_redeclared;
852      else
853        NewDiag = diag::err_member_redeclared;
854
855      Diag(New->getLocation(), NewDiag);
856      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
857    }
858
859    // (C++98 8.3.5p3):
860    //   All declarations for a function shall agree exactly in both the
861    //   return type and the parameter-type-list.
862    if (OldQType == NewQType)
863      return MergeCompatibleFunctionDecls(New, Old);
864
865    // Fall through for conflicting redeclarations and redefinitions.
866  }
867
868  // C: Function types need to be compatible, not identical. This handles
869  // duplicate function decls like "void f(int); void f(enum X);" properly.
870  if (!getLangOptions().CPlusPlus &&
871      Context.typesAreCompatible(OldQType, NewQType)) {
872    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
873    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
874    const FunctionProtoType *OldProto = 0;
875    if (isa<FunctionNoProtoType>(NewFuncType) &&
876        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
877      // The old declaration provided a function prototype, but the
878      // new declaration does not. Merge in the prototype.
879      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
880      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
881                                                 OldProto->arg_type_end());
882      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
883                                         ParamTypes.data(), ParamTypes.size(),
884                                         OldProto->isVariadic(),
885                                         OldProto->getTypeQuals());
886      New->setType(NewQType);
887      New->setHasInheritedPrototype();
888
889      // Synthesize a parameter for each argument type.
890      llvm::SmallVector<ParmVarDecl*, 16> Params;
891      for (FunctionProtoType::arg_type_iterator
892             ParamType = OldProto->arg_type_begin(),
893             ParamEnd = OldProto->arg_type_end();
894           ParamType != ParamEnd; ++ParamType) {
895        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
896                                                 SourceLocation(), 0,
897                                                 *ParamType, /*DInfo=*/0,
898                                                 VarDecl::None, 0);
899        Param->setImplicit();
900        Params.push_back(Param);
901      }
902
903      New->setParams(Context, Params.data(), Params.size());
904    }
905
906    return MergeCompatibleFunctionDecls(New, Old);
907  }
908
909  // GNU C permits a K&R definition to follow a prototype declaration
910  // if the declared types of the parameters in the K&R definition
911  // match the types in the prototype declaration, even when the
912  // promoted types of the parameters from the K&R definition differ
913  // from the types in the prototype. GCC then keeps the types from
914  // the prototype.
915  //
916  // If a variadic prototype is followed by a non-variadic K&R definition,
917  // the K&R definition becomes variadic.  This is sort of an edge case, but
918  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
919  // C99 6.9.1p8.
920  if (!getLangOptions().CPlusPlus &&
921      Old->hasPrototype() && !New->hasPrototype() &&
922      New->getType()->getAs<FunctionProtoType>() &&
923      Old->getNumParams() == New->getNumParams()) {
924    llvm::SmallVector<QualType, 16> ArgTypes;
925    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
926    const FunctionProtoType *OldProto
927      = Old->getType()->getAs<FunctionProtoType>();
928    const FunctionProtoType *NewProto
929      = New->getType()->getAs<FunctionProtoType>();
930
931    // Determine whether this is the GNU C extension.
932    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
933                                               NewProto->getResultType());
934    bool LooseCompatible = !MergedReturn.isNull();
935    for (unsigned Idx = 0, End = Old->getNumParams();
936         LooseCompatible && Idx != End; ++Idx) {
937      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
938      ParmVarDecl *NewParm = New->getParamDecl(Idx);
939      if (Context.typesAreCompatible(OldParm->getType(),
940                                     NewProto->getArgType(Idx))) {
941        ArgTypes.push_back(NewParm->getType());
942      } else if (Context.typesAreCompatible(OldParm->getType(),
943                                            NewParm->getType())) {
944        GNUCompatibleParamWarning Warn
945          = { OldParm, NewParm, NewProto->getArgType(Idx) };
946        Warnings.push_back(Warn);
947        ArgTypes.push_back(NewParm->getType());
948      } else
949        LooseCompatible = false;
950    }
951
952    if (LooseCompatible) {
953      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
954        Diag(Warnings[Warn].NewParm->getLocation(),
955             diag::ext_param_promoted_not_compatible_with_prototype)
956          << Warnings[Warn].PromotedType
957          << Warnings[Warn].OldParm->getType();
958        Diag(Warnings[Warn].OldParm->getLocation(),
959             diag::note_previous_declaration);
960      }
961
962      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
963                                           ArgTypes.size(),
964                                           OldProto->isVariadic(), 0));
965      return MergeCompatibleFunctionDecls(New, Old);
966    }
967
968    // Fall through to diagnose conflicting types.
969  }
970
971  // A function that has already been declared has been redeclared or defined
972  // with a different type- show appropriate diagnostic
973  if (unsigned BuiltinID = Old->getBuiltinID()) {
974    // The user has declared a builtin function with an incompatible
975    // signature.
976    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
977      // The function the user is redeclaring is a library-defined
978      // function like 'malloc' or 'printf'. Warn about the
979      // redeclaration, then pretend that we don't know about this
980      // library built-in.
981      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
982      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
983        << Old << Old->getType();
984      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
985      Old->setInvalidDecl();
986      return false;
987    }
988
989    PrevDiag = diag::note_previous_builtin_declaration;
990  }
991
992  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
993  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
994  return true;
995}
996
997/// \brief Completes the merge of two function declarations that are
998/// known to be compatible.
999///
1000/// This routine handles the merging of attributes and other
1001/// properties of function declarations form the old declaration to
1002/// the new declaration, once we know that New is in fact a
1003/// redeclaration of Old.
1004///
1005/// \returns false
1006bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1007  // Merge the attributes
1008  MergeAttributes(New, Old, Context);
1009
1010  // Merge the storage class.
1011  if (Old->getStorageClass() != FunctionDecl::Extern &&
1012      Old->getStorageClass() != FunctionDecl::None)
1013    New->setStorageClass(Old->getStorageClass());
1014
1015  // Merge "pure" flag.
1016  if (Old->isPure())
1017    New->setPure();
1018
1019  // Merge the "deleted" flag.
1020  if (Old->isDeleted())
1021    New->setDeleted();
1022
1023  if (getLangOptions().CPlusPlus)
1024    return MergeCXXFunctionDecl(New, Old);
1025
1026  return false;
1027}
1028
1029/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1030/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1031/// situation, merging decls or emitting diagnostics as appropriate.
1032///
1033/// Tentative definition rules (C99 6.9.2p2) are checked by
1034/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1035/// definitions here, since the initializer hasn't been attached.
1036///
1037void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1038  // If the new decl is already invalid, don't do any other checking.
1039  if (New->isInvalidDecl())
1040    return;
1041
1042  // Verify the old decl was also a variable.
1043  VarDecl *Old = 0;
1044  if (!Previous.isSingleResult() ||
1045      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1046    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1047      << New->getDeclName();
1048    Diag(Previous.getRepresentativeDecl()->getLocation(),
1049         diag::note_previous_definition);
1050    return New->setInvalidDecl();
1051  }
1052
1053  MergeAttributes(New, Old, Context);
1054
1055  // Merge the types
1056  QualType MergedT;
1057  if (getLangOptions().CPlusPlus) {
1058    if (Context.hasSameType(New->getType(), Old->getType()))
1059      MergedT = New->getType();
1060    // C++ [basic.types]p7:
1061    //   [...] The declared type of an array object might be an array of
1062    //   unknown size and therefore be incomplete at one point in a
1063    //   translation unit and complete later on; [...]
1064    else if (Old->getType()->isIncompleteArrayType() &&
1065             New->getType()->isArrayType()) {
1066      CanQual<ArrayType> OldArray
1067        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1068      CanQual<ArrayType> NewArray
1069        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1070      if (OldArray->getElementType() == NewArray->getElementType())
1071        MergedT = New->getType();
1072    }
1073  } else {
1074    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1075  }
1076  if (MergedT.isNull()) {
1077    Diag(New->getLocation(), diag::err_redefinition_different_type)
1078      << New->getDeclName();
1079    Diag(Old->getLocation(), diag::note_previous_definition);
1080    return New->setInvalidDecl();
1081  }
1082  New->setType(MergedT);
1083
1084  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1085  if (New->getStorageClass() == VarDecl::Static &&
1086      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1087    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1088    Diag(Old->getLocation(), diag::note_previous_definition);
1089    return New->setInvalidDecl();
1090  }
1091  // C99 6.2.2p4:
1092  //   For an identifier declared with the storage-class specifier
1093  //   extern in a scope in which a prior declaration of that
1094  //   identifier is visible,23) if the prior declaration specifies
1095  //   internal or external linkage, the linkage of the identifier at
1096  //   the later declaration is the same as the linkage specified at
1097  //   the prior declaration. If no prior declaration is visible, or
1098  //   if the prior declaration specifies no linkage, then the
1099  //   identifier has external linkage.
1100  if (New->hasExternalStorage() && Old->hasLinkage())
1101    /* Okay */;
1102  else if (New->getStorageClass() != VarDecl::Static &&
1103           Old->getStorageClass() == VarDecl::Static) {
1104    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1105    Diag(Old->getLocation(), diag::note_previous_definition);
1106    return New->setInvalidDecl();
1107  }
1108
1109  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1110
1111  // FIXME: The test for external storage here seems wrong? We still
1112  // need to check for mismatches.
1113  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1114      // Don't complain about out-of-line definitions of static members.
1115      !(Old->getLexicalDeclContext()->isRecord() &&
1116        !New->getLexicalDeclContext()->isRecord())) {
1117    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1118    Diag(Old->getLocation(), diag::note_previous_definition);
1119    return New->setInvalidDecl();
1120  }
1121
1122  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1123    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1124    Diag(Old->getLocation(), diag::note_previous_definition);
1125  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1126    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1127    Diag(Old->getLocation(), diag::note_previous_definition);
1128  }
1129
1130  // Keep a chain of previous declarations.
1131  New->setPreviousDeclaration(Old);
1132}
1133
1134/// CheckFallThrough - Check that we don't fall off the end of a
1135/// Statement that should return a value.
1136///
1137/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1138/// MaybeFallThrough iff we might or might not fall off the end,
1139/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1140/// return.  We assume NeverFallThrough iff we never fall off the end of the
1141/// statement but we may return.  We assume that functions not marked noreturn
1142/// will return.
1143Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1144  // FIXME: Eventually share this CFG object when we have other warnings based
1145  // of the CFG.  This can be done using AnalysisContext.
1146  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1147
1148  // FIXME: They should never return 0, fix that, delete this code.
1149  if (cfg == 0)
1150    // FIXME: This should be NeverFallThrough
1151    return NeverFallThroughOrReturn;
1152  // The CFG leaves in dead things, and we don't want to dead code paths to
1153  // confuse us, so we mark all live things first.
1154  std::queue<CFGBlock*> workq;
1155  llvm::BitVector live(cfg->getNumBlockIDs());
1156  // Prep work queue
1157  workq.push(&cfg->getEntry());
1158  // Solve
1159  while (!workq.empty()) {
1160    CFGBlock *item = workq.front();
1161    workq.pop();
1162    live.set(item->getBlockID());
1163    for (CFGBlock::succ_iterator I=item->succ_begin(),
1164           E=item->succ_end();
1165         I != E;
1166         ++I) {
1167      if ((*I) && !live[(*I)->getBlockID()]) {
1168        live.set((*I)->getBlockID());
1169        workq.push(*I);
1170      }
1171    }
1172  }
1173
1174  // Now we know what is live, we check the live precessors of the exit block
1175  // and look for fall through paths, being careful to ignore normal returns,
1176  // and exceptional paths.
1177  bool HasLiveReturn = false;
1178  bool HasFakeEdge = false;
1179  bool HasPlainEdge = false;
1180  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1181         E = cfg->getExit().pred_end();
1182       I != E;
1183       ++I) {
1184    CFGBlock& B = **I;
1185    if (!live[B.getBlockID()])
1186      continue;
1187    if (B.size() == 0) {
1188      // A labeled empty statement, or the entry block...
1189      HasPlainEdge = true;
1190      continue;
1191    }
1192    Stmt *S = B[B.size()-1];
1193    if (isa<ReturnStmt>(S)) {
1194      HasLiveReturn = true;
1195      continue;
1196    }
1197    if (isa<ObjCAtThrowStmt>(S)) {
1198      HasFakeEdge = true;
1199      continue;
1200    }
1201    if (isa<CXXThrowExpr>(S)) {
1202      HasFakeEdge = true;
1203      continue;
1204    }
1205    bool NoReturnEdge = false;
1206    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1207      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1208      if (CEE->getType().getNoReturnAttr()) {
1209        NoReturnEdge = true;
1210        HasFakeEdge = true;
1211      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1212        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1213          if (FD->hasAttr<NoReturnAttr>()) {
1214            NoReturnEdge = true;
1215            HasFakeEdge = true;
1216          }
1217        }
1218      }
1219    }
1220    // FIXME: Add noreturn message sends.
1221    if (NoReturnEdge == false)
1222      HasPlainEdge = true;
1223  }
1224  if (!HasPlainEdge) {
1225    if (HasLiveReturn)
1226      return NeverFallThrough;
1227    return NeverFallThroughOrReturn;
1228  }
1229  if (HasFakeEdge || HasLiveReturn)
1230    return MaybeFallThrough;
1231  // This says AlwaysFallThrough for calls to functions that are not marked
1232  // noreturn, that don't return.  If people would like this warning to be more
1233  // accurate, such functions should be marked as noreturn.
1234  return AlwaysFallThrough;
1235}
1236
1237/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1238/// function that should return a value.  Check that we don't fall off the end
1239/// of a noreturn function.  We assume that functions and blocks not marked
1240/// noreturn will return.
1241void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1242  // FIXME: Would be nice if we had a better way to control cascading errors,
1243  // but for now, avoid them.  The problem is that when Parse sees:
1244  //   int foo() { return a; }
1245  // The return is eaten and the Sema code sees just:
1246  //   int foo() { }
1247  // which this code would then warn about.
1248  if (getDiagnostics().hasErrorOccurred())
1249    return;
1250
1251  bool ReturnsVoid = false;
1252  bool HasNoReturn = false;
1253  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1254    // If the result type of the function is a dependent type, we don't know
1255    // whether it will be void or not, so don't
1256    if (FD->getResultType()->isDependentType())
1257      return;
1258    if (FD->getResultType()->isVoidType())
1259      ReturnsVoid = true;
1260    if (FD->hasAttr<NoReturnAttr>())
1261      HasNoReturn = true;
1262  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1263    if (MD->getResultType()->isVoidType())
1264      ReturnsVoid = true;
1265    if (MD->hasAttr<NoReturnAttr>())
1266      HasNoReturn = true;
1267  }
1268
1269  // Short circuit for compilation speed.
1270  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1271       == Diagnostic::Ignored || ReturnsVoid)
1272      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1273          == Diagnostic::Ignored || !HasNoReturn)
1274      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1275          == Diagnostic::Ignored || !ReturnsVoid))
1276    return;
1277  // FIXME: Function try block
1278  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1279    switch (CheckFallThrough(Body)) {
1280    case MaybeFallThrough:
1281      if (HasNoReturn)
1282        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1283      else if (!ReturnsVoid)
1284        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1285      break;
1286    case AlwaysFallThrough:
1287      if (HasNoReturn)
1288        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1289      else if (!ReturnsVoid)
1290        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1291      break;
1292    case NeverFallThroughOrReturn:
1293      if (ReturnsVoid && !HasNoReturn)
1294        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1295      break;
1296    case NeverFallThrough:
1297      break;
1298    }
1299  }
1300}
1301
1302/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1303/// that should return a value.  Check that we don't fall off the end of a
1304/// noreturn block.  We assume that functions and blocks not marked noreturn
1305/// will return.
1306void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1307  // FIXME: Would be nice if we had a better way to control cascading errors,
1308  // but for now, avoid them.  The problem is that when Parse sees:
1309  //   int foo() { return a; }
1310  // The return is eaten and the Sema code sees just:
1311  //   int foo() { }
1312  // which this code would then warn about.
1313  if (getDiagnostics().hasErrorOccurred())
1314    return;
1315  bool ReturnsVoid = false;
1316  bool HasNoReturn = false;
1317  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1318    if (FT->getResultType()->isVoidType())
1319      ReturnsVoid = true;
1320    if (FT->getNoReturnAttr())
1321      HasNoReturn = true;
1322  }
1323
1324  // Short circuit for compilation speed.
1325  if (ReturnsVoid
1326      && !HasNoReturn
1327      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1328          == Diagnostic::Ignored || !ReturnsVoid))
1329    return;
1330  // FIXME: Funtion try block
1331  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1332    switch (CheckFallThrough(Body)) {
1333    case MaybeFallThrough:
1334      if (HasNoReturn)
1335        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1336      else if (!ReturnsVoid)
1337        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1338      break;
1339    case AlwaysFallThrough:
1340      if (HasNoReturn)
1341        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1342      else if (!ReturnsVoid)
1343        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1344      break;
1345    case NeverFallThroughOrReturn:
1346      if (ReturnsVoid)
1347        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1348      break;
1349    case NeverFallThrough:
1350      break;
1351    }
1352  }
1353}
1354
1355/// CheckParmsForFunctionDef - Check that the parameters of the given
1356/// function are appropriate for the definition of a function. This
1357/// takes care of any checks that cannot be performed on the
1358/// declaration itself, e.g., that the types of each of the function
1359/// parameters are complete.
1360bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1361  bool HasInvalidParm = false;
1362  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1363    ParmVarDecl *Param = FD->getParamDecl(p);
1364
1365    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1366    // function declarator that is part of a function definition of
1367    // that function shall not have incomplete type.
1368    //
1369    // This is also C++ [dcl.fct]p6.
1370    if (!Param->isInvalidDecl() &&
1371        RequireCompleteType(Param->getLocation(), Param->getType(),
1372                               diag::err_typecheck_decl_incomplete_type)) {
1373      Param->setInvalidDecl();
1374      HasInvalidParm = true;
1375    }
1376
1377    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1378    // declaration of each parameter shall include an identifier.
1379    if (Param->getIdentifier() == 0 &&
1380        !Param->isImplicit() &&
1381        !getLangOptions().CPlusPlus)
1382      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1383  }
1384
1385  return HasInvalidParm;
1386}
1387
1388/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1389/// no declarator (e.g. "struct foo;") is parsed.
1390Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1391  // FIXME: Error on auto/register at file scope
1392  // FIXME: Error on inline/virtual/explicit
1393  // FIXME: Error on invalid restrict
1394  // FIXME: Warn on useless __thread
1395  // FIXME: Warn on useless const/volatile
1396  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1397  // FIXME: Warn on useless attributes
1398  Decl *TagD = 0;
1399  TagDecl *Tag = 0;
1400  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1401      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1402      DS.getTypeSpecType() == DeclSpec::TST_union ||
1403      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1404    TagD = static_cast<Decl *>(DS.getTypeRep());
1405
1406    if (!TagD) // We probably had an error
1407      return DeclPtrTy();
1408
1409    // Note that the above type specs guarantee that the
1410    // type rep is a Decl, whereas in many of the others
1411    // it's a Type.
1412    Tag = dyn_cast<TagDecl>(TagD);
1413  }
1414
1415  if (DS.isFriendSpecified()) {
1416    // If we're dealing with a class template decl, assume that the
1417    // template routines are handling it.
1418    if (TagD && isa<ClassTemplateDecl>(TagD))
1419      return DeclPtrTy();
1420    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1421  }
1422
1423  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1424    // If there are attributes in the DeclSpec, apply them to the record.
1425    if (const AttributeList *AL = DS.getAttributes())
1426      ProcessDeclAttributeList(S, Record, AL);
1427
1428    if (!Record->getDeclName() && Record->isDefinition() &&
1429        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1430      if (getLangOptions().CPlusPlus ||
1431          Record->getDeclContext()->isRecord())
1432        return BuildAnonymousStructOrUnion(S, DS, Record);
1433
1434      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1435        << DS.getSourceRange();
1436    }
1437
1438    // Microsoft allows unnamed struct/union fields. Don't complain
1439    // about them.
1440    // FIXME: Should we support Microsoft's extensions in this area?
1441    if (Record->getDeclName() && getLangOptions().Microsoft)
1442      return DeclPtrTy::make(Tag);
1443  }
1444
1445  if (!DS.isMissingDeclaratorOk() &&
1446      DS.getTypeSpecType() != DeclSpec::TST_error) {
1447    // Warn about typedefs of enums without names, since this is an
1448    // extension in both Microsoft an GNU.
1449    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1450        Tag && isa<EnumDecl>(Tag)) {
1451      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1452        << DS.getSourceRange();
1453      return DeclPtrTy::make(Tag);
1454    }
1455
1456    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1457      << DS.getSourceRange();
1458    return DeclPtrTy();
1459  }
1460
1461  return DeclPtrTy::make(Tag);
1462}
1463
1464/// We are trying to introduce the given name into the given context;
1465/// check if there's an existing declaration that can't be overloaded.
1466///
1467/// \return true if this is a forbidden redeclaration
1468bool Sema::CheckRedeclaration(DeclContext *DC,
1469                              DeclarationName Name,
1470                              SourceLocation NameLoc,
1471                              unsigned diagnostic) {
1472  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1473                 ForRedeclaration);
1474  LookupQualifiedName(R, DC);
1475
1476  if (R.empty()) return false;
1477
1478  if (R.getResultKind() == LookupResult::Found &&
1479      isa<TagDecl>(R.getFoundDecl()))
1480    return false;
1481
1482  // Pick a representative declaration.
1483  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1484
1485  Diag(NameLoc, diagnostic) << Name;
1486  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1487
1488  return true;
1489}
1490
1491/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1492/// anonymous struct or union AnonRecord into the owning context Owner
1493/// and scope S. This routine will be invoked just after we realize
1494/// that an unnamed union or struct is actually an anonymous union or
1495/// struct, e.g.,
1496///
1497/// @code
1498/// union {
1499///   int i;
1500///   float f;
1501/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1502///    // f into the surrounding scope.x
1503/// @endcode
1504///
1505/// This routine is recursive, injecting the names of nested anonymous
1506/// structs/unions into the owning context and scope as well.
1507bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1508                                               RecordDecl *AnonRecord) {
1509  unsigned diagKind
1510    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1511                            : diag::err_anonymous_struct_member_redecl;
1512
1513  bool Invalid = false;
1514  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1515                               FEnd = AnonRecord->field_end();
1516       F != FEnd; ++F) {
1517    if ((*F)->getDeclName()) {
1518      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1519                             (*F)->getLocation(), diagKind)) {
1520        // C++ [class.union]p2:
1521        //   The names of the members of an anonymous union shall be
1522        //   distinct from the names of any other entity in the
1523        //   scope in which the anonymous union is declared.
1524        Invalid = true;
1525      } else {
1526        // C++ [class.union]p2:
1527        //   For the purpose of name lookup, after the anonymous union
1528        //   definition, the members of the anonymous union are
1529        //   considered to have been defined in the scope in which the
1530        //   anonymous union is declared.
1531        Owner->makeDeclVisibleInContext(*F);
1532        S->AddDecl(DeclPtrTy::make(*F));
1533        IdResolver.AddDecl(*F);
1534      }
1535    } else if (const RecordType *InnerRecordType
1536                 = (*F)->getType()->getAs<RecordType>()) {
1537      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1538      if (InnerRecord->isAnonymousStructOrUnion())
1539        Invalid = Invalid ||
1540          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1541    }
1542  }
1543
1544  return Invalid;
1545}
1546
1547/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1548/// anonymous structure or union. Anonymous unions are a C++ feature
1549/// (C++ [class.union]) and a GNU C extension; anonymous structures
1550/// are a GNU C and GNU C++ extension.
1551Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1552                                                  RecordDecl *Record) {
1553  DeclContext *Owner = Record->getDeclContext();
1554
1555  // Diagnose whether this anonymous struct/union is an extension.
1556  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1557    Diag(Record->getLocation(), diag::ext_anonymous_union);
1558  else if (!Record->isUnion())
1559    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1560
1561  // C and C++ require different kinds of checks for anonymous
1562  // structs/unions.
1563  bool Invalid = false;
1564  if (getLangOptions().CPlusPlus) {
1565    const char* PrevSpec = 0;
1566    unsigned DiagID;
1567    // C++ [class.union]p3:
1568    //   Anonymous unions declared in a named namespace or in the
1569    //   global namespace shall be declared static.
1570    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1571        (isa<TranslationUnitDecl>(Owner) ||
1572         (isa<NamespaceDecl>(Owner) &&
1573          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1574      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1575      Invalid = true;
1576
1577      // Recover by adding 'static'.
1578      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1579                             PrevSpec, DiagID);
1580    }
1581    // C++ [class.union]p3:
1582    //   A storage class is not allowed in a declaration of an
1583    //   anonymous union in a class scope.
1584    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1585             isa<RecordDecl>(Owner)) {
1586      Diag(DS.getStorageClassSpecLoc(),
1587           diag::err_anonymous_union_with_storage_spec);
1588      Invalid = true;
1589
1590      // Recover by removing the storage specifier.
1591      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1592                             PrevSpec, DiagID);
1593    }
1594
1595    // C++ [class.union]p2:
1596    //   The member-specification of an anonymous union shall only
1597    //   define non-static data members. [Note: nested types and
1598    //   functions cannot be declared within an anonymous union. ]
1599    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1600                                 MemEnd = Record->decls_end();
1601         Mem != MemEnd; ++Mem) {
1602      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1603        // C++ [class.union]p3:
1604        //   An anonymous union shall not have private or protected
1605        //   members (clause 11).
1606        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1607          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1608            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1609          Invalid = true;
1610        }
1611      } else if ((*Mem)->isImplicit()) {
1612        // Any implicit members are fine.
1613      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1614        // This is a type that showed up in an
1615        // elaborated-type-specifier inside the anonymous struct or
1616        // union, but which actually declares a type outside of the
1617        // anonymous struct or union. It's okay.
1618      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1619        if (!MemRecord->isAnonymousStructOrUnion() &&
1620            MemRecord->getDeclName()) {
1621          // This is a nested type declaration.
1622          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1623            << (int)Record->isUnion();
1624          Invalid = true;
1625        }
1626      } else {
1627        // We have something that isn't a non-static data
1628        // member. Complain about it.
1629        unsigned DK = diag::err_anonymous_record_bad_member;
1630        if (isa<TypeDecl>(*Mem))
1631          DK = diag::err_anonymous_record_with_type;
1632        else if (isa<FunctionDecl>(*Mem))
1633          DK = diag::err_anonymous_record_with_function;
1634        else if (isa<VarDecl>(*Mem))
1635          DK = diag::err_anonymous_record_with_static;
1636        Diag((*Mem)->getLocation(), DK)
1637            << (int)Record->isUnion();
1638          Invalid = true;
1639      }
1640    }
1641  }
1642
1643  if (!Record->isUnion() && !Owner->isRecord()) {
1644    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1645      << (int)getLangOptions().CPlusPlus;
1646    Invalid = true;
1647  }
1648
1649  // Mock up a declarator.
1650  Declarator Dc(DS, Declarator::TypeNameContext);
1651  DeclaratorInfo *DInfo = 0;
1652  GetTypeForDeclarator(Dc, S, &DInfo);
1653  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1654
1655  // Create a declaration for this anonymous struct/union.
1656  NamedDecl *Anon = 0;
1657  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1658    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1659                             /*IdentifierInfo=*/0,
1660                             Context.getTypeDeclType(Record),
1661                             DInfo,
1662                             /*BitWidth=*/0, /*Mutable=*/false);
1663    Anon->setAccess(AS_public);
1664    if (getLangOptions().CPlusPlus)
1665      FieldCollector->Add(cast<FieldDecl>(Anon));
1666  } else {
1667    VarDecl::StorageClass SC;
1668    switch (DS.getStorageClassSpec()) {
1669    default: assert(0 && "Unknown storage class!");
1670    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1671    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1672    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1673    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1674    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1675    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1676    case DeclSpec::SCS_mutable:
1677      // mutable can only appear on non-static class members, so it's always
1678      // an error here
1679      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1680      Invalid = true;
1681      SC = VarDecl::None;
1682      break;
1683    }
1684
1685    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1686                           /*IdentifierInfo=*/0,
1687                           Context.getTypeDeclType(Record),
1688                           DInfo,
1689                           SC);
1690  }
1691  Anon->setImplicit();
1692
1693  // Add the anonymous struct/union object to the current
1694  // context. We'll be referencing this object when we refer to one of
1695  // its members.
1696  Owner->addDecl(Anon);
1697
1698  // Inject the members of the anonymous struct/union into the owning
1699  // context and into the identifier resolver chain for name lookup
1700  // purposes.
1701  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1702    Invalid = true;
1703
1704  // Mark this as an anonymous struct/union type. Note that we do not
1705  // do this until after we have already checked and injected the
1706  // members of this anonymous struct/union type, because otherwise
1707  // the members could be injected twice: once by DeclContext when it
1708  // builds its lookup table, and once by
1709  // InjectAnonymousStructOrUnionMembers.
1710  Record->setAnonymousStructOrUnion(true);
1711
1712  if (Invalid)
1713    Anon->setInvalidDecl();
1714
1715  return DeclPtrTy::make(Anon);
1716}
1717
1718
1719/// GetNameForDeclarator - Determine the full declaration name for the
1720/// given Declarator.
1721DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1722  return GetNameFromUnqualifiedId(D.getName());
1723}
1724
1725/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1726DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1727  switch (Name.getKind()) {
1728    case UnqualifiedId::IK_Identifier:
1729      return DeclarationName(Name.Identifier);
1730
1731    case UnqualifiedId::IK_OperatorFunctionId:
1732      return Context.DeclarationNames.getCXXOperatorName(
1733                                              Name.OperatorFunctionId.Operator);
1734
1735    case UnqualifiedId::IK_LiteralOperatorId:
1736      return Context.DeclarationNames.getCXXLiteralOperatorName(
1737                                                               Name.Identifier);
1738
1739    case UnqualifiedId::IK_ConversionFunctionId: {
1740      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1741      if (Ty.isNull())
1742        return DeclarationName();
1743
1744      return Context.DeclarationNames.getCXXConversionFunctionName(
1745                                                  Context.getCanonicalType(Ty));
1746    }
1747
1748    case UnqualifiedId::IK_ConstructorName: {
1749      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1750      if (Ty.isNull())
1751        return DeclarationName();
1752
1753      return Context.DeclarationNames.getCXXConstructorName(
1754                                                  Context.getCanonicalType(Ty));
1755    }
1756
1757    case UnqualifiedId::IK_DestructorName: {
1758      QualType Ty = GetTypeFromParser(Name.DestructorName);
1759      if (Ty.isNull())
1760        return DeclarationName();
1761
1762      return Context.DeclarationNames.getCXXDestructorName(
1763                                                           Context.getCanonicalType(Ty));
1764    }
1765
1766    case UnqualifiedId::IK_TemplateId: {
1767      TemplateName TName
1768        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1769      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1770        return Template->getDeclName();
1771      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1772        return Ovl->getDeclName();
1773
1774      return DeclarationName();
1775    }
1776  }
1777
1778  assert(false && "Unknown name kind");
1779  return DeclarationName();
1780}
1781
1782/// isNearlyMatchingFunction - Determine whether the C++ functions
1783/// Declaration and Definition are "nearly" matching. This heuristic
1784/// is used to improve diagnostics in the case where an out-of-line
1785/// function definition doesn't match any declaration within
1786/// the class or namespace.
1787static bool isNearlyMatchingFunction(ASTContext &Context,
1788                                     FunctionDecl *Declaration,
1789                                     FunctionDecl *Definition) {
1790  if (Declaration->param_size() != Definition->param_size())
1791    return false;
1792  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1793    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1794    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1795
1796    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1797                                        DefParamTy.getNonReferenceType()))
1798      return false;
1799  }
1800
1801  return true;
1802}
1803
1804Sema::DeclPtrTy
1805Sema::HandleDeclarator(Scope *S, Declarator &D,
1806                       MultiTemplateParamsArg TemplateParamLists,
1807                       bool IsFunctionDefinition) {
1808  DeclarationName Name = GetNameForDeclarator(D);
1809
1810  // All of these full declarators require an identifier.  If it doesn't have
1811  // one, the ParsedFreeStandingDeclSpec action should be used.
1812  if (!Name) {
1813    if (!D.isInvalidType())  // Reject this if we think it is valid.
1814      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1815           diag::err_declarator_need_ident)
1816        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1817    return DeclPtrTy();
1818  }
1819
1820  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1821  // we find one that is.
1822  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1823         (S->getFlags() & Scope::TemplateParamScope) != 0)
1824    S = S->getParent();
1825
1826  // If this is an out-of-line definition of a member of a class template
1827  // or class template partial specialization, we may need to rebuild the
1828  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1829  // for more information.
1830  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1831  // handle expressions properly.
1832  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1833  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1834      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1835      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1836       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1837       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1838       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1839    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1840      // FIXME: Preserve type source info.
1841      QualType T = GetTypeFromParser(DS.getTypeRep());
1842      EnterDeclaratorContext(S, DC);
1843      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1844      ExitDeclaratorContext(S);
1845      if (T.isNull())
1846        return DeclPtrTy();
1847      DS.UpdateTypeRep(T.getAsOpaquePtr());
1848    }
1849  }
1850
1851  DeclContext *DC;
1852  NamedDecl *New;
1853
1854  DeclaratorInfo *DInfo = 0;
1855  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1856
1857  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1858                        ForRedeclaration);
1859
1860  // See if this is a redefinition of a variable in the same scope.
1861  if (D.getCXXScopeSpec().isInvalid()) {
1862    DC = CurContext;
1863    D.setInvalidType();
1864  } else if (!D.getCXXScopeSpec().isSet()) {
1865    bool IsLinkageLookup = false;
1866
1867    // If the declaration we're planning to build will be a function
1868    // or object with linkage, then look for another declaration with
1869    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1870    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1871      /* Do nothing*/;
1872    else if (R->isFunctionType()) {
1873      if (CurContext->isFunctionOrMethod() ||
1874          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1875        IsLinkageLookup = true;
1876    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1877      IsLinkageLookup = true;
1878    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1879             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1880      IsLinkageLookup = true;
1881
1882    if (IsLinkageLookup)
1883      Previous.clear(LookupRedeclarationWithLinkage);
1884
1885    DC = CurContext;
1886    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1887  } else { // Something like "int foo::x;"
1888    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1889
1890    if (!DC) {
1891      // If we could not compute the declaration context, it's because the
1892      // declaration context is dependent but does not refer to a class,
1893      // class template, or class template partial specialization. Complain
1894      // and return early, to avoid the coming semantic disaster.
1895      Diag(D.getIdentifierLoc(),
1896           diag::err_template_qualified_declarator_no_match)
1897        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1898        << D.getCXXScopeSpec().getRange();
1899      return DeclPtrTy();
1900    }
1901
1902    if (!DC->isDependentContext() &&
1903        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1904      return DeclPtrTy();
1905
1906    LookupQualifiedName(Previous, DC);
1907
1908    // Don't consider using declarations as previous declarations for
1909    // out-of-line members.
1910    RemoveUsingDecls(Previous);
1911
1912    // C++ 7.3.1.2p2:
1913    // Members (including explicit specializations of templates) of a named
1914    // namespace can also be defined outside that namespace by explicit
1915    // qualification of the name being defined, provided that the entity being
1916    // defined was already declared in the namespace and the definition appears
1917    // after the point of declaration in a namespace that encloses the
1918    // declarations namespace.
1919    //
1920    // Note that we only check the context at this point. We don't yet
1921    // have enough information to make sure that PrevDecl is actually
1922    // the declaration we want to match. For example, given:
1923    //
1924    //   class X {
1925    //     void f();
1926    //     void f(float);
1927    //   };
1928    //
1929    //   void X::f(int) { } // ill-formed
1930    //
1931    // In this case, PrevDecl will point to the overload set
1932    // containing the two f's declared in X, but neither of them
1933    // matches.
1934
1935    // First check whether we named the global scope.
1936    if (isa<TranslationUnitDecl>(DC)) {
1937      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1938        << Name << D.getCXXScopeSpec().getRange();
1939    } else {
1940      DeclContext *Cur = CurContext;
1941      while (isa<LinkageSpecDecl>(Cur))
1942        Cur = Cur->getParent();
1943      if (!Cur->Encloses(DC)) {
1944        // The qualifying scope doesn't enclose the original declaration.
1945        // Emit diagnostic based on current scope.
1946        SourceLocation L = D.getIdentifierLoc();
1947        SourceRange R = D.getCXXScopeSpec().getRange();
1948        if (isa<FunctionDecl>(Cur))
1949          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1950        else
1951          Diag(L, diag::err_invalid_declarator_scope)
1952            << Name << cast<NamedDecl>(DC) << R;
1953        D.setInvalidType();
1954      }
1955    }
1956  }
1957
1958  if (Previous.isSingleResult() &&
1959      Previous.getFoundDecl()->isTemplateParameter()) {
1960    // Maybe we will complain about the shadowed template parameter.
1961    if (!D.isInvalidType())
1962      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1963                                          Previous.getFoundDecl()))
1964        D.setInvalidType();
1965
1966    // Just pretend that we didn't see the previous declaration.
1967    Previous.clear();
1968  }
1969
1970  // In C++, the previous declaration we find might be a tag type
1971  // (class or enum). In this case, the new declaration will hide the
1972  // tag type. Note that this does does not apply if we're declaring a
1973  // typedef (C++ [dcl.typedef]p4).
1974  if (Previous.isSingleTagDecl() &&
1975      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1976    Previous.clear();
1977
1978  bool Redeclaration = false;
1979  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1980    if (TemplateParamLists.size()) {
1981      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1982      return DeclPtrTy();
1983    }
1984
1985    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, Previous, Redeclaration);
1986  } else if (R->isFunctionType()) {
1987    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, Previous,
1988                                  move(TemplateParamLists),
1989                                  IsFunctionDefinition, Redeclaration);
1990  } else {
1991    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, Previous,
1992                                  move(TemplateParamLists),
1993                                  Redeclaration);
1994  }
1995
1996  if (New == 0)
1997    return DeclPtrTy();
1998
1999  // If this has an identifier and is not an invalid redeclaration or
2000  // function template specialization, add it to the scope stack.
2001  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
2002      !(isa<FunctionDecl>(New) &&
2003        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
2004    PushOnScopeChains(New, S);
2005
2006  return DeclPtrTy::make(New);
2007}
2008
2009/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2010/// types into constant array types in certain situations which would otherwise
2011/// be errors (for GCC compatibility).
2012static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2013                                                    ASTContext &Context,
2014                                                    bool &SizeIsNegative) {
2015  // This method tries to turn a variable array into a constant
2016  // array even when the size isn't an ICE.  This is necessary
2017  // for compatibility with code that depends on gcc's buggy
2018  // constant expression folding, like struct {char x[(int)(char*)2];}
2019  SizeIsNegative = false;
2020
2021  QualifierCollector Qs;
2022  const Type *Ty = Qs.strip(T);
2023
2024  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2025    QualType Pointee = PTy->getPointeeType();
2026    QualType FixedType =
2027        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2028    if (FixedType.isNull()) return FixedType;
2029    FixedType = Context.getPointerType(FixedType);
2030    return Qs.apply(FixedType);
2031  }
2032
2033  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2034  if (!VLATy)
2035    return QualType();
2036  // FIXME: We should probably handle this case
2037  if (VLATy->getElementType()->isVariablyModifiedType())
2038    return QualType();
2039
2040  Expr::EvalResult EvalResult;
2041  if (!VLATy->getSizeExpr() ||
2042      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2043      !EvalResult.Val.isInt())
2044    return QualType();
2045
2046  llvm::APSInt &Res = EvalResult.Val.getInt();
2047  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2048    // TODO: preserve the size expression in declarator info
2049    return Context.getConstantArrayType(VLATy->getElementType(),
2050                                        Res, ArrayType::Normal, 0);
2051  }
2052
2053  SizeIsNegative = true;
2054  return QualType();
2055}
2056
2057/// \brief Register the given locally-scoped external C declaration so
2058/// that it can be found later for redeclarations
2059void
2060Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2061                                       const LookupResult &Previous,
2062                                       Scope *S) {
2063  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2064         "Decl is not a locally-scoped decl!");
2065  // Note that we have a locally-scoped external with this name.
2066  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2067
2068  if (!Previous.isSingleResult())
2069    return;
2070
2071  NamedDecl *PrevDecl = Previous.getFoundDecl();
2072
2073  // If there was a previous declaration of this variable, it may be
2074  // in our identifier chain. Update the identifier chain with the new
2075  // declaration.
2076  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2077    // The previous declaration was found on the identifer resolver
2078    // chain, so remove it from its scope.
2079    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2080      S = S->getParent();
2081
2082    if (S)
2083      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2084  }
2085}
2086
2087/// \brief Diagnose function specifiers on a declaration of an identifier that
2088/// does not identify a function.
2089void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2090  // FIXME: We should probably indicate the identifier in question to avoid
2091  // confusion for constructs like "inline int a(), b;"
2092  if (D.getDeclSpec().isInlineSpecified())
2093    Diag(D.getDeclSpec().getInlineSpecLoc(),
2094         diag::err_inline_non_function);
2095
2096  if (D.getDeclSpec().isVirtualSpecified())
2097    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2098         diag::err_virtual_non_function);
2099
2100  if (D.getDeclSpec().isExplicitSpecified())
2101    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2102         diag::err_explicit_non_function);
2103}
2104
2105NamedDecl*
2106Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2107                             QualType R,  DeclaratorInfo *DInfo,
2108                             LookupResult &Previous, bool &Redeclaration) {
2109  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2110  if (D.getCXXScopeSpec().isSet()) {
2111    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2112      << D.getCXXScopeSpec().getRange();
2113    D.setInvalidType();
2114    // Pretend we didn't see the scope specifier.
2115    DC = 0;
2116  }
2117
2118  if (getLangOptions().CPlusPlus) {
2119    // Check that there are no default arguments (C++ only).
2120    CheckExtraCXXDefaultArguments(D);
2121  }
2122
2123  DiagnoseFunctionSpecifiers(D);
2124
2125  if (D.getDeclSpec().isThreadSpecified())
2126    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2127
2128  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2129  if (!NewTD) return 0;
2130
2131  // Handle attributes prior to checking for duplicates in MergeVarDecl
2132  ProcessDeclAttributes(S, NewTD, D);
2133
2134  // Merge the decl with the existing one if appropriate. If the decl is
2135  // in an outer scope, it isn't the same thing.
2136  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2137  if (!Previous.empty()) {
2138    Redeclaration = true;
2139    MergeTypeDefDecl(NewTD, Previous);
2140  }
2141
2142  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2143  // then it shall have block scope.
2144  QualType T = NewTD->getUnderlyingType();
2145  if (T->isVariablyModifiedType()) {
2146    CurFunctionNeedsScopeChecking = true;
2147
2148    if (S->getFnParent() == 0) {
2149      bool SizeIsNegative;
2150      QualType FixedTy =
2151          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2152      if (!FixedTy.isNull()) {
2153        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2154        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2155      } else {
2156        if (SizeIsNegative)
2157          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2158        else if (T->isVariableArrayType())
2159          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2160        else
2161          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2162        NewTD->setInvalidDecl();
2163      }
2164    }
2165  }
2166
2167  // If this is the C FILE type, notify the AST context.
2168  if (IdentifierInfo *II = NewTD->getIdentifier())
2169    if (!NewTD->isInvalidDecl() &&
2170        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2171      if (II->isStr("FILE"))
2172        Context.setFILEDecl(NewTD);
2173      else if (II->isStr("jmp_buf"))
2174        Context.setjmp_bufDecl(NewTD);
2175      else if (II->isStr("sigjmp_buf"))
2176        Context.setsigjmp_bufDecl(NewTD);
2177    }
2178
2179  return NewTD;
2180}
2181
2182/// \brief Determines whether the given declaration is an out-of-scope
2183/// previous declaration.
2184///
2185/// This routine should be invoked when name lookup has found a
2186/// previous declaration (PrevDecl) that is not in the scope where a
2187/// new declaration by the same name is being introduced. If the new
2188/// declaration occurs in a local scope, previous declarations with
2189/// linkage may still be considered previous declarations (C99
2190/// 6.2.2p4-5, C++ [basic.link]p6).
2191///
2192/// \param PrevDecl the previous declaration found by name
2193/// lookup
2194///
2195/// \param DC the context in which the new declaration is being
2196/// declared.
2197///
2198/// \returns true if PrevDecl is an out-of-scope previous declaration
2199/// for a new delcaration with the same name.
2200static bool
2201isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2202                                ASTContext &Context) {
2203  if (!PrevDecl)
2204    return 0;
2205
2206  if (!PrevDecl->hasLinkage())
2207    return false;
2208
2209  if (Context.getLangOptions().CPlusPlus) {
2210    // C++ [basic.link]p6:
2211    //   If there is a visible declaration of an entity with linkage
2212    //   having the same name and type, ignoring entities declared
2213    //   outside the innermost enclosing namespace scope, the block
2214    //   scope declaration declares that same entity and receives the
2215    //   linkage of the previous declaration.
2216    DeclContext *OuterContext = DC->getLookupContext();
2217    if (!OuterContext->isFunctionOrMethod())
2218      // This rule only applies to block-scope declarations.
2219      return false;
2220    else {
2221      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2222      if (PrevOuterContext->isRecord())
2223        // We found a member function: ignore it.
2224        return false;
2225      else {
2226        // Find the innermost enclosing namespace for the new and
2227        // previous declarations.
2228        while (!OuterContext->isFileContext())
2229          OuterContext = OuterContext->getParent();
2230        while (!PrevOuterContext->isFileContext())
2231          PrevOuterContext = PrevOuterContext->getParent();
2232
2233        // The previous declaration is in a different namespace, so it
2234        // isn't the same function.
2235        if (OuterContext->getPrimaryContext() !=
2236            PrevOuterContext->getPrimaryContext())
2237          return false;
2238      }
2239    }
2240  }
2241
2242  return true;
2243}
2244
2245NamedDecl*
2246Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2247                              QualType R, DeclaratorInfo *DInfo,
2248                              LookupResult &Previous,
2249                              MultiTemplateParamsArg TemplateParamLists,
2250                              bool &Redeclaration) {
2251  DeclarationName Name = GetNameForDeclarator(D);
2252
2253  // Check that there are no default arguments (C++ only).
2254  if (getLangOptions().CPlusPlus)
2255    CheckExtraCXXDefaultArguments(D);
2256
2257  VarDecl *NewVD;
2258  VarDecl::StorageClass SC;
2259  switch (D.getDeclSpec().getStorageClassSpec()) {
2260  default: assert(0 && "Unknown storage class!");
2261  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2262  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2263  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2264  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2265  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2266  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2267  case DeclSpec::SCS_mutable:
2268    // mutable can only appear on non-static class members, so it's always
2269    // an error here
2270    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2271    D.setInvalidType();
2272    SC = VarDecl::None;
2273    break;
2274  }
2275
2276  IdentifierInfo *II = Name.getAsIdentifierInfo();
2277  if (!II) {
2278    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2279      << Name.getAsString();
2280    return 0;
2281  }
2282
2283  DiagnoseFunctionSpecifiers(D);
2284
2285  if (!DC->isRecord() && S->getFnParent() == 0) {
2286    // C99 6.9p2: The storage-class specifiers auto and register shall not
2287    // appear in the declaration specifiers in an external declaration.
2288    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2289
2290      // If this is a register variable with an asm label specified, then this
2291      // is a GNU extension.
2292      if (SC == VarDecl::Register && D.getAsmLabel())
2293        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2294      else
2295        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2296      D.setInvalidType();
2297    }
2298  }
2299  if (DC->isRecord() && !CurContext->isRecord()) {
2300    // This is an out-of-line definition of a static data member.
2301    if (SC == VarDecl::Static) {
2302      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2303           diag::err_static_out_of_line)
2304        << CodeModificationHint::CreateRemoval(
2305                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2306    } else if (SC == VarDecl::None)
2307      SC = VarDecl::Static;
2308  }
2309  if (SC == VarDecl::Static) {
2310    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2311      if (RD->isLocalClass())
2312        Diag(D.getIdentifierLoc(),
2313             diag::err_static_data_member_not_allowed_in_local_class)
2314          << Name << RD->getDeclName();
2315    }
2316  }
2317
2318  // Match up the template parameter lists with the scope specifier, then
2319  // determine whether we have a template or a template specialization.
2320  bool isExplicitSpecialization = false;
2321  if (TemplateParameterList *TemplateParams
2322        = MatchTemplateParametersToScopeSpecifier(
2323                                  D.getDeclSpec().getSourceRange().getBegin(),
2324                                                  D.getCXXScopeSpec(),
2325                        (TemplateParameterList**)TemplateParamLists.get(),
2326                                                   TemplateParamLists.size(),
2327                                                  isExplicitSpecialization)) {
2328    if (TemplateParams->size() > 0) {
2329      // There is no such thing as a variable template.
2330      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2331        << II
2332        << SourceRange(TemplateParams->getTemplateLoc(),
2333                       TemplateParams->getRAngleLoc());
2334      return 0;
2335    } else {
2336      // There is an extraneous 'template<>' for this variable. Complain
2337      // about it, but allow the declaration of the variable.
2338      Diag(TemplateParams->getTemplateLoc(),
2339           diag::err_template_variable_noparams)
2340        << II
2341        << SourceRange(TemplateParams->getTemplateLoc(),
2342                       TemplateParams->getRAngleLoc());
2343
2344      isExplicitSpecialization = true;
2345    }
2346  }
2347
2348  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2349                          II, R, DInfo, SC);
2350
2351  if (D.isInvalidType())
2352    NewVD->setInvalidDecl();
2353
2354  if (D.getDeclSpec().isThreadSpecified()) {
2355    if (NewVD->hasLocalStorage())
2356      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2357    else if (!Context.Target.isTLSSupported())
2358      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2359    else
2360      NewVD->setThreadSpecified(true);
2361  }
2362
2363  // Set the lexical context. If the declarator has a C++ scope specifier, the
2364  // lexical context will be different from the semantic context.
2365  NewVD->setLexicalDeclContext(CurContext);
2366
2367  // Handle attributes prior to checking for duplicates in MergeVarDecl
2368  ProcessDeclAttributes(S, NewVD, D);
2369
2370  // Handle GNU asm-label extension (encoded as an attribute).
2371  if (Expr *E = (Expr*) D.getAsmLabel()) {
2372    // The parser guarantees this is a string.
2373    StringLiteral *SE = cast<StringLiteral>(E);
2374    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2375  }
2376
2377  // Don't consider existing declarations that are in a different
2378  // scope and are out-of-semantic-context declarations (if the new
2379  // declaration has linkage).
2380  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2381
2382  // Merge the decl with the existing one if appropriate.
2383  if (!Previous.empty()) {
2384    if (Previous.isSingleResult() &&
2385        isa<FieldDecl>(Previous.getFoundDecl()) &&
2386        D.getCXXScopeSpec().isSet()) {
2387      // The user tried to define a non-static data member
2388      // out-of-line (C++ [dcl.meaning]p1).
2389      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2390        << D.getCXXScopeSpec().getRange();
2391      Previous.clear();
2392      NewVD->setInvalidDecl();
2393    }
2394  } else if (D.getCXXScopeSpec().isSet()) {
2395    // No previous declaration in the qualifying scope.
2396    Diag(D.getIdentifierLoc(), diag::err_no_member)
2397      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2398      << D.getCXXScopeSpec().getRange();
2399    NewVD->setInvalidDecl();
2400  }
2401
2402  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2403
2404  // This is an explicit specialization of a static data member. Check it.
2405  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2406      CheckMemberSpecialization(NewVD, Previous))
2407    NewVD->setInvalidDecl();
2408
2409  // attributes declared post-definition are currently ignored
2410  if (Previous.isSingleResult()) {
2411    const VarDecl *Def = 0;
2412    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2413    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2414      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2415      Diag(Def->getLocation(), diag::note_previous_definition);
2416    }
2417  }
2418
2419  // If this is a locally-scoped extern C variable, update the map of
2420  // such variables.
2421  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2422      !NewVD->isInvalidDecl())
2423    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2424
2425  return NewVD;
2426}
2427
2428/// \brief Perform semantic checking on a newly-created variable
2429/// declaration.
2430///
2431/// This routine performs all of the type-checking required for a
2432/// variable declaration once it has been built. It is used both to
2433/// check variables after they have been parsed and their declarators
2434/// have been translated into a declaration, and to check variables
2435/// that have been instantiated from a template.
2436///
2437/// Sets NewVD->isInvalidDecl() if an error was encountered.
2438void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2439                                    LookupResult &Previous,
2440                                    bool &Redeclaration) {
2441  // If the decl is already known invalid, don't check it.
2442  if (NewVD->isInvalidDecl())
2443    return;
2444
2445  QualType T = NewVD->getType();
2446
2447  if (T->isObjCInterfaceType()) {
2448    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2449    return NewVD->setInvalidDecl();
2450  }
2451
2452  // The variable can not have an abstract class type.
2453  if (RequireNonAbstractType(NewVD->getLocation(), T,
2454                             diag::err_abstract_type_in_decl,
2455                             AbstractVariableType))
2456    return NewVD->setInvalidDecl();
2457
2458  // Emit an error if an address space was applied to decl with local storage.
2459  // This includes arrays of objects with address space qualifiers, but not
2460  // automatic variables that point to other address spaces.
2461  // ISO/IEC TR 18037 S5.1.2
2462  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2463    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2464    return NewVD->setInvalidDecl();
2465  }
2466
2467  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2468      && !NewVD->hasAttr<BlocksAttr>())
2469    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2470
2471  bool isVM = T->isVariablyModifiedType();
2472  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2473      NewVD->hasAttr<BlocksAttr>())
2474    CurFunctionNeedsScopeChecking = true;
2475
2476  if ((isVM && NewVD->hasLinkage()) ||
2477      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2478    bool SizeIsNegative;
2479    QualType FixedTy =
2480        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2481
2482    if (FixedTy.isNull() && T->isVariableArrayType()) {
2483      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2484      // FIXME: This won't give the correct result for
2485      // int a[10][n];
2486      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2487
2488      if (NewVD->isFileVarDecl())
2489        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2490        << SizeRange;
2491      else if (NewVD->getStorageClass() == VarDecl::Static)
2492        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2493        << SizeRange;
2494      else
2495        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2496        << SizeRange;
2497      return NewVD->setInvalidDecl();
2498    }
2499
2500    if (FixedTy.isNull()) {
2501      if (NewVD->isFileVarDecl())
2502        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2503      else
2504        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2505      return NewVD->setInvalidDecl();
2506    }
2507
2508    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2509    NewVD->setType(FixedTy);
2510  }
2511
2512  if (Previous.empty() && NewVD->isExternC()) {
2513    // Since we did not find anything by this name and we're declaring
2514    // an extern "C" variable, look for a non-visible extern "C"
2515    // declaration with the same name.
2516    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2517      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2518    if (Pos != LocallyScopedExternalDecls.end())
2519      Previous.addDecl(Pos->second);
2520  }
2521
2522  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2523    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2524      << T;
2525    return NewVD->setInvalidDecl();
2526  }
2527
2528  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2529    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2530    return NewVD->setInvalidDecl();
2531  }
2532
2533  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2534    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2535    return NewVD->setInvalidDecl();
2536  }
2537
2538  if (!Previous.empty()) {
2539    Redeclaration = true;
2540    MergeVarDecl(NewVD, Previous);
2541  }
2542}
2543
2544/// \brief Data used with FindOverriddenMethod
2545struct FindOverriddenMethodData {
2546  Sema *S;
2547  CXXMethodDecl *Method;
2548};
2549
2550/// \brief Member lookup function that determines whether a given C++
2551/// method overrides a method in a base class, to be used with
2552/// CXXRecordDecl::lookupInBases().
2553static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2554                                 CXXBasePath &Path,
2555                                 void *UserData) {
2556  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2557
2558  FindOverriddenMethodData *Data
2559    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2560
2561  DeclarationName Name = Data->Method->getDeclName();
2562
2563  // FIXME: Do we care about other names here too?
2564  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2565    // We really want to find the base class constructor here.
2566    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2567    CanQualType CT = Data->S->Context.getCanonicalType(T);
2568
2569    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2570  }
2571
2572  for (Path.Decls = BaseRecord->lookup(Name);
2573       Path.Decls.first != Path.Decls.second;
2574       ++Path.Decls.first) {
2575    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2576      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2577        return true;
2578    }
2579  }
2580
2581  return false;
2582}
2583
2584/// AddOverriddenMethods - See if a method overrides any in the base classes,
2585/// and if so, check that it's a valid override and remember it.
2586void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2587  // Look for virtual methods in base classes that this method might override.
2588  CXXBasePaths Paths;
2589  FindOverriddenMethodData Data;
2590  Data.Method = MD;
2591  Data.S = this;
2592  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2593    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2594         E = Paths.found_decls_end(); I != E; ++I) {
2595      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2596        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2597            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2598            !CheckOverridingFunctionAttributes(MD, OldMD))
2599          MD->addOverriddenMethod(OldMD);
2600      }
2601    }
2602  }
2603}
2604
2605NamedDecl*
2606Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2607                              QualType R, DeclaratorInfo *DInfo,
2608                              LookupResult &Previous,
2609                              MultiTemplateParamsArg TemplateParamLists,
2610                              bool IsFunctionDefinition, bool &Redeclaration) {
2611  assert(R.getTypePtr()->isFunctionType());
2612
2613  DeclarationName Name = GetNameForDeclarator(D);
2614  FunctionDecl::StorageClass SC = FunctionDecl::None;
2615  switch (D.getDeclSpec().getStorageClassSpec()) {
2616  default: assert(0 && "Unknown storage class!");
2617  case DeclSpec::SCS_auto:
2618  case DeclSpec::SCS_register:
2619  case DeclSpec::SCS_mutable:
2620    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2621         diag::err_typecheck_sclass_func);
2622    D.setInvalidType();
2623    break;
2624  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2625  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2626  case DeclSpec::SCS_static: {
2627    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2628      // C99 6.7.1p5:
2629      //   The declaration of an identifier for a function that has
2630      //   block scope shall have no explicit storage-class specifier
2631      //   other than extern
2632      // See also (C++ [dcl.stc]p4).
2633      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2634           diag::err_static_block_func);
2635      SC = FunctionDecl::None;
2636    } else
2637      SC = FunctionDecl::Static;
2638    break;
2639  }
2640  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2641  }
2642
2643  if (D.getDeclSpec().isThreadSpecified())
2644    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2645
2646  bool isFriend = D.getDeclSpec().isFriendSpecified();
2647  bool isInline = D.getDeclSpec().isInlineSpecified();
2648  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2649  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2650
2651  // Check that the return type is not an abstract class type.
2652  // For record types, this is done by the AbstractClassUsageDiagnoser once
2653  // the class has been completely parsed.
2654  if (!DC->isRecord() &&
2655      RequireNonAbstractType(D.getIdentifierLoc(),
2656                             R->getAs<FunctionType>()->getResultType(),
2657                             diag::err_abstract_type_in_decl,
2658                             AbstractReturnType))
2659    D.setInvalidType();
2660
2661  // Do not allow returning a objc interface by-value.
2662  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2663    Diag(D.getIdentifierLoc(),
2664         diag::err_object_cannot_be_passed_returned_by_value) << 0
2665      << R->getAs<FunctionType>()->getResultType();
2666    D.setInvalidType();
2667  }
2668
2669  bool isVirtualOkay = false;
2670  FunctionDecl *NewFD;
2671
2672  if (isFriend) {
2673    // C++ [class.friend]p5
2674    //   A function can be defined in a friend declaration of a
2675    //   class . . . . Such a function is implicitly inline.
2676    isInline |= IsFunctionDefinition;
2677  }
2678
2679  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2680    // This is a C++ constructor declaration.
2681    assert(DC->isRecord() &&
2682           "Constructors can only be declared in a member context");
2683
2684    R = CheckConstructorDeclarator(D, R, SC);
2685
2686    // Create the new declaration
2687    NewFD = CXXConstructorDecl::Create(Context,
2688                                       cast<CXXRecordDecl>(DC),
2689                                       D.getIdentifierLoc(), Name, R, DInfo,
2690                                       isExplicit, isInline,
2691                                       /*isImplicitlyDeclared=*/false);
2692  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2693    // This is a C++ destructor declaration.
2694    if (DC->isRecord()) {
2695      R = CheckDestructorDeclarator(D, SC);
2696
2697      NewFD = CXXDestructorDecl::Create(Context,
2698                                        cast<CXXRecordDecl>(DC),
2699                                        D.getIdentifierLoc(), Name, R,
2700                                        isInline,
2701                                        /*isImplicitlyDeclared=*/false);
2702
2703      isVirtualOkay = true;
2704    } else {
2705      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2706
2707      // Create a FunctionDecl to satisfy the function definition parsing
2708      // code path.
2709      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2710                                   Name, R, DInfo, SC, isInline,
2711                                   /*hasPrototype=*/true);
2712      D.setInvalidType();
2713    }
2714  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2715    if (!DC->isRecord()) {
2716      Diag(D.getIdentifierLoc(),
2717           diag::err_conv_function_not_member);
2718      return 0;
2719    }
2720
2721    CheckConversionDeclarator(D, R, SC);
2722    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2723                                      D.getIdentifierLoc(), Name, R, DInfo,
2724                                      isInline, isExplicit);
2725
2726    isVirtualOkay = true;
2727  } else if (DC->isRecord()) {
2728    // If the of the function is the same as the name of the record, then this
2729    // must be an invalid constructor that has a return type.
2730    // (The parser checks for a return type and makes the declarator a
2731    // constructor if it has no return type).
2732    // must have an invalid constructor that has a return type
2733    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2734      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2735        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2736        << SourceRange(D.getIdentifierLoc());
2737      return 0;
2738    }
2739
2740    bool isStatic = SC == FunctionDecl::Static;
2741
2742    // [class.free]p1:
2743    // Any allocation function for a class T is a static member
2744    // (even if not explicitly declared static).
2745    if (Name.getCXXOverloadedOperator() == OO_New ||
2746        Name.getCXXOverloadedOperator() == OO_Array_New)
2747      isStatic = true;
2748
2749    // [class.free]p6 Any deallocation function for a class X is a static member
2750    // (even if not explicitly declared static).
2751    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2752        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2753      isStatic = true;
2754
2755    // This is a C++ method declaration.
2756    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2757                                  D.getIdentifierLoc(), Name, R, DInfo,
2758                                  isStatic, isInline);
2759
2760    isVirtualOkay = !isStatic;
2761  } else {
2762    // Determine whether the function was written with a
2763    // prototype. This true when:
2764    //   - we're in C++ (where every function has a prototype),
2765    //   - there is a prototype in the declarator, or
2766    //   - the type R of the function is some kind of typedef or other reference
2767    //     to a type name (which eventually refers to a function type).
2768    bool HasPrototype =
2769       getLangOptions().CPlusPlus ||
2770       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2771       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2772
2773    NewFD = FunctionDecl::Create(Context, DC,
2774                                 D.getIdentifierLoc(),
2775                                 Name, R, DInfo, SC, isInline, HasPrototype);
2776  }
2777
2778  if (D.isInvalidType())
2779    NewFD->setInvalidDecl();
2780
2781  // Set the lexical context. If the declarator has a C++
2782  // scope specifier, or is the object of a friend declaration, the
2783  // lexical context will be different from the semantic context.
2784  NewFD->setLexicalDeclContext(CurContext);
2785
2786  // Match up the template parameter lists with the scope specifier, then
2787  // determine whether we have a template or a template specialization.
2788  FunctionTemplateDecl *FunctionTemplate = 0;
2789  bool isExplicitSpecialization = false;
2790  bool isFunctionTemplateSpecialization = false;
2791  if (TemplateParameterList *TemplateParams
2792        = MatchTemplateParametersToScopeSpecifier(
2793                                  D.getDeclSpec().getSourceRange().getBegin(),
2794                                  D.getCXXScopeSpec(),
2795                           (TemplateParameterList**)TemplateParamLists.get(),
2796                                                  TemplateParamLists.size(),
2797                                                  isExplicitSpecialization)) {
2798    if (TemplateParams->size() > 0) {
2799      // This is a function template
2800
2801      // Check that we can declare a template here.
2802      if (CheckTemplateDeclScope(S, TemplateParams))
2803        return 0;
2804
2805      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2806                                                      NewFD->getLocation(),
2807                                                      Name, TemplateParams,
2808                                                      NewFD);
2809      FunctionTemplate->setLexicalDeclContext(CurContext);
2810      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2811    } else {
2812      // This is a function template specialization.
2813      isFunctionTemplateSpecialization = true;
2814    }
2815
2816    // FIXME: Free this memory properly.
2817    TemplateParamLists.release();
2818  }
2819
2820  // C++ [dcl.fct.spec]p5:
2821  //   The virtual specifier shall only be used in declarations of
2822  //   nonstatic class member functions that appear within a
2823  //   member-specification of a class declaration; see 10.3.
2824  //
2825  if (isVirtual && !NewFD->isInvalidDecl()) {
2826    if (!isVirtualOkay) {
2827       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2828           diag::err_virtual_non_function);
2829    } else if (!CurContext->isRecord()) {
2830      // 'virtual' was specified outside of the class.
2831      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2832        << CodeModificationHint::CreateRemoval(
2833                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2834    } else {
2835      // Okay: Add virtual to the method.
2836      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2837      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2838      CurClass->setAggregate(false);
2839      CurClass->setPOD(false);
2840      CurClass->setEmpty(false);
2841      CurClass->setPolymorphic(true);
2842      CurClass->setHasTrivialConstructor(false);
2843      CurClass->setHasTrivialCopyConstructor(false);
2844      CurClass->setHasTrivialCopyAssignment(false);
2845    }
2846  }
2847
2848  // Filter out previous declarations that don't match the scope.
2849  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2850
2851  if (isFriend) {
2852    // DC is the namespace in which the function is being declared.
2853    assert((DC->isFileContext() || !Previous.empty()) &&
2854           "previously-undeclared friend function being created "
2855           "in a non-namespace context");
2856
2857    if (FunctionTemplate) {
2858      FunctionTemplate->setObjectOfFriendDecl(
2859                                   /* PreviouslyDeclared= */ !Previous.empty());
2860      FunctionTemplate->setAccess(AS_public);
2861    }
2862    else
2863      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2864
2865    NewFD->setAccess(AS_public);
2866  }
2867
2868  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2869      !CurContext->isRecord()) {
2870    // C++ [class.static]p1:
2871    //   A data or function member of a class may be declared static
2872    //   in a class definition, in which case it is a static member of
2873    //   the class.
2874
2875    // Complain about the 'static' specifier if it's on an out-of-line
2876    // member function definition.
2877    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2878         diag::err_static_out_of_line)
2879      << CodeModificationHint::CreateRemoval(
2880                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2881  }
2882
2883  // Handle GNU asm-label extension (encoded as an attribute).
2884  if (Expr *E = (Expr*) D.getAsmLabel()) {
2885    // The parser guarantees this is a string.
2886    StringLiteral *SE = cast<StringLiteral>(E);
2887    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2888  }
2889
2890  // Copy the parameter declarations from the declarator D to the function
2891  // declaration NewFD, if they are available.  First scavenge them into Params.
2892  llvm::SmallVector<ParmVarDecl*, 16> Params;
2893  if (D.getNumTypeObjects() > 0) {
2894    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2895
2896    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2897    // function that takes no arguments, not a function that takes a
2898    // single void argument.
2899    // We let through "const void" here because Sema::GetTypeForDeclarator
2900    // already checks for that case.
2901    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2902        FTI.ArgInfo[0].Param &&
2903        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2904      // Empty arg list, don't push any params.
2905      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2906
2907      // In C++, the empty parameter-type-list must be spelled "void"; a
2908      // typedef of void is not permitted.
2909      if (getLangOptions().CPlusPlus &&
2910          Param->getType().getUnqualifiedType() != Context.VoidTy)
2911        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2912      // FIXME: Leaks decl?
2913    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2914      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2915        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2916        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2917        Param->setDeclContext(NewFD);
2918        Params.push_back(Param);
2919      }
2920    }
2921
2922  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2923    // When we're declaring a function with a typedef, typeof, etc as in the
2924    // following example, we'll need to synthesize (unnamed)
2925    // parameters for use in the declaration.
2926    //
2927    // @code
2928    // typedef void fn(int);
2929    // fn f;
2930    // @endcode
2931
2932    // Synthesize a parameter for each argument type.
2933    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2934         AE = FT->arg_type_end(); AI != AE; ++AI) {
2935      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2936                                               SourceLocation(), 0,
2937                                               *AI, /*DInfo=*/0,
2938                                               VarDecl::None, 0);
2939      Param->setImplicit();
2940      Params.push_back(Param);
2941    }
2942  } else {
2943    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2944           "Should not need args for typedef of non-prototype fn");
2945  }
2946  // Finally, we know we have the right number of parameters, install them.
2947  NewFD->setParams(Context, Params.data(), Params.size());
2948
2949  // If the declarator is a template-id, translate the parser's template
2950  // argument list into our AST format.
2951  bool HasExplicitTemplateArgs = false;
2952  TemplateArgumentListInfo TemplateArgs;
2953  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2954    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2955    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2956    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2957    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2958                                       TemplateId->getTemplateArgs(),
2959                                       TemplateId->NumArgs);
2960    translateTemplateArguments(TemplateArgsPtr,
2961                               TemplateArgs);
2962    TemplateArgsPtr.release();
2963
2964    HasExplicitTemplateArgs = true;
2965
2966    if (FunctionTemplate) {
2967      // FIXME: Diagnose function template with explicit template
2968      // arguments.
2969      HasExplicitTemplateArgs = false;
2970    } else if (!isFunctionTemplateSpecialization &&
2971               !D.getDeclSpec().isFriendSpecified()) {
2972      // We have encountered something that the user meant to be a
2973      // specialization (because it has explicitly-specified template
2974      // arguments) but that was not introduced with a "template<>" (or had
2975      // too few of them).
2976      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2977        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2978        << CodeModificationHint::CreateInsertion(
2979                                   D.getDeclSpec().getSourceRange().getBegin(),
2980                                                 "template<> ");
2981      isFunctionTemplateSpecialization = true;
2982    }
2983  }
2984
2985  if (isFunctionTemplateSpecialization) {
2986      if (CheckFunctionTemplateSpecialization(NewFD,
2987                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
2988                                              Previous))
2989        NewFD->setInvalidDecl();
2990  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2991             CheckMemberSpecialization(NewFD, Previous))
2992    NewFD->setInvalidDecl();
2993
2994  // Perform semantic checking on the function declaration.
2995  bool OverloadableAttrRequired = false; // FIXME: HACK!
2996  CheckFunctionDeclaration(NewFD, Previous, isExplicitSpecialization,
2997                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2998
2999  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3000          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3001         "previous declaration set still overloaded");
3002
3003  // If we have a function template, check the template parameter
3004  // list. This will check and merge default template arguments.
3005  if (FunctionTemplate) {
3006    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3007    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3008                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3009             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3010                                                : TPC_FunctionTemplate);
3011  }
3012
3013  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3014    // An out-of-line member function declaration must also be a
3015    // definition (C++ [dcl.meaning]p1).
3016    // Note that this is not the case for explicit specializations of
3017    // function templates or member functions of class templates, per
3018    // C++ [temp.expl.spec]p2.
3019    if (!IsFunctionDefinition && !isFriend &&
3020        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3021      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3022        << D.getCXXScopeSpec().getRange();
3023      NewFD->setInvalidDecl();
3024    } else if (!Redeclaration) {
3025      // The user tried to provide an out-of-line definition for a
3026      // function that is a member of a class or namespace, but there
3027      // was no such member function declared (C++ [class.mfct]p2,
3028      // C++ [namespace.memdef]p2). For example:
3029      //
3030      // class X {
3031      //   void f() const;
3032      // };
3033      //
3034      // void X::f() { } // ill-formed
3035      //
3036      // Complain about this problem, and attempt to suggest close
3037      // matches (e.g., those that differ only in cv-qualifiers and
3038      // whether the parameter types are references).
3039      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3040        << Name << DC << D.getCXXScopeSpec().getRange();
3041      NewFD->setInvalidDecl();
3042
3043      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3044                        ForRedeclaration);
3045      LookupQualifiedName(Prev, DC);
3046      assert(!Prev.isAmbiguous() &&
3047             "Cannot have an ambiguity in previous-declaration lookup");
3048      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3049           Func != FuncEnd; ++Func) {
3050        if (isa<FunctionDecl>(*Func) &&
3051            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3052          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3053      }
3054    }
3055  }
3056
3057  // Handle attributes. We need to have merged decls when handling attributes
3058  // (for example to check for conflicts, etc).
3059  // FIXME: This needs to happen before we merge declarations. Then,
3060  // let attribute merging cope with attribute conflicts.
3061  ProcessDeclAttributes(S, NewFD, D);
3062
3063  // attributes declared post-definition are currently ignored
3064  if (Redeclaration && Previous.isSingleResult()) {
3065    const FunctionDecl *Def;
3066    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3067    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3068      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3069      Diag(Def->getLocation(), diag::note_previous_definition);
3070    }
3071  }
3072
3073  AddKnownFunctionAttributes(NewFD);
3074
3075  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3076    // If a function name is overloadable in C, then every function
3077    // with that name must be marked "overloadable".
3078    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3079      << Redeclaration << NewFD;
3080    if (!Previous.empty())
3081      Diag(Previous.getRepresentativeDecl()->getLocation(),
3082           diag::note_attribute_overloadable_prev_overload);
3083    NewFD->addAttr(::new (Context) OverloadableAttr());
3084  }
3085
3086  // If this is a locally-scoped extern C function, update the
3087  // map of such names.
3088  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3089      && !NewFD->isInvalidDecl())
3090    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3091
3092  // Set this FunctionDecl's range up to the right paren.
3093  NewFD->setLocEnd(D.getSourceRange().getEnd());
3094
3095  if (FunctionTemplate && NewFD->isInvalidDecl())
3096    FunctionTemplate->setInvalidDecl();
3097
3098  if (FunctionTemplate)
3099    return FunctionTemplate;
3100
3101  return NewFD;
3102}
3103
3104/// \brief Perform semantic checking of a new function declaration.
3105///
3106/// Performs semantic analysis of the new function declaration
3107/// NewFD. This routine performs all semantic checking that does not
3108/// require the actual declarator involved in the declaration, and is
3109/// used both for the declaration of functions as they are parsed
3110/// (called via ActOnDeclarator) and for the declaration of functions
3111/// that have been instantiated via C++ template instantiation (called
3112/// via InstantiateDecl).
3113///
3114/// \param IsExplicitSpecialiation whether this new function declaration is
3115/// an explicit specialization of the previous declaration.
3116///
3117/// This sets NewFD->isInvalidDecl() to true if there was an error.
3118void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD,
3119                                    LookupResult &Previous,
3120                                    bool IsExplicitSpecialization,
3121                                    bool &Redeclaration,
3122                                    bool &OverloadableAttrRequired) {
3123  // If NewFD is already known erroneous, don't do any of this checking.
3124  if (NewFD->isInvalidDecl())
3125    return;
3126
3127  if (NewFD->getResultType()->isVariablyModifiedType()) {
3128    // Functions returning a variably modified type violate C99 6.7.5.2p2
3129    // because all functions have linkage.
3130    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3131    return NewFD->setInvalidDecl();
3132  }
3133
3134  if (NewFD->isMain())
3135    CheckMain(NewFD);
3136
3137  // Check for a previous declaration of this name.
3138  if (Previous.empty() && NewFD->isExternC()) {
3139    // Since we did not find anything by this name and we're declaring
3140    // an extern "C" function, look for a non-visible extern "C"
3141    // declaration with the same name.
3142    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3143      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3144    if (Pos != LocallyScopedExternalDecls.end())
3145      Previous.addDecl(Pos->second);
3146  }
3147
3148  // Merge or overload the declaration with an existing declaration of
3149  // the same name, if appropriate.
3150  if (!Previous.empty()) {
3151    // Determine whether NewFD is an overload of PrevDecl or
3152    // a declaration that requires merging. If it's an overload,
3153    // there's no more work to do here; we'll just add the new
3154    // function to the scope.
3155
3156    if (!getLangOptions().CPlusPlus &&
3157        AllowOverloadingOfFunction(Previous, Context)) {
3158      OverloadableAttrRequired = true;
3159
3160      // Functions marked "overloadable" must have a prototype (that
3161      // we can't get through declaration merging).
3162      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3163        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3164          << NewFD;
3165        Redeclaration = true;
3166
3167        // Turn this into a variadic function with no parameters.
3168        QualType R = Context.getFunctionType(
3169                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3170                       0, 0, true, 0);
3171        NewFD->setType(R);
3172        return NewFD->setInvalidDecl();
3173      }
3174    }
3175
3176    NamedDecl *OldDecl = 0;
3177    if (!Previous.empty()) {
3178      if (!AllowOverloadingOfFunction(Previous, Context)) {
3179        Redeclaration = true;
3180        OldDecl = Previous.getFoundDecl();
3181      } else if (!IsOverload(NewFD, Previous, OldDecl)) {
3182        if (!isUsingDecl(OldDecl))
3183          Redeclaration = true;
3184      }
3185    }
3186
3187    if (Redeclaration) {
3188      // NewFD and OldDecl represent declarations that need to be
3189      // merged.
3190      if (MergeFunctionDecl(NewFD, OldDecl))
3191        return NewFD->setInvalidDecl();
3192
3193      Previous.clear();
3194      Previous.addDecl(OldDecl);
3195
3196      if (FunctionTemplateDecl *OldTemplateDecl
3197                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3198        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3199        FunctionTemplateDecl *NewTemplateDecl
3200          = NewFD->getDescribedFunctionTemplate();
3201        assert(NewTemplateDecl && "Template/non-template mismatch");
3202        if (CXXMethodDecl *Method
3203              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3204          Method->setAccess(OldTemplateDecl->getAccess());
3205          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3206        }
3207
3208        // If this is an explicit specialization of a member that is a function
3209        // template, mark it as a member specialization.
3210        if (IsExplicitSpecialization &&
3211            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3212          NewTemplateDecl->setMemberSpecialization();
3213          assert(OldTemplateDecl->isMemberSpecialization());
3214        }
3215      } else {
3216        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3217          NewFD->setAccess(OldDecl->getAccess());
3218        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3219      }
3220    }
3221  }
3222
3223  // Semantic checking for this function declaration (in isolation).
3224  if (getLangOptions().CPlusPlus) {
3225    // C++-specific checks.
3226    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3227      CheckConstructor(Constructor);
3228    } else if (CXXDestructorDecl *Destructor =
3229                dyn_cast<CXXDestructorDecl>(NewFD)) {
3230      CXXRecordDecl *Record = Destructor->getParent();
3231      QualType ClassType = Context.getTypeDeclType(Record);
3232
3233      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3234      // type is dependent? Both gcc and edg can handle that.
3235      if (!ClassType->isDependentType()) {
3236        DeclarationName Name
3237          = Context.DeclarationNames.getCXXDestructorName(
3238                                        Context.getCanonicalType(ClassType));
3239        if (NewFD->getDeclName() != Name) {
3240          Diag(NewFD->getLocation(), diag::err_destructor_name);
3241          return NewFD->setInvalidDecl();
3242        }
3243
3244        CheckDestructor(Destructor);
3245      }
3246
3247      Record->setUserDeclaredDestructor(true);
3248      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3249      // user-defined destructor.
3250      Record->setPOD(false);
3251
3252      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3253      // declared destructor.
3254      // FIXME: C++0x: don't do this for "= default" destructors
3255      Record->setHasTrivialDestructor(false);
3256    } else if (CXXConversionDecl *Conversion
3257               = dyn_cast<CXXConversionDecl>(NewFD)) {
3258      ActOnConversionDeclarator(Conversion);
3259    }
3260
3261    // Find any virtual functions that this function overrides.
3262    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3263      if (!Method->isFunctionTemplateSpecialization() &&
3264          !Method->getDescribedFunctionTemplate())
3265        AddOverriddenMethods(Method->getParent(), Method);
3266    }
3267
3268    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3269    if (NewFD->isOverloadedOperator() &&
3270        CheckOverloadedOperatorDeclaration(NewFD))
3271      return NewFD->setInvalidDecl();
3272
3273    // In C++, check default arguments now that we have merged decls. Unless
3274    // the lexical context is the class, because in this case this is done
3275    // during delayed parsing anyway.
3276    if (!CurContext->isRecord())
3277      CheckCXXDefaultArguments(NewFD);
3278  }
3279}
3280
3281void Sema::CheckMain(FunctionDecl* FD) {
3282  // C++ [basic.start.main]p3:  A program that declares main to be inline
3283  //   or static is ill-formed.
3284  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3285  //   shall not appear in a declaration of main.
3286  // static main is not an error under C99, but we should warn about it.
3287  bool isInline = FD->isInlineSpecified();
3288  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3289  if (isInline || isStatic) {
3290    unsigned diagID = diag::warn_unusual_main_decl;
3291    if (isInline || getLangOptions().CPlusPlus)
3292      diagID = diag::err_unusual_main_decl;
3293
3294    int which = isStatic + (isInline << 1) - 1;
3295    Diag(FD->getLocation(), diagID) << which;
3296  }
3297
3298  QualType T = FD->getType();
3299  assert(T->isFunctionType() && "function decl is not of function type");
3300  const FunctionType* FT = T->getAs<FunctionType>();
3301
3302  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3303    // TODO: add a replacement fixit to turn the return type into 'int'.
3304    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3305    FD->setInvalidDecl(true);
3306  }
3307
3308  // Treat protoless main() as nullary.
3309  if (isa<FunctionNoProtoType>(FT)) return;
3310
3311  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3312  unsigned nparams = FTP->getNumArgs();
3313  assert(FD->getNumParams() == nparams);
3314
3315  if (nparams > 3) {
3316    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3317    FD->setInvalidDecl(true);
3318    nparams = 3;
3319  }
3320
3321  // FIXME: a lot of the following diagnostics would be improved
3322  // if we had some location information about types.
3323
3324  QualType CharPP =
3325    Context.getPointerType(Context.getPointerType(Context.CharTy));
3326  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3327
3328  for (unsigned i = 0; i < nparams; ++i) {
3329    QualType AT = FTP->getArgType(i);
3330
3331    bool mismatch = true;
3332
3333    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3334      mismatch = false;
3335    else if (Expected[i] == CharPP) {
3336      // As an extension, the following forms are okay:
3337      //   char const **
3338      //   char const * const *
3339      //   char * const *
3340
3341      QualifierCollector qs;
3342      const PointerType* PT;
3343      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3344          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3345          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3346        qs.removeConst();
3347        mismatch = !qs.empty();
3348      }
3349    }
3350
3351    if (mismatch) {
3352      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3353      // TODO: suggest replacing given type with expected type
3354      FD->setInvalidDecl(true);
3355    }
3356  }
3357
3358  if (nparams == 1 && !FD->isInvalidDecl()) {
3359    Diag(FD->getLocation(), diag::warn_main_one_arg);
3360  }
3361}
3362
3363bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3364  // FIXME: Need strict checking.  In C89, we need to check for
3365  // any assignment, increment, decrement, function-calls, or
3366  // commas outside of a sizeof.  In C99, it's the same list,
3367  // except that the aforementioned are allowed in unevaluated
3368  // expressions.  Everything else falls under the
3369  // "may accept other forms of constant expressions" exception.
3370  // (We never end up here for C++, so the constant expression
3371  // rules there don't matter.)
3372  if (Init->isConstantInitializer(Context))
3373    return false;
3374  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3375    << Init->getSourceRange();
3376  return true;
3377}
3378
3379void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3380  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3381}
3382
3383/// AddInitializerToDecl - Adds the initializer Init to the
3384/// declaration dcl. If DirectInit is true, this is C++ direct
3385/// initialization rather than copy initialization.
3386void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3387  Decl *RealDecl = dcl.getAs<Decl>();
3388  // If there is no declaration, there was an error parsing it.  Just ignore
3389  // the initializer.
3390  if (RealDecl == 0)
3391    return;
3392
3393  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3394    // With declarators parsed the way they are, the parser cannot
3395    // distinguish between a normal initializer and a pure-specifier.
3396    // Thus this grotesque test.
3397    IntegerLiteral *IL;
3398    Expr *Init = static_cast<Expr *>(init.get());
3399    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3400        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3401      CheckPureMethod(Method, Init->getSourceRange());
3402    else {
3403      Diag(Method->getLocation(), diag::err_member_function_initialization)
3404        << Method->getDeclName() << Init->getSourceRange();
3405      Method->setInvalidDecl();
3406    }
3407    return;
3408  }
3409
3410  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3411  if (!VDecl) {
3412    if (getLangOptions().CPlusPlus &&
3413        RealDecl->getLexicalDeclContext()->isRecord() &&
3414        isa<NamedDecl>(RealDecl))
3415      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3416        << cast<NamedDecl>(RealDecl)->getDeclName();
3417    else
3418      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3419    RealDecl->setInvalidDecl();
3420    return;
3421  }
3422
3423  // A definition must end up with a complete type, which means it must be
3424  // complete with the restriction that an array type might be completed by the
3425  // initializer; note that later code assumes this restriction.
3426  QualType BaseDeclType = VDecl->getType();
3427  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3428    BaseDeclType = Array->getElementType();
3429  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3430                          diag::err_typecheck_decl_incomplete_type)) {
3431    RealDecl->setInvalidDecl();
3432    return;
3433  }
3434
3435  const VarDecl *Def = 0;
3436  if (VDecl->getDefinition(Def)) {
3437    Diag(VDecl->getLocation(), diag::err_redefinition)
3438      << VDecl->getDeclName();
3439    Diag(Def->getLocation(), diag::note_previous_definition);
3440    VDecl->setInvalidDecl();
3441    return;
3442  }
3443
3444  // Take ownership of the expression, now that we're sure we have somewhere
3445  // to put it.
3446  Expr *Init = init.takeAs<Expr>();
3447  assert(Init && "missing initializer");
3448
3449  // Get the decls type and save a reference for later, since
3450  // CheckInitializerTypes may change it.
3451  QualType DclT = VDecl->getType(), SavT = DclT;
3452  if (VDecl->isBlockVarDecl()) {
3453    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3454      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3455      VDecl->setInvalidDecl();
3456    } else if (!VDecl->isInvalidDecl()) {
3457      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3458                                VDecl->getDeclName(), DirectInit))
3459        VDecl->setInvalidDecl();
3460
3461      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3462      // Don't check invalid declarations to avoid emitting useless diagnostics.
3463      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3464        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3465          CheckForConstantInitializer(Init, DclT);
3466      }
3467    }
3468  } else if (VDecl->isStaticDataMember() &&
3469             VDecl->getLexicalDeclContext()->isRecord()) {
3470    // This is an in-class initialization for a static data member, e.g.,
3471    //
3472    // struct S {
3473    //   static const int value = 17;
3474    // };
3475
3476    // Attach the initializer
3477    VDecl->setInit(Context, Init);
3478
3479    // C++ [class.mem]p4:
3480    //   A member-declarator can contain a constant-initializer only
3481    //   if it declares a static member (9.4) of const integral or
3482    //   const enumeration type, see 9.4.2.
3483    QualType T = VDecl->getType();
3484    if (!T->isDependentType() &&
3485        (!Context.getCanonicalType(T).isConstQualified() ||
3486         !T->isIntegralType())) {
3487      Diag(VDecl->getLocation(), diag::err_member_initialization)
3488        << VDecl->getDeclName() << Init->getSourceRange();
3489      VDecl->setInvalidDecl();
3490    } else {
3491      // C++ [class.static.data]p4:
3492      //   If a static data member is of const integral or const
3493      //   enumeration type, its declaration in the class definition
3494      //   can specify a constant-initializer which shall be an
3495      //   integral constant expression (5.19).
3496      if (!Init->isTypeDependent() &&
3497          !Init->getType()->isIntegralType()) {
3498        // We have a non-dependent, non-integral or enumeration type.
3499        Diag(Init->getSourceRange().getBegin(),
3500             diag::err_in_class_initializer_non_integral_type)
3501          << Init->getType() << Init->getSourceRange();
3502        VDecl->setInvalidDecl();
3503      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3504        // Check whether the expression is a constant expression.
3505        llvm::APSInt Value;
3506        SourceLocation Loc;
3507        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3508          Diag(Loc, diag::err_in_class_initializer_non_constant)
3509            << Init->getSourceRange();
3510          VDecl->setInvalidDecl();
3511        } else if (!VDecl->getType()->isDependentType())
3512          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3513      }
3514    }
3515  } else if (VDecl->isFileVarDecl()) {
3516    if (VDecl->getStorageClass() == VarDecl::Extern)
3517      Diag(VDecl->getLocation(), diag::warn_extern_init);
3518    if (!VDecl->isInvalidDecl())
3519      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3520                                VDecl->getDeclName(), DirectInit))
3521        VDecl->setInvalidDecl();
3522
3523    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3524    // Don't check invalid declarations to avoid emitting useless diagnostics.
3525    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3526      // C99 6.7.8p4. All file scoped initializers need to be constant.
3527      CheckForConstantInitializer(Init, DclT);
3528    }
3529  }
3530  // If the type changed, it means we had an incomplete type that was
3531  // completed by the initializer. For example:
3532  //   int ary[] = { 1, 3, 5 };
3533  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3534  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3535    VDecl->setType(DclT);
3536    Init->setType(DclT);
3537  }
3538
3539  Init = MaybeCreateCXXExprWithTemporaries(Init,
3540                                           /*ShouldDestroyTemporaries=*/true);
3541  // Attach the initializer to the decl.
3542  VDecl->setInit(Context, Init);
3543
3544  // If the previous declaration of VDecl was a tentative definition,
3545  // remove it from the set of tentative definitions.
3546  if (VDecl->getPreviousDeclaration() &&
3547      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3548    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3549    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3550  }
3551
3552  return;
3553}
3554
3555void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3556                                  bool TypeContainsUndeducedAuto) {
3557  Decl *RealDecl = dcl.getAs<Decl>();
3558
3559  // If there is no declaration, there was an error parsing it. Just ignore it.
3560  if (RealDecl == 0)
3561    return;
3562
3563  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3564    QualType Type = Var->getType();
3565
3566    // Record tentative definitions.
3567    if (Var->isTentativeDefinition(Context)) {
3568      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3569        InsertPair =
3570           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3571
3572      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3573      // want the second one in the map.
3574      InsertPair.first->second = Var;
3575
3576      // However, for the list, we don't care about the order, just make sure
3577      // that there are no dupes for a given declaration name.
3578      if (InsertPair.second)
3579        TentativeDefinitionList.push_back(Var->getDeclName());
3580    }
3581
3582    // C++ [dcl.init.ref]p3:
3583    //   The initializer can be omitted for a reference only in a
3584    //   parameter declaration (8.3.5), in the declaration of a
3585    //   function return type, in the declaration of a class member
3586    //   within its class declaration (9.2), and where the extern
3587    //   specifier is explicitly used.
3588    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3589      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3590        << Var->getDeclName()
3591        << SourceRange(Var->getLocation(), Var->getLocation());
3592      Var->setInvalidDecl();
3593      return;
3594    }
3595
3596    // C++0x [dcl.spec.auto]p3
3597    if (TypeContainsUndeducedAuto) {
3598      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3599        << Var->getDeclName() << Type;
3600      Var->setInvalidDecl();
3601      return;
3602    }
3603
3604    // An array without size is an incomplete type, and there are no special
3605    // rules in C++ to make such a definition acceptable.
3606    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3607        !Var->hasExternalStorage()) {
3608      Diag(Var->getLocation(),
3609           diag::err_typecheck_incomplete_array_needs_initializer);
3610      Var->setInvalidDecl();
3611      return;
3612    }
3613
3614    // C++ [temp.expl.spec]p15:
3615    //   An explicit specialization of a static data member of a template is a
3616    //   definition if the declaration includes an initializer; otherwise, it
3617    //   is a declaration.
3618    if (Var->isStaticDataMember() &&
3619        Var->getInstantiatedFromStaticDataMember() &&
3620        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3621      return;
3622
3623    // C++ [dcl.init]p9:
3624    //   If no initializer is specified for an object, and the object
3625    //   is of (possibly cv-qualified) non-POD class type (or array
3626    //   thereof), the object shall be default-initialized; if the
3627    //   object is of const-qualified type, the underlying class type
3628    //   shall have a user-declared default constructor.
3629    //
3630    // FIXME: Diagnose the "user-declared default constructor" bit.
3631    if (getLangOptions().CPlusPlus) {
3632      QualType InitType = Type;
3633      if (const ArrayType *Array = Context.getAsArrayType(Type))
3634        InitType = Context.getBaseElementType(Array);
3635      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3636          InitType->isRecordType() && !InitType->isDependentType()) {
3637        if (!RequireCompleteType(Var->getLocation(), InitType,
3638                                 diag::err_invalid_incomplete_type_use)) {
3639          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3640
3641          CXXConstructorDecl *Constructor
3642            = PerformInitializationByConstructor(InitType,
3643                                                 MultiExprArg(*this, 0, 0),
3644                                                 Var->getLocation(),
3645                                               SourceRange(Var->getLocation(),
3646                                                           Var->getLocation()),
3647                                                 Var->getDeclName(),
3648                                                 IK_Default,
3649                                                 ConstructorArgs);
3650
3651          // FIXME: Location info for the variable initialization?
3652          if (!Constructor)
3653            Var->setInvalidDecl();
3654          else {
3655            // FIXME: Cope with initialization of arrays
3656            if (!Constructor->isTrivial() &&
3657                InitializeVarWithConstructor(Var, Constructor,
3658                                             move_arg(ConstructorArgs)))
3659              Var->setInvalidDecl();
3660
3661            FinalizeVarWithDestructor(Var, InitType);
3662          }
3663        } else {
3664          Var->setInvalidDecl();
3665        }
3666      }
3667    }
3668
3669#if 0
3670    // FIXME: Temporarily disabled because we are not properly parsing
3671    // linkage specifications on declarations, e.g.,
3672    //
3673    //   extern "C" const CGPoint CGPointerZero;
3674    //
3675    // C++ [dcl.init]p9:
3676    //
3677    //     If no initializer is specified for an object, and the
3678    //     object is of (possibly cv-qualified) non-POD class type (or
3679    //     array thereof), the object shall be default-initialized; if
3680    //     the object is of const-qualified type, the underlying class
3681    //     type shall have a user-declared default
3682    //     constructor. Otherwise, if no initializer is specified for
3683    //     an object, the object and its subobjects, if any, have an
3684    //     indeterminate initial value; if the object or any of its
3685    //     subobjects are of const-qualified type, the program is
3686    //     ill-formed.
3687    //
3688    // This isn't technically an error in C, so we don't diagnose it.
3689    //
3690    // FIXME: Actually perform the POD/user-defined default
3691    // constructor check.
3692    if (getLangOptions().CPlusPlus &&
3693        Context.getCanonicalType(Type).isConstQualified() &&
3694        !Var->hasExternalStorage())
3695      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3696        << Var->getName()
3697        << SourceRange(Var->getLocation(), Var->getLocation());
3698#endif
3699  }
3700}
3701
3702Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3703                                                   DeclPtrTy *Group,
3704                                                   unsigned NumDecls) {
3705  llvm::SmallVector<Decl*, 8> Decls;
3706
3707  if (DS.isTypeSpecOwned())
3708    Decls.push_back((Decl*)DS.getTypeRep());
3709
3710  for (unsigned i = 0; i != NumDecls; ++i)
3711    if (Decl *D = Group[i].getAs<Decl>())
3712      Decls.push_back(D);
3713
3714  // Perform semantic analysis that depends on having fully processed both
3715  // the declarator and initializer.
3716  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3717    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3718    if (!IDecl)
3719      continue;
3720    QualType T = IDecl->getType();
3721
3722    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3723    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3724    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3725      if (T->isDependentType()) {
3726        // If T is dependent, we should not require a complete type.
3727        // (RequireCompleteType shouldn't be called with dependent types.)
3728        // But we still can at least check if we've got an array of unspecified
3729        // size without an initializer.
3730        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3731            !IDecl->getInit()) {
3732          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3733            << T;
3734          IDecl->setInvalidDecl();
3735        }
3736      } else if (!IDecl->isInvalidDecl()) {
3737        // If T is an incomplete array type with an initializer list that is
3738        // dependent on something, its size has not been fixed. We could attempt
3739        // to fix the size for such arrays, but we would still have to check
3740        // here for initializers containing a C++0x vararg expansion, e.g.
3741        // template <typename... Args> void f(Args... args) {
3742        //   int vals[] = { args };
3743        // }
3744        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3745        Expr *Init = IDecl->getInit();
3746        if (IAT && Init &&
3747            (Init->isTypeDependent() || Init->isValueDependent())) {
3748          // Check that the member type of the array is complete, at least.
3749          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3750                                  diag::err_typecheck_decl_incomplete_type))
3751            IDecl->setInvalidDecl();
3752        } else if (RequireCompleteType(IDecl->getLocation(), T,
3753                                      diag::err_typecheck_decl_incomplete_type))
3754          IDecl->setInvalidDecl();
3755      }
3756    }
3757    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3758    // object that has file scope without an initializer, and without a
3759    // storage-class specifier or with the storage-class specifier "static",
3760    // constitutes a tentative definition. Note: A tentative definition with
3761    // external linkage is valid (C99 6.2.2p5).
3762    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3763      if (const IncompleteArrayType *ArrayT
3764          = Context.getAsIncompleteArrayType(T)) {
3765        if (RequireCompleteType(IDecl->getLocation(),
3766                                ArrayT->getElementType(),
3767                                diag::err_illegal_decl_array_incomplete_type))
3768          IDecl->setInvalidDecl();
3769      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3770        // C99 6.9.2p3: If the declaration of an identifier for an object is
3771        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3772        // declared type shall not be an incomplete type.
3773        // NOTE: code such as the following
3774        //     static struct s;
3775        //     struct s { int a; };
3776        // is accepted by gcc. Hence here we issue a warning instead of
3777        // an error and we do not invalidate the static declaration.
3778        // NOTE: to avoid multiple warnings, only check the first declaration.
3779        if (IDecl->getPreviousDeclaration() == 0)
3780          RequireCompleteType(IDecl->getLocation(), T,
3781                              diag::ext_typecheck_decl_incomplete_type);
3782      }
3783    }
3784  }
3785  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3786                                                   Decls.data(), Decls.size()));
3787}
3788
3789
3790/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3791/// to introduce parameters into function prototype scope.
3792Sema::DeclPtrTy
3793Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3794  const DeclSpec &DS = D.getDeclSpec();
3795
3796  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3797  VarDecl::StorageClass StorageClass = VarDecl::None;
3798  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3799    StorageClass = VarDecl::Register;
3800  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3801    Diag(DS.getStorageClassSpecLoc(),
3802         diag::err_invalid_storage_class_in_func_decl);
3803    D.getMutableDeclSpec().ClearStorageClassSpecs();
3804  }
3805
3806  if (D.getDeclSpec().isThreadSpecified())
3807    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3808
3809  DiagnoseFunctionSpecifiers(D);
3810
3811  // Check that there are no default arguments inside the type of this
3812  // parameter (C++ only).
3813  if (getLangOptions().CPlusPlus)
3814    CheckExtraCXXDefaultArguments(D);
3815
3816  DeclaratorInfo *DInfo = 0;
3817  TagDecl *OwnedDecl = 0;
3818  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3819
3820  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3821    // C++ [dcl.fct]p6:
3822    //   Types shall not be defined in return or parameter types.
3823    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3824      << Context.getTypeDeclType(OwnedDecl);
3825  }
3826
3827  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3828  // Can this happen for params?  We already checked that they don't conflict
3829  // among each other.  Here they can only shadow globals, which is ok.
3830  IdentifierInfo *II = D.getIdentifier();
3831  if (II) {
3832    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3833      if (PrevDecl->isTemplateParameter()) {
3834        // Maybe we will complain about the shadowed template parameter.
3835        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3836        // Just pretend that we didn't see the previous declaration.
3837        PrevDecl = 0;
3838      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3839        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3840
3841        // Recover by removing the name
3842        II = 0;
3843        D.SetIdentifier(0, D.getIdentifierLoc());
3844      }
3845    }
3846  }
3847
3848  // Parameters can not be abstract class types.
3849  // For record types, this is done by the AbstractClassUsageDiagnoser once
3850  // the class has been completely parsed.
3851  if (!CurContext->isRecord() &&
3852      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3853                             diag::err_abstract_type_in_decl,
3854                             AbstractParamType))
3855    D.setInvalidType(true);
3856
3857  QualType T = adjustParameterType(parmDeclType);
3858
3859  ParmVarDecl *New
3860    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3861                          T, DInfo, StorageClass, 0);
3862
3863  if (D.isInvalidType())
3864    New->setInvalidDecl();
3865
3866  // Parameter declarators cannot be interface types. All ObjC objects are
3867  // passed by reference.
3868  if (T->isObjCInterfaceType()) {
3869    Diag(D.getIdentifierLoc(),
3870         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3871    New->setInvalidDecl();
3872  }
3873
3874  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3875  if (D.getCXXScopeSpec().isSet()) {
3876    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3877      << D.getCXXScopeSpec().getRange();
3878    New->setInvalidDecl();
3879  }
3880
3881  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3882  // duration shall not be qualified by an address-space qualifier."
3883  // Since all parameters have automatic store duration, they can not have
3884  // an address space.
3885  if (T.getAddressSpace() != 0) {
3886    Diag(D.getIdentifierLoc(),
3887         diag::err_arg_with_address_space);
3888    New->setInvalidDecl();
3889  }
3890
3891
3892  // Add the parameter declaration into this scope.
3893  S->AddDecl(DeclPtrTy::make(New));
3894  if (II)
3895    IdResolver.AddDecl(New);
3896
3897  ProcessDeclAttributes(S, New, D);
3898
3899  if (New->hasAttr<BlocksAttr>()) {
3900    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3901  }
3902  return DeclPtrTy::make(New);
3903}
3904
3905void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3906                                           SourceLocation LocAfterDecls) {
3907  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3908         "Not a function declarator!");
3909  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3910
3911  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3912  // for a K&R function.
3913  if (!FTI.hasPrototype) {
3914    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3915      --i;
3916      if (FTI.ArgInfo[i].Param == 0) {
3917        llvm::SmallString<256> Code;
3918        llvm::raw_svector_ostream(Code) << "  int "
3919                                        << FTI.ArgInfo[i].Ident->getName()
3920                                        << ";\n";
3921        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3922          << FTI.ArgInfo[i].Ident
3923          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3924
3925        // Implicitly declare the argument as type 'int' for lack of a better
3926        // type.
3927        DeclSpec DS;
3928        const char* PrevSpec; // unused
3929        unsigned DiagID; // unused
3930        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3931                           PrevSpec, DiagID);
3932        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3933        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3934        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3935      }
3936    }
3937  }
3938}
3939
3940Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3941                                              Declarator &D) {
3942  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3943  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3944         "Not a function declarator!");
3945  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3946
3947  if (FTI.hasPrototype) {
3948    // FIXME: Diagnose arguments without names in C.
3949  }
3950
3951  Scope *ParentScope = FnBodyScope->getParent();
3952
3953  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3954                                  MultiTemplateParamsArg(*this),
3955                                  /*IsFunctionDefinition=*/true);
3956  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3957}
3958
3959Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3960  // Clear the last template instantiation error context.
3961  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3962
3963  if (!D)
3964    return D;
3965  FunctionDecl *FD = 0;
3966
3967  if (FunctionTemplateDecl *FunTmpl
3968        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3969    FD = FunTmpl->getTemplatedDecl();
3970  else
3971    FD = cast<FunctionDecl>(D.getAs<Decl>());
3972
3973  CurFunctionNeedsScopeChecking = false;
3974
3975  // See if this is a redefinition.
3976  const FunctionDecl *Definition;
3977  if (FD->getBody(Definition)) {
3978    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3979    Diag(Definition->getLocation(), diag::note_previous_definition);
3980  }
3981
3982  // Builtin functions cannot be defined.
3983  if (unsigned BuiltinID = FD->getBuiltinID()) {
3984    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3985      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3986      FD->setInvalidDecl();
3987    }
3988  }
3989
3990  // The return type of a function definition must be complete
3991  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3992  QualType ResultType = FD->getResultType();
3993  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3994      !FD->isInvalidDecl() &&
3995      RequireCompleteType(FD->getLocation(), ResultType,
3996                          diag::err_func_def_incomplete_result))
3997    FD->setInvalidDecl();
3998
3999  // GNU warning -Wmissing-prototypes:
4000  //   Warn if a global function is defined without a previous
4001  //   prototype declaration. This warning is issued even if the
4002  //   definition itself provides a prototype. The aim is to detect
4003  //   global functions that fail to be declared in header files.
4004  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
4005      !FD->isMain()) {
4006    bool MissingPrototype = true;
4007    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4008         Prev; Prev = Prev->getPreviousDeclaration()) {
4009      // Ignore any declarations that occur in function or method
4010      // scope, because they aren't visible from the header.
4011      if (Prev->getDeclContext()->isFunctionOrMethod())
4012        continue;
4013
4014      MissingPrototype = !Prev->getType()->isFunctionProtoType();
4015      break;
4016    }
4017
4018    if (MissingPrototype)
4019      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4020  }
4021
4022  if (FnBodyScope)
4023    PushDeclContext(FnBodyScope, FD);
4024
4025  // Check the validity of our function parameters
4026  CheckParmsForFunctionDef(FD);
4027
4028  // Introduce our parameters into the function scope
4029  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4030    ParmVarDecl *Param = FD->getParamDecl(p);
4031    Param->setOwningFunction(FD);
4032
4033    // If this has an identifier, add it to the scope stack.
4034    if (Param->getIdentifier() && FnBodyScope)
4035      PushOnScopeChains(Param, FnBodyScope);
4036  }
4037
4038  // Checking attributes of current function definition
4039  // dllimport attribute.
4040  if (FD->getAttr<DLLImportAttr>() &&
4041      (!FD->getAttr<DLLExportAttr>())) {
4042    // dllimport attribute cannot be applied to definition.
4043    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4044      Diag(FD->getLocation(),
4045           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4046        << "dllimport";
4047      FD->setInvalidDecl();
4048      return DeclPtrTy::make(FD);
4049    } else {
4050      // If a symbol previously declared dllimport is later defined, the
4051      // attribute is ignored in subsequent references, and a warning is
4052      // emitted.
4053      Diag(FD->getLocation(),
4054           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4055        << FD->getNameAsCString() << "dllimport";
4056    }
4057  }
4058  return DeclPtrTy::make(FD);
4059}
4060
4061Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4062  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4063}
4064
4065Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4066                                              bool IsInstantiation) {
4067  Decl *dcl = D.getAs<Decl>();
4068  Stmt *Body = BodyArg.takeAs<Stmt>();
4069
4070  FunctionDecl *FD = 0;
4071  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4072  if (FunTmpl)
4073    FD = FunTmpl->getTemplatedDecl();
4074  else
4075    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4076
4077  if (FD) {
4078    FD->setBody(Body);
4079    if (FD->isMain())
4080      // C and C++ allow for main to automagically return 0.
4081      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4082      FD->setHasImplicitReturnZero(true);
4083    else
4084      CheckFallThroughForFunctionDef(FD, Body);
4085
4086    if (!FD->isInvalidDecl())
4087      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4088
4089    // C++ [basic.def.odr]p2:
4090    //   [...] A virtual member function is used if it is not pure. [...]
4091    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4092      if (Method->isVirtual() && !Method->isPure())
4093        MarkDeclarationReferenced(Method->getLocation(), Method);
4094
4095    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4096  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4097    assert(MD == getCurMethodDecl() && "Method parsing confused");
4098    MD->setBody(Body);
4099    CheckFallThroughForFunctionDef(MD, Body);
4100    MD->setEndLoc(Body->getLocEnd());
4101
4102    if (!MD->isInvalidDecl())
4103      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4104  } else {
4105    Body->Destroy(Context);
4106    return DeclPtrTy();
4107  }
4108  if (!IsInstantiation)
4109    PopDeclContext();
4110
4111  // Verify and clean out per-function state.
4112
4113  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4114
4115  // Check goto/label use.
4116  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4117       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4118    LabelStmt *L = I->second;
4119
4120    // Verify that we have no forward references left.  If so, there was a goto
4121    // or address of a label taken, but no definition of it.  Label fwd
4122    // definitions are indicated with a null substmt.
4123    if (L->getSubStmt() != 0)
4124      continue;
4125
4126    // Emit error.
4127    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4128
4129    // At this point, we have gotos that use the bogus label.  Stitch it into
4130    // the function body so that they aren't leaked and that the AST is well
4131    // formed.
4132    if (Body == 0) {
4133      // The whole function wasn't parsed correctly, just delete this.
4134      L->Destroy(Context);
4135      continue;
4136    }
4137
4138    // Otherwise, the body is valid: we want to stitch the label decl into the
4139    // function somewhere so that it is properly owned and so that the goto
4140    // has a valid target.  Do this by creating a new compound stmt with the
4141    // label in it.
4142
4143    // Give the label a sub-statement.
4144    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4145
4146    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4147                               cast<CXXTryStmt>(Body)->getTryBlock() :
4148                               cast<CompoundStmt>(Body);
4149    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4150    Elements.push_back(L);
4151    Compound->setStmts(Context, &Elements[0], Elements.size());
4152  }
4153  FunctionLabelMap.clear();
4154
4155  if (!Body) return D;
4156
4157  // Verify that that gotos and switch cases don't jump into scopes illegally.
4158  if (CurFunctionNeedsScopeChecking)
4159    DiagnoseInvalidJumps(Body);
4160
4161  // C++ constructors that have function-try-blocks can't have return
4162  // statements in the handlers of that block. (C++ [except.handle]p14)
4163  // Verify this.
4164  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4165    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4166
4167  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4168    MarkBaseAndMemberDestructorsReferenced(Destructor);
4169
4170  // If any errors have occurred, clear out any temporaries that may have
4171  // been leftover. This ensures that these temporaries won't be picked up for
4172  // deletion in some later function.
4173  if (PP.getDiagnostics().hasErrorOccurred())
4174    ExprTemporaries.clear();
4175
4176  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4177  return D;
4178}
4179
4180/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4181/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4182NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4183                                          IdentifierInfo &II, Scope *S) {
4184  // Before we produce a declaration for an implicitly defined
4185  // function, see whether there was a locally-scoped declaration of
4186  // this name as a function or variable. If so, use that
4187  // (non-visible) declaration, and complain about it.
4188  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4189    = LocallyScopedExternalDecls.find(&II);
4190  if (Pos != LocallyScopedExternalDecls.end()) {
4191    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4192    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4193    return Pos->second;
4194  }
4195
4196  // Extension in C99.  Legal in C90, but warn about it.
4197  if (II.getName().startswith("__builtin_"))
4198    Diag(Loc, diag::warn_builtin_unknown) << &II;
4199  else if (getLangOptions().C99)
4200    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4201  else
4202    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4203
4204  // Set a Declarator for the implicit definition: int foo();
4205  const char *Dummy;
4206  DeclSpec DS;
4207  unsigned DiagID;
4208  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4209  Error = Error; // Silence warning.
4210  assert(!Error && "Error setting up implicit decl!");
4211  Declarator D(DS, Declarator::BlockContext);
4212  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4213                                             0, 0, false, SourceLocation(),
4214                                             false, 0,0,0, Loc, Loc, D),
4215                SourceLocation());
4216  D.SetIdentifier(&II, Loc);
4217
4218  // Insert this function into translation-unit scope.
4219
4220  DeclContext *PrevDC = CurContext;
4221  CurContext = Context.getTranslationUnitDecl();
4222
4223  FunctionDecl *FD =
4224 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4225  FD->setImplicit();
4226
4227  CurContext = PrevDC;
4228
4229  AddKnownFunctionAttributes(FD);
4230
4231  return FD;
4232}
4233
4234/// \brief Adds any function attributes that we know a priori based on
4235/// the declaration of this function.
4236///
4237/// These attributes can apply both to implicitly-declared builtins
4238/// (like __builtin___printf_chk) or to library-declared functions
4239/// like NSLog or printf.
4240void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4241  if (FD->isInvalidDecl())
4242    return;
4243
4244  // If this is a built-in function, map its builtin attributes to
4245  // actual attributes.
4246  if (unsigned BuiltinID = FD->getBuiltinID()) {
4247    // Handle printf-formatting attributes.
4248    unsigned FormatIdx;
4249    bool HasVAListArg;
4250    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4251      if (!FD->getAttr<FormatAttr>())
4252        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4253                                             HasVAListArg ? 0 : FormatIdx + 2));
4254    }
4255
4256    // Mark const if we don't care about errno and that is the only
4257    // thing preventing the function from being const. This allows
4258    // IRgen to use LLVM intrinsics for such functions.
4259    if (!getLangOptions().MathErrno &&
4260        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4261      if (!FD->getAttr<ConstAttr>())
4262        FD->addAttr(::new (Context) ConstAttr());
4263    }
4264
4265    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4266      FD->addAttr(::new (Context) NoReturnAttr());
4267  }
4268
4269  IdentifierInfo *Name = FD->getIdentifier();
4270  if (!Name)
4271    return;
4272  if ((!getLangOptions().CPlusPlus &&
4273       FD->getDeclContext()->isTranslationUnit()) ||
4274      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4275       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4276       LinkageSpecDecl::lang_c)) {
4277    // Okay: this could be a libc/libm/Objective-C function we know
4278    // about.
4279  } else
4280    return;
4281
4282  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4283    // FIXME: NSLog and NSLogv should be target specific
4284    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4285      // FIXME: We known better than our headers.
4286      const_cast<FormatAttr *>(Format)->setType("printf");
4287    } else
4288      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4289                                             Name->isStr("NSLogv") ? 0 : 2));
4290  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4291    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4292    // target-specific builtins, perhaps?
4293    if (!FD->getAttr<FormatAttr>())
4294      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4295                                             Name->isStr("vasprintf") ? 0 : 3));
4296  }
4297}
4298
4299TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4300                                    DeclaratorInfo *DInfo) {
4301  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4302  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4303
4304  if (!DInfo) {
4305    assert(D.isInvalidType() && "no declarator info for valid type");
4306    DInfo = Context.getTrivialDeclaratorInfo(T);
4307  }
4308
4309  // Scope manipulation handled by caller.
4310  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4311                                           D.getIdentifierLoc(),
4312                                           D.getIdentifier(),
4313                                           DInfo);
4314
4315  if (const TagType *TT = T->getAs<TagType>()) {
4316    TagDecl *TD = TT->getDecl();
4317
4318    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4319    // keep track of the TypedefDecl.
4320    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4321      TD->setTypedefForAnonDecl(NewTD);
4322  }
4323
4324  if (D.isInvalidType())
4325    NewTD->setInvalidDecl();
4326  return NewTD;
4327}
4328
4329
4330/// \brief Determine whether a tag with a given kind is acceptable
4331/// as a redeclaration of the given tag declaration.
4332///
4333/// \returns true if the new tag kind is acceptable, false otherwise.
4334bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4335                                        TagDecl::TagKind NewTag,
4336                                        SourceLocation NewTagLoc,
4337                                        const IdentifierInfo &Name) {
4338  // C++ [dcl.type.elab]p3:
4339  //   The class-key or enum keyword present in the
4340  //   elaborated-type-specifier shall agree in kind with the
4341  //   declaration to which the name in theelaborated-type-specifier
4342  //   refers. This rule also applies to the form of
4343  //   elaborated-type-specifier that declares a class-name or
4344  //   friend class since it can be construed as referring to the
4345  //   definition of the class. Thus, in any
4346  //   elaborated-type-specifier, the enum keyword shall be used to
4347  //   refer to an enumeration (7.2), the union class-keyshall be
4348  //   used to refer to a union (clause 9), and either the class or
4349  //   struct class-key shall be used to refer to a class (clause 9)
4350  //   declared using the class or struct class-key.
4351  TagDecl::TagKind OldTag = Previous->getTagKind();
4352  if (OldTag == NewTag)
4353    return true;
4354
4355  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4356      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4357    // Warn about the struct/class tag mismatch.
4358    bool isTemplate = false;
4359    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4360      isTemplate = Record->getDescribedClassTemplate();
4361
4362    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4363      << (NewTag == TagDecl::TK_class)
4364      << isTemplate << &Name
4365      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4366                              OldTag == TagDecl::TK_class? "class" : "struct");
4367    Diag(Previous->getLocation(), diag::note_previous_use);
4368    return true;
4369  }
4370  return false;
4371}
4372
4373/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4374/// former case, Name will be non-null.  In the later case, Name will be null.
4375/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4376/// reference/declaration/definition of a tag.
4377Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4378                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4379                               IdentifierInfo *Name, SourceLocation NameLoc,
4380                               AttributeList *Attr, AccessSpecifier AS,
4381                               MultiTemplateParamsArg TemplateParameterLists,
4382                               bool &OwnedDecl, bool &IsDependent) {
4383  // If this is not a definition, it must have a name.
4384  assert((Name != 0 || TUK == TUK_Definition) &&
4385         "Nameless record must be a definition!");
4386
4387  OwnedDecl = false;
4388  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4389
4390  // FIXME: Check explicit specializations more carefully.
4391  bool isExplicitSpecialization = false;
4392  if (TUK != TUK_Reference) {
4393    if (TemplateParameterList *TemplateParams
4394          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4395                        (TemplateParameterList**)TemplateParameterLists.get(),
4396                                              TemplateParameterLists.size(),
4397                                                    isExplicitSpecialization)) {
4398      if (TemplateParams->size() > 0) {
4399        // This is a declaration or definition of a class template (which may
4400        // be a member of another template).
4401        OwnedDecl = false;
4402        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4403                                               SS, Name, NameLoc, Attr,
4404                                               TemplateParams,
4405                                               AS);
4406        TemplateParameterLists.release();
4407        return Result.get();
4408      } else {
4409        // The "template<>" header is extraneous.
4410        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4411          << ElaboratedType::getNameForTagKind(Kind) << Name;
4412        isExplicitSpecialization = true;
4413      }
4414    }
4415
4416    TemplateParameterLists.release();
4417  }
4418
4419  DeclContext *SearchDC = CurContext;
4420  DeclContext *DC = CurContext;
4421  bool isStdBadAlloc = false;
4422  bool Invalid = false;
4423
4424  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4425                                                   : NotForRedeclaration);
4426
4427  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4428
4429  if (Name && SS.isNotEmpty()) {
4430    // We have a nested-name tag ('struct foo::bar').
4431
4432    // Check for invalid 'foo::'.
4433    if (SS.isInvalid()) {
4434      Name = 0;
4435      goto CreateNewDecl;
4436    }
4437
4438    // If this is a friend or a reference to a class in a dependent
4439    // context, don't try to make a decl for it.
4440    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4441      DC = computeDeclContext(SS, false);
4442      if (!DC) {
4443        IsDependent = true;
4444        return DeclPtrTy();
4445      }
4446    }
4447
4448    if (RequireCompleteDeclContext(SS))
4449      return DeclPtrTy::make((Decl *)0);
4450
4451    DC = computeDeclContext(SS, true);
4452    SearchDC = DC;
4453    // Look-up name inside 'foo::'.
4454    LookupQualifiedName(Previous, DC);
4455
4456    if (Previous.isAmbiguous())
4457      return DeclPtrTy();
4458
4459    // A tag 'foo::bar' must already exist.
4460    if (Previous.empty()) {
4461      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4462      Name = 0;
4463      Invalid = true;
4464      goto CreateNewDecl;
4465    }
4466  } else if (Name) {
4467    // If this is a named struct, check to see if there was a previous forward
4468    // declaration or definition.
4469    // FIXME: We're looking into outer scopes here, even when we
4470    // shouldn't be. Doing so can result in ambiguities that we
4471    // shouldn't be diagnosing.
4472    LookupName(Previous, S);
4473
4474    // Note:  there used to be some attempt at recovery here.
4475    if (Previous.isAmbiguous())
4476      return DeclPtrTy();
4477
4478    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4479      // FIXME: This makes sure that we ignore the contexts associated
4480      // with C structs, unions, and enums when looking for a matching
4481      // tag declaration or definition. See the similar lookup tweak
4482      // in Sema::LookupName; is there a better way to deal with this?
4483      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4484        SearchDC = SearchDC->getParent();
4485    }
4486  }
4487
4488  if (Previous.isSingleResult() &&
4489      Previous.getFoundDecl()->isTemplateParameter()) {
4490    // Maybe we will complain about the shadowed template parameter.
4491    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4492    // Just pretend that we didn't see the previous declaration.
4493    Previous.clear();
4494  }
4495
4496  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4497      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4498    // This is a declaration of or a reference to "std::bad_alloc".
4499    isStdBadAlloc = true;
4500
4501    if (Previous.empty() && StdBadAlloc) {
4502      // std::bad_alloc has been implicitly declared (but made invisible to
4503      // name lookup). Fill in this implicit declaration as the previous
4504      // declaration, so that the declarations get chained appropriately.
4505      Previous.addDecl(StdBadAlloc);
4506    }
4507  }
4508
4509  if (!Previous.empty()) {
4510    assert(Previous.isSingleResult());
4511    NamedDecl *PrevDecl = Previous.getFoundDecl();
4512    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4513      // If this is a use of a previous tag, or if the tag is already declared
4514      // in the same scope (so that the definition/declaration completes or
4515      // rementions the tag), reuse the decl.
4516      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4517          isDeclInScope(PrevDecl, SearchDC, S)) {
4518        // Make sure that this wasn't declared as an enum and now used as a
4519        // struct or something similar.
4520        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4521          bool SafeToContinue
4522            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4523               Kind != TagDecl::TK_enum);
4524          if (SafeToContinue)
4525            Diag(KWLoc, diag::err_use_with_wrong_tag)
4526              << Name
4527              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4528                                                  PrevTagDecl->getKindName());
4529          else
4530            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4531          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4532
4533          if (SafeToContinue)
4534            Kind = PrevTagDecl->getTagKind();
4535          else {
4536            // Recover by making this an anonymous redefinition.
4537            Name = 0;
4538            Previous.clear();
4539            Invalid = true;
4540          }
4541        }
4542
4543        if (!Invalid) {
4544          // If this is a use, just return the declaration we found.
4545
4546          // FIXME: In the future, return a variant or some other clue
4547          // for the consumer of this Decl to know it doesn't own it.
4548          // For our current ASTs this shouldn't be a problem, but will
4549          // need to be changed with DeclGroups.
4550          if (TUK == TUK_Reference || TUK == TUK_Friend)
4551            return DeclPtrTy::make(PrevTagDecl);
4552
4553          // Diagnose attempts to redefine a tag.
4554          if (TUK == TUK_Definition) {
4555            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4556              // If we're defining a specialization and the previous definition
4557              // is from an implicit instantiation, don't emit an error
4558              // here; we'll catch this in the general case below.
4559              if (!isExplicitSpecialization ||
4560                  !isa<CXXRecordDecl>(Def) ||
4561                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4562                                               == TSK_ExplicitSpecialization) {
4563                Diag(NameLoc, diag::err_redefinition) << Name;
4564                Diag(Def->getLocation(), diag::note_previous_definition);
4565                // If this is a redefinition, recover by making this
4566                // struct be anonymous, which will make any later
4567                // references get the previous definition.
4568                Name = 0;
4569                Previous.clear();
4570                Invalid = true;
4571              }
4572            } else {
4573              // If the type is currently being defined, complain
4574              // about a nested redefinition.
4575              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4576              if (Tag->isBeingDefined()) {
4577                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4578                Diag(PrevTagDecl->getLocation(),
4579                     diag::note_previous_definition);
4580                Name = 0;
4581                Previous.clear();
4582                Invalid = true;
4583              }
4584            }
4585
4586            // Okay, this is definition of a previously declared or referenced
4587            // tag PrevDecl. We're going to create a new Decl for it.
4588          }
4589        }
4590        // If we get here we have (another) forward declaration or we
4591        // have a definition.  Just create a new decl.
4592
4593      } else {
4594        // If we get here, this is a definition of a new tag type in a nested
4595        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4596        // new decl/type.  We set PrevDecl to NULL so that the entities
4597        // have distinct types.
4598        Previous.clear();
4599      }
4600      // If we get here, we're going to create a new Decl. If PrevDecl
4601      // is non-NULL, it's a definition of the tag declared by
4602      // PrevDecl. If it's NULL, we have a new definition.
4603    } else {
4604      // PrevDecl is a namespace, template, or anything else
4605      // that lives in the IDNS_Tag identifier namespace.
4606      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4607        // The tag name clashes with a namespace name, issue an error and
4608        // recover by making this tag be anonymous.
4609        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4610        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4611        Name = 0;
4612        Previous.clear();
4613        Invalid = true;
4614      } else {
4615        // The existing declaration isn't relevant to us; we're in a
4616        // new scope, so clear out the previous declaration.
4617        Previous.clear();
4618      }
4619    }
4620  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4621             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4622    // C++ [basic.scope.pdecl]p5:
4623    //   -- for an elaborated-type-specifier of the form
4624    //
4625    //          class-key identifier
4626    //
4627    //      if the elaborated-type-specifier is used in the
4628    //      decl-specifier-seq or parameter-declaration-clause of a
4629    //      function defined in namespace scope, the identifier is
4630    //      declared as a class-name in the namespace that contains
4631    //      the declaration; otherwise, except as a friend
4632    //      declaration, the identifier is declared in the smallest
4633    //      non-class, non-function-prototype scope that contains the
4634    //      declaration.
4635    //
4636    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4637    // C structs and unions.
4638    //
4639    // GNU C also supports this behavior as part of its incomplete
4640    // enum types extension, while GNU C++ does not.
4641    //
4642    // Find the context where we'll be declaring the tag.
4643    // FIXME: We would like to maintain the current DeclContext as the
4644    // lexical context,
4645    while (SearchDC->isRecord())
4646      SearchDC = SearchDC->getParent();
4647
4648    // Find the scope where we'll be declaring the tag.
4649    while (S->isClassScope() ||
4650           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4651           ((S->getFlags() & Scope::DeclScope) == 0) ||
4652           (S->getEntity() &&
4653            ((DeclContext *)S->getEntity())->isTransparentContext()))
4654      S = S->getParent();
4655
4656  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4657    // C++ [namespace.memdef]p3:
4658    //   If a friend declaration in a non-local class first declares a
4659    //   class or function, the friend class or function is a member of
4660    //   the innermost enclosing namespace.
4661    while (!SearchDC->isFileContext())
4662      SearchDC = SearchDC->getParent();
4663
4664    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4665    while (S->getEntity() != SearchDC)
4666      S = S->getParent();
4667  }
4668
4669CreateNewDecl:
4670
4671  TagDecl *PrevDecl = 0;
4672  if (Previous.isSingleResult())
4673    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4674
4675  // If there is an identifier, use the location of the identifier as the
4676  // location of the decl, otherwise use the location of the struct/union
4677  // keyword.
4678  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4679
4680  // Otherwise, create a new declaration. If there is a previous
4681  // declaration of the same entity, the two will be linked via
4682  // PrevDecl.
4683  TagDecl *New;
4684
4685  if (Kind == TagDecl::TK_enum) {
4686    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4687    // enum X { A, B, C } D;    D should chain to X.
4688    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4689                           cast_or_null<EnumDecl>(PrevDecl));
4690    // If this is an undefined enum, warn.
4691    if (TUK != TUK_Definition && !Invalid)  {
4692      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4693                                              : diag::ext_forward_ref_enum;
4694      Diag(Loc, DK);
4695    }
4696  } else {
4697    // struct/union/class
4698
4699    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4700    // struct X { int A; } D;    D should chain to X.
4701    if (getLangOptions().CPlusPlus) {
4702      // FIXME: Look for a way to use RecordDecl for simple structs.
4703      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4704                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4705
4706      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4707        StdBadAlloc = cast<CXXRecordDecl>(New);
4708    } else
4709      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4710                               cast_or_null<RecordDecl>(PrevDecl));
4711  }
4712
4713  if (Kind != TagDecl::TK_enum) {
4714    // Handle #pragma pack: if the #pragma pack stack has non-default
4715    // alignment, make up a packed attribute for this decl. These
4716    // attributes are checked when the ASTContext lays out the
4717    // structure.
4718    //
4719    // It is important for implementing the correct semantics that this
4720    // happen here (in act on tag decl). The #pragma pack stack is
4721    // maintained as a result of parser callbacks which can occur at
4722    // many points during the parsing of a struct declaration (because
4723    // the #pragma tokens are effectively skipped over during the
4724    // parsing of the struct).
4725    if (unsigned Alignment = getPragmaPackAlignment())
4726      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4727  }
4728
4729  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4730    // C++ [dcl.typedef]p3:
4731    //   [...] Similarly, in a given scope, a class or enumeration
4732    //   shall not be declared with the same name as a typedef-name
4733    //   that is declared in that scope and refers to a type other
4734    //   than the class or enumeration itself.
4735    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4736                        ForRedeclaration);
4737    LookupName(Lookup, S);
4738    TypedefDecl *PrevTypedef = 0;
4739    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4740      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4741
4742    NamedDecl *PrevTypedefNamed = PrevTypedef;
4743    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4744        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4745          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4746      Diag(Loc, diag::err_tag_definition_of_typedef)
4747        << Context.getTypeDeclType(New)
4748        << PrevTypedef->getUnderlyingType();
4749      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4750      Invalid = true;
4751    }
4752  }
4753
4754  // If this is a specialization of a member class (of a class template),
4755  // check the specialization.
4756  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4757    Invalid = true;
4758
4759  if (Invalid)
4760    New->setInvalidDecl();
4761
4762  if (Attr)
4763    ProcessDeclAttributeList(S, New, Attr);
4764
4765  // If we're declaring or defining a tag in function prototype scope
4766  // in C, note that this type can only be used within the function.
4767  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4768    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4769
4770  // Set the lexical context. If the tag has a C++ scope specifier, the
4771  // lexical context will be different from the semantic context.
4772  New->setLexicalDeclContext(CurContext);
4773
4774  // Mark this as a friend decl if applicable.
4775  if (TUK == TUK_Friend)
4776    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4777
4778  // Set the access specifier.
4779  if (!Invalid && TUK != TUK_Friend)
4780    SetMemberAccessSpecifier(New, PrevDecl, AS);
4781
4782  if (TUK == TUK_Definition)
4783    New->startDefinition();
4784
4785  // If this has an identifier, add it to the scope stack.
4786  if (TUK == TUK_Friend) {
4787    // We might be replacing an existing declaration in the lookup tables;
4788    // if so, borrow its access specifier.
4789    if (PrevDecl)
4790      New->setAccess(PrevDecl->getAccess());
4791
4792    // Friend tag decls are visible in fairly strange ways.
4793    if (!CurContext->isDependentContext()) {
4794      DeclContext *DC = New->getDeclContext()->getLookupContext();
4795      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4796      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4797        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4798    }
4799  } else if (Name) {
4800    S = getNonFieldDeclScope(S);
4801    PushOnScopeChains(New, S);
4802  } else {
4803    CurContext->addDecl(New);
4804  }
4805
4806  // If this is the C FILE type, notify the AST context.
4807  if (IdentifierInfo *II = New->getIdentifier())
4808    if (!New->isInvalidDecl() &&
4809        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4810        II->isStr("FILE"))
4811      Context.setFILEDecl(New);
4812
4813  OwnedDecl = true;
4814  return DeclPtrTy::make(New);
4815}
4816
4817void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4818  AdjustDeclIfTemplate(TagD);
4819  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4820
4821  // Enter the tag context.
4822  PushDeclContext(S, Tag);
4823
4824  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4825    FieldCollector->StartClass();
4826
4827    if (Record->getIdentifier()) {
4828      // C++ [class]p2:
4829      //   [...] The class-name is also inserted into the scope of the
4830      //   class itself; this is known as the injected-class-name. For
4831      //   purposes of access checking, the injected-class-name is treated
4832      //   as if it were a public member name.
4833      CXXRecordDecl *InjectedClassName
4834        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4835                                CurContext, Record->getLocation(),
4836                                Record->getIdentifier(),
4837                                Record->getTagKeywordLoc(),
4838                                Record);
4839      InjectedClassName->setImplicit();
4840      InjectedClassName->setAccess(AS_public);
4841      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4842        InjectedClassName->setDescribedClassTemplate(Template);
4843      PushOnScopeChains(InjectedClassName, S);
4844      assert(InjectedClassName->isInjectedClassName() &&
4845             "Broken injected-class-name");
4846    }
4847  }
4848}
4849
4850void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4851                                    SourceLocation RBraceLoc) {
4852  AdjustDeclIfTemplate(TagD);
4853  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4854  Tag->setRBraceLoc(RBraceLoc);
4855
4856  if (isa<CXXRecordDecl>(Tag))
4857    FieldCollector->FinishClass();
4858
4859  // Exit this scope of this tag's definition.
4860  PopDeclContext();
4861
4862  // Notify the consumer that we've defined a tag.
4863  Consumer.HandleTagDeclDefinition(Tag);
4864}
4865
4866// Note that FieldName may be null for anonymous bitfields.
4867bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4868                          QualType FieldTy, const Expr *BitWidth,
4869                          bool *ZeroWidth) {
4870  // Default to true; that shouldn't confuse checks for emptiness
4871  if (ZeroWidth)
4872    *ZeroWidth = true;
4873
4874  // C99 6.7.2.1p4 - verify the field type.
4875  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4876  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4877    // Handle incomplete types with specific error.
4878    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4879      return true;
4880    if (FieldName)
4881      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4882        << FieldName << FieldTy << BitWidth->getSourceRange();
4883    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4884      << FieldTy << BitWidth->getSourceRange();
4885  }
4886
4887  // If the bit-width is type- or value-dependent, don't try to check
4888  // it now.
4889  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4890    return false;
4891
4892  llvm::APSInt Value;
4893  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4894    return true;
4895
4896  if (Value != 0 && ZeroWidth)
4897    *ZeroWidth = false;
4898
4899  // Zero-width bitfield is ok for anonymous field.
4900  if (Value == 0 && FieldName)
4901    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4902
4903  if (Value.isSigned() && Value.isNegative()) {
4904    if (FieldName)
4905      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4906               << FieldName << Value.toString(10);
4907    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4908      << Value.toString(10);
4909  }
4910
4911  if (!FieldTy->isDependentType()) {
4912    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4913    if (Value.getZExtValue() > TypeSize) {
4914      if (FieldName)
4915        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4916          << FieldName << (unsigned)TypeSize;
4917      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4918        << (unsigned)TypeSize;
4919    }
4920  }
4921
4922  return false;
4923}
4924
4925/// ActOnField - Each field of a struct/union/class is passed into this in order
4926/// to create a FieldDecl object for it.
4927Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4928                                 SourceLocation DeclStart,
4929                                 Declarator &D, ExprTy *BitfieldWidth) {
4930  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4931                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4932                               AS_public);
4933  return DeclPtrTy::make(Res);
4934}
4935
4936/// HandleField - Analyze a field of a C struct or a C++ data member.
4937///
4938FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4939                             SourceLocation DeclStart,
4940                             Declarator &D, Expr *BitWidth,
4941                             AccessSpecifier AS) {
4942  IdentifierInfo *II = D.getIdentifier();
4943  SourceLocation Loc = DeclStart;
4944  if (II) Loc = D.getIdentifierLoc();
4945
4946  DeclaratorInfo *DInfo = 0;
4947  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4948  if (getLangOptions().CPlusPlus)
4949    CheckExtraCXXDefaultArguments(D);
4950
4951  DiagnoseFunctionSpecifiers(D);
4952
4953  if (D.getDeclSpec().isThreadSpecified())
4954    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4955
4956  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
4957                                         ForRedeclaration);
4958
4959  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4960    // Maybe we will complain about the shadowed template parameter.
4961    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4962    // Just pretend that we didn't see the previous declaration.
4963    PrevDecl = 0;
4964  }
4965
4966  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4967    PrevDecl = 0;
4968
4969  bool Mutable
4970    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4971  SourceLocation TSSL = D.getSourceRange().getBegin();
4972  FieldDecl *NewFD
4973    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4974                     AS, PrevDecl, &D);
4975  if (NewFD->isInvalidDecl() && PrevDecl) {
4976    // Don't introduce NewFD into scope; there's already something
4977    // with the same name in the same scope.
4978  } else if (II) {
4979    PushOnScopeChains(NewFD, S);
4980  } else
4981    Record->addDecl(NewFD);
4982
4983  return NewFD;
4984}
4985
4986/// \brief Build a new FieldDecl and check its well-formedness.
4987///
4988/// This routine builds a new FieldDecl given the fields name, type,
4989/// record, etc. \p PrevDecl should refer to any previous declaration
4990/// with the same name and in the same scope as the field to be
4991/// created.
4992///
4993/// \returns a new FieldDecl.
4994///
4995/// \todo The Declarator argument is a hack. It will be removed once
4996FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4997                                DeclaratorInfo *DInfo,
4998                                RecordDecl *Record, SourceLocation Loc,
4999                                bool Mutable, Expr *BitWidth,
5000                                SourceLocation TSSL,
5001                                AccessSpecifier AS, NamedDecl *PrevDecl,
5002                                Declarator *D) {
5003  IdentifierInfo *II = Name.getAsIdentifierInfo();
5004  bool InvalidDecl = false;
5005  if (D) InvalidDecl = D->isInvalidType();
5006
5007  // If we receive a broken type, recover by assuming 'int' and
5008  // marking this declaration as invalid.
5009  if (T.isNull()) {
5010    InvalidDecl = true;
5011    T = Context.IntTy;
5012  }
5013
5014  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5015  // than a variably modified type.
5016  if (T->isVariablyModifiedType()) {
5017    bool SizeIsNegative;
5018    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5019                                                           SizeIsNegative);
5020    if (!FixedTy.isNull()) {
5021      Diag(Loc, diag::warn_illegal_constant_array_size);
5022      T = FixedTy;
5023    } else {
5024      if (SizeIsNegative)
5025        Diag(Loc, diag::err_typecheck_negative_array_size);
5026      else
5027        Diag(Loc, diag::err_typecheck_field_variable_size);
5028      InvalidDecl = true;
5029    }
5030  }
5031
5032  // Fields can not have abstract class types
5033  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
5034                             AbstractFieldType))
5035    InvalidDecl = true;
5036
5037  bool ZeroWidth = false;
5038  // If this is declared as a bit-field, check the bit-field.
5039  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5040    InvalidDecl = true;
5041    DeleteExpr(BitWidth);
5042    BitWidth = 0;
5043    ZeroWidth = false;
5044  }
5045
5046  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
5047                                       BitWidth, Mutable);
5048  if (InvalidDecl)
5049    NewFD->setInvalidDecl();
5050
5051  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5052    Diag(Loc, diag::err_duplicate_member) << II;
5053    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5054    NewFD->setInvalidDecl();
5055  }
5056
5057  if (getLangOptions().CPlusPlus) {
5058    QualType EltTy = Context.getBaseElementType(T);
5059
5060    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5061
5062    if (!T->isPODType())
5063      CXXRecord->setPOD(false);
5064    if (!ZeroWidth)
5065      CXXRecord->setEmpty(false);
5066
5067    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5068      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5069
5070      if (!RDecl->hasTrivialConstructor())
5071        CXXRecord->setHasTrivialConstructor(false);
5072      if (!RDecl->hasTrivialCopyConstructor())
5073        CXXRecord->setHasTrivialCopyConstructor(false);
5074      if (!RDecl->hasTrivialCopyAssignment())
5075        CXXRecord->setHasTrivialCopyAssignment(false);
5076      if (!RDecl->hasTrivialDestructor())
5077        CXXRecord->setHasTrivialDestructor(false);
5078
5079      // C++ 9.5p1: An object of a class with a non-trivial
5080      // constructor, a non-trivial copy constructor, a non-trivial
5081      // destructor, or a non-trivial copy assignment operator
5082      // cannot be a member of a union, nor can an array of such
5083      // objects.
5084      // TODO: C++0x alters this restriction significantly.
5085      if (Record->isUnion()) {
5086        // We check for copy constructors before constructors
5087        // because otherwise we'll never get complaints about
5088        // copy constructors.
5089
5090        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5091
5092        CXXSpecialMember member;
5093        if (!RDecl->hasTrivialCopyConstructor())
5094          member = CXXCopyConstructor;
5095        else if (!RDecl->hasTrivialConstructor())
5096          member = CXXDefaultConstructor;
5097        else if (!RDecl->hasTrivialCopyAssignment())
5098          member = CXXCopyAssignment;
5099        else if (!RDecl->hasTrivialDestructor())
5100          member = CXXDestructor;
5101        else
5102          member = invalid;
5103
5104        if (member != invalid) {
5105          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5106          DiagnoseNontrivial(RT, member);
5107          NewFD->setInvalidDecl();
5108        }
5109      }
5110    }
5111  }
5112
5113  // FIXME: We need to pass in the attributes given an AST
5114  // representation, not a parser representation.
5115  if (D)
5116    // FIXME: What to pass instead of TUScope?
5117    ProcessDeclAttributes(TUScope, NewFD, *D);
5118
5119  if (T.isObjCGCWeak())
5120    Diag(Loc, diag::warn_attribute_weak_on_field);
5121
5122  NewFD->setAccess(AS);
5123
5124  // C++ [dcl.init.aggr]p1:
5125  //   An aggregate is an array or a class (clause 9) with [...] no
5126  //   private or protected non-static data members (clause 11).
5127  // A POD must be an aggregate.
5128  if (getLangOptions().CPlusPlus &&
5129      (AS == AS_private || AS == AS_protected)) {
5130    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5131    CXXRecord->setAggregate(false);
5132    CXXRecord->setPOD(false);
5133  }
5134
5135  return NewFD;
5136}
5137
5138/// DiagnoseNontrivial - Given that a class has a non-trivial
5139/// special member, figure out why.
5140void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5141  QualType QT(T, 0U);
5142  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5143
5144  // Check whether the member was user-declared.
5145  switch (member) {
5146  case CXXDefaultConstructor:
5147    if (RD->hasUserDeclaredConstructor()) {
5148      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5149      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5150        const FunctionDecl *body = 0;
5151        ci->getBody(body);
5152        if (!body ||
5153            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5154          SourceLocation CtorLoc = ci->getLocation();
5155          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5156          return;
5157        }
5158      }
5159
5160      assert(0 && "found no user-declared constructors");
5161      return;
5162    }
5163    break;
5164
5165  case CXXCopyConstructor:
5166    if (RD->hasUserDeclaredCopyConstructor()) {
5167      SourceLocation CtorLoc =
5168        RD->getCopyConstructor(Context, 0)->getLocation();
5169      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5170      return;
5171    }
5172    break;
5173
5174  case CXXCopyAssignment:
5175    if (RD->hasUserDeclaredCopyAssignment()) {
5176      // FIXME: this should use the location of the copy
5177      // assignment, not the type.
5178      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5179      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5180      return;
5181    }
5182    break;
5183
5184  case CXXDestructor:
5185    if (RD->hasUserDeclaredDestructor()) {
5186      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5187      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5188      return;
5189    }
5190    break;
5191  }
5192
5193  typedef CXXRecordDecl::base_class_iterator base_iter;
5194
5195  // Virtual bases and members inhibit trivial copying/construction,
5196  // but not trivial destruction.
5197  if (member != CXXDestructor) {
5198    // Check for virtual bases.  vbases includes indirect virtual bases,
5199    // so we just iterate through the direct bases.
5200    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5201      if (bi->isVirtual()) {
5202        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5203        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5204        return;
5205      }
5206
5207    // Check for virtual methods.
5208    typedef CXXRecordDecl::method_iterator meth_iter;
5209    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5210         ++mi) {
5211      if (mi->isVirtual()) {
5212        SourceLocation MLoc = mi->getSourceRange().getBegin();
5213        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5214        return;
5215      }
5216    }
5217  }
5218
5219  bool (CXXRecordDecl::*hasTrivial)() const;
5220  switch (member) {
5221  case CXXDefaultConstructor:
5222    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5223  case CXXCopyConstructor:
5224    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5225  case CXXCopyAssignment:
5226    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5227  case CXXDestructor:
5228    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5229  default:
5230    assert(0 && "unexpected special member"); return;
5231  }
5232
5233  // Check for nontrivial bases (and recurse).
5234  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5235    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5236    assert(BaseRT && "Don't know how to handle dependent bases");
5237    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5238    if (!(BaseRecTy->*hasTrivial)()) {
5239      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5240      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5241      DiagnoseNontrivial(BaseRT, member);
5242      return;
5243    }
5244  }
5245
5246  // Check for nontrivial members (and recurse).
5247  typedef RecordDecl::field_iterator field_iter;
5248  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5249       ++fi) {
5250    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5251    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5252      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5253
5254      if (!(EltRD->*hasTrivial)()) {
5255        SourceLocation FLoc = (*fi)->getLocation();
5256        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5257        DiagnoseNontrivial(EltRT, member);
5258        return;
5259      }
5260    }
5261  }
5262
5263  assert(0 && "found no explanation for non-trivial member");
5264}
5265
5266/// TranslateIvarVisibility - Translate visibility from a token ID to an
5267///  AST enum value.
5268static ObjCIvarDecl::AccessControl
5269TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5270  switch (ivarVisibility) {
5271  default: assert(0 && "Unknown visitibility kind");
5272  case tok::objc_private: return ObjCIvarDecl::Private;
5273  case tok::objc_public: return ObjCIvarDecl::Public;
5274  case tok::objc_protected: return ObjCIvarDecl::Protected;
5275  case tok::objc_package: return ObjCIvarDecl::Package;
5276  }
5277}
5278
5279/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5280/// in order to create an IvarDecl object for it.
5281Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5282                                SourceLocation DeclStart,
5283                                DeclPtrTy IntfDecl,
5284                                Declarator &D, ExprTy *BitfieldWidth,
5285                                tok::ObjCKeywordKind Visibility) {
5286
5287  IdentifierInfo *II = D.getIdentifier();
5288  Expr *BitWidth = (Expr*)BitfieldWidth;
5289  SourceLocation Loc = DeclStart;
5290  if (II) Loc = D.getIdentifierLoc();
5291
5292  // FIXME: Unnamed fields can be handled in various different ways, for
5293  // example, unnamed unions inject all members into the struct namespace!
5294
5295  DeclaratorInfo *DInfo = 0;
5296  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5297
5298  if (BitWidth) {
5299    // 6.7.2.1p3, 6.7.2.1p4
5300    if (VerifyBitField(Loc, II, T, BitWidth)) {
5301      D.setInvalidType();
5302      DeleteExpr(BitWidth);
5303      BitWidth = 0;
5304    }
5305  } else {
5306    // Not a bitfield.
5307
5308    // validate II.
5309
5310  }
5311
5312  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5313  // than a variably modified type.
5314  if (T->isVariablyModifiedType()) {
5315    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5316    D.setInvalidType();
5317  }
5318
5319  // Get the visibility (access control) for this ivar.
5320  ObjCIvarDecl::AccessControl ac =
5321    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5322                                        : ObjCIvarDecl::None;
5323  // Must set ivar's DeclContext to its enclosing interface.
5324  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5325  DeclContext *EnclosingContext;
5326  if (ObjCImplementationDecl *IMPDecl =
5327      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5328    // Case of ivar declared in an implementation. Context is that of its class.
5329    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5330    assert(IDecl && "No class- ActOnIvar");
5331    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5332  } else
5333    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5334  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5335
5336  // Construct the decl.
5337  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5338                                             EnclosingContext, Loc, II, T,
5339                                             DInfo, ac, (Expr *)BitfieldWidth);
5340
5341  if (II) {
5342    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5343                                           ForRedeclaration);
5344    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5345        && !isa<TagDecl>(PrevDecl)) {
5346      Diag(Loc, diag::err_duplicate_member) << II;
5347      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5348      NewID->setInvalidDecl();
5349    }
5350  }
5351
5352  // Process attributes attached to the ivar.
5353  ProcessDeclAttributes(S, NewID, D);
5354
5355  if (D.isInvalidType())
5356    NewID->setInvalidDecl();
5357
5358  if (II) {
5359    // FIXME: When interfaces are DeclContexts, we'll need to add
5360    // these to the interface.
5361    S->AddDecl(DeclPtrTy::make(NewID));
5362    IdResolver.AddDecl(NewID);
5363  }
5364
5365  return DeclPtrTy::make(NewID);
5366}
5367
5368void Sema::ActOnFields(Scope* S,
5369                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5370                       DeclPtrTy *Fields, unsigned NumFields,
5371                       SourceLocation LBrac, SourceLocation RBrac,
5372                       AttributeList *Attr) {
5373  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5374  assert(EnclosingDecl && "missing record or interface decl");
5375
5376  // If the decl this is being inserted into is invalid, then it may be a
5377  // redeclaration or some other bogus case.  Don't try to add fields to it.
5378  if (EnclosingDecl->isInvalidDecl()) {
5379    // FIXME: Deallocate fields?
5380    return;
5381  }
5382
5383
5384  // Verify that all the fields are okay.
5385  unsigned NumNamedMembers = 0;
5386  llvm::SmallVector<FieldDecl*, 32> RecFields;
5387
5388  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5389  for (unsigned i = 0; i != NumFields; ++i) {
5390    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5391
5392    // Get the type for the field.
5393    Type *FDTy = FD->getType().getTypePtr();
5394
5395    if (!FD->isAnonymousStructOrUnion()) {
5396      // Remember all fields written by the user.
5397      RecFields.push_back(FD);
5398    }
5399
5400    // If the field is already invalid for some reason, don't emit more
5401    // diagnostics about it.
5402    if (FD->isInvalidDecl())
5403      continue;
5404
5405    // C99 6.7.2.1p2:
5406    //   A structure or union shall not contain a member with
5407    //   incomplete or function type (hence, a structure shall not
5408    //   contain an instance of itself, but may contain a pointer to
5409    //   an instance of itself), except that the last member of a
5410    //   structure with more than one named member may have incomplete
5411    //   array type; such a structure (and any union containing,
5412    //   possibly recursively, a member that is such a structure)
5413    //   shall not be a member of a structure or an element of an
5414    //   array.
5415    if (FDTy->isFunctionType()) {
5416      // Field declared as a function.
5417      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5418        << FD->getDeclName();
5419      FD->setInvalidDecl();
5420      EnclosingDecl->setInvalidDecl();
5421      continue;
5422    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5423               Record && Record->isStruct()) {
5424      // Flexible array member.
5425      if (NumNamedMembers < 1) {
5426        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5427          << FD->getDeclName();
5428        FD->setInvalidDecl();
5429        EnclosingDecl->setInvalidDecl();
5430        continue;
5431      }
5432      // Okay, we have a legal flexible array member at the end of the struct.
5433      if (Record)
5434        Record->setHasFlexibleArrayMember(true);
5435    } else if (!FDTy->isDependentType() &&
5436               RequireCompleteType(FD->getLocation(), FD->getType(),
5437                                   diag::err_field_incomplete)) {
5438      // Incomplete type
5439      FD->setInvalidDecl();
5440      EnclosingDecl->setInvalidDecl();
5441      continue;
5442    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5443      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5444        // If this is a member of a union, then entire union becomes "flexible".
5445        if (Record && Record->isUnion()) {
5446          Record->setHasFlexibleArrayMember(true);
5447        } else {
5448          // If this is a struct/class and this is not the last element, reject
5449          // it.  Note that GCC supports variable sized arrays in the middle of
5450          // structures.
5451          if (i != NumFields-1)
5452            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5453              << FD->getDeclName() << FD->getType();
5454          else {
5455            // We support flexible arrays at the end of structs in
5456            // other structs as an extension.
5457            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5458              << FD->getDeclName();
5459            if (Record)
5460              Record->setHasFlexibleArrayMember(true);
5461          }
5462        }
5463      }
5464      if (Record && FDTTy->getDecl()->hasObjectMember())
5465        Record->setHasObjectMember(true);
5466    } else if (FDTy->isObjCInterfaceType()) {
5467      /// A field cannot be an Objective-c object
5468      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5469      FD->setInvalidDecl();
5470      EnclosingDecl->setInvalidDecl();
5471      continue;
5472    } else if (getLangOptions().ObjC1 &&
5473               getLangOptions().getGCMode() != LangOptions::NonGC &&
5474               Record &&
5475               (FD->getType()->isObjCObjectPointerType() ||
5476                FD->getType().isObjCGCStrong()))
5477      Record->setHasObjectMember(true);
5478    // Keep track of the number of named members.
5479    if (FD->getIdentifier())
5480      ++NumNamedMembers;
5481  }
5482
5483  // Okay, we successfully defined 'Record'.
5484  if (Record) {
5485    Record->completeDefinition(Context);
5486  } else {
5487    ObjCIvarDecl **ClsFields =
5488      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5489    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5490      ID->setIVarList(ClsFields, RecFields.size(), Context);
5491      ID->setLocEnd(RBrac);
5492      // Add ivar's to class's DeclContext.
5493      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5494        ClsFields[i]->setLexicalDeclContext(ID);
5495        ID->addDecl(ClsFields[i]);
5496      }
5497      // Must enforce the rule that ivars in the base classes may not be
5498      // duplicates.
5499      if (ID->getSuperClass()) {
5500        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5501             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5502          ObjCIvarDecl* Ivar = (*IVI);
5503
5504          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5505            ObjCIvarDecl* prevIvar =
5506              ID->getSuperClass()->lookupInstanceVariable(II);
5507            if (prevIvar) {
5508              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5509              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5510            }
5511          }
5512        }
5513      }
5514    } else if (ObjCImplementationDecl *IMPDecl =
5515                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5516      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5517      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5518        // Ivar declared in @implementation never belongs to the implementation.
5519        // Only it is in implementation's lexical context.
5520        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5521      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5522    }
5523  }
5524
5525  if (Attr)
5526    ProcessDeclAttributeList(S, Record, Attr);
5527}
5528
5529EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5530                                          EnumConstantDecl *LastEnumConst,
5531                                          SourceLocation IdLoc,
5532                                          IdentifierInfo *Id,
5533                                          ExprArg val) {
5534  Expr *Val = (Expr *)val.get();
5535
5536  llvm::APSInt EnumVal(32);
5537  QualType EltTy;
5538  if (Val) {
5539    if (Val->isTypeDependent())
5540      EltTy = Context.DependentTy;
5541    else {
5542      // Make sure to promote the operand type to int.
5543      UsualUnaryConversions(Val);
5544      if (Val != val.get()) {
5545        val.release();
5546        val = Val;
5547      }
5548
5549      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5550      SourceLocation ExpLoc;
5551      if (!Val->isValueDependent() &&
5552          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5553        Val = 0;
5554      } else {
5555        EltTy = Val->getType();
5556      }
5557    }
5558  }
5559
5560  if (!Val) {
5561    if (LastEnumConst) {
5562      // Assign the last value + 1.
5563      EnumVal = LastEnumConst->getInitVal();
5564      ++EnumVal;
5565
5566      // Check for overflow on increment.
5567      if (EnumVal < LastEnumConst->getInitVal())
5568        Diag(IdLoc, diag::warn_enum_value_overflow);
5569
5570      EltTy = LastEnumConst->getType();
5571    } else {
5572      // First value, set to zero.
5573      EltTy = Context.IntTy;
5574      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5575    }
5576  }
5577
5578  assert(!EltTy.isNull() && "Enum constant with NULL type");
5579
5580  val.release();
5581  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5582                                  Val, EnumVal);
5583}
5584
5585
5586Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5587                                        DeclPtrTy lastEnumConst,
5588                                        SourceLocation IdLoc,
5589                                        IdentifierInfo *Id,
5590                                        SourceLocation EqualLoc, ExprTy *val) {
5591  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5592  EnumConstantDecl *LastEnumConst =
5593    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5594  Expr *Val = static_cast<Expr*>(val);
5595
5596  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5597  // we find one that is.
5598  S = getNonFieldDeclScope(S);
5599
5600  // Verify that there isn't already something declared with this name in this
5601  // scope.
5602  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5603  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5604    // Maybe we will complain about the shadowed template parameter.
5605    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5606    // Just pretend that we didn't see the previous declaration.
5607    PrevDecl = 0;
5608  }
5609
5610  if (PrevDecl) {
5611    // When in C++, we may get a TagDecl with the same name; in this case the
5612    // enum constant will 'hide' the tag.
5613    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5614           "Received TagDecl when not in C++!");
5615    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5616      if (isa<EnumConstantDecl>(PrevDecl))
5617        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5618      else
5619        Diag(IdLoc, diag::err_redefinition) << Id;
5620      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5621      if (Val) Val->Destroy(Context);
5622      return DeclPtrTy();
5623    }
5624  }
5625
5626  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5627                                            IdLoc, Id, Owned(Val));
5628
5629  // Register this decl in the current scope stack.
5630  if (New)
5631    PushOnScopeChains(New, S);
5632
5633  return DeclPtrTy::make(New);
5634}
5635
5636void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5637                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5638                         DeclPtrTy *Elements, unsigned NumElements,
5639                         Scope *S, AttributeList *Attr) {
5640  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5641  QualType EnumType = Context.getTypeDeclType(Enum);
5642
5643  if (Attr)
5644    ProcessDeclAttributeList(S, Enum, Attr);
5645
5646  // TODO: If the result value doesn't fit in an int, it must be a long or long
5647  // long value.  ISO C does not support this, but GCC does as an extension,
5648  // emit a warning.
5649  unsigned IntWidth = Context.Target.getIntWidth();
5650  unsigned CharWidth = Context.Target.getCharWidth();
5651  unsigned ShortWidth = Context.Target.getShortWidth();
5652
5653  // Verify that all the values are okay, compute the size of the values, and
5654  // reverse the list.
5655  unsigned NumNegativeBits = 0;
5656  unsigned NumPositiveBits = 0;
5657
5658  // Keep track of whether all elements have type int.
5659  bool AllElementsInt = true;
5660
5661  for (unsigned i = 0; i != NumElements; ++i) {
5662    EnumConstantDecl *ECD =
5663      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5664    if (!ECD) continue;  // Already issued a diagnostic.
5665
5666    // If the enum value doesn't fit in an int, emit an extension warning.
5667    const llvm::APSInt &InitVal = ECD->getInitVal();
5668    assert(InitVal.getBitWidth() >= IntWidth &&
5669           "Should have promoted value to int");
5670    if (InitVal.getBitWidth() > IntWidth) {
5671      llvm::APSInt V(InitVal);
5672      V.trunc(IntWidth);
5673      V.extend(InitVal.getBitWidth());
5674      if (V != InitVal)
5675        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5676          << InitVal.toString(10);
5677    }
5678
5679    // Keep track of the size of positive and negative values.
5680    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5681      NumPositiveBits = std::max(NumPositiveBits,
5682                                 (unsigned)InitVal.getActiveBits());
5683    else
5684      NumNegativeBits = std::max(NumNegativeBits,
5685                                 (unsigned)InitVal.getMinSignedBits());
5686
5687    // Keep track of whether every enum element has type int (very commmon).
5688    if (AllElementsInt)
5689      AllElementsInt = ECD->getType() == Context.IntTy;
5690  }
5691
5692  // Figure out the type that should be used for this enum.
5693  // FIXME: Support -fshort-enums.
5694  QualType BestType;
5695  unsigned BestWidth;
5696
5697  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5698
5699  if (NumNegativeBits) {
5700    // If there is a negative value, figure out the smallest integer type (of
5701    // int/long/longlong) that fits.
5702    // If it's packed, check also if it fits a char or a short.
5703    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5704        BestType = Context.SignedCharTy;
5705        BestWidth = CharWidth;
5706    } else if (Packed && NumNegativeBits <= ShortWidth &&
5707               NumPositiveBits < ShortWidth) {
5708        BestType = Context.ShortTy;
5709        BestWidth = ShortWidth;
5710    }
5711    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5712      BestType = Context.IntTy;
5713      BestWidth = IntWidth;
5714    } else {
5715      BestWidth = Context.Target.getLongWidth();
5716
5717      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5718        BestType = Context.LongTy;
5719      else {
5720        BestWidth = Context.Target.getLongLongWidth();
5721
5722        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5723          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5724        BestType = Context.LongLongTy;
5725      }
5726    }
5727  } else {
5728    // If there is no negative value, figure out which of uint, ulong, ulonglong
5729    // fits.
5730    // If it's packed, check also if it fits a char or a short.
5731    if (Packed && NumPositiveBits <= CharWidth) {
5732        BestType = Context.UnsignedCharTy;
5733        BestWidth = CharWidth;
5734    } else if (Packed && NumPositiveBits <= ShortWidth) {
5735        BestType = Context.UnsignedShortTy;
5736        BestWidth = ShortWidth;
5737    }
5738    else if (NumPositiveBits <= IntWidth) {
5739      BestType = Context.UnsignedIntTy;
5740      BestWidth = IntWidth;
5741    } else if (NumPositiveBits <=
5742               (BestWidth = Context.Target.getLongWidth())) {
5743      BestType = Context.UnsignedLongTy;
5744    } else {
5745      BestWidth = Context.Target.getLongLongWidth();
5746      assert(NumPositiveBits <= BestWidth &&
5747             "How could an initializer get larger than ULL?");
5748      BestType = Context.UnsignedLongLongTy;
5749    }
5750  }
5751
5752  // Loop over all of the enumerator constants, changing their types to match
5753  // the type of the enum if needed.
5754  for (unsigned i = 0; i != NumElements; ++i) {
5755    EnumConstantDecl *ECD =
5756      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5757    if (!ECD) continue;  // Already issued a diagnostic.
5758
5759    // Standard C says the enumerators have int type, but we allow, as an
5760    // extension, the enumerators to be larger than int size.  If each
5761    // enumerator value fits in an int, type it as an int, otherwise type it the
5762    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5763    // that X has type 'int', not 'unsigned'.
5764    if (ECD->getType() == Context.IntTy) {
5765      // Make sure the init value is signed.
5766      llvm::APSInt IV = ECD->getInitVal();
5767      IV.setIsSigned(true);
5768      ECD->setInitVal(IV);
5769
5770      if (getLangOptions().CPlusPlus)
5771        // C++ [dcl.enum]p4: Following the closing brace of an
5772        // enum-specifier, each enumerator has the type of its
5773        // enumeration.
5774        ECD->setType(EnumType);
5775      continue;  // Already int type.
5776    }
5777
5778    // Determine whether the value fits into an int.
5779    llvm::APSInt InitVal = ECD->getInitVal();
5780    bool FitsInInt;
5781    if (InitVal.isUnsigned() || !InitVal.isNegative())
5782      FitsInInt = InitVal.getActiveBits() < IntWidth;
5783    else
5784      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5785
5786    // If it fits into an integer type, force it.  Otherwise force it to match
5787    // the enum decl type.
5788    QualType NewTy;
5789    unsigned NewWidth;
5790    bool NewSign;
5791    if (FitsInInt) {
5792      NewTy = Context.IntTy;
5793      NewWidth = IntWidth;
5794      NewSign = true;
5795    } else if (ECD->getType() == BestType) {
5796      // Already the right type!
5797      if (getLangOptions().CPlusPlus)
5798        // C++ [dcl.enum]p4: Following the closing brace of an
5799        // enum-specifier, each enumerator has the type of its
5800        // enumeration.
5801        ECD->setType(EnumType);
5802      continue;
5803    } else {
5804      NewTy = BestType;
5805      NewWidth = BestWidth;
5806      NewSign = BestType->isSignedIntegerType();
5807    }
5808
5809    // Adjust the APSInt value.
5810    InitVal.extOrTrunc(NewWidth);
5811    InitVal.setIsSigned(NewSign);
5812    ECD->setInitVal(InitVal);
5813
5814    // Adjust the Expr initializer and type.
5815    if (ECD->getInitExpr())
5816      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5817                                                      CastExpr::CK_IntegralCast,
5818                                                      ECD->getInitExpr(),
5819                                                      /*isLvalue=*/false));
5820    if (getLangOptions().CPlusPlus)
5821      // C++ [dcl.enum]p4: Following the closing brace of an
5822      // enum-specifier, each enumerator has the type of its
5823      // enumeration.
5824      ECD->setType(EnumType);
5825    else
5826      ECD->setType(NewTy);
5827  }
5828
5829  Enum->completeDefinition(Context, BestType);
5830}
5831
5832Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5833                                            ExprArg expr) {
5834  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5835
5836  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5837                                                   Loc, AsmString);
5838  CurContext->addDecl(New);
5839  return DeclPtrTy::make(New);
5840}
5841
5842void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5843                             SourceLocation PragmaLoc,
5844                             SourceLocation NameLoc) {
5845  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5846
5847  if (PrevDecl) {
5848    PrevDecl->addAttr(::new (Context) WeakAttr());
5849  } else {
5850    (void)WeakUndeclaredIdentifiers.insert(
5851      std::pair<IdentifierInfo*,WeakInfo>
5852        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5853  }
5854}
5855
5856void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5857                                IdentifierInfo* AliasName,
5858                                SourceLocation PragmaLoc,
5859                                SourceLocation NameLoc,
5860                                SourceLocation AliasNameLoc) {
5861  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5862  WeakInfo W = WeakInfo(Name, NameLoc);
5863
5864  if (PrevDecl) {
5865    if (!PrevDecl->hasAttr<AliasAttr>())
5866      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5867        DeclApplyPragmaWeak(TUScope, ND, W);
5868  } else {
5869    (void)WeakUndeclaredIdentifiers.insert(
5870      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5871  }
5872}
5873