SemaDecl.cpp revision 6f0200e9ebf7f65df74b3cf55b4319b075b244a2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
31  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
32
33  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
34                 isa<ObjCInterfaceDecl>(IIDecl) ||
35                 isa<TagDecl>(IIDecl)))
36    return IIDecl;
37  return 0;
38}
39
40DeclContext *Sema::getDCParent(DeclContext *DC) {
41  // If CurContext is a ObjC method, getParent() will return NULL.
42  if (isa<ObjCMethodDecl>(DC))
43    return Context.getTranslationUnitDecl();
44
45  // A C++ inline method is parsed *after* the topmost class it was declared in
46  // is fully parsed (it's "complete").
47  // The parsing of a C++ inline method happens at the declaration context of
48  // the topmost (non-nested) class it is declared in.
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
51    DC = MD->getParent();
52    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
53      DC = RD;
54
55    // Return the declaration context of the topmost class the inline method is
56    // declared in.
57    return DC;
58  }
59
60  return DC->getParent();
61}
62
63void Sema::PushDeclContext(DeclContext *DC) {
64  assert(getDCParent(DC) == CurContext &&
65       "The next DeclContext should be directly contained in the current one.");
66  CurContext = DC;
67}
68
69void Sema::PopDeclContext() {
70  assert(CurContext && "DeclContext imbalance!");
71  CurContext = getDCParent(CurContext);
72}
73
74/// Add this decl to the scope shadowed decl chains.
75void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
76  S->AddDecl(D);
77
78  // C++ [basic.scope]p4:
79  //   -- exactly one declaration shall declare a class name or
80  //   enumeration name that is not a typedef name and the other
81  //   declarations shall all refer to the same object or
82  //   enumerator, or all refer to functions and function templates;
83  //   in this case the class name or enumeration name is hidden.
84  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
85    // We are pushing the name of a tag (enum or class).
86    IdentifierResolver::iterator
87        I = IdResolver.begin(TD->getIdentifier(),
88                             TD->getDeclContext(), false/*LookInParentCtx*/);
89    if (I != IdResolver.end() &&
90        IdResolver.isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  }
99  IdResolver.AddDecl(D);
100}
101
102void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
103  if (S->decl_empty()) return;
104  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
105
106  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
107       I != E; ++I) {
108    Decl *TmpD = static_cast<Decl*>(*I);
109    assert(TmpD && "This decl didn't get pushed??");
110
111    if (isa<CXXFieldDecl>(TmpD)) continue;
112
113    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
114    ScopedDecl *D = cast<ScopedDecl>(TmpD);
115
116    IdentifierInfo *II = D->getIdentifier();
117    if (!II) continue;
118
119    // We only want to remove the decls from the identifier decl chains for
120    // local scopes, when inside a function/method.
121    if (S->getFnParent() != 0)
122      IdResolver.RemoveDecl(D);
123
124    // Chain this decl to the containing DeclContext.
125    D->setNext(CurContext->getDeclChain());
126    CurContext->setDeclChain(D);
127  }
128}
129
130/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
131/// return 0 if one not found.
132ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
133  // The third "scope" argument is 0 since we aren't enabling lazy built-in
134  // creation from this context.
135  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
136
137  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
138}
139
140/// LookupDecl - Look up the inner-most declaration in the specified
141/// namespace.
142Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
143                       Scope *S, bool enableLazyBuiltinCreation) {
144  if (II == 0) return 0;
145  unsigned NS = NSI;
146  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
147    NS |= Decl::IDNS_Tag;
148
149  // Scan up the scope chain looking for a decl that matches this identifier
150  // that is in the appropriate namespace.  This search should not take long, as
151  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
152  for (IdentifierResolver::iterator
153       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
154    if ((*I)->getIdentifierNamespace() & NS)
155      return *I;
156
157  // If we didn't find a use of this identifier, and if the identifier
158  // corresponds to a compiler builtin, create the decl object for the builtin
159  // now, injecting it into translation unit scope, and return it.
160  if (NS & Decl::IDNS_Ordinary) {
161    if (enableLazyBuiltinCreation) {
162      // If this is a builtin on this (or all) targets, create the decl.
163      if (unsigned BuiltinID = II->getBuiltinID())
164        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
165    }
166    if (getLangOptions().ObjC1) {
167      // @interface and @compatibility_alias introduce typedef-like names.
168      // Unlike typedef's, they can only be introduced at file-scope (and are
169      // therefore not scoped decls). They can, however, be shadowed by
170      // other names in IDNS_Ordinary.
171      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
172      if (IDI != ObjCInterfaceDecls.end())
173        return IDI->second;
174      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
175      if (I != ObjCAliasDecls.end())
176        return I->second->getClassInterface();
177    }
178  }
179  return 0;
180}
181
182void Sema::InitBuiltinVaListType() {
183  if (!Context.getBuiltinVaListType().isNull())
184    return;
185
186  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
187  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
188  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
189  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
190}
191
192/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
193/// lazily create a decl for it.
194ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
195                                      Scope *S) {
196  Builtin::ID BID = (Builtin::ID)bid;
197
198  if (BID == Builtin::BI__builtin_va_start ||
199      BID == Builtin::BI__builtin_va_copy ||
200      BID == Builtin::BI__builtin_va_end ||
201      BID == Builtin::BI__builtin_stdarg_start)
202    InitBuiltinVaListType();
203
204  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
205  FunctionDecl *New = FunctionDecl::Create(Context,
206                                           Context.getTranslationUnitDecl(),
207                                           SourceLocation(), II, R,
208                                           FunctionDecl::Extern, false, 0);
209
210  // Create Decl objects for each parameter, adding them to the
211  // FunctionDecl.
212  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
213    llvm::SmallVector<ParmVarDecl*, 16> Params;
214    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
215      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
216                                           FT->getArgType(i), VarDecl::None, 0,
217                                           0));
218    New->setParams(&Params[0], Params.size());
219  }
220
221
222
223  // TUScope is the translation-unit scope to insert this function into.
224  PushOnScopeChains(New, TUScope);
225  return New;
226}
227
228/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
229/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
230/// situation, merging decls or emitting diagnostics as appropriate.
231///
232TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
233  // Verify the old decl was also a typedef.
234  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
235  if (!Old) {
236    Diag(New->getLocation(), diag::err_redefinition_different_kind,
237         New->getName());
238    Diag(OldD->getLocation(), diag::err_previous_definition);
239    return New;
240  }
241
242  // If the typedef types are not identical, reject them in all languages and
243  // with any extensions enabled.
244  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
245      Context.getCanonicalType(Old->getUnderlyingType()) !=
246      Context.getCanonicalType(New->getUnderlyingType())) {
247    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
248         New->getUnderlyingType().getAsString(),
249         Old->getUnderlyingType().getAsString());
250    Diag(Old->getLocation(), diag::err_previous_definition);
251    return Old;
252  }
253
254  // Allow multiple definitions for ObjC built-in typedefs.
255  // FIXME: Verify the underlying types are equivalent!
256  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
257    return Old;
258
259  if (getLangOptions().Microsoft) return New;
260
261  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
262  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
263  // *either* declaration is in a system header. The code below implements
264  // this adhoc compatibility rule. FIXME: The following code will not
265  // work properly when compiling ".i" files (containing preprocessed output).
266  SourceManager &SrcMgr = Context.getSourceManager();
267  if (SrcMgr.isInSystemHeader(Old->getLocation()))
268    return New;
269  if (SrcMgr.isInSystemHeader(New->getLocation()))
270    return New;
271
272  Diag(New->getLocation(), diag::err_redefinition, New->getName());
273  Diag(Old->getLocation(), diag::err_previous_definition);
274  return New;
275}
276
277/// DeclhasAttr - returns true if decl Declaration already has the target
278/// attribute.
279static bool DeclHasAttr(const Decl *decl, const Attr *target) {
280  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
281    if (attr->getKind() == target->getKind())
282      return true;
283
284  return false;
285}
286
287/// MergeAttributes - append attributes from the Old decl to the New one.
288static void MergeAttributes(Decl *New, Decl *Old) {
289  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
290
291  while (attr) {
292     tmp = attr;
293     attr = attr->getNext();
294
295    if (!DeclHasAttr(New, tmp)) {
296       New->addAttr(tmp);
297    } else {
298       tmp->setNext(0);
299       delete(tmp);
300    }
301  }
302
303  Old->invalidateAttrs();
304}
305
306/// MergeFunctionDecl - We just parsed a function 'New' from
307/// declarator D which has the same name and scope as a previous
308/// declaration 'Old'.  Figure out how to resolve this situation,
309/// merging decls or emitting diagnostics as appropriate.
310/// Redeclaration will be set true if thisNew is a redeclaration OldD.
311FunctionDecl *
312Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
313  Redeclaration = false;
314  // Verify the old decl was also a function.
315  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
316  if (!Old) {
317    Diag(New->getLocation(), diag::err_redefinition_different_kind,
318         New->getName());
319    Diag(OldD->getLocation(), diag::err_previous_definition);
320    return New;
321  }
322
323  QualType OldQType = Context.getCanonicalType(Old->getType());
324  QualType NewQType = Context.getCanonicalType(New->getType());
325
326  // C++ [dcl.fct]p3:
327  //   All declarations for a function shall agree exactly in both the
328  //   return type and the parameter-type-list.
329  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
330    MergeAttributes(New, Old);
331    Redeclaration = true;
332    return MergeCXXFunctionDecl(New, Old);
333  }
334
335  // C: Function types need to be compatible, not identical. This handles
336  // duplicate function decls like "void f(int); void f(enum X);" properly.
337  if (!getLangOptions().CPlusPlus &&
338      Context.typesAreCompatible(OldQType, NewQType)) {
339    MergeAttributes(New, Old);
340    Redeclaration = true;
341    return New;
342  }
343
344  // A function that has already been declared has been redeclared or defined
345  // with a different type- show appropriate diagnostic
346  diag::kind PrevDiag;
347  if (Old->isThisDeclarationADefinition())
348    PrevDiag = diag::err_previous_definition;
349  else if (Old->isImplicit())
350    PrevDiag = diag::err_previous_implicit_declaration;
351  else
352    PrevDiag = diag::err_previous_declaration;
353
354  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
355  // TODO: This is totally simplistic.  It should handle merging functions
356  // together etc, merging extern int X; int X; ...
357  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
358  Diag(Old->getLocation(), PrevDiag);
359  return New;
360}
361
362/// Predicate for C "tentative" external object definitions (C99 6.9.2).
363static bool isTentativeDefinition(VarDecl *VD) {
364  if (VD->isFileVarDecl())
365    return (!VD->getInit() &&
366            (VD->getStorageClass() == VarDecl::None ||
367             VD->getStorageClass() == VarDecl::Static));
368  return false;
369}
370
371/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
372/// when dealing with C "tentative" external object definitions (C99 6.9.2).
373void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
374  bool VDIsTentative = isTentativeDefinition(VD);
375  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
376
377  for (IdentifierResolver::iterator
378       I = IdResolver.begin(VD->getIdentifier(),
379                            VD->getDeclContext(), false/*LookInParentCtx*/),
380       E = IdResolver.end(); I != E; ++I) {
381    if (*I != VD && IdResolver.isDeclInScope(*I, VD->getDeclContext(), S)) {
382      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
383
384      // Handle the following case:
385      //   int a[10];
386      //   int a[];   - the code below makes sure we set the correct type.
387      //   int a[11]; - this is an error, size isn't 10.
388      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
389          OldDecl->getType()->isConstantArrayType())
390        VD->setType(OldDecl->getType());
391
392      // Check for "tentative" definitions. We can't accomplish this in
393      // MergeVarDecl since the initializer hasn't been attached.
394      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
395        continue;
396
397      // Handle __private_extern__ just like extern.
398      if (OldDecl->getStorageClass() != VarDecl::Extern &&
399          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
400          VD->getStorageClass() != VarDecl::Extern &&
401          VD->getStorageClass() != VarDecl::PrivateExtern) {
402        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
403        Diag(OldDecl->getLocation(), diag::err_previous_definition);
404      }
405    }
406  }
407}
408
409/// MergeVarDecl - We just parsed a variable 'New' which has the same name
410/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
411/// situation, merging decls or emitting diagnostics as appropriate.
412///
413/// Tentative definition rules (C99 6.9.2p2) are checked by
414/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
415/// definitions here, since the initializer hasn't been attached.
416///
417VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
418  // Verify the old decl was also a variable.
419  VarDecl *Old = dyn_cast<VarDecl>(OldD);
420  if (!Old) {
421    Diag(New->getLocation(), diag::err_redefinition_different_kind,
422         New->getName());
423    Diag(OldD->getLocation(), diag::err_previous_definition);
424    return New;
425  }
426
427  MergeAttributes(New, Old);
428
429  // Verify the types match.
430  QualType OldCType = Context.getCanonicalType(Old->getType());
431  QualType NewCType = Context.getCanonicalType(New->getType());
432  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
433    Diag(New->getLocation(), diag::err_redefinition, New->getName());
434    Diag(Old->getLocation(), diag::err_previous_definition);
435    return New;
436  }
437  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
438  if (New->getStorageClass() == VarDecl::Static &&
439      (Old->getStorageClass() == VarDecl::None ||
440       Old->getStorageClass() == VarDecl::Extern)) {
441    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
442    Diag(Old->getLocation(), diag::err_previous_definition);
443    return New;
444  }
445  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
446  if (New->getStorageClass() != VarDecl::Static &&
447      Old->getStorageClass() == VarDecl::Static) {
448    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
449    Diag(Old->getLocation(), diag::err_previous_definition);
450    return New;
451  }
452  // File scoped variables are analyzed in FinalizeDeclaratorGroup.
453  if (!New->isFileVarDecl()) {
454    Diag(New->getLocation(), diag::err_redefinition, New->getName());
455    Diag(Old->getLocation(), diag::err_previous_definition);
456  }
457  return New;
458}
459
460/// CheckParmsForFunctionDef - Check that the parameters of the given
461/// function are appropriate for the definition of a function. This
462/// takes care of any checks that cannot be performed on the
463/// declaration itself, e.g., that the types of each of the function
464/// parameters are complete.
465bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
466  bool HasInvalidParm = false;
467  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
468    ParmVarDecl *Param = FD->getParamDecl(p);
469
470    // C99 6.7.5.3p4: the parameters in a parameter type list in a
471    // function declarator that is part of a function definition of
472    // that function shall not have incomplete type.
473    if (Param->getType()->isIncompleteType() &&
474        !Param->isInvalidDecl()) {
475      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
476           Param->getType().getAsString());
477      Param->setInvalidDecl();
478      HasInvalidParm = true;
479    }
480  }
481
482  return HasInvalidParm;
483}
484
485/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
486/// no declarator (e.g. "struct foo;") is parsed.
487Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
488  // TODO: emit error on 'int;' or 'const enum foo;'.
489  // TODO: emit error on 'typedef int;'
490  // if (!DS.isMissingDeclaratorOk()) Diag(...);
491
492  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
493}
494
495bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
496  // Get the type before calling CheckSingleAssignmentConstraints(), since
497  // it can promote the expression.
498  QualType InitType = Init->getType();
499
500  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
501  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
502                                  InitType, Init, "initializing");
503}
504
505bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
506  const ArrayType *AT = Context.getAsArrayType(DeclT);
507
508  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
509    // C99 6.7.8p14. We have an array of character type with unknown size
510    // being initialized to a string literal.
511    llvm::APSInt ConstVal(32);
512    ConstVal = strLiteral->getByteLength() + 1;
513    // Return a new array type (C99 6.7.8p22).
514    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
515                                         ArrayType::Normal, 0);
516  } else {
517    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
518    // C99 6.7.8p14. We have an array of character type with known size.
519    // FIXME: Avoid truncation for 64-bit length strings.
520    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
521      Diag(strLiteral->getSourceRange().getBegin(),
522           diag::warn_initializer_string_for_char_array_too_long,
523           strLiteral->getSourceRange());
524  }
525  // Set type from "char *" to "constant array of char".
526  strLiteral->setType(DeclT);
527  // For now, we always return false (meaning success).
528  return false;
529}
530
531StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
532  const ArrayType *AT = Context.getAsArrayType(DeclType);
533  if (AT && AT->getElementType()->isCharType()) {
534    return dyn_cast<StringLiteral>(Init);
535  }
536  return 0;
537}
538
539bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
540  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
541  // of unknown size ("[]") or an object type that is not a variable array type.
542  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
543    return Diag(VAT->getSizeExpr()->getLocStart(),
544                diag::err_variable_object_no_init,
545                VAT->getSizeExpr()->getSourceRange());
546
547  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
548  if (!InitList) {
549    // FIXME: Handle wide strings
550    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
551      return CheckStringLiteralInit(strLiteral, DeclType);
552
553    if (DeclType->isArrayType())
554      return Diag(Init->getLocStart(),
555                  diag::err_array_init_list_required,
556                  Init->getSourceRange());
557
558    return CheckSingleInitializer(Init, DeclType);
559  }
560
561  InitListChecker CheckInitList(this, InitList, DeclType);
562  return CheckInitList.HadError();
563}
564
565Sema::DeclTy *
566Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
567  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
568  IdentifierInfo *II = D.getIdentifier();
569
570  // All of these full declarators require an identifier.  If it doesn't have
571  // one, the ParsedFreeStandingDeclSpec action should be used.
572  if (II == 0) {
573    Diag(D.getDeclSpec().getSourceRange().getBegin(),
574         diag::err_declarator_need_ident,
575         D.getDeclSpec().getSourceRange(), D.getSourceRange());
576    return 0;
577  }
578
579  // The scope passed in may not be a decl scope.  Zip up the scope tree until
580  // we find one that is.
581  while ((S->getFlags() & Scope::DeclScope) == 0)
582    S = S->getParent();
583
584  // See if this is a redefinition of a variable in the same scope.
585  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
586  ScopedDecl *New;
587  bool InvalidDecl = false;
588
589  // In C++, the previous declaration we find might be a tag type
590  // (class or enum). In this case, the new declaration will hide the
591  // tag type.
592  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
593    PrevDecl = 0;
594
595  QualType R = GetTypeForDeclarator(D, S);
596  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
597
598  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
599    // Check that there are no default arguments (C++ only).
600    if (getLangOptions().CPlusPlus)
601      CheckExtraCXXDefaultArguments(D);
602
603    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
604    if (!NewTD) return 0;
605
606    // Handle attributes prior to checking for duplicates in MergeVarDecl
607    ProcessDeclAttributes(NewTD, D);
608    // Merge the decl with the existing one if appropriate. If the decl is
609    // in an outer scope, it isn't the same thing.
610    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
611      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
612      if (NewTD == 0) return 0;
613    }
614    New = NewTD;
615    if (S->getFnParent() == 0) {
616      // C99 6.7.7p2: If a typedef name specifies a variably modified type
617      // then it shall have block scope.
618      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
619        // FIXME: Diagnostic needs to be fixed.
620        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
621        InvalidDecl = true;
622      }
623    }
624  } else if (R.getTypePtr()->isFunctionType()) {
625    FunctionDecl::StorageClass SC = FunctionDecl::None;
626    switch (D.getDeclSpec().getStorageClassSpec()) {
627      default: assert(0 && "Unknown storage class!");
628      case DeclSpec::SCS_auto:
629      case DeclSpec::SCS_register:
630        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
631             R.getAsString());
632        InvalidDecl = true;
633        break;
634      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
635      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
636      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
637      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
638    }
639
640    bool isInline = D.getDeclSpec().isInlineSpecified();
641    FunctionDecl *NewFD;
642    if (D.getContext() == Declarator::MemberContext) {
643      // This is a C++ method declaration.
644      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
645                                    D.getIdentifierLoc(), II, R,
646                                    (SC == FunctionDecl::Static), isInline,
647                                    LastDeclarator);
648    } else {
649      NewFD = FunctionDecl::Create(Context, CurContext,
650                                   D.getIdentifierLoc(),
651                                   II, R, SC, isInline,
652                                   LastDeclarator);
653    }
654    // Handle attributes.
655    ProcessDeclAttributes(NewFD, D);
656
657    // Handle GNU asm-label extension (encoded as an attribute).
658    if (Expr *E = (Expr*) D.getAsmLabel()) {
659      // The parser guarantees this is a string.
660      StringLiteral *SE = cast<StringLiteral>(E);
661      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
662                                                  SE->getByteLength())));
663    }
664
665    // Copy the parameter declarations from the declarator D to
666    // the function declaration NewFD, if they are available.
667    if (D.getNumTypeObjects() > 0) {
668      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
669
670      // Create Decl objects for each parameter, adding them to the
671      // FunctionDecl.
672      llvm::SmallVector<ParmVarDecl*, 16> Params;
673
674      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
675      // function that takes no arguments, not a function that takes a
676      // single void argument.
677      // We let through "const void" here because Sema::GetTypeForDeclarator
678      // already checks for that case.
679      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
680          FTI.ArgInfo[0].Param &&
681          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
682        // empty arg list, don't push any params.
683        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
684
685        // In C++, the empty parameter-type-list must be spelled "void"; a
686        // typedef of void is not permitted.
687        if (getLangOptions().CPlusPlus &&
688            Param->getType().getUnqualifiedType() != Context.VoidTy) {
689          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
690        }
691
692      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
693        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
694          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
695      }
696
697      NewFD->setParams(&Params[0], Params.size());
698    }
699
700    // Merge the decl with the existing one if appropriate. Since C functions
701    // are in a flat namespace, make sure we consider decls in outer scopes.
702    if (PrevDecl &&
703        (!getLangOptions().CPlusPlus ||
704         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
705      bool Redeclaration = false;
706      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
707      if (NewFD == 0) return 0;
708      if (Redeclaration) {
709        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
710      }
711    }
712    New = NewFD;
713
714    // In C++, check default arguments now that we have merged decls.
715    if (getLangOptions().CPlusPlus)
716      CheckCXXDefaultArguments(NewFD);
717  } else {
718    // Check that there are no default arguments (C++ only).
719    if (getLangOptions().CPlusPlus)
720      CheckExtraCXXDefaultArguments(D);
721
722    if (R.getTypePtr()->isObjCInterfaceType()) {
723      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
724           D.getIdentifier()->getName());
725      InvalidDecl = true;
726    }
727
728    VarDecl *NewVD;
729    VarDecl::StorageClass SC;
730    switch (D.getDeclSpec().getStorageClassSpec()) {
731    default: assert(0 && "Unknown storage class!");
732    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
733    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
734    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
735    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
736    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
737    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
738    }
739    if (D.getContext() == Declarator::MemberContext) {
740      assert(SC == VarDecl::Static && "Invalid storage class for member!");
741      // This is a static data member for a C++ class.
742      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
743                                      D.getIdentifierLoc(), II,
744                                      R, LastDeclarator);
745    } else {
746      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
747      if (S->getFnParent() == 0) {
748        // C99 6.9p2: The storage-class specifiers auto and register shall not
749        // appear in the declaration specifiers in an external declaration.
750        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
751          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
752               R.getAsString());
753          InvalidDecl = true;
754        }
755      }
756        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
757                                II, R, SC, LastDeclarator);
758        NewVD->setThreadSpecified(ThreadSpecified);
759    }
760    // Handle attributes prior to checking for duplicates in MergeVarDecl
761    ProcessDeclAttributes(NewVD, D);
762
763    // Handle GNU asm-label extension (encoded as an attribute).
764    if (Expr *E = (Expr*) D.getAsmLabel()) {
765      // The parser guarantees this is a string.
766      StringLiteral *SE = cast<StringLiteral>(E);
767      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
768                                                  SE->getByteLength())));
769    }
770
771    // Emit an error if an address space was applied to decl with local storage.
772    // This includes arrays of objects with address space qualifiers, but not
773    // automatic variables that point to other address spaces.
774    // ISO/IEC TR 18037 S5.1.2
775    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
776      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
777      InvalidDecl = true;
778    }
779    // Merge the decl with the existing one if appropriate. If the decl is
780    // in an outer scope, it isn't the same thing.
781    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
782      NewVD = MergeVarDecl(NewVD, PrevDecl);
783      if (NewVD == 0) return 0;
784    }
785    New = NewVD;
786  }
787
788  // If this has an identifier, add it to the scope stack.
789  if (II)
790    PushOnScopeChains(New, S);
791  // If any semantic error occurred, mark the decl as invalid.
792  if (D.getInvalidType() || InvalidDecl)
793    New->setInvalidDecl();
794
795  return New;
796}
797
798bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
799  switch (Init->getStmtClass()) {
800  default:
801    Diag(Init->getExprLoc(),
802         diag::err_init_element_not_constant, Init->getSourceRange());
803    return true;
804  case Expr::ParenExprClass: {
805    const ParenExpr* PE = cast<ParenExpr>(Init);
806    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
807  }
808  case Expr::CompoundLiteralExprClass:
809    return cast<CompoundLiteralExpr>(Init)->isFileScope();
810  case Expr::DeclRefExprClass: {
811    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
812    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
813      if (VD->hasGlobalStorage())
814        return false;
815      Diag(Init->getExprLoc(),
816           diag::err_init_element_not_constant, Init->getSourceRange());
817      return true;
818    }
819    if (isa<FunctionDecl>(D))
820      return false;
821    Diag(Init->getExprLoc(),
822         diag::err_init_element_not_constant, Init->getSourceRange());
823    return true;
824  }
825  case Expr::MemberExprClass: {
826    const MemberExpr *M = cast<MemberExpr>(Init);
827    if (M->isArrow())
828      return CheckAddressConstantExpression(M->getBase());
829    return CheckAddressConstantExpressionLValue(M->getBase());
830  }
831  case Expr::ArraySubscriptExprClass: {
832    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
833    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
834    return CheckAddressConstantExpression(ASE->getBase()) ||
835           CheckArithmeticConstantExpression(ASE->getIdx());
836  }
837  case Expr::StringLiteralClass:
838  case Expr::PredefinedExprClass:
839    return false;
840  case Expr::UnaryOperatorClass: {
841    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
842
843    // C99 6.6p9
844    if (Exp->getOpcode() == UnaryOperator::Deref)
845      return CheckAddressConstantExpression(Exp->getSubExpr());
846
847    Diag(Init->getExprLoc(),
848         diag::err_init_element_not_constant, Init->getSourceRange());
849    return true;
850  }
851  }
852}
853
854bool Sema::CheckAddressConstantExpression(const Expr* Init) {
855  switch (Init->getStmtClass()) {
856  default:
857    Diag(Init->getExprLoc(),
858         diag::err_init_element_not_constant, Init->getSourceRange());
859    return true;
860  case Expr::ParenExprClass: {
861    const ParenExpr* PE = cast<ParenExpr>(Init);
862    return CheckAddressConstantExpression(PE->getSubExpr());
863  }
864  case Expr::StringLiteralClass:
865  case Expr::ObjCStringLiteralClass:
866    return false;
867  case Expr::CallExprClass: {
868    const CallExpr *CE = cast<CallExpr>(Init);
869    if (CE->isBuiltinConstantExpr())
870      return false;
871    Diag(Init->getExprLoc(),
872         diag::err_init_element_not_constant, Init->getSourceRange());
873    return true;
874  }
875  case Expr::UnaryOperatorClass: {
876    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
877
878    // C99 6.6p9
879    if (Exp->getOpcode() == UnaryOperator::AddrOf)
880      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
881
882    if (Exp->getOpcode() == UnaryOperator::Extension)
883      return CheckAddressConstantExpression(Exp->getSubExpr());
884
885    Diag(Init->getExprLoc(),
886         diag::err_init_element_not_constant, Init->getSourceRange());
887    return true;
888  }
889  case Expr::BinaryOperatorClass: {
890    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
891    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
892
893    Expr *PExp = Exp->getLHS();
894    Expr *IExp = Exp->getRHS();
895    if (IExp->getType()->isPointerType())
896      std::swap(PExp, IExp);
897
898    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
899    return CheckAddressConstantExpression(PExp) ||
900           CheckArithmeticConstantExpression(IExp);
901  }
902  case Expr::ImplicitCastExprClass:
903  case Expr::ExplicitCastExprClass: {
904    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
905    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
906      // Check for implicit promotion
907      if (SubExpr->getType()->isFunctionType() ||
908          SubExpr->getType()->isArrayType())
909        return CheckAddressConstantExpressionLValue(SubExpr);
910    }
911
912    // Check for pointer->pointer cast
913    if (SubExpr->getType()->isPointerType())
914      return CheckAddressConstantExpression(SubExpr);
915
916    if (SubExpr->getType()->isIntegralType()) {
917      // Check for the special-case of a pointer->int->pointer cast;
918      // this isn't standard, but some code requires it. See
919      // PR2720 for an example.
920      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
921        if (SubCast->getSubExpr()->getType()->isPointerType()) {
922          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
923          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
924          if (IntWidth >= PointerWidth) {
925            return CheckAddressConstantExpression(SubCast->getSubExpr());
926          }
927        }
928      }
929    }
930    if (SubExpr->getType()->isArithmeticType()) {
931      return CheckArithmeticConstantExpression(SubExpr);
932    }
933
934    Diag(Init->getExprLoc(),
935         diag::err_init_element_not_constant, Init->getSourceRange());
936    return true;
937  }
938  case Expr::ConditionalOperatorClass: {
939    // FIXME: Should we pedwarn here?
940    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
941    if (!Exp->getCond()->getType()->isArithmeticType()) {
942      Diag(Init->getExprLoc(),
943           diag::err_init_element_not_constant, Init->getSourceRange());
944      return true;
945    }
946    if (CheckArithmeticConstantExpression(Exp->getCond()))
947      return true;
948    if (Exp->getLHS() &&
949        CheckAddressConstantExpression(Exp->getLHS()))
950      return true;
951    return CheckAddressConstantExpression(Exp->getRHS());
952  }
953  case Expr::AddrLabelExprClass:
954    return false;
955  }
956}
957
958static const Expr* FindExpressionBaseAddress(const Expr* E);
959
960static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
961  switch (E->getStmtClass()) {
962  default:
963    return E;
964  case Expr::ParenExprClass: {
965    const ParenExpr* PE = cast<ParenExpr>(E);
966    return FindExpressionBaseAddressLValue(PE->getSubExpr());
967  }
968  case Expr::MemberExprClass: {
969    const MemberExpr *M = cast<MemberExpr>(E);
970    if (M->isArrow())
971      return FindExpressionBaseAddress(M->getBase());
972    return FindExpressionBaseAddressLValue(M->getBase());
973  }
974  case Expr::ArraySubscriptExprClass: {
975    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
976    return FindExpressionBaseAddress(ASE->getBase());
977  }
978  case Expr::UnaryOperatorClass: {
979    const UnaryOperator *Exp = cast<UnaryOperator>(E);
980
981    if (Exp->getOpcode() == UnaryOperator::Deref)
982      return FindExpressionBaseAddress(Exp->getSubExpr());
983
984    return E;
985  }
986  }
987}
988
989static const Expr* FindExpressionBaseAddress(const Expr* E) {
990  switch (E->getStmtClass()) {
991  default:
992    return E;
993  case Expr::ParenExprClass: {
994    const ParenExpr* PE = cast<ParenExpr>(E);
995    return FindExpressionBaseAddress(PE->getSubExpr());
996  }
997  case Expr::UnaryOperatorClass: {
998    const UnaryOperator *Exp = cast<UnaryOperator>(E);
999
1000    // C99 6.6p9
1001    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1002      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1003
1004    if (Exp->getOpcode() == UnaryOperator::Extension)
1005      return FindExpressionBaseAddress(Exp->getSubExpr());
1006
1007    return E;
1008  }
1009  case Expr::BinaryOperatorClass: {
1010    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1011
1012    Expr *PExp = Exp->getLHS();
1013    Expr *IExp = Exp->getRHS();
1014    if (IExp->getType()->isPointerType())
1015      std::swap(PExp, IExp);
1016
1017    return FindExpressionBaseAddress(PExp);
1018  }
1019  case Expr::ImplicitCastExprClass: {
1020    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1021
1022    // Check for implicit promotion
1023    if (SubExpr->getType()->isFunctionType() ||
1024        SubExpr->getType()->isArrayType())
1025      return FindExpressionBaseAddressLValue(SubExpr);
1026
1027    // Check for pointer->pointer cast
1028    if (SubExpr->getType()->isPointerType())
1029      return FindExpressionBaseAddress(SubExpr);
1030
1031    // We assume that we have an arithmetic expression here;
1032    // if we don't, we'll figure it out later
1033    return 0;
1034  }
1035  case Expr::ExplicitCastExprClass: {
1036    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1037
1038    // Check for pointer->pointer cast
1039    if (SubExpr->getType()->isPointerType())
1040      return FindExpressionBaseAddress(SubExpr);
1041
1042    // We assume that we have an arithmetic expression here;
1043    // if we don't, we'll figure it out later
1044    return 0;
1045  }
1046  }
1047}
1048
1049bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1050  switch (Init->getStmtClass()) {
1051  default:
1052    Diag(Init->getExprLoc(),
1053         diag::err_init_element_not_constant, Init->getSourceRange());
1054    return true;
1055  case Expr::ParenExprClass: {
1056    const ParenExpr* PE = cast<ParenExpr>(Init);
1057    return CheckArithmeticConstantExpression(PE->getSubExpr());
1058  }
1059  case Expr::FloatingLiteralClass:
1060  case Expr::IntegerLiteralClass:
1061  case Expr::CharacterLiteralClass:
1062  case Expr::ImaginaryLiteralClass:
1063  case Expr::TypesCompatibleExprClass:
1064  case Expr::CXXBoolLiteralExprClass:
1065    return false;
1066  case Expr::CallExprClass: {
1067    const CallExpr *CE = cast<CallExpr>(Init);
1068    if (CE->isBuiltinConstantExpr())
1069      return false;
1070    Diag(Init->getExprLoc(),
1071         diag::err_init_element_not_constant, Init->getSourceRange());
1072    return true;
1073  }
1074  case Expr::DeclRefExprClass: {
1075    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1076    if (isa<EnumConstantDecl>(D))
1077      return false;
1078    Diag(Init->getExprLoc(),
1079         diag::err_init_element_not_constant, Init->getSourceRange());
1080    return true;
1081  }
1082  case Expr::CompoundLiteralExprClass:
1083    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1084    // but vectors are allowed to be magic.
1085    if (Init->getType()->isVectorType())
1086      return false;
1087    Diag(Init->getExprLoc(),
1088         diag::err_init_element_not_constant, Init->getSourceRange());
1089    return true;
1090  case Expr::UnaryOperatorClass: {
1091    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1092
1093    switch (Exp->getOpcode()) {
1094    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1095    // See C99 6.6p3.
1096    default:
1097      Diag(Init->getExprLoc(),
1098           diag::err_init_element_not_constant, Init->getSourceRange());
1099      return true;
1100    case UnaryOperator::SizeOf:
1101    case UnaryOperator::AlignOf:
1102    case UnaryOperator::OffsetOf:
1103      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1104      // See C99 6.5.3.4p2 and 6.6p3.
1105      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1106        return false;
1107      Diag(Init->getExprLoc(),
1108           diag::err_init_element_not_constant, Init->getSourceRange());
1109      return true;
1110    case UnaryOperator::Extension:
1111    case UnaryOperator::LNot:
1112    case UnaryOperator::Plus:
1113    case UnaryOperator::Minus:
1114    case UnaryOperator::Not:
1115      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1116    }
1117  }
1118  case Expr::SizeOfAlignOfTypeExprClass: {
1119    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1120    // Special check for void types, which are allowed as an extension
1121    if (Exp->getArgumentType()->isVoidType())
1122      return false;
1123    // alignof always evaluates to a constant.
1124    // FIXME: is sizeof(int[3.0]) a constant expression?
1125    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1126      Diag(Init->getExprLoc(),
1127           diag::err_init_element_not_constant, Init->getSourceRange());
1128      return true;
1129    }
1130    return false;
1131  }
1132  case Expr::BinaryOperatorClass: {
1133    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1134
1135    if (Exp->getLHS()->getType()->isArithmeticType() &&
1136        Exp->getRHS()->getType()->isArithmeticType()) {
1137      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1138             CheckArithmeticConstantExpression(Exp->getRHS());
1139    }
1140
1141    if (Exp->getLHS()->getType()->isPointerType() &&
1142        Exp->getRHS()->getType()->isPointerType()) {
1143      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1144      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1145
1146      // Only allow a null (constant integer) base; we could
1147      // allow some additional cases if necessary, but this
1148      // is sufficient to cover offsetof-like constructs.
1149      if (!LHSBase && !RHSBase) {
1150        return CheckAddressConstantExpression(Exp->getLHS()) ||
1151               CheckAddressConstantExpression(Exp->getRHS());
1152      }
1153    }
1154
1155    Diag(Init->getExprLoc(),
1156         diag::err_init_element_not_constant, Init->getSourceRange());
1157    return true;
1158  }
1159  case Expr::ImplicitCastExprClass:
1160  case Expr::ExplicitCastExprClass: {
1161    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1162    if (SubExpr->getType()->isArithmeticType())
1163      return CheckArithmeticConstantExpression(SubExpr);
1164
1165    if (SubExpr->getType()->isPointerType()) {
1166      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1167      // If the pointer has a null base, this is an offsetof-like construct
1168      if (!Base)
1169        return CheckAddressConstantExpression(SubExpr);
1170    }
1171
1172    Diag(Init->getExprLoc(),
1173         diag::err_init_element_not_constant, Init->getSourceRange());
1174    return true;
1175  }
1176  case Expr::ConditionalOperatorClass: {
1177    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1178    if (CheckArithmeticConstantExpression(Exp->getCond()))
1179      return true;
1180    if (Exp->getLHS() &&
1181        CheckArithmeticConstantExpression(Exp->getLHS()))
1182      return true;
1183    return CheckArithmeticConstantExpression(Exp->getRHS());
1184  }
1185  }
1186}
1187
1188bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1189  Init = Init->IgnoreParens();
1190
1191  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1192  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1193    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1194
1195  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1196    return CheckForConstantInitializer(e->getInitializer(), DclT);
1197
1198  if (Init->getType()->isReferenceType()) {
1199    // FIXME: Work out how the heck reference types work
1200    return false;
1201#if 0
1202    // A reference is constant if the address of the expression
1203    // is constant
1204    // We look through initlists here to simplify
1205    // CheckAddressConstantExpressionLValue.
1206    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1207      assert(Exp->getNumInits() > 0 &&
1208             "Refernce initializer cannot be empty");
1209      Init = Exp->getInit(0);
1210    }
1211    return CheckAddressConstantExpressionLValue(Init);
1212#endif
1213  }
1214
1215  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1216    unsigned numInits = Exp->getNumInits();
1217    for (unsigned i = 0; i < numInits; i++) {
1218      // FIXME: Need to get the type of the declaration for C++,
1219      // because it could be a reference?
1220      if (CheckForConstantInitializer(Exp->getInit(i),
1221                                      Exp->getInit(i)->getType()))
1222        return true;
1223    }
1224    return false;
1225  }
1226
1227  if (Init->isNullPointerConstant(Context))
1228    return false;
1229  if (Init->getType()->isArithmeticType()) {
1230    QualType InitTy = Context.getCanonicalType(Init->getType())
1231                             .getUnqualifiedType();
1232    if (InitTy == Context.BoolTy) {
1233      // Special handling for pointers implicitly cast to bool;
1234      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1235      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1236        Expr* SubE = ICE->getSubExpr();
1237        if (SubE->getType()->isPointerType() ||
1238            SubE->getType()->isArrayType() ||
1239            SubE->getType()->isFunctionType()) {
1240          return CheckAddressConstantExpression(Init);
1241        }
1242      }
1243    } else if (InitTy->isIntegralType()) {
1244      Expr* SubE = 0;
1245      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1246        SubE = CE->getSubExpr();
1247      // Special check for pointer cast to int; we allow as an extension
1248      // an address constant cast to an integer if the integer
1249      // is of an appropriate width (this sort of code is apparently used
1250      // in some places).
1251      // FIXME: Add pedwarn?
1252      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1253      if (SubE && (SubE->getType()->isPointerType() ||
1254                   SubE->getType()->isArrayType() ||
1255                   SubE->getType()->isFunctionType())) {
1256        unsigned IntWidth = Context.getTypeSize(Init->getType());
1257        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1258        if (IntWidth >= PointerWidth)
1259          return CheckAddressConstantExpression(Init);
1260      }
1261    }
1262
1263    return CheckArithmeticConstantExpression(Init);
1264  }
1265
1266  if (Init->getType()->isPointerType())
1267    return CheckAddressConstantExpression(Init);
1268
1269  // An array type at the top level that isn't an init-list must
1270  // be a string literal
1271  if (Init->getType()->isArrayType())
1272    return false;
1273
1274  if (Init->getType()->isFunctionType())
1275    return false;
1276
1277  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1278       Init->getSourceRange());
1279  return true;
1280}
1281
1282void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1283  Decl *RealDecl = static_cast<Decl *>(dcl);
1284  Expr *Init = static_cast<Expr *>(init);
1285  assert(Init && "missing initializer");
1286
1287  // If there is no declaration, there was an error parsing it.  Just ignore
1288  // the initializer.
1289  if (RealDecl == 0) {
1290    delete Init;
1291    return;
1292  }
1293
1294  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1295  if (!VDecl) {
1296    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1297         diag::err_illegal_initializer);
1298    RealDecl->setInvalidDecl();
1299    return;
1300  }
1301  // Get the decls type and save a reference for later, since
1302  // CheckInitializerTypes may change it.
1303  QualType DclT = VDecl->getType(), SavT = DclT;
1304  if (VDecl->isBlockVarDecl()) {
1305    VarDecl::StorageClass SC = VDecl->getStorageClass();
1306    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1307      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1308      VDecl->setInvalidDecl();
1309    } else if (!VDecl->isInvalidDecl()) {
1310      if (CheckInitializerTypes(Init, DclT))
1311        VDecl->setInvalidDecl();
1312
1313      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1314      if (!getLangOptions().CPlusPlus) {
1315        if (SC == VarDecl::Static) // C99 6.7.8p4.
1316          CheckForConstantInitializer(Init, DclT);
1317      }
1318    }
1319  } else if (VDecl->isFileVarDecl()) {
1320    if (VDecl->getStorageClass() == VarDecl::Extern)
1321      Diag(VDecl->getLocation(), diag::warn_extern_init);
1322    if (!VDecl->isInvalidDecl())
1323      if (CheckInitializerTypes(Init, DclT))
1324        VDecl->setInvalidDecl();
1325
1326    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1327    if (!getLangOptions().CPlusPlus) {
1328      // C99 6.7.8p4. All file scoped initializers need to be constant.
1329      CheckForConstantInitializer(Init, DclT);
1330    }
1331  }
1332  // If the type changed, it means we had an incomplete type that was
1333  // completed by the initializer. For example:
1334  //   int ary[] = { 1, 3, 5 };
1335  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1336  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1337    VDecl->setType(DclT);
1338    Init->setType(DclT);
1339  }
1340
1341  // Attach the initializer to the decl.
1342  VDecl->setInit(Init);
1343  return;
1344}
1345
1346/// The declarators are chained together backwards, reverse the list.
1347Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1348  // Often we have single declarators, handle them quickly.
1349  Decl *GroupDecl = static_cast<Decl*>(group);
1350  if (GroupDecl == 0)
1351    return 0;
1352
1353  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1354  ScopedDecl *NewGroup = 0;
1355  if (Group->getNextDeclarator() == 0)
1356    NewGroup = Group;
1357  else { // reverse the list.
1358    while (Group) {
1359      ScopedDecl *Next = Group->getNextDeclarator();
1360      Group->setNextDeclarator(NewGroup);
1361      NewGroup = Group;
1362      Group = Next;
1363    }
1364  }
1365  // Perform semantic analysis that depends on having fully processed both
1366  // the declarator and initializer.
1367  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1368    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1369    if (!IDecl)
1370      continue;
1371    QualType T = IDecl->getType();
1372
1373    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1374    // static storage duration, it shall not have a variable length array.
1375    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1376        IDecl->getStorageClass() == VarDecl::Static) {
1377      if (T->isVariableArrayType()) {
1378        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1379        IDecl->setInvalidDecl();
1380      }
1381    }
1382    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1383    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1384    if (IDecl->isBlockVarDecl() &&
1385        IDecl->getStorageClass() != VarDecl::Extern) {
1386      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1387        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1388             T.getAsString());
1389        IDecl->setInvalidDecl();
1390      }
1391    }
1392    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1393    // object that has file scope without an initializer, and without a
1394    // storage-class specifier or with the storage-class specifier "static",
1395    // constitutes a tentative definition. Note: A tentative definition with
1396    // external linkage is valid (C99 6.2.2p5).
1397    if (isTentativeDefinition(IDecl)) {
1398      if (T->isIncompleteArrayType()) {
1399        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1400        // array to be completed. Don't issue a diagnostic.
1401      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1402        // C99 6.9.2p3: If the declaration of an identifier for an object is
1403        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1404        // declared type shall not be an incomplete type.
1405        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1406             T.getAsString());
1407        IDecl->setInvalidDecl();
1408      }
1409    }
1410    if (IDecl->isFileVarDecl())
1411      CheckForFileScopedRedefinitions(S, IDecl);
1412  }
1413  return NewGroup;
1414}
1415
1416/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1417/// to introduce parameters into function prototype scope.
1418Sema::DeclTy *
1419Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1420  const DeclSpec &DS = D.getDeclSpec();
1421
1422  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1423  VarDecl::StorageClass StorageClass = VarDecl::None;
1424  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1425    StorageClass = VarDecl::Register;
1426  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1427    Diag(DS.getStorageClassSpecLoc(),
1428         diag::err_invalid_storage_class_in_func_decl);
1429    D.getMutableDeclSpec().ClearStorageClassSpecs();
1430  }
1431  if (DS.isThreadSpecified()) {
1432    Diag(DS.getThreadSpecLoc(),
1433         diag::err_invalid_storage_class_in_func_decl);
1434    D.getMutableDeclSpec().ClearStorageClassSpecs();
1435  }
1436
1437  // Check that there are no default arguments inside the type of this
1438  // parameter (C++ only).
1439  if (getLangOptions().CPlusPlus)
1440    CheckExtraCXXDefaultArguments(D);
1441
1442  // In this context, we *do not* check D.getInvalidType(). If the declarator
1443  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1444  // though it will not reflect the user specified type.
1445  QualType parmDeclType = GetTypeForDeclarator(D, S);
1446
1447  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1448
1449  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1450  // Can this happen for params?  We already checked that they don't conflict
1451  // among each other.  Here they can only shadow globals, which is ok.
1452  IdentifierInfo *II = D.getIdentifier();
1453  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1454    if (S->isDeclScope(PrevDecl)) {
1455      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1456           dyn_cast<NamedDecl>(PrevDecl)->getName());
1457
1458      // Recover by removing the name
1459      II = 0;
1460      D.SetIdentifier(0, D.getIdentifierLoc());
1461    }
1462  }
1463
1464  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1465  // Doing the promotion here has a win and a loss. The win is the type for
1466  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1467  // code generator). The loss is the orginal type isn't preserved. For example:
1468  //
1469  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1470  //    int blockvardecl[5];
1471  //    sizeof(parmvardecl);  // size == 4
1472  //    sizeof(blockvardecl); // size == 20
1473  // }
1474  //
1475  // For expressions, all implicit conversions are captured using the
1476  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1477  //
1478  // FIXME: If a source translation tool needs to see the original type, then
1479  // we need to consider storing both types (in ParmVarDecl)...
1480  //
1481  if (parmDeclType->isArrayType()) {
1482    // int x[restrict 4] ->  int *restrict
1483    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1484  } else if (parmDeclType->isFunctionType())
1485    parmDeclType = Context.getPointerType(parmDeclType);
1486
1487  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1488                                         D.getIdentifierLoc(), II,
1489                                         parmDeclType, StorageClass,
1490                                         0, 0);
1491
1492  if (D.getInvalidType())
1493    New->setInvalidDecl();
1494
1495  if (II)
1496    PushOnScopeChains(New, S);
1497
1498  ProcessDeclAttributes(New, D);
1499  return New;
1500
1501}
1502
1503Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1504  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1505  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1506         "Not a function declarator!");
1507  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1508
1509  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1510  // for a K&R function.
1511  if (!FTI.hasPrototype) {
1512    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1513      if (FTI.ArgInfo[i].Param == 0) {
1514        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1515             FTI.ArgInfo[i].Ident->getName());
1516        // Implicitly declare the argument as type 'int' for lack of a better
1517        // type.
1518        DeclSpec DS;
1519        const char* PrevSpec; // unused
1520        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1521                           PrevSpec);
1522        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1523        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1524        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1525      }
1526    }
1527  } else {
1528    // FIXME: Diagnose arguments without names in C.
1529  }
1530
1531  Scope *GlobalScope = FnBodyScope->getParent();
1532
1533  // See if this is a redefinition.
1534  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1535                             GlobalScope);
1536  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1537    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1538      const FunctionDecl *Definition;
1539      if (FD->getBody(Definition)) {
1540        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1541             D.getIdentifier()->getName());
1542        Diag(Definition->getLocation(), diag::err_previous_definition);
1543      }
1544    }
1545  }
1546
1547  return ActOnStartOfFunctionDef(FnBodyScope,
1548                                 ActOnDeclarator(GlobalScope, D, 0));
1549}
1550
1551Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1552  Decl *decl = static_cast<Decl*>(D);
1553  FunctionDecl *FD = cast<FunctionDecl>(decl);
1554  PushDeclContext(FD);
1555
1556  // Check the validity of our function parameters
1557  CheckParmsForFunctionDef(FD);
1558
1559  // Introduce our parameters into the function scope
1560  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1561    ParmVarDecl *Param = FD->getParamDecl(p);
1562    // If this has an identifier, add it to the scope stack.
1563    if (Param->getIdentifier())
1564      PushOnScopeChains(Param, FnBodyScope);
1565  }
1566
1567  return FD;
1568}
1569
1570Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1571  Decl *dcl = static_cast<Decl *>(D);
1572  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1573    FD->setBody((Stmt*)Body);
1574    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1575  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1576    MD->setBody((Stmt*)Body);
1577  } else
1578    return 0;
1579  PopDeclContext();
1580  // Verify and clean out per-function state.
1581
1582  // Check goto/label use.
1583  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1584       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1585    // Verify that we have no forward references left.  If so, there was a goto
1586    // or address of a label taken, but no definition of it.  Label fwd
1587    // definitions are indicated with a null substmt.
1588    if (I->second->getSubStmt() == 0) {
1589      LabelStmt *L = I->second;
1590      // Emit error.
1591      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1592
1593      // At this point, we have gotos that use the bogus label.  Stitch it into
1594      // the function body so that they aren't leaked and that the AST is well
1595      // formed.
1596      if (Body) {
1597        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1598        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1599      } else {
1600        // The whole function wasn't parsed correctly, just delete this.
1601        delete L;
1602      }
1603    }
1604  }
1605  LabelMap.clear();
1606
1607  return D;
1608}
1609
1610/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1611/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1612ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1613                                           IdentifierInfo &II, Scope *S) {
1614  // Extension in C99.  Legal in C90, but warn about it.
1615  if (getLangOptions().C99)
1616    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1617  else
1618    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1619
1620  // FIXME: handle stuff like:
1621  // void foo() { extern float X(); }
1622  // void bar() { X(); }  <-- implicit decl for X in another scope.
1623
1624  // Set a Declarator for the implicit definition: int foo();
1625  const char *Dummy;
1626  DeclSpec DS;
1627  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1628  Error = Error; // Silence warning.
1629  assert(!Error && "Error setting up implicit decl!");
1630  Declarator D(DS, Declarator::BlockContext);
1631  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1632  D.SetIdentifier(&II, Loc);
1633
1634  // Insert this function into translation-unit scope.
1635
1636  DeclContext *PrevDC = CurContext;
1637  CurContext = Context.getTranslationUnitDecl();
1638
1639  FunctionDecl *FD =
1640    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1641  FD->setImplicit();
1642
1643  CurContext = PrevDC;
1644
1645  return FD;
1646}
1647
1648
1649TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1650                                    ScopedDecl *LastDeclarator) {
1651  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1652  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1653
1654  // Scope manipulation handled by caller.
1655  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1656                                           D.getIdentifierLoc(),
1657                                           D.getIdentifier(),
1658                                           T, LastDeclarator);
1659  if (D.getInvalidType())
1660    NewTD->setInvalidDecl();
1661  return NewTD;
1662}
1663
1664/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1665/// former case, Name will be non-null.  In the later case, Name will be null.
1666/// TagType indicates what kind of tag this is. TK indicates whether this is a
1667/// reference/declaration/definition of a tag.
1668Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1669                             SourceLocation KWLoc, IdentifierInfo *Name,
1670                             SourceLocation NameLoc, AttributeList *Attr) {
1671  // If this is a use of an existing tag, it must have a name.
1672  assert((Name != 0 || TK == TK_Definition) &&
1673         "Nameless record must be a definition!");
1674
1675  TagDecl::TagKind Kind;
1676  switch (TagType) {
1677  default: assert(0 && "Unknown tag type!");
1678  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1679  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1680  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1681  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1682  }
1683
1684  // Two code paths: a new one for structs/unions/classes where we create
1685  //   separate decls for forward declarations, and an old (eventually to
1686  //   be removed) code path for enums.
1687  if (Kind != TagDecl::TK_enum)
1688    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1689
1690  // If this is a named struct, check to see if there was a previous forward
1691  // declaration or definition.
1692  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1693  ScopedDecl *PrevDecl =
1694    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1695
1696  if (PrevDecl) {
1697    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1698            "unexpected Decl type");
1699    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1700      // If this is a use of a previous tag, or if the tag is already declared
1701      // in the same scope (so that the definition/declaration completes or
1702      // rementions the tag), reuse the decl.
1703      if (TK == TK_Reference ||
1704          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1705        // Make sure that this wasn't declared as an enum and now used as a
1706        // struct or something similar.
1707        if (PrevTagDecl->getTagKind() != Kind) {
1708          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1709          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1710          // Recover by making this an anonymous redefinition.
1711          Name = 0;
1712          PrevDecl = 0;
1713        } else {
1714          // If this is a use or a forward declaration, we're good.
1715          if (TK != TK_Definition)
1716            return PrevDecl;
1717
1718          // Diagnose attempts to redefine a tag.
1719          if (PrevTagDecl->isDefinition()) {
1720            Diag(NameLoc, diag::err_redefinition, Name->getName());
1721            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1722            // If this is a redefinition, recover by making this struct be
1723            // anonymous, which will make any later references get the previous
1724            // definition.
1725            Name = 0;
1726          } else {
1727            // Okay, this is definition of a previously declared or referenced
1728            // tag. Move the location of the decl to be the definition site.
1729            PrevDecl->setLocation(NameLoc);
1730            return PrevDecl;
1731          }
1732        }
1733      }
1734      // If we get here, this is a definition of a new struct type in a nested
1735      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1736      // type.
1737    } else {
1738      // PrevDecl is a namespace.
1739      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1740        // The tag name clashes with a namespace name, issue an error and
1741        // recover by making this tag be anonymous.
1742        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1743        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1744        Name = 0;
1745      }
1746    }
1747  }
1748
1749  // If there is an identifier, use the location of the identifier as the
1750  // location of the decl, otherwise use the location of the struct/union
1751  // keyword.
1752  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1753
1754  // Otherwise, if this is the first time we've seen this tag, create the decl.
1755  TagDecl *New;
1756  if (Kind == TagDecl::TK_enum) {
1757    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1758    // enum X { A, B, C } D;    D should chain to X.
1759    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1760    // If this is an undefined enum, warn.
1761    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1762  } else {
1763    // struct/union/class
1764
1765    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1766    // struct X { int A; } D;    D should chain to X.
1767    if (getLangOptions().CPlusPlus)
1768      // FIXME: Look for a way to use RecordDecl for simple structs.
1769      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1770    else
1771      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1772  }
1773
1774  // If this has an identifier, add it to the scope stack.
1775  if (Name) {
1776    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1777    // we find one that is.
1778    while ((S->getFlags() & Scope::DeclScope) == 0)
1779      S = S->getParent();
1780
1781    // Add it to the decl chain.
1782    PushOnScopeChains(New, S);
1783  }
1784
1785  if (Attr)
1786    ProcessDeclAttributeList(New, Attr);
1787  return New;
1788}
1789
1790/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1791///  the logic for enums, we create separate decls for forward declarations.
1792///  This is called by ActOnTag, but eventually will replace its logic.
1793Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1794                             SourceLocation KWLoc, IdentifierInfo *Name,
1795                             SourceLocation NameLoc, AttributeList *Attr) {
1796
1797  // If this is a named struct, check to see if there was a previous forward
1798  // declaration or definition.
1799  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1800  ScopedDecl *PrevDecl =
1801    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1802
1803  if (PrevDecl) {
1804    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1805           "unexpected Decl type");
1806
1807    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1808      // If this is a use of a previous tag, or if the tag is already declared
1809      // in the same scope (so that the definition/declaration completes or
1810      // rementions the tag), reuse the decl.
1811      if (TK == TK_Reference ||
1812          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1813        // Make sure that this wasn't declared as an enum and now used as a
1814        // struct or something similar.
1815        if (PrevTagDecl->getTagKind() != Kind) {
1816          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1817          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1818          // Recover by making this an anonymous redefinition.
1819          Name = 0;
1820          PrevDecl = 0;
1821        } else {
1822          // If this is a use, return the original decl.
1823
1824          // FIXME: In the future, return a variant or some other clue
1825          //  for the consumer of this Decl to know it doesn't own it.
1826          //  For our current ASTs this shouldn't be a problem, but will
1827          //  need to be changed with DeclGroups.
1828          if (TK == TK_Reference)
1829            return PrevDecl;
1830
1831          // The new decl is a definition?
1832          if (TK == TK_Definition) {
1833            // Diagnose attempts to redefine a tag.
1834            if (RecordDecl* DefRecord =
1835                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
1836              Diag(NameLoc, diag::err_redefinition, Name->getName());
1837              Diag(DefRecord->getLocation(), diag::err_previous_definition);
1838              // If this is a redefinition, recover by making this struct be
1839              // anonymous, which will make any later references get the previous
1840              // definition.
1841              Name = 0;
1842              PrevDecl = 0;
1843            }
1844            // Okay, this is definition of a previously declared or referenced
1845            // tag.  We're going to create a new Decl.
1846          }
1847        }
1848        // If we get here we have (another) forward declaration.  Just create
1849        // a new decl.
1850      }
1851      else {
1852        // If we get here, this is a definition of a new struct type in a nested
1853        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
1854        // new decl/type.  We set PrevDecl to NULL so that the Records
1855        // have distinct types.
1856        PrevDecl = 0;
1857      }
1858    } else {
1859      // PrevDecl is a namespace.
1860      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1861        // The tag name clashes with a namespace name, issue an error and
1862        // recover by making this tag be anonymous.
1863        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1864        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1865        Name = 0;
1866      }
1867    }
1868  }
1869
1870  // If there is an identifier, use the location of the identifier as the
1871  // location of the decl, otherwise use the location of the struct/union
1872  // keyword.
1873  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1874
1875  // Otherwise, if this is the first time we've seen this tag, create the decl.
1876  TagDecl *New;
1877
1878  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1879  // struct X { int A; } D;    D should chain to X.
1880  if (getLangOptions().CPlusPlus)
1881    // FIXME: Look for a way to use RecordDecl for simple structs.
1882    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1883                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
1884  else
1885    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1886                             dyn_cast_or_null<RecordDecl>(PrevDecl));
1887
1888  // If this has an identifier, add it to the scope stack.
1889  if ((TK == TK_Definition || !PrevDecl) && Name) {
1890    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1891    // we find one that is.
1892    while ((S->getFlags() & Scope::DeclScope) == 0)
1893      S = S->getParent();
1894
1895    // Add it to the decl chain.
1896    PushOnScopeChains(New, S);
1897  }
1898
1899  if (Attr)
1900    ProcessDeclAttributeList(New, Attr);
1901
1902  return New;
1903}
1904
1905
1906/// Collect the instance variables declared in an Objective-C object.  Used in
1907/// the creation of structures from objects using the @defs directive.
1908static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
1909                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1910  if (Class->getSuperClass())
1911    CollectIvars(Class->getSuperClass(), Ctx, ivars);
1912
1913  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1914  for (ObjCInterfaceDecl::ivar_iterator
1915        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
1916
1917    ObjCIvarDecl* ID = *I;
1918    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
1919                                                ID->getIdentifier(),
1920                                                ID->getType(),
1921                                                ID->getBitWidth()));
1922  }
1923}
1924
1925/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1926/// instance variables of ClassName into Decls.
1927void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1928                     IdentifierInfo *ClassName,
1929                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1930  // Check that ClassName is a valid class
1931  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1932  if (!Class) {
1933    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1934    return;
1935  }
1936  // Collect the instance variables
1937  CollectIvars(Class, Context, Decls);
1938}
1939
1940QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1941  // This method tries to turn a variable array into a constant
1942  // array even when the size isn't an ICE.  This is necessary
1943  // for compatibility with code that depends on gcc's buggy
1944  // constant expression folding, like struct {char x[(int)(char*)2];}
1945  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1946    APValue Result;
1947    if (VLATy->getSizeExpr() &&
1948        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1949      llvm::APSInt &Res = Result.getInt();
1950      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1951        return Context.getConstantArrayType(VLATy->getElementType(),
1952                                            Res, ArrayType::Normal, 0);
1953    }
1954  }
1955  return QualType();
1956}
1957
1958/// ActOnField - Each field of a struct/union/class is passed into this in order
1959/// to create a FieldDecl object for it.
1960Sema::DeclTy *Sema::ActOnField(Scope *S,
1961                               SourceLocation DeclStart,
1962                               Declarator &D, ExprTy *BitfieldWidth) {
1963  IdentifierInfo *II = D.getIdentifier();
1964  Expr *BitWidth = (Expr*)BitfieldWidth;
1965  SourceLocation Loc = DeclStart;
1966  if (II) Loc = D.getIdentifierLoc();
1967
1968  // FIXME: Unnamed fields can be handled in various different ways, for
1969  // example, unnamed unions inject all members into the struct namespace!
1970
1971  if (BitWidth) {
1972    // TODO: Validate.
1973    //printf("WARNING: BITFIELDS IGNORED!\n");
1974
1975    // 6.7.2.1p3
1976    // 6.7.2.1p4
1977
1978  } else {
1979    // Not a bitfield.
1980
1981    // validate II.
1982
1983  }
1984
1985  QualType T = GetTypeForDeclarator(D, S);
1986  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1987  bool InvalidDecl = false;
1988
1989  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1990  // than a variably modified type.
1991  if (T->isVariablyModifiedType()) {
1992    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
1993    if (!FixedTy.isNull()) {
1994      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
1995      T = FixedTy;
1996    } else {
1997      // FIXME: This diagnostic needs work
1998      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1999      InvalidDecl = true;
2000    }
2001  }
2002  // FIXME: Chain fielddecls together.
2003  FieldDecl *NewFD;
2004
2005  if (getLangOptions().CPlusPlus) {
2006    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2007    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2008                                 Loc, II, T, BitWidth);
2009    if (II)
2010      PushOnScopeChains(NewFD, S);
2011  }
2012  else
2013    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2014
2015  ProcessDeclAttributes(NewFD, D);
2016
2017  if (D.getInvalidType() || InvalidDecl)
2018    NewFD->setInvalidDecl();
2019  return NewFD;
2020}
2021
2022/// TranslateIvarVisibility - Translate visibility from a token ID to an
2023///  AST enum value.
2024static ObjCIvarDecl::AccessControl
2025TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2026  switch (ivarVisibility) {
2027    case tok::objc_private: return ObjCIvarDecl::Private;
2028    case tok::objc_public: return ObjCIvarDecl::Public;
2029    case tok::objc_protected: return ObjCIvarDecl::Protected;
2030    case tok::objc_package: return ObjCIvarDecl::Package;
2031    default: assert(false && "Unknown visitibility kind");
2032  }
2033}
2034
2035/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2036/// in order to create an IvarDecl object for it.
2037Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2038                              SourceLocation DeclStart,
2039                              Declarator &D, ExprTy *BitfieldWidth,
2040                              tok::ObjCKeywordKind Visibility) {
2041  IdentifierInfo *II = D.getIdentifier();
2042  Expr *BitWidth = (Expr*)BitfieldWidth;
2043  SourceLocation Loc = DeclStart;
2044  if (II) Loc = D.getIdentifierLoc();
2045
2046  // FIXME: Unnamed fields can be handled in various different ways, for
2047  // example, unnamed unions inject all members into the struct namespace!
2048
2049
2050  if (BitWidth) {
2051    // TODO: Validate.
2052    //printf("WARNING: BITFIELDS IGNORED!\n");
2053
2054    // 6.7.2.1p3
2055    // 6.7.2.1p4
2056
2057  } else {
2058    // Not a bitfield.
2059
2060    // validate II.
2061
2062  }
2063
2064  QualType T = GetTypeForDeclarator(D, S);
2065  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2066  bool InvalidDecl = false;
2067
2068  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2069  // than a variably modified type.
2070  if (T->isVariablyModifiedType()) {
2071    // FIXME: This diagnostic needs work
2072    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2073    InvalidDecl = true;
2074  }
2075
2076  // Get the visibility (access control) for this ivar.
2077  ObjCIvarDecl::AccessControl ac =
2078    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2079                                        : ObjCIvarDecl::None;
2080
2081  // Construct the decl.
2082  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2083                                             (Expr *)BitfieldWidth);
2084
2085  // Process attributes attached to the ivar.
2086  ProcessDeclAttributes(NewID, D);
2087
2088  if (D.getInvalidType() || InvalidDecl)
2089    NewID->setInvalidDecl();
2090
2091  return NewID;
2092}
2093
2094void Sema::ActOnFields(Scope* S,
2095                       SourceLocation RecLoc, DeclTy *RecDecl,
2096                       DeclTy **Fields, unsigned NumFields,
2097                       SourceLocation LBrac, SourceLocation RBrac) {
2098  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2099  assert(EnclosingDecl && "missing record or interface decl");
2100  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2101
2102  if (Record)
2103    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2104      // Diagnose code like:
2105      //     struct S { struct S {} X; };
2106      // We discover this when we complete the outer S.  Reject and ignore the
2107      // outer S.
2108      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2109           DefRecord->getKindName());
2110      Diag(RecLoc, diag::err_previous_definition);
2111      Record->setInvalidDecl();
2112      return;
2113    }
2114
2115  // Verify that all the fields are okay.
2116  unsigned NumNamedMembers = 0;
2117  llvm::SmallVector<FieldDecl*, 32> RecFields;
2118  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2119
2120  for (unsigned i = 0; i != NumFields; ++i) {
2121
2122    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2123    assert(FD && "missing field decl");
2124
2125    // Remember all fields.
2126    RecFields.push_back(FD);
2127
2128    // Get the type for the field.
2129    Type *FDTy = FD->getType().getTypePtr();
2130
2131    // C99 6.7.2.1p2 - A field may not be a function type.
2132    if (FDTy->isFunctionType()) {
2133      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2134           FD->getName());
2135      FD->setInvalidDecl();
2136      EnclosingDecl->setInvalidDecl();
2137      continue;
2138    }
2139    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2140    if (FDTy->isIncompleteType()) {
2141      if (!Record) {  // Incomplete ivar type is always an error.
2142        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2143        FD->setInvalidDecl();
2144        EnclosingDecl->setInvalidDecl();
2145        continue;
2146      }
2147      if (i != NumFields-1 ||                   // ... that the last member ...
2148          !Record->isStruct() ||  // ... of a structure ...
2149          !FDTy->isArrayType()) {         //... may have incomplete array type.
2150        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2151        FD->setInvalidDecl();
2152        EnclosingDecl->setInvalidDecl();
2153        continue;
2154      }
2155      if (NumNamedMembers < 1) {  //... must have more than named member ...
2156        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2157             FD->getName());
2158        FD->setInvalidDecl();
2159        EnclosingDecl->setInvalidDecl();
2160        continue;
2161      }
2162      // Okay, we have a legal flexible array member at the end of the struct.
2163      if (Record)
2164        Record->setHasFlexibleArrayMember(true);
2165    }
2166    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2167    /// field of another structure or the element of an array.
2168    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2169      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2170        // If this is a member of a union, then entire union becomes "flexible".
2171        if (Record && Record->isUnion()) {
2172          Record->setHasFlexibleArrayMember(true);
2173        } else {
2174          // If this is a struct/class and this is not the last element, reject
2175          // it.  Note that GCC supports variable sized arrays in the middle of
2176          // structures.
2177          if (i != NumFields-1) {
2178            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2179                 FD->getName());
2180            FD->setInvalidDecl();
2181            EnclosingDecl->setInvalidDecl();
2182            continue;
2183          }
2184          // We support flexible arrays at the end of structs in other structs
2185          // as an extension.
2186          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2187               FD->getName());
2188          if (Record)
2189            Record->setHasFlexibleArrayMember(true);
2190        }
2191      }
2192    }
2193    /// A field cannot be an Objective-c object
2194    if (FDTy->isObjCInterfaceType()) {
2195      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2196           FD->getName());
2197      FD->setInvalidDecl();
2198      EnclosingDecl->setInvalidDecl();
2199      continue;
2200    }
2201    // Keep track of the number of named members.
2202    if (IdentifierInfo *II = FD->getIdentifier()) {
2203      // Detect duplicate member names.
2204      if (!FieldIDs.insert(II)) {
2205        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2206        // Find the previous decl.
2207        SourceLocation PrevLoc;
2208        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2209          assert(i != e && "Didn't find previous def!");
2210          if (RecFields[i]->getIdentifier() == II) {
2211            PrevLoc = RecFields[i]->getLocation();
2212            break;
2213          }
2214        }
2215        Diag(PrevLoc, diag::err_previous_definition);
2216        FD->setInvalidDecl();
2217        EnclosingDecl->setInvalidDecl();
2218        continue;
2219      }
2220      ++NumNamedMembers;
2221    }
2222  }
2223
2224  // Okay, we successfully defined 'Record'.
2225  if (Record) {
2226    Record->defineBody(Context, &RecFields[0], RecFields.size());
2227    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2228    // Sema::ActOnFinishCXXClassDef.
2229    if (!isa<CXXRecordDecl>(Record))
2230      Consumer.HandleTagDeclDefinition(Record);
2231  } else {
2232    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2233    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2234      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2235    else if (ObjCImplementationDecl *IMPDecl =
2236               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2237      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2238      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2239      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2240    }
2241  }
2242}
2243
2244Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2245                                      DeclTy *lastEnumConst,
2246                                      SourceLocation IdLoc, IdentifierInfo *Id,
2247                                      SourceLocation EqualLoc, ExprTy *val) {
2248  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2249  EnumConstantDecl *LastEnumConst =
2250    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2251  Expr *Val = static_cast<Expr*>(val);
2252
2253  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2254  // we find one that is.
2255  while ((S->getFlags() & Scope::DeclScope) == 0)
2256    S = S->getParent();
2257
2258  // Verify that there isn't already something declared with this name in this
2259  // scope.
2260  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2261    // When in C++, we may get a TagDecl with the same name; in this case the
2262    // enum constant will 'hide' the tag.
2263    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2264           "Received TagDecl when not in C++!");
2265    if (!isa<TagDecl>(PrevDecl) &&
2266        IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2267      if (isa<EnumConstantDecl>(PrevDecl))
2268        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2269      else
2270        Diag(IdLoc, diag::err_redefinition, Id->getName());
2271      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2272      delete Val;
2273      return 0;
2274    }
2275  }
2276
2277  llvm::APSInt EnumVal(32);
2278  QualType EltTy;
2279  if (Val) {
2280    // Make sure to promote the operand type to int.
2281    UsualUnaryConversions(Val);
2282
2283    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2284    SourceLocation ExpLoc;
2285    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2286      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2287           Id->getName());
2288      delete Val;
2289      Val = 0;  // Just forget about it.
2290    } else {
2291      EltTy = Val->getType();
2292    }
2293  }
2294
2295  if (!Val) {
2296    if (LastEnumConst) {
2297      // Assign the last value + 1.
2298      EnumVal = LastEnumConst->getInitVal();
2299      ++EnumVal;
2300
2301      // Check for overflow on increment.
2302      if (EnumVal < LastEnumConst->getInitVal())
2303        Diag(IdLoc, diag::warn_enum_value_overflow);
2304
2305      EltTy = LastEnumConst->getType();
2306    } else {
2307      // First value, set to zero.
2308      EltTy = Context.IntTy;
2309      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2310    }
2311  }
2312
2313  EnumConstantDecl *New =
2314    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2315                             Val, EnumVal,
2316                             LastEnumConst);
2317
2318  // Register this decl in the current scope stack.
2319  PushOnScopeChains(New, S);
2320  return New;
2321}
2322
2323// FIXME: For consistency with ActOnFields(), we should have the parser
2324// pass in the source location for the left/right braces.
2325void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2326                         DeclTy **Elements, unsigned NumElements) {
2327  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2328
2329  if (Enum && Enum->isDefinition()) {
2330    // Diagnose code like:
2331    //   enum e0 {
2332    //     E0 = sizeof(enum e0 { E1 })
2333    //   };
2334    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2335         Enum->getName());
2336    Diag(EnumLoc, diag::err_previous_definition);
2337    Enum->setInvalidDecl();
2338    return;
2339  }
2340  // TODO: If the result value doesn't fit in an int, it must be a long or long
2341  // long value.  ISO C does not support this, but GCC does as an extension,
2342  // emit a warning.
2343  unsigned IntWidth = Context.Target.getIntWidth();
2344
2345  // Verify that all the values are okay, compute the size of the values, and
2346  // reverse the list.
2347  unsigned NumNegativeBits = 0;
2348  unsigned NumPositiveBits = 0;
2349
2350  // Keep track of whether all elements have type int.
2351  bool AllElementsInt = true;
2352
2353  EnumConstantDecl *EltList = 0;
2354  for (unsigned i = 0; i != NumElements; ++i) {
2355    EnumConstantDecl *ECD =
2356      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2357    if (!ECD) continue;  // Already issued a diagnostic.
2358
2359    // If the enum value doesn't fit in an int, emit an extension warning.
2360    const llvm::APSInt &InitVal = ECD->getInitVal();
2361    assert(InitVal.getBitWidth() >= IntWidth &&
2362           "Should have promoted value to int");
2363    if (InitVal.getBitWidth() > IntWidth) {
2364      llvm::APSInt V(InitVal);
2365      V.trunc(IntWidth);
2366      V.extend(InitVal.getBitWidth());
2367      if (V != InitVal)
2368        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2369             InitVal.toString(10));
2370    }
2371
2372    // Keep track of the size of positive and negative values.
2373    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2374      NumPositiveBits = std::max(NumPositiveBits,
2375                                 (unsigned)InitVal.getActiveBits());
2376    else
2377      NumNegativeBits = std::max(NumNegativeBits,
2378                                 (unsigned)InitVal.getMinSignedBits());
2379
2380    // Keep track of whether every enum element has type int (very commmon).
2381    if (AllElementsInt)
2382      AllElementsInt = ECD->getType() == Context.IntTy;
2383
2384    ECD->setNextDeclarator(EltList);
2385    EltList = ECD;
2386  }
2387
2388  // Figure out the type that should be used for this enum.
2389  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2390  QualType BestType;
2391  unsigned BestWidth;
2392
2393  if (NumNegativeBits) {
2394    // If there is a negative value, figure out the smallest integer type (of
2395    // int/long/longlong) that fits.
2396    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2397      BestType = Context.IntTy;
2398      BestWidth = IntWidth;
2399    } else {
2400      BestWidth = Context.Target.getLongWidth();
2401
2402      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2403        BestType = Context.LongTy;
2404      else {
2405        BestWidth = Context.Target.getLongLongWidth();
2406
2407        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2408          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2409        BestType = Context.LongLongTy;
2410      }
2411    }
2412  } else {
2413    // If there is no negative value, figure out which of uint, ulong, ulonglong
2414    // fits.
2415    if (NumPositiveBits <= IntWidth) {
2416      BestType = Context.UnsignedIntTy;
2417      BestWidth = IntWidth;
2418    } else if (NumPositiveBits <=
2419               (BestWidth = Context.Target.getLongWidth())) {
2420      BestType = Context.UnsignedLongTy;
2421    } else {
2422      BestWidth = Context.Target.getLongLongWidth();
2423      assert(NumPositiveBits <= BestWidth &&
2424             "How could an initializer get larger than ULL?");
2425      BestType = Context.UnsignedLongLongTy;
2426    }
2427  }
2428
2429  // Loop over all of the enumerator constants, changing their types to match
2430  // the type of the enum if needed.
2431  for (unsigned i = 0; i != NumElements; ++i) {
2432    EnumConstantDecl *ECD =
2433      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2434    if (!ECD) continue;  // Already issued a diagnostic.
2435
2436    // Standard C says the enumerators have int type, but we allow, as an
2437    // extension, the enumerators to be larger than int size.  If each
2438    // enumerator value fits in an int, type it as an int, otherwise type it the
2439    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2440    // that X has type 'int', not 'unsigned'.
2441    if (ECD->getType() == Context.IntTy) {
2442      // Make sure the init value is signed.
2443      llvm::APSInt IV = ECD->getInitVal();
2444      IV.setIsSigned(true);
2445      ECD->setInitVal(IV);
2446      continue;  // Already int type.
2447    }
2448
2449    // Determine whether the value fits into an int.
2450    llvm::APSInt InitVal = ECD->getInitVal();
2451    bool FitsInInt;
2452    if (InitVal.isUnsigned() || !InitVal.isNegative())
2453      FitsInInt = InitVal.getActiveBits() < IntWidth;
2454    else
2455      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2456
2457    // If it fits into an integer type, force it.  Otherwise force it to match
2458    // the enum decl type.
2459    QualType NewTy;
2460    unsigned NewWidth;
2461    bool NewSign;
2462    if (FitsInInt) {
2463      NewTy = Context.IntTy;
2464      NewWidth = IntWidth;
2465      NewSign = true;
2466    } else if (ECD->getType() == BestType) {
2467      // Already the right type!
2468      continue;
2469    } else {
2470      NewTy = BestType;
2471      NewWidth = BestWidth;
2472      NewSign = BestType->isSignedIntegerType();
2473    }
2474
2475    // Adjust the APSInt value.
2476    InitVal.extOrTrunc(NewWidth);
2477    InitVal.setIsSigned(NewSign);
2478    ECD->setInitVal(InitVal);
2479
2480    // Adjust the Expr initializer and type.
2481    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2482    ECD->setType(NewTy);
2483  }
2484
2485  Enum->defineElements(EltList, BestType);
2486  Consumer.HandleTagDeclDefinition(Enum);
2487}
2488
2489Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2490                                          ExprTy *expr) {
2491  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2492
2493  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2494}
2495
2496Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2497                                     SourceLocation LBrace,
2498                                     SourceLocation RBrace,
2499                                     const char *Lang,
2500                                     unsigned StrSize,
2501                                     DeclTy *D) {
2502  LinkageSpecDecl::LanguageIDs Language;
2503  Decl *dcl = static_cast<Decl *>(D);
2504  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2505    Language = LinkageSpecDecl::lang_c;
2506  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2507    Language = LinkageSpecDecl::lang_cxx;
2508  else {
2509    Diag(Loc, diag::err_bad_language);
2510    return 0;
2511  }
2512
2513  // FIXME: Add all the various semantics of linkage specifications
2514  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2515}
2516