SemaDecl.cpp revision 6edde614a8ee027693598fd8a97d8c403a92b505
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS) {
65  // C++ [temp.res]p3:
66  //   A qualified-id that refers to a type and in which the
67  //   nested-name-specifier depends on a template-parameter (14.6.2)
68  //   shall be prefixed by the keyword typename to indicate that the
69  //   qualified-id denotes a type, forming an
70  //   elaborated-type-specifier (7.1.5.3).
71  //
72  // We therefore do not perform any name lookup if the result would
73  // refer to a member of an unknown specialization.
74  if (SS && isUnknownSpecialization(*SS))
75    return 0;
76
77  LookupResult Result
78    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
79
80  NamedDecl *IIDecl = 0;
81  switch (Result.getKind()) {
82  case LookupResult::NotFound:
83  case LookupResult::FoundOverloaded:
84    return 0;
85
86  case LookupResult::AmbiguousBaseSubobjectTypes:
87  case LookupResult::AmbiguousBaseSubobjects:
88  case LookupResult::AmbiguousReference: {
89    // Look to see if we have a type anywhere in the list of results.
90    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
91         Res != ResEnd; ++Res) {
92      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
93        if (!IIDecl ||
94            (*Res)->getLocation().getRawEncoding() <
95              IIDecl->getLocation().getRawEncoding())
96          IIDecl = *Res;
97      }
98    }
99
100    if (!IIDecl) {
101      // None of the entities we found is a type, so there is no way
102      // to even assume that the result is a type. In this case, don't
103      // complain about the ambiguity. The parser will either try to
104      // perform this lookup again (e.g., as an object name), which
105      // will produce the ambiguity, or will complain that it expected
106      // a type name.
107      Result.Destroy();
108      return 0;
109    }
110
111    // We found a type within the ambiguous lookup; diagnose the
112    // ambiguity and then return that type. This might be the right
113    // answer, or it might not be, but it suppresses any attempt to
114    // perform the name lookup again.
115    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
116    break;
117  }
118
119  case LookupResult::Found:
120    IIDecl = Result.getAsDecl();
121    break;
122  }
123
124  if (IIDecl) {
125    QualType T;
126
127    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
128      // Check whether we can use this type
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      if (getLangOptions().CPlusPlus) {
132        // C++ [temp.local]p2:
133        //   Within the scope of a class template specialization or
134        //   partial specialization, when the injected-class-name is
135        //   not followed by a <, it is equivalent to the
136        //   injected-class-name followed by the template-argument s
137        //   of the class template specialization or partial
138        //   specialization enclosed in <>.
139        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
140          if (RD->isInjectedClassName())
141            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
142              T = Template->getInjectedClassNameType(Context);
143      }
144
145      if (T.isNull())
146        T = Context.getTypeDeclType(TD);
147    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
148      // Check whether we can use this interface.
149      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151      T = Context.getObjCInterfaceType(IDecl);
152    } else
153      return 0;
154
155    if (SS)
156      T = getQualifiedNameType(*SS, T);
157
158    return T.getAsOpaquePtr();
159  }
160
161  return 0;
162}
163
164/// isTagName() - This method is called *for error recovery purposes only*
165/// to determine if the specified name is a valid tag name ("struct foo").  If
166/// so, this returns the TST for the tag corresponding to it (TST_enum,
167/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
168/// where the user forgot to specify the tag.
169DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
170  // Do a tag name lookup in this scope.
171  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
172  if (R.getKind() == LookupResult::Found)
173    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
174      switch (TD->getTagKind()) {
175      case TagDecl::TK_struct: return DeclSpec::TST_struct;
176      case TagDecl::TK_union:  return DeclSpec::TST_union;
177      case TagDecl::TK_class:  return DeclSpec::TST_class;
178      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
179      }
180    }
181
182  return DeclSpec::TST_unspecified;
183}
184
185
186
187DeclContext *Sema::getContainingDC(DeclContext *DC) {
188  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
189    // A C++ out-of-line method will return to the file declaration context.
190    if (MD->isOutOfLine())
191      return MD->getLexicalDeclContext();
192
193    // A C++ inline method is parsed *after* the topmost class it was declared
194    // in is fully parsed (it's "complete").
195    // The parsing of a C++ inline method happens at the declaration context of
196    // the topmost (non-nested) class it is lexically declared in.
197    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
198    DC = MD->getParent();
199    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
200      DC = RD;
201
202    // Return the declaration context of the topmost class the inline method is
203    // declared in.
204    return DC;
205  }
206
207  if (isa<ObjCMethodDecl>(DC))
208    return Context.getTranslationUnitDecl();
209
210  return DC->getLexicalParent();
211}
212
213void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
214  assert(getContainingDC(DC) == CurContext &&
215      "The next DeclContext should be lexically contained in the current one.");
216  CurContext = DC;
217  S->setEntity(DC);
218}
219
220void Sema::PopDeclContext() {
221  assert(CurContext && "DeclContext imbalance!");
222
223  CurContext = getContainingDC(CurContext);
224}
225
226/// EnterDeclaratorContext - Used when we must lookup names in the context
227/// of a declarator's nested name specifier.
228void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
229  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
230  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
231  CurContext = DC;
232  assert(CurContext && "No context?");
233  S->setEntity(CurContext);
234}
235
236void Sema::ExitDeclaratorContext(Scope *S) {
237  S->setEntity(PreDeclaratorDC);
238  PreDeclaratorDC = 0;
239
240  // Reset CurContext to the nearest enclosing context.
241  while (!S->getEntity() && S->getParent())
242    S = S->getParent();
243  CurContext = static_cast<DeclContext*>(S->getEntity());
244  assert(CurContext && "No context?");
245}
246
247/// \brief Determine whether we allow overloading of the function
248/// PrevDecl with another declaration.
249///
250/// This routine determines whether overloading is possible, not
251/// whether some new function is actually an overload. It will return
252/// true in C++ (where we can always provide overloads) or, as an
253/// extension, in C when the previous function is already an
254/// overloaded function declaration or has the "overloadable"
255/// attribute.
256static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
257  if (Context.getLangOptions().CPlusPlus)
258    return true;
259
260  if (isa<OverloadedFunctionDecl>(PrevDecl))
261    return true;
262
263  return PrevDecl->getAttr<OverloadableAttr>() != 0;
264}
265
266/// Add this decl to the scope shadowed decl chains.
267void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
268  // Move up the scope chain until we find the nearest enclosing
269  // non-transparent context. The declaration will be introduced into this
270  // scope.
271  while (S->getEntity() &&
272         ((DeclContext *)S->getEntity())->isTransparentContext())
273    S = S->getParent();
274
275  S->AddDecl(DeclPtrTy::make(D));
276
277  // Add scoped declarations into their context, so that they can be
278  // found later. Declarations without a context won't be inserted
279  // into any context.
280  CurContext->addDecl(D);
281
282  // C++ [basic.scope]p4:
283  //   -- exactly one declaration shall declare a class name or
284  //   enumeration name that is not a typedef name and the other
285  //   declarations shall all refer to the same object or
286  //   enumerator, or all refer to functions and function templates;
287  //   in this case the class name or enumeration name is hidden.
288  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
289    // We are pushing the name of a tag (enum or class).
290    if (CurContext->getLookupContext()
291          == TD->getDeclContext()->getLookupContext()) {
292      // We're pushing the tag into the current context, which might
293      // require some reshuffling in the identifier resolver.
294      IdentifierResolver::iterator
295        I = IdResolver.begin(TD->getDeclName()),
296        IEnd = IdResolver.end();
297      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
298        NamedDecl *PrevDecl = *I;
299        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
300             PrevDecl = *I, ++I) {
301          if (TD->declarationReplaces(*I)) {
302            // This is a redeclaration. Remove it from the chain and
303            // break out, so that we'll add in the shadowed
304            // declaration.
305            S->RemoveDecl(DeclPtrTy::make(*I));
306            if (PrevDecl == *I) {
307              IdResolver.RemoveDecl(*I);
308              IdResolver.AddDecl(TD);
309              return;
310            } else {
311              IdResolver.RemoveDecl(*I);
312              break;
313            }
314          }
315        }
316
317        // There is already a declaration with the same name in the same
318        // scope, which is not a tag declaration. It must be found
319        // before we find the new declaration, so insert the new
320        // declaration at the end of the chain.
321        IdResolver.AddShadowedDecl(TD, PrevDecl);
322
323        return;
324      }
325    }
326  } else if ((isa<FunctionDecl>(D) &&
327              AllowOverloadingOfFunction(D, Context)) ||
328             isa<FunctionTemplateDecl>(D)) {
329    // We are pushing the name of a function or function template,
330    // which might be an overloaded name.
331    IdentifierResolver::iterator Redecl
332      = std::find_if(IdResolver.begin(D->getDeclName()),
333                     IdResolver.end(),
334                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
335                                  D));
336    if (Redecl != IdResolver.end() &&
337        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
338      // There is already a declaration of a function on our
339      // IdResolver chain. Replace it with this declaration.
340      S->RemoveDecl(DeclPtrTy::make(*Redecl));
341      IdResolver.RemoveDecl(*Redecl);
342    }
343  } else if (isa<ObjCInterfaceDecl>(D)) {
344    // We're pushing an Objective-C interface into the current
345    // context. If there is already an alias declaration, remove it first.
346    for (IdentifierResolver::iterator
347           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
348         I != IEnd; ++I) {
349      if (isa<ObjCCompatibleAliasDecl>(*I)) {
350        S->RemoveDecl(DeclPtrTy::make(*I));
351        IdResolver.RemoveDecl(*I);
352        break;
353      }
354    }
355  }
356
357  IdResolver.AddDecl(D);
358}
359
360void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
361  if (S->decl_empty()) return;
362  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
363	 "Scope shouldn't contain decls!");
364
365  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
366       I != E; ++I) {
367    Decl *TmpD = (*I).getAs<Decl>();
368    assert(TmpD && "This decl didn't get pushed??");
369
370    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
371    NamedDecl *D = cast<NamedDecl>(TmpD);
372
373    if (!D->getDeclName()) continue;
374
375    // Remove this name from our lexical scope.
376    IdResolver.RemoveDecl(D);
377  }
378}
379
380/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
381/// return 0 if one not found.
382ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
383  // The third "scope" argument is 0 since we aren't enabling lazy built-in
384  // creation from this context.
385  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
386
387  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
388}
389
390/// getNonFieldDeclScope - Retrieves the innermost scope, starting
391/// from S, where a non-field would be declared. This routine copes
392/// with the difference between C and C++ scoping rules in structs and
393/// unions. For example, the following code is well-formed in C but
394/// ill-formed in C++:
395/// @code
396/// struct S6 {
397///   enum { BAR } e;
398/// };
399///
400/// void test_S6() {
401///   struct S6 a;
402///   a.e = BAR;
403/// }
404/// @endcode
405/// For the declaration of BAR, this routine will return a different
406/// scope. The scope S will be the scope of the unnamed enumeration
407/// within S6. In C++, this routine will return the scope associated
408/// with S6, because the enumeration's scope is a transparent
409/// context but structures can contain non-field names. In C, this
410/// routine will return the translation unit scope, since the
411/// enumeration's scope is a transparent context and structures cannot
412/// contain non-field names.
413Scope *Sema::getNonFieldDeclScope(Scope *S) {
414  while (((S->getFlags() & Scope::DeclScope) == 0) ||
415         (S->getEntity() &&
416          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
417         (S->isClassScope() && !getLangOptions().CPlusPlus))
418    S = S->getParent();
419  return S;
420}
421
422void Sema::InitBuiltinVaListType() {
423  if (!Context.getBuiltinVaListType().isNull())
424    return;
425
426  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
427  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
428  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
429  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
430}
431
432/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
433/// file scope.  lazily create a decl for it. ForRedeclaration is true
434/// if we're creating this built-in in anticipation of redeclaring the
435/// built-in.
436NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
437                                     Scope *S, bool ForRedeclaration,
438                                     SourceLocation Loc) {
439  Builtin::ID BID = (Builtin::ID)bid;
440
441  if (Context.BuiltinInfo.hasVAListUse(BID))
442    InitBuiltinVaListType();
443
444  ASTContext::GetBuiltinTypeError Error;
445  QualType R = Context.GetBuiltinType(BID, Error);
446  switch (Error) {
447  case ASTContext::GE_None:
448    // Okay
449    break;
450
451  case ASTContext::GE_Missing_FILE:
452    if (ForRedeclaration)
453      Diag(Loc, diag::err_implicit_decl_requires_stdio)
454        << Context.BuiltinInfo.GetName(BID);
455    return 0;
456
457  case ASTContext::GE_Missing_jmp_buf:
458    if (ForRedeclaration)
459      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
460        << Context.BuiltinInfo.GetName(BID);
461    return 0;
462
463  case ASTContext::GE_Missing_sigjmp_buf:
464    if (ForRedeclaration)
465      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
466        << Context.BuiltinInfo.GetName(BID);
467    return 0;
468  }
469
470  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
471    Diag(Loc, diag::ext_implicit_lib_function_decl)
472      << Context.BuiltinInfo.GetName(BID)
473      << R;
474    if (Context.BuiltinInfo.getHeaderName(BID) &&
475        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
476          != Diagnostic::Ignored)
477      Diag(Loc, diag::note_please_include_header)
478        << Context.BuiltinInfo.getHeaderName(BID)
479        << Context.BuiltinInfo.GetName(BID);
480  }
481
482  FunctionDecl *New = FunctionDecl::Create(Context,
483                                           Context.getTranslationUnitDecl(),
484                                           Loc, II, R,
485                                           FunctionDecl::Extern, false,
486                                           /*hasPrototype=*/true);
487  New->setImplicit();
488
489  // Create Decl objects for each parameter, adding them to the
490  // FunctionDecl.
491  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
492    llvm::SmallVector<ParmVarDecl*, 16> Params;
493    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
494      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
495                                           FT->getArgType(i), VarDecl::None, 0));
496    New->setParams(Context, Params.data(), Params.size());
497  }
498
499  AddKnownFunctionAttributes(New);
500
501  // TUScope is the translation-unit scope to insert this function into.
502  // FIXME: This is hideous. We need to teach PushOnScopeChains to
503  // relate Scopes to DeclContexts, and probably eliminate CurContext
504  // entirely, but we're not there yet.
505  DeclContext *SavedContext = CurContext;
506  CurContext = Context.getTranslationUnitDecl();
507  PushOnScopeChains(New, TUScope);
508  CurContext = SavedContext;
509  return New;
510}
511
512/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
513/// everything from the standard library is defined.
514NamespaceDecl *Sema::GetStdNamespace() {
515  if (!StdNamespace) {
516    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
517    DeclContext *Global = Context.getTranslationUnitDecl();
518    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
519    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
520  }
521  return StdNamespace;
522}
523
524/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
525/// same name and scope as a previous declaration 'Old'.  Figure out
526/// how to resolve this situation, merging decls or emitting
527/// diagnostics as appropriate. If there was an error, set New to be invalid.
528///
529void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
530  // If either decl is known invalid already, set the new one to be invalid and
531  // don't bother doing any merging checks.
532  if (New->isInvalidDecl() || OldD->isInvalidDecl())
533    return New->setInvalidDecl();
534
535  // Allow multiple definitions for ObjC built-in typedefs.
536  // FIXME: Verify the underlying types are equivalent!
537  if (getLangOptions().ObjC1) {
538    const IdentifierInfo *TypeID = New->getIdentifier();
539    switch (TypeID->getLength()) {
540    default: break;
541    case 2:
542      if (!TypeID->isStr("id"))
543        break;
544      // Install the built-in type for 'id', ignoring the current definition.
545      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
546      return;
547    case 5:
548      if (!TypeID->isStr("Class"))
549        break;
550      // Install the built-in type for 'Class', ignoring the current definition.
551      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
552      return;
553    case 3:
554      if (!TypeID->isStr("SEL"))
555        break;
556      Context.setObjCSelType(Context.getTypeDeclType(New));
557      return;
558    case 8:
559      if (!TypeID->isStr("Protocol"))
560        break;
561      Context.setObjCProtoType(New->getUnderlyingType());
562      return;
563    }
564    // Fall through - the typedef name was not a builtin type.
565  }
566  // Verify the old decl was also a type.
567  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
568  if (!Old) {
569    Diag(New->getLocation(), diag::err_redefinition_different_kind)
570      << New->getDeclName();
571    if (OldD->getLocation().isValid())
572      Diag(OldD->getLocation(), diag::note_previous_definition);
573    return New->setInvalidDecl();
574  }
575
576  // Determine the "old" type we'll use for checking and diagnostics.
577  QualType OldType;
578  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
579    OldType = OldTypedef->getUnderlyingType();
580  else
581    OldType = Context.getTypeDeclType(Old);
582
583  // If the typedef types are not identical, reject them in all languages and
584  // with any extensions enabled.
585
586  if (OldType != New->getUnderlyingType() &&
587      Context.getCanonicalType(OldType) !=
588      Context.getCanonicalType(New->getUnderlyingType())) {
589    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
590      << New->getUnderlyingType() << OldType;
591    if (Old->getLocation().isValid())
592      Diag(Old->getLocation(), diag::note_previous_definition);
593    return New->setInvalidDecl();
594  }
595
596  if (getLangOptions().Microsoft)
597    return;
598
599  // C++ [dcl.typedef]p2:
600  //   In a given non-class scope, a typedef specifier can be used to
601  //   redefine the name of any type declared in that scope to refer
602  //   to the type to which it already refers.
603  if (getLangOptions().CPlusPlus) {
604    if (!isa<CXXRecordDecl>(CurContext))
605      return;
606    Diag(New->getLocation(), diag::err_redefinition)
607      << New->getDeclName();
608    Diag(Old->getLocation(), diag::note_previous_definition);
609    return New->setInvalidDecl();
610  }
611
612  // If we have a redefinition of a typedef in C, emit a warning.  This warning
613  // is normally mapped to an error, but can be controlled with
614  // -Wtypedef-redefinition.  If either the original or the redefinition is
615  // in a system header, don't emit this for compatibility with GCC.
616  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
617      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
618       Context.getSourceManager().isInSystemHeader(New->getLocation())))
619    return;
620
621  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
622    << New->getDeclName();
623  Diag(Old->getLocation(), diag::note_previous_definition);
624  return;
625}
626
627/// DeclhasAttr - returns true if decl Declaration already has the target
628/// attribute.
629static bool
630DeclHasAttr(const Decl *decl, const Attr *target) {
631  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
632    if (attr->getKind() == target->getKind())
633      return true;
634
635  return false;
636}
637
638/// MergeAttributes - append attributes from the Old decl to the New one.
639static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
640  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
641    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
642      Attr *NewAttr = attr->clone(C);
643      NewAttr->setInherited(true);
644      New->addAttr(NewAttr);
645    }
646  }
647}
648
649/// Used in MergeFunctionDecl to keep track of function parameters in
650/// C.
651struct GNUCompatibleParamWarning {
652  ParmVarDecl *OldParm;
653  ParmVarDecl *NewParm;
654  QualType PromotedType;
655};
656
657/// MergeFunctionDecl - We just parsed a function 'New' from
658/// declarator D which has the same name and scope as a previous
659/// declaration 'Old'.  Figure out how to resolve this situation,
660/// merging decls or emitting diagnostics as appropriate.
661///
662/// In C++, New and Old must be declarations that are not
663/// overloaded. Use IsOverload to determine whether New and Old are
664/// overloaded, and to select the Old declaration that New should be
665/// merged with.
666///
667/// Returns true if there was an error, false otherwise.
668bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
669  assert(!isa<OverloadedFunctionDecl>(OldD) &&
670         "Cannot merge with an overloaded function declaration");
671
672  // Verify the old decl was also a function.
673  FunctionDecl *Old = 0;
674  if (FunctionTemplateDecl *OldFunctionTemplate
675        = dyn_cast<FunctionTemplateDecl>(OldD))
676    Old = OldFunctionTemplate->getTemplatedDecl();
677  else
678    Old = dyn_cast<FunctionDecl>(OldD);
679  if (!Old) {
680    Diag(New->getLocation(), diag::err_redefinition_different_kind)
681      << New->getDeclName();
682    Diag(OldD->getLocation(), diag::note_previous_definition);
683    return true;
684  }
685
686  // Determine whether the previous declaration was a definition,
687  // implicit declaration, or a declaration.
688  diag::kind PrevDiag;
689  if (Old->isThisDeclarationADefinition())
690    PrevDiag = diag::note_previous_definition;
691  else if (Old->isImplicit())
692    PrevDiag = diag::note_previous_implicit_declaration;
693  else
694    PrevDiag = diag::note_previous_declaration;
695
696  QualType OldQType = Context.getCanonicalType(Old->getType());
697  QualType NewQType = Context.getCanonicalType(New->getType());
698
699  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
700      New->getStorageClass() == FunctionDecl::Static &&
701      Old->getStorageClass() != FunctionDecl::Static) {
702    Diag(New->getLocation(), diag::err_static_non_static)
703      << New;
704    Diag(Old->getLocation(), PrevDiag);
705    return true;
706  }
707
708  if (getLangOptions().CPlusPlus) {
709    // (C++98 13.1p2):
710    //   Certain function declarations cannot be overloaded:
711    //     -- Function declarations that differ only in the return type
712    //        cannot be overloaded.
713    QualType OldReturnType
714      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
715    QualType NewReturnType
716      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
717    if (OldReturnType != NewReturnType) {
718      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
719      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
720      return true;
721    }
722
723    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
724    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
725    if (OldMethod && NewMethod &&
726        NewMethod->getLexicalDeclContext()->isRecord()) {
727      //    -- Member function declarations with the same name and the
728      //       same parameter types cannot be overloaded if any of them
729      //       is a static member function declaration.
730      if (OldMethod->isStatic() || NewMethod->isStatic()) {
731        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
732        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
733        return true;
734      }
735
736      // C++ [class.mem]p1:
737      //   [...] A member shall not be declared twice in the
738      //   member-specification, except that a nested class or member
739      //   class template can be declared and then later defined.
740      unsigned NewDiag;
741      if (isa<CXXConstructorDecl>(OldMethod))
742        NewDiag = diag::err_constructor_redeclared;
743      else if (isa<CXXDestructorDecl>(NewMethod))
744        NewDiag = diag::err_destructor_redeclared;
745      else if (isa<CXXConversionDecl>(NewMethod))
746        NewDiag = diag::err_conv_function_redeclared;
747      else
748        NewDiag = diag::err_member_redeclared;
749
750      Diag(New->getLocation(), NewDiag);
751      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
752    }
753
754    // (C++98 8.3.5p3):
755    //   All declarations for a function shall agree exactly in both the
756    //   return type and the parameter-type-list.
757    if (OldQType == NewQType)
758      return MergeCompatibleFunctionDecls(New, Old);
759
760    // Fall through for conflicting redeclarations and redefinitions.
761  }
762
763  // C: Function types need to be compatible, not identical. This handles
764  // duplicate function decls like "void f(int); void f(enum X);" properly.
765  if (!getLangOptions().CPlusPlus &&
766      Context.typesAreCompatible(OldQType, NewQType)) {
767    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
768    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
769    const FunctionProtoType *OldProto = 0;
770    if (isa<FunctionNoProtoType>(NewFuncType) &&
771        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
772      // The old declaration provided a function prototype, but the
773      // new declaration does not. Merge in the prototype.
774      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
775      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
776                                                 OldProto->arg_type_end());
777      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
778                                         ParamTypes.data(), ParamTypes.size(),
779                                         OldProto->isVariadic(),
780                                         OldProto->getTypeQuals());
781      New->setType(NewQType);
782      New->setHasInheritedPrototype();
783
784      // Synthesize a parameter for each argument type.
785      llvm::SmallVector<ParmVarDecl*, 16> Params;
786      for (FunctionProtoType::arg_type_iterator
787             ParamType = OldProto->arg_type_begin(),
788             ParamEnd = OldProto->arg_type_end();
789           ParamType != ParamEnd; ++ParamType) {
790        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
791                                                 SourceLocation(), 0,
792                                                 *ParamType, VarDecl::None,
793                                                 0);
794        Param->setImplicit();
795        Params.push_back(Param);
796      }
797
798      New->setParams(Context, Params.data(), Params.size());
799    }
800
801    return MergeCompatibleFunctionDecls(New, Old);
802  }
803
804  // GNU C permits a K&R definition to follow a prototype declaration
805  // if the declared types of the parameters in the K&R definition
806  // match the types in the prototype declaration, even when the
807  // promoted types of the parameters from the K&R definition differ
808  // from the types in the prototype. GCC then keeps the types from
809  // the prototype.
810  //
811  // If a variadic prototype is followed by a non-variadic K&R definition,
812  // the K&R definition becomes variadic.  This is sort of an edge case, but
813  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
814  // C99 6.9.1p8.
815  if (!getLangOptions().CPlusPlus &&
816      Old->hasPrototype() && !New->hasPrototype() &&
817      New->getType()->getAsFunctionProtoType() &&
818      Old->getNumParams() == New->getNumParams()) {
819    llvm::SmallVector<QualType, 16> ArgTypes;
820    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
821    const FunctionProtoType *OldProto
822      = Old->getType()->getAsFunctionProtoType();
823    const FunctionProtoType *NewProto
824      = New->getType()->getAsFunctionProtoType();
825
826    // Determine whether this is the GNU C extension.
827    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
828                                               NewProto->getResultType());
829    bool LooseCompatible = !MergedReturn.isNull();
830    for (unsigned Idx = 0, End = Old->getNumParams();
831         LooseCompatible && Idx != End; ++Idx) {
832      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
833      ParmVarDecl *NewParm = New->getParamDecl(Idx);
834      if (Context.typesAreCompatible(OldParm->getType(),
835                                     NewProto->getArgType(Idx))) {
836        ArgTypes.push_back(NewParm->getType());
837      } else if (Context.typesAreCompatible(OldParm->getType(),
838                                            NewParm->getType())) {
839        GNUCompatibleParamWarning Warn
840          = { OldParm, NewParm, NewProto->getArgType(Idx) };
841        Warnings.push_back(Warn);
842        ArgTypes.push_back(NewParm->getType());
843      } else
844        LooseCompatible = false;
845    }
846
847    if (LooseCompatible) {
848      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
849        Diag(Warnings[Warn].NewParm->getLocation(),
850             diag::ext_param_promoted_not_compatible_with_prototype)
851          << Warnings[Warn].PromotedType
852          << Warnings[Warn].OldParm->getType();
853        Diag(Warnings[Warn].OldParm->getLocation(),
854             diag::note_previous_declaration);
855      }
856
857      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
858                                           ArgTypes.size(),
859                                           OldProto->isVariadic(), 0));
860      return MergeCompatibleFunctionDecls(New, Old);
861    }
862
863    // Fall through to diagnose conflicting types.
864  }
865
866  // A function that has already been declared has been redeclared or defined
867  // with a different type- show appropriate diagnostic
868  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
869    // The user has declared a builtin function with an incompatible
870    // signature.
871    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
872      // The function the user is redeclaring is a library-defined
873      // function like 'malloc' or 'printf'. Warn about the
874      // redeclaration, then pretend that we don't know about this
875      // library built-in.
876      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
877      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
878        << Old << Old->getType();
879      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
880      Old->setInvalidDecl();
881      return false;
882    }
883
884    PrevDiag = diag::note_previous_builtin_declaration;
885  }
886
887  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
888  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
889  return true;
890}
891
892/// \brief Completes the merge of two function declarations that are
893/// known to be compatible.
894///
895/// This routine handles the merging of attributes and other
896/// properties of function declarations form the old declaration to
897/// the new declaration, once we know that New is in fact a
898/// redeclaration of Old.
899///
900/// \returns false
901bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
902  // Merge the attributes
903  MergeAttributes(New, Old, Context);
904
905  // Merge the storage class.
906  if (Old->getStorageClass() != FunctionDecl::Extern)
907    New->setStorageClass(Old->getStorageClass());
908
909  // Merge "inline"
910  if (Old->isInline())
911    New->setInline(true);
912
913  // If this function declaration by itself qualifies as a C99 inline
914  // definition (C99 6.7.4p6), but the previous definition did not,
915  // then the function is not a C99 inline definition.
916  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
917    New->setC99InlineDefinition(false);
918  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
919    // Mark all preceding definitions as not being C99 inline definitions.
920    for (const FunctionDecl *Prev = Old; Prev;
921         Prev = Prev->getPreviousDeclaration())
922      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
923  }
924
925  // Merge "pure" flag.
926  if (Old->isPure())
927    New->setPure();
928
929  // Merge the "deleted" flag.
930  if (Old->isDeleted())
931    New->setDeleted();
932
933  if (getLangOptions().CPlusPlus)
934    return MergeCXXFunctionDecl(New, Old);
935
936  return false;
937}
938
939/// MergeVarDecl - We just parsed a variable 'New' which has the same name
940/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
941/// situation, merging decls or emitting diagnostics as appropriate.
942///
943/// Tentative definition rules (C99 6.9.2p2) are checked by
944/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
945/// definitions here, since the initializer hasn't been attached.
946///
947void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
948  // If either decl is invalid, make sure the new one is marked invalid and
949  // don't do any other checking.
950  if (New->isInvalidDecl() || OldD->isInvalidDecl())
951    return New->setInvalidDecl();
952
953  // Verify the old decl was also a variable.
954  VarDecl *Old = dyn_cast<VarDecl>(OldD);
955  if (!Old) {
956    Diag(New->getLocation(), diag::err_redefinition_different_kind)
957      << New->getDeclName();
958    Diag(OldD->getLocation(), diag::note_previous_definition);
959    return New->setInvalidDecl();
960  }
961
962  MergeAttributes(New, Old, Context);
963
964  // Merge the types
965  QualType MergedT;
966  if (getLangOptions().CPlusPlus) {
967    if (Context.hasSameType(New->getType(), Old->getType()))
968      MergedT = New->getType();
969  } else {
970    MergedT = Context.mergeTypes(New->getType(), Old->getType());
971  }
972  if (MergedT.isNull()) {
973    Diag(New->getLocation(), diag::err_redefinition_different_type)
974      << New->getDeclName();
975    Diag(Old->getLocation(), diag::note_previous_definition);
976    return New->setInvalidDecl();
977  }
978  New->setType(MergedT);
979
980  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
981  if (New->getStorageClass() == VarDecl::Static &&
982      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
983    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
984    Diag(Old->getLocation(), diag::note_previous_definition);
985    return New->setInvalidDecl();
986  }
987  // C99 6.2.2p4:
988  //   For an identifier declared with the storage-class specifier
989  //   extern in a scope in which a prior declaration of that
990  //   identifier is visible,23) if the prior declaration specifies
991  //   internal or external linkage, the linkage of the identifier at
992  //   the later declaration is the same as the linkage specified at
993  //   the prior declaration. If no prior declaration is visible, or
994  //   if the prior declaration specifies no linkage, then the
995  //   identifier has external linkage.
996  if (New->hasExternalStorage() && Old->hasLinkage())
997    /* Okay */;
998  else if (New->getStorageClass() != VarDecl::Static &&
999           Old->getStorageClass() == VarDecl::Static) {
1000    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002    return New->setInvalidDecl();
1003  }
1004
1005  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1006
1007  // FIXME: The test for external storage here seems wrong? We still
1008  // need to check for mismatches.
1009  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1010      // Don't complain about out-of-line definitions of static members.
1011      !(Old->getLexicalDeclContext()->isRecord() &&
1012        !New->getLexicalDeclContext()->isRecord())) {
1013    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1019    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1020    Diag(Old->getLocation(), diag::note_previous_definition);
1021  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1022    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1023    Diag(Old->getLocation(), diag::note_previous_definition);
1024  }
1025
1026  // Keep a chain of previous declarations.
1027  New->setPreviousDeclaration(Old);
1028}
1029
1030/// CheckFallThrough - Check that we don't fall off the end of a
1031/// Statement that should return a value.
1032///
1033/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1034/// MaybeFallThrough iff we might or might not fall off the end and
1035/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1036/// that functions not marked noreturn will return.
1037Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1038  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1039
1040  // FIXME: They should never return 0, fix that, delete this code.
1041  if (cfg == 0)
1042    return NeverFallThrough;
1043  // The CFG leaves in dead things, and we don't want to dead code paths to
1044  // confuse us, so we mark all live things first.
1045  std::queue<CFGBlock*> workq;
1046  llvm::BitVector live(cfg->getNumBlockIDs());
1047  // Prep work queue
1048  workq.push(&cfg->getEntry());
1049  // Solve
1050  while (!workq.empty()) {
1051    CFGBlock *item = workq.front();
1052    workq.pop();
1053    live.set(item->getBlockID());
1054    for (CFGBlock::succ_iterator I=item->succ_begin(),
1055           E=item->succ_end();
1056         I != E;
1057         ++I) {
1058      if ((*I) && !live[(*I)->getBlockID()]) {
1059        live.set((*I)->getBlockID());
1060        workq.push(*I);
1061      }
1062    }
1063  }
1064
1065  // Now we know what is live, we check the live precessors of the exit block
1066  // and look for fall through paths, being careful to ignore normal returns,
1067  // and exceptional paths.
1068  bool HasLiveReturn = false;
1069  bool HasFakeEdge = false;
1070  bool HasPlainEdge = false;
1071  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1072         E = cfg->getExit().pred_end();
1073       I != E;
1074       ++I) {
1075    CFGBlock& B = **I;
1076    if (!live[B.getBlockID()])
1077      continue;
1078    if (B.size() == 0) {
1079      // A labeled empty statement, or the entry block...
1080      HasPlainEdge = true;
1081      continue;
1082    }
1083    Stmt *S = B[B.size()-1];
1084    if (isa<ReturnStmt>(S)) {
1085      HasLiveReturn = true;
1086      continue;
1087    }
1088    if (isa<ObjCAtThrowStmt>(S)) {
1089      HasFakeEdge = true;
1090      continue;
1091    }
1092    if (isa<CXXThrowExpr>(S)) {
1093      HasFakeEdge = true;
1094      continue;
1095    }
1096    bool NoReturnEdge = false;
1097    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1098      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1099      if (CEE->getType().getNoReturnAttr()) {
1100        NoReturnEdge = true;
1101        HasFakeEdge = true;
1102      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1103        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1104          if (FD->hasAttr<NoReturnAttr>()) {
1105            NoReturnEdge = true;
1106            HasFakeEdge = true;
1107          }
1108        }
1109      }
1110    }
1111    // FIXME: Add noreturn message sends.
1112    if (NoReturnEdge == false)
1113      HasPlainEdge = true;
1114  }
1115  if (!HasPlainEdge)
1116    return NeverFallThrough;
1117  if (HasFakeEdge || HasLiveReturn)
1118    return MaybeFallThrough;
1119  // This says AlwaysFallThrough for calls to functions that are not marked
1120  // noreturn, that don't return.  If people would like this warning to be more
1121  // accurate, such functions should be marked as noreturn.
1122  return AlwaysFallThrough;
1123}
1124
1125/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1126/// function that should return a value.  Check that we don't fall off the end
1127/// of a noreturn function.  We assume that functions and blocks not marked
1128/// noreturn will return.
1129void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1130  // FIXME: Would be nice if we had a better way to control cascading errors,
1131  // but for now, avoid them.  The problem is that when Parse sees:
1132  //   int foo() { return a; }
1133  // The return is eaten and the Sema code sees just:
1134  //   int foo() { }
1135  // which this code would then warn about.
1136  if (getDiagnostics().hasErrorOccurred())
1137    return;
1138  bool ReturnsVoid = false;
1139  bool HasNoReturn = false;
1140  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1141    if (FD->getResultType()->isVoidType())
1142      ReturnsVoid = true;
1143    if (FD->hasAttr<NoReturnAttr>())
1144      HasNoReturn = true;
1145  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1146    if (MD->getResultType()->isVoidType())
1147      ReturnsVoid = true;
1148    if (MD->hasAttr<NoReturnAttr>())
1149      HasNoReturn = true;
1150  }
1151
1152  // Short circuit for compilation speed.
1153  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1154       == Diagnostic::Ignored || ReturnsVoid)
1155      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1156          == Diagnostic::Ignored || !HasNoReturn)
1157      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1158          == Diagnostic::Ignored || !ReturnsVoid))
1159    return;
1160  // FIXME: Funtion try block
1161  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1162    switch (CheckFallThrough(Body)) {
1163    case MaybeFallThrough:
1164      if (HasNoReturn)
1165        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1166      else if (!ReturnsVoid)
1167        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1168      break;
1169    case AlwaysFallThrough:
1170      if (HasNoReturn)
1171        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1172      else if (!ReturnsVoid)
1173        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1174      break;
1175    case NeverFallThrough:
1176      if (ReturnsVoid)
1177        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1178      break;
1179    }
1180  }
1181}
1182
1183/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1184/// that should return a value.  Check that we don't fall off the end of a
1185/// noreturn block.  We assume that functions and blocks not marked noreturn
1186/// will return.
1187void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1188  // FIXME: Would be nice if we had a better way to control cascading errors,
1189  // but for now, avoid them.  The problem is that when Parse sees:
1190  //   int foo() { return a; }
1191  // The return is eaten and the Sema code sees just:
1192  //   int foo() { }
1193  // which this code would then warn about.
1194  if (getDiagnostics().hasErrorOccurred())
1195    return;
1196  bool ReturnsVoid = false;
1197  bool HasNoReturn = false;
1198  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1199    if (FT->getResultType()->isVoidType())
1200      ReturnsVoid = true;
1201    if (FT->getNoReturnAttr())
1202      HasNoReturn = true;
1203  }
1204
1205  // Short circuit for compilation speed.
1206  if (ReturnsVoid
1207      && !HasNoReturn
1208      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1209          == Diagnostic::Ignored || !ReturnsVoid))
1210    return;
1211  // FIXME: Funtion try block
1212  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1213    switch (CheckFallThrough(Body)) {
1214    case MaybeFallThrough:
1215      if (HasNoReturn)
1216        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1217      else if (!ReturnsVoid)
1218        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1219      break;
1220    case AlwaysFallThrough:
1221      if (HasNoReturn)
1222        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1223      else if (!ReturnsVoid)
1224        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1225      break;
1226    case NeverFallThrough:
1227      if (ReturnsVoid)
1228        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1229      break;
1230    }
1231  }
1232}
1233
1234/// CheckParmsForFunctionDef - Check that the parameters of the given
1235/// function are appropriate for the definition of a function. This
1236/// takes care of any checks that cannot be performed on the
1237/// declaration itself, e.g., that the types of each of the function
1238/// parameters are complete.
1239bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1240  bool HasInvalidParm = false;
1241  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1242    ParmVarDecl *Param = FD->getParamDecl(p);
1243
1244    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1245    // function declarator that is part of a function definition of
1246    // that function shall not have incomplete type.
1247    //
1248    // This is also C++ [dcl.fct]p6.
1249    if (!Param->isInvalidDecl() &&
1250        RequireCompleteType(Param->getLocation(), Param->getType(),
1251                               diag::err_typecheck_decl_incomplete_type)) {
1252      Param->setInvalidDecl();
1253      HasInvalidParm = true;
1254    }
1255
1256    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1257    // declaration of each parameter shall include an identifier.
1258    if (Param->getIdentifier() == 0 &&
1259        !Param->isImplicit() &&
1260        !getLangOptions().CPlusPlus)
1261      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1262  }
1263
1264  return HasInvalidParm;
1265}
1266
1267/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1268/// no declarator (e.g. "struct foo;") is parsed.
1269Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1270  // FIXME: Error on auto/register at file scope
1271  // FIXME: Error on inline/virtual/explicit
1272  // FIXME: Error on invalid restrict
1273  // FIXME: Warn on useless __thread
1274  // FIXME: Warn on useless const/volatile
1275  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1276  // FIXME: Warn on useless attributes
1277  TagDecl *Tag = 0;
1278  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1279      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1280      DS.getTypeSpecType() == DeclSpec::TST_union ||
1281      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1282    if (!DS.getTypeRep()) // We probably had an error
1283      return DeclPtrTy();
1284
1285    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1286  }
1287
1288  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1289    if (!Record->getDeclName() && Record->isDefinition() &&
1290        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1291      if (getLangOptions().CPlusPlus ||
1292          Record->getDeclContext()->isRecord())
1293        return BuildAnonymousStructOrUnion(S, DS, Record);
1294
1295      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1296        << DS.getSourceRange();
1297    }
1298
1299    // Microsoft allows unnamed struct/union fields. Don't complain
1300    // about them.
1301    // FIXME: Should we support Microsoft's extensions in this area?
1302    if (Record->getDeclName() && getLangOptions().Microsoft)
1303      return DeclPtrTy::make(Tag);
1304  }
1305
1306  if (!DS.isMissingDeclaratorOk() &&
1307      DS.getTypeSpecType() != DeclSpec::TST_error) {
1308    // Warn about typedefs of enums without names, since this is an
1309    // extension in both Microsoft an GNU.
1310    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1311        Tag && isa<EnumDecl>(Tag)) {
1312      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1313        << DS.getSourceRange();
1314      return DeclPtrTy::make(Tag);
1315    }
1316
1317    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1318      << DS.getSourceRange();
1319    return DeclPtrTy();
1320  }
1321
1322  return DeclPtrTy::make(Tag);
1323}
1324
1325/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1326/// anonymous struct or union AnonRecord into the owning context Owner
1327/// and scope S. This routine will be invoked just after we realize
1328/// that an unnamed union or struct is actually an anonymous union or
1329/// struct, e.g.,
1330///
1331/// @code
1332/// union {
1333///   int i;
1334///   float f;
1335/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1336///    // f into the surrounding scope.x
1337/// @endcode
1338///
1339/// This routine is recursive, injecting the names of nested anonymous
1340/// structs/unions into the owning context and scope as well.
1341bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1342                                               RecordDecl *AnonRecord) {
1343  bool Invalid = false;
1344  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1345                               FEnd = AnonRecord->field_end();
1346       F != FEnd; ++F) {
1347    if ((*F)->getDeclName()) {
1348      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1349                                                LookupOrdinaryName, true);
1350      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1351        // C++ [class.union]p2:
1352        //   The names of the members of an anonymous union shall be
1353        //   distinct from the names of any other entity in the
1354        //   scope in which the anonymous union is declared.
1355        unsigned diagKind
1356          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1357                                 : diag::err_anonymous_struct_member_redecl;
1358        Diag((*F)->getLocation(), diagKind)
1359          << (*F)->getDeclName();
1360        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1361        Invalid = true;
1362      } else {
1363        // C++ [class.union]p2:
1364        //   For the purpose of name lookup, after the anonymous union
1365        //   definition, the members of the anonymous union are
1366        //   considered to have been defined in the scope in which the
1367        //   anonymous union is declared.
1368        Owner->makeDeclVisibleInContext(*F);
1369        S->AddDecl(DeclPtrTy::make(*F));
1370        IdResolver.AddDecl(*F);
1371      }
1372    } else if (const RecordType *InnerRecordType
1373                 = (*F)->getType()->getAsRecordType()) {
1374      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1375      if (InnerRecord->isAnonymousStructOrUnion())
1376        Invalid = Invalid ||
1377          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1378    }
1379  }
1380
1381  return Invalid;
1382}
1383
1384/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1385/// anonymous structure or union. Anonymous unions are a C++ feature
1386/// (C++ [class.union]) and a GNU C extension; anonymous structures
1387/// are a GNU C and GNU C++ extension.
1388Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1389                                                  RecordDecl *Record) {
1390  DeclContext *Owner = Record->getDeclContext();
1391
1392  // Diagnose whether this anonymous struct/union is an extension.
1393  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1394    Diag(Record->getLocation(), diag::ext_anonymous_union);
1395  else if (!Record->isUnion())
1396    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1397
1398  // C and C++ require different kinds of checks for anonymous
1399  // structs/unions.
1400  bool Invalid = false;
1401  if (getLangOptions().CPlusPlus) {
1402    const char* PrevSpec = 0;
1403    // C++ [class.union]p3:
1404    //   Anonymous unions declared in a named namespace or in the
1405    //   global namespace shall be declared static.
1406    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1407        (isa<TranslationUnitDecl>(Owner) ||
1408         (isa<NamespaceDecl>(Owner) &&
1409          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1410      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1411      Invalid = true;
1412
1413      // Recover by adding 'static'.
1414      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1415    }
1416    // C++ [class.union]p3:
1417    //   A storage class is not allowed in a declaration of an
1418    //   anonymous union in a class scope.
1419    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1420             isa<RecordDecl>(Owner)) {
1421      Diag(DS.getStorageClassSpecLoc(),
1422           diag::err_anonymous_union_with_storage_spec);
1423      Invalid = true;
1424
1425      // Recover by removing the storage specifier.
1426      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1427                             PrevSpec);
1428    }
1429
1430    // C++ [class.union]p2:
1431    //   The member-specification of an anonymous union shall only
1432    //   define non-static data members. [Note: nested types and
1433    //   functions cannot be declared within an anonymous union. ]
1434    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1435                                 MemEnd = Record->decls_end();
1436         Mem != MemEnd; ++Mem) {
1437      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1438        // C++ [class.union]p3:
1439        //   An anonymous union shall not have private or protected
1440        //   members (clause 11).
1441        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1442          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1443            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1444          Invalid = true;
1445        }
1446      } else if ((*Mem)->isImplicit()) {
1447        // Any implicit members are fine.
1448      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1449        // This is a type that showed up in an
1450        // elaborated-type-specifier inside the anonymous struct or
1451        // union, but which actually declares a type outside of the
1452        // anonymous struct or union. It's okay.
1453      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1454        if (!MemRecord->isAnonymousStructOrUnion() &&
1455            MemRecord->getDeclName()) {
1456          // This is a nested type declaration.
1457          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1458            << (int)Record->isUnion();
1459          Invalid = true;
1460        }
1461      } else {
1462        // We have something that isn't a non-static data
1463        // member. Complain about it.
1464        unsigned DK = diag::err_anonymous_record_bad_member;
1465        if (isa<TypeDecl>(*Mem))
1466          DK = diag::err_anonymous_record_with_type;
1467        else if (isa<FunctionDecl>(*Mem))
1468          DK = diag::err_anonymous_record_with_function;
1469        else if (isa<VarDecl>(*Mem))
1470          DK = diag::err_anonymous_record_with_static;
1471        Diag((*Mem)->getLocation(), DK)
1472            << (int)Record->isUnion();
1473          Invalid = true;
1474      }
1475    }
1476  }
1477
1478  if (!Record->isUnion() && !Owner->isRecord()) {
1479    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1480      << (int)getLangOptions().CPlusPlus;
1481    Invalid = true;
1482  }
1483
1484  // Create a declaration for this anonymous struct/union.
1485  NamedDecl *Anon = 0;
1486  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1487    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1488                             /*IdentifierInfo=*/0,
1489                             Context.getTypeDeclType(Record),
1490                             /*BitWidth=*/0, /*Mutable=*/false,
1491                             DS.getSourceRange().getBegin());
1492    Anon->setAccess(AS_public);
1493    if (getLangOptions().CPlusPlus)
1494      FieldCollector->Add(cast<FieldDecl>(Anon));
1495  } else {
1496    VarDecl::StorageClass SC;
1497    switch (DS.getStorageClassSpec()) {
1498    default: assert(0 && "Unknown storage class!");
1499    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1500    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1501    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1502    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1503    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1504    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1505    case DeclSpec::SCS_mutable:
1506      // mutable can only appear on non-static class members, so it's always
1507      // an error here
1508      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1509      Invalid = true;
1510      SC = VarDecl::None;
1511      break;
1512    }
1513
1514    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1515                           /*IdentifierInfo=*/0,
1516                           Context.getTypeDeclType(Record),
1517                           SC, DS.getSourceRange().getBegin());
1518  }
1519  Anon->setImplicit();
1520
1521  // Add the anonymous struct/union object to the current
1522  // context. We'll be referencing this object when we refer to one of
1523  // its members.
1524  Owner->addDecl(Anon);
1525
1526  // Inject the members of the anonymous struct/union into the owning
1527  // context and into the identifier resolver chain for name lookup
1528  // purposes.
1529  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1530    Invalid = true;
1531
1532  // Mark this as an anonymous struct/union type. Note that we do not
1533  // do this until after we have already checked and injected the
1534  // members of this anonymous struct/union type, because otherwise
1535  // the members could be injected twice: once by DeclContext when it
1536  // builds its lookup table, and once by
1537  // InjectAnonymousStructOrUnionMembers.
1538  Record->setAnonymousStructOrUnion(true);
1539
1540  if (Invalid)
1541    Anon->setInvalidDecl();
1542
1543  return DeclPtrTy::make(Anon);
1544}
1545
1546
1547/// GetNameForDeclarator - Determine the full declaration name for the
1548/// given Declarator.
1549DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1550  switch (D.getKind()) {
1551  case Declarator::DK_Abstract:
1552    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1553    return DeclarationName();
1554
1555  case Declarator::DK_Normal:
1556    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1557    return DeclarationName(D.getIdentifier());
1558
1559  case Declarator::DK_Constructor: {
1560    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1561    Ty = Context.getCanonicalType(Ty);
1562    return Context.DeclarationNames.getCXXConstructorName(Ty);
1563  }
1564
1565  case Declarator::DK_Destructor: {
1566    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1567    Ty = Context.getCanonicalType(Ty);
1568    return Context.DeclarationNames.getCXXDestructorName(Ty);
1569  }
1570
1571  case Declarator::DK_Conversion: {
1572    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1573    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1574    Ty = Context.getCanonicalType(Ty);
1575    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1576  }
1577
1578  case Declarator::DK_Operator:
1579    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1580    return Context.DeclarationNames.getCXXOperatorName(
1581                                                D.getOverloadedOperator());
1582  }
1583
1584  assert(false && "Unknown name kind");
1585  return DeclarationName();
1586}
1587
1588/// isNearlyMatchingFunction - Determine whether the C++ functions
1589/// Declaration and Definition are "nearly" matching. This heuristic
1590/// is used to improve diagnostics in the case where an out-of-line
1591/// function definition doesn't match any declaration within
1592/// the class or namespace.
1593static bool isNearlyMatchingFunction(ASTContext &Context,
1594                                     FunctionDecl *Declaration,
1595                                     FunctionDecl *Definition) {
1596  if (Declaration->param_size() != Definition->param_size())
1597    return false;
1598  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1599    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1600    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1601
1602    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1603    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1604    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1605      return false;
1606  }
1607
1608  return true;
1609}
1610
1611Sema::DeclPtrTy
1612Sema::HandleDeclarator(Scope *S, Declarator &D,
1613                       MultiTemplateParamsArg TemplateParamLists,
1614                       bool IsFunctionDefinition) {
1615  DeclarationName Name = GetNameForDeclarator(D);
1616
1617  // All of these full declarators require an identifier.  If it doesn't have
1618  // one, the ParsedFreeStandingDeclSpec action should be used.
1619  if (!Name) {
1620    if (!D.isInvalidType())  // Reject this if we think it is valid.
1621      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1622           diag::err_declarator_need_ident)
1623        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1624    return DeclPtrTy();
1625  }
1626
1627  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1628  // we find one that is.
1629  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1630         (S->getFlags() & Scope::TemplateParamScope) != 0)
1631    S = S->getParent();
1632
1633  DeclContext *DC;
1634  NamedDecl *PrevDecl;
1635  NamedDecl *New;
1636
1637  QualType R = GetTypeForDeclarator(D, S);
1638
1639  // See if this is a redefinition of a variable in the same scope.
1640  if (D.getCXXScopeSpec().isInvalid()) {
1641    DC = CurContext;
1642    PrevDecl = 0;
1643    D.setInvalidType();
1644  } else if (!D.getCXXScopeSpec().isSet()) {
1645    LookupNameKind NameKind = LookupOrdinaryName;
1646
1647    // If the declaration we're planning to build will be a function
1648    // or object with linkage, then look for another declaration with
1649    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1650    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1651      /* Do nothing*/;
1652    else if (R->isFunctionType()) {
1653      if (CurContext->isFunctionOrMethod() ||
1654          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1655        NameKind = LookupRedeclarationWithLinkage;
1656    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1657      NameKind = LookupRedeclarationWithLinkage;
1658    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1659             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1660      NameKind = LookupRedeclarationWithLinkage;
1661
1662    DC = CurContext;
1663    PrevDecl = LookupName(S, Name, NameKind, true,
1664                          NameKind == LookupRedeclarationWithLinkage,
1665                          D.getIdentifierLoc());
1666  } else { // Something like "int foo::x;"
1667    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1668    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1669    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1670
1671    // C++ 7.3.1.2p2:
1672    // Members (including explicit specializations of templates) of a named
1673    // namespace can also be defined outside that namespace by explicit
1674    // qualification of the name being defined, provided that the entity being
1675    // defined was already declared in the namespace and the definition appears
1676    // after the point of declaration in a namespace that encloses the
1677    // declarations namespace.
1678    //
1679    // Note that we only check the context at this point. We don't yet
1680    // have enough information to make sure that PrevDecl is actually
1681    // the declaration we want to match. For example, given:
1682    //
1683    //   class X {
1684    //     void f();
1685    //     void f(float);
1686    //   };
1687    //
1688    //   void X::f(int) { } // ill-formed
1689    //
1690    // In this case, PrevDecl will point to the overload set
1691    // containing the two f's declared in X, but neither of them
1692    // matches.
1693
1694    // First check whether we named the global scope.
1695    if (isa<TranslationUnitDecl>(DC)) {
1696      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1697        << Name << D.getCXXScopeSpec().getRange();
1698    } else if (!CurContext->Encloses(DC)) {
1699      // The qualifying scope doesn't enclose the original declaration.
1700      // Emit diagnostic based on current scope.
1701      SourceLocation L = D.getIdentifierLoc();
1702      SourceRange R = D.getCXXScopeSpec().getRange();
1703      if (isa<FunctionDecl>(CurContext))
1704        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1705      else
1706        Diag(L, diag::err_invalid_declarator_scope)
1707          << Name << cast<NamedDecl>(DC) << R;
1708      D.setInvalidType();
1709    }
1710  }
1711
1712  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1713    // Maybe we will complain about the shadowed template parameter.
1714    if (!D.isInvalidType())
1715      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1716        D.setInvalidType();
1717
1718    // Just pretend that we didn't see the previous declaration.
1719    PrevDecl = 0;
1720  }
1721
1722  // In C++, the previous declaration we find might be a tag type
1723  // (class or enum). In this case, the new declaration will hide the
1724  // tag type. Note that this does does not apply if we're declaring a
1725  // typedef (C++ [dcl.typedef]p4).
1726  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1727      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1728    PrevDecl = 0;
1729
1730  bool Redeclaration = false;
1731  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1732    if (TemplateParamLists.size()) {
1733      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1734      return DeclPtrTy();
1735    }
1736
1737    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1738  } else if (R->isFunctionType()) {
1739    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1740                                  move(TemplateParamLists),
1741                                  IsFunctionDefinition, Redeclaration);
1742  } else {
1743    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1744                                  move(TemplateParamLists),
1745                                  Redeclaration);
1746  }
1747
1748  if (New == 0)
1749    return DeclPtrTy();
1750
1751  // If this has an identifier and is not an invalid redeclaration,
1752  // add it to the scope stack.
1753  if (Name && !(Redeclaration && New->isInvalidDecl()))
1754    PushOnScopeChains(New, S);
1755
1756  return DeclPtrTy::make(New);
1757}
1758
1759/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1760/// types into constant array types in certain situations which would otherwise
1761/// be errors (for GCC compatibility).
1762static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1763                                                    ASTContext &Context,
1764                                                    bool &SizeIsNegative) {
1765  // This method tries to turn a variable array into a constant
1766  // array even when the size isn't an ICE.  This is necessary
1767  // for compatibility with code that depends on gcc's buggy
1768  // constant expression folding, like struct {char x[(int)(char*)2];}
1769  SizeIsNegative = false;
1770
1771  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1772    QualType Pointee = PTy->getPointeeType();
1773    QualType FixedType =
1774        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1775    if (FixedType.isNull()) return FixedType;
1776    FixedType = Context.getPointerType(FixedType);
1777    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1778    return FixedType;
1779  }
1780
1781  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1782  if (!VLATy)
1783    return QualType();
1784  // FIXME: We should probably handle this case
1785  if (VLATy->getElementType()->isVariablyModifiedType())
1786    return QualType();
1787
1788  Expr::EvalResult EvalResult;
1789  if (!VLATy->getSizeExpr() ||
1790      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1791      !EvalResult.Val.isInt())
1792    return QualType();
1793
1794  llvm::APSInt &Res = EvalResult.Val.getInt();
1795  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1796    Expr* ArySizeExpr = VLATy->getSizeExpr();
1797    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1798    // so as to transfer ownership to the ConstantArrayWithExpr.
1799    // Alternatively, we could "clone" it (how?).
1800    // Since we don't know how to do things above, we just use the
1801    // very same Expr*.
1802    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1803                                                Res, ArySizeExpr,
1804                                                ArrayType::Normal, 0,
1805                                                VLATy->getBracketsRange());
1806  }
1807
1808  SizeIsNegative = true;
1809  return QualType();
1810}
1811
1812/// \brief Register the given locally-scoped external C declaration so
1813/// that it can be found later for redeclarations
1814void
1815Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1816                                       Scope *S) {
1817  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1818         "Decl is not a locally-scoped decl!");
1819  // Note that we have a locally-scoped external with this name.
1820  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1821
1822  if (!PrevDecl)
1823    return;
1824
1825  // If there was a previous declaration of this variable, it may be
1826  // in our identifier chain. Update the identifier chain with the new
1827  // declaration.
1828  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1829    // The previous declaration was found on the identifer resolver
1830    // chain, so remove it from its scope.
1831    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1832      S = S->getParent();
1833
1834    if (S)
1835      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1836  }
1837}
1838
1839/// \brief Diagnose function specifiers on a declaration of an identifier that
1840/// does not identify a function.
1841void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1842  // FIXME: We should probably indicate the identifier in question to avoid
1843  // confusion for constructs like "inline int a(), b;"
1844  if (D.getDeclSpec().isInlineSpecified())
1845    Diag(D.getDeclSpec().getInlineSpecLoc(),
1846         diag::err_inline_non_function);
1847
1848  if (D.getDeclSpec().isVirtualSpecified())
1849    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1850         diag::err_virtual_non_function);
1851
1852  if (D.getDeclSpec().isExplicitSpecified())
1853    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1854         diag::err_explicit_non_function);
1855}
1856
1857NamedDecl*
1858Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1859                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1860  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1861  if (D.getCXXScopeSpec().isSet()) {
1862    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1863      << D.getCXXScopeSpec().getRange();
1864    D.setInvalidType();
1865    // Pretend we didn't see the scope specifier.
1866    DC = 0;
1867  }
1868
1869  if (getLangOptions().CPlusPlus) {
1870    // Check that there are no default arguments (C++ only).
1871    CheckExtraCXXDefaultArguments(D);
1872  }
1873
1874  DiagnoseFunctionSpecifiers(D);
1875
1876  if (D.getDeclSpec().isThreadSpecified())
1877    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1878
1879  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1880  if (!NewTD) return 0;
1881
1882  if (D.isInvalidType())
1883    NewTD->setInvalidDecl();
1884
1885  // Handle attributes prior to checking for duplicates in MergeVarDecl
1886  ProcessDeclAttributes(S, NewTD, D);
1887  // Merge the decl with the existing one if appropriate. If the decl is
1888  // in an outer scope, it isn't the same thing.
1889  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1890    Redeclaration = true;
1891    MergeTypeDefDecl(NewTD, PrevDecl);
1892  }
1893
1894  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1895  // then it shall have block scope.
1896  QualType T = NewTD->getUnderlyingType();
1897  if (T->isVariablyModifiedType()) {
1898    CurFunctionNeedsScopeChecking = true;
1899
1900    if (S->getFnParent() == 0) {
1901      bool SizeIsNegative;
1902      QualType FixedTy =
1903          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1904      if (!FixedTy.isNull()) {
1905        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1906        NewTD->setUnderlyingType(FixedTy);
1907      } else {
1908        if (SizeIsNegative)
1909          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1910        else if (T->isVariableArrayType())
1911          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1912        else
1913          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1914        NewTD->setInvalidDecl();
1915      }
1916    }
1917  }
1918
1919  // If this is the C FILE type, notify the AST context.
1920  if (IdentifierInfo *II = NewTD->getIdentifier())
1921    if (!NewTD->isInvalidDecl() &&
1922        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1923      if (II->isStr("FILE"))
1924        Context.setFILEDecl(NewTD);
1925      else if (II->isStr("jmp_buf"))
1926        Context.setjmp_bufDecl(NewTD);
1927      else if (II->isStr("sigjmp_buf"))
1928        Context.setsigjmp_bufDecl(NewTD);
1929    }
1930
1931  return NewTD;
1932}
1933
1934/// \brief Determines whether the given declaration is an out-of-scope
1935/// previous declaration.
1936///
1937/// This routine should be invoked when name lookup has found a
1938/// previous declaration (PrevDecl) that is not in the scope where a
1939/// new declaration by the same name is being introduced. If the new
1940/// declaration occurs in a local scope, previous declarations with
1941/// linkage may still be considered previous declarations (C99
1942/// 6.2.2p4-5, C++ [basic.link]p6).
1943///
1944/// \param PrevDecl the previous declaration found by name
1945/// lookup
1946///
1947/// \param DC the context in which the new declaration is being
1948/// declared.
1949///
1950/// \returns true if PrevDecl is an out-of-scope previous declaration
1951/// for a new delcaration with the same name.
1952static bool
1953isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1954                                ASTContext &Context) {
1955  if (!PrevDecl)
1956    return 0;
1957
1958  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1959  // case we need to check each of the overloaded functions.
1960  if (!PrevDecl->hasLinkage())
1961    return false;
1962
1963  if (Context.getLangOptions().CPlusPlus) {
1964    // C++ [basic.link]p6:
1965    //   If there is a visible declaration of an entity with linkage
1966    //   having the same name and type, ignoring entities declared
1967    //   outside the innermost enclosing namespace scope, the block
1968    //   scope declaration declares that same entity and receives the
1969    //   linkage of the previous declaration.
1970    DeclContext *OuterContext = DC->getLookupContext();
1971    if (!OuterContext->isFunctionOrMethod())
1972      // This rule only applies to block-scope declarations.
1973      return false;
1974    else {
1975      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1976      if (PrevOuterContext->isRecord())
1977        // We found a member function: ignore it.
1978        return false;
1979      else {
1980        // Find the innermost enclosing namespace for the new and
1981        // previous declarations.
1982        while (!OuterContext->isFileContext())
1983          OuterContext = OuterContext->getParent();
1984        while (!PrevOuterContext->isFileContext())
1985          PrevOuterContext = PrevOuterContext->getParent();
1986
1987        // The previous declaration is in a different namespace, so it
1988        // isn't the same function.
1989        if (OuterContext->getPrimaryContext() !=
1990            PrevOuterContext->getPrimaryContext())
1991          return false;
1992      }
1993    }
1994  }
1995
1996  return true;
1997}
1998
1999NamedDecl*
2000Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2001                              QualType R,NamedDecl* PrevDecl,
2002                              MultiTemplateParamsArg TemplateParamLists,
2003                              bool &Redeclaration) {
2004  DeclarationName Name = GetNameForDeclarator(D);
2005
2006  // Check that there are no default arguments (C++ only).
2007  if (getLangOptions().CPlusPlus)
2008    CheckExtraCXXDefaultArguments(D);
2009
2010  VarDecl *NewVD;
2011  VarDecl::StorageClass SC;
2012  switch (D.getDeclSpec().getStorageClassSpec()) {
2013  default: assert(0 && "Unknown storage class!");
2014  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2015  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2016  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2017  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2018  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2019  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2020  case DeclSpec::SCS_mutable:
2021    // mutable can only appear on non-static class members, so it's always
2022    // an error here
2023    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2024    D.setInvalidType();
2025    SC = VarDecl::None;
2026    break;
2027  }
2028
2029  IdentifierInfo *II = Name.getAsIdentifierInfo();
2030  if (!II) {
2031    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2032      << Name.getAsString();
2033    return 0;
2034  }
2035
2036  DiagnoseFunctionSpecifiers(D);
2037
2038  if (!DC->isRecord() && S->getFnParent() == 0) {
2039    // C99 6.9p2: The storage-class specifiers auto and register shall not
2040    // appear in the declaration specifiers in an external declaration.
2041    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2042
2043      // If this is a register variable with an asm label specified, then this
2044      // is a GNU extension.
2045      if (SC == VarDecl::Register && D.getAsmLabel())
2046        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2047      else
2048        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2049      D.setInvalidType();
2050    }
2051  }
2052  if (DC->isRecord() && !CurContext->isRecord()) {
2053    // This is an out-of-line definition of a static data member.
2054    if (SC == VarDecl::Static) {
2055      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2056           diag::err_static_out_of_line)
2057        << CodeModificationHint::CreateRemoval(
2058                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2059    } else if (SC == VarDecl::None)
2060      SC = VarDecl::Static;
2061  }
2062  if (SC == VarDecl::Static) {
2063    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2064      if (RD->isLocalClass())
2065        Diag(D.getIdentifierLoc(),
2066             diag::err_static_data_member_not_allowed_in_local_class)
2067          << Name << RD->getDeclName();
2068    }
2069  }
2070
2071  // Check that we can declare a template here.
2072  if (TemplateParamLists.size() &&
2073      CheckTemplateDeclScope(S, TemplateParamLists))
2074    return 0;
2075
2076  // Match up the template parameter lists with the scope specifier, then
2077  // determine whether we have a template or a template specialization.
2078  if (TemplateParameterList *TemplateParams
2079      = MatchTemplateParametersToScopeSpecifier(
2080                                  D.getDeclSpec().getSourceRange().getBegin(),
2081                                                D.getCXXScopeSpec(),
2082                        (TemplateParameterList**)TemplateParamLists.get(),
2083                                                 TemplateParamLists.size())) {
2084    if (TemplateParams->size() > 0) {
2085      // There is no such thing as a variable template.
2086      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2087        << II
2088        << SourceRange(TemplateParams->getTemplateLoc(),
2089                       TemplateParams->getRAngleLoc());
2090      return 0;
2091    } else {
2092      // There is an extraneous 'template<>' for this variable. Complain
2093      // about it, but allow the declaration of the variable.
2094      Diag(TemplateParams->getTemplateLoc(),
2095           diag::err_template_variable_noparams)
2096        << II
2097        << SourceRange(TemplateParams->getTemplateLoc(),
2098                       TemplateParams->getRAngleLoc());
2099    }
2100  }
2101
2102  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2103                          II, R, SC,
2104                          // FIXME: Move to DeclGroup...
2105                          D.getDeclSpec().getSourceRange().getBegin());
2106
2107  if (D.isInvalidType())
2108    NewVD->setInvalidDecl();
2109
2110  if (D.getDeclSpec().isThreadSpecified()) {
2111    if (NewVD->hasLocalStorage())
2112      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2113    else if (!Context.Target.isTLSSupported())
2114      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2115    else
2116      NewVD->setThreadSpecified(true);
2117  }
2118
2119  // Set the lexical context. If the declarator has a C++ scope specifier, the
2120  // lexical context will be different from the semantic context.
2121  NewVD->setLexicalDeclContext(CurContext);
2122
2123  // Handle attributes prior to checking for duplicates in MergeVarDecl
2124  ProcessDeclAttributes(S, NewVD, D);
2125
2126  // Handle GNU asm-label extension (encoded as an attribute).
2127  if (Expr *E = (Expr*) D.getAsmLabel()) {
2128    // The parser guarantees this is a string.
2129    StringLiteral *SE = cast<StringLiteral>(E);
2130    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2131                                                        SE->getByteLength())));
2132  }
2133
2134  // If name lookup finds a previous declaration that is not in the
2135  // same scope as the new declaration, this may still be an
2136  // acceptable redeclaration.
2137  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2138      !(NewVD->hasLinkage() &&
2139        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2140    PrevDecl = 0;
2141
2142  // Merge the decl with the existing one if appropriate.
2143  if (PrevDecl) {
2144    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2145      // The user tried to define a non-static data member
2146      // out-of-line (C++ [dcl.meaning]p1).
2147      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2148        << D.getCXXScopeSpec().getRange();
2149      PrevDecl = 0;
2150      NewVD->setInvalidDecl();
2151    }
2152  } else if (D.getCXXScopeSpec().isSet()) {
2153    // No previous declaration in the qualifying scope.
2154    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2155      << Name << D.getCXXScopeSpec().getRange();
2156    NewVD->setInvalidDecl();
2157  }
2158
2159  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2160
2161  // attributes declared post-definition are currently ignored
2162  if (PrevDecl) {
2163    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2164    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2165      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2166      Diag(Def->getLocation(), diag::note_previous_definition);
2167    }
2168  }
2169
2170  // If this is a locally-scoped extern C variable, update the map of
2171  // such variables.
2172  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2173      !NewVD->isInvalidDecl())
2174    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2175
2176  return NewVD;
2177}
2178
2179/// \brief Perform semantic checking on a newly-created variable
2180/// declaration.
2181///
2182/// This routine performs all of the type-checking required for a
2183/// variable declaration once it has been built. It is used both to
2184/// check variables after they have been parsed and their declarators
2185/// have been translated into a declaration, and to check variables
2186/// that have been instantiated from a template.
2187///
2188/// Sets NewVD->isInvalidDecl() if an error was encountered.
2189void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2190                                    bool &Redeclaration) {
2191  // If the decl is already known invalid, don't check it.
2192  if (NewVD->isInvalidDecl())
2193    return;
2194
2195  QualType T = NewVD->getType();
2196
2197  if (T->isObjCInterfaceType()) {
2198    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2199    return NewVD->setInvalidDecl();
2200  }
2201
2202  // The variable can not have an abstract class type.
2203  if (RequireNonAbstractType(NewVD->getLocation(), T,
2204                             diag::err_abstract_type_in_decl,
2205                             AbstractVariableType))
2206    return NewVD->setInvalidDecl();
2207
2208  // Emit an error if an address space was applied to decl with local storage.
2209  // This includes arrays of objects with address space qualifiers, but not
2210  // automatic variables that point to other address spaces.
2211  // ISO/IEC TR 18037 S5.1.2
2212  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2213    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2214    return NewVD->setInvalidDecl();
2215  }
2216
2217  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2218      && !NewVD->hasAttr<BlocksAttr>())
2219    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2220
2221  bool isVM = T->isVariablyModifiedType();
2222  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2223      NewVD->hasAttr<BlocksAttr>())
2224    CurFunctionNeedsScopeChecking = true;
2225
2226  if ((isVM && NewVD->hasLinkage()) ||
2227      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2228    bool SizeIsNegative;
2229    QualType FixedTy =
2230        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2231
2232    if (FixedTy.isNull() && T->isVariableArrayType()) {
2233      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2234      // FIXME: This won't give the correct result for
2235      // int a[10][n];
2236      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2237
2238      if (NewVD->isFileVarDecl())
2239        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2240        << SizeRange;
2241      else if (NewVD->getStorageClass() == VarDecl::Static)
2242        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2243        << SizeRange;
2244      else
2245        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2246        << SizeRange;
2247      return NewVD->setInvalidDecl();
2248    }
2249
2250    if (FixedTy.isNull()) {
2251      if (NewVD->isFileVarDecl())
2252        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2253      else
2254        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2255      return NewVD->setInvalidDecl();
2256    }
2257
2258    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2259    NewVD->setType(FixedTy);
2260  }
2261
2262  if (!PrevDecl && NewVD->isExternC(Context)) {
2263    // Since we did not find anything by this name and we're declaring
2264    // an extern "C" variable, look for a non-visible extern "C"
2265    // declaration with the same name.
2266    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2267      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2268    if (Pos != LocallyScopedExternalDecls.end())
2269      PrevDecl = Pos->second;
2270  }
2271
2272  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2273    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2274      << T;
2275    return NewVD->setInvalidDecl();
2276  }
2277
2278  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2279    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2280    return NewVD->setInvalidDecl();
2281  }
2282
2283  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2284    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2285    return NewVD->setInvalidDecl();
2286  }
2287
2288  if (PrevDecl) {
2289    Redeclaration = true;
2290    MergeVarDecl(NewVD, PrevDecl);
2291  }
2292}
2293
2294NamedDecl*
2295Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2296                              QualType R, NamedDecl* PrevDecl,
2297                              MultiTemplateParamsArg TemplateParamLists,
2298                              bool IsFunctionDefinition, bool &Redeclaration) {
2299  assert(R.getTypePtr()->isFunctionType());
2300
2301  DeclarationName Name = GetNameForDeclarator(D);
2302  FunctionDecl::StorageClass SC = FunctionDecl::None;
2303  switch (D.getDeclSpec().getStorageClassSpec()) {
2304  default: assert(0 && "Unknown storage class!");
2305  case DeclSpec::SCS_auto:
2306  case DeclSpec::SCS_register:
2307  case DeclSpec::SCS_mutable:
2308    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2309         diag::err_typecheck_sclass_func);
2310    D.setInvalidType();
2311    break;
2312  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2313  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2314  case DeclSpec::SCS_static: {
2315    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2316      // C99 6.7.1p5:
2317      //   The declaration of an identifier for a function that has
2318      //   block scope shall have no explicit storage-class specifier
2319      //   other than extern
2320      // See also (C++ [dcl.stc]p4).
2321      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2322           diag::err_static_block_func);
2323      SC = FunctionDecl::None;
2324    } else
2325      SC = FunctionDecl::Static;
2326    break;
2327  }
2328  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2329  }
2330
2331  if (D.getDeclSpec().isThreadSpecified())
2332    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2333
2334  bool isInline = D.getDeclSpec().isInlineSpecified();
2335  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2336  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2337
2338  // Check that the return type is not an abstract class type.
2339  // For record types, this is done by the AbstractClassUsageDiagnoser once
2340  // the class has been completely parsed.
2341  if (!DC->isRecord() &&
2342      RequireNonAbstractType(D.getIdentifierLoc(),
2343                             R->getAsFunctionType()->getResultType(),
2344                             diag::err_abstract_type_in_decl,
2345                             AbstractReturnType))
2346    D.setInvalidType();
2347
2348  // Do not allow returning a objc interface by-value.
2349  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2350    Diag(D.getIdentifierLoc(),
2351         diag::err_object_cannot_be_passed_returned_by_value) << 0
2352      << R->getAsFunctionType()->getResultType();
2353    D.setInvalidType();
2354  }
2355
2356  // Check that we can declare a template here.
2357  if (TemplateParamLists.size() &&
2358      CheckTemplateDeclScope(S, TemplateParamLists))
2359    return 0;
2360
2361  bool isVirtualOkay = false;
2362  FunctionDecl *NewFD;
2363  if (D.getKind() == Declarator::DK_Constructor) {
2364    // This is a C++ constructor declaration.
2365    assert(DC->isRecord() &&
2366           "Constructors can only be declared in a member context");
2367
2368    R = CheckConstructorDeclarator(D, R, SC);
2369
2370    // Create the new declaration
2371    NewFD = CXXConstructorDecl::Create(Context,
2372                                       cast<CXXRecordDecl>(DC),
2373                                       D.getIdentifierLoc(), Name, R,
2374                                       isExplicit, isInline,
2375                                       /*isImplicitlyDeclared=*/false);
2376  } else if (D.getKind() == Declarator::DK_Destructor) {
2377    // This is a C++ destructor declaration.
2378    if (DC->isRecord()) {
2379      R = CheckDestructorDeclarator(D, SC);
2380
2381      NewFD = CXXDestructorDecl::Create(Context,
2382                                        cast<CXXRecordDecl>(DC),
2383                                        D.getIdentifierLoc(), Name, R,
2384                                        isInline,
2385                                        /*isImplicitlyDeclared=*/false);
2386
2387      isVirtualOkay = true;
2388    } else {
2389      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2390
2391      // Create a FunctionDecl to satisfy the function definition parsing
2392      // code path.
2393      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2394                                   Name, R, SC, isInline,
2395                                   /*hasPrototype=*/true,
2396                                   // FIXME: Move to DeclGroup...
2397                                   D.getDeclSpec().getSourceRange().getBegin());
2398      D.setInvalidType();
2399    }
2400  } else if (D.getKind() == Declarator::DK_Conversion) {
2401    if (!DC->isRecord()) {
2402      Diag(D.getIdentifierLoc(),
2403           diag::err_conv_function_not_member);
2404      return 0;
2405    }
2406
2407    CheckConversionDeclarator(D, R, SC);
2408    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2409                                      D.getIdentifierLoc(), Name, R,
2410                                      isInline, isExplicit);
2411
2412    isVirtualOkay = true;
2413  } else if (DC->isRecord()) {
2414    // If the of the function is the same as the name of the record, then this
2415    // must be an invalid constructor that has a return type.
2416    // (The parser checks for a return type and makes the declarator a
2417    // constructor if it has no return type).
2418    // must have an invalid constructor that has a return type
2419    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2420      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2421        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2422        << SourceRange(D.getIdentifierLoc());
2423      return 0;
2424    }
2425
2426    // This is a C++ method declaration.
2427    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2428                                  D.getIdentifierLoc(), Name, R,
2429                                  (SC == FunctionDecl::Static), isInline);
2430
2431    isVirtualOkay = (SC != FunctionDecl::Static);
2432  } else {
2433    // Determine whether the function was written with a
2434    // prototype. This true when:
2435    //   - we're in C++ (where every function has a prototype),
2436    //   - there is a prototype in the declarator, or
2437    //   - the type R of the function is some kind of typedef or other reference
2438    //     to a type name (which eventually refers to a function type).
2439    bool HasPrototype =
2440       getLangOptions().CPlusPlus ||
2441       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2442       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2443
2444    NewFD = FunctionDecl::Create(Context, DC,
2445                                 D.getIdentifierLoc(),
2446                                 Name, R, SC, isInline, HasPrototype,
2447                                 // FIXME: Move to DeclGroup...
2448                                 D.getDeclSpec().getSourceRange().getBegin());
2449  }
2450
2451  if (D.isInvalidType())
2452    NewFD->setInvalidDecl();
2453
2454  // Set the lexical context. If the declarator has a C++
2455  // scope specifier, the lexical context will be different
2456  // from the semantic context.
2457  NewFD->setLexicalDeclContext(CurContext);
2458
2459  // Match up the template parameter lists with the scope specifier, then
2460  // determine whether we have a template or a template specialization.
2461  FunctionTemplateDecl *FunctionTemplate = 0;
2462  if (TemplateParameterList *TemplateParams
2463        = MatchTemplateParametersToScopeSpecifier(
2464                                  D.getDeclSpec().getSourceRange().getBegin(),
2465                                  D.getCXXScopeSpec(),
2466                           (TemplateParameterList**)TemplateParamLists.get(),
2467                                                  TemplateParamLists.size())) {
2468    if (TemplateParams->size() > 0) {
2469      // This is a function template
2470      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2471                                                      NewFD->getLocation(),
2472                                                      Name, TemplateParams,
2473                                                      NewFD);
2474      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2475    } else {
2476      // FIXME: Handle function template specializations
2477    }
2478
2479    // FIXME: Free this memory properly.
2480    TemplateParamLists.release();
2481  }
2482
2483  // C++ [dcl.fct.spec]p5:
2484  //   The virtual specifier shall only be used in declarations of
2485  //   nonstatic class member functions that appear within a
2486  //   member-specification of a class declaration; see 10.3.
2487  //
2488  if (isVirtual && !NewFD->isInvalidDecl()) {
2489    if (!isVirtualOkay) {
2490       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2491           diag::err_virtual_non_function);
2492    } else if (!CurContext->isRecord()) {
2493      // 'virtual' was specified outside of the class.
2494      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2495        << CodeModificationHint::CreateRemoval(
2496                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2497    } else {
2498      // Okay: Add virtual to the method.
2499      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2500      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2501      CurClass->setAggregate(false);
2502      CurClass->setPOD(false);
2503      CurClass->setPolymorphic(true);
2504      CurClass->setHasTrivialConstructor(false);
2505      CurClass->setHasTrivialCopyConstructor(false);
2506      CurClass->setHasTrivialCopyAssignment(false);
2507    }
2508  }
2509
2510  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2511    // Look for virtual methods in base classes that this method might override.
2512
2513    BasePaths Paths;
2514    if (LookupInBases(cast<CXXRecordDecl>(DC),
2515                      MemberLookupCriteria(NewMD), Paths)) {
2516      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2517           E = Paths.found_decls_end(); I != E; ++I) {
2518        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2519          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2520              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2521            NewMD->addOverriddenMethod(OldMD);
2522        }
2523      }
2524    }
2525  }
2526
2527  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2528      !CurContext->isRecord()) {
2529    // C++ [class.static]p1:
2530    //   A data or function member of a class may be declared static
2531    //   in a class definition, in which case it is a static member of
2532    //   the class.
2533
2534    // Complain about the 'static' specifier if it's on an out-of-line
2535    // member function definition.
2536    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2537         diag::err_static_out_of_line)
2538      << CodeModificationHint::CreateRemoval(
2539                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2540  }
2541
2542  // Handle GNU asm-label extension (encoded as an attribute).
2543  if (Expr *E = (Expr*) D.getAsmLabel()) {
2544    // The parser guarantees this is a string.
2545    StringLiteral *SE = cast<StringLiteral>(E);
2546    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2547                                                        SE->getByteLength())));
2548  }
2549
2550  // Copy the parameter declarations from the declarator D to the function
2551  // declaration NewFD, if they are available.  First scavenge them into Params.
2552  llvm::SmallVector<ParmVarDecl*, 16> Params;
2553  if (D.getNumTypeObjects() > 0) {
2554    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2555
2556    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2557    // function that takes no arguments, not a function that takes a
2558    // single void argument.
2559    // We let through "const void" here because Sema::GetTypeForDeclarator
2560    // already checks for that case.
2561    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2562        FTI.ArgInfo[0].Param &&
2563        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2564      // Empty arg list, don't push any params.
2565      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2566
2567      // In C++, the empty parameter-type-list must be spelled "void"; a
2568      // typedef of void is not permitted.
2569      if (getLangOptions().CPlusPlus &&
2570          Param->getType().getUnqualifiedType() != Context.VoidTy)
2571        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2572      // FIXME: Leaks decl?
2573    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2574      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2575        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2576        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2577        Param->setDeclContext(NewFD);
2578        Params.push_back(Param);
2579      }
2580    }
2581
2582  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2583    // When we're declaring a function with a typedef, typeof, etc as in the
2584    // following example, we'll need to synthesize (unnamed)
2585    // parameters for use in the declaration.
2586    //
2587    // @code
2588    // typedef void fn(int);
2589    // fn f;
2590    // @endcode
2591
2592    // Synthesize a parameter for each argument type.
2593    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2594         AE = FT->arg_type_end(); AI != AE; ++AI) {
2595      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2596                                               SourceLocation(), 0,
2597                                               *AI, VarDecl::None, 0);
2598      Param->setImplicit();
2599      Params.push_back(Param);
2600    }
2601  } else {
2602    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2603           "Should not need args for typedef of non-prototype fn");
2604  }
2605  // Finally, we know we have the right number of parameters, install them.
2606  NewFD->setParams(Context, Params.data(), Params.size());
2607
2608  // If name lookup finds a previous declaration that is not in the
2609  // same scope as the new declaration, this may still be an
2610  // acceptable redeclaration.
2611  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2612      !(NewFD->hasLinkage() &&
2613        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2614    PrevDecl = 0;
2615
2616  // Perform semantic checking on the function declaration.
2617  bool OverloadableAttrRequired = false; // FIXME: HACK!
2618  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2619                           /*FIXME:*/OverloadableAttrRequired);
2620
2621  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2622    // An out-of-line member function declaration must also be a
2623    // definition (C++ [dcl.meaning]p1).
2624    if (!IsFunctionDefinition) {
2625      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2626        << D.getCXXScopeSpec().getRange();
2627      NewFD->setInvalidDecl();
2628    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2629      // The user tried to provide an out-of-line definition for a
2630      // function that is a member of a class or namespace, but there
2631      // was no such member function declared (C++ [class.mfct]p2,
2632      // C++ [namespace.memdef]p2). For example:
2633      //
2634      // class X {
2635      //   void f() const;
2636      // };
2637      //
2638      // void X::f() { } // ill-formed
2639      //
2640      // Complain about this problem, and attempt to suggest close
2641      // matches (e.g., those that differ only in cv-qualifiers and
2642      // whether the parameter types are references).
2643      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2644        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2645      NewFD->setInvalidDecl();
2646
2647      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2648                                              true);
2649      assert(!Prev.isAmbiguous() &&
2650             "Cannot have an ambiguity in previous-declaration lookup");
2651      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2652           Func != FuncEnd; ++Func) {
2653        if (isa<FunctionDecl>(*Func) &&
2654            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2655          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2656      }
2657
2658      PrevDecl = 0;
2659    }
2660  }
2661
2662  // Handle attributes. We need to have merged decls when handling attributes
2663  // (for example to check for conflicts, etc).
2664  // FIXME: This needs to happen before we merge declarations. Then,
2665  // let attribute merging cope with attribute conflicts.
2666  ProcessDeclAttributes(S, NewFD, D);
2667
2668  // attributes declared post-definition are currently ignored
2669  if (PrevDecl) {
2670    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2671    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2672      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2673      Diag(Def->getLocation(), diag::note_previous_definition);
2674    }
2675  }
2676
2677  AddKnownFunctionAttributes(NewFD);
2678
2679  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2680    // If a function name is overloadable in C, then every function
2681    // with that name must be marked "overloadable".
2682    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2683      << Redeclaration << NewFD;
2684    if (PrevDecl)
2685      Diag(PrevDecl->getLocation(),
2686           diag::note_attribute_overloadable_prev_overload);
2687    NewFD->addAttr(::new (Context) OverloadableAttr());
2688  }
2689
2690  // If this is a locally-scoped extern C function, update the
2691  // map of such names.
2692  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2693      && !NewFD->isInvalidDecl())
2694    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2695
2696  // Set this FunctionDecl's range up to the right paren.
2697  NewFD->setLocEnd(D.getSourceRange().getEnd());
2698
2699  if (FunctionTemplate && NewFD->isInvalidDecl())
2700    FunctionTemplate->setInvalidDecl();
2701
2702  if (FunctionTemplate)
2703    return FunctionTemplate;
2704
2705  return NewFD;
2706}
2707
2708/// \brief Perform semantic checking of a new function declaration.
2709///
2710/// Performs semantic analysis of the new function declaration
2711/// NewFD. This routine performs all semantic checking that does not
2712/// require the actual declarator involved in the declaration, and is
2713/// used both for the declaration of functions as they are parsed
2714/// (called via ActOnDeclarator) and for the declaration of functions
2715/// that have been instantiated via C++ template instantiation (called
2716/// via InstantiateDecl).
2717///
2718/// This sets NewFD->isInvalidDecl() to true if there was an error.
2719void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2720                                    bool &Redeclaration,
2721                                    bool &OverloadableAttrRequired) {
2722  // If NewFD is already known erroneous, don't do any of this checking.
2723  if (NewFD->isInvalidDecl())
2724    return;
2725
2726  if (NewFD->getResultType()->isVariablyModifiedType()) {
2727    // Functions returning a variably modified type violate C99 6.7.5.2p2
2728    // because all functions have linkage.
2729    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2730    return NewFD->setInvalidDecl();
2731  }
2732
2733  if (NewFD->isMain()) CheckMain(NewFD);
2734
2735  // Semantic checking for this function declaration (in isolation).
2736  if (getLangOptions().CPlusPlus) {
2737    // C++-specific checks.
2738    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2739      CheckConstructor(Constructor);
2740    } else if (isa<CXXDestructorDecl>(NewFD)) {
2741      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2742      QualType ClassType = Context.getTypeDeclType(Record);
2743      if (!ClassType->isDependentType()) {
2744        ClassType = Context.getCanonicalType(ClassType);
2745        DeclarationName Name
2746          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2747        if (NewFD->getDeclName() != Name) {
2748          Diag(NewFD->getLocation(), diag::err_destructor_name);
2749          return NewFD->setInvalidDecl();
2750        }
2751      }
2752      Record->setUserDeclaredDestructor(true);
2753      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2754      // user-defined destructor.
2755      Record->setPOD(false);
2756
2757      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2758      // declared destructor.
2759      // FIXME: C++0x: don't do this for "= default" destructors
2760      Record->setHasTrivialDestructor(false);
2761    } else if (CXXConversionDecl *Conversion
2762               = dyn_cast<CXXConversionDecl>(NewFD))
2763      ActOnConversionDeclarator(Conversion);
2764
2765    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2766    if (NewFD->isOverloadedOperator() &&
2767        CheckOverloadedOperatorDeclaration(NewFD))
2768      return NewFD->setInvalidDecl();
2769  }
2770
2771  // C99 6.7.4p6:
2772  //   [... ] For a function with external linkage, the following
2773  //   restrictions apply: [...] If all of the file scope declarations
2774  //   for a function in a translation unit include the inline
2775  //   function specifier without extern, then the definition in that
2776  //   translation unit is an inline definition. An inline definition
2777  //   does not provide an external definition for the function, and
2778  //   does not forbid an external definition in another translation
2779  //   unit.
2780  //
2781  // Here we determine whether this function, in isolation, would be a
2782  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2783  // previous declarations.
2784  if (NewFD->isInline() && getLangOptions().C99 &&
2785      NewFD->getStorageClass() == FunctionDecl::None &&
2786      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2787    NewFD->setC99InlineDefinition(true);
2788
2789  // Check for a previous declaration of this name.
2790  if (!PrevDecl && NewFD->isExternC(Context)) {
2791    // Since we did not find anything by this name and we're declaring
2792    // an extern "C" function, look for a non-visible extern "C"
2793    // declaration with the same name.
2794    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2795      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2796    if (Pos != LocallyScopedExternalDecls.end())
2797      PrevDecl = Pos->second;
2798  }
2799
2800  // Merge or overload the declaration with an existing declaration of
2801  // the same name, if appropriate.
2802  if (PrevDecl) {
2803    // Determine whether NewFD is an overload of PrevDecl or
2804    // a declaration that requires merging. If it's an overload,
2805    // there's no more work to do here; we'll just add the new
2806    // function to the scope.
2807    OverloadedFunctionDecl::function_iterator MatchedDecl;
2808
2809    if (!getLangOptions().CPlusPlus &&
2810        AllowOverloadingOfFunction(PrevDecl, Context)) {
2811      OverloadableAttrRequired = true;
2812
2813      // Functions marked "overloadable" must have a prototype (that
2814      // we can't get through declaration merging).
2815      if (!NewFD->getType()->getAsFunctionProtoType()) {
2816        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2817          << NewFD;
2818        Redeclaration = true;
2819
2820        // Turn this into a variadic function with no parameters.
2821        QualType R = Context.getFunctionType(
2822                       NewFD->getType()->getAsFunctionType()->getResultType(),
2823                       0, 0, true, 0);
2824        NewFD->setType(R);
2825        return NewFD->setInvalidDecl();
2826      }
2827    }
2828
2829    if (PrevDecl &&
2830        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2831         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2832        !isa<UsingDecl>(PrevDecl)) {
2833      Redeclaration = true;
2834      Decl *OldDecl = PrevDecl;
2835
2836      // If PrevDecl was an overloaded function, extract the
2837      // FunctionDecl that matched.
2838      if (isa<OverloadedFunctionDecl>(PrevDecl))
2839        OldDecl = *MatchedDecl;
2840
2841      // NewFD and OldDecl represent declarations that need to be
2842      // merged.
2843      if (MergeFunctionDecl(NewFD, OldDecl))
2844        return NewFD->setInvalidDecl();
2845
2846      if (FunctionTemplateDecl *OldTemplateDecl
2847            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2848        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2849      else {
2850        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2851          NewFD->setAccess(OldDecl->getAccess());
2852        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2853      }
2854    }
2855  }
2856
2857  // In C++, check default arguments now that we have merged decls. Unless
2858  // the lexical context is the class, because in this case this is done
2859  // during delayed parsing anyway.
2860  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2861    CheckCXXDefaultArguments(NewFD);
2862}
2863
2864void Sema::CheckMain(FunctionDecl* FD) {
2865  // C++ [basic.start.main]p3:  A program that declares main to be inline
2866  //   or static is ill-formed.
2867  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2868  //   shall not appear in a declaration of main.
2869  // static main is not an error under C99, but we should warn about it.
2870  bool isInline = FD->isInline();
2871  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2872  if (isInline || isStatic) {
2873    unsigned diagID = diag::warn_unusual_main_decl;
2874    if (isInline || getLangOptions().CPlusPlus)
2875      diagID = diag::err_unusual_main_decl;
2876
2877    int which = isStatic + (isInline << 1) - 1;
2878    Diag(FD->getLocation(), diagID) << which;
2879  }
2880
2881  QualType T = FD->getType();
2882  assert(T->isFunctionType() && "function decl is not of function type");
2883  const FunctionType* FT = T->getAsFunctionType();
2884
2885  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2886    // TODO: add a replacement fixit to turn the return type into 'int'.
2887    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2888    FD->setInvalidDecl(true);
2889  }
2890
2891  // Treat protoless main() as nullary.
2892  if (isa<FunctionNoProtoType>(FT)) return;
2893
2894  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2895  unsigned nparams = FTP->getNumArgs();
2896  assert(FD->getNumParams() == nparams);
2897
2898  if (nparams > 3) {
2899    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2900    FD->setInvalidDecl(true);
2901    nparams = 3;
2902  }
2903
2904  // FIXME: a lot of the following diagnostics would be improved
2905  // if we had some location information about types.
2906
2907  QualType CharPP =
2908    Context.getPointerType(Context.getPointerType(Context.CharTy));
2909  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2910
2911  for (unsigned i = 0; i < nparams; ++i) {
2912    QualType AT = FTP->getArgType(i);
2913
2914    bool mismatch = true;
2915
2916    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2917      mismatch = false;
2918    else if (Expected[i] == CharPP) {
2919      // As an extension, the following forms are okay:
2920      //   char const **
2921      //   char const * const *
2922      //   char * const *
2923
2924      QualifierSet qs;
2925      const PointerType* PT;
2926      if ((PT = qs.strip(AT)->getAsPointerType()) &&
2927          (PT = qs.strip(PT->getPointeeType())->getAsPointerType()) &&
2928          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2929        qs.removeConst();
2930        mismatch = !qs.empty();
2931      }
2932    }
2933
2934    if (mismatch) {
2935      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2936      // TODO: suggest replacing given type with expected type
2937      FD->setInvalidDecl(true);
2938    }
2939  }
2940
2941  if (nparams == 1 && !FD->isInvalidDecl()) {
2942    Diag(FD->getLocation(), diag::warn_main_one_arg);
2943  }
2944}
2945
2946bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2947  // FIXME: Need strict checking.  In C89, we need to check for
2948  // any assignment, increment, decrement, function-calls, or
2949  // commas outside of a sizeof.  In C99, it's the same list,
2950  // except that the aforementioned are allowed in unevaluated
2951  // expressions.  Everything else falls under the
2952  // "may accept other forms of constant expressions" exception.
2953  // (We never end up here for C++, so the constant expression
2954  // rules there don't matter.)
2955  if (Init->isConstantInitializer(Context))
2956    return false;
2957  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2958    << Init->getSourceRange();
2959  return true;
2960}
2961
2962void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2963  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2964}
2965
2966/// AddInitializerToDecl - Adds the initializer Init to the
2967/// declaration dcl. If DirectInit is true, this is C++ direct
2968/// initialization rather than copy initialization.
2969void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2970  Decl *RealDecl = dcl.getAs<Decl>();
2971  // If there is no declaration, there was an error parsing it.  Just ignore
2972  // the initializer.
2973  if (RealDecl == 0)
2974    return;
2975
2976  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2977    // With declarators parsed the way they are, the parser cannot
2978    // distinguish between a normal initializer and a pure-specifier.
2979    // Thus this grotesque test.
2980    IntegerLiteral *IL;
2981    Expr *Init = static_cast<Expr *>(init.get());
2982    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2983        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2984      if (Method->isVirtualAsWritten()) {
2985        Method->setPure();
2986
2987        // A class is abstract if at least one function is pure virtual.
2988        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2989      } else if (!Method->isInvalidDecl()) {
2990        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2991          << Method->getDeclName() << Init->getSourceRange();
2992        Method->setInvalidDecl();
2993      }
2994    } else {
2995      Diag(Method->getLocation(), diag::err_member_function_initialization)
2996        << Method->getDeclName() << Init->getSourceRange();
2997      Method->setInvalidDecl();
2998    }
2999    return;
3000  }
3001
3002  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3003  if (!VDecl) {
3004    if (getLangOptions().CPlusPlus &&
3005        RealDecl->getLexicalDeclContext()->isRecord() &&
3006        isa<NamedDecl>(RealDecl))
3007      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3008        << cast<NamedDecl>(RealDecl)->getDeclName();
3009    else
3010      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3011    RealDecl->setInvalidDecl();
3012    return;
3013  }
3014
3015  if (!VDecl->getType()->isArrayType() &&
3016      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3017                          diag::err_typecheck_decl_incomplete_type)) {
3018    RealDecl->setInvalidDecl();
3019    return;
3020  }
3021
3022  const VarDecl *Def = 0;
3023  if (VDecl->getDefinition(Def)) {
3024    Diag(VDecl->getLocation(), diag::err_redefinition)
3025      << VDecl->getDeclName();
3026    Diag(Def->getLocation(), diag::note_previous_definition);
3027    VDecl->setInvalidDecl();
3028    return;
3029  }
3030
3031  // Take ownership of the expression, now that we're sure we have somewhere
3032  // to put it.
3033  Expr *Init = init.takeAs<Expr>();
3034  assert(Init && "missing initializer");
3035
3036  // Get the decls type and save a reference for later, since
3037  // CheckInitializerTypes may change it.
3038  QualType DclT = VDecl->getType(), SavT = DclT;
3039  if (VDecl->isBlockVarDecl()) {
3040    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3041      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3042      VDecl->setInvalidDecl();
3043    } else if (!VDecl->isInvalidDecl()) {
3044      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3045                                VDecl->getDeclName(), DirectInit))
3046        VDecl->setInvalidDecl();
3047
3048      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3049      // Don't check invalid declarations to avoid emitting useless diagnostics.
3050      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3051        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3052          CheckForConstantInitializer(Init, DclT);
3053      }
3054    }
3055  } else if (VDecl->isStaticDataMember() &&
3056             VDecl->getLexicalDeclContext()->isRecord()) {
3057    // This is an in-class initialization for a static data member, e.g.,
3058    //
3059    // struct S {
3060    //   static const int value = 17;
3061    // };
3062
3063    // Attach the initializer
3064    VDecl->setInit(Context, Init);
3065
3066    // C++ [class.mem]p4:
3067    //   A member-declarator can contain a constant-initializer only
3068    //   if it declares a static member (9.4) of const integral or
3069    //   const enumeration type, see 9.4.2.
3070    QualType T = VDecl->getType();
3071    if (!T->isDependentType() &&
3072        (!Context.getCanonicalType(T).isConstQualified() ||
3073         !T->isIntegralType())) {
3074      Diag(VDecl->getLocation(), diag::err_member_initialization)
3075        << VDecl->getDeclName() << Init->getSourceRange();
3076      VDecl->setInvalidDecl();
3077    } else {
3078      // C++ [class.static.data]p4:
3079      //   If a static data member is of const integral or const
3080      //   enumeration type, its declaration in the class definition
3081      //   can specify a constant-initializer which shall be an
3082      //   integral constant expression (5.19).
3083      if (!Init->isTypeDependent() &&
3084          !Init->getType()->isIntegralType()) {
3085        // We have a non-dependent, non-integral or enumeration type.
3086        Diag(Init->getSourceRange().getBegin(),
3087             diag::err_in_class_initializer_non_integral_type)
3088          << Init->getType() << Init->getSourceRange();
3089        VDecl->setInvalidDecl();
3090      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3091        // Check whether the expression is a constant expression.
3092        llvm::APSInt Value;
3093        SourceLocation Loc;
3094        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3095          Diag(Loc, diag::err_in_class_initializer_non_constant)
3096            << Init->getSourceRange();
3097          VDecl->setInvalidDecl();
3098        } else if (!VDecl->getType()->isDependentType())
3099          ImpCastExprToType(Init, VDecl->getType());
3100      }
3101    }
3102  } else if (VDecl->isFileVarDecl()) {
3103    if (VDecl->getStorageClass() == VarDecl::Extern)
3104      Diag(VDecl->getLocation(), diag::warn_extern_init);
3105    if (!VDecl->isInvalidDecl())
3106      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3107                                VDecl->getDeclName(), DirectInit))
3108        VDecl->setInvalidDecl();
3109
3110    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3111    // Don't check invalid declarations to avoid emitting useless diagnostics.
3112    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3113      // C99 6.7.8p4. All file scoped initializers need to be constant.
3114      CheckForConstantInitializer(Init, DclT);
3115    }
3116  }
3117  // If the type changed, it means we had an incomplete type that was
3118  // completed by the initializer. For example:
3119  //   int ary[] = { 1, 3, 5 };
3120  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3121  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3122    VDecl->setType(DclT);
3123    Init->setType(DclT);
3124  }
3125
3126  // Attach the initializer to the decl.
3127  VDecl->setInit(Context, Init);
3128
3129  // If the previous declaration of VDecl was a tentative definition,
3130  // remove it from the set of tentative definitions.
3131  if (VDecl->getPreviousDeclaration() &&
3132      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3133    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3134      = TentativeDefinitions.find(VDecl->getDeclName());
3135    assert(Pos != TentativeDefinitions.end() &&
3136           "Unrecorded tentative definition?");
3137    TentativeDefinitions.erase(Pos);
3138  }
3139
3140  return;
3141}
3142
3143void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3144                                  bool TypeContainsUndeducedAuto) {
3145  Decl *RealDecl = dcl.getAs<Decl>();
3146
3147  // If there is no declaration, there was an error parsing it. Just ignore it.
3148  if (RealDecl == 0)
3149    return;
3150
3151  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3152    QualType Type = Var->getType();
3153
3154    // Record tentative definitions.
3155    if (Var->isTentativeDefinition(Context))
3156      TentativeDefinitions[Var->getDeclName()] = Var;
3157
3158    // C++ [dcl.init.ref]p3:
3159    //   The initializer can be omitted for a reference only in a
3160    //   parameter declaration (8.3.5), in the declaration of a
3161    //   function return type, in the declaration of a class member
3162    //   within its class declaration (9.2), and where the extern
3163    //   specifier is explicitly used.
3164    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3165      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3166        << Var->getDeclName()
3167        << SourceRange(Var->getLocation(), Var->getLocation());
3168      Var->setInvalidDecl();
3169      return;
3170    }
3171
3172    // C++0x [dcl.spec.auto]p3
3173    if (TypeContainsUndeducedAuto) {
3174      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3175        << Var->getDeclName() << Type;
3176      Var->setInvalidDecl();
3177      return;
3178    }
3179
3180    // C++ [dcl.init]p9:
3181    //
3182    //   If no initializer is specified for an object, and the object
3183    //   is of (possibly cv-qualified) non-POD class type (or array
3184    //   thereof), the object shall be default-initialized; if the
3185    //   object is of const-qualified type, the underlying class type
3186    //   shall have a user-declared default constructor.
3187    if (getLangOptions().CPlusPlus) {
3188      QualType InitType = Type;
3189      if (const ArrayType *Array = Context.getAsArrayType(Type))
3190        InitType = Array->getElementType();
3191      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3192          InitType->isRecordType() && !InitType->isDependentType()) {
3193        CXXRecordDecl *RD =
3194          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
3195        CXXConstructorDecl *Constructor = 0;
3196        if (!RequireCompleteType(Var->getLocation(), InitType,
3197                                    diag::err_invalid_incomplete_type_use))
3198          Constructor
3199            = PerformInitializationByConstructor(InitType, 0, 0,
3200                                                 Var->getLocation(),
3201                                               SourceRange(Var->getLocation(),
3202                                                           Var->getLocation()),
3203                                                 Var->getDeclName(),
3204                                                 IK_Default);
3205        if (!Constructor)
3206          Var->setInvalidDecl();
3207        else {
3208          if (!RD->hasTrivialConstructor())
3209            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3210          // FIXME. Must do all that is needed to destroy the object
3211          // on scope exit. For now, just mark the destructor as used.
3212          MarkDestructorReferenced(Var->getLocation(), InitType);
3213        }
3214      }
3215    }
3216
3217#if 0
3218    // FIXME: Temporarily disabled because we are not properly parsing
3219    // linkage specifications on declarations, e.g.,
3220    //
3221    //   extern "C" const CGPoint CGPointerZero;
3222    //
3223    // C++ [dcl.init]p9:
3224    //
3225    //     If no initializer is specified for an object, and the
3226    //     object is of (possibly cv-qualified) non-POD class type (or
3227    //     array thereof), the object shall be default-initialized; if
3228    //     the object is of const-qualified type, the underlying class
3229    //     type shall have a user-declared default
3230    //     constructor. Otherwise, if no initializer is specified for
3231    //     an object, the object and its subobjects, if any, have an
3232    //     indeterminate initial value; if the object or any of its
3233    //     subobjects are of const-qualified type, the program is
3234    //     ill-formed.
3235    //
3236    // This isn't technically an error in C, so we don't diagnose it.
3237    //
3238    // FIXME: Actually perform the POD/user-defined default
3239    // constructor check.
3240    if (getLangOptions().CPlusPlus &&
3241        Context.getCanonicalType(Type).isConstQualified() &&
3242        !Var->hasExternalStorage())
3243      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3244        << Var->getName()
3245        << SourceRange(Var->getLocation(), Var->getLocation());
3246#endif
3247  }
3248}
3249
3250Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3251                                                   DeclPtrTy *Group,
3252                                                   unsigned NumDecls) {
3253  llvm::SmallVector<Decl*, 8> Decls;
3254
3255  if (DS.isTypeSpecOwned())
3256    Decls.push_back((Decl*)DS.getTypeRep());
3257
3258  for (unsigned i = 0; i != NumDecls; ++i)
3259    if (Decl *D = Group[i].getAs<Decl>())
3260      Decls.push_back(D);
3261
3262  // Perform semantic analysis that depends on having fully processed both
3263  // the declarator and initializer.
3264  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3265    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3266    if (!IDecl)
3267      continue;
3268    QualType T = IDecl->getType();
3269
3270    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3271    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3272    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3273      if (!IDecl->isInvalidDecl() &&
3274          RequireCompleteType(IDecl->getLocation(), T,
3275                              diag::err_typecheck_decl_incomplete_type))
3276        IDecl->setInvalidDecl();
3277    }
3278    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3279    // object that has file scope without an initializer, and without a
3280    // storage-class specifier or with the storage-class specifier "static",
3281    // constitutes a tentative definition. Note: A tentative definition with
3282    // external linkage is valid (C99 6.2.2p5).
3283    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3284      if (const IncompleteArrayType *ArrayT
3285          = Context.getAsIncompleteArrayType(T)) {
3286        if (RequireCompleteType(IDecl->getLocation(),
3287                                ArrayT->getElementType(),
3288                                diag::err_illegal_decl_array_incomplete_type))
3289          IDecl->setInvalidDecl();
3290      }
3291      else if (IDecl->getStorageClass() == VarDecl::Static) {
3292        // C99 6.9.2p3: If the declaration of an identifier for an object is
3293        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3294        // declared type shall not be an incomplete type.
3295        // NOTE: code such as the following
3296        //     static struct s;
3297        //     struct s { int a; };
3298        // is accepted by gcc. Hence here we issue a warning instead of
3299        // an error and we do not invalidate the static declaration.
3300        // NOTE: to avoid multiple warnings, only check the first declaration.
3301        if (IDecl->getPreviousDeclaration() == 0)
3302          RequireCompleteType(IDecl->getLocation(), T,
3303                              diag::ext_typecheck_decl_incomplete_type);
3304      }
3305    }
3306  }
3307  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3308                                                   Decls.data(), Decls.size()));
3309}
3310
3311
3312/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3313/// to introduce parameters into function prototype scope.
3314Sema::DeclPtrTy
3315Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3316  const DeclSpec &DS = D.getDeclSpec();
3317
3318  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3319  VarDecl::StorageClass StorageClass = VarDecl::None;
3320  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3321    StorageClass = VarDecl::Register;
3322  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3323    Diag(DS.getStorageClassSpecLoc(),
3324         diag::err_invalid_storage_class_in_func_decl);
3325    D.getMutableDeclSpec().ClearStorageClassSpecs();
3326  }
3327
3328  if (D.getDeclSpec().isThreadSpecified())
3329    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3330
3331  DiagnoseFunctionSpecifiers(D);
3332
3333  // Check that there are no default arguments inside the type of this
3334  // parameter (C++ only).
3335  if (getLangOptions().CPlusPlus)
3336    CheckExtraCXXDefaultArguments(D);
3337
3338  TagDecl *OwnedDecl = 0;
3339  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3340
3341  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3342    // C++ [dcl.fct]p6:
3343    //   Types shall not be defined in return or parameter types.
3344    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3345      << Context.getTypeDeclType(OwnedDecl);
3346  }
3347
3348  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3349  // Can this happen for params?  We already checked that they don't conflict
3350  // among each other.  Here they can only shadow globals, which is ok.
3351  IdentifierInfo *II = D.getIdentifier();
3352  if (II) {
3353    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3354      if (PrevDecl->isTemplateParameter()) {
3355        // Maybe we will complain about the shadowed template parameter.
3356        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3357        // Just pretend that we didn't see the previous declaration.
3358        PrevDecl = 0;
3359      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3360        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3361
3362        // Recover by removing the name
3363        II = 0;
3364        D.SetIdentifier(0, D.getIdentifierLoc());
3365      }
3366    }
3367  }
3368
3369  // Parameters can not be abstract class types.
3370  // For record types, this is done by the AbstractClassUsageDiagnoser once
3371  // the class has been completely parsed.
3372  if (!CurContext->isRecord() &&
3373      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3374                             diag::err_abstract_type_in_decl,
3375                             AbstractParamType))
3376    D.setInvalidType(true);
3377
3378  QualType T = adjustParameterType(parmDeclType);
3379
3380  ParmVarDecl *New;
3381  if (T == parmDeclType) // parameter type did not need adjustment
3382    New = ParmVarDecl::Create(Context, CurContext,
3383                              D.getIdentifierLoc(), II,
3384                              parmDeclType, StorageClass,
3385                              0);
3386  else // keep track of both the adjusted and unadjusted types
3387    New = OriginalParmVarDecl::Create(Context, CurContext,
3388                                      D.getIdentifierLoc(), II, T,
3389                                      parmDeclType, StorageClass, 0);
3390
3391  if (D.isInvalidType())
3392    New->setInvalidDecl();
3393
3394  // Parameter declarators cannot be interface types. All ObjC objects are
3395  // passed by reference.
3396  if (T->isObjCInterfaceType()) {
3397    Diag(D.getIdentifierLoc(),
3398         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3399    New->setInvalidDecl();
3400  }
3401
3402  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3403  if (D.getCXXScopeSpec().isSet()) {
3404    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3405      << D.getCXXScopeSpec().getRange();
3406    New->setInvalidDecl();
3407  }
3408
3409  // Add the parameter declaration into this scope.
3410  S->AddDecl(DeclPtrTy::make(New));
3411  if (II)
3412    IdResolver.AddDecl(New);
3413
3414  ProcessDeclAttributes(S, New, D);
3415
3416  if (New->hasAttr<BlocksAttr>()) {
3417    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3418  }
3419  return DeclPtrTy::make(New);
3420}
3421
3422void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3423                                           SourceLocation LocAfterDecls) {
3424  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3425         "Not a function declarator!");
3426  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3427
3428  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3429  // for a K&R function.
3430  if (!FTI.hasPrototype) {
3431    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3432      --i;
3433      if (FTI.ArgInfo[i].Param == 0) {
3434        std::string Code = "  int ";
3435        Code += FTI.ArgInfo[i].Ident->getName();
3436        Code += ";\n";
3437        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3438          << FTI.ArgInfo[i].Ident
3439          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3440
3441        // Implicitly declare the argument as type 'int' for lack of a better
3442        // type.
3443        DeclSpec DS;
3444        const char* PrevSpec; // unused
3445        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3446                           PrevSpec);
3447        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3448        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3449        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3450      }
3451    }
3452  }
3453}
3454
3455Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3456                                              Declarator &D) {
3457  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3458  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3459         "Not a function declarator!");
3460  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3461
3462  if (FTI.hasPrototype) {
3463    // FIXME: Diagnose arguments without names in C.
3464  }
3465
3466  Scope *ParentScope = FnBodyScope->getParent();
3467
3468  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3469                                  MultiTemplateParamsArg(*this),
3470                                  /*IsFunctionDefinition=*/true);
3471  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3472}
3473
3474Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3475  if (!D)
3476    return D;
3477  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3478
3479  CurFunctionNeedsScopeChecking = false;
3480
3481  // See if this is a redefinition.
3482  const FunctionDecl *Definition;
3483  if (FD->getBody(Definition)) {
3484    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3485    Diag(Definition->getLocation(), diag::note_previous_definition);
3486  }
3487
3488  // Builtin functions cannot be defined.
3489  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3490    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3491      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3492      FD->setInvalidDecl();
3493    }
3494  }
3495
3496  // The return type of a function definition must be complete
3497  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3498  QualType ResultType = FD->getResultType();
3499  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3500      !FD->isInvalidDecl() &&
3501      RequireCompleteType(FD->getLocation(), ResultType,
3502                          diag::err_func_def_incomplete_result))
3503    FD->setInvalidDecl();
3504
3505  // GNU warning -Wmissing-prototypes:
3506  //   Warn if a global function is defined without a previous
3507  //   prototype declaration. This warning is issued even if the
3508  //   definition itself provides a prototype. The aim is to detect
3509  //   global functions that fail to be declared in header files.
3510  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3511      !FD->isMain()) {
3512    bool MissingPrototype = true;
3513    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3514         Prev; Prev = Prev->getPreviousDeclaration()) {
3515      // Ignore any declarations that occur in function or method
3516      // scope, because they aren't visible from the header.
3517      if (Prev->getDeclContext()->isFunctionOrMethod())
3518        continue;
3519
3520      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3521      break;
3522    }
3523
3524    if (MissingPrototype)
3525      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3526  }
3527
3528  if (FnBodyScope)
3529    PushDeclContext(FnBodyScope, FD);
3530
3531  // Check the validity of our function parameters
3532  CheckParmsForFunctionDef(FD);
3533
3534  // Introduce our parameters into the function scope
3535  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3536    ParmVarDecl *Param = FD->getParamDecl(p);
3537    Param->setOwningFunction(FD);
3538
3539    // If this has an identifier, add it to the scope stack.
3540    if (Param->getIdentifier() && FnBodyScope)
3541      PushOnScopeChains(Param, FnBodyScope);
3542  }
3543
3544  // Checking attributes of current function definition
3545  // dllimport attribute.
3546  if (FD->getAttr<DLLImportAttr>() &&
3547      (!FD->getAttr<DLLExportAttr>())) {
3548    // dllimport attribute cannot be applied to definition.
3549    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3550      Diag(FD->getLocation(),
3551           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3552        << "dllimport";
3553      FD->setInvalidDecl();
3554      return DeclPtrTy::make(FD);
3555    } else {
3556      // If a symbol previously declared dllimport is later defined, the
3557      // attribute is ignored in subsequent references, and a warning is
3558      // emitted.
3559      Diag(FD->getLocation(),
3560           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3561        << FD->getNameAsCString() << "dllimport";
3562    }
3563  }
3564  return DeclPtrTy::make(FD);
3565}
3566
3567Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3568  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3569}
3570
3571Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3572                                              bool IsInstantiation) {
3573  Decl *dcl = D.getAs<Decl>();
3574  Stmt *Body = BodyArg.takeAs<Stmt>();
3575  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3576    FD->setBody(Body);
3577    if (FD->isMain())
3578      // C and C++ allow for main to automagically return 0.
3579      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3580      FD->setHasImplicitReturnZero(true);
3581    else
3582      CheckFallThroughForFunctionDef(FD, Body);
3583
3584    if (!FD->isInvalidDecl())
3585      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3586
3587    // C++ [basic.def.odr]p2:
3588    //   [...] A virtual member function is used if it is not pure. [...]
3589    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3590      if (Method->isVirtual() && !Method->isPure())
3591        MarkDeclarationReferenced(Method->getLocation(), Method);
3592
3593    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3594  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3595    assert(MD == getCurMethodDecl() && "Method parsing confused");
3596    MD->setBody(Body);
3597    CheckFallThroughForFunctionDef(MD, Body);
3598    MD->setEndLoc(Body->getLocEnd());
3599
3600    if (!MD->isInvalidDecl())
3601      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3602  } else {
3603    Body->Destroy(Context);
3604    return DeclPtrTy();
3605  }
3606  if (!IsInstantiation)
3607    PopDeclContext();
3608
3609  // Verify and clean out per-function state.
3610
3611  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3612
3613  // Check goto/label use.
3614  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3615       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3616    LabelStmt *L = I->second;
3617
3618    // Verify that we have no forward references left.  If so, there was a goto
3619    // or address of a label taken, but no definition of it.  Label fwd
3620    // definitions are indicated with a null substmt.
3621    if (L->getSubStmt() != 0)
3622      continue;
3623
3624    // Emit error.
3625    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3626
3627    // At this point, we have gotos that use the bogus label.  Stitch it into
3628    // the function body so that they aren't leaked and that the AST is well
3629    // formed.
3630    if (Body == 0) {
3631      // The whole function wasn't parsed correctly, just delete this.
3632      L->Destroy(Context);
3633      continue;
3634    }
3635
3636    // Otherwise, the body is valid: we want to stitch the label decl into the
3637    // function somewhere so that it is properly owned and so that the goto
3638    // has a valid target.  Do this by creating a new compound stmt with the
3639    // label in it.
3640
3641    // Give the label a sub-statement.
3642    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3643
3644    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3645                               cast<CXXTryStmt>(Body)->getTryBlock() :
3646                               cast<CompoundStmt>(Body);
3647    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3648    Elements.push_back(L);
3649    Compound->setStmts(Context, &Elements[0], Elements.size());
3650  }
3651  FunctionLabelMap.clear();
3652
3653  if (!Body) return D;
3654
3655  // Verify that that gotos and switch cases don't jump into scopes illegally.
3656  if (CurFunctionNeedsScopeChecking)
3657    DiagnoseInvalidJumps(Body);
3658
3659  // C++ constructors that have function-try-blocks can't have return
3660  // statements in the handlers of that block. (C++ [except.handle]p14)
3661  // Verify this.
3662  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3663    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3664
3665  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3666    Destructor->computeBaseOrMembersToDestroy(Context);
3667  return D;
3668}
3669
3670/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3671/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3672NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3673                                          IdentifierInfo &II, Scope *S) {
3674  // Before we produce a declaration for an implicitly defined
3675  // function, see whether there was a locally-scoped declaration of
3676  // this name as a function or variable. If so, use that
3677  // (non-visible) declaration, and complain about it.
3678  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3679    = LocallyScopedExternalDecls.find(&II);
3680  if (Pos != LocallyScopedExternalDecls.end()) {
3681    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3682    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3683    return Pos->second;
3684  }
3685
3686  // Extension in C99.  Legal in C90, but warn about it.
3687  if (getLangOptions().C99)
3688    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3689  else
3690    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3691
3692  // FIXME: handle stuff like:
3693  // void foo() { extern float X(); }
3694  // void bar() { X(); }  <-- implicit decl for X in another scope.
3695
3696  // Set a Declarator for the implicit definition: int foo();
3697  const char *Dummy;
3698  DeclSpec DS;
3699  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3700  Error = Error; // Silence warning.
3701  assert(!Error && "Error setting up implicit decl!");
3702  Declarator D(DS, Declarator::BlockContext);
3703  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3704                                             0, 0, false, SourceLocation(),
3705                                             false, 0,0,0, Loc, D),
3706                SourceLocation());
3707  D.SetIdentifier(&II, Loc);
3708
3709  // Insert this function into translation-unit scope.
3710
3711  DeclContext *PrevDC = CurContext;
3712  CurContext = Context.getTranslationUnitDecl();
3713
3714  FunctionDecl *FD =
3715 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3716  FD->setImplicit();
3717
3718  CurContext = PrevDC;
3719
3720  AddKnownFunctionAttributes(FD);
3721
3722  return FD;
3723}
3724
3725/// \brief Adds any function attributes that we know a priori based on
3726/// the declaration of this function.
3727///
3728/// These attributes can apply both to implicitly-declared builtins
3729/// (like __builtin___printf_chk) or to library-declared functions
3730/// like NSLog or printf.
3731void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3732  if (FD->isInvalidDecl())
3733    return;
3734
3735  // If this is a built-in function, map its builtin attributes to
3736  // actual attributes.
3737  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3738    // Handle printf-formatting attributes.
3739    unsigned FormatIdx;
3740    bool HasVAListArg;
3741    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3742      if (!FD->getAttr<FormatAttr>())
3743        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3744                                             HasVAListArg ? 0 : FormatIdx + 2));
3745    }
3746
3747    // Mark const if we don't care about errno and that is the only
3748    // thing preventing the function from being const. This allows
3749    // IRgen to use LLVM intrinsics for such functions.
3750    if (!getLangOptions().MathErrno &&
3751        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3752      if (!FD->getAttr<ConstAttr>())
3753        FD->addAttr(::new (Context) ConstAttr());
3754    }
3755
3756    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3757      FD->addAttr(::new (Context) NoReturnAttr());
3758  }
3759
3760  IdentifierInfo *Name = FD->getIdentifier();
3761  if (!Name)
3762    return;
3763  if ((!getLangOptions().CPlusPlus &&
3764       FD->getDeclContext()->isTranslationUnit()) ||
3765      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3766       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3767       LinkageSpecDecl::lang_c)) {
3768    // Okay: this could be a libc/libm/Objective-C function we know
3769    // about.
3770  } else
3771    return;
3772
3773  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3774    // FIXME: NSLog and NSLogv should be target specific
3775    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3776      // FIXME: We known better than our headers.
3777      const_cast<FormatAttr *>(Format)->setType("printf");
3778    } else
3779      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3780                                             Name->isStr("NSLogv") ? 0 : 2));
3781  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3782    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3783    // target-specific builtins, perhaps?
3784    if (!FD->getAttr<FormatAttr>())
3785      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3786                                             Name->isStr("vasprintf") ? 0 : 3));
3787  }
3788}
3789
3790TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3791  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3792  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3793
3794  // Scope manipulation handled by caller.
3795  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3796                                           D.getIdentifierLoc(),
3797                                           D.getIdentifier(),
3798                                           T);
3799
3800  if (TagType *TT = dyn_cast<TagType>(T)) {
3801    TagDecl *TD = TT->getDecl();
3802
3803    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3804    // keep track of the TypedefDecl.
3805    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3806      TD->setTypedefForAnonDecl(NewTD);
3807  }
3808
3809  if (D.isInvalidType())
3810    NewTD->setInvalidDecl();
3811  return NewTD;
3812}
3813
3814
3815/// \brief Determine whether a tag with a given kind is acceptable
3816/// as a redeclaration of the given tag declaration.
3817///
3818/// \returns true if the new tag kind is acceptable, false otherwise.
3819bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3820                                        TagDecl::TagKind NewTag,
3821                                        SourceLocation NewTagLoc,
3822                                        const IdentifierInfo &Name) {
3823  // C++ [dcl.type.elab]p3:
3824  //   The class-key or enum keyword present in the
3825  //   elaborated-type-specifier shall agree in kind with the
3826  //   declaration to which the name in theelaborated-type-specifier
3827  //   refers. This rule also applies to the form of
3828  //   elaborated-type-specifier that declares a class-name or
3829  //   friend class since it can be construed as referring to the
3830  //   definition of the class. Thus, in any
3831  //   elaborated-type-specifier, the enum keyword shall be used to
3832  //   refer to an enumeration (7.2), the union class-keyshall be
3833  //   used to refer to a union (clause 9), and either the class or
3834  //   struct class-key shall be used to refer to a class (clause 9)
3835  //   declared using the class or struct class-key.
3836  TagDecl::TagKind OldTag = Previous->getTagKind();
3837  if (OldTag == NewTag)
3838    return true;
3839
3840  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3841      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3842    // Warn about the struct/class tag mismatch.
3843    bool isTemplate = false;
3844    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3845      isTemplate = Record->getDescribedClassTemplate();
3846
3847    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3848      << (NewTag == TagDecl::TK_class)
3849      << isTemplate << &Name
3850      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3851                              OldTag == TagDecl::TK_class? "class" : "struct");
3852    Diag(Previous->getLocation(), diag::note_previous_use);
3853    return true;
3854  }
3855  return false;
3856}
3857
3858/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3859/// former case, Name will be non-null.  In the later case, Name will be null.
3860/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3861/// reference/declaration/definition of a tag.
3862Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3863                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3864                               IdentifierInfo *Name, SourceLocation NameLoc,
3865                               AttributeList *Attr, AccessSpecifier AS,
3866                               MultiTemplateParamsArg TemplateParameterLists,
3867                               bool &OwnedDecl) {
3868  // If this is not a definition, it must have a name.
3869  assert((Name != 0 || TK == TK_Definition) &&
3870         "Nameless record must be a definition!");
3871
3872  OwnedDecl = false;
3873  TagDecl::TagKind Kind;
3874  switch (TagSpec) {
3875  default: assert(0 && "Unknown tag type!");
3876  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3877  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3878  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3879  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3880  }
3881
3882  if (TK != TK_Reference) {
3883    if (TemplateParameterList *TemplateParams
3884          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3885                        (TemplateParameterList**)TemplateParameterLists.get(),
3886                                              TemplateParameterLists.size())) {
3887      if (TemplateParams->size() > 0) {
3888        // This is a declaration or definition of a class template (which may
3889        // be a member of another template).
3890        OwnedDecl = false;
3891        DeclResult Result = CheckClassTemplate(S, TagSpec, TK, KWLoc,
3892                                               SS, Name, NameLoc, Attr,
3893                                               move(TemplateParameterLists),
3894                                               AS);
3895        return Result.get();
3896      } else {
3897        // FIXME: diagnose the extraneous 'template<>', once we recover
3898        // slightly better in ParseTemplate.cpp from bogus template
3899        // parameters.
3900      }
3901    }
3902  }
3903
3904  DeclContext *SearchDC = CurContext;
3905  DeclContext *DC = CurContext;
3906  NamedDecl *PrevDecl = 0;
3907
3908  bool Invalid = false;
3909
3910  if (Name && SS.isNotEmpty()) {
3911    // We have a nested-name tag ('struct foo::bar').
3912
3913    // Check for invalid 'foo::'.
3914    if (SS.isInvalid()) {
3915      Name = 0;
3916      goto CreateNewDecl;
3917    }
3918
3919    if (RequireCompleteDeclContext(SS))
3920      return DeclPtrTy::make((Decl *)0);
3921
3922    DC = computeDeclContext(SS, true);
3923    SearchDC = DC;
3924    // Look-up name inside 'foo::'.
3925    PrevDecl
3926      = dyn_cast_or_null<TagDecl>(
3927               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3928
3929    // A tag 'foo::bar' must already exist.
3930    if (PrevDecl == 0) {
3931      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3932      Name = 0;
3933      Invalid = true;
3934      goto CreateNewDecl;
3935    }
3936  } else if (Name) {
3937    // If this is a named struct, check to see if there was a previous forward
3938    // declaration or definition.
3939    // FIXME: We're looking into outer scopes here, even when we
3940    // shouldn't be. Doing so can result in ambiguities that we
3941    // shouldn't be diagnosing.
3942    LookupResult R = LookupName(S, Name, LookupTagName,
3943                                /*RedeclarationOnly=*/(TK != TK_Reference));
3944    if (R.isAmbiguous()) {
3945      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3946      // FIXME: This is not best way to recover from case like:
3947      //
3948      // struct S s;
3949      //
3950      // causes needless "incomplete type" error later.
3951      Name = 0;
3952      PrevDecl = 0;
3953      Invalid = true;
3954    }
3955    else
3956      PrevDecl = R;
3957
3958    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3959      // FIXME: This makes sure that we ignore the contexts associated
3960      // with C structs, unions, and enums when looking for a matching
3961      // tag declaration or definition. See the similar lookup tweak
3962      // in Sema::LookupName; is there a better way to deal with this?
3963      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3964        SearchDC = SearchDC->getParent();
3965    }
3966  }
3967
3968  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3969    // Maybe we will complain about the shadowed template parameter.
3970    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3971    // Just pretend that we didn't see the previous declaration.
3972    PrevDecl = 0;
3973  }
3974
3975  if (PrevDecl) {
3976    // Check whether the previous declaration is usable.
3977    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3978
3979    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3980      // If this is a use of a previous tag, or if the tag is already declared
3981      // in the same scope (so that the definition/declaration completes or
3982      // rementions the tag), reuse the decl.
3983      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3984        // Make sure that this wasn't declared as an enum and now used as a
3985        // struct or something similar.
3986        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3987          bool SafeToContinue
3988            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3989               Kind != TagDecl::TK_enum);
3990          if (SafeToContinue)
3991            Diag(KWLoc, diag::err_use_with_wrong_tag)
3992              << Name
3993              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3994                                                  PrevTagDecl->getKindName());
3995          else
3996            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3997          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3998
3999          if (SafeToContinue)
4000            Kind = PrevTagDecl->getTagKind();
4001          else {
4002            // Recover by making this an anonymous redefinition.
4003            Name = 0;
4004            PrevDecl = 0;
4005            Invalid = true;
4006          }
4007        }
4008
4009        if (!Invalid) {
4010          // If this is a use, just return the declaration we found.
4011
4012          // FIXME: In the future, return a variant or some other clue
4013          // for the consumer of this Decl to know it doesn't own it.
4014          // For our current ASTs this shouldn't be a problem, but will
4015          // need to be changed with DeclGroups.
4016          if (TK == TK_Reference)
4017            return DeclPtrTy::make(PrevDecl);
4018
4019          // Diagnose attempts to redefine a tag.
4020          if (TK == TK_Definition) {
4021            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4022              Diag(NameLoc, diag::err_redefinition) << Name;
4023              Diag(Def->getLocation(), diag::note_previous_definition);
4024              // If this is a redefinition, recover by making this
4025              // struct be anonymous, which will make any later
4026              // references get the previous definition.
4027              Name = 0;
4028              PrevDecl = 0;
4029              Invalid = true;
4030            } else {
4031              // If the type is currently being defined, complain
4032              // about a nested redefinition.
4033              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4034              if (Tag->isBeingDefined()) {
4035                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4036                Diag(PrevTagDecl->getLocation(),
4037                     diag::note_previous_definition);
4038                Name = 0;
4039                PrevDecl = 0;
4040                Invalid = true;
4041              }
4042            }
4043
4044            // Okay, this is definition of a previously declared or referenced
4045            // tag PrevDecl. We're going to create a new Decl for it.
4046          }
4047        }
4048        // If we get here we have (another) forward declaration or we
4049        // have a definition.  Just create a new decl.
4050      } else {
4051        // If we get here, this is a definition of a new tag type in a nested
4052        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4053        // new decl/type.  We set PrevDecl to NULL so that the entities
4054        // have distinct types.
4055        PrevDecl = 0;
4056      }
4057      // If we get here, we're going to create a new Decl. If PrevDecl
4058      // is non-NULL, it's a definition of the tag declared by
4059      // PrevDecl. If it's NULL, we have a new definition.
4060    } else {
4061      // PrevDecl is a namespace, template, or anything else
4062      // that lives in the IDNS_Tag identifier namespace.
4063      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4064        // The tag name clashes with a namespace name, issue an error and
4065        // recover by making this tag be anonymous.
4066        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4067        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4068        Name = 0;
4069        PrevDecl = 0;
4070        Invalid = true;
4071      } else {
4072        // The existing declaration isn't relevant to us; we're in a
4073        // new scope, so clear out the previous declaration.
4074        PrevDecl = 0;
4075      }
4076    }
4077  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
4078             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4079    // C++ [basic.scope.pdecl]p5:
4080    //   -- for an elaborated-type-specifier of the form
4081    //
4082    //          class-key identifier
4083    //
4084    //      if the elaborated-type-specifier is used in the
4085    //      decl-specifier-seq or parameter-declaration-clause of a
4086    //      function defined in namespace scope, the identifier is
4087    //      declared as a class-name in the namespace that contains
4088    //      the declaration; otherwise, except as a friend
4089    //      declaration, the identifier is declared in the smallest
4090    //      non-class, non-function-prototype scope that contains the
4091    //      declaration.
4092    //
4093    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4094    // C structs and unions.
4095    //
4096    // GNU C also supports this behavior as part of its incomplete
4097    // enum types extension, while GNU C++ does not.
4098    //
4099    // Find the context where we'll be declaring the tag.
4100    // FIXME: We would like to maintain the current DeclContext as the
4101    // lexical context,
4102    while (SearchDC->isRecord())
4103      SearchDC = SearchDC->getParent();
4104
4105    // Find the scope where we'll be declaring the tag.
4106    while (S->isClassScope() ||
4107           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4108           ((S->getFlags() & Scope::DeclScope) == 0) ||
4109           (S->getEntity() &&
4110            ((DeclContext *)S->getEntity())->isTransparentContext()))
4111      S = S->getParent();
4112  }
4113
4114CreateNewDecl:
4115
4116  // If there is an identifier, use the location of the identifier as the
4117  // location of the decl, otherwise use the location of the struct/union
4118  // keyword.
4119  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4120
4121  // Otherwise, create a new declaration. If there is a previous
4122  // declaration of the same entity, the two will be linked via
4123  // PrevDecl.
4124  TagDecl *New;
4125
4126  if (Kind == TagDecl::TK_enum) {
4127    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4128    // enum X { A, B, C } D;    D should chain to X.
4129    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4130                           cast_or_null<EnumDecl>(PrevDecl));
4131    // If this is an undefined enum, warn.
4132    if (TK != TK_Definition && !Invalid)  {
4133      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4134                                              : diag::ext_forward_ref_enum;
4135      Diag(Loc, DK);
4136    }
4137  } else {
4138    // struct/union/class
4139
4140    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4141    // struct X { int A; } D;    D should chain to X.
4142    if (getLangOptions().CPlusPlus)
4143      // FIXME: Look for a way to use RecordDecl for simple structs.
4144      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4145                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4146    else
4147      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4148                               cast_or_null<RecordDecl>(PrevDecl));
4149  }
4150
4151  if (Kind != TagDecl::TK_enum) {
4152    // Handle #pragma pack: if the #pragma pack stack has non-default
4153    // alignment, make up a packed attribute for this decl. These
4154    // attributes are checked when the ASTContext lays out the
4155    // structure.
4156    //
4157    // It is important for implementing the correct semantics that this
4158    // happen here (in act on tag decl). The #pragma pack stack is
4159    // maintained as a result of parser callbacks which can occur at
4160    // many points during the parsing of a struct declaration (because
4161    // the #pragma tokens are effectively skipped over during the
4162    // parsing of the struct).
4163    if (unsigned Alignment = getPragmaPackAlignment())
4164      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
4165  }
4166
4167  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4168    // C++ [dcl.typedef]p3:
4169    //   [...] Similarly, in a given scope, a class or enumeration
4170    //   shall not be declared with the same name as a typedef-name
4171    //   that is declared in that scope and refers to a type other
4172    //   than the class or enumeration itself.
4173    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4174    TypedefDecl *PrevTypedef = 0;
4175    if (Lookup.getKind() == LookupResult::Found)
4176      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4177
4178    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4179        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4180          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4181      Diag(Loc, diag::err_tag_definition_of_typedef)
4182        << Context.getTypeDeclType(New)
4183        << PrevTypedef->getUnderlyingType();
4184      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4185      Invalid = true;
4186    }
4187  }
4188
4189  if (Invalid)
4190    New->setInvalidDecl();
4191
4192  if (Attr)
4193    ProcessDeclAttributeList(S, New, Attr);
4194
4195  // If we're declaring or defining a tag in function prototype scope
4196  // in C, note that this type can only be used within the function.
4197  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4198    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4199
4200  // Set the lexical context. If the tag has a C++ scope specifier, the
4201  // lexical context will be different from the semantic context.
4202  New->setLexicalDeclContext(CurContext);
4203
4204  // Set the access specifier.
4205  if (!Invalid)
4206    SetMemberAccessSpecifier(New, PrevDecl, AS);
4207
4208  if (TK == TK_Definition)
4209    New->startDefinition();
4210
4211  // If this has an identifier, add it to the scope stack.
4212  if (Name) {
4213    S = getNonFieldDeclScope(S);
4214    PushOnScopeChains(New, S);
4215  } else {
4216    CurContext->addDecl(New);
4217  }
4218
4219  // If this is the C FILE type, notify the AST context.
4220  if (IdentifierInfo *II = New->getIdentifier())
4221    if (!New->isInvalidDecl() &&
4222        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4223        II->isStr("FILE"))
4224      Context.setFILEDecl(New);
4225
4226  OwnedDecl = true;
4227  return DeclPtrTy::make(New);
4228}
4229
4230void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4231  AdjustDeclIfTemplate(TagD);
4232  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4233
4234  // Enter the tag context.
4235  PushDeclContext(S, Tag);
4236
4237  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4238    FieldCollector->StartClass();
4239
4240    if (Record->getIdentifier()) {
4241      // C++ [class]p2:
4242      //   [...] The class-name is also inserted into the scope of the
4243      //   class itself; this is known as the injected-class-name. For
4244      //   purposes of access checking, the injected-class-name is treated
4245      //   as if it were a public member name.
4246      CXXRecordDecl *InjectedClassName
4247        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4248                                CurContext, Record->getLocation(),
4249                                Record->getIdentifier(),
4250                                Record->getTagKeywordLoc(),
4251                                Record);
4252      InjectedClassName->setImplicit();
4253      InjectedClassName->setAccess(AS_public);
4254      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4255        InjectedClassName->setDescribedClassTemplate(Template);
4256      PushOnScopeChains(InjectedClassName, S);
4257      assert(InjectedClassName->isInjectedClassName() &&
4258             "Broken injected-class-name");
4259    }
4260  }
4261}
4262
4263void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4264                                    SourceLocation RBraceLoc) {
4265  AdjustDeclIfTemplate(TagD);
4266  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4267  Tag->setRBraceLoc(RBraceLoc);
4268
4269  if (isa<CXXRecordDecl>(Tag))
4270    FieldCollector->FinishClass();
4271
4272  // Exit this scope of this tag's definition.
4273  PopDeclContext();
4274
4275  // Notify the consumer that we've defined a tag.
4276  Consumer.HandleTagDeclDefinition(Tag);
4277}
4278
4279// Note that FieldName may be null for anonymous bitfields.
4280bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4281                          QualType FieldTy, const Expr *BitWidth) {
4282
4283  // C99 6.7.2.1p4 - verify the field type.
4284  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4285  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4286    // Handle incomplete types with specific error.
4287    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4288      return true;
4289    if (FieldName)
4290      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4291        << FieldName << FieldTy << BitWidth->getSourceRange();
4292    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4293      << FieldTy << BitWidth->getSourceRange();
4294  }
4295
4296  // If the bit-width is type- or value-dependent, don't try to check
4297  // it now.
4298  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4299    return false;
4300
4301  llvm::APSInt Value;
4302  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4303    return true;
4304
4305  // Zero-width bitfield is ok for anonymous field.
4306  if (Value == 0 && FieldName)
4307    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4308
4309  if (Value.isSigned() && Value.isNegative()) {
4310    if (FieldName)
4311      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4312               << FieldName << Value.toString(10);
4313    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4314      << Value.toString(10);
4315  }
4316
4317  if (!FieldTy->isDependentType()) {
4318    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4319    if (Value.getZExtValue() > TypeSize) {
4320      if (FieldName)
4321        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4322          << FieldName << (unsigned)TypeSize;
4323      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4324        << (unsigned)TypeSize;
4325    }
4326  }
4327
4328  return false;
4329}
4330
4331/// ActOnField - Each field of a struct/union/class is passed into this in order
4332/// to create a FieldDecl object for it.
4333Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4334                                 SourceLocation DeclStart,
4335                                 Declarator &D, ExprTy *BitfieldWidth) {
4336  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4337                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4338                               AS_public);
4339  return DeclPtrTy::make(Res);
4340}
4341
4342/// HandleField - Analyze a field of a C struct or a C++ data member.
4343///
4344FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4345                             SourceLocation DeclStart,
4346                             Declarator &D, Expr *BitWidth,
4347                             AccessSpecifier AS) {
4348  IdentifierInfo *II = D.getIdentifier();
4349  SourceLocation Loc = DeclStart;
4350  if (II) Loc = D.getIdentifierLoc();
4351
4352  QualType T = GetTypeForDeclarator(D, S);
4353  if (getLangOptions().CPlusPlus)
4354    CheckExtraCXXDefaultArguments(D);
4355
4356  DiagnoseFunctionSpecifiers(D);
4357
4358  if (D.getDeclSpec().isThreadSpecified())
4359    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4360
4361  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4362
4363  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4364    // Maybe we will complain about the shadowed template parameter.
4365    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4366    // Just pretend that we didn't see the previous declaration.
4367    PrevDecl = 0;
4368  }
4369
4370  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4371    PrevDecl = 0;
4372
4373  bool Mutable
4374    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4375  SourceLocation TSSL = D.getSourceRange().getBegin();
4376  FieldDecl *NewFD
4377    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4378                     AS, PrevDecl, &D);
4379  if (NewFD->isInvalidDecl() && PrevDecl) {
4380    // Don't introduce NewFD into scope; there's already something
4381    // with the same name in the same scope.
4382  } else if (II) {
4383    PushOnScopeChains(NewFD, S);
4384  } else
4385    Record->addDecl(NewFD);
4386
4387  return NewFD;
4388}
4389
4390/// \brief Build a new FieldDecl and check its well-formedness.
4391///
4392/// This routine builds a new FieldDecl given the fields name, type,
4393/// record, etc. \p PrevDecl should refer to any previous declaration
4394/// with the same name and in the same scope as the field to be
4395/// created.
4396///
4397/// \returns a new FieldDecl.
4398///
4399/// \todo The Declarator argument is a hack. It will be removed once
4400FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4401                                RecordDecl *Record, SourceLocation Loc,
4402                                bool Mutable, Expr *BitWidth,
4403                                SourceLocation TSSL,
4404                                AccessSpecifier AS, NamedDecl *PrevDecl,
4405                                Declarator *D) {
4406  IdentifierInfo *II = Name.getAsIdentifierInfo();
4407  bool InvalidDecl = false;
4408  if (D) InvalidDecl = D->isInvalidType();
4409
4410  // If we receive a broken type, recover by assuming 'int' and
4411  // marking this declaration as invalid.
4412  if (T.isNull()) {
4413    InvalidDecl = true;
4414    T = Context.IntTy;
4415  }
4416
4417  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4418  // than a variably modified type.
4419  if (T->isVariablyModifiedType()) {
4420    bool SizeIsNegative;
4421    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4422                                                           SizeIsNegative);
4423    if (!FixedTy.isNull()) {
4424      Diag(Loc, diag::warn_illegal_constant_array_size);
4425      T = FixedTy;
4426    } else {
4427      if (SizeIsNegative)
4428        Diag(Loc, diag::err_typecheck_negative_array_size);
4429      else
4430        Diag(Loc, diag::err_typecheck_field_variable_size);
4431      InvalidDecl = true;
4432    }
4433  }
4434
4435  // Fields can not have abstract class types
4436  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4437                             AbstractFieldType))
4438    InvalidDecl = true;
4439
4440  // If this is declared as a bit-field, check the bit-field.
4441  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4442    InvalidDecl = true;
4443    DeleteExpr(BitWidth);
4444    BitWidth = 0;
4445  }
4446
4447  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4448                                       Mutable, TSSL);
4449  if (InvalidDecl)
4450    NewFD->setInvalidDecl();
4451
4452  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4453    Diag(Loc, diag::err_duplicate_member) << II;
4454    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4455    NewFD->setInvalidDecl();
4456  }
4457
4458  if (getLangOptions().CPlusPlus) {
4459    QualType EltTy = Context.getBaseElementType(T);
4460
4461    if (const RecordType *RT = EltTy->getAsRecordType()) {
4462      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4463
4464      if (!RDecl->hasTrivialConstructor())
4465        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4466      if (!RDecl->hasTrivialCopyConstructor())
4467        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4468      if (!RDecl->hasTrivialCopyAssignment())
4469        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4470      if (!RDecl->hasTrivialDestructor())
4471        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4472
4473      // C++ 9.5p1: An object of a class with a non-trivial
4474      // constructor, a non-trivial copy constructor, a non-trivial
4475      // destructor, or a non-trivial copy assignment operator
4476      // cannot be a member of a union, nor can an array of such
4477      // objects.
4478      // TODO: C++0x alters this restriction significantly.
4479      if (Record->isUnion()) {
4480        // We check for copy constructors before constructors
4481        // because otherwise we'll never get complaints about
4482        // copy constructors.
4483
4484        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4485
4486        CXXSpecialMember member;
4487        if (!RDecl->hasTrivialCopyConstructor())
4488          member = CXXCopyConstructor;
4489        else if (!RDecl->hasTrivialConstructor())
4490          member = CXXDefaultConstructor;
4491        else if (!RDecl->hasTrivialCopyAssignment())
4492          member = CXXCopyAssignment;
4493        else if (!RDecl->hasTrivialDestructor())
4494          member = CXXDestructor;
4495        else
4496          member = invalid;
4497
4498        if (member != invalid) {
4499          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4500          DiagnoseNontrivial(RT, member);
4501          NewFD->setInvalidDecl();
4502        }
4503      }
4504    }
4505  }
4506
4507  if (getLangOptions().CPlusPlus && !T->isPODType())
4508    cast<CXXRecordDecl>(Record)->setPOD(false);
4509
4510  // FIXME: We need to pass in the attributes given an AST
4511  // representation, not a parser representation.
4512  if (D)
4513    // FIXME: What to pass instead of TUScope?
4514    ProcessDeclAttributes(TUScope, NewFD, *D);
4515
4516  if (T.isObjCGCWeak())
4517    Diag(Loc, diag::warn_attribute_weak_on_field);
4518
4519  NewFD->setAccess(AS);
4520
4521  // C++ [dcl.init.aggr]p1:
4522  //   An aggregate is an array or a class (clause 9) with [...] no
4523  //   private or protected non-static data members (clause 11).
4524  // A POD must be an aggregate.
4525  if (getLangOptions().CPlusPlus &&
4526      (AS == AS_private || AS == AS_protected)) {
4527    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4528    CXXRecord->setAggregate(false);
4529    CXXRecord->setPOD(false);
4530  }
4531
4532  return NewFD;
4533}
4534
4535/// DiagnoseNontrivial - Given that a class has a non-trivial
4536/// special member, figure out why.
4537void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4538  QualType QT(T, 0U);
4539  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4540
4541  // Check whether the member was user-declared.
4542  switch (member) {
4543  case CXXDefaultConstructor:
4544    if (RD->hasUserDeclaredConstructor()) {
4545      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4546      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4547        if (!ci->isImplicitlyDefined(Context)) {
4548          SourceLocation CtorLoc = ci->getLocation();
4549          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4550          return;
4551        }
4552
4553      assert(0 && "found no user-declared constructors");
4554      return;
4555    }
4556    break;
4557
4558  case CXXCopyConstructor:
4559    if (RD->hasUserDeclaredCopyConstructor()) {
4560      SourceLocation CtorLoc =
4561        RD->getCopyConstructor(Context, 0)->getLocation();
4562      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4563      return;
4564    }
4565    break;
4566
4567  case CXXCopyAssignment:
4568    if (RD->hasUserDeclaredCopyAssignment()) {
4569      // FIXME: this should use the location of the copy
4570      // assignment, not the type.
4571      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4572      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4573      return;
4574    }
4575    break;
4576
4577  case CXXDestructor:
4578    if (RD->hasUserDeclaredDestructor()) {
4579      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4580      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4581      return;
4582    }
4583    break;
4584  }
4585
4586  typedef CXXRecordDecl::base_class_iterator base_iter;
4587
4588  // Virtual bases and members inhibit trivial copying/construction,
4589  // but not trivial destruction.
4590  if (member != CXXDestructor) {
4591    // Check for virtual bases.  vbases includes indirect virtual bases,
4592    // so we just iterate through the direct bases.
4593    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4594      if (bi->isVirtual()) {
4595        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4596        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4597        return;
4598      }
4599
4600    // Check for virtual methods.
4601    typedef CXXRecordDecl::method_iterator meth_iter;
4602    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4603         ++mi) {
4604      if (mi->isVirtual()) {
4605        SourceLocation MLoc = mi->getSourceRange().getBegin();
4606        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4607        return;
4608      }
4609    }
4610  }
4611
4612  bool (CXXRecordDecl::*hasTrivial)() const;
4613  switch (member) {
4614  case CXXDefaultConstructor:
4615    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4616  case CXXCopyConstructor:
4617    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4618  case CXXCopyAssignment:
4619    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4620  case CXXDestructor:
4621    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4622  default:
4623    assert(0 && "unexpected special member"); return;
4624  }
4625
4626  // Check for nontrivial bases (and recurse).
4627  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4628    const RecordType *BaseRT = bi->getType()->getAsRecordType();
4629    assert(BaseRT);
4630    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4631    if (!(BaseRecTy->*hasTrivial)()) {
4632      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4633      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4634      DiagnoseNontrivial(BaseRT, member);
4635      return;
4636    }
4637  }
4638
4639  // Check for nontrivial members (and recurse).
4640  typedef RecordDecl::field_iterator field_iter;
4641  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4642       ++fi) {
4643    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4644    if (const RecordType *EltRT = EltTy->getAsRecordType()) {
4645      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4646
4647      if (!(EltRD->*hasTrivial)()) {
4648        SourceLocation FLoc = (*fi)->getLocation();
4649        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4650        DiagnoseNontrivial(EltRT, member);
4651        return;
4652      }
4653    }
4654  }
4655
4656  assert(0 && "found no explanation for non-trivial member");
4657}
4658
4659/// TranslateIvarVisibility - Translate visibility from a token ID to an
4660///  AST enum value.
4661static ObjCIvarDecl::AccessControl
4662TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4663  switch (ivarVisibility) {
4664  default: assert(0 && "Unknown visitibility kind");
4665  case tok::objc_private: return ObjCIvarDecl::Private;
4666  case tok::objc_public: return ObjCIvarDecl::Public;
4667  case tok::objc_protected: return ObjCIvarDecl::Protected;
4668  case tok::objc_package: return ObjCIvarDecl::Package;
4669  }
4670}
4671
4672/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4673/// in order to create an IvarDecl object for it.
4674Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4675                                SourceLocation DeclStart,
4676                                DeclPtrTy IntfDecl,
4677                                Declarator &D, ExprTy *BitfieldWidth,
4678                                tok::ObjCKeywordKind Visibility) {
4679
4680  IdentifierInfo *II = D.getIdentifier();
4681  Expr *BitWidth = (Expr*)BitfieldWidth;
4682  SourceLocation Loc = DeclStart;
4683  if (II) Loc = D.getIdentifierLoc();
4684
4685  // FIXME: Unnamed fields can be handled in various different ways, for
4686  // example, unnamed unions inject all members into the struct namespace!
4687
4688  QualType T = GetTypeForDeclarator(D, S);
4689
4690  if (BitWidth) {
4691    // 6.7.2.1p3, 6.7.2.1p4
4692    if (VerifyBitField(Loc, II, T, BitWidth)) {
4693      D.setInvalidType();
4694      DeleteExpr(BitWidth);
4695      BitWidth = 0;
4696    }
4697  } else {
4698    // Not a bitfield.
4699
4700    // validate II.
4701
4702  }
4703
4704  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4705  // than a variably modified type.
4706  if (T->isVariablyModifiedType()) {
4707    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4708    D.setInvalidType();
4709  }
4710
4711  // Get the visibility (access control) for this ivar.
4712  ObjCIvarDecl::AccessControl ac =
4713    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4714                                        : ObjCIvarDecl::None;
4715  // Must set ivar's DeclContext to its enclosing interface.
4716  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4717  DeclContext *EnclosingContext;
4718  if (ObjCImplementationDecl *IMPDecl =
4719      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4720    // Case of ivar declared in an implementation. Context is that of its class.
4721    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4722    assert(IDecl && "No class- ActOnIvar");
4723    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4724  }
4725  else
4726    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4727  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4728
4729  // Construct the decl.
4730  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4731                                             EnclosingContext, Loc, II, T,ac,
4732                                             (Expr *)BitfieldWidth);
4733
4734  if (II) {
4735    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4736    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4737        && !isa<TagDecl>(PrevDecl)) {
4738      Diag(Loc, diag::err_duplicate_member) << II;
4739      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4740      NewID->setInvalidDecl();
4741    }
4742  }
4743
4744  // Process attributes attached to the ivar.
4745  ProcessDeclAttributes(S, NewID, D);
4746
4747  if (D.isInvalidType())
4748    NewID->setInvalidDecl();
4749
4750  if (II) {
4751    // FIXME: When interfaces are DeclContexts, we'll need to add
4752    // these to the interface.
4753    S->AddDecl(DeclPtrTy::make(NewID));
4754    IdResolver.AddDecl(NewID);
4755  }
4756
4757  return DeclPtrTy::make(NewID);
4758}
4759
4760void Sema::ActOnFields(Scope* S,
4761                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4762                       DeclPtrTy *Fields, unsigned NumFields,
4763                       SourceLocation LBrac, SourceLocation RBrac,
4764                       AttributeList *Attr) {
4765  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4766  assert(EnclosingDecl && "missing record or interface decl");
4767
4768  // If the decl this is being inserted into is invalid, then it may be a
4769  // redeclaration or some other bogus case.  Don't try to add fields to it.
4770  if (EnclosingDecl->isInvalidDecl()) {
4771    // FIXME: Deallocate fields?
4772    return;
4773  }
4774
4775
4776  // Verify that all the fields are okay.
4777  unsigned NumNamedMembers = 0;
4778  llvm::SmallVector<FieldDecl*, 32> RecFields;
4779
4780  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4781  for (unsigned i = 0; i != NumFields; ++i) {
4782    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4783
4784    // Get the type for the field.
4785    Type *FDTy = FD->getType().getTypePtr();
4786
4787    if (!FD->isAnonymousStructOrUnion()) {
4788      // Remember all fields written by the user.
4789      RecFields.push_back(FD);
4790    }
4791
4792    // If the field is already invalid for some reason, don't emit more
4793    // diagnostics about it.
4794    if (FD->isInvalidDecl())
4795      continue;
4796
4797    // C99 6.7.2.1p2:
4798    //   A structure or union shall not contain a member with
4799    //   incomplete or function type (hence, a structure shall not
4800    //   contain an instance of itself, but may contain a pointer to
4801    //   an instance of itself), except that the last member of a
4802    //   structure with more than one named member may have incomplete
4803    //   array type; such a structure (and any union containing,
4804    //   possibly recursively, a member that is such a structure)
4805    //   shall not be a member of a structure or an element of an
4806    //   array.
4807    if (FDTy->isFunctionType()) {
4808      // Field declared as a function.
4809      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4810        << FD->getDeclName();
4811      FD->setInvalidDecl();
4812      EnclosingDecl->setInvalidDecl();
4813      continue;
4814    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4815               Record && Record->isStruct()) {
4816      // Flexible array member.
4817      if (NumNamedMembers < 1) {
4818        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4819          << FD->getDeclName();
4820        FD->setInvalidDecl();
4821        EnclosingDecl->setInvalidDecl();
4822        continue;
4823      }
4824      // Okay, we have a legal flexible array member at the end of the struct.
4825      if (Record)
4826        Record->setHasFlexibleArrayMember(true);
4827    } else if (!FDTy->isDependentType() &&
4828               RequireCompleteType(FD->getLocation(), FD->getType(),
4829                                   diag::err_field_incomplete)) {
4830      // Incomplete type
4831      FD->setInvalidDecl();
4832      EnclosingDecl->setInvalidDecl();
4833      continue;
4834    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4835      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4836        // If this is a member of a union, then entire union becomes "flexible".
4837        if (Record && Record->isUnion()) {
4838          Record->setHasFlexibleArrayMember(true);
4839        } else {
4840          // If this is a struct/class and this is not the last element, reject
4841          // it.  Note that GCC supports variable sized arrays in the middle of
4842          // structures.
4843          if (i != NumFields-1)
4844            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4845              << FD->getDeclName() << FD->getType();
4846          else {
4847            // We support flexible arrays at the end of structs in
4848            // other structs as an extension.
4849            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4850              << FD->getDeclName();
4851            if (Record)
4852              Record->setHasFlexibleArrayMember(true);
4853          }
4854        }
4855      }
4856      if (Record && FDTTy->getDecl()->hasObjectMember())
4857        Record->setHasObjectMember(true);
4858    } else if (FDTy->isObjCInterfaceType()) {
4859      /// A field cannot be an Objective-c object
4860      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4861      FD->setInvalidDecl();
4862      EnclosingDecl->setInvalidDecl();
4863      continue;
4864    }
4865    else if (getLangOptions().ObjC1 &&
4866             getLangOptions().getGCMode() != LangOptions::NonGC &&
4867             Record &&
4868             (FD->getType()->isObjCObjectPointerType() ||
4869              FD->getType().isObjCGCStrong()))
4870      Record->setHasObjectMember(true);
4871    // Keep track of the number of named members.
4872    if (FD->getIdentifier())
4873      ++NumNamedMembers;
4874  }
4875
4876  // Okay, we successfully defined 'Record'.
4877  if (Record) {
4878    Record->completeDefinition(Context);
4879  } else {
4880    ObjCIvarDecl **ClsFields =
4881      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4882    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4883      ID->setIVarList(ClsFields, RecFields.size(), Context);
4884      ID->setLocEnd(RBrac);
4885      // Add ivar's to class's DeclContext.
4886      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4887        ClsFields[i]->setLexicalDeclContext(ID);
4888        ID->addDecl(ClsFields[i]);
4889      }
4890      // Must enforce the rule that ivars in the base classes may not be
4891      // duplicates.
4892      if (ID->getSuperClass()) {
4893        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4894             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4895          ObjCIvarDecl* Ivar = (*IVI);
4896
4897          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4898            ObjCIvarDecl* prevIvar =
4899              ID->getSuperClass()->lookupInstanceVariable(II);
4900            if (prevIvar) {
4901              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4902              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4903            }
4904          }
4905        }
4906      }
4907    } else if (ObjCImplementationDecl *IMPDecl =
4908                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4909      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4910      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4911        // Ivar declared in @implementation never belongs to the implementation.
4912        // Only it is in implementation's lexical context.
4913        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4914      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4915    }
4916  }
4917
4918  if (Attr)
4919    ProcessDeclAttributeList(S, Record, Attr);
4920}
4921
4922EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4923                                          EnumConstantDecl *LastEnumConst,
4924                                          SourceLocation IdLoc,
4925                                          IdentifierInfo *Id,
4926                                          ExprArg val) {
4927  Expr *Val = (Expr *)val.get();
4928
4929  llvm::APSInt EnumVal(32);
4930  QualType EltTy;
4931  if (Val && !Val->isTypeDependent()) {
4932    // Make sure to promote the operand type to int.
4933    UsualUnaryConversions(Val);
4934    if (Val != val.get()) {
4935      val.release();
4936      val = Val;
4937    }
4938
4939    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4940    SourceLocation ExpLoc;
4941    if (!Val->isValueDependent() &&
4942        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4943      Val = 0;
4944    } else {
4945      EltTy = Val->getType();
4946    }
4947  }
4948
4949  if (!Val) {
4950    if (LastEnumConst) {
4951      // Assign the last value + 1.
4952      EnumVal = LastEnumConst->getInitVal();
4953      ++EnumVal;
4954
4955      // Check for overflow on increment.
4956      if (EnumVal < LastEnumConst->getInitVal())
4957        Diag(IdLoc, diag::warn_enum_value_overflow);
4958
4959      EltTy = LastEnumConst->getType();
4960    } else {
4961      // First value, set to zero.
4962      EltTy = Context.IntTy;
4963      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4964    }
4965  }
4966
4967  val.release();
4968  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4969                                  Val, EnumVal);
4970}
4971
4972
4973Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4974                                        DeclPtrTy lastEnumConst,
4975                                        SourceLocation IdLoc,
4976                                        IdentifierInfo *Id,
4977                                        SourceLocation EqualLoc, ExprTy *val) {
4978  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4979  EnumConstantDecl *LastEnumConst =
4980    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4981  Expr *Val = static_cast<Expr*>(val);
4982
4983  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4984  // we find one that is.
4985  S = getNonFieldDeclScope(S);
4986
4987  // Verify that there isn't already something declared with this name in this
4988  // scope.
4989  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4990  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4991    // Maybe we will complain about the shadowed template parameter.
4992    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4993    // Just pretend that we didn't see the previous declaration.
4994    PrevDecl = 0;
4995  }
4996
4997  if (PrevDecl) {
4998    // When in C++, we may get a TagDecl with the same name; in this case the
4999    // enum constant will 'hide' the tag.
5000    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5001           "Received TagDecl when not in C++!");
5002    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5003      if (isa<EnumConstantDecl>(PrevDecl))
5004        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5005      else
5006        Diag(IdLoc, diag::err_redefinition) << Id;
5007      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5008      if (Val) Val->Destroy(Context);
5009      return DeclPtrTy();
5010    }
5011  }
5012
5013  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5014                                            IdLoc, Id, Owned(Val));
5015
5016  // Register this decl in the current scope stack.
5017  if (New)
5018    PushOnScopeChains(New, S);
5019
5020  return DeclPtrTy::make(New);
5021}
5022
5023void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5024                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5025                         DeclPtrTy *Elements, unsigned NumElements) {
5026  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5027  QualType EnumType = Context.getTypeDeclType(Enum);
5028
5029  // TODO: If the result value doesn't fit in an int, it must be a long or long
5030  // long value.  ISO C does not support this, but GCC does as an extension,
5031  // emit a warning.
5032  unsigned IntWidth = Context.Target.getIntWidth();
5033
5034  // Verify that all the values are okay, compute the size of the values, and
5035  // reverse the list.
5036  unsigned NumNegativeBits = 0;
5037  unsigned NumPositiveBits = 0;
5038
5039  // Keep track of whether all elements have type int.
5040  bool AllElementsInt = true;
5041
5042  for (unsigned i = 0; i != NumElements; ++i) {
5043    EnumConstantDecl *ECD =
5044      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5045    if (!ECD) continue;  // Already issued a diagnostic.
5046
5047    // If the enum value doesn't fit in an int, emit an extension warning.
5048    const llvm::APSInt &InitVal = ECD->getInitVal();
5049    assert(InitVal.getBitWidth() >= IntWidth &&
5050           "Should have promoted value to int");
5051    if (InitVal.getBitWidth() > IntWidth) {
5052      llvm::APSInt V(InitVal);
5053      V.trunc(IntWidth);
5054      V.extend(InitVal.getBitWidth());
5055      if (V != InitVal)
5056        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5057          << InitVal.toString(10);
5058    }
5059
5060    // Keep track of the size of positive and negative values.
5061    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5062      NumPositiveBits = std::max(NumPositiveBits,
5063                                 (unsigned)InitVal.getActiveBits());
5064    else
5065      NumNegativeBits = std::max(NumNegativeBits,
5066                                 (unsigned)InitVal.getMinSignedBits());
5067
5068    // Keep track of whether every enum element has type int (very commmon).
5069    if (AllElementsInt)
5070      AllElementsInt = ECD->getType() == Context.IntTy;
5071  }
5072
5073  // Figure out the type that should be used for this enum.
5074  // FIXME: Support attribute(packed) on enums and -fshort-enums.
5075  QualType BestType;
5076  unsigned BestWidth;
5077
5078  if (NumNegativeBits) {
5079    // If there is a negative value, figure out the smallest integer type (of
5080    // int/long/longlong) that fits.
5081    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5082      BestType = Context.IntTy;
5083      BestWidth = IntWidth;
5084    } else {
5085      BestWidth = Context.Target.getLongWidth();
5086
5087      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5088        BestType = Context.LongTy;
5089      else {
5090        BestWidth = Context.Target.getLongLongWidth();
5091
5092        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5093          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5094        BestType = Context.LongLongTy;
5095      }
5096    }
5097  } else {
5098    // If there is no negative value, figure out which of uint, ulong, ulonglong
5099    // fits.
5100    if (NumPositiveBits <= IntWidth) {
5101      BestType = Context.UnsignedIntTy;
5102      BestWidth = IntWidth;
5103    } else if (NumPositiveBits <=
5104               (BestWidth = Context.Target.getLongWidth())) {
5105      BestType = Context.UnsignedLongTy;
5106    } else {
5107      BestWidth = Context.Target.getLongLongWidth();
5108      assert(NumPositiveBits <= BestWidth &&
5109             "How could an initializer get larger than ULL?");
5110      BestType = Context.UnsignedLongLongTy;
5111    }
5112  }
5113
5114  // Loop over all of the enumerator constants, changing their types to match
5115  // the type of the enum if needed.
5116  for (unsigned i = 0; i != NumElements; ++i) {
5117    EnumConstantDecl *ECD =
5118      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5119    if (!ECD) continue;  // Already issued a diagnostic.
5120
5121    // Standard C says the enumerators have int type, but we allow, as an
5122    // extension, the enumerators to be larger than int size.  If each
5123    // enumerator value fits in an int, type it as an int, otherwise type it the
5124    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5125    // that X has type 'int', not 'unsigned'.
5126    if (ECD->getType() == Context.IntTy) {
5127      // Make sure the init value is signed.
5128      llvm::APSInt IV = ECD->getInitVal();
5129      IV.setIsSigned(true);
5130      ECD->setInitVal(IV);
5131
5132      if (getLangOptions().CPlusPlus)
5133        // C++ [dcl.enum]p4: Following the closing brace of an
5134        // enum-specifier, each enumerator has the type of its
5135        // enumeration.
5136        ECD->setType(EnumType);
5137      continue;  // Already int type.
5138    }
5139
5140    // Determine whether the value fits into an int.
5141    llvm::APSInt InitVal = ECD->getInitVal();
5142    bool FitsInInt;
5143    if (InitVal.isUnsigned() || !InitVal.isNegative())
5144      FitsInInt = InitVal.getActiveBits() < IntWidth;
5145    else
5146      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5147
5148    // If it fits into an integer type, force it.  Otherwise force it to match
5149    // the enum decl type.
5150    QualType NewTy;
5151    unsigned NewWidth;
5152    bool NewSign;
5153    if (FitsInInt) {
5154      NewTy = Context.IntTy;
5155      NewWidth = IntWidth;
5156      NewSign = true;
5157    } else if (ECD->getType() == BestType) {
5158      // Already the right type!
5159      if (getLangOptions().CPlusPlus)
5160        // C++ [dcl.enum]p4: Following the closing brace of an
5161        // enum-specifier, each enumerator has the type of its
5162        // enumeration.
5163        ECD->setType(EnumType);
5164      continue;
5165    } else {
5166      NewTy = BestType;
5167      NewWidth = BestWidth;
5168      NewSign = BestType->isSignedIntegerType();
5169    }
5170
5171    // Adjust the APSInt value.
5172    InitVal.extOrTrunc(NewWidth);
5173    InitVal.setIsSigned(NewSign);
5174    ECD->setInitVal(InitVal);
5175
5176    // Adjust the Expr initializer and type.
5177    if (ECD->getInitExpr())
5178      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
5179                                                      /*isLvalue=*/false));
5180    if (getLangOptions().CPlusPlus)
5181      // C++ [dcl.enum]p4: Following the closing brace of an
5182      // enum-specifier, each enumerator has the type of its
5183      // enumeration.
5184      ECD->setType(EnumType);
5185    else
5186      ECD->setType(NewTy);
5187  }
5188
5189  Enum->completeDefinition(Context, BestType);
5190}
5191
5192Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5193                                            ExprArg expr) {
5194  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5195
5196  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5197                                                   Loc, AsmString);
5198  CurContext->addDecl(New);
5199  return DeclPtrTy::make(New);
5200}
5201
5202void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5203                             SourceLocation PragmaLoc,
5204                             SourceLocation NameLoc) {
5205  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5206
5207  // FIXME: This implementation is an ugly hack!
5208  if (PrevDecl) {
5209    PrevDecl->addAttr(::new (Context) WeakAttr());
5210    return;
5211  }
5212  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5213  return;
5214}
5215
5216void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5217                                IdentifierInfo* AliasName,
5218                                SourceLocation PragmaLoc,
5219                                SourceLocation NameLoc,
5220                                SourceLocation AliasNameLoc) {
5221  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5222
5223  // FIXME: This implementation is an ugly hack!
5224  if (PrevDecl) {
5225    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
5226    PrevDecl->addAttr(::new (Context) WeakAttr());
5227    return;
5228  }
5229  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5230  return;
5231}
5232