SemaDecl.cpp revision 6f072329e9c9b7d44f0fa2a34528193a6f478414
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45/// getDeclName - Return a pretty name for the specified decl if possible, or
46/// an empty string if not.  This is used for pretty crash reporting.
47std::string Sema::getDeclName(Decl *D) {
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                             Scope *S, CXXScopeSpec *SS,
70                             bool isClassName,
71                             ParsedType ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = ObjectTypePtr.get();
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isNotEmpty()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return ParsedType();
94
95        // We know from the grammar that this name refers to a type,
96        // so build a dependent node to describe the type.
97        QualType T =
98          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
99                            SourceLocation(), SS->getRange(), NameLoc);
100        return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS)
200      T = getElaboratedType(ETK_None, *SS, T);
201
202  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
203    T = Context.getObjCInterfaceType(IDecl);
204  } else {
205    // If it's not plausibly a type, suppress diagnostics.
206    Result.suppressDiagnostics();
207    return ParsedType();
208  }
209
210  return ParsedType::make(T);
211}
212
213/// isTagName() - This method is called *for error recovery purposes only*
214/// to determine if the specified name is a valid tag name ("struct foo").  If
215/// so, this returns the TST for the tag corresponding to it (TST_enum,
216/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217/// where the user forgot to specify the tag.
218DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219  // Do a tag name lookup in this scope.
220  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221  LookupName(R, S, false);
222  R.suppressDiagnostics();
223  if (R.getResultKind() == LookupResult::Found)
224    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225      switch (TD->getTagKind()) {
226      default:         return DeclSpec::TST_unspecified;
227      case TTK_Struct: return DeclSpec::TST_struct;
228      case TTK_Union:  return DeclSpec::TST_union;
229      case TTK_Class:  return DeclSpec::TST_class;
230      case TTK_Enum:   return DeclSpec::TST_enum;
231      }
232    }
233
234  return DeclSpec::TST_unspecified;
235}
236
237bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
238                                   SourceLocation IILoc,
239                                   Scope *S,
240                                   CXXScopeSpec *SS,
241                                   ParsedType &SuggestedType) {
242  // We don't have anything to suggest (yet).
243  SuggestedType = ParsedType();
244
245  // There may have been a typo in the name of the type. Look up typo
246  // results, in case we have something that we can suggest.
247  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
248                      NotForRedeclaration);
249
250  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
251    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
252      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
253          !Result->isInvalidDecl()) {
254        // We found a similarly-named type or interface; suggest that.
255        if (!SS || !SS->isSet())
256          Diag(IILoc, diag::err_unknown_typename_suggest)
257            << &II << Lookup.getLookupName()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else if (DeclContext *DC = computeDeclContext(*SS, false))
261          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
262            << &II << DC << Lookup.getLookupName() << SS->getRange()
263            << FixItHint::CreateReplacement(SourceRange(IILoc),
264                                            Result->getNameAsString());
265        else
266          llvm_unreachable("could not have corrected a typo here");
267
268        Diag(Result->getLocation(), diag::note_previous_decl)
269          << Result->getDeclName();
270
271        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
272        return true;
273      }
274    } else if (Lookup.empty()) {
275      // We corrected to a keyword.
276      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
277      Diag(IILoc, diag::err_unknown_typename_suggest)
278        << &II << Corrected;
279      return true;
280    }
281  }
282
283  if (getLangOptions().CPlusPlus) {
284    // See if II is a class template that the user forgot to pass arguments to.
285    UnqualifiedId Name;
286    Name.setIdentifier(&II, IILoc);
287    CXXScopeSpec EmptySS;
288    TemplateTy TemplateResult;
289    bool MemberOfUnknownSpecialization;
290    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
291                       Name, ParsedType(), true, TemplateResult,
292                       MemberOfUnknownSpecialization) == TNK_Type_template) {
293      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
294      Diag(IILoc, diag::err_template_missing_args) << TplName;
295      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
296        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
297          << TplDecl->getTemplateParameters()->getSourceRange();
298      }
299      return true;
300    }
301  }
302
303  // FIXME: Should we move the logic that tries to recover from a missing tag
304  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
305
306  if (!SS || (!SS->isSet() && !SS->isInvalid()))
307    Diag(IILoc, diag::err_unknown_typename) << &II;
308  else if (DeclContext *DC = computeDeclContext(*SS, false))
309    Diag(IILoc, diag::err_typename_nested_not_found)
310      << &II << DC << SS->getRange();
311  else if (isDependentScopeSpecifier(*SS)) {
312    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
313      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
314      << SourceRange(SS->getRange().getBegin(), IILoc)
315      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
316    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
317  } else {
318    assert(SS && SS->isInvalid() &&
319           "Invalid scope specifier has already been diagnosed");
320  }
321
322  return true;
323}
324
325// Determines the context to return to after temporarily entering a
326// context.  This depends in an unnecessarily complicated way on the
327// exact ordering of callbacks from the parser.
328DeclContext *Sema::getContainingDC(DeclContext *DC) {
329
330  // Functions defined inline within classes aren't parsed until we've
331  // finished parsing the top-level class, so the top-level class is
332  // the context we'll need to return to.
333  if (isa<FunctionDecl>(DC)) {
334    DC = DC->getLexicalParent();
335
336    // A function not defined within a class will always return to its
337    // lexical context.
338    if (!isa<CXXRecordDecl>(DC))
339      return DC;
340
341    // A C++ inline method/friend is parsed *after* the topmost class
342    // it was declared in is fully parsed ("complete");  the topmost
343    // class is the context we need to return to.
344    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
345      DC = RD;
346
347    // Return the declaration context of the topmost class the inline method is
348    // declared in.
349    return DC;
350  }
351
352  // ObjCMethodDecls are parsed (for some reason) outside the context
353  // of the class.
354  if (isa<ObjCMethodDecl>(DC))
355    return DC->getLexicalParent()->getLexicalParent();
356
357  return DC->getLexicalParent();
358}
359
360void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
361  assert(getContainingDC(DC) == CurContext &&
362      "The next DeclContext should be lexically contained in the current one.");
363  CurContext = DC;
364  S->setEntity(DC);
365}
366
367void Sema::PopDeclContext() {
368  assert(CurContext && "DeclContext imbalance!");
369
370  CurContext = getContainingDC(CurContext);
371  assert(CurContext && "Popped translation unit!");
372}
373
374/// EnterDeclaratorContext - Used when we must lookup names in the context
375/// of a declarator's nested name specifier.
376///
377void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
378  // C++0x [basic.lookup.unqual]p13:
379  //   A name used in the definition of a static data member of class
380  //   X (after the qualified-id of the static member) is looked up as
381  //   if the name was used in a member function of X.
382  // C++0x [basic.lookup.unqual]p14:
383  //   If a variable member of a namespace is defined outside of the
384  //   scope of its namespace then any name used in the definition of
385  //   the variable member (after the declarator-id) is looked up as
386  //   if the definition of the variable member occurred in its
387  //   namespace.
388  // Both of these imply that we should push a scope whose context
389  // is the semantic context of the declaration.  We can't use
390  // PushDeclContext here because that context is not necessarily
391  // lexically contained in the current context.  Fortunately,
392  // the containing scope should have the appropriate information.
393
394  assert(!S->getEntity() && "scope already has entity");
395
396#ifndef NDEBUG
397  Scope *Ancestor = S->getParent();
398  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
399  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
400#endif
401
402  CurContext = DC;
403  S->setEntity(DC);
404}
405
406void Sema::ExitDeclaratorContext(Scope *S) {
407  assert(S->getEntity() == CurContext && "Context imbalance!");
408
409  // Switch back to the lexical context.  The safety of this is
410  // enforced by an assert in EnterDeclaratorContext.
411  Scope *Ancestor = S->getParent();
412  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
413  CurContext = (DeclContext*) Ancestor->getEntity();
414
415  // We don't need to do anything with the scope, which is going to
416  // disappear.
417}
418
419/// \brief Determine whether we allow overloading of the function
420/// PrevDecl with another declaration.
421///
422/// This routine determines whether overloading is possible, not
423/// whether some new function is actually an overload. It will return
424/// true in C++ (where we can always provide overloads) or, as an
425/// extension, in C when the previous function is already an
426/// overloaded function declaration or has the "overloadable"
427/// attribute.
428static bool AllowOverloadingOfFunction(LookupResult &Previous,
429                                       ASTContext &Context) {
430  if (Context.getLangOptions().CPlusPlus)
431    return true;
432
433  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
434    return true;
435
436  return (Previous.getResultKind() == LookupResult::Found
437          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
438}
439
440/// Add this decl to the scope shadowed decl chains.
441void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
442  // Move up the scope chain until we find the nearest enclosing
443  // non-transparent context. The declaration will be introduced into this
444  // scope.
445  while (S->getEntity() &&
446         ((DeclContext *)S->getEntity())->isTransparentContext())
447    S = S->getParent();
448
449  // Add scoped declarations into their context, so that they can be
450  // found later. Declarations without a context won't be inserted
451  // into any context.
452  if (AddToContext)
453    CurContext->addDecl(D);
454
455  // Out-of-line definitions shouldn't be pushed into scope in C++.
456  // Out-of-line variable and function definitions shouldn't even in C.
457  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
458      D->isOutOfLine())
459    return;
460
461  // Template instantiations should also not be pushed into scope.
462  if (isa<FunctionDecl>(D) &&
463      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
464    return;
465
466  // If this replaces anything in the current scope,
467  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
468                               IEnd = IdResolver.end();
469  for (; I != IEnd; ++I) {
470    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
471      S->RemoveDecl(*I);
472      IdResolver.RemoveDecl(*I);
473
474      // Should only need to replace one decl.
475      break;
476    }
477  }
478
479  S->AddDecl(D);
480  IdResolver.AddDecl(D);
481}
482
483bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
484  return IdResolver.isDeclInScope(D, Ctx, Context, S);
485}
486
487Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
488  DeclContext *TargetDC = DC->getPrimaryContext();
489  do {
490    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
491      if (ScopeDC->getPrimaryContext() == TargetDC)
492        return S;
493  } while ((S = S->getParent()));
494
495  return 0;
496}
497
498static bool isOutOfScopePreviousDeclaration(NamedDecl *,
499                                            DeclContext*,
500                                            ASTContext&);
501
502/// Filters out lookup results that don't fall within the given scope
503/// as determined by isDeclInScope.
504static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
505                                 DeclContext *Ctx, Scope *S,
506                                 bool ConsiderLinkage) {
507  LookupResult::Filter F = R.makeFilter();
508  while (F.hasNext()) {
509    NamedDecl *D = F.next();
510
511    if (SemaRef.isDeclInScope(D, Ctx, S))
512      continue;
513
514    if (ConsiderLinkage &&
515        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
516      continue;
517
518    F.erase();
519  }
520
521  F.done();
522}
523
524static bool isUsingDecl(NamedDecl *D) {
525  return isa<UsingShadowDecl>(D) ||
526         isa<UnresolvedUsingTypenameDecl>(D) ||
527         isa<UnresolvedUsingValueDecl>(D);
528}
529
530/// Removes using shadow declarations from the lookup results.
531static void RemoveUsingDecls(LookupResult &R) {
532  LookupResult::Filter F = R.makeFilter();
533  while (F.hasNext())
534    if (isUsingDecl(F.next()))
535      F.erase();
536
537  F.done();
538}
539
540/// \brief Check for this common pattern:
541/// @code
542/// class S {
543///   S(const S&); // DO NOT IMPLEMENT
544///   void operator=(const S&); // DO NOT IMPLEMENT
545/// };
546/// @endcode
547static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
548  // FIXME: Should check for private access too but access is set after we get
549  // the decl here.
550  if (D->isThisDeclarationADefinition())
551    return false;
552
553  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
554    return CD->isCopyConstructor();
555  return D->isCopyAssignment();
556}
557
558bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
559  assert(D);
560
561  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
562    return false;
563
564  // Ignore class templates.
565  if (D->getDeclContext()->isDependentContext())
566    return false;
567
568  // We warn for unused decls internal to the translation unit.
569  if (D->getLinkage() == ExternalLinkage)
570    return false;
571
572  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
573    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
574      return false;
575
576    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
577      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
578        return false;
579    } else {
580      // 'static inline' functions are used in headers; don't warn.
581      if (FD->getStorageClass() == FunctionDecl::Static &&
582          FD->isInlineSpecified())
583        return false;
584    }
585
586    if (FD->isThisDeclarationADefinition())
587      return !Context.DeclMustBeEmitted(FD);
588    return true;
589  }
590
591  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
592    if (VD->isStaticDataMember() &&
593        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
594      return false;
595
596    if ( VD->isFileVarDecl() &&
597        !VD->getType().isConstant(Context))
598      return !Context.DeclMustBeEmitted(VD);
599  }
600
601   return false;
602 }
603
604 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
605  if (!D)
606    return;
607
608  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
609    const FunctionDecl *First = FD->getFirstDeclaration();
610    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
615    const VarDecl *First = VD->getFirstDeclaration();
616    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
617      return; // First should already be in the vector.
618  }
619
620   if (ShouldWarnIfUnusedFileScopedDecl(D))
621     UnusedFileScopedDecls.push_back(D);
622 }
623
624static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
625  if (D->isInvalidDecl())
626    return false;
627
628  if (D->isUsed() || D->hasAttr<UnusedAttr>())
629    return false;
630
631  // White-list anything that isn't a local variable.
632  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
633      !D->getDeclContext()->isFunctionOrMethod())
634    return false;
635
636  // Types of valid local variables should be complete, so this should succeed.
637  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
638
639    // White-list anything with an __attribute__((unused)) type.
640    QualType Ty = VD->getType();
641
642    // Only look at the outermost level of typedef.
643    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
644      if (TT->getDecl()->hasAttr<UnusedAttr>())
645        return false;
646    }
647
648    // If we failed to complete the type for some reason, or if the type is
649    // dependent, don't diagnose the variable.
650    if (Ty->isIncompleteType() || Ty->isDependentType())
651      return false;
652
653    if (const TagType *TT = Ty->getAs<TagType>()) {
654      const TagDecl *Tag = TT->getDecl();
655      if (Tag->hasAttr<UnusedAttr>())
656        return false;
657
658      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
659        // FIXME: Checking for the presence of a user-declared constructor
660        // isn't completely accurate; we'd prefer to check that the initializer
661        // has no side effects.
662        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
663          return false;
664      }
665    }
666
667    // TODO: __attribute__((unused)) templates?
668  }
669
670  return true;
671}
672
673void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
674  if (!ShouldDiagnoseUnusedDecl(D))
675    return;
676
677  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
678    Diag(D->getLocation(), diag::warn_unused_exception_param)
679    << D->getDeclName();
680  else
681    Diag(D->getLocation(), diag::warn_unused_variable)
682    << D->getDeclName();
683}
684
685void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
686  if (S->decl_empty()) return;
687  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
688         "Scope shouldn't contain decls!");
689
690  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
691       I != E; ++I) {
692    Decl *TmpD = (*I);
693    assert(TmpD && "This decl didn't get pushed??");
694
695    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
696    NamedDecl *D = cast<NamedDecl>(TmpD);
697
698    if (!D->getDeclName()) continue;
699
700    // Diagnose unused variables in this scope.
701    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
702      DiagnoseUnusedDecl(D);
703
704    // Remove this name from our lexical scope.
705    IdResolver.RemoveDecl(D);
706  }
707}
708
709/// \brief Look for an Objective-C class in the translation unit.
710///
711/// \param Id The name of the Objective-C class we're looking for. If
712/// typo-correction fixes this name, the Id will be updated
713/// to the fixed name.
714///
715/// \param IdLoc The location of the name in the translation unit.
716///
717/// \param TypoCorrection If true, this routine will attempt typo correction
718/// if there is no class with the given name.
719///
720/// \returns The declaration of the named Objective-C class, or NULL if the
721/// class could not be found.
722ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
723                                              SourceLocation IdLoc,
724                                              bool TypoCorrection) {
725  // The third "scope" argument is 0 since we aren't enabling lazy built-in
726  // creation from this context.
727  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
728
729  if (!IDecl && TypoCorrection) {
730    // Perform typo correction at the given location, but only if we
731    // find an Objective-C class name.
732    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
733    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
734        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
735      Diag(IdLoc, diag::err_undef_interface_suggest)
736        << Id << IDecl->getDeclName()
737        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
738      Diag(IDecl->getLocation(), diag::note_previous_decl)
739        << IDecl->getDeclName();
740
741      Id = IDecl->getIdentifier();
742    }
743  }
744
745  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
746}
747
748/// getNonFieldDeclScope - Retrieves the innermost scope, starting
749/// from S, where a non-field would be declared. This routine copes
750/// with the difference between C and C++ scoping rules in structs and
751/// unions. For example, the following code is well-formed in C but
752/// ill-formed in C++:
753/// @code
754/// struct S6 {
755///   enum { BAR } e;
756/// };
757///
758/// void test_S6() {
759///   struct S6 a;
760///   a.e = BAR;
761/// }
762/// @endcode
763/// For the declaration of BAR, this routine will return a different
764/// scope. The scope S will be the scope of the unnamed enumeration
765/// within S6. In C++, this routine will return the scope associated
766/// with S6, because the enumeration's scope is a transparent
767/// context but structures can contain non-field names. In C, this
768/// routine will return the translation unit scope, since the
769/// enumeration's scope is a transparent context and structures cannot
770/// contain non-field names.
771Scope *Sema::getNonFieldDeclScope(Scope *S) {
772  while (((S->getFlags() & Scope::DeclScope) == 0) ||
773         (S->getEntity() &&
774          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
775         (S->isClassScope() && !getLangOptions().CPlusPlus))
776    S = S->getParent();
777  return S;
778}
779
780void Sema::InitBuiltinVaListType() {
781  if (!Context.getBuiltinVaListType().isNull())
782    return;
783
784  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
785  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
786                                       LookupOrdinaryName, ForRedeclaration);
787  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
788  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
789}
790
791/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
792/// file scope.  lazily create a decl for it. ForRedeclaration is true
793/// if we're creating this built-in in anticipation of redeclaring the
794/// built-in.
795NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
796                                     Scope *S, bool ForRedeclaration,
797                                     SourceLocation Loc) {
798  Builtin::ID BID = (Builtin::ID)bid;
799
800  if (Context.BuiltinInfo.hasVAListUse(BID))
801    InitBuiltinVaListType();
802
803  ASTContext::GetBuiltinTypeError Error;
804  QualType R = Context.GetBuiltinType(BID, Error);
805  switch (Error) {
806  case ASTContext::GE_None:
807    // Okay
808    break;
809
810  case ASTContext::GE_Missing_stdio:
811    if (ForRedeclaration)
812      Diag(Loc, diag::err_implicit_decl_requires_stdio)
813        << Context.BuiltinInfo.GetName(BID);
814    return 0;
815
816  case ASTContext::GE_Missing_setjmp:
817    if (ForRedeclaration)
818      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
819        << Context.BuiltinInfo.GetName(BID);
820    return 0;
821  }
822
823  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
824    Diag(Loc, diag::ext_implicit_lib_function_decl)
825      << Context.BuiltinInfo.GetName(BID)
826      << R;
827    if (Context.BuiltinInfo.getHeaderName(BID) &&
828        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
829          != Diagnostic::Ignored)
830      Diag(Loc, diag::note_please_include_header)
831        << Context.BuiltinInfo.getHeaderName(BID)
832        << Context.BuiltinInfo.GetName(BID);
833  }
834
835  FunctionDecl *New = FunctionDecl::Create(Context,
836                                           Context.getTranslationUnitDecl(),
837                                           Loc, II, R, /*TInfo=*/0,
838                                           FunctionDecl::Extern,
839                                           FunctionDecl::None, false,
840                                           /*hasPrototype=*/true);
841  New->setImplicit();
842
843  // Create Decl objects for each parameter, adding them to the
844  // FunctionDecl.
845  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
846    llvm::SmallVector<ParmVarDecl*, 16> Params;
847    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
848      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
849                                           FT->getArgType(i), /*TInfo=*/0,
850                                           VarDecl::None, VarDecl::None, 0));
851    New->setParams(Params.data(), Params.size());
852  }
853
854  AddKnownFunctionAttributes(New);
855
856  // TUScope is the translation-unit scope to insert this function into.
857  // FIXME: This is hideous. We need to teach PushOnScopeChains to
858  // relate Scopes to DeclContexts, and probably eliminate CurContext
859  // entirely, but we're not there yet.
860  DeclContext *SavedContext = CurContext;
861  CurContext = Context.getTranslationUnitDecl();
862  PushOnScopeChains(New, TUScope);
863  CurContext = SavedContext;
864  return New;
865}
866
867/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
868/// same name and scope as a previous declaration 'Old'.  Figure out
869/// how to resolve this situation, merging decls or emitting
870/// diagnostics as appropriate. If there was an error, set New to be invalid.
871///
872void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
873  // If the new decl is known invalid already, don't bother doing any
874  // merging checks.
875  if (New->isInvalidDecl()) return;
876
877  // Allow multiple definitions for ObjC built-in typedefs.
878  // FIXME: Verify the underlying types are equivalent!
879  if (getLangOptions().ObjC1) {
880    const IdentifierInfo *TypeID = New->getIdentifier();
881    switch (TypeID->getLength()) {
882    default: break;
883    case 2:
884      if (!TypeID->isStr("id"))
885        break;
886      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
887      // Install the built-in type for 'id', ignoring the current definition.
888      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
889      return;
890    case 5:
891      if (!TypeID->isStr("Class"))
892        break;
893      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
894      // Install the built-in type for 'Class', ignoring the current definition.
895      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
896      return;
897    case 3:
898      if (!TypeID->isStr("SEL"))
899        break;
900      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
901      // Install the built-in type for 'SEL', ignoring the current definition.
902      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
903      return;
904    case 8:
905      if (!TypeID->isStr("Protocol"))
906        break;
907      Context.setObjCProtoType(New->getUnderlyingType());
908      return;
909    }
910    // Fall through - the typedef name was not a builtin type.
911  }
912
913  // Verify the old decl was also a type.
914  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
915  if (!Old) {
916    Diag(New->getLocation(), diag::err_redefinition_different_kind)
917      << New->getDeclName();
918
919    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
920    if (OldD->getLocation().isValid())
921      Diag(OldD->getLocation(), diag::note_previous_definition);
922
923    return New->setInvalidDecl();
924  }
925
926  // If the old declaration is invalid, just give up here.
927  if (Old->isInvalidDecl())
928    return New->setInvalidDecl();
929
930  // Determine the "old" type we'll use for checking and diagnostics.
931  QualType OldType;
932  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
933    OldType = OldTypedef->getUnderlyingType();
934  else
935    OldType = Context.getTypeDeclType(Old);
936
937  // If the typedef types are not identical, reject them in all languages and
938  // with any extensions enabled.
939
940  if (OldType != New->getUnderlyingType() &&
941      Context.getCanonicalType(OldType) !=
942      Context.getCanonicalType(New->getUnderlyingType())) {
943    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
944      << New->getUnderlyingType() << OldType;
945    if (Old->getLocation().isValid())
946      Diag(Old->getLocation(), diag::note_previous_definition);
947    return New->setInvalidDecl();
948  }
949
950  // The types match.  Link up the redeclaration chain if the old
951  // declaration was a typedef.
952  // FIXME: this is a potential source of wierdness if the type
953  // spellings don't match exactly.
954  if (isa<TypedefDecl>(Old))
955    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
956
957  if (getLangOptions().Microsoft)
958    return;
959
960  if (getLangOptions().CPlusPlus) {
961    // C++ [dcl.typedef]p2:
962    //   In a given non-class scope, a typedef specifier can be used to
963    //   redefine the name of any type declared in that scope to refer
964    //   to the type to which it already refers.
965    if (!isa<CXXRecordDecl>(CurContext))
966      return;
967
968    // C++0x [dcl.typedef]p4:
969    //   In a given class scope, a typedef specifier can be used to redefine
970    //   any class-name declared in that scope that is not also a typedef-name
971    //   to refer to the type to which it already refers.
972    //
973    // This wording came in via DR424, which was a correction to the
974    // wording in DR56, which accidentally banned code like:
975    //
976    //   struct S {
977    //     typedef struct A { } A;
978    //   };
979    //
980    // in the C++03 standard. We implement the C++0x semantics, which
981    // allow the above but disallow
982    //
983    //   struct S {
984    //     typedef int I;
985    //     typedef int I;
986    //   };
987    //
988    // since that was the intent of DR56.
989    if (!isa<TypedefDecl >(Old))
990      return;
991
992    Diag(New->getLocation(), diag::err_redefinition)
993      << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  // If we have a redefinition of a typedef in C, emit a warning.  This warning
999  // is normally mapped to an error, but can be controlled with
1000  // -Wtypedef-redefinition.  If either the original or the redefinition is
1001  // in a system header, don't emit this for compatibility with GCC.
1002  if (getDiagnostics().getSuppressSystemWarnings() &&
1003      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1004       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1005    return;
1006
1007  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1008    << New->getDeclName();
1009  Diag(Old->getLocation(), diag::note_previous_definition);
1010  return;
1011}
1012
1013/// DeclhasAttr - returns true if decl Declaration already has the target
1014/// attribute.
1015static bool
1016DeclHasAttr(const Decl *D, const Attr *A) {
1017  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1018  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1019    if ((*i)->getKind() == A->getKind()) {
1020      // FIXME: Don't hardcode this check
1021      if (OA && isa<OwnershipAttr>(*i))
1022        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1023      return true;
1024    }
1025
1026  return false;
1027}
1028
1029/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1030static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1031  if (!Old->hasAttrs())
1032    return;
1033  // Ensure that any moving of objects within the allocated map is done before
1034  // we process them.
1035  if (!New->hasAttrs())
1036    New->setAttrs(AttrVec());
1037  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1038       ++i) {
1039    // FIXME: Make this more general than just checking for Overloadable.
1040    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1041      Attr *NewAttr = (*i)->clone(C);
1042      NewAttr->setInherited(true);
1043      New->addAttr(NewAttr);
1044    }
1045  }
1046}
1047
1048namespace {
1049
1050/// Used in MergeFunctionDecl to keep track of function parameters in
1051/// C.
1052struct GNUCompatibleParamWarning {
1053  ParmVarDecl *OldParm;
1054  ParmVarDecl *NewParm;
1055  QualType PromotedType;
1056};
1057
1058}
1059
1060/// getSpecialMember - get the special member enum for a method.
1061Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1062  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1063    if (Ctor->isCopyConstructor())
1064      return Sema::CXXCopyConstructor;
1065
1066    return Sema::CXXConstructor;
1067  }
1068
1069  if (isa<CXXDestructorDecl>(MD))
1070    return Sema::CXXDestructor;
1071
1072  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1073  return Sema::CXXCopyAssignment;
1074}
1075
1076/// canRedefineFunction - checks if a function can be redefined. Currently,
1077/// only extern inline functions can be redefined, and even then only in
1078/// GNU89 mode.
1079static bool canRedefineFunction(const FunctionDecl *FD,
1080                                const LangOptions& LangOpts) {
1081  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1082          FD->isInlineSpecified() &&
1083          FD->getStorageClass() == FunctionDecl::Extern);
1084}
1085
1086/// MergeFunctionDecl - We just parsed a function 'New' from
1087/// declarator D which has the same name and scope as a previous
1088/// declaration 'Old'.  Figure out how to resolve this situation,
1089/// merging decls or emitting diagnostics as appropriate.
1090///
1091/// In C++, New and Old must be declarations that are not
1092/// overloaded. Use IsOverload to determine whether New and Old are
1093/// overloaded, and to select the Old declaration that New should be
1094/// merged with.
1095///
1096/// Returns true if there was an error, false otherwise.
1097bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1098  // Verify the old decl was also a function.
1099  FunctionDecl *Old = 0;
1100  if (FunctionTemplateDecl *OldFunctionTemplate
1101        = dyn_cast<FunctionTemplateDecl>(OldD))
1102    Old = OldFunctionTemplate->getTemplatedDecl();
1103  else
1104    Old = dyn_cast<FunctionDecl>(OldD);
1105  if (!Old) {
1106    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1107      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1108      Diag(Shadow->getTargetDecl()->getLocation(),
1109           diag::note_using_decl_target);
1110      Diag(Shadow->getUsingDecl()->getLocation(),
1111           diag::note_using_decl) << 0;
1112      return true;
1113    }
1114
1115    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1116      << New->getDeclName();
1117    Diag(OldD->getLocation(), diag::note_previous_definition);
1118    return true;
1119  }
1120
1121  // Determine whether the previous declaration was a definition,
1122  // implicit declaration, or a declaration.
1123  diag::kind PrevDiag;
1124  if (Old->isThisDeclarationADefinition())
1125    PrevDiag = diag::note_previous_definition;
1126  else if (Old->isImplicit())
1127    PrevDiag = diag::note_previous_implicit_declaration;
1128  else
1129    PrevDiag = diag::note_previous_declaration;
1130
1131  QualType OldQType = Context.getCanonicalType(Old->getType());
1132  QualType NewQType = Context.getCanonicalType(New->getType());
1133
1134  // Don't complain about this if we're in GNU89 mode and the old function
1135  // is an extern inline function.
1136  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1137      New->getStorageClass() == FunctionDecl::Static &&
1138      Old->getStorageClass() != FunctionDecl::Static &&
1139      !canRedefineFunction(Old, getLangOptions())) {
1140    Diag(New->getLocation(), diag::err_static_non_static)
1141      << New;
1142    Diag(Old->getLocation(), PrevDiag);
1143    return true;
1144  }
1145
1146  // If a function is first declared with a calling convention, but is
1147  // later declared or defined without one, the second decl assumes the
1148  // calling convention of the first.
1149  //
1150  // For the new decl, we have to look at the NON-canonical type to tell the
1151  // difference between a function that really doesn't have a calling
1152  // convention and one that is declared cdecl. That's because in
1153  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1154  // because it is the default calling convention.
1155  //
1156  // Note also that we DO NOT return at this point, because we still have
1157  // other tests to run.
1158  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1159  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1160  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1161  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1162  if (OldTypeInfo.getCC() != CC_Default &&
1163      NewTypeInfo.getCC() == CC_Default) {
1164    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1165    New->setType(NewQType);
1166    NewQType = Context.getCanonicalType(NewQType);
1167  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1168                                     NewTypeInfo.getCC())) {
1169    // Calling conventions really aren't compatible, so complain.
1170    Diag(New->getLocation(), diag::err_cconv_change)
1171      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1172      << (OldTypeInfo.getCC() == CC_Default)
1173      << (OldTypeInfo.getCC() == CC_Default ? "" :
1174          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1175    Diag(Old->getLocation(), diag::note_previous_declaration);
1176    return true;
1177  }
1178
1179  // FIXME: diagnose the other way around?
1180  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1181    NewQType = Context.getNoReturnType(NewQType);
1182    New->setType(NewQType);
1183    assert(NewQType.isCanonical());
1184  }
1185
1186  // Merge regparm attribute.
1187  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1188    if (NewType->getRegParmType()) {
1189      Diag(New->getLocation(), diag::err_regparm_mismatch)
1190        << NewType->getRegParmType()
1191        << OldType->getRegParmType();
1192      Diag(Old->getLocation(), diag::note_previous_declaration);
1193      return true;
1194    }
1195
1196    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1197    New->setType(NewQType);
1198    assert(NewQType.isCanonical());
1199  }
1200
1201  if (getLangOptions().CPlusPlus) {
1202    // (C++98 13.1p2):
1203    //   Certain function declarations cannot be overloaded:
1204    //     -- Function declarations that differ only in the return type
1205    //        cannot be overloaded.
1206    QualType OldReturnType
1207      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1208    QualType NewReturnType
1209      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1210    QualType ResQT;
1211    if (OldReturnType != NewReturnType) {
1212      if (NewReturnType->isObjCObjectPointerType()
1213          && OldReturnType->isObjCObjectPointerType())
1214        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1215      if (ResQT.isNull()) {
1216        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1217        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1218        return true;
1219      }
1220      else
1221        NewQType = ResQT;
1222    }
1223
1224    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1225    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1226    if (OldMethod && NewMethod) {
1227      // Preserve triviality.
1228      NewMethod->setTrivial(OldMethod->isTrivial());
1229
1230      bool isFriend = NewMethod->getFriendObjectKind();
1231
1232      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1233        //    -- Member function declarations with the same name and the
1234        //       same parameter types cannot be overloaded if any of them
1235        //       is a static member function declaration.
1236        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1237          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1238          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1239          return true;
1240        }
1241
1242        // C++ [class.mem]p1:
1243        //   [...] A member shall not be declared twice in the
1244        //   member-specification, except that a nested class or member
1245        //   class template can be declared and then later defined.
1246        unsigned NewDiag;
1247        if (isa<CXXConstructorDecl>(OldMethod))
1248          NewDiag = diag::err_constructor_redeclared;
1249        else if (isa<CXXDestructorDecl>(NewMethod))
1250          NewDiag = diag::err_destructor_redeclared;
1251        else if (isa<CXXConversionDecl>(NewMethod))
1252          NewDiag = diag::err_conv_function_redeclared;
1253        else
1254          NewDiag = diag::err_member_redeclared;
1255
1256        Diag(New->getLocation(), NewDiag);
1257        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1258
1259      // Complain if this is an explicit declaration of a special
1260      // member that was initially declared implicitly.
1261      //
1262      // As an exception, it's okay to befriend such methods in order
1263      // to permit the implicit constructor/destructor/operator calls.
1264      } else if (OldMethod->isImplicit()) {
1265        if (isFriend) {
1266          NewMethod->setImplicit();
1267        } else {
1268          Diag(NewMethod->getLocation(),
1269               diag::err_definition_of_implicitly_declared_member)
1270            << New << getSpecialMember(OldMethod);
1271          return true;
1272        }
1273      }
1274    }
1275
1276    // (C++98 8.3.5p3):
1277    //   All declarations for a function shall agree exactly in both the
1278    //   return type and the parameter-type-list.
1279    // attributes should be ignored when comparing.
1280    if (Context.getNoReturnType(OldQType, false) ==
1281        Context.getNoReturnType(NewQType, false))
1282      return MergeCompatibleFunctionDecls(New, Old);
1283
1284    // Fall through for conflicting redeclarations and redefinitions.
1285  }
1286
1287  // C: Function types need to be compatible, not identical. This handles
1288  // duplicate function decls like "void f(int); void f(enum X);" properly.
1289  if (!getLangOptions().CPlusPlus &&
1290      Context.typesAreCompatible(OldQType, NewQType)) {
1291    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1292    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1293    const FunctionProtoType *OldProto = 0;
1294    if (isa<FunctionNoProtoType>(NewFuncType) &&
1295        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1296      // The old declaration provided a function prototype, but the
1297      // new declaration does not. Merge in the prototype.
1298      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1299      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1300                                                 OldProto->arg_type_end());
1301      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1302                                         ParamTypes.data(), ParamTypes.size(),
1303                                         OldProto->isVariadic(),
1304                                         OldProto->getTypeQuals(),
1305                                         false, false, 0, 0,
1306                                         OldProto->getExtInfo());
1307      New->setType(NewQType);
1308      New->setHasInheritedPrototype();
1309
1310      // Synthesize a parameter for each argument type.
1311      llvm::SmallVector<ParmVarDecl*, 16> Params;
1312      for (FunctionProtoType::arg_type_iterator
1313             ParamType = OldProto->arg_type_begin(),
1314             ParamEnd = OldProto->arg_type_end();
1315           ParamType != ParamEnd; ++ParamType) {
1316        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1317                                                 SourceLocation(), 0,
1318                                                 *ParamType, /*TInfo=*/0,
1319                                                 VarDecl::None, VarDecl::None,
1320                                                 0);
1321        Param->setImplicit();
1322        Params.push_back(Param);
1323      }
1324
1325      New->setParams(Params.data(), Params.size());
1326    }
1327
1328    return MergeCompatibleFunctionDecls(New, Old);
1329  }
1330
1331  // GNU C permits a K&R definition to follow a prototype declaration
1332  // if the declared types of the parameters in the K&R definition
1333  // match the types in the prototype declaration, even when the
1334  // promoted types of the parameters from the K&R definition differ
1335  // from the types in the prototype. GCC then keeps the types from
1336  // the prototype.
1337  //
1338  // If a variadic prototype is followed by a non-variadic K&R definition,
1339  // the K&R definition becomes variadic.  This is sort of an edge case, but
1340  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1341  // C99 6.9.1p8.
1342  if (!getLangOptions().CPlusPlus &&
1343      Old->hasPrototype() && !New->hasPrototype() &&
1344      New->getType()->getAs<FunctionProtoType>() &&
1345      Old->getNumParams() == New->getNumParams()) {
1346    llvm::SmallVector<QualType, 16> ArgTypes;
1347    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1348    const FunctionProtoType *OldProto
1349      = Old->getType()->getAs<FunctionProtoType>();
1350    const FunctionProtoType *NewProto
1351      = New->getType()->getAs<FunctionProtoType>();
1352
1353    // Determine whether this is the GNU C extension.
1354    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1355                                               NewProto->getResultType());
1356    bool LooseCompatible = !MergedReturn.isNull();
1357    for (unsigned Idx = 0, End = Old->getNumParams();
1358         LooseCompatible && Idx != End; ++Idx) {
1359      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1360      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1361      if (Context.typesAreCompatible(OldParm->getType(),
1362                                     NewProto->getArgType(Idx))) {
1363        ArgTypes.push_back(NewParm->getType());
1364      } else if (Context.typesAreCompatible(OldParm->getType(),
1365                                            NewParm->getType(),
1366                                            /*CompareUnqualified=*/true)) {
1367        GNUCompatibleParamWarning Warn
1368          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1369        Warnings.push_back(Warn);
1370        ArgTypes.push_back(NewParm->getType());
1371      } else
1372        LooseCompatible = false;
1373    }
1374
1375    if (LooseCompatible) {
1376      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1377        Diag(Warnings[Warn].NewParm->getLocation(),
1378             diag::ext_param_promoted_not_compatible_with_prototype)
1379          << Warnings[Warn].PromotedType
1380          << Warnings[Warn].OldParm->getType();
1381        if (Warnings[Warn].OldParm->getLocation().isValid())
1382          Diag(Warnings[Warn].OldParm->getLocation(),
1383               diag::note_previous_declaration);
1384      }
1385
1386      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1387                                           ArgTypes.size(),
1388                                           OldProto->isVariadic(), 0,
1389                                           false, false, 0, 0,
1390                                           OldProto->getExtInfo()));
1391      return MergeCompatibleFunctionDecls(New, Old);
1392    }
1393
1394    // Fall through to diagnose conflicting types.
1395  }
1396
1397  // A function that has already been declared has been redeclared or defined
1398  // with a different type- show appropriate diagnostic
1399  if (unsigned BuiltinID = Old->getBuiltinID()) {
1400    // The user has declared a builtin function with an incompatible
1401    // signature.
1402    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1403      // The function the user is redeclaring is a library-defined
1404      // function like 'malloc' or 'printf'. Warn about the
1405      // redeclaration, then pretend that we don't know about this
1406      // library built-in.
1407      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1408      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1409        << Old << Old->getType();
1410      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1411      Old->setInvalidDecl();
1412      return false;
1413    }
1414
1415    PrevDiag = diag::note_previous_builtin_declaration;
1416  }
1417
1418  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1419  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1420  return true;
1421}
1422
1423/// \brief Completes the merge of two function declarations that are
1424/// known to be compatible.
1425///
1426/// This routine handles the merging of attributes and other
1427/// properties of function declarations form the old declaration to
1428/// the new declaration, once we know that New is in fact a
1429/// redeclaration of Old.
1430///
1431/// \returns false
1432bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1433  // Merge the attributes
1434  MergeDeclAttributes(New, Old, Context);
1435
1436  // Merge the storage class.
1437  if (Old->getStorageClass() != FunctionDecl::Extern &&
1438      Old->getStorageClass() != FunctionDecl::None)
1439    New->setStorageClass(Old->getStorageClass());
1440
1441  // Merge "pure" flag.
1442  if (Old->isPure())
1443    New->setPure();
1444
1445  // Merge the "deleted" flag.
1446  if (Old->isDeleted())
1447    New->setDeleted();
1448
1449  if (getLangOptions().CPlusPlus)
1450    return MergeCXXFunctionDecl(New, Old);
1451
1452  return false;
1453}
1454
1455/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1456/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1457/// situation, merging decls or emitting diagnostics as appropriate.
1458///
1459/// Tentative definition rules (C99 6.9.2p2) are checked by
1460/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1461/// definitions here, since the initializer hasn't been attached.
1462///
1463void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1464  // If the new decl is already invalid, don't do any other checking.
1465  if (New->isInvalidDecl())
1466    return;
1467
1468  // Verify the old decl was also a variable.
1469  VarDecl *Old = 0;
1470  if (!Previous.isSingleResult() ||
1471      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1472    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1473      << New->getDeclName();
1474    Diag(Previous.getRepresentativeDecl()->getLocation(),
1475         diag::note_previous_definition);
1476    return New->setInvalidDecl();
1477  }
1478
1479  MergeDeclAttributes(New, Old, Context);
1480
1481  // Merge the types
1482  QualType MergedT;
1483  if (getLangOptions().CPlusPlus) {
1484    if (Context.hasSameType(New->getType(), Old->getType()))
1485      MergedT = New->getType();
1486    // C++ [basic.link]p10:
1487    //   [...] the types specified by all declarations referring to a given
1488    //   object or function shall be identical, except that declarations for an
1489    //   array object can specify array types that differ by the presence or
1490    //   absence of a major array bound (8.3.4).
1491    else if (Old->getType()->isIncompleteArrayType() &&
1492             New->getType()->isArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = New->getType();
1499    } else if (Old->getType()->isArrayType() &&
1500             New->getType()->isIncompleteArrayType()) {
1501      CanQual<ArrayType> OldArray
1502        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1503      CanQual<ArrayType> NewArray
1504        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1505      if (OldArray->getElementType() == NewArray->getElementType())
1506        MergedT = Old->getType();
1507    } else if (New->getType()->isObjCObjectPointerType()
1508               && Old->getType()->isObjCObjectPointerType()) {
1509        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1510    }
1511  } else {
1512    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1513  }
1514  if (MergedT.isNull()) {
1515    Diag(New->getLocation(), diag::err_redefinition_different_type)
1516      << New->getDeclName();
1517    Diag(Old->getLocation(), diag::note_previous_definition);
1518    return New->setInvalidDecl();
1519  }
1520  New->setType(MergedT);
1521
1522  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1523  if (New->getStorageClass() == VarDecl::Static &&
1524      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1525    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1526    Diag(Old->getLocation(), diag::note_previous_definition);
1527    return New->setInvalidDecl();
1528  }
1529  // C99 6.2.2p4:
1530  //   For an identifier declared with the storage-class specifier
1531  //   extern in a scope in which a prior declaration of that
1532  //   identifier is visible,23) if the prior declaration specifies
1533  //   internal or external linkage, the linkage of the identifier at
1534  //   the later declaration is the same as the linkage specified at
1535  //   the prior declaration. If no prior declaration is visible, or
1536  //   if the prior declaration specifies no linkage, then the
1537  //   identifier has external linkage.
1538  if (New->hasExternalStorage() && Old->hasLinkage())
1539    /* Okay */;
1540  else if (New->getStorageClass() != VarDecl::Static &&
1541           Old->getStorageClass() == VarDecl::Static) {
1542    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1543    Diag(Old->getLocation(), diag::note_previous_definition);
1544    return New->setInvalidDecl();
1545  }
1546
1547  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1548
1549  // FIXME: The test for external storage here seems wrong? We still
1550  // need to check for mismatches.
1551  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1552      // Don't complain about out-of-line definitions of static members.
1553      !(Old->getLexicalDeclContext()->isRecord() &&
1554        !New->getLexicalDeclContext()->isRecord())) {
1555    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1556    Diag(Old->getLocation(), diag::note_previous_definition);
1557    return New->setInvalidDecl();
1558  }
1559
1560  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1561    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1562    Diag(Old->getLocation(), diag::note_previous_definition);
1563  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1564    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1565    Diag(Old->getLocation(), diag::note_previous_definition);
1566  }
1567
1568  // C++ doesn't have tentative definitions, so go right ahead and check here.
1569  const VarDecl *Def;
1570  if (getLangOptions().CPlusPlus &&
1571      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1572      (Def = Old->getDefinition())) {
1573    Diag(New->getLocation(), diag::err_redefinition)
1574      << New->getDeclName();
1575    Diag(Def->getLocation(), diag::note_previous_definition);
1576    New->setInvalidDecl();
1577    return;
1578  }
1579  // c99 6.2.2 P4.
1580  // For an identifier declared with the storage-class specifier extern in a
1581  // scope in which a prior declaration of that identifier is visible, if
1582  // the prior declaration specifies internal or external linkage, the linkage
1583  // of the identifier at the later declaration is the same as the linkage
1584  // specified at the prior declaration.
1585  // FIXME. revisit this code.
1586  if (New->hasExternalStorage() &&
1587      Old->getLinkage() == InternalLinkage &&
1588      New->getDeclContext() == Old->getDeclContext())
1589    New->setStorageClass(Old->getStorageClass());
1590
1591  // Keep a chain of previous declarations.
1592  New->setPreviousDeclaration(Old);
1593
1594  // Inherit access appropriately.
1595  New->setAccess(Old->getAccess());
1596}
1597
1598/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1599/// no declarator (e.g. "struct foo;") is parsed.
1600Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1601                                            DeclSpec &DS) {
1602  // FIXME: Error on auto/register at file scope
1603  // FIXME: Error on inline/virtual/explicit
1604  // FIXME: Warn on useless __thread
1605  // FIXME: Warn on useless const/volatile
1606  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1607  // FIXME: Warn on useless attributes
1608  Decl *TagD = 0;
1609  TagDecl *Tag = 0;
1610  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1611      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1612      DS.getTypeSpecType() == DeclSpec::TST_union ||
1613      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1614    TagD = DS.getRepAsDecl();
1615
1616    if (!TagD) // We probably had an error
1617      return 0;
1618
1619    // Note that the above type specs guarantee that the
1620    // type rep is a Decl, whereas in many of the others
1621    // it's a Type.
1622    Tag = dyn_cast<TagDecl>(TagD);
1623  }
1624
1625  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1626    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1627    // or incomplete types shall not be restrict-qualified."
1628    if (TypeQuals & DeclSpec::TQ_restrict)
1629      Diag(DS.getRestrictSpecLoc(),
1630           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1631           << DS.getSourceRange();
1632  }
1633
1634  if (DS.isFriendSpecified()) {
1635    // If we're dealing with a class template decl, assume that the
1636    // template routines are handling it.
1637    if (TagD && isa<ClassTemplateDecl>(TagD))
1638      return 0;
1639    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1640  }
1641
1642  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1643    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1644
1645    if (!Record->getDeclName() && Record->isDefinition() &&
1646        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1647      if (getLangOptions().CPlusPlus ||
1648          Record->getDeclContext()->isRecord())
1649        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1650
1651      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1652        << DS.getSourceRange();
1653    }
1654
1655    // Microsoft allows unnamed struct/union fields. Don't complain
1656    // about them.
1657    // FIXME: Should we support Microsoft's extensions in this area?
1658    if (Record->getDeclName() && getLangOptions().Microsoft)
1659      return Tag;
1660  }
1661
1662  if (getLangOptions().CPlusPlus &&
1663      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1664    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1665      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1666          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1667        Diag(Enum->getLocation(), diag::ext_no_declarators)
1668          << DS.getSourceRange();
1669
1670  if (!DS.isMissingDeclaratorOk() &&
1671      DS.getTypeSpecType() != DeclSpec::TST_error) {
1672    // Warn about typedefs of enums without names, since this is an
1673    // extension in both Microsoft and GNU.
1674    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1675        Tag && isa<EnumDecl>(Tag)) {
1676      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1677        << DS.getSourceRange();
1678      return Tag;
1679    }
1680
1681    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1682      << DS.getSourceRange();
1683  }
1684
1685  return TagD;
1686}
1687
1688/// We are trying to inject an anonymous member into the given scope;
1689/// check if there's an existing declaration that can't be overloaded.
1690///
1691/// \return true if this is a forbidden redeclaration
1692static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1693                                         Scope *S,
1694                                         DeclContext *Owner,
1695                                         DeclarationName Name,
1696                                         SourceLocation NameLoc,
1697                                         unsigned diagnostic) {
1698  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1699                 Sema::ForRedeclaration);
1700  if (!SemaRef.LookupName(R, S)) return false;
1701
1702  if (R.getAsSingle<TagDecl>())
1703    return false;
1704
1705  // Pick a representative declaration.
1706  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1707  if (PrevDecl && Owner->isRecord()) {
1708    RecordDecl *Record = cast<RecordDecl>(Owner);
1709    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1710      return false;
1711  }
1712
1713  SemaRef.Diag(NameLoc, diagnostic) << Name;
1714  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1715
1716  return true;
1717}
1718
1719/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1720/// anonymous struct or union AnonRecord into the owning context Owner
1721/// and scope S. This routine will be invoked just after we realize
1722/// that an unnamed union or struct is actually an anonymous union or
1723/// struct, e.g.,
1724///
1725/// @code
1726/// union {
1727///   int i;
1728///   float f;
1729/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1730///    // f into the surrounding scope.x
1731/// @endcode
1732///
1733/// This routine is recursive, injecting the names of nested anonymous
1734/// structs/unions into the owning context and scope as well.
1735static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1736                                                DeclContext *Owner,
1737                                                RecordDecl *AnonRecord,
1738                                                AccessSpecifier AS) {
1739  unsigned diagKind
1740    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1741                            : diag::err_anonymous_struct_member_redecl;
1742
1743  bool Invalid = false;
1744  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1745                               FEnd = AnonRecord->field_end();
1746       F != FEnd; ++F) {
1747    if ((*F)->getDeclName()) {
1748      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1749                                       (*F)->getLocation(), diagKind)) {
1750        // C++ [class.union]p2:
1751        //   The names of the members of an anonymous union shall be
1752        //   distinct from the names of any other entity in the
1753        //   scope in which the anonymous union is declared.
1754        Invalid = true;
1755      } else {
1756        // C++ [class.union]p2:
1757        //   For the purpose of name lookup, after the anonymous union
1758        //   definition, the members of the anonymous union are
1759        //   considered to have been defined in the scope in which the
1760        //   anonymous union is declared.
1761        Owner->makeDeclVisibleInContext(*F);
1762        S->AddDecl(*F);
1763        SemaRef.IdResolver.AddDecl(*F);
1764
1765        // That includes picking up the appropriate access specifier.
1766        if (AS != AS_none) (*F)->setAccess(AS);
1767      }
1768    } else if (const RecordType *InnerRecordType
1769                 = (*F)->getType()->getAs<RecordType>()) {
1770      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1771      if (InnerRecord->isAnonymousStructOrUnion())
1772        Invalid = Invalid ||
1773          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1774                                              InnerRecord, AS);
1775    }
1776  }
1777
1778  return Invalid;
1779}
1780
1781/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1782/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1783/// illegal input values are mapped to VarDecl::None.
1784static VarDecl::StorageClass
1785StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1786  switch (StorageClassSpec) {
1787  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1788  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1789  case DeclSpec::SCS_static:         return VarDecl::Static;
1790  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1791  case DeclSpec::SCS_register:       return VarDecl::Register;
1792  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1793    // Illegal SCSs map to None: error reporting is up to the caller.
1794  case DeclSpec::SCS_mutable:        // Fall through.
1795  case DeclSpec::SCS_typedef:        return VarDecl::None;
1796  }
1797  llvm_unreachable("unknown storage class specifier");
1798}
1799
1800/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1801/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1802/// illegal input values are mapped to FunctionDecl::None.
1803static FunctionDecl::StorageClass
1804StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1805  switch (StorageClassSpec) {
1806  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1807  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1808  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1809  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1810    // Illegal SCSs map to None: error reporting is up to the caller.
1811  case DeclSpec::SCS_auto:           // Fall through.
1812  case DeclSpec::SCS_mutable:        // Fall through.
1813  case DeclSpec::SCS_register:       // Fall through.
1814  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1815  }
1816  llvm_unreachable("unknown storage class specifier");
1817}
1818
1819/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1820/// anonymous structure or union. Anonymous unions are a C++ feature
1821/// (C++ [class.union]) and a GNU C extension; anonymous structures
1822/// are a GNU C and GNU C++ extension.
1823Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1824                                             AccessSpecifier AS,
1825                                             RecordDecl *Record) {
1826  DeclContext *Owner = Record->getDeclContext();
1827
1828  // Diagnose whether this anonymous struct/union is an extension.
1829  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1830    Diag(Record->getLocation(), diag::ext_anonymous_union);
1831  else if (!Record->isUnion())
1832    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1833
1834  // C and C++ require different kinds of checks for anonymous
1835  // structs/unions.
1836  bool Invalid = false;
1837  if (getLangOptions().CPlusPlus) {
1838    const char* PrevSpec = 0;
1839    unsigned DiagID;
1840    // C++ [class.union]p3:
1841    //   Anonymous unions declared in a named namespace or in the
1842    //   global namespace shall be declared static.
1843    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1844        (isa<TranslationUnitDecl>(Owner) ||
1845         (isa<NamespaceDecl>(Owner) &&
1846          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1847      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1848      Invalid = true;
1849
1850      // Recover by adding 'static'.
1851      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1852                             PrevSpec, DiagID);
1853    }
1854    // C++ [class.union]p3:
1855    //   A storage class is not allowed in a declaration of an
1856    //   anonymous union in a class scope.
1857    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1858             isa<RecordDecl>(Owner)) {
1859      Diag(DS.getStorageClassSpecLoc(),
1860           diag::err_anonymous_union_with_storage_spec);
1861      Invalid = true;
1862
1863      // Recover by removing the storage specifier.
1864      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1865                             PrevSpec, DiagID);
1866    }
1867
1868    // C++ [class.union]p2:
1869    //   The member-specification of an anonymous union shall only
1870    //   define non-static data members. [Note: nested types and
1871    //   functions cannot be declared within an anonymous union. ]
1872    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1873                                 MemEnd = Record->decls_end();
1874         Mem != MemEnd; ++Mem) {
1875      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1876        // C++ [class.union]p3:
1877        //   An anonymous union shall not have private or protected
1878        //   members (clause 11).
1879        assert(FD->getAccess() != AS_none);
1880        if (FD->getAccess() != AS_public) {
1881          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1882            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1883          Invalid = true;
1884        }
1885
1886        if (CheckNontrivialField(FD))
1887          Invalid = true;
1888      } else if ((*Mem)->isImplicit()) {
1889        // Any implicit members are fine.
1890      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1891        // This is a type that showed up in an
1892        // elaborated-type-specifier inside the anonymous struct or
1893        // union, but which actually declares a type outside of the
1894        // anonymous struct or union. It's okay.
1895      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1896        if (!MemRecord->isAnonymousStructOrUnion() &&
1897            MemRecord->getDeclName()) {
1898          // This is a nested type declaration.
1899          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1900            << (int)Record->isUnion();
1901          Invalid = true;
1902        }
1903      } else if (isa<AccessSpecDecl>(*Mem)) {
1904        // Any access specifier is fine.
1905      } else {
1906        // We have something that isn't a non-static data
1907        // member. Complain about it.
1908        unsigned DK = diag::err_anonymous_record_bad_member;
1909        if (isa<TypeDecl>(*Mem))
1910          DK = diag::err_anonymous_record_with_type;
1911        else if (isa<FunctionDecl>(*Mem))
1912          DK = diag::err_anonymous_record_with_function;
1913        else if (isa<VarDecl>(*Mem))
1914          DK = diag::err_anonymous_record_with_static;
1915        Diag((*Mem)->getLocation(), DK)
1916            << (int)Record->isUnion();
1917          Invalid = true;
1918      }
1919    }
1920  }
1921
1922  if (!Record->isUnion() && !Owner->isRecord()) {
1923    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1924      << (int)getLangOptions().CPlusPlus;
1925    Invalid = true;
1926  }
1927
1928  // Mock up a declarator.
1929  Declarator Dc(DS, Declarator::TypeNameContext);
1930  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1931  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1932
1933  // Create a declaration for this anonymous struct/union.
1934  NamedDecl *Anon = 0;
1935  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1936    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1937                             /*IdentifierInfo=*/0,
1938                             Context.getTypeDeclType(Record),
1939                             TInfo,
1940                             /*BitWidth=*/0, /*Mutable=*/false);
1941    Anon->setAccess(AS);
1942    if (getLangOptions().CPlusPlus) {
1943      FieldCollector->Add(cast<FieldDecl>(Anon));
1944      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1945        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1946    }
1947  } else {
1948    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1949    assert(SCSpec != DeclSpec::SCS_typedef &&
1950           "Parser allowed 'typedef' as storage class VarDecl.");
1951    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1952    if (SCSpec == DeclSpec::SCS_mutable) {
1953      // mutable can only appear on non-static class members, so it's always
1954      // an error here
1955      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1956      Invalid = true;
1957      SC = VarDecl::None;
1958    }
1959    SCSpec = DS.getStorageClassSpecAsWritten();
1960    VarDecl::StorageClass SCAsWritten
1961      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1962
1963    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1964                           /*IdentifierInfo=*/0,
1965                           Context.getTypeDeclType(Record),
1966                           TInfo, SC, SCAsWritten);
1967  }
1968  Anon->setImplicit();
1969
1970  // Add the anonymous struct/union object to the current
1971  // context. We'll be referencing this object when we refer to one of
1972  // its members.
1973  Owner->addDecl(Anon);
1974
1975  // Inject the members of the anonymous struct/union into the owning
1976  // context and into the identifier resolver chain for name lookup
1977  // purposes.
1978  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1979    Invalid = true;
1980
1981  // Mark this as an anonymous struct/union type. Note that we do not
1982  // do this until after we have already checked and injected the
1983  // members of this anonymous struct/union type, because otherwise
1984  // the members could be injected twice: once by DeclContext when it
1985  // builds its lookup table, and once by
1986  // InjectAnonymousStructOrUnionMembers.
1987  Record->setAnonymousStructOrUnion(true);
1988
1989  if (Invalid)
1990    Anon->setInvalidDecl();
1991
1992  return Anon;
1993}
1994
1995
1996/// GetNameForDeclarator - Determine the full declaration name for the
1997/// given Declarator.
1998DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1999  return GetNameFromUnqualifiedId(D.getName());
2000}
2001
2002/// \brief Retrieves the declaration name from a parsed unqualified-id.
2003DeclarationNameInfo
2004Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2005  DeclarationNameInfo NameInfo;
2006  NameInfo.setLoc(Name.StartLocation);
2007
2008  switch (Name.getKind()) {
2009
2010  case UnqualifiedId::IK_Identifier:
2011    NameInfo.setName(Name.Identifier);
2012    NameInfo.setLoc(Name.StartLocation);
2013    return NameInfo;
2014
2015  case UnqualifiedId::IK_OperatorFunctionId:
2016    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2017                                           Name.OperatorFunctionId.Operator));
2018    NameInfo.setLoc(Name.StartLocation);
2019    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2020      = Name.OperatorFunctionId.SymbolLocations[0];
2021    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2022      = Name.EndLocation.getRawEncoding();
2023    return NameInfo;
2024
2025  case UnqualifiedId::IK_LiteralOperatorId:
2026    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2027                                                           Name.Identifier));
2028    NameInfo.setLoc(Name.StartLocation);
2029    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2030    return NameInfo;
2031
2032  case UnqualifiedId::IK_ConversionFunctionId: {
2033    TypeSourceInfo *TInfo;
2034    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2035    if (Ty.isNull())
2036      return DeclarationNameInfo();
2037    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2038                                               Context.getCanonicalType(Ty)));
2039    NameInfo.setLoc(Name.StartLocation);
2040    NameInfo.setNamedTypeInfo(TInfo);
2041    return NameInfo;
2042  }
2043
2044  case UnqualifiedId::IK_ConstructorName: {
2045    TypeSourceInfo *TInfo;
2046    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2047    if (Ty.isNull())
2048      return DeclarationNameInfo();
2049    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2050                                              Context.getCanonicalType(Ty)));
2051    NameInfo.setLoc(Name.StartLocation);
2052    NameInfo.setNamedTypeInfo(TInfo);
2053    return NameInfo;
2054  }
2055
2056  case UnqualifiedId::IK_ConstructorTemplateId: {
2057    // In well-formed code, we can only have a constructor
2058    // template-id that refers to the current context, so go there
2059    // to find the actual type being constructed.
2060    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2061    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2062      return DeclarationNameInfo();
2063
2064    // Determine the type of the class being constructed.
2065    QualType CurClassType = Context.getTypeDeclType(CurClass);
2066
2067    // FIXME: Check two things: that the template-id names the same type as
2068    // CurClassType, and that the template-id does not occur when the name
2069    // was qualified.
2070
2071    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2072                                    Context.getCanonicalType(CurClassType)));
2073    NameInfo.setLoc(Name.StartLocation);
2074    // FIXME: should we retrieve TypeSourceInfo?
2075    NameInfo.setNamedTypeInfo(0);
2076    return NameInfo;
2077  }
2078
2079  case UnqualifiedId::IK_DestructorName: {
2080    TypeSourceInfo *TInfo;
2081    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2082    if (Ty.isNull())
2083      return DeclarationNameInfo();
2084    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2085                                              Context.getCanonicalType(Ty)));
2086    NameInfo.setLoc(Name.StartLocation);
2087    NameInfo.setNamedTypeInfo(TInfo);
2088    return NameInfo;
2089  }
2090
2091  case UnqualifiedId::IK_TemplateId: {
2092    TemplateName TName = Name.TemplateId->Template.get();
2093    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2094    return Context.getNameForTemplate(TName, TNameLoc);
2095  }
2096
2097  } // switch (Name.getKind())
2098
2099  assert(false && "Unknown name kind");
2100  return DeclarationNameInfo();
2101}
2102
2103/// isNearlyMatchingFunction - Determine whether the C++ functions
2104/// Declaration and Definition are "nearly" matching. This heuristic
2105/// is used to improve diagnostics in the case where an out-of-line
2106/// function definition doesn't match any declaration within
2107/// the class or namespace.
2108static bool isNearlyMatchingFunction(ASTContext &Context,
2109                                     FunctionDecl *Declaration,
2110                                     FunctionDecl *Definition) {
2111  if (Declaration->param_size() != Definition->param_size())
2112    return false;
2113  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2114    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2115    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2116
2117    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2118                                        DefParamTy.getNonReferenceType()))
2119      return false;
2120  }
2121
2122  return true;
2123}
2124
2125/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2126/// declarator needs to be rebuilt in the current instantiation.
2127/// Any bits of declarator which appear before the name are valid for
2128/// consideration here.  That's specifically the type in the decl spec
2129/// and the base type in any member-pointer chunks.
2130static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2131                                                    DeclarationName Name) {
2132  // The types we specifically need to rebuild are:
2133  //   - typenames, typeofs, and decltypes
2134  //   - types which will become injected class names
2135  // Of course, we also need to rebuild any type referencing such a
2136  // type.  It's safest to just say "dependent", but we call out a
2137  // few cases here.
2138
2139  DeclSpec &DS = D.getMutableDeclSpec();
2140  switch (DS.getTypeSpecType()) {
2141  case DeclSpec::TST_typename:
2142  case DeclSpec::TST_typeofType:
2143  case DeclSpec::TST_decltype: {
2144    // Grab the type from the parser.
2145    TypeSourceInfo *TSI = 0;
2146    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2147    if (T.isNull() || !T->isDependentType()) break;
2148
2149    // Make sure there's a type source info.  This isn't really much
2150    // of a waste; most dependent types should have type source info
2151    // attached already.
2152    if (!TSI)
2153      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2154
2155    // Rebuild the type in the current instantiation.
2156    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2157    if (!TSI) return true;
2158
2159    // Store the new type back in the decl spec.
2160    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2161    DS.UpdateTypeRep(LocType);
2162    break;
2163  }
2164
2165  case DeclSpec::TST_typeofExpr: {
2166    Expr *E = DS.getRepAsExpr();
2167    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2168    if (Result.isInvalid()) return true;
2169    DS.UpdateExprRep(Result.get());
2170    break;
2171  }
2172
2173  default:
2174    // Nothing to do for these decl specs.
2175    break;
2176  }
2177
2178  // It doesn't matter what order we do this in.
2179  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2180    DeclaratorChunk &Chunk = D.getTypeObject(I);
2181
2182    // The only type information in the declarator which can come
2183    // before the declaration name is the base type of a member
2184    // pointer.
2185    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2186      continue;
2187
2188    // Rebuild the scope specifier in-place.
2189    CXXScopeSpec &SS = Chunk.Mem.Scope();
2190    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2191      return true;
2192  }
2193
2194  return false;
2195}
2196
2197Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2198  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2199}
2200
2201Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2202                             MultiTemplateParamsArg TemplateParamLists,
2203                             bool IsFunctionDefinition) {
2204  // TODO: consider using NameInfo for diagnostic.
2205  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2206  DeclarationName Name = NameInfo.getName();
2207
2208  // All of these full declarators require an identifier.  If it doesn't have
2209  // one, the ParsedFreeStandingDeclSpec action should be used.
2210  if (!Name) {
2211    if (!D.isInvalidType())  // Reject this if we think it is valid.
2212      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2213           diag::err_declarator_need_ident)
2214        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2215    return 0;
2216  }
2217
2218  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2219  // we find one that is.
2220  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2221         (S->getFlags() & Scope::TemplateParamScope) != 0)
2222    S = S->getParent();
2223
2224  DeclContext *DC = CurContext;
2225  if (D.getCXXScopeSpec().isInvalid())
2226    D.setInvalidType();
2227  else if (D.getCXXScopeSpec().isSet()) {
2228    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2229    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2230    if (!DC) {
2231      // If we could not compute the declaration context, it's because the
2232      // declaration context is dependent but does not refer to a class,
2233      // class template, or class template partial specialization. Complain
2234      // and return early, to avoid the coming semantic disaster.
2235      Diag(D.getIdentifierLoc(),
2236           diag::err_template_qualified_declarator_no_match)
2237        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2238        << D.getCXXScopeSpec().getRange();
2239      return 0;
2240    }
2241
2242    bool IsDependentContext = DC->isDependentContext();
2243
2244    if (!IsDependentContext &&
2245        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2246      return 0;
2247
2248    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2249      Diag(D.getIdentifierLoc(),
2250           diag::err_member_def_undefined_record)
2251        << Name << DC << D.getCXXScopeSpec().getRange();
2252      D.setInvalidType();
2253    }
2254
2255    // Check whether we need to rebuild the type of the given
2256    // declaration in the current instantiation.
2257    if (EnteringContext && IsDependentContext &&
2258        TemplateParamLists.size() != 0) {
2259      ContextRAII SavedContext(*this, DC);
2260      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2261        D.setInvalidType();
2262    }
2263  }
2264
2265  NamedDecl *New;
2266
2267  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2268  QualType R = TInfo->getType();
2269
2270  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2271                        ForRedeclaration);
2272
2273  // See if this is a redefinition of a variable in the same scope.
2274  if (!D.getCXXScopeSpec().isSet()) {
2275    bool IsLinkageLookup = false;
2276
2277    // If the declaration we're planning to build will be a function
2278    // or object with linkage, then look for another declaration with
2279    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2280    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2281      /* Do nothing*/;
2282    else if (R->isFunctionType()) {
2283      if (CurContext->isFunctionOrMethod() ||
2284          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2285        IsLinkageLookup = true;
2286    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2287      IsLinkageLookup = true;
2288    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2289             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2290      IsLinkageLookup = true;
2291
2292    if (IsLinkageLookup)
2293      Previous.clear(LookupRedeclarationWithLinkage);
2294
2295    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2296  } else { // Something like "int foo::x;"
2297    LookupQualifiedName(Previous, DC);
2298
2299    // Don't consider using declarations as previous declarations for
2300    // out-of-line members.
2301    RemoveUsingDecls(Previous);
2302
2303    // C++ 7.3.1.2p2:
2304    // Members (including explicit specializations of templates) of a named
2305    // namespace can also be defined outside that namespace by explicit
2306    // qualification of the name being defined, provided that the entity being
2307    // defined was already declared in the namespace and the definition appears
2308    // after the point of declaration in a namespace that encloses the
2309    // declarations namespace.
2310    //
2311    // Note that we only check the context at this point. We don't yet
2312    // have enough information to make sure that PrevDecl is actually
2313    // the declaration we want to match. For example, given:
2314    //
2315    //   class X {
2316    //     void f();
2317    //     void f(float);
2318    //   };
2319    //
2320    //   void X::f(int) { } // ill-formed
2321    //
2322    // In this case, PrevDecl will point to the overload set
2323    // containing the two f's declared in X, but neither of them
2324    // matches.
2325
2326    // First check whether we named the global scope.
2327    if (isa<TranslationUnitDecl>(DC)) {
2328      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2329        << Name << D.getCXXScopeSpec().getRange();
2330    } else {
2331      DeclContext *Cur = CurContext;
2332      while (isa<LinkageSpecDecl>(Cur))
2333        Cur = Cur->getParent();
2334      if (!Cur->Encloses(DC)) {
2335        // The qualifying scope doesn't enclose the original declaration.
2336        // Emit diagnostic based on current scope.
2337        SourceLocation L = D.getIdentifierLoc();
2338        SourceRange R = D.getCXXScopeSpec().getRange();
2339        if (isa<FunctionDecl>(Cur))
2340          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2341        else
2342          Diag(L, diag::err_invalid_declarator_scope)
2343            << Name << cast<NamedDecl>(DC) << R;
2344        D.setInvalidType();
2345      }
2346    }
2347  }
2348
2349  if (Previous.isSingleResult() &&
2350      Previous.getFoundDecl()->isTemplateParameter()) {
2351    // Maybe we will complain about the shadowed template parameter.
2352    if (!D.isInvalidType())
2353      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2354                                          Previous.getFoundDecl()))
2355        D.setInvalidType();
2356
2357    // Just pretend that we didn't see the previous declaration.
2358    Previous.clear();
2359  }
2360
2361  // In C++, the previous declaration we find might be a tag type
2362  // (class or enum). In this case, the new declaration will hide the
2363  // tag type. Note that this does does not apply if we're declaring a
2364  // typedef (C++ [dcl.typedef]p4).
2365  if (Previous.isSingleTagDecl() &&
2366      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2367    Previous.clear();
2368
2369  bool Redeclaration = false;
2370  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2371    if (TemplateParamLists.size()) {
2372      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2373      return 0;
2374    }
2375
2376    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2377  } else if (R->isFunctionType()) {
2378    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2379                                  move(TemplateParamLists),
2380                                  IsFunctionDefinition, Redeclaration);
2381  } else {
2382    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2383                                  move(TemplateParamLists),
2384                                  Redeclaration);
2385  }
2386
2387  if (New == 0)
2388    return 0;
2389
2390  // If this has an identifier and is not an invalid redeclaration or
2391  // function template specialization, add it to the scope stack.
2392  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2393    PushOnScopeChains(New, S);
2394
2395  return New;
2396}
2397
2398/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2399/// types into constant array types in certain situations which would otherwise
2400/// be errors (for GCC compatibility).
2401static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2402                                                    ASTContext &Context,
2403                                                    bool &SizeIsNegative,
2404                                                    llvm::APSInt &Oversized) {
2405  // This method tries to turn a variable array into a constant
2406  // array even when the size isn't an ICE.  This is necessary
2407  // for compatibility with code that depends on gcc's buggy
2408  // constant expression folding, like struct {char x[(int)(char*)2];}
2409  SizeIsNegative = false;
2410  Oversized = 0;
2411
2412  if (T->isDependentType())
2413    return QualType();
2414
2415  QualifierCollector Qs;
2416  const Type *Ty = Qs.strip(T);
2417
2418  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2419    QualType Pointee = PTy->getPointeeType();
2420    QualType FixedType =
2421        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2422                                            Oversized);
2423    if (FixedType.isNull()) return FixedType;
2424    FixedType = Context.getPointerType(FixedType);
2425    return Qs.apply(FixedType);
2426  }
2427
2428  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2429  if (!VLATy)
2430    return QualType();
2431  // FIXME: We should probably handle this case
2432  if (VLATy->getElementType()->isVariablyModifiedType())
2433    return QualType();
2434
2435  Expr::EvalResult EvalResult;
2436  if (!VLATy->getSizeExpr() ||
2437      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2438      !EvalResult.Val.isInt())
2439    return QualType();
2440
2441  // Check whether the array size is negative.
2442  llvm::APSInt &Res = EvalResult.Val.getInt();
2443  if (Res.isSigned() && Res.isNegative()) {
2444    SizeIsNegative = true;
2445    return QualType();
2446  }
2447
2448  // Check whether the array is too large to be addressed.
2449  unsigned ActiveSizeBits
2450    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2451                                              Res);
2452  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2453    Oversized = Res;
2454    return QualType();
2455  }
2456
2457  return Context.getConstantArrayType(VLATy->getElementType(),
2458                                      Res, ArrayType::Normal, 0);
2459}
2460
2461/// \brief Register the given locally-scoped external C declaration so
2462/// that it can be found later for redeclarations
2463void
2464Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2465                                       const LookupResult &Previous,
2466                                       Scope *S) {
2467  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2468         "Decl is not a locally-scoped decl!");
2469  // Note that we have a locally-scoped external with this name.
2470  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2471
2472  if (!Previous.isSingleResult())
2473    return;
2474
2475  NamedDecl *PrevDecl = Previous.getFoundDecl();
2476
2477  // If there was a previous declaration of this variable, it may be
2478  // in our identifier chain. Update the identifier chain with the new
2479  // declaration.
2480  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2481    // The previous declaration was found on the identifer resolver
2482    // chain, so remove it from its scope.
2483    while (S && !S->isDeclScope(PrevDecl))
2484      S = S->getParent();
2485
2486    if (S)
2487      S->RemoveDecl(PrevDecl);
2488  }
2489}
2490
2491/// \brief Diagnose function specifiers on a declaration of an identifier that
2492/// does not identify a function.
2493void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2494  // FIXME: We should probably indicate the identifier in question to avoid
2495  // confusion for constructs like "inline int a(), b;"
2496  if (D.getDeclSpec().isInlineSpecified())
2497    Diag(D.getDeclSpec().getInlineSpecLoc(),
2498         diag::err_inline_non_function);
2499
2500  if (D.getDeclSpec().isVirtualSpecified())
2501    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2502         diag::err_virtual_non_function);
2503
2504  if (D.getDeclSpec().isExplicitSpecified())
2505    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2506         diag::err_explicit_non_function);
2507}
2508
2509NamedDecl*
2510Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2511                             QualType R,  TypeSourceInfo *TInfo,
2512                             LookupResult &Previous, bool &Redeclaration) {
2513  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2514  if (D.getCXXScopeSpec().isSet()) {
2515    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2516      << D.getCXXScopeSpec().getRange();
2517    D.setInvalidType();
2518    // Pretend we didn't see the scope specifier.
2519    DC = CurContext;
2520    Previous.clear();
2521  }
2522
2523  if (getLangOptions().CPlusPlus) {
2524    // Check that there are no default arguments (C++ only).
2525    CheckExtraCXXDefaultArguments(D);
2526  }
2527
2528  DiagnoseFunctionSpecifiers(D);
2529
2530  if (D.getDeclSpec().isThreadSpecified())
2531    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2532
2533  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2534    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2535      << D.getName().getSourceRange();
2536    return 0;
2537  }
2538
2539  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2540  if (!NewTD) return 0;
2541
2542  // Handle attributes prior to checking for duplicates in MergeVarDecl
2543  ProcessDeclAttributes(S, NewTD, D);
2544
2545  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2546  // then it shall have block scope.
2547  // Note that variably modified types must be fixed before merging the decl so
2548  // that redeclarations will match.
2549  QualType T = NewTD->getUnderlyingType();
2550  if (T->isVariablyModifiedType()) {
2551    getCurFunction()->setHasBranchProtectedScope();
2552
2553    if (S->getFnParent() == 0) {
2554      bool SizeIsNegative;
2555      llvm::APSInt Oversized;
2556      QualType FixedTy =
2557          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2558                                              Oversized);
2559      if (!FixedTy.isNull()) {
2560        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2561        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2562      } else {
2563        if (SizeIsNegative)
2564          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2565        else if (T->isVariableArrayType())
2566          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2567        else if (Oversized.getBoolValue())
2568          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2569            << Oversized.toString(10);
2570        else
2571          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2572        NewTD->setInvalidDecl();
2573      }
2574    }
2575  }
2576
2577  // Merge the decl with the existing one if appropriate. If the decl is
2578  // in an outer scope, it isn't the same thing.
2579  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2580  if (!Previous.empty()) {
2581    Redeclaration = true;
2582    MergeTypeDefDecl(NewTD, Previous);
2583  }
2584
2585  // If this is the C FILE type, notify the AST context.
2586  if (IdentifierInfo *II = NewTD->getIdentifier())
2587    if (!NewTD->isInvalidDecl() &&
2588        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2589      if (II->isStr("FILE"))
2590        Context.setFILEDecl(NewTD);
2591      else if (II->isStr("jmp_buf"))
2592        Context.setjmp_bufDecl(NewTD);
2593      else if (II->isStr("sigjmp_buf"))
2594        Context.setsigjmp_bufDecl(NewTD);
2595    }
2596
2597  return NewTD;
2598}
2599
2600/// \brief Determines whether the given declaration is an out-of-scope
2601/// previous declaration.
2602///
2603/// This routine should be invoked when name lookup has found a
2604/// previous declaration (PrevDecl) that is not in the scope where a
2605/// new declaration by the same name is being introduced. If the new
2606/// declaration occurs in a local scope, previous declarations with
2607/// linkage may still be considered previous declarations (C99
2608/// 6.2.2p4-5, C++ [basic.link]p6).
2609///
2610/// \param PrevDecl the previous declaration found by name
2611/// lookup
2612///
2613/// \param DC the context in which the new declaration is being
2614/// declared.
2615///
2616/// \returns true if PrevDecl is an out-of-scope previous declaration
2617/// for a new delcaration with the same name.
2618static bool
2619isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2620                                ASTContext &Context) {
2621  if (!PrevDecl)
2622    return 0;
2623
2624  if (!PrevDecl->hasLinkage())
2625    return false;
2626
2627  if (Context.getLangOptions().CPlusPlus) {
2628    // C++ [basic.link]p6:
2629    //   If there is a visible declaration of an entity with linkage
2630    //   having the same name and type, ignoring entities declared
2631    //   outside the innermost enclosing namespace scope, the block
2632    //   scope declaration declares that same entity and receives the
2633    //   linkage of the previous declaration.
2634    DeclContext *OuterContext = DC->getLookupContext();
2635    if (!OuterContext->isFunctionOrMethod())
2636      // This rule only applies to block-scope declarations.
2637      return false;
2638    else {
2639      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2640      if (PrevOuterContext->isRecord())
2641        // We found a member function: ignore it.
2642        return false;
2643      else {
2644        // Find the innermost enclosing namespace for the new and
2645        // previous declarations.
2646        while (!OuterContext->isFileContext())
2647          OuterContext = OuterContext->getParent();
2648        while (!PrevOuterContext->isFileContext())
2649          PrevOuterContext = PrevOuterContext->getParent();
2650
2651        // The previous declaration is in a different namespace, so it
2652        // isn't the same function.
2653        if (OuterContext->getPrimaryContext() !=
2654            PrevOuterContext->getPrimaryContext())
2655          return false;
2656      }
2657    }
2658  }
2659
2660  return true;
2661}
2662
2663static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2664  CXXScopeSpec &SS = D.getCXXScopeSpec();
2665  if (!SS.isSet()) return;
2666  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2667                       SS.getRange());
2668}
2669
2670NamedDecl*
2671Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2672                              QualType R, TypeSourceInfo *TInfo,
2673                              LookupResult &Previous,
2674                              MultiTemplateParamsArg TemplateParamLists,
2675                              bool &Redeclaration) {
2676  DeclarationName Name = GetNameForDeclarator(D).getName();
2677
2678  // Check that there are no default arguments (C++ only).
2679  if (getLangOptions().CPlusPlus)
2680    CheckExtraCXXDefaultArguments(D);
2681
2682  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2683  assert(SCSpec != DeclSpec::SCS_typedef &&
2684         "Parser allowed 'typedef' as storage class VarDecl.");
2685  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2686  if (SCSpec == DeclSpec::SCS_mutable) {
2687    // mutable can only appear on non-static class members, so it's always
2688    // an error here
2689    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2690    D.setInvalidType();
2691    SC = VarDecl::None;
2692  }
2693  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2694  VarDecl::StorageClass SCAsWritten
2695    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2696
2697  IdentifierInfo *II = Name.getAsIdentifierInfo();
2698  if (!II) {
2699    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2700      << Name.getAsString();
2701    return 0;
2702  }
2703
2704  DiagnoseFunctionSpecifiers(D);
2705
2706  if (!DC->isRecord() && S->getFnParent() == 0) {
2707    // C99 6.9p2: The storage-class specifiers auto and register shall not
2708    // appear in the declaration specifiers in an external declaration.
2709    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2710
2711      // If this is a register variable with an asm label specified, then this
2712      // is a GNU extension.
2713      if (SC == VarDecl::Register && D.getAsmLabel())
2714        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2715      else
2716        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2717      D.setInvalidType();
2718    }
2719  }
2720  if (DC->isRecord() && !CurContext->isRecord()) {
2721    // This is an out-of-line definition of a static data member.
2722    if (SC == VarDecl::Static) {
2723      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2724           diag::err_static_out_of_line)
2725        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2726    } else if (SC == VarDecl::None)
2727      SC = VarDecl::Static;
2728  }
2729  if (SC == VarDecl::Static) {
2730    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2731      if (RD->isLocalClass())
2732        Diag(D.getIdentifierLoc(),
2733             diag::err_static_data_member_not_allowed_in_local_class)
2734          << Name << RD->getDeclName();
2735    }
2736  }
2737
2738  // Match up the template parameter lists with the scope specifier, then
2739  // determine whether we have a template or a template specialization.
2740  bool isExplicitSpecialization = false;
2741  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2742  bool Invalid = false;
2743  if (TemplateParameterList *TemplateParams
2744        = MatchTemplateParametersToScopeSpecifier(
2745                                  D.getDeclSpec().getSourceRange().getBegin(),
2746                                                  D.getCXXScopeSpec(),
2747                        (TemplateParameterList**)TemplateParamLists.get(),
2748                                                   TemplateParamLists.size(),
2749                                                  /*never a friend*/ false,
2750                                                  isExplicitSpecialization,
2751                                                  Invalid)) {
2752    // All but one template parameter lists have been matching.
2753    --NumMatchedTemplateParamLists;
2754
2755    if (TemplateParams->size() > 0) {
2756      // There is no such thing as a variable template.
2757      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2758        << II
2759        << SourceRange(TemplateParams->getTemplateLoc(),
2760                       TemplateParams->getRAngleLoc());
2761      return 0;
2762    } else {
2763      // There is an extraneous 'template<>' for this variable. Complain
2764      // about it, but allow the declaration of the variable.
2765      Diag(TemplateParams->getTemplateLoc(),
2766           diag::err_template_variable_noparams)
2767        << II
2768        << SourceRange(TemplateParams->getTemplateLoc(),
2769                       TemplateParams->getRAngleLoc());
2770
2771      isExplicitSpecialization = true;
2772    }
2773  }
2774
2775  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2776                                   II, R, TInfo, SC, SCAsWritten);
2777
2778  if (D.isInvalidType() || Invalid)
2779    NewVD->setInvalidDecl();
2780
2781  SetNestedNameSpecifier(NewVD, D);
2782
2783  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2784    NewVD->setTemplateParameterListsInfo(Context,
2785                                         NumMatchedTemplateParamLists,
2786                        (TemplateParameterList**)TemplateParamLists.release());
2787  }
2788
2789  if (D.getDeclSpec().isThreadSpecified()) {
2790    if (NewVD->hasLocalStorage())
2791      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2792    else if (!Context.Target.isTLSSupported())
2793      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2794    else
2795      NewVD->setThreadSpecified(true);
2796  }
2797
2798  // Set the lexical context. If the declarator has a C++ scope specifier, the
2799  // lexical context will be different from the semantic context.
2800  NewVD->setLexicalDeclContext(CurContext);
2801
2802  // Handle attributes prior to checking for duplicates in MergeVarDecl
2803  ProcessDeclAttributes(S, NewVD, D);
2804
2805  // Handle GNU asm-label extension (encoded as an attribute).
2806  if (Expr *E = (Expr*) D.getAsmLabel()) {
2807    // The parser guarantees this is a string.
2808    StringLiteral *SE = cast<StringLiteral>(E);
2809    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2810                                                Context, SE->getString()));
2811  }
2812
2813  // Diagnose shadowed variables before filtering for scope.
2814  if (!D.getCXXScopeSpec().isSet())
2815    CheckShadow(S, NewVD, Previous);
2816
2817  // Don't consider existing declarations that are in a different
2818  // scope and are out-of-semantic-context declarations (if the new
2819  // declaration has linkage).
2820  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2821
2822  // Merge the decl with the existing one if appropriate.
2823  if (!Previous.empty()) {
2824    if (Previous.isSingleResult() &&
2825        isa<FieldDecl>(Previous.getFoundDecl()) &&
2826        D.getCXXScopeSpec().isSet()) {
2827      // The user tried to define a non-static data member
2828      // out-of-line (C++ [dcl.meaning]p1).
2829      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2830        << D.getCXXScopeSpec().getRange();
2831      Previous.clear();
2832      NewVD->setInvalidDecl();
2833    }
2834  } else if (D.getCXXScopeSpec().isSet()) {
2835    // No previous declaration in the qualifying scope.
2836    Diag(D.getIdentifierLoc(), diag::err_no_member)
2837      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2838      << D.getCXXScopeSpec().getRange();
2839    NewVD->setInvalidDecl();
2840  }
2841
2842  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2843
2844  // This is an explicit specialization of a static data member. Check it.
2845  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2846      CheckMemberSpecialization(NewVD, Previous))
2847    NewVD->setInvalidDecl();
2848
2849  // attributes declared post-definition are currently ignored
2850  // FIXME: This should be handled in attribute merging, not
2851  // here.
2852  if (Previous.isSingleResult()) {
2853    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2854    if (Def && (Def = Def->getDefinition()) &&
2855        Def != NewVD && D.hasAttributes()) {
2856      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2857      Diag(Def->getLocation(), diag::note_previous_definition);
2858    }
2859  }
2860
2861  // If this is a locally-scoped extern C variable, update the map of
2862  // such variables.
2863  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2864      !NewVD->isInvalidDecl())
2865    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2866
2867  // If there's a #pragma GCC visibility in scope, and this isn't a class
2868  // member, set the visibility of this variable.
2869  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2870    AddPushedVisibilityAttribute(NewVD);
2871
2872  MarkUnusedFileScopedDecl(NewVD);
2873
2874  return NewVD;
2875}
2876
2877/// \brief Diagnose variable or built-in function shadowing.  Implements
2878/// -Wshadow.
2879///
2880/// This method is called whenever a VarDecl is added to a "useful"
2881/// scope.
2882///
2883/// \param S the scope in which the shadowing name is being declared
2884/// \param R the lookup of the name
2885///
2886void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2887  // Return if warning is ignored.
2888  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2889    return;
2890
2891  // Don't diagnose declarations at file scope.  The scope might not
2892  // have a DeclContext if (e.g.) we're parsing a function prototype.
2893  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2894  if (NewDC && NewDC->isFileContext())
2895    return;
2896
2897  // Only diagnose if we're shadowing an unambiguous field or variable.
2898  if (R.getResultKind() != LookupResult::Found)
2899    return;
2900
2901  NamedDecl* ShadowedDecl = R.getFoundDecl();
2902  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2903    return;
2904
2905  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2906
2907  // Only warn about certain kinds of shadowing for class members.
2908  if (NewDC && NewDC->isRecord()) {
2909    // In particular, don't warn about shadowing non-class members.
2910    if (!OldDC->isRecord())
2911      return;
2912
2913    // TODO: should we warn about static data members shadowing
2914    // static data members from base classes?
2915
2916    // TODO: don't diagnose for inaccessible shadowed members.
2917    // This is hard to do perfectly because we might friend the
2918    // shadowing context, but that's just a false negative.
2919  }
2920
2921  // Determine what kind of declaration we're shadowing.
2922  unsigned Kind;
2923  if (isa<RecordDecl>(OldDC)) {
2924    if (isa<FieldDecl>(ShadowedDecl))
2925      Kind = 3; // field
2926    else
2927      Kind = 2; // static data member
2928  } else if (OldDC->isFileContext())
2929    Kind = 1; // global
2930  else
2931    Kind = 0; // local
2932
2933  DeclarationName Name = R.getLookupName();
2934
2935  // Emit warning and note.
2936  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2937  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2938}
2939
2940/// \brief Check -Wshadow without the advantage of a previous lookup.
2941void Sema::CheckShadow(Scope *S, VarDecl *D) {
2942  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2943                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2944  LookupName(R, S);
2945  CheckShadow(S, D, R);
2946}
2947
2948/// \brief Perform semantic checking on a newly-created variable
2949/// declaration.
2950///
2951/// This routine performs all of the type-checking required for a
2952/// variable declaration once it has been built. It is used both to
2953/// check variables after they have been parsed and their declarators
2954/// have been translated into a declaration, and to check variables
2955/// that have been instantiated from a template.
2956///
2957/// Sets NewVD->isInvalidDecl() if an error was encountered.
2958void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2959                                    LookupResult &Previous,
2960                                    bool &Redeclaration) {
2961  // If the decl is already known invalid, don't check it.
2962  if (NewVD->isInvalidDecl())
2963    return;
2964
2965  QualType T = NewVD->getType();
2966
2967  if (T->isObjCObjectType()) {
2968    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2969    return NewVD->setInvalidDecl();
2970  }
2971
2972  // Emit an error if an address space was applied to decl with local storage.
2973  // This includes arrays of objects with address space qualifiers, but not
2974  // automatic variables that point to other address spaces.
2975  // ISO/IEC TR 18037 S5.1.2
2976  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2977    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2978    return NewVD->setInvalidDecl();
2979  }
2980
2981  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2982      && !NewVD->hasAttr<BlocksAttr>())
2983    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2984
2985  bool isVM = T->isVariablyModifiedType();
2986  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2987      NewVD->hasAttr<BlocksAttr>())
2988    getCurFunction()->setHasBranchProtectedScope();
2989
2990  if ((isVM && NewVD->hasLinkage()) ||
2991      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2992    bool SizeIsNegative;
2993    llvm::APSInt Oversized;
2994    QualType FixedTy =
2995        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2996                                            Oversized);
2997
2998    if (FixedTy.isNull() && T->isVariableArrayType()) {
2999      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3000      // FIXME: This won't give the correct result for
3001      // int a[10][n];
3002      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3003
3004      if (NewVD->isFileVarDecl())
3005        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3006        << SizeRange;
3007      else if (NewVD->getStorageClass() == VarDecl::Static)
3008        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3009        << SizeRange;
3010      else
3011        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3012        << SizeRange;
3013      return NewVD->setInvalidDecl();
3014    }
3015
3016    if (FixedTy.isNull()) {
3017      if (NewVD->isFileVarDecl())
3018        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3019      else
3020        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3021      return NewVD->setInvalidDecl();
3022    }
3023
3024    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3025    NewVD->setType(FixedTy);
3026  }
3027
3028  if (Previous.empty() && NewVD->isExternC()) {
3029    // Since we did not find anything by this name and we're declaring
3030    // an extern "C" variable, look for a non-visible extern "C"
3031    // declaration with the same name.
3032    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3033      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3034    if (Pos != LocallyScopedExternalDecls.end())
3035      Previous.addDecl(Pos->second);
3036  }
3037
3038  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3039    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3040      << T;
3041    return NewVD->setInvalidDecl();
3042  }
3043
3044  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3045    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3046    return NewVD->setInvalidDecl();
3047  }
3048
3049  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3050    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3051    return NewVD->setInvalidDecl();
3052  }
3053
3054  // Function pointers and references cannot have qualified function type, only
3055  // function pointer-to-members can do that.
3056  QualType Pointee;
3057  unsigned PtrOrRef = 0;
3058  if (const PointerType *Ptr = T->getAs<PointerType>())
3059    Pointee = Ptr->getPointeeType();
3060  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3061    Pointee = Ref->getPointeeType();
3062    PtrOrRef = 1;
3063  }
3064  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3065      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3066    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3067        << PtrOrRef;
3068    return NewVD->setInvalidDecl();
3069  }
3070
3071  if (!Previous.empty()) {
3072    Redeclaration = true;
3073    MergeVarDecl(NewVD, Previous);
3074  }
3075}
3076
3077/// \brief Data used with FindOverriddenMethod
3078struct FindOverriddenMethodData {
3079  Sema *S;
3080  CXXMethodDecl *Method;
3081};
3082
3083/// \brief Member lookup function that determines whether a given C++
3084/// method overrides a method in a base class, to be used with
3085/// CXXRecordDecl::lookupInBases().
3086static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3087                                 CXXBasePath &Path,
3088                                 void *UserData) {
3089  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3090
3091  FindOverriddenMethodData *Data
3092    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3093
3094  DeclarationName Name = Data->Method->getDeclName();
3095
3096  // FIXME: Do we care about other names here too?
3097  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3098    // We really want to find the base class destructor here.
3099    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3100    CanQualType CT = Data->S->Context.getCanonicalType(T);
3101
3102    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3103  }
3104
3105  for (Path.Decls = BaseRecord->lookup(Name);
3106       Path.Decls.first != Path.Decls.second;
3107       ++Path.Decls.first) {
3108    NamedDecl *D = *Path.Decls.first;
3109    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3110      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3111        return true;
3112    }
3113  }
3114
3115  return false;
3116}
3117
3118/// AddOverriddenMethods - See if a method overrides any in the base classes,
3119/// and if so, check that it's a valid override and remember it.
3120void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3121  // Look for virtual methods in base classes that this method might override.
3122  CXXBasePaths Paths;
3123  FindOverriddenMethodData Data;
3124  Data.Method = MD;
3125  Data.S = this;
3126  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3127    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3128         E = Paths.found_decls_end(); I != E; ++I) {
3129      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3130        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3131            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3132            !CheckOverridingFunctionAttributes(MD, OldMD))
3133          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3134      }
3135    }
3136  }
3137}
3138
3139NamedDecl*
3140Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3141                              QualType R, TypeSourceInfo *TInfo,
3142                              LookupResult &Previous,
3143                              MultiTemplateParamsArg TemplateParamLists,
3144                              bool IsFunctionDefinition, bool &Redeclaration) {
3145  assert(R.getTypePtr()->isFunctionType());
3146
3147  // TODO: consider using NameInfo for diagnostic.
3148  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3149  DeclarationName Name = NameInfo.getName();
3150  FunctionDecl::StorageClass SC = FunctionDecl::None;
3151  switch (D.getDeclSpec().getStorageClassSpec()) {
3152  default: assert(0 && "Unknown storage class!");
3153  case DeclSpec::SCS_auto:
3154  case DeclSpec::SCS_register:
3155  case DeclSpec::SCS_mutable:
3156    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3157         diag::err_typecheck_sclass_func);
3158    D.setInvalidType();
3159    break;
3160  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3161  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3162  case DeclSpec::SCS_static: {
3163    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3164      // C99 6.7.1p5:
3165      //   The declaration of an identifier for a function that has
3166      //   block scope shall have no explicit storage-class specifier
3167      //   other than extern
3168      // See also (C++ [dcl.stc]p4).
3169      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3170           diag::err_static_block_func);
3171      SC = FunctionDecl::None;
3172    } else
3173      SC = FunctionDecl::Static;
3174    break;
3175  }
3176  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3177  }
3178
3179  if (D.getDeclSpec().isThreadSpecified())
3180    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3181
3182  bool isFriend = D.getDeclSpec().isFriendSpecified();
3183  bool isInline = D.getDeclSpec().isInlineSpecified();
3184  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3185  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3186
3187  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3188  FunctionDecl::StorageClass SCAsWritten
3189    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3190
3191  // Check that the return type is not an abstract class type.
3192  // For record types, this is done by the AbstractClassUsageDiagnoser once
3193  // the class has been completely parsed.
3194  if (!DC->isRecord() &&
3195      RequireNonAbstractType(D.getIdentifierLoc(),
3196                             R->getAs<FunctionType>()->getResultType(),
3197                             diag::err_abstract_type_in_decl,
3198                             AbstractReturnType))
3199    D.setInvalidType();
3200
3201  // Do not allow returning a objc interface by-value.
3202  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3203    Diag(D.getIdentifierLoc(),
3204         diag::err_object_cannot_be_passed_returned_by_value) << 0
3205      << R->getAs<FunctionType>()->getResultType();
3206    D.setInvalidType();
3207  }
3208
3209  bool isVirtualOkay = false;
3210  FunctionDecl *NewFD;
3211
3212  if (isFriend) {
3213    // C++ [class.friend]p5
3214    //   A function can be defined in a friend declaration of a
3215    //   class . . . . Such a function is implicitly inline.
3216    isInline |= IsFunctionDefinition;
3217  }
3218
3219  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3220    // This is a C++ constructor declaration.
3221    assert(DC->isRecord() &&
3222           "Constructors can only be declared in a member context");
3223
3224    R = CheckConstructorDeclarator(D, R, SC);
3225
3226    // Create the new declaration
3227    NewFD = CXXConstructorDecl::Create(Context,
3228                                       cast<CXXRecordDecl>(DC),
3229                                       NameInfo, R, TInfo,
3230                                       isExplicit, isInline,
3231                                       /*isImplicitlyDeclared=*/false);
3232  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3233    // This is a C++ destructor declaration.
3234    if (DC->isRecord()) {
3235      R = CheckDestructorDeclarator(D, R, SC);
3236
3237      NewFD = CXXDestructorDecl::Create(Context,
3238                                        cast<CXXRecordDecl>(DC),
3239                                        NameInfo, R,
3240                                        isInline,
3241                                        /*isImplicitlyDeclared=*/false);
3242      NewFD->setTypeSourceInfo(TInfo);
3243
3244      isVirtualOkay = true;
3245    } else {
3246      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3247
3248      // Create a FunctionDecl to satisfy the function definition parsing
3249      // code path.
3250      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3251                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3252                                   /*hasPrototype=*/true);
3253      D.setInvalidType();
3254    }
3255  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3256    if (!DC->isRecord()) {
3257      Diag(D.getIdentifierLoc(),
3258           diag::err_conv_function_not_member);
3259      return 0;
3260    }
3261
3262    CheckConversionDeclarator(D, R, SC);
3263    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3264                                      NameInfo, R, TInfo,
3265                                      isInline, isExplicit);
3266
3267    isVirtualOkay = true;
3268  } else if (DC->isRecord()) {
3269    // If the of the function is the same as the name of the record, then this
3270    // must be an invalid constructor that has a return type.
3271    // (The parser checks for a return type and makes the declarator a
3272    // constructor if it has no return type).
3273    // must have an invalid constructor that has a return type
3274    if (Name.getAsIdentifierInfo() &&
3275        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3276      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3277        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3278        << SourceRange(D.getIdentifierLoc());
3279      return 0;
3280    }
3281
3282    bool isStatic = SC == FunctionDecl::Static;
3283
3284    // [class.free]p1:
3285    // Any allocation function for a class T is a static member
3286    // (even if not explicitly declared static).
3287    if (Name.getCXXOverloadedOperator() == OO_New ||
3288        Name.getCXXOverloadedOperator() == OO_Array_New)
3289      isStatic = true;
3290
3291    // [class.free]p6 Any deallocation function for a class X is a static member
3292    // (even if not explicitly declared static).
3293    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3294        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3295      isStatic = true;
3296
3297    // This is a C++ method declaration.
3298    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3299                                  NameInfo, R, TInfo,
3300                                  isStatic, SCAsWritten, isInline);
3301
3302    isVirtualOkay = !isStatic;
3303  } else {
3304    // Determine whether the function was written with a
3305    // prototype. This true when:
3306    //   - we're in C++ (where every function has a prototype),
3307    //   - there is a prototype in the declarator, or
3308    //   - the type R of the function is some kind of typedef or other reference
3309    //     to a type name (which eventually refers to a function type).
3310    bool HasPrototype =
3311       getLangOptions().CPlusPlus ||
3312       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3313       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3314
3315    NewFD = FunctionDecl::Create(Context, DC,
3316                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3317                                 HasPrototype);
3318  }
3319
3320  if (D.isInvalidType())
3321    NewFD->setInvalidDecl();
3322
3323  SetNestedNameSpecifier(NewFD, D);
3324
3325  // Set the lexical context. If the declarator has a C++
3326  // scope specifier, or is the object of a friend declaration, the
3327  // lexical context will be different from the semantic context.
3328  NewFD->setLexicalDeclContext(CurContext);
3329
3330  // Match up the template parameter lists with the scope specifier, then
3331  // determine whether we have a template or a template specialization.
3332  FunctionTemplateDecl *FunctionTemplate = 0;
3333  bool isExplicitSpecialization = false;
3334  bool isFunctionTemplateSpecialization = false;
3335  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3336  bool Invalid = false;
3337  if (TemplateParameterList *TemplateParams
3338        = MatchTemplateParametersToScopeSpecifier(
3339                                  D.getDeclSpec().getSourceRange().getBegin(),
3340                                  D.getCXXScopeSpec(),
3341                           (TemplateParameterList**)TemplateParamLists.get(),
3342                                                  TemplateParamLists.size(),
3343                                                  isFriend,
3344                                                  isExplicitSpecialization,
3345                                                  Invalid)) {
3346    // All but one template parameter lists have been matching.
3347    --NumMatchedTemplateParamLists;
3348
3349    if (TemplateParams->size() > 0) {
3350      // This is a function template
3351
3352      // Check that we can declare a template here.
3353      if (CheckTemplateDeclScope(S, TemplateParams))
3354        return 0;
3355
3356      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3357                                                      NewFD->getLocation(),
3358                                                      Name, TemplateParams,
3359                                                      NewFD);
3360      FunctionTemplate->setLexicalDeclContext(CurContext);
3361      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3362    } else {
3363      // This is a function template specialization.
3364      isFunctionTemplateSpecialization = true;
3365
3366      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3367      if (isFriend && isFunctionTemplateSpecialization) {
3368        // We want to remove the "template<>", found here.
3369        SourceRange RemoveRange = TemplateParams->getSourceRange();
3370
3371        // If we remove the template<> and the name is not a
3372        // template-id, we're actually silently creating a problem:
3373        // the friend declaration will refer to an untemplated decl,
3374        // and clearly the user wants a template specialization.  So
3375        // we need to insert '<>' after the name.
3376        SourceLocation InsertLoc;
3377        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3378          InsertLoc = D.getName().getSourceRange().getEnd();
3379          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3380        }
3381
3382        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3383          << Name << RemoveRange
3384          << FixItHint::CreateRemoval(RemoveRange)
3385          << FixItHint::CreateInsertion(InsertLoc, "<>");
3386      }
3387    }
3388  }
3389
3390  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3391    NewFD->setTemplateParameterListsInfo(Context,
3392                                         NumMatchedTemplateParamLists,
3393                        (TemplateParameterList**)TemplateParamLists.release());
3394  }
3395
3396  if (Invalid) {
3397    NewFD->setInvalidDecl();
3398    if (FunctionTemplate)
3399      FunctionTemplate->setInvalidDecl();
3400  }
3401
3402  // C++ [dcl.fct.spec]p5:
3403  //   The virtual specifier shall only be used in declarations of
3404  //   nonstatic class member functions that appear within a
3405  //   member-specification of a class declaration; see 10.3.
3406  //
3407  if (isVirtual && !NewFD->isInvalidDecl()) {
3408    if (!isVirtualOkay) {
3409       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3410           diag::err_virtual_non_function);
3411    } else if (!CurContext->isRecord()) {
3412      // 'virtual' was specified outside of the class.
3413      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3414        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3415    } else {
3416      // Okay: Add virtual to the method.
3417      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3418      CurClass->setMethodAsVirtual(NewFD);
3419    }
3420  }
3421
3422  // C++ [dcl.fct.spec]p3:
3423  //  The inline specifier shall not appear on a block scope function declaration.
3424  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3425    if (CurContext->isFunctionOrMethod()) {
3426      // 'inline' is not allowed on block scope function declaration.
3427      Diag(D.getDeclSpec().getInlineSpecLoc(),
3428           diag::err_inline_declaration_block_scope) << Name
3429        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3430    }
3431  }
3432
3433  // C++ [dcl.fct.spec]p6:
3434  //  The explicit specifier shall be used only in the declaration of a
3435  //  constructor or conversion function within its class definition; see 12.3.1
3436  //  and 12.3.2.
3437  if (isExplicit && !NewFD->isInvalidDecl()) {
3438    if (!CurContext->isRecord()) {
3439      // 'explicit' was specified outside of the class.
3440      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3441           diag::err_explicit_out_of_class)
3442        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3443    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3444               !isa<CXXConversionDecl>(NewFD)) {
3445      // 'explicit' was specified on a function that wasn't a constructor
3446      // or conversion function.
3447      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3448           diag::err_explicit_non_ctor_or_conv_function)
3449        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3450    }
3451  }
3452
3453  // Filter out previous declarations that don't match the scope.
3454  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3455
3456  if (isFriend) {
3457    // DC is the namespace in which the function is being declared.
3458    assert((DC->isFileContext() || !Previous.empty()) &&
3459           "previously-undeclared friend function being created "
3460           "in a non-namespace context");
3461
3462    // For now, claim that the objects have no previous declaration.
3463    if (FunctionTemplate) {
3464      FunctionTemplate->setObjectOfFriendDecl(false);
3465      FunctionTemplate->setAccess(AS_public);
3466    }
3467    NewFD->setObjectOfFriendDecl(false);
3468    NewFD->setAccess(AS_public);
3469  }
3470
3471  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3472      !CurContext->isRecord()) {
3473    // C++ [class.static]p1:
3474    //   A data or function member of a class may be declared static
3475    //   in a class definition, in which case it is a static member of
3476    //   the class.
3477
3478    // Complain about the 'static' specifier if it's on an out-of-line
3479    // member function definition.
3480    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3481         diag::err_static_out_of_line)
3482      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3483  }
3484
3485  // Handle GNU asm-label extension (encoded as an attribute).
3486  if (Expr *E = (Expr*) D.getAsmLabel()) {
3487    // The parser guarantees this is a string.
3488    StringLiteral *SE = cast<StringLiteral>(E);
3489    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3490                                                SE->getString()));
3491  }
3492
3493  // Copy the parameter declarations from the declarator D to the function
3494  // declaration NewFD, if they are available.  First scavenge them into Params.
3495  llvm::SmallVector<ParmVarDecl*, 16> Params;
3496  if (D.getNumTypeObjects() > 0) {
3497    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3498
3499    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3500    // function that takes no arguments, not a function that takes a
3501    // single void argument.
3502    // We let through "const void" here because Sema::GetTypeForDeclarator
3503    // already checks for that case.
3504    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3505        FTI.ArgInfo[0].Param &&
3506        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3507      // Empty arg list, don't push any params.
3508      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3509
3510      // In C++, the empty parameter-type-list must be spelled "void"; a
3511      // typedef of void is not permitted.
3512      if (getLangOptions().CPlusPlus &&
3513          Param->getType().getUnqualifiedType() != Context.VoidTy)
3514        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3515      // FIXME: Leaks decl?
3516    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3517      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3518        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3519        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3520        Param->setDeclContext(NewFD);
3521        Params.push_back(Param);
3522
3523        if (Param->isInvalidDecl())
3524          NewFD->setInvalidDecl();
3525      }
3526    }
3527
3528  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3529    // When we're declaring a function with a typedef, typeof, etc as in the
3530    // following example, we'll need to synthesize (unnamed)
3531    // parameters for use in the declaration.
3532    //
3533    // @code
3534    // typedef void fn(int);
3535    // fn f;
3536    // @endcode
3537
3538    // Synthesize a parameter for each argument type.
3539    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3540         AE = FT->arg_type_end(); AI != AE; ++AI) {
3541      ParmVarDecl *Param =
3542        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3543      Params.push_back(Param);
3544    }
3545  } else {
3546    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3547           "Should not need args for typedef of non-prototype fn");
3548  }
3549  // Finally, we know we have the right number of parameters, install them.
3550  NewFD->setParams(Params.data(), Params.size());
3551
3552  // If the declarator is a template-id, translate the parser's template
3553  // argument list into our AST format.
3554  bool HasExplicitTemplateArgs = false;
3555  TemplateArgumentListInfo TemplateArgs;
3556  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3557    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3558    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3559    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3560    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3561                                       TemplateId->getTemplateArgs(),
3562                                       TemplateId->NumArgs);
3563    translateTemplateArguments(TemplateArgsPtr,
3564                               TemplateArgs);
3565    TemplateArgsPtr.release();
3566
3567    HasExplicitTemplateArgs = true;
3568
3569    if (FunctionTemplate) {
3570      // FIXME: Diagnose function template with explicit template
3571      // arguments.
3572      HasExplicitTemplateArgs = false;
3573    } else if (!isFunctionTemplateSpecialization &&
3574               !D.getDeclSpec().isFriendSpecified()) {
3575      // We have encountered something that the user meant to be a
3576      // specialization (because it has explicitly-specified template
3577      // arguments) but that was not introduced with a "template<>" (or had
3578      // too few of them).
3579      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3580        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3581        << FixItHint::CreateInsertion(
3582                                   D.getDeclSpec().getSourceRange().getBegin(),
3583                                                 "template<> ");
3584      isFunctionTemplateSpecialization = true;
3585    } else {
3586      // "friend void foo<>(int);" is an implicit specialization decl.
3587      isFunctionTemplateSpecialization = true;
3588    }
3589  } else if (isFriend && isFunctionTemplateSpecialization) {
3590    // This combination is only possible in a recovery case;  the user
3591    // wrote something like:
3592    //   template <> friend void foo(int);
3593    // which we're recovering from as if the user had written:
3594    //   friend void foo<>(int);
3595    // Go ahead and fake up a template id.
3596    HasExplicitTemplateArgs = true;
3597    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3598    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3599  }
3600
3601  // If it's a friend (and only if it's a friend), it's possible
3602  // that either the specialized function type or the specialized
3603  // template is dependent, and therefore matching will fail.  In
3604  // this case, don't check the specialization yet.
3605  if (isFunctionTemplateSpecialization && isFriend &&
3606      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3607    assert(HasExplicitTemplateArgs &&
3608           "friend function specialization without template args");
3609    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3610                                                     Previous))
3611      NewFD->setInvalidDecl();
3612  } else if (isFunctionTemplateSpecialization) {
3613    if (CheckFunctionTemplateSpecialization(NewFD,
3614                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3615                                            Previous))
3616      NewFD->setInvalidDecl();
3617  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3618    if (CheckMemberSpecialization(NewFD, Previous))
3619      NewFD->setInvalidDecl();
3620  }
3621
3622  // Perform semantic checking on the function declaration.
3623  bool OverloadableAttrRequired = false; // FIXME: HACK!
3624  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3625                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3626
3627  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3628          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3629         "previous declaration set still overloaded");
3630
3631  NamedDecl *PrincipalDecl = (FunctionTemplate
3632                              ? cast<NamedDecl>(FunctionTemplate)
3633                              : NewFD);
3634
3635  if (isFriend && Redeclaration) {
3636    AccessSpecifier Access = AS_public;
3637    if (!NewFD->isInvalidDecl())
3638      Access = NewFD->getPreviousDeclaration()->getAccess();
3639
3640    NewFD->setAccess(Access);
3641    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3642
3643    PrincipalDecl->setObjectOfFriendDecl(true);
3644  }
3645
3646  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3647      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3648    PrincipalDecl->setNonMemberOperator();
3649
3650  // If we have a function template, check the template parameter
3651  // list. This will check and merge default template arguments.
3652  if (FunctionTemplate) {
3653    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3654    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3655                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3656             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3657                                                : TPC_FunctionTemplate);
3658  }
3659
3660  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3661    // Fake up an access specifier if it's supposed to be a class member.
3662    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3663      NewFD->setAccess(AS_public);
3664
3665    // An out-of-line member function declaration must also be a
3666    // definition (C++ [dcl.meaning]p1).
3667    // Note that this is not the case for explicit specializations of
3668    // function templates or member functions of class templates, per
3669    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3670    // for compatibility with old SWIG code which likes to generate them.
3671    if (!IsFunctionDefinition && !isFriend &&
3672        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3673      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3674        << D.getCXXScopeSpec().getRange();
3675    }
3676    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3677      // The user tried to provide an out-of-line definition for a
3678      // function that is a member of a class or namespace, but there
3679      // was no such member function declared (C++ [class.mfct]p2,
3680      // C++ [namespace.memdef]p2). For example:
3681      //
3682      // class X {
3683      //   void f() const;
3684      // };
3685      //
3686      // void X::f() { } // ill-formed
3687      //
3688      // Complain about this problem, and attempt to suggest close
3689      // matches (e.g., those that differ only in cv-qualifiers and
3690      // whether the parameter types are references).
3691      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3692        << Name << DC << D.getCXXScopeSpec().getRange();
3693      NewFD->setInvalidDecl();
3694
3695      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3696                        ForRedeclaration);
3697      LookupQualifiedName(Prev, DC);
3698      assert(!Prev.isAmbiguous() &&
3699             "Cannot have an ambiguity in previous-declaration lookup");
3700      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3701           Func != FuncEnd; ++Func) {
3702        if (isa<FunctionDecl>(*Func) &&
3703            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3704          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3705      }
3706    }
3707  }
3708
3709  // Handle attributes. We need to have merged decls when handling attributes
3710  // (for example to check for conflicts, etc).
3711  // FIXME: This needs to happen before we merge declarations. Then,
3712  // let attribute merging cope with attribute conflicts.
3713  ProcessDeclAttributes(S, NewFD, D);
3714
3715  // attributes declared post-definition are currently ignored
3716  // FIXME: This should happen during attribute merging
3717  if (Redeclaration && Previous.isSingleResult()) {
3718    const FunctionDecl *Def;
3719    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3720    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3721      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3722      Diag(Def->getLocation(), diag::note_previous_definition);
3723    }
3724  }
3725
3726  AddKnownFunctionAttributes(NewFD);
3727
3728  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3729    // If a function name is overloadable in C, then every function
3730    // with that name must be marked "overloadable".
3731    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3732      << Redeclaration << NewFD;
3733    if (!Previous.empty())
3734      Diag(Previous.getRepresentativeDecl()->getLocation(),
3735           diag::note_attribute_overloadable_prev_overload);
3736    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3737  }
3738
3739  if (NewFD->hasAttr<OverloadableAttr>() &&
3740      !NewFD->getType()->getAs<FunctionProtoType>()) {
3741    Diag(NewFD->getLocation(),
3742         diag::err_attribute_overloadable_no_prototype)
3743      << NewFD;
3744
3745    // Turn this into a variadic function with no parameters.
3746    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3747    QualType R = Context.getFunctionType(FT->getResultType(),
3748                                         0, 0, true, 0, false, false, 0, 0,
3749                                         FT->getExtInfo());
3750    NewFD->setType(R);
3751  }
3752
3753  // If there's a #pragma GCC visibility in scope, and this isn't a class
3754  // member, set the visibility of this function.
3755  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3756    AddPushedVisibilityAttribute(NewFD);
3757
3758  // If this is a locally-scoped extern C function, update the
3759  // map of such names.
3760  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3761      && !NewFD->isInvalidDecl())
3762    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3763
3764  // Set this FunctionDecl's range up to the right paren.
3765  NewFD->setLocEnd(D.getSourceRange().getEnd());
3766
3767  if (FunctionTemplate && NewFD->isInvalidDecl())
3768    FunctionTemplate->setInvalidDecl();
3769
3770  if (FunctionTemplate)
3771    return FunctionTemplate;
3772
3773  MarkUnusedFileScopedDecl(NewFD);
3774
3775  return NewFD;
3776}
3777
3778/// \brief Perform semantic checking of a new function declaration.
3779///
3780/// Performs semantic analysis of the new function declaration
3781/// NewFD. This routine performs all semantic checking that does not
3782/// require the actual declarator involved in the declaration, and is
3783/// used both for the declaration of functions as they are parsed
3784/// (called via ActOnDeclarator) and for the declaration of functions
3785/// that have been instantiated via C++ template instantiation (called
3786/// via InstantiateDecl).
3787///
3788/// \param IsExplicitSpecialiation whether this new function declaration is
3789/// an explicit specialization of the previous declaration.
3790///
3791/// This sets NewFD->isInvalidDecl() to true if there was an error.
3792void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3793                                    LookupResult &Previous,
3794                                    bool IsExplicitSpecialization,
3795                                    bool &Redeclaration,
3796                                    bool &OverloadableAttrRequired) {
3797  // If NewFD is already known erroneous, don't do any of this checking.
3798  if (NewFD->isInvalidDecl()) {
3799    // If this is a class member, mark the class invalid immediately.
3800    // This avoids some consistency errors later.
3801    if (isa<CXXMethodDecl>(NewFD))
3802      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3803
3804    return;
3805  }
3806
3807  if (NewFD->getResultType()->isVariablyModifiedType()) {
3808    // Functions returning a variably modified type violate C99 6.7.5.2p2
3809    // because all functions have linkage.
3810    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3811    return NewFD->setInvalidDecl();
3812  }
3813
3814  if (NewFD->isMain())
3815    CheckMain(NewFD);
3816
3817  // Check for a previous declaration of this name.
3818  if (Previous.empty() && NewFD->isExternC()) {
3819    // Since we did not find anything by this name and we're declaring
3820    // an extern "C" function, look for a non-visible extern "C"
3821    // declaration with the same name.
3822    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3823      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3824    if (Pos != LocallyScopedExternalDecls.end())
3825      Previous.addDecl(Pos->second);
3826  }
3827
3828  // Merge or overload the declaration with an existing declaration of
3829  // the same name, if appropriate.
3830  if (!Previous.empty()) {
3831    // Determine whether NewFD is an overload of PrevDecl or
3832    // a declaration that requires merging. If it's an overload,
3833    // there's no more work to do here; we'll just add the new
3834    // function to the scope.
3835
3836    NamedDecl *OldDecl = 0;
3837    if (!AllowOverloadingOfFunction(Previous, Context)) {
3838      Redeclaration = true;
3839      OldDecl = Previous.getFoundDecl();
3840    } else {
3841      if (!getLangOptions().CPlusPlus)
3842        OverloadableAttrRequired = true;
3843
3844      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3845                            /*NewIsUsingDecl*/ false)) {
3846      case Ovl_Match:
3847        Redeclaration = true;
3848        break;
3849
3850      case Ovl_NonFunction:
3851        Redeclaration = true;
3852        break;
3853
3854      case Ovl_Overload:
3855        Redeclaration = false;
3856        break;
3857      }
3858    }
3859
3860    if (Redeclaration) {
3861      // NewFD and OldDecl represent declarations that need to be
3862      // merged.
3863      if (MergeFunctionDecl(NewFD, OldDecl))
3864        return NewFD->setInvalidDecl();
3865
3866      Previous.clear();
3867      Previous.addDecl(OldDecl);
3868
3869      if (FunctionTemplateDecl *OldTemplateDecl
3870                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3871        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3872        FunctionTemplateDecl *NewTemplateDecl
3873          = NewFD->getDescribedFunctionTemplate();
3874        assert(NewTemplateDecl && "Template/non-template mismatch");
3875        if (CXXMethodDecl *Method
3876              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3877          Method->setAccess(OldTemplateDecl->getAccess());
3878          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3879        }
3880
3881        // If this is an explicit specialization of a member that is a function
3882        // template, mark it as a member specialization.
3883        if (IsExplicitSpecialization &&
3884            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3885          NewTemplateDecl->setMemberSpecialization();
3886          assert(OldTemplateDecl->isMemberSpecialization());
3887        }
3888      } else {
3889        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3890          NewFD->setAccess(OldDecl->getAccess());
3891        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3892      }
3893    }
3894  }
3895
3896  // Semantic checking for this function declaration (in isolation).
3897  if (getLangOptions().CPlusPlus) {
3898    // C++-specific checks.
3899    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3900      CheckConstructor(Constructor);
3901    } else if (CXXDestructorDecl *Destructor =
3902                dyn_cast<CXXDestructorDecl>(NewFD)) {
3903      CXXRecordDecl *Record = Destructor->getParent();
3904      QualType ClassType = Context.getTypeDeclType(Record);
3905
3906      // FIXME: Shouldn't we be able to perform this check even when the class
3907      // type is dependent? Both gcc and edg can handle that.
3908      if (!ClassType->isDependentType()) {
3909        DeclarationName Name
3910          = Context.DeclarationNames.getCXXDestructorName(
3911                                        Context.getCanonicalType(ClassType));
3912//         NewFD->getDeclName().dump();
3913//         Name.dump();
3914        if (NewFD->getDeclName() != Name) {
3915          Diag(NewFD->getLocation(), diag::err_destructor_name);
3916          return NewFD->setInvalidDecl();
3917        }
3918      }
3919
3920      Record->setUserDeclaredDestructor(true);
3921      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3922      // user-defined destructor.
3923      Record->setPOD(false);
3924
3925      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3926      // declared destructor.
3927      // FIXME: C++0x: don't do this for "= default" destructors
3928      Record->setHasTrivialDestructor(false);
3929    } else if (CXXConversionDecl *Conversion
3930               = dyn_cast<CXXConversionDecl>(NewFD)) {
3931      ActOnConversionDeclarator(Conversion);
3932    }
3933
3934    // Find any virtual functions that this function overrides.
3935    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3936      if (!Method->isFunctionTemplateSpecialization() &&
3937          !Method->getDescribedFunctionTemplate())
3938        AddOverriddenMethods(Method->getParent(), Method);
3939    }
3940
3941    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3942    if (NewFD->isOverloadedOperator() &&
3943        CheckOverloadedOperatorDeclaration(NewFD))
3944      return NewFD->setInvalidDecl();
3945
3946    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3947    if (NewFD->getLiteralIdentifier() &&
3948        CheckLiteralOperatorDeclaration(NewFD))
3949      return NewFD->setInvalidDecl();
3950
3951    // In C++, check default arguments now that we have merged decls. Unless
3952    // the lexical context is the class, because in this case this is done
3953    // during delayed parsing anyway.
3954    if (!CurContext->isRecord())
3955      CheckCXXDefaultArguments(NewFD);
3956  }
3957}
3958
3959void Sema::CheckMain(FunctionDecl* FD) {
3960  // C++ [basic.start.main]p3:  A program that declares main to be inline
3961  //   or static is ill-formed.
3962  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3963  //   shall not appear in a declaration of main.
3964  // static main is not an error under C99, but we should warn about it.
3965  bool isInline = FD->isInlineSpecified();
3966  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3967  if (isInline || isStatic) {
3968    unsigned diagID = diag::warn_unusual_main_decl;
3969    if (isInline || getLangOptions().CPlusPlus)
3970      diagID = diag::err_unusual_main_decl;
3971
3972    int which = isStatic + (isInline << 1) - 1;
3973    Diag(FD->getLocation(), diagID) << which;
3974  }
3975
3976  QualType T = FD->getType();
3977  assert(T->isFunctionType() && "function decl is not of function type");
3978  const FunctionType* FT = T->getAs<FunctionType>();
3979
3980  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3981    // TODO: add a replacement fixit to turn the return type into 'int'.
3982    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3983    FD->setInvalidDecl(true);
3984  }
3985
3986  // Treat protoless main() as nullary.
3987  if (isa<FunctionNoProtoType>(FT)) return;
3988
3989  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3990  unsigned nparams = FTP->getNumArgs();
3991  assert(FD->getNumParams() == nparams);
3992
3993  bool HasExtraParameters = (nparams > 3);
3994
3995  // Darwin passes an undocumented fourth argument of type char**.  If
3996  // other platforms start sprouting these, the logic below will start
3997  // getting shifty.
3998  if (nparams == 4 &&
3999      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4000    HasExtraParameters = false;
4001
4002  if (HasExtraParameters) {
4003    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4004    FD->setInvalidDecl(true);
4005    nparams = 3;
4006  }
4007
4008  // FIXME: a lot of the following diagnostics would be improved
4009  // if we had some location information about types.
4010
4011  QualType CharPP =
4012    Context.getPointerType(Context.getPointerType(Context.CharTy));
4013  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4014
4015  for (unsigned i = 0; i < nparams; ++i) {
4016    QualType AT = FTP->getArgType(i);
4017
4018    bool mismatch = true;
4019
4020    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4021      mismatch = false;
4022    else if (Expected[i] == CharPP) {
4023      // As an extension, the following forms are okay:
4024      //   char const **
4025      //   char const * const *
4026      //   char * const *
4027
4028      QualifierCollector qs;
4029      const PointerType* PT;
4030      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4031          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4032          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4033        qs.removeConst();
4034        mismatch = !qs.empty();
4035      }
4036    }
4037
4038    if (mismatch) {
4039      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4040      // TODO: suggest replacing given type with expected type
4041      FD->setInvalidDecl(true);
4042    }
4043  }
4044
4045  if (nparams == 1 && !FD->isInvalidDecl()) {
4046    Diag(FD->getLocation(), diag::warn_main_one_arg);
4047  }
4048}
4049
4050bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4051  // FIXME: Need strict checking.  In C89, we need to check for
4052  // any assignment, increment, decrement, function-calls, or
4053  // commas outside of a sizeof.  In C99, it's the same list,
4054  // except that the aforementioned are allowed in unevaluated
4055  // expressions.  Everything else falls under the
4056  // "may accept other forms of constant expressions" exception.
4057  // (We never end up here for C++, so the constant expression
4058  // rules there don't matter.)
4059  if (Init->isConstantInitializer(Context, false))
4060    return false;
4061  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4062    << Init->getSourceRange();
4063  return true;
4064}
4065
4066void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4067  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4068}
4069
4070/// AddInitializerToDecl - Adds the initializer Init to the
4071/// declaration dcl. If DirectInit is true, this is C++ direct
4072/// initialization rather than copy initialization.
4073void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4074  // If there is no declaration, there was an error parsing it.  Just ignore
4075  // the initializer.
4076  if (RealDecl == 0)
4077    return;
4078
4079  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4080    // With declarators parsed the way they are, the parser cannot
4081    // distinguish between a normal initializer and a pure-specifier.
4082    // Thus this grotesque test.
4083    IntegerLiteral *IL;
4084    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4085        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4086      CheckPureMethod(Method, Init->getSourceRange());
4087    else {
4088      Diag(Method->getLocation(), diag::err_member_function_initialization)
4089        << Method->getDeclName() << Init->getSourceRange();
4090      Method->setInvalidDecl();
4091    }
4092    return;
4093  }
4094
4095  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4096  if (!VDecl) {
4097    if (getLangOptions().CPlusPlus &&
4098        RealDecl->getLexicalDeclContext()->isRecord() &&
4099        isa<NamedDecl>(RealDecl))
4100      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4101        << cast<NamedDecl>(RealDecl)->getDeclName();
4102    else
4103      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4104    RealDecl->setInvalidDecl();
4105    return;
4106  }
4107
4108
4109
4110  // A definition must end up with a complete type, which means it must be
4111  // complete with the restriction that an array type might be completed by the
4112  // initializer; note that later code assumes this restriction.
4113  QualType BaseDeclType = VDecl->getType();
4114  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4115    BaseDeclType = Array->getElementType();
4116  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4117                          diag::err_typecheck_decl_incomplete_type)) {
4118    RealDecl->setInvalidDecl();
4119    return;
4120  }
4121
4122  // The variable can not have an abstract class type.
4123  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4124                             diag::err_abstract_type_in_decl,
4125                             AbstractVariableType))
4126    VDecl->setInvalidDecl();
4127
4128  const VarDecl *Def;
4129  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4130    Diag(VDecl->getLocation(), diag::err_redefinition)
4131      << VDecl->getDeclName();
4132    Diag(Def->getLocation(), diag::note_previous_definition);
4133    VDecl->setInvalidDecl();
4134    return;
4135  }
4136
4137  // C++ [class.static.data]p4
4138  //   If a static data member is of const integral or const
4139  //   enumeration type, its declaration in the class definition can
4140  //   specify a constant-initializer which shall be an integral
4141  //   constant expression (5.19). In that case, the member can appear
4142  //   in integral constant expressions. The member shall still be
4143  //   defined in a namespace scope if it is used in the program and the
4144  //   namespace scope definition shall not contain an initializer.
4145  //
4146  // We already performed a redefinition check above, but for static
4147  // data members we also need to check whether there was an in-class
4148  // declaration with an initializer.
4149  const VarDecl* PrevInit = 0;
4150  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4151    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4152    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4153    return;
4154  }
4155
4156  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4157    getCurFunction()->setHasBranchProtectedScope();
4158
4159  // Capture the variable that is being initialized and the style of
4160  // initialization.
4161  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4162
4163  // FIXME: Poor source location information.
4164  InitializationKind Kind
4165    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4166                                                   Init->getLocStart(),
4167                                                   Init->getLocEnd())
4168                : InitializationKind::CreateCopy(VDecl->getLocation(),
4169                                                 Init->getLocStart());
4170
4171  // Get the decls type and save a reference for later, since
4172  // CheckInitializerTypes may change it.
4173  QualType DclT = VDecl->getType(), SavT = DclT;
4174  if (VDecl->isBlockVarDecl()) {
4175    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4176      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4177      VDecl->setInvalidDecl();
4178    } else if (!VDecl->isInvalidDecl()) {
4179      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4180      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4181                                                MultiExprArg(*this, &Init, 1),
4182                                                &DclT);
4183      if (Result.isInvalid()) {
4184        VDecl->setInvalidDecl();
4185        return;
4186      }
4187
4188      Init = Result.takeAs<Expr>();
4189
4190      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4191      // Don't check invalid declarations to avoid emitting useless diagnostics.
4192      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4193        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4194          CheckForConstantInitializer(Init, DclT);
4195      }
4196    }
4197  } else if (VDecl->isStaticDataMember() &&
4198             VDecl->getLexicalDeclContext()->isRecord()) {
4199    // This is an in-class initialization for a static data member, e.g.,
4200    //
4201    // struct S {
4202    //   static const int value = 17;
4203    // };
4204
4205    // Attach the initializer
4206    VDecl->setInit(Init);
4207
4208    // C++ [class.mem]p4:
4209    //   A member-declarator can contain a constant-initializer only
4210    //   if it declares a static member (9.4) of const integral or
4211    //   const enumeration type, see 9.4.2.
4212    QualType T = VDecl->getType();
4213    if (!T->isDependentType() &&
4214        (!Context.getCanonicalType(T).isConstQualified() ||
4215         !T->isIntegralOrEnumerationType())) {
4216      Diag(VDecl->getLocation(), diag::err_member_initialization)
4217        << VDecl->getDeclName() << Init->getSourceRange();
4218      VDecl->setInvalidDecl();
4219    } else {
4220      // C++ [class.static.data]p4:
4221      //   If a static data member is of const integral or const
4222      //   enumeration type, its declaration in the class definition
4223      //   can specify a constant-initializer which shall be an
4224      //   integral constant expression (5.19).
4225      if (!Init->isTypeDependent() &&
4226          !Init->getType()->isIntegralOrEnumerationType()) {
4227        // We have a non-dependent, non-integral or enumeration type.
4228        Diag(Init->getSourceRange().getBegin(),
4229             diag::err_in_class_initializer_non_integral_type)
4230          << Init->getType() << Init->getSourceRange();
4231        VDecl->setInvalidDecl();
4232      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4233        // Check whether the expression is a constant expression.
4234        llvm::APSInt Value;
4235        SourceLocation Loc;
4236        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4237          Diag(Loc, diag::err_in_class_initializer_non_constant)
4238            << Init->getSourceRange();
4239          VDecl->setInvalidDecl();
4240        } else if (!VDecl->getType()->isDependentType())
4241          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4242      }
4243    }
4244  } else if (VDecl->isFileVarDecl()) {
4245    if (VDecl->getStorageClass() == VarDecl::Extern &&
4246        (!getLangOptions().CPlusPlus ||
4247         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4248      Diag(VDecl->getLocation(), diag::warn_extern_init);
4249    if (!VDecl->isInvalidDecl()) {
4250      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4251      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4252                                                MultiExprArg(*this, &Init, 1),
4253                                                &DclT);
4254      if (Result.isInvalid()) {
4255        VDecl->setInvalidDecl();
4256        return;
4257      }
4258
4259      Init = Result.takeAs<Expr>();
4260    }
4261
4262    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4263    // Don't check invalid declarations to avoid emitting useless diagnostics.
4264    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4265      // C99 6.7.8p4. All file scoped initializers need to be constant.
4266      CheckForConstantInitializer(Init, DclT);
4267    }
4268  }
4269  // If the type changed, it means we had an incomplete type that was
4270  // completed by the initializer. For example:
4271  //   int ary[] = { 1, 3, 5 };
4272  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4273  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4274    VDecl->setType(DclT);
4275    Init->setType(DclT);
4276  }
4277
4278  Init = MaybeCreateCXXExprWithTemporaries(Init);
4279  // Attach the initializer to the decl.
4280  VDecl->setInit(Init);
4281
4282  if (getLangOptions().CPlusPlus) {
4283    if (!VDecl->isInvalidDecl() &&
4284        !VDecl->getDeclContext()->isDependentContext() &&
4285        VDecl->hasGlobalStorage() &&
4286        !Init->isConstantInitializer(Context,
4287                                     VDecl->getType()->isReferenceType()))
4288      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4289        << Init->getSourceRange();
4290
4291    // Make sure we mark the destructor as used if necessary.
4292    QualType InitType = VDecl->getType();
4293    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4294      InitType = Context.getBaseElementType(Array);
4295    if (const RecordType *Record = InitType->getAs<RecordType>())
4296      FinalizeVarWithDestructor(VDecl, Record);
4297  }
4298
4299  return;
4300}
4301
4302/// ActOnInitializerError - Given that there was an error parsing an
4303/// initializer for the given declaration, try to return to some form
4304/// of sanity.
4305void Sema::ActOnInitializerError(Decl *D) {
4306  // Our main concern here is re-establishing invariants like "a
4307  // variable's type is either dependent or complete".
4308  if (!D || D->isInvalidDecl()) return;
4309
4310  VarDecl *VD = dyn_cast<VarDecl>(D);
4311  if (!VD) return;
4312
4313  QualType Ty = VD->getType();
4314  if (Ty->isDependentType()) return;
4315
4316  // Require a complete type.
4317  if (RequireCompleteType(VD->getLocation(),
4318                          Context.getBaseElementType(Ty),
4319                          diag::err_typecheck_decl_incomplete_type)) {
4320    VD->setInvalidDecl();
4321    return;
4322  }
4323
4324  // Require an abstract type.
4325  if (RequireNonAbstractType(VD->getLocation(), Ty,
4326                             diag::err_abstract_type_in_decl,
4327                             AbstractVariableType)) {
4328    VD->setInvalidDecl();
4329    return;
4330  }
4331
4332  // Don't bother complaining about constructors or destructors,
4333  // though.
4334}
4335
4336void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4337                                  bool TypeContainsUndeducedAuto) {
4338  // If there is no declaration, there was an error parsing it. Just ignore it.
4339  if (RealDecl == 0)
4340    return;
4341
4342  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4343    QualType Type = Var->getType();
4344
4345    // C++0x [dcl.spec.auto]p3
4346    if (TypeContainsUndeducedAuto) {
4347      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4348        << Var->getDeclName() << Type;
4349      Var->setInvalidDecl();
4350      return;
4351    }
4352
4353    switch (Var->isThisDeclarationADefinition()) {
4354    case VarDecl::Definition:
4355      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4356        break;
4357
4358      // We have an out-of-line definition of a static data member
4359      // that has an in-class initializer, so we type-check this like
4360      // a declaration.
4361      //
4362      // Fall through
4363
4364    case VarDecl::DeclarationOnly:
4365      // It's only a declaration.
4366
4367      // Block scope. C99 6.7p7: If an identifier for an object is
4368      // declared with no linkage (C99 6.2.2p6), the type for the
4369      // object shall be complete.
4370      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4371          !Var->getLinkage() && !Var->isInvalidDecl() &&
4372          RequireCompleteType(Var->getLocation(), Type,
4373                              diag::err_typecheck_decl_incomplete_type))
4374        Var->setInvalidDecl();
4375
4376      // Make sure that the type is not abstract.
4377      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4378          RequireNonAbstractType(Var->getLocation(), Type,
4379                                 diag::err_abstract_type_in_decl,
4380                                 AbstractVariableType))
4381        Var->setInvalidDecl();
4382      return;
4383
4384    case VarDecl::TentativeDefinition:
4385      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4386      // object that has file scope without an initializer, and without a
4387      // storage-class specifier or with the storage-class specifier "static",
4388      // constitutes a tentative definition. Note: A tentative definition with
4389      // external linkage is valid (C99 6.2.2p5).
4390      if (!Var->isInvalidDecl()) {
4391        if (const IncompleteArrayType *ArrayT
4392                                    = Context.getAsIncompleteArrayType(Type)) {
4393          if (RequireCompleteType(Var->getLocation(),
4394                                  ArrayT->getElementType(),
4395                                  diag::err_illegal_decl_array_incomplete_type))
4396            Var->setInvalidDecl();
4397        } else if (Var->getStorageClass() == VarDecl::Static) {
4398          // C99 6.9.2p3: If the declaration of an identifier for an object is
4399          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4400          // declared type shall not be an incomplete type.
4401          // NOTE: code such as the following
4402          //     static struct s;
4403          //     struct s { int a; };
4404          // is accepted by gcc. Hence here we issue a warning instead of
4405          // an error and we do not invalidate the static declaration.
4406          // NOTE: to avoid multiple warnings, only check the first declaration.
4407          if (Var->getPreviousDeclaration() == 0)
4408            RequireCompleteType(Var->getLocation(), Type,
4409                                diag::ext_typecheck_decl_incomplete_type);
4410        }
4411      }
4412
4413      // Record the tentative definition; we're done.
4414      if (!Var->isInvalidDecl())
4415        TentativeDefinitions.push_back(Var);
4416      return;
4417    }
4418
4419    // Provide a specific diagnostic for uninitialized variable
4420    // definitions with incomplete array type.
4421    if (Type->isIncompleteArrayType()) {
4422      Diag(Var->getLocation(),
4423           diag::err_typecheck_incomplete_array_needs_initializer);
4424      Var->setInvalidDecl();
4425      return;
4426    }
4427
4428    // Provide a specific diagnostic for uninitialized variable
4429    // definitions with reference type.
4430    if (Type->isReferenceType()) {
4431      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4432        << Var->getDeclName()
4433        << SourceRange(Var->getLocation(), Var->getLocation());
4434      Var->setInvalidDecl();
4435      return;
4436    }
4437
4438    // Do not attempt to type-check the default initializer for a
4439    // variable with dependent type.
4440    if (Type->isDependentType())
4441      return;
4442
4443    if (Var->isInvalidDecl())
4444      return;
4445
4446    if (RequireCompleteType(Var->getLocation(),
4447                            Context.getBaseElementType(Type),
4448                            diag::err_typecheck_decl_incomplete_type)) {
4449      Var->setInvalidDecl();
4450      return;
4451    }
4452
4453    // The variable can not have an abstract class type.
4454    if (RequireNonAbstractType(Var->getLocation(), Type,
4455                               diag::err_abstract_type_in_decl,
4456                               AbstractVariableType)) {
4457      Var->setInvalidDecl();
4458      return;
4459    }
4460
4461    const RecordType *Record
4462      = Context.getBaseElementType(Type)->getAs<RecordType>();
4463    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4464        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4465      // C++03 [dcl.init]p9:
4466      //   If no initializer is specified for an object, and the
4467      //   object is of (possibly cv-qualified) non-POD class type (or
4468      //   array thereof), the object shall be default-initialized; if
4469      //   the object is of const-qualified type, the underlying class
4470      //   type shall have a user-declared default
4471      //   constructor. Otherwise, if no initializer is specified for
4472      //   a non- static object, the object and its subobjects, if
4473      //   any, have an indeterminate initial value); if the object
4474      //   or any of its subobjects are of const-qualified type, the
4475      //   program is ill-formed.
4476      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4477    } else {
4478      // Check for jumps past the implicit initializer.  C++0x
4479      // clarifies that this applies to a "variable with automatic
4480      // storage duration", not a "local variable".
4481      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4482        getCurFunction()->setHasBranchProtectedScope();
4483
4484      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4485      InitializationKind Kind
4486        = InitializationKind::CreateDefault(Var->getLocation());
4487
4488      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4489      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4490                                        MultiExprArg(*this, 0, 0));
4491      if (Init.isInvalid())
4492        Var->setInvalidDecl();
4493      else if (Init.get()) {
4494        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4495
4496        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4497            Var->hasGlobalStorage() &&
4498            !Var->getDeclContext()->isDependentContext() &&
4499            !Var->getInit()->isConstantInitializer(Context, false))
4500          Diag(Var->getLocation(), diag::warn_global_constructor);
4501      }
4502    }
4503
4504    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4505      FinalizeVarWithDestructor(Var, Record);
4506  }
4507}
4508
4509Sema::DeclGroupPtrTy
4510Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4511                              Decl **Group, unsigned NumDecls) {
4512  llvm::SmallVector<Decl*, 8> Decls;
4513
4514  if (DS.isTypeSpecOwned())
4515    Decls.push_back(DS.getRepAsDecl());
4516
4517  for (unsigned i = 0; i != NumDecls; ++i)
4518    if (Decl *D = Group[i])
4519      Decls.push_back(D);
4520
4521  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4522                                                   Decls.data(), Decls.size()));
4523}
4524
4525
4526/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4527/// to introduce parameters into function prototype scope.
4528Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4529  const DeclSpec &DS = D.getDeclSpec();
4530
4531  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4532  VarDecl::StorageClass StorageClass = VarDecl::None;
4533  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4534  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4535    StorageClass = VarDecl::Register;
4536    StorageClassAsWritten = VarDecl::Register;
4537  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4538    Diag(DS.getStorageClassSpecLoc(),
4539         diag::err_invalid_storage_class_in_func_decl);
4540    D.getMutableDeclSpec().ClearStorageClassSpecs();
4541  }
4542
4543  if (D.getDeclSpec().isThreadSpecified())
4544    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4545
4546  DiagnoseFunctionSpecifiers(D);
4547
4548  // Check that there are no default arguments inside the type of this
4549  // parameter (C++ only).
4550  if (getLangOptions().CPlusPlus)
4551    CheckExtraCXXDefaultArguments(D);
4552
4553  TagDecl *OwnedDecl = 0;
4554  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4555  QualType parmDeclType = TInfo->getType();
4556
4557  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4558    // C++ [dcl.fct]p6:
4559    //   Types shall not be defined in return or parameter types.
4560    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4561      << Context.getTypeDeclType(OwnedDecl);
4562  }
4563
4564  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4565  IdentifierInfo *II = D.getIdentifier();
4566  if (II) {
4567    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4568                   ForRedeclaration);
4569    LookupName(R, S);
4570    if (R.isSingleResult()) {
4571      NamedDecl *PrevDecl = R.getFoundDecl();
4572      if (PrevDecl->isTemplateParameter()) {
4573        // Maybe we will complain about the shadowed template parameter.
4574        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4575        // Just pretend that we didn't see the previous declaration.
4576        PrevDecl = 0;
4577      } else if (S->isDeclScope(PrevDecl)) {
4578        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4579        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4580
4581        // Recover by removing the name
4582        II = 0;
4583        D.SetIdentifier(0, D.getIdentifierLoc());
4584        D.setInvalidType(true);
4585      }
4586    }
4587  }
4588
4589  // Temporarily put parameter variables in the translation unit, not
4590  // the enclosing context.  This prevents them from accidentally
4591  // looking like class members in C++.
4592  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4593                                    TInfo, parmDeclType, II,
4594                                    D.getIdentifierLoc(),
4595                                    StorageClass, StorageClassAsWritten);
4596
4597  if (D.isInvalidType())
4598    New->setInvalidDecl();
4599
4600  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4601  if (D.getCXXScopeSpec().isSet()) {
4602    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4603      << D.getCXXScopeSpec().getRange();
4604    New->setInvalidDecl();
4605  }
4606
4607  // Add the parameter declaration into this scope.
4608  S->AddDecl(New);
4609  if (II)
4610    IdResolver.AddDecl(New);
4611
4612  ProcessDeclAttributes(S, New, D);
4613
4614  if (New->hasAttr<BlocksAttr>()) {
4615    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4616  }
4617  return New;
4618}
4619
4620/// \brief Synthesizes a variable for a parameter arising from a
4621/// typedef.
4622ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4623                                              SourceLocation Loc,
4624                                              QualType T) {
4625  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4626                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4627                                           VarDecl::None, VarDecl::None, 0);
4628  Param->setImplicit();
4629  return Param;
4630}
4631
4632void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4633                                    ParmVarDecl * const *ParamEnd) {
4634  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4635        Diagnostic::Ignored)
4636    return;
4637
4638  // Don't diagnose unused-parameter errors in template instantiations; we
4639  // will already have done so in the template itself.
4640  if (!ActiveTemplateInstantiations.empty())
4641    return;
4642
4643  for (; Param != ParamEnd; ++Param) {
4644    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4645        !(*Param)->hasAttr<UnusedAttr>()) {
4646      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4647        << (*Param)->getDeclName();
4648    }
4649  }
4650}
4651
4652ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4653                                  TypeSourceInfo *TSInfo, QualType T,
4654                                  IdentifierInfo *Name,
4655                                  SourceLocation NameLoc,
4656                                  VarDecl::StorageClass StorageClass,
4657                                  VarDecl::StorageClass StorageClassAsWritten) {
4658  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4659                                         adjustParameterType(T), TSInfo,
4660                                         StorageClass, StorageClassAsWritten,
4661                                         0);
4662
4663  // Parameters can not be abstract class types.
4664  // For record types, this is done by the AbstractClassUsageDiagnoser once
4665  // the class has been completely parsed.
4666  if (!CurContext->isRecord() &&
4667      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4668                             AbstractParamType))
4669    New->setInvalidDecl();
4670
4671  // Parameter declarators cannot be interface types. All ObjC objects are
4672  // passed by reference.
4673  if (T->isObjCObjectType()) {
4674    Diag(NameLoc,
4675         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4676    New->setInvalidDecl();
4677  }
4678
4679  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4680  // duration shall not be qualified by an address-space qualifier."
4681  // Since all parameters have automatic store duration, they can not have
4682  // an address space.
4683  if (T.getAddressSpace() != 0) {
4684    Diag(NameLoc, diag::err_arg_with_address_space);
4685    New->setInvalidDecl();
4686  }
4687
4688  return New;
4689}
4690
4691void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4692                                           SourceLocation LocAfterDecls) {
4693  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4694         "Not a function declarator!");
4695  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4696
4697  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4698  // for a K&R function.
4699  if (!FTI.hasPrototype) {
4700    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4701      --i;
4702      if (FTI.ArgInfo[i].Param == 0) {
4703        llvm::SmallString<256> Code;
4704        llvm::raw_svector_ostream(Code) << "  int "
4705                                        << FTI.ArgInfo[i].Ident->getName()
4706                                        << ";\n";
4707        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4708          << FTI.ArgInfo[i].Ident
4709          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4710
4711        // Implicitly declare the argument as type 'int' for lack of a better
4712        // type.
4713        DeclSpec DS;
4714        const char* PrevSpec; // unused
4715        unsigned DiagID; // unused
4716        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4717                           PrevSpec, DiagID);
4718        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4719        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4720        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4721      }
4722    }
4723  }
4724}
4725
4726Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4727                                         Declarator &D) {
4728  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4729  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4730         "Not a function declarator!");
4731  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4732
4733  if (FTI.hasPrototype) {
4734    // FIXME: Diagnose arguments without names in C.
4735  }
4736
4737  Scope *ParentScope = FnBodyScope->getParent();
4738
4739  Decl *DP = HandleDeclarator(ParentScope, D,
4740                              MultiTemplateParamsArg(*this),
4741                              /*IsFunctionDefinition=*/true);
4742  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4743}
4744
4745static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4746  // Don't warn about invalid declarations.
4747  if (FD->isInvalidDecl())
4748    return false;
4749
4750  // Or declarations that aren't global.
4751  if (!FD->isGlobal())
4752    return false;
4753
4754  // Don't warn about C++ member functions.
4755  if (isa<CXXMethodDecl>(FD))
4756    return false;
4757
4758  // Don't warn about 'main'.
4759  if (FD->isMain())
4760    return false;
4761
4762  // Don't warn about inline functions.
4763  if (FD->isInlineSpecified())
4764    return false;
4765
4766  // Don't warn about function templates.
4767  if (FD->getDescribedFunctionTemplate())
4768    return false;
4769
4770  // Don't warn about function template specializations.
4771  if (FD->isFunctionTemplateSpecialization())
4772    return false;
4773
4774  bool MissingPrototype = true;
4775  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4776       Prev; Prev = Prev->getPreviousDeclaration()) {
4777    // Ignore any declarations that occur in function or method
4778    // scope, because they aren't visible from the header.
4779    if (Prev->getDeclContext()->isFunctionOrMethod())
4780      continue;
4781
4782    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4783    break;
4784  }
4785
4786  return MissingPrototype;
4787}
4788
4789Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4790  // Clear the last template instantiation error context.
4791  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4792
4793  if (!D)
4794    return D;
4795  FunctionDecl *FD = 0;
4796
4797  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4798    FD = FunTmpl->getTemplatedDecl();
4799  else
4800    FD = cast<FunctionDecl>(D);
4801
4802  // Enter a new function scope
4803  PushFunctionScope();
4804
4805  // See if this is a redefinition.
4806  // But don't complain if we're in GNU89 mode and the previous definition
4807  // was an extern inline function.
4808  const FunctionDecl *Definition;
4809  if (FD->hasBody(Definition) &&
4810      !canRedefineFunction(Definition, getLangOptions())) {
4811    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4812    Diag(Definition->getLocation(), diag::note_previous_definition);
4813  }
4814
4815  // Builtin functions cannot be defined.
4816  if (unsigned BuiltinID = FD->getBuiltinID()) {
4817    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4818      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4819      FD->setInvalidDecl();
4820    }
4821  }
4822
4823  // The return type of a function definition must be complete
4824  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4825  QualType ResultType = FD->getResultType();
4826  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4827      !FD->isInvalidDecl() &&
4828      RequireCompleteType(FD->getLocation(), ResultType,
4829                          diag::err_func_def_incomplete_result))
4830    FD->setInvalidDecl();
4831
4832  // GNU warning -Wmissing-prototypes:
4833  //   Warn if a global function is defined without a previous
4834  //   prototype declaration. This warning is issued even if the
4835  //   definition itself provides a prototype. The aim is to detect
4836  //   global functions that fail to be declared in header files.
4837  if (ShouldWarnAboutMissingPrototype(FD))
4838    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4839
4840  if (FnBodyScope)
4841    PushDeclContext(FnBodyScope, FD);
4842
4843  // Check the validity of our function parameters
4844  CheckParmsForFunctionDef(FD);
4845
4846  bool ShouldCheckShadow =
4847    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4848
4849  // Introduce our parameters into the function scope
4850  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4851    ParmVarDecl *Param = FD->getParamDecl(p);
4852    Param->setOwningFunction(FD);
4853
4854    // If this has an identifier, add it to the scope stack.
4855    if (Param->getIdentifier() && FnBodyScope) {
4856      if (ShouldCheckShadow)
4857        CheckShadow(FnBodyScope, Param);
4858
4859      PushOnScopeChains(Param, FnBodyScope);
4860    }
4861  }
4862
4863  // Checking attributes of current function definition
4864  // dllimport attribute.
4865  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4866  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4867    // dllimport attribute cannot be directly applied to definition.
4868    if (!DA->isInherited()) {
4869      Diag(FD->getLocation(),
4870           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4871        << "dllimport";
4872      FD->setInvalidDecl();
4873      return FD;
4874    }
4875
4876    // Visual C++ appears to not think this is an issue, so only issue
4877    // a warning when Microsoft extensions are disabled.
4878    if (!LangOpts.Microsoft) {
4879      // If a symbol previously declared dllimport is later defined, the
4880      // attribute is ignored in subsequent references, and a warning is
4881      // emitted.
4882      Diag(FD->getLocation(),
4883           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4884        << FD->getName() << "dllimport";
4885    }
4886  }
4887  return FD;
4888}
4889
4890/// \brief Given the set of return statements within a function body,
4891/// compute the variables that are subject to the named return value
4892/// optimization.
4893///
4894/// Each of the variables that is subject to the named return value
4895/// optimization will be marked as NRVO variables in the AST, and any
4896/// return statement that has a marked NRVO variable as its NRVO candidate can
4897/// use the named return value optimization.
4898///
4899/// This function applies a very simplistic algorithm for NRVO: if every return
4900/// statement in the function has the same NRVO candidate, that candidate is
4901/// the NRVO variable.
4902///
4903/// FIXME: Employ a smarter algorithm that accounts for multiple return
4904/// statements and the lifetimes of the NRVO candidates. We should be able to
4905/// find a maximal set of NRVO variables.
4906static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4907  ReturnStmt **Returns = Scope->Returns.data();
4908
4909  const VarDecl *NRVOCandidate = 0;
4910  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4911    if (!Returns[I]->getNRVOCandidate())
4912      return;
4913
4914    if (!NRVOCandidate)
4915      NRVOCandidate = Returns[I]->getNRVOCandidate();
4916    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4917      return;
4918  }
4919
4920  if (NRVOCandidate)
4921    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4922}
4923
4924Decl *Sema::ActOnFinishFunctionBody(Decl *D, StmtArg BodyArg) {
4925  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4926}
4927
4928Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4929                                    bool IsInstantiation) {
4930  FunctionDecl *FD = 0;
4931  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4932  if (FunTmpl)
4933    FD = FunTmpl->getTemplatedDecl();
4934  else
4935    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4936
4937  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4938
4939  if (FD) {
4940    FD->setBody(Body);
4941    if (FD->isMain()) {
4942      // C and C++ allow for main to automagically return 0.
4943      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4944      FD->setHasImplicitReturnZero(true);
4945      WP.disableCheckFallThrough();
4946    }
4947
4948    if (!FD->isInvalidDecl()) {
4949      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4950
4951      // If this is a constructor, we need a vtable.
4952      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4953        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4954
4955      ComputeNRVO(Body, getCurFunction());
4956    }
4957
4958    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4959  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4960    assert(MD == getCurMethodDecl() && "Method parsing confused");
4961    MD->setBody(Body);
4962    MD->setEndLoc(Body->getLocEnd());
4963    if (!MD->isInvalidDecl())
4964      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4965  } else {
4966    return 0;
4967  }
4968
4969  // Verify and clean out per-function state.
4970
4971  // Check goto/label use.
4972  FunctionScopeInfo *CurFn = getCurFunction();
4973  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4974         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
4975    LabelStmt *L = I->second;
4976
4977    // Verify that we have no forward references left.  If so, there was a goto
4978    // or address of a label taken, but no definition of it.  Label fwd
4979    // definitions are indicated with a null substmt.
4980    if (L->getSubStmt() != 0)
4981      continue;
4982
4983    // Emit error.
4984    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4985
4986    // At this point, we have gotos that use the bogus label.  Stitch it into
4987    // the function body so that they aren't leaked and that the AST is well
4988    // formed.
4989    if (Body == 0) {
4990      // The whole function wasn't parsed correctly.
4991      continue;
4992    }
4993
4994    // Otherwise, the body is valid: we want to stitch the label decl into the
4995    // function somewhere so that it is properly owned and so that the goto
4996    // has a valid target.  Do this by creating a new compound stmt with the
4997    // label in it.
4998
4999    // Give the label a sub-statement.
5000    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5001
5002    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5003                               cast<CXXTryStmt>(Body)->getTryBlock() :
5004                               cast<CompoundStmt>(Body);
5005    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5006                                          Compound->body_end());
5007    Elements.push_back(L);
5008    Compound->setStmts(Context, Elements.data(), Elements.size());
5009  }
5010
5011  if (Body) {
5012    // C++ constructors that have function-try-blocks can't have return
5013    // statements in the handlers of that block. (C++ [except.handle]p14)
5014    // Verify this.
5015    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5016      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5017
5018    // Verify that that gotos and switch cases don't jump into scopes illegally.
5019    // Verify that that gotos and switch cases don't jump into scopes illegally.
5020    if (getCurFunction()->NeedsScopeChecking() &&
5021        !dcl->isInvalidDecl() &&
5022        !hasAnyErrorsInThisFunction())
5023      DiagnoseInvalidJumps(Body);
5024
5025    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5026      if (!Destructor->getParent()->isDependentType())
5027        CheckDestructor(Destructor);
5028
5029      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5030                                             Destructor->getParent());
5031    }
5032
5033    // If any errors have occurred, clear out any temporaries that may have
5034    // been leftover. This ensures that these temporaries won't be picked up for
5035    // deletion in some later function.
5036    if (PP.getDiagnostics().hasErrorOccurred())
5037      ExprTemporaries.clear();
5038    else if (!isa<FunctionTemplateDecl>(dcl)) {
5039      // Since the body is valid, issue any analysis-based warnings that are
5040      // enabled.
5041      QualType ResultType;
5042      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5043        AnalysisWarnings.IssueWarnings(WP, FD);
5044      } else {
5045        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5046        AnalysisWarnings.IssueWarnings(WP, MD);
5047      }
5048    }
5049
5050    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5051  }
5052
5053  if (!IsInstantiation)
5054    PopDeclContext();
5055
5056  PopFunctionOrBlockScope();
5057
5058  // If any errors have occurred, clear out any temporaries that may have
5059  // been leftover. This ensures that these temporaries won't be picked up for
5060  // deletion in some later function.
5061  if (getDiagnostics().hasErrorOccurred())
5062    ExprTemporaries.clear();
5063
5064  return dcl;
5065}
5066
5067/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5068/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5069NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5070                                          IdentifierInfo &II, Scope *S) {
5071  // Before we produce a declaration for an implicitly defined
5072  // function, see whether there was a locally-scoped declaration of
5073  // this name as a function or variable. If so, use that
5074  // (non-visible) declaration, and complain about it.
5075  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5076    = LocallyScopedExternalDecls.find(&II);
5077  if (Pos != LocallyScopedExternalDecls.end()) {
5078    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5079    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5080    return Pos->second;
5081  }
5082
5083  // Extension in C99.  Legal in C90, but warn about it.
5084  if (II.getName().startswith("__builtin_"))
5085    Diag(Loc, diag::warn_builtin_unknown) << &II;
5086  else if (getLangOptions().C99)
5087    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5088  else
5089    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5090
5091  // Set a Declarator for the implicit definition: int foo();
5092  const char *Dummy;
5093  DeclSpec DS;
5094  unsigned DiagID;
5095  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5096  Error = Error; // Silence warning.
5097  assert(!Error && "Error setting up implicit decl!");
5098  Declarator D(DS, Declarator::BlockContext);
5099  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5100                                             0, 0, false, SourceLocation(),
5101                                             false, 0,0,0, Loc, Loc, D),
5102                SourceLocation());
5103  D.SetIdentifier(&II, Loc);
5104
5105  // Insert this function into translation-unit scope.
5106
5107  DeclContext *PrevDC = CurContext;
5108  CurContext = Context.getTranslationUnitDecl();
5109
5110  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5111  FD->setImplicit();
5112
5113  CurContext = PrevDC;
5114
5115  AddKnownFunctionAttributes(FD);
5116
5117  return FD;
5118}
5119
5120/// \brief Adds any function attributes that we know a priori based on
5121/// the declaration of this function.
5122///
5123/// These attributes can apply both to implicitly-declared builtins
5124/// (like __builtin___printf_chk) or to library-declared functions
5125/// like NSLog or printf.
5126void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5127  if (FD->isInvalidDecl())
5128    return;
5129
5130  // If this is a built-in function, map its builtin attributes to
5131  // actual attributes.
5132  if (unsigned BuiltinID = FD->getBuiltinID()) {
5133    // Handle printf-formatting attributes.
5134    unsigned FormatIdx;
5135    bool HasVAListArg;
5136    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5137      if (!FD->getAttr<FormatAttr>())
5138        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5139                                                "printf", FormatIdx+1,
5140                                               HasVAListArg ? 0 : FormatIdx+2));
5141    }
5142    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5143                                             HasVAListArg)) {
5144     if (!FD->getAttr<FormatAttr>())
5145       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5146                                              "scanf", FormatIdx+1,
5147                                              HasVAListArg ? 0 : FormatIdx+2));
5148    }
5149
5150    // Mark const if we don't care about errno and that is the only
5151    // thing preventing the function from being const. This allows
5152    // IRgen to use LLVM intrinsics for such functions.
5153    if (!getLangOptions().MathErrno &&
5154        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5155      if (!FD->getAttr<ConstAttr>())
5156        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5157    }
5158
5159    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5160      FD->setType(Context.getNoReturnType(FD->getType()));
5161    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5162      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5163    if (Context.BuiltinInfo.isConst(BuiltinID))
5164      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5165  }
5166
5167  IdentifierInfo *Name = FD->getIdentifier();
5168  if (!Name)
5169    return;
5170  if ((!getLangOptions().CPlusPlus &&
5171       FD->getDeclContext()->isTranslationUnit()) ||
5172      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5173       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5174       LinkageSpecDecl::lang_c)) {
5175    // Okay: this could be a libc/libm/Objective-C function we know
5176    // about.
5177  } else
5178    return;
5179
5180  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5181    // FIXME: NSLog and NSLogv should be target specific
5182    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5183      // FIXME: We known better than our headers.
5184      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5185    } else
5186      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5187                                             "printf", 1,
5188                                             Name->isStr("NSLogv") ? 0 : 2));
5189  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5190    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5191    // target-specific builtins, perhaps?
5192    if (!FD->getAttr<FormatAttr>())
5193      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5194                                             "printf", 2,
5195                                             Name->isStr("vasprintf") ? 0 : 3));
5196  }
5197}
5198
5199TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5200                                    TypeSourceInfo *TInfo) {
5201  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5202  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5203
5204  if (!TInfo) {
5205    assert(D.isInvalidType() && "no declarator info for valid type");
5206    TInfo = Context.getTrivialTypeSourceInfo(T);
5207  }
5208
5209  // Scope manipulation handled by caller.
5210  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5211                                           D.getIdentifierLoc(),
5212                                           D.getIdentifier(),
5213                                           TInfo);
5214
5215  if (const TagType *TT = T->getAs<TagType>()) {
5216    TagDecl *TD = TT->getDecl();
5217
5218    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5219    // keep track of the TypedefDecl.
5220    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5221      TD->setTypedefForAnonDecl(NewTD);
5222  }
5223
5224  if (D.isInvalidType())
5225    NewTD->setInvalidDecl();
5226  return NewTD;
5227}
5228
5229
5230/// \brief Determine whether a tag with a given kind is acceptable
5231/// as a redeclaration of the given tag declaration.
5232///
5233/// \returns true if the new tag kind is acceptable, false otherwise.
5234bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5235                                        TagTypeKind NewTag,
5236                                        SourceLocation NewTagLoc,
5237                                        const IdentifierInfo &Name) {
5238  // C++ [dcl.type.elab]p3:
5239  //   The class-key or enum keyword present in the
5240  //   elaborated-type-specifier shall agree in kind with the
5241  //   declaration to which the name in the elaborated-type-specifier
5242  //   refers. This rule also applies to the form of
5243  //   elaborated-type-specifier that declares a class-name or
5244  //   friend class since it can be construed as referring to the
5245  //   definition of the class. Thus, in any
5246  //   elaborated-type-specifier, the enum keyword shall be used to
5247  //   refer to an enumeration (7.2), the union class-key shall be
5248  //   used to refer to a union (clause 9), and either the class or
5249  //   struct class-key shall be used to refer to a class (clause 9)
5250  //   declared using the class or struct class-key.
5251  TagTypeKind OldTag = Previous->getTagKind();
5252  if (OldTag == NewTag)
5253    return true;
5254
5255  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5256      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5257    // Warn about the struct/class tag mismatch.
5258    bool isTemplate = false;
5259    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5260      isTemplate = Record->getDescribedClassTemplate();
5261
5262    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5263      << (NewTag == TTK_Class)
5264      << isTemplate << &Name
5265      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5266                              OldTag == TTK_Class? "class" : "struct");
5267    Diag(Previous->getLocation(), diag::note_previous_use);
5268    return true;
5269  }
5270  return false;
5271}
5272
5273/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5274/// former case, Name will be non-null.  In the later case, Name will be null.
5275/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5276/// reference/declaration/definition of a tag.
5277Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5278                               SourceLocation KWLoc, CXXScopeSpec &SS,
5279                               IdentifierInfo *Name, SourceLocation NameLoc,
5280                               AttributeList *Attr, AccessSpecifier AS,
5281                               MultiTemplateParamsArg TemplateParameterLists,
5282                               bool &OwnedDecl, bool &IsDependent) {
5283  // If this is not a definition, it must have a name.
5284  assert((Name != 0 || TUK == TUK_Definition) &&
5285         "Nameless record must be a definition!");
5286
5287  OwnedDecl = false;
5288  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5289
5290  // FIXME: Check explicit specializations more carefully.
5291  bool isExplicitSpecialization = false;
5292  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5293  bool Invalid = false;
5294  if (TUK != TUK_Reference) {
5295    if (TemplateParameterList *TemplateParams
5296          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5297                        (TemplateParameterList**)TemplateParameterLists.get(),
5298                                              TemplateParameterLists.size(),
5299                                                    TUK == TUK_Friend,
5300                                                    isExplicitSpecialization,
5301                                                    Invalid)) {
5302      // All but one template parameter lists have been matching.
5303      --NumMatchedTemplateParamLists;
5304
5305      if (TemplateParams->size() > 0) {
5306        // This is a declaration or definition of a class template (which may
5307        // be a member of another template).
5308        if (Invalid)
5309          return 0;
5310
5311        OwnedDecl = false;
5312        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5313                                               SS, Name, NameLoc, Attr,
5314                                               TemplateParams,
5315                                               AS);
5316        TemplateParameterLists.release();
5317        return Result.get();
5318      } else {
5319        // The "template<>" header is extraneous.
5320        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5321          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5322        isExplicitSpecialization = true;
5323      }
5324    }
5325  }
5326
5327  DeclContext *SearchDC = CurContext;
5328  DeclContext *DC = CurContext;
5329  bool isStdBadAlloc = false;
5330
5331  RedeclarationKind Redecl = ForRedeclaration;
5332  if (TUK == TUK_Friend || TUK == TUK_Reference)
5333    Redecl = NotForRedeclaration;
5334
5335  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5336
5337  if (Name && SS.isNotEmpty()) {
5338    // We have a nested-name tag ('struct foo::bar').
5339
5340    // Check for invalid 'foo::'.
5341    if (SS.isInvalid()) {
5342      Name = 0;
5343      goto CreateNewDecl;
5344    }
5345
5346    // If this is a friend or a reference to a class in a dependent
5347    // context, don't try to make a decl for it.
5348    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5349      DC = computeDeclContext(SS, false);
5350      if (!DC) {
5351        IsDependent = true;
5352        return 0;
5353      }
5354    } else {
5355      DC = computeDeclContext(SS, true);
5356      if (!DC) {
5357        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5358          << SS.getRange();
5359        return 0;
5360      }
5361    }
5362
5363    if (RequireCompleteDeclContext(SS, DC))
5364      return 0;
5365
5366    SearchDC = DC;
5367    // Look-up name inside 'foo::'.
5368    LookupQualifiedName(Previous, DC);
5369
5370    if (Previous.isAmbiguous())
5371      return 0;
5372
5373    if (Previous.empty()) {
5374      // Name lookup did not find anything. However, if the
5375      // nested-name-specifier refers to the current instantiation,
5376      // and that current instantiation has any dependent base
5377      // classes, we might find something at instantiation time: treat
5378      // this as a dependent elaborated-type-specifier.
5379      if (Previous.wasNotFoundInCurrentInstantiation()) {
5380        IsDependent = true;
5381        return 0;
5382      }
5383
5384      // A tag 'foo::bar' must already exist.
5385      Diag(NameLoc, diag::err_not_tag_in_scope)
5386        << Kind << Name << DC << SS.getRange();
5387      Name = 0;
5388      Invalid = true;
5389      goto CreateNewDecl;
5390    }
5391  } else if (Name) {
5392    // If this is a named struct, check to see if there was a previous forward
5393    // declaration or definition.
5394    // FIXME: We're looking into outer scopes here, even when we
5395    // shouldn't be. Doing so can result in ambiguities that we
5396    // shouldn't be diagnosing.
5397    LookupName(Previous, S);
5398
5399    // Note:  there used to be some attempt at recovery here.
5400    if (Previous.isAmbiguous())
5401      return 0;
5402
5403    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5404      // FIXME: This makes sure that we ignore the contexts associated
5405      // with C structs, unions, and enums when looking for a matching
5406      // tag declaration or definition. See the similar lookup tweak
5407      // in Sema::LookupName; is there a better way to deal with this?
5408      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5409        SearchDC = SearchDC->getParent();
5410    }
5411  }
5412
5413  if (Previous.isSingleResult() &&
5414      Previous.getFoundDecl()->isTemplateParameter()) {
5415    // Maybe we will complain about the shadowed template parameter.
5416    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5417    // Just pretend that we didn't see the previous declaration.
5418    Previous.clear();
5419  }
5420
5421  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5422      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5423    // This is a declaration of or a reference to "std::bad_alloc".
5424    isStdBadAlloc = true;
5425
5426    if (Previous.empty() && StdBadAlloc) {
5427      // std::bad_alloc has been implicitly declared (but made invisible to
5428      // name lookup). Fill in this implicit declaration as the previous
5429      // declaration, so that the declarations get chained appropriately.
5430      Previous.addDecl(getStdBadAlloc());
5431    }
5432  }
5433
5434  // If we didn't find a previous declaration, and this is a reference
5435  // (or friend reference), move to the correct scope.  In C++, we
5436  // also need to do a redeclaration lookup there, just in case
5437  // there's a shadow friend decl.
5438  if (Name && Previous.empty() &&
5439      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5440    if (Invalid) goto CreateNewDecl;
5441    assert(SS.isEmpty());
5442
5443    if (TUK == TUK_Reference) {
5444      // C++ [basic.scope.pdecl]p5:
5445      //   -- for an elaborated-type-specifier of the form
5446      //
5447      //          class-key identifier
5448      //
5449      //      if the elaborated-type-specifier is used in the
5450      //      decl-specifier-seq or parameter-declaration-clause of a
5451      //      function defined in namespace scope, the identifier is
5452      //      declared as a class-name in the namespace that contains
5453      //      the declaration; otherwise, except as a friend
5454      //      declaration, the identifier is declared in the smallest
5455      //      non-class, non-function-prototype scope that contains the
5456      //      declaration.
5457      //
5458      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5459      // C structs and unions.
5460      //
5461      // It is an error in C++ to declare (rather than define) an enum
5462      // type, including via an elaborated type specifier.  We'll
5463      // diagnose that later; for now, declare the enum in the same
5464      // scope as we would have picked for any other tag type.
5465      //
5466      // GNU C also supports this behavior as part of its incomplete
5467      // enum types extension, while GNU C++ does not.
5468      //
5469      // Find the context where we'll be declaring the tag.
5470      // FIXME: We would like to maintain the current DeclContext as the
5471      // lexical context,
5472      while (SearchDC->isRecord())
5473        SearchDC = SearchDC->getParent();
5474
5475      // Find the scope where we'll be declaring the tag.
5476      while (S->isClassScope() ||
5477             (getLangOptions().CPlusPlus &&
5478              S->isFunctionPrototypeScope()) ||
5479             ((S->getFlags() & Scope::DeclScope) == 0) ||
5480             (S->getEntity() &&
5481              ((DeclContext *)S->getEntity())->isTransparentContext()))
5482        S = S->getParent();
5483    } else {
5484      assert(TUK == TUK_Friend);
5485      // C++ [namespace.memdef]p3:
5486      //   If a friend declaration in a non-local class first declares a
5487      //   class or function, the friend class or function is a member of
5488      //   the innermost enclosing namespace.
5489      SearchDC = SearchDC->getEnclosingNamespaceContext();
5490    }
5491
5492    // In C++, we need to do a redeclaration lookup to properly
5493    // diagnose some problems.
5494    if (getLangOptions().CPlusPlus) {
5495      Previous.setRedeclarationKind(ForRedeclaration);
5496      LookupQualifiedName(Previous, SearchDC);
5497    }
5498  }
5499
5500  if (!Previous.empty()) {
5501    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5502
5503    // It's okay to have a tag decl in the same scope as a typedef
5504    // which hides a tag decl in the same scope.  Finding this
5505    // insanity with a redeclaration lookup can only actually happen
5506    // in C++.
5507    //
5508    // This is also okay for elaborated-type-specifiers, which is
5509    // technically forbidden by the current standard but which is
5510    // okay according to the likely resolution of an open issue;
5511    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5512    if (getLangOptions().CPlusPlus) {
5513      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5514        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5515          TagDecl *Tag = TT->getDecl();
5516          if (Tag->getDeclName() == Name &&
5517              Tag->getDeclContext()->getLookupContext()
5518                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5519            PrevDecl = Tag;
5520            Previous.clear();
5521            Previous.addDecl(Tag);
5522          }
5523        }
5524      }
5525    }
5526
5527    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5528      // If this is a use of a previous tag, or if the tag is already declared
5529      // in the same scope (so that the definition/declaration completes or
5530      // rementions the tag), reuse the decl.
5531      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5532          isDeclInScope(PrevDecl, SearchDC, S)) {
5533        // Make sure that this wasn't declared as an enum and now used as a
5534        // struct or something similar.
5535        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5536          bool SafeToContinue
5537            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5538               Kind != TTK_Enum);
5539          if (SafeToContinue)
5540            Diag(KWLoc, diag::err_use_with_wrong_tag)
5541              << Name
5542              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5543                                              PrevTagDecl->getKindName());
5544          else
5545            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5546          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5547
5548          if (SafeToContinue)
5549            Kind = PrevTagDecl->getTagKind();
5550          else {
5551            // Recover by making this an anonymous redefinition.
5552            Name = 0;
5553            Previous.clear();
5554            Invalid = true;
5555          }
5556        }
5557
5558        if (!Invalid) {
5559          // If this is a use, just return the declaration we found.
5560
5561          // FIXME: In the future, return a variant or some other clue
5562          // for the consumer of this Decl to know it doesn't own it.
5563          // For our current ASTs this shouldn't be a problem, but will
5564          // need to be changed with DeclGroups.
5565          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5566              TUK == TUK_Friend)
5567            return PrevTagDecl;
5568
5569          // Diagnose attempts to redefine a tag.
5570          if (TUK == TUK_Definition) {
5571            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5572              // If we're defining a specialization and the previous definition
5573              // is from an implicit instantiation, don't emit an error
5574              // here; we'll catch this in the general case below.
5575              if (!isExplicitSpecialization ||
5576                  !isa<CXXRecordDecl>(Def) ||
5577                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5578                                               == TSK_ExplicitSpecialization) {
5579                Diag(NameLoc, diag::err_redefinition) << Name;
5580                Diag(Def->getLocation(), diag::note_previous_definition);
5581                // If this is a redefinition, recover by making this
5582                // struct be anonymous, which will make any later
5583                // references get the previous definition.
5584                Name = 0;
5585                Previous.clear();
5586                Invalid = true;
5587              }
5588            } else {
5589              // If the type is currently being defined, complain
5590              // about a nested redefinition.
5591              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5592              if (Tag->isBeingDefined()) {
5593                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5594                Diag(PrevTagDecl->getLocation(),
5595                     diag::note_previous_definition);
5596                Name = 0;
5597                Previous.clear();
5598                Invalid = true;
5599              }
5600            }
5601
5602            // Okay, this is definition of a previously declared or referenced
5603            // tag PrevDecl. We're going to create a new Decl for it.
5604          }
5605        }
5606        // If we get here we have (another) forward declaration or we
5607        // have a definition.  Just create a new decl.
5608
5609      } else {
5610        // If we get here, this is a definition of a new tag type in a nested
5611        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5612        // new decl/type.  We set PrevDecl to NULL so that the entities
5613        // have distinct types.
5614        Previous.clear();
5615      }
5616      // If we get here, we're going to create a new Decl. If PrevDecl
5617      // is non-NULL, it's a definition of the tag declared by
5618      // PrevDecl. If it's NULL, we have a new definition.
5619
5620
5621    // Otherwise, PrevDecl is not a tag, but was found with tag
5622    // lookup.  This is only actually possible in C++, where a few
5623    // things like templates still live in the tag namespace.
5624    } else {
5625      assert(getLangOptions().CPlusPlus);
5626
5627      // Use a better diagnostic if an elaborated-type-specifier
5628      // found the wrong kind of type on the first
5629      // (non-redeclaration) lookup.
5630      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5631          !Previous.isForRedeclaration()) {
5632        unsigned Kind = 0;
5633        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5634        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5635        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5636        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5637        Invalid = true;
5638
5639      // Otherwise, only diagnose if the declaration is in scope.
5640      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5641        // do nothing
5642
5643      // Diagnose implicit declarations introduced by elaborated types.
5644      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5645        unsigned Kind = 0;
5646        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5647        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5648        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5649        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5650        Invalid = true;
5651
5652      // Otherwise it's a declaration.  Call out a particularly common
5653      // case here.
5654      } else if (isa<TypedefDecl>(PrevDecl)) {
5655        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5656          << Name
5657          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5658        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5659        Invalid = true;
5660
5661      // Otherwise, diagnose.
5662      } else {
5663        // The tag name clashes with something else in the target scope,
5664        // issue an error and recover by making this tag be anonymous.
5665        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5666        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5667        Name = 0;
5668        Invalid = true;
5669      }
5670
5671      // The existing declaration isn't relevant to us; we're in a
5672      // new scope, so clear out the previous declaration.
5673      Previous.clear();
5674    }
5675  }
5676
5677CreateNewDecl:
5678
5679  TagDecl *PrevDecl = 0;
5680  if (Previous.isSingleResult())
5681    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5682
5683  // If there is an identifier, use the location of the identifier as the
5684  // location of the decl, otherwise use the location of the struct/union
5685  // keyword.
5686  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5687
5688  // Otherwise, create a new declaration. If there is a previous
5689  // declaration of the same entity, the two will be linked via
5690  // PrevDecl.
5691  TagDecl *New;
5692
5693  if (Kind == TTK_Enum) {
5694    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5695    // enum X { A, B, C } D;    D should chain to X.
5696    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5697                           cast_or_null<EnumDecl>(PrevDecl));
5698    // If this is an undefined enum, warn.
5699    if (TUK != TUK_Definition && !Invalid) {
5700      TagDecl *Def;
5701      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5702        Diag(Loc, diag::ext_forward_ref_enum_def)
5703          << New;
5704        Diag(Def->getLocation(), diag::note_previous_definition);
5705      } else {
5706        Diag(Loc,
5707             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5708                                       : diag::ext_forward_ref_enum);
5709      }
5710    }
5711  } else {
5712    // struct/union/class
5713
5714    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5715    // struct X { int A; } D;    D should chain to X.
5716    if (getLangOptions().CPlusPlus) {
5717      // FIXME: Look for a way to use RecordDecl for simple structs.
5718      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5719                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5720
5721      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5722        StdBadAlloc = cast<CXXRecordDecl>(New);
5723    } else
5724      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5725                               cast_or_null<RecordDecl>(PrevDecl));
5726  }
5727
5728  // Maybe add qualifier info.
5729  if (SS.isNotEmpty()) {
5730    if (SS.isSet()) {
5731      NestedNameSpecifier *NNS
5732        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5733      New->setQualifierInfo(NNS, SS.getRange());
5734      if (NumMatchedTemplateParamLists > 0) {
5735        New->setTemplateParameterListsInfo(Context,
5736                                           NumMatchedTemplateParamLists,
5737                    (TemplateParameterList**) TemplateParameterLists.release());
5738      }
5739    }
5740    else
5741      Invalid = true;
5742  }
5743
5744  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5745    // Add alignment attributes if necessary; these attributes are checked when
5746    // the ASTContext lays out the structure.
5747    //
5748    // It is important for implementing the correct semantics that this
5749    // happen here (in act on tag decl). The #pragma pack stack is
5750    // maintained as a result of parser callbacks which can occur at
5751    // many points during the parsing of a struct declaration (because
5752    // the #pragma tokens are effectively skipped over during the
5753    // parsing of the struct).
5754    AddAlignmentAttributesForRecord(RD);
5755  }
5756
5757  // If this is a specialization of a member class (of a class template),
5758  // check the specialization.
5759  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5760    Invalid = true;
5761
5762  if (Invalid)
5763    New->setInvalidDecl();
5764
5765  if (Attr)
5766    ProcessDeclAttributeList(S, New, Attr);
5767
5768  // If we're declaring or defining a tag in function prototype scope
5769  // in C, note that this type can only be used within the function.
5770  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5771    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5772
5773  // Set the lexical context. If the tag has a C++ scope specifier, the
5774  // lexical context will be different from the semantic context.
5775  New->setLexicalDeclContext(CurContext);
5776
5777  // Mark this as a friend decl if applicable.
5778  if (TUK == TUK_Friend)
5779    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5780
5781  // Set the access specifier.
5782  if (!Invalid && SearchDC->isRecord())
5783    SetMemberAccessSpecifier(New, PrevDecl, AS);
5784
5785  if (TUK == TUK_Definition)
5786    New->startDefinition();
5787
5788  // If this has an identifier, add it to the scope stack.
5789  if (TUK == TUK_Friend) {
5790    // We might be replacing an existing declaration in the lookup tables;
5791    // if so, borrow its access specifier.
5792    if (PrevDecl)
5793      New->setAccess(PrevDecl->getAccess());
5794
5795    DeclContext *DC = New->getDeclContext()->getLookupContext();
5796    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5797    if (Name) // can be null along some error paths
5798      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5799        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5800  } else if (Name) {
5801    S = getNonFieldDeclScope(S);
5802    PushOnScopeChains(New, S);
5803  } else {
5804    CurContext->addDecl(New);
5805  }
5806
5807  // If this is the C FILE type, notify the AST context.
5808  if (IdentifierInfo *II = New->getIdentifier())
5809    if (!New->isInvalidDecl() &&
5810        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5811        II->isStr("FILE"))
5812      Context.setFILEDecl(New);
5813
5814  OwnedDecl = true;
5815  return New;
5816}
5817
5818void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5819  AdjustDeclIfTemplate(TagD);
5820  TagDecl *Tag = cast<TagDecl>(TagD);
5821
5822  // Enter the tag context.
5823  PushDeclContext(S, Tag);
5824}
5825
5826void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5827                                           SourceLocation LBraceLoc) {
5828  AdjustDeclIfTemplate(TagD);
5829  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5830
5831  FieldCollector->StartClass();
5832
5833  if (!Record->getIdentifier())
5834    return;
5835
5836  // C++ [class]p2:
5837  //   [...] The class-name is also inserted into the scope of the
5838  //   class itself; this is known as the injected-class-name. For
5839  //   purposes of access checking, the injected-class-name is treated
5840  //   as if it were a public member name.
5841  CXXRecordDecl *InjectedClassName
5842    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5843                            CurContext, Record->getLocation(),
5844                            Record->getIdentifier(),
5845                            Record->getTagKeywordLoc(),
5846                            Record);
5847  InjectedClassName->setImplicit();
5848  InjectedClassName->setAccess(AS_public);
5849  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5850      InjectedClassName->setDescribedClassTemplate(Template);
5851  PushOnScopeChains(InjectedClassName, S);
5852  assert(InjectedClassName->isInjectedClassName() &&
5853         "Broken injected-class-name");
5854}
5855
5856void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5857                                    SourceLocation RBraceLoc) {
5858  AdjustDeclIfTemplate(TagD);
5859  TagDecl *Tag = cast<TagDecl>(TagD);
5860  Tag->setRBraceLoc(RBraceLoc);
5861
5862  if (isa<CXXRecordDecl>(Tag))
5863    FieldCollector->FinishClass();
5864
5865  // Exit this scope of this tag's definition.
5866  PopDeclContext();
5867
5868  // Notify the consumer that we've defined a tag.
5869  Consumer.HandleTagDeclDefinition(Tag);
5870}
5871
5872void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5873  AdjustDeclIfTemplate(TagD);
5874  TagDecl *Tag = cast<TagDecl>(TagD);
5875  Tag->setInvalidDecl();
5876
5877  // We're undoing ActOnTagStartDefinition here, not
5878  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5879  // the FieldCollector.
5880
5881  PopDeclContext();
5882}
5883
5884// Note that FieldName may be null for anonymous bitfields.
5885bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5886                          QualType FieldTy, const Expr *BitWidth,
5887                          bool *ZeroWidth) {
5888  // Default to true; that shouldn't confuse checks for emptiness
5889  if (ZeroWidth)
5890    *ZeroWidth = true;
5891
5892  // C99 6.7.2.1p4 - verify the field type.
5893  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5894  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5895    // Handle incomplete types with specific error.
5896    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5897      return true;
5898    if (FieldName)
5899      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5900        << FieldName << FieldTy << BitWidth->getSourceRange();
5901    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5902      << FieldTy << BitWidth->getSourceRange();
5903  }
5904
5905  // If the bit-width is type- or value-dependent, don't try to check
5906  // it now.
5907  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5908    return false;
5909
5910  llvm::APSInt Value;
5911  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5912    return true;
5913
5914  if (Value != 0 && ZeroWidth)
5915    *ZeroWidth = false;
5916
5917  // Zero-width bitfield is ok for anonymous field.
5918  if (Value == 0 && FieldName)
5919    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5920
5921  if (Value.isSigned() && Value.isNegative()) {
5922    if (FieldName)
5923      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5924               << FieldName << Value.toString(10);
5925    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5926      << Value.toString(10);
5927  }
5928
5929  if (!FieldTy->isDependentType()) {
5930    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5931    if (Value.getZExtValue() > TypeSize) {
5932      if (!getLangOptions().CPlusPlus) {
5933        if (FieldName)
5934          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5935            << FieldName << (unsigned)Value.getZExtValue()
5936            << (unsigned)TypeSize;
5937
5938        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5939          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5940      }
5941
5942      if (FieldName)
5943        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5944          << FieldName << (unsigned)Value.getZExtValue()
5945          << (unsigned)TypeSize;
5946      else
5947        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5948          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5949    }
5950  }
5951
5952  return false;
5953}
5954
5955/// ActOnField - Each field of a struct/union/class is passed into this in order
5956/// to create a FieldDecl object for it.
5957Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5958                                 SourceLocation DeclStart,
5959                                 Declarator &D, ExprTy *BitfieldWidth) {
5960  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5961                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5962                               AS_public);
5963  return Res;
5964}
5965
5966/// HandleField - Analyze a field of a C struct or a C++ data member.
5967///
5968FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5969                             SourceLocation DeclStart,
5970                             Declarator &D, Expr *BitWidth,
5971                             AccessSpecifier AS) {
5972  IdentifierInfo *II = D.getIdentifier();
5973  SourceLocation Loc = DeclStart;
5974  if (II) Loc = D.getIdentifierLoc();
5975
5976  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5977  QualType T = TInfo->getType();
5978  if (getLangOptions().CPlusPlus)
5979    CheckExtraCXXDefaultArguments(D);
5980
5981  DiagnoseFunctionSpecifiers(D);
5982
5983  if (D.getDeclSpec().isThreadSpecified())
5984    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5985
5986  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5987                                         ForRedeclaration);
5988
5989  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5990    // Maybe we will complain about the shadowed template parameter.
5991    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5992    // Just pretend that we didn't see the previous declaration.
5993    PrevDecl = 0;
5994  }
5995
5996  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5997    PrevDecl = 0;
5998
5999  bool Mutable
6000    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6001  SourceLocation TSSL = D.getSourceRange().getBegin();
6002  FieldDecl *NewFD
6003    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6004                     AS, PrevDecl, &D);
6005
6006  if (NewFD->isInvalidDecl())
6007    Record->setInvalidDecl();
6008
6009  if (NewFD->isInvalidDecl() && PrevDecl) {
6010    // Don't introduce NewFD into scope; there's already something
6011    // with the same name in the same scope.
6012  } else if (II) {
6013    PushOnScopeChains(NewFD, S);
6014  } else
6015    Record->addDecl(NewFD);
6016
6017  return NewFD;
6018}
6019
6020/// \brief Build a new FieldDecl and check its well-formedness.
6021///
6022/// This routine builds a new FieldDecl given the fields name, type,
6023/// record, etc. \p PrevDecl should refer to any previous declaration
6024/// with the same name and in the same scope as the field to be
6025/// created.
6026///
6027/// \returns a new FieldDecl.
6028///
6029/// \todo The Declarator argument is a hack. It will be removed once
6030FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6031                                TypeSourceInfo *TInfo,
6032                                RecordDecl *Record, SourceLocation Loc,
6033                                bool Mutable, Expr *BitWidth,
6034                                SourceLocation TSSL,
6035                                AccessSpecifier AS, NamedDecl *PrevDecl,
6036                                Declarator *D) {
6037  IdentifierInfo *II = Name.getAsIdentifierInfo();
6038  bool InvalidDecl = false;
6039  if (D) InvalidDecl = D->isInvalidType();
6040
6041  // If we receive a broken type, recover by assuming 'int' and
6042  // marking this declaration as invalid.
6043  if (T.isNull()) {
6044    InvalidDecl = true;
6045    T = Context.IntTy;
6046  }
6047
6048  QualType EltTy = Context.getBaseElementType(T);
6049  if (!EltTy->isDependentType() &&
6050      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6051    // Fields of incomplete type force their record to be invalid.
6052    Record->setInvalidDecl();
6053    InvalidDecl = true;
6054  }
6055
6056  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6057  // than a variably modified type.
6058  if (!InvalidDecl && T->isVariablyModifiedType()) {
6059    bool SizeIsNegative;
6060    llvm::APSInt Oversized;
6061    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6062                                                           SizeIsNegative,
6063                                                           Oversized);
6064    if (!FixedTy.isNull()) {
6065      Diag(Loc, diag::warn_illegal_constant_array_size);
6066      T = FixedTy;
6067    } else {
6068      if (SizeIsNegative)
6069        Diag(Loc, diag::err_typecheck_negative_array_size);
6070      else if (Oversized.getBoolValue())
6071        Diag(Loc, diag::err_array_too_large)
6072          << Oversized.toString(10);
6073      else
6074        Diag(Loc, diag::err_typecheck_field_variable_size);
6075      InvalidDecl = true;
6076    }
6077  }
6078
6079  // Fields can not have abstract class types
6080  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6081                                             diag::err_abstract_type_in_decl,
6082                                             AbstractFieldType))
6083    InvalidDecl = true;
6084
6085  bool ZeroWidth = false;
6086  // If this is declared as a bit-field, check the bit-field.
6087  if (!InvalidDecl && BitWidth &&
6088      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6089    InvalidDecl = true;
6090    DeleteExpr(BitWidth);
6091    BitWidth = 0;
6092    ZeroWidth = false;
6093  }
6094
6095  // Check that 'mutable' is consistent with the type of the declaration.
6096  if (!InvalidDecl && Mutable) {
6097    unsigned DiagID = 0;
6098    if (T->isReferenceType())
6099      DiagID = diag::err_mutable_reference;
6100    else if (T.isConstQualified())
6101      DiagID = diag::err_mutable_const;
6102
6103    if (DiagID) {
6104      SourceLocation ErrLoc = Loc;
6105      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6106        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6107      Diag(ErrLoc, DiagID);
6108      Mutable = false;
6109      InvalidDecl = true;
6110    }
6111  }
6112
6113  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6114                                       BitWidth, Mutable);
6115  if (InvalidDecl)
6116    NewFD->setInvalidDecl();
6117
6118  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6119    Diag(Loc, diag::err_duplicate_member) << II;
6120    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6121    NewFD->setInvalidDecl();
6122  }
6123
6124  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6125    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6126
6127    if (!T->isPODType())
6128      CXXRecord->setPOD(false);
6129    if (!ZeroWidth)
6130      CXXRecord->setEmpty(false);
6131
6132    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6133      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6134      if (RDecl->getDefinition()) {
6135        if (!RDecl->hasTrivialConstructor())
6136          CXXRecord->setHasTrivialConstructor(false);
6137        if (!RDecl->hasTrivialCopyConstructor())
6138          CXXRecord->setHasTrivialCopyConstructor(false);
6139        if (!RDecl->hasTrivialCopyAssignment())
6140          CXXRecord->setHasTrivialCopyAssignment(false);
6141        if (!RDecl->hasTrivialDestructor())
6142          CXXRecord->setHasTrivialDestructor(false);
6143
6144        // C++ 9.5p1: An object of a class with a non-trivial
6145        // constructor, a non-trivial copy constructor, a non-trivial
6146        // destructor, or a non-trivial copy assignment operator
6147        // cannot be a member of a union, nor can an array of such
6148        // objects.
6149        // TODO: C++0x alters this restriction significantly.
6150        if (Record->isUnion() && CheckNontrivialField(NewFD))
6151          NewFD->setInvalidDecl();
6152      }
6153    }
6154  }
6155
6156  // FIXME: We need to pass in the attributes given an AST
6157  // representation, not a parser representation.
6158  if (D)
6159    // FIXME: What to pass instead of TUScope?
6160    ProcessDeclAttributes(TUScope, NewFD, *D);
6161
6162  if (T.isObjCGCWeak())
6163    Diag(Loc, diag::warn_attribute_weak_on_field);
6164
6165  NewFD->setAccess(AS);
6166
6167  // C++ [dcl.init.aggr]p1:
6168  //   An aggregate is an array or a class (clause 9) with [...] no
6169  //   private or protected non-static data members (clause 11).
6170  // A POD must be an aggregate.
6171  if (getLangOptions().CPlusPlus &&
6172      (AS == AS_private || AS == AS_protected)) {
6173    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6174    CXXRecord->setAggregate(false);
6175    CXXRecord->setPOD(false);
6176  }
6177
6178  return NewFD;
6179}
6180
6181bool Sema::CheckNontrivialField(FieldDecl *FD) {
6182  assert(FD);
6183  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6184
6185  if (FD->isInvalidDecl())
6186    return true;
6187
6188  QualType EltTy = Context.getBaseElementType(FD->getType());
6189  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6190    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6191    if (RDecl->getDefinition()) {
6192      // We check for copy constructors before constructors
6193      // because otherwise we'll never get complaints about
6194      // copy constructors.
6195
6196      CXXSpecialMember member = CXXInvalid;
6197      if (!RDecl->hasTrivialCopyConstructor())
6198        member = CXXCopyConstructor;
6199      else if (!RDecl->hasTrivialConstructor())
6200        member = CXXConstructor;
6201      else if (!RDecl->hasTrivialCopyAssignment())
6202        member = CXXCopyAssignment;
6203      else if (!RDecl->hasTrivialDestructor())
6204        member = CXXDestructor;
6205
6206      if (member != CXXInvalid) {
6207        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6208              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6209        DiagnoseNontrivial(RT, member);
6210        return true;
6211      }
6212    }
6213  }
6214
6215  return false;
6216}
6217
6218/// DiagnoseNontrivial - Given that a class has a non-trivial
6219/// special member, figure out why.
6220void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6221  QualType QT(T, 0U);
6222  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6223
6224  // Check whether the member was user-declared.
6225  switch (member) {
6226  case CXXInvalid:
6227    break;
6228
6229  case CXXConstructor:
6230    if (RD->hasUserDeclaredConstructor()) {
6231      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6232      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6233        const FunctionDecl *body = 0;
6234        ci->hasBody(body);
6235        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6236          SourceLocation CtorLoc = ci->getLocation();
6237          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6238          return;
6239        }
6240      }
6241
6242      assert(0 && "found no user-declared constructors");
6243      return;
6244    }
6245    break;
6246
6247  case CXXCopyConstructor:
6248    if (RD->hasUserDeclaredCopyConstructor()) {
6249      SourceLocation CtorLoc =
6250        RD->getCopyConstructor(Context, 0)->getLocation();
6251      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6252      return;
6253    }
6254    break;
6255
6256  case CXXCopyAssignment:
6257    if (RD->hasUserDeclaredCopyAssignment()) {
6258      // FIXME: this should use the location of the copy
6259      // assignment, not the type.
6260      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6261      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6262      return;
6263    }
6264    break;
6265
6266  case CXXDestructor:
6267    if (RD->hasUserDeclaredDestructor()) {
6268      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6269      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6270      return;
6271    }
6272    break;
6273  }
6274
6275  typedef CXXRecordDecl::base_class_iterator base_iter;
6276
6277  // Virtual bases and members inhibit trivial copying/construction,
6278  // but not trivial destruction.
6279  if (member != CXXDestructor) {
6280    // Check for virtual bases.  vbases includes indirect virtual bases,
6281    // so we just iterate through the direct bases.
6282    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6283      if (bi->isVirtual()) {
6284        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6285        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6286        return;
6287      }
6288
6289    // Check for virtual methods.
6290    typedef CXXRecordDecl::method_iterator meth_iter;
6291    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6292         ++mi) {
6293      if (mi->isVirtual()) {
6294        SourceLocation MLoc = mi->getSourceRange().getBegin();
6295        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6296        return;
6297      }
6298    }
6299  }
6300
6301  bool (CXXRecordDecl::*hasTrivial)() const;
6302  switch (member) {
6303  case CXXConstructor:
6304    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6305  case CXXCopyConstructor:
6306    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6307  case CXXCopyAssignment:
6308    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6309  case CXXDestructor:
6310    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6311  default:
6312    assert(0 && "unexpected special member"); return;
6313  }
6314
6315  // Check for nontrivial bases (and recurse).
6316  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6317    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6318    assert(BaseRT && "Don't know how to handle dependent bases");
6319    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6320    if (!(BaseRecTy->*hasTrivial)()) {
6321      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6322      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6323      DiagnoseNontrivial(BaseRT, member);
6324      return;
6325    }
6326  }
6327
6328  // Check for nontrivial members (and recurse).
6329  typedef RecordDecl::field_iterator field_iter;
6330  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6331       ++fi) {
6332    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6333    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6334      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6335
6336      if (!(EltRD->*hasTrivial)()) {
6337        SourceLocation FLoc = (*fi)->getLocation();
6338        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6339        DiagnoseNontrivial(EltRT, member);
6340        return;
6341      }
6342    }
6343  }
6344
6345  assert(0 && "found no explanation for non-trivial member");
6346}
6347
6348/// TranslateIvarVisibility - Translate visibility from a token ID to an
6349///  AST enum value.
6350static ObjCIvarDecl::AccessControl
6351TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6352  switch (ivarVisibility) {
6353  default: assert(0 && "Unknown visitibility kind");
6354  case tok::objc_private: return ObjCIvarDecl::Private;
6355  case tok::objc_public: return ObjCIvarDecl::Public;
6356  case tok::objc_protected: return ObjCIvarDecl::Protected;
6357  case tok::objc_package: return ObjCIvarDecl::Package;
6358  }
6359}
6360
6361/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6362/// in order to create an IvarDecl object for it.
6363Decl *Sema::ActOnIvar(Scope *S,
6364                                SourceLocation DeclStart,
6365                                Decl *IntfDecl,
6366                                Declarator &D, ExprTy *BitfieldWidth,
6367                                tok::ObjCKeywordKind Visibility) {
6368
6369  IdentifierInfo *II = D.getIdentifier();
6370  Expr *BitWidth = (Expr*)BitfieldWidth;
6371  SourceLocation Loc = DeclStart;
6372  if (II) Loc = D.getIdentifierLoc();
6373
6374  // FIXME: Unnamed fields can be handled in various different ways, for
6375  // example, unnamed unions inject all members into the struct namespace!
6376
6377  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6378  QualType T = TInfo->getType();
6379
6380  if (BitWidth) {
6381    // 6.7.2.1p3, 6.7.2.1p4
6382    if (VerifyBitField(Loc, II, T, BitWidth)) {
6383      D.setInvalidType();
6384      DeleteExpr(BitWidth);
6385      BitWidth = 0;
6386    }
6387  } else {
6388    // Not a bitfield.
6389
6390    // validate II.
6391
6392  }
6393  if (T->isReferenceType()) {
6394    Diag(Loc, diag::err_ivar_reference_type);
6395    D.setInvalidType();
6396  }
6397  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6398  // than a variably modified type.
6399  else if (T->isVariablyModifiedType()) {
6400    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6401    D.setInvalidType();
6402  }
6403
6404  // Get the visibility (access control) for this ivar.
6405  ObjCIvarDecl::AccessControl ac =
6406    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6407                                        : ObjCIvarDecl::None;
6408  // Must set ivar's DeclContext to its enclosing interface.
6409  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6410  ObjCContainerDecl *EnclosingContext;
6411  if (ObjCImplementationDecl *IMPDecl =
6412      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6413    if (!LangOpts.ObjCNonFragileABI2) {
6414    // Case of ivar declared in an implementation. Context is that of its class.
6415      EnclosingContext = IMPDecl->getClassInterface();
6416      assert(EnclosingContext && "Implementation has no class interface!");
6417    }
6418    else
6419      EnclosingContext = EnclosingDecl;
6420  } else {
6421    if (ObjCCategoryDecl *CDecl =
6422        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6423      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6424        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6425        return 0;
6426      }
6427    }
6428    EnclosingContext = EnclosingDecl;
6429  }
6430
6431  // Construct the decl.
6432  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6433                                             EnclosingContext, Loc, II, T,
6434                                             TInfo, ac, (Expr *)BitfieldWidth);
6435
6436  if (II) {
6437    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6438                                           ForRedeclaration);
6439    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6440        && !isa<TagDecl>(PrevDecl)) {
6441      Diag(Loc, diag::err_duplicate_member) << II;
6442      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6443      NewID->setInvalidDecl();
6444    }
6445  }
6446
6447  // Process attributes attached to the ivar.
6448  ProcessDeclAttributes(S, NewID, D);
6449
6450  if (D.isInvalidType())
6451    NewID->setInvalidDecl();
6452
6453  if (II) {
6454    // FIXME: When interfaces are DeclContexts, we'll need to add
6455    // these to the interface.
6456    S->AddDecl(NewID);
6457    IdResolver.AddDecl(NewID);
6458  }
6459
6460  return NewID;
6461}
6462
6463/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6464/// class and class extensions. For every class @interface and class
6465/// extension @interface, if the last ivar is a bitfield of any type,
6466/// then add an implicit `char :0` ivar to the end of that interface.
6467void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6468                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6469  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6470    return;
6471
6472  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6473  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6474
6475  if (!Ivar->isBitField())
6476    return;
6477  uint64_t BitFieldSize =
6478    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6479  if (BitFieldSize == 0)
6480    return;
6481  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6482  if (!ID) {
6483    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6484      if (!CD->IsClassExtension())
6485        return;
6486    }
6487    // No need to add this to end of @implementation.
6488    else
6489      return;
6490  }
6491  // All conditions are met. Add a new bitfield to the tail end of ivars.
6492  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6493  Expr * BW =
6494    new (Context) IntegerLiteral(Zero, Context.CharTy, DeclLoc);
6495
6496  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6497                              DeclLoc, 0,
6498                              Context.CharTy,
6499                              Context.CreateTypeSourceInfo(Context.CharTy),
6500                              ObjCIvarDecl::Private, BW,
6501                              true);
6502  AllIvarDecls.push_back(Ivar);
6503}
6504
6505void Sema::ActOnFields(Scope* S,
6506                       SourceLocation RecLoc, Decl *EnclosingDecl,
6507                       Decl **Fields, unsigned NumFields,
6508                       SourceLocation LBrac, SourceLocation RBrac,
6509                       AttributeList *Attr) {
6510  assert(EnclosingDecl && "missing record or interface decl");
6511
6512  // If the decl this is being inserted into is invalid, then it may be a
6513  // redeclaration or some other bogus case.  Don't try to add fields to it.
6514  if (EnclosingDecl->isInvalidDecl()) {
6515    // FIXME: Deallocate fields?
6516    return;
6517  }
6518
6519
6520  // Verify that all the fields are okay.
6521  unsigned NumNamedMembers = 0;
6522  llvm::SmallVector<FieldDecl*, 32> RecFields;
6523
6524  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6525  for (unsigned i = 0; i != NumFields; ++i) {
6526    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6527
6528    // Get the type for the field.
6529    Type *FDTy = FD->getType().getTypePtr();
6530
6531    if (!FD->isAnonymousStructOrUnion()) {
6532      // Remember all fields written by the user.
6533      RecFields.push_back(FD);
6534    }
6535
6536    // If the field is already invalid for some reason, don't emit more
6537    // diagnostics about it.
6538    if (FD->isInvalidDecl()) {
6539      EnclosingDecl->setInvalidDecl();
6540      continue;
6541    }
6542
6543    // C99 6.7.2.1p2:
6544    //   A structure or union shall not contain a member with
6545    //   incomplete or function type (hence, a structure shall not
6546    //   contain an instance of itself, but may contain a pointer to
6547    //   an instance of itself), except that the last member of a
6548    //   structure with more than one named member may have incomplete
6549    //   array type; such a structure (and any union containing,
6550    //   possibly recursively, a member that is such a structure)
6551    //   shall not be a member of a structure or an element of an
6552    //   array.
6553    if (FDTy->isFunctionType()) {
6554      // Field declared as a function.
6555      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6556        << FD->getDeclName();
6557      FD->setInvalidDecl();
6558      EnclosingDecl->setInvalidDecl();
6559      continue;
6560    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6561               Record && Record->isStruct()) {
6562      // Flexible array member.
6563      if (NumNamedMembers < 1) {
6564        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6565          << FD->getDeclName();
6566        FD->setInvalidDecl();
6567        EnclosingDecl->setInvalidDecl();
6568        continue;
6569      }
6570      if (!FD->getType()->isDependentType() &&
6571          !Context.getBaseElementType(FD->getType())->isPODType()) {
6572        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6573          << FD->getDeclName() << FD->getType();
6574        FD->setInvalidDecl();
6575        EnclosingDecl->setInvalidDecl();
6576        continue;
6577      }
6578
6579      // Okay, we have a legal flexible array member at the end of the struct.
6580      if (Record)
6581        Record->setHasFlexibleArrayMember(true);
6582    } else if (!FDTy->isDependentType() &&
6583               RequireCompleteType(FD->getLocation(), FD->getType(),
6584                                   diag::err_field_incomplete)) {
6585      // Incomplete type
6586      FD->setInvalidDecl();
6587      EnclosingDecl->setInvalidDecl();
6588      continue;
6589    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6590      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6591        // If this is a member of a union, then entire union becomes "flexible".
6592        if (Record && Record->isUnion()) {
6593          Record->setHasFlexibleArrayMember(true);
6594        } else {
6595          // If this is a struct/class and this is not the last element, reject
6596          // it.  Note that GCC supports variable sized arrays in the middle of
6597          // structures.
6598          if (i != NumFields-1)
6599            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6600              << FD->getDeclName() << FD->getType();
6601          else {
6602            // We support flexible arrays at the end of structs in
6603            // other structs as an extension.
6604            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6605              << FD->getDeclName();
6606            if (Record)
6607              Record->setHasFlexibleArrayMember(true);
6608          }
6609        }
6610      }
6611      if (Record && FDTTy->getDecl()->hasObjectMember())
6612        Record->setHasObjectMember(true);
6613    } else if (FDTy->isObjCObjectType()) {
6614      /// A field cannot be an Objective-c object
6615      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6616      FD->setInvalidDecl();
6617      EnclosingDecl->setInvalidDecl();
6618      continue;
6619    } else if (getLangOptions().ObjC1 &&
6620               getLangOptions().getGCMode() != LangOptions::NonGC &&
6621               Record &&
6622               (FD->getType()->isObjCObjectPointerType() ||
6623                FD->getType().isObjCGCStrong()))
6624      Record->setHasObjectMember(true);
6625    else if (Context.getAsArrayType(FD->getType())) {
6626      QualType BaseType = Context.getBaseElementType(FD->getType());
6627      if (Record && BaseType->isRecordType() &&
6628          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6629        Record->setHasObjectMember(true);
6630    }
6631    // Keep track of the number of named members.
6632    if (FD->getIdentifier())
6633      ++NumNamedMembers;
6634  }
6635
6636  // Okay, we successfully defined 'Record'.
6637  if (Record) {
6638    Record->completeDefinition();
6639  } else {
6640    ObjCIvarDecl **ClsFields =
6641      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6642    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6643      ID->setLocEnd(RBrac);
6644      // Add ivar's to class's DeclContext.
6645      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6646        ClsFields[i]->setLexicalDeclContext(ID);
6647        ID->addDecl(ClsFields[i]);
6648      }
6649      // Must enforce the rule that ivars in the base classes may not be
6650      // duplicates.
6651      if (ID->getSuperClass())
6652        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6653    } else if (ObjCImplementationDecl *IMPDecl =
6654                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6655      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6656      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6657        // Ivar declared in @implementation never belongs to the implementation.
6658        // Only it is in implementation's lexical context.
6659        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6660      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6661    } else if (ObjCCategoryDecl *CDecl =
6662                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6663      // case of ivars in class extension; all other cases have been
6664      // reported as errors elsewhere.
6665      // FIXME. Class extension does not have a LocEnd field.
6666      // CDecl->setLocEnd(RBrac);
6667      // Add ivar's to class extension's DeclContext.
6668      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6669        ClsFields[i]->setLexicalDeclContext(CDecl);
6670        CDecl->addDecl(ClsFields[i]);
6671      }
6672    }
6673  }
6674
6675  if (Attr)
6676    ProcessDeclAttributeList(S, Record, Attr);
6677
6678  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6679  // set the visibility of this record.
6680  if (Record && !Record->getDeclContext()->isRecord())
6681    AddPushedVisibilityAttribute(Record);
6682}
6683
6684/// \brief Determine whether the given integral value is representable within
6685/// the given type T.
6686static bool isRepresentableIntegerValue(ASTContext &Context,
6687                                        llvm::APSInt &Value,
6688                                        QualType T) {
6689  assert(T->isIntegralType(Context) && "Integral type required!");
6690  unsigned BitWidth = Context.getIntWidth(T);
6691
6692  if (Value.isUnsigned() || Value.isNonNegative())
6693    return Value.getActiveBits() < BitWidth;
6694
6695  return Value.getMinSignedBits() <= BitWidth;
6696}
6697
6698// \brief Given an integral type, return the next larger integral type
6699// (or a NULL type of no such type exists).
6700static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6701  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6702  // enum checking below.
6703  assert(T->isIntegralType(Context) && "Integral type required!");
6704  const unsigned NumTypes = 4;
6705  QualType SignedIntegralTypes[NumTypes] = {
6706    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6707  };
6708  QualType UnsignedIntegralTypes[NumTypes] = {
6709    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6710    Context.UnsignedLongLongTy
6711  };
6712
6713  unsigned BitWidth = Context.getTypeSize(T);
6714  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6715                                            : UnsignedIntegralTypes;
6716  for (unsigned I = 0; I != NumTypes; ++I)
6717    if (Context.getTypeSize(Types[I]) > BitWidth)
6718      return Types[I];
6719
6720  return QualType();
6721}
6722
6723EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6724                                          EnumConstantDecl *LastEnumConst,
6725                                          SourceLocation IdLoc,
6726                                          IdentifierInfo *Id,
6727                                          Expr *Val) {
6728  unsigned IntWidth = Context.Target.getIntWidth();
6729  llvm::APSInt EnumVal(IntWidth);
6730  QualType EltTy;
6731  if (Val) {
6732    if (Enum->isDependentType() || Val->isTypeDependent())
6733      EltTy = Context.DependentTy;
6734    else {
6735      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6736      SourceLocation ExpLoc;
6737      if (!Val->isValueDependent() &&
6738          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6739        Val = 0;
6740      } else {
6741        if (!getLangOptions().CPlusPlus) {
6742          // C99 6.7.2.2p2:
6743          //   The expression that defines the value of an enumeration constant
6744          //   shall be an integer constant expression that has a value
6745          //   representable as an int.
6746
6747          // Complain if the value is not representable in an int.
6748          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6749            Diag(IdLoc, diag::ext_enum_value_not_int)
6750              << EnumVal.toString(10) << Val->getSourceRange()
6751              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6752          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6753            // Force the type of the expression to 'int'.
6754            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6755          }
6756        }
6757
6758        // C++0x [dcl.enum]p5:
6759        //   If the underlying type is not fixed, the type of each enumerator
6760        //   is the type of its initializing value:
6761        //     - If an initializer is specified for an enumerator, the
6762        //       initializing value has the same type as the expression.
6763        EltTy = Val->getType();
6764      }
6765    }
6766  }
6767
6768  if (!Val) {
6769    if (Enum->isDependentType())
6770      EltTy = Context.DependentTy;
6771    else if (!LastEnumConst) {
6772      // C++0x [dcl.enum]p5:
6773      //   If the underlying type is not fixed, the type of each enumerator
6774      //   is the type of its initializing value:
6775      //     - If no initializer is specified for the first enumerator, the
6776      //       initializing value has an unspecified integral type.
6777      //
6778      // GCC uses 'int' for its unspecified integral type, as does
6779      // C99 6.7.2.2p3.
6780      EltTy = Context.IntTy;
6781    } else {
6782      // Assign the last value + 1.
6783      EnumVal = LastEnumConst->getInitVal();
6784      ++EnumVal;
6785      EltTy = LastEnumConst->getType();
6786
6787      // Check for overflow on increment.
6788      if (EnumVal < LastEnumConst->getInitVal()) {
6789        // C++0x [dcl.enum]p5:
6790        //   If the underlying type is not fixed, the type of each enumerator
6791        //   is the type of its initializing value:
6792        //
6793        //     - Otherwise the type of the initializing value is the same as
6794        //       the type of the initializing value of the preceding enumerator
6795        //       unless the incremented value is not representable in that type,
6796        //       in which case the type is an unspecified integral type
6797        //       sufficient to contain the incremented value. If no such type
6798        //       exists, the program is ill-formed.
6799        QualType T = getNextLargerIntegralType(Context, EltTy);
6800        if (T.isNull()) {
6801          // There is no integral type larger enough to represent this
6802          // value. Complain, then allow the value to wrap around.
6803          EnumVal = LastEnumConst->getInitVal();
6804          EnumVal.zext(EnumVal.getBitWidth() * 2);
6805          Diag(IdLoc, diag::warn_enumerator_too_large)
6806            << EnumVal.toString(10);
6807        } else {
6808          EltTy = T;
6809        }
6810
6811        // Retrieve the last enumerator's value, extent that type to the
6812        // type that is supposed to be large enough to represent the incremented
6813        // value, then increment.
6814        EnumVal = LastEnumConst->getInitVal();
6815        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6816        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6817        ++EnumVal;
6818
6819        // If we're not in C++, diagnose the overflow of enumerator values,
6820        // which in C99 means that the enumerator value is not representable in
6821        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6822        // permits enumerator values that are representable in some larger
6823        // integral type.
6824        if (!getLangOptions().CPlusPlus && !T.isNull())
6825          Diag(IdLoc, diag::warn_enum_value_overflow);
6826      } else if (!getLangOptions().CPlusPlus &&
6827                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6828        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6829        Diag(IdLoc, diag::ext_enum_value_not_int)
6830          << EnumVal.toString(10) << 1;
6831      }
6832    }
6833  }
6834
6835  if (!EltTy->isDependentType()) {
6836    // Make the enumerator value match the signedness and size of the
6837    // enumerator's type.
6838    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6839    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6840  }
6841
6842  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6843                                  Val, EnumVal);
6844}
6845
6846
6847Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6848                                        Decl *lastEnumConst,
6849                                        SourceLocation IdLoc,
6850                                        IdentifierInfo *Id,
6851                                        SourceLocation EqualLoc, ExprTy *val) {
6852  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6853  EnumConstantDecl *LastEnumConst =
6854    cast_or_null<EnumConstantDecl>(lastEnumConst);
6855  Expr *Val = static_cast<Expr*>(val);
6856
6857  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6858  // we find one that is.
6859  S = getNonFieldDeclScope(S);
6860
6861  // Verify that there isn't already something declared with this name in this
6862  // scope.
6863  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6864                                         ForRedeclaration);
6865  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6866    // Maybe we will complain about the shadowed template parameter.
6867    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6868    // Just pretend that we didn't see the previous declaration.
6869    PrevDecl = 0;
6870  }
6871
6872  if (PrevDecl) {
6873    // When in C++, we may get a TagDecl with the same name; in this case the
6874    // enum constant will 'hide' the tag.
6875    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6876           "Received TagDecl when not in C++!");
6877    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6878      if (isa<EnumConstantDecl>(PrevDecl))
6879        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6880      else
6881        Diag(IdLoc, diag::err_redefinition) << Id;
6882      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6883      return 0;
6884    }
6885  }
6886
6887  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6888                                            IdLoc, Id, Val);
6889
6890  // Register this decl in the current scope stack.
6891  if (New) {
6892    New->setAccess(TheEnumDecl->getAccess());
6893    PushOnScopeChains(New, S);
6894  }
6895
6896  return New;
6897}
6898
6899void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6900                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6901                         Decl **Elements, unsigned NumElements,
6902                         Scope *S, AttributeList *Attr) {
6903  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6904  QualType EnumType = Context.getTypeDeclType(Enum);
6905
6906  if (Attr)
6907    ProcessDeclAttributeList(S, Enum, Attr);
6908
6909  if (Enum->isDependentType()) {
6910    for (unsigned i = 0; i != NumElements; ++i) {
6911      EnumConstantDecl *ECD =
6912        cast_or_null<EnumConstantDecl>(Elements[i]);
6913      if (!ECD) continue;
6914
6915      ECD->setType(EnumType);
6916    }
6917
6918    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6919    return;
6920  }
6921
6922  // TODO: If the result value doesn't fit in an int, it must be a long or long
6923  // long value.  ISO C does not support this, but GCC does as an extension,
6924  // emit a warning.
6925  unsigned IntWidth = Context.Target.getIntWidth();
6926  unsigned CharWidth = Context.Target.getCharWidth();
6927  unsigned ShortWidth = Context.Target.getShortWidth();
6928
6929  // Verify that all the values are okay, compute the size of the values, and
6930  // reverse the list.
6931  unsigned NumNegativeBits = 0;
6932  unsigned NumPositiveBits = 0;
6933
6934  // Keep track of whether all elements have type int.
6935  bool AllElementsInt = true;
6936
6937  for (unsigned i = 0; i != NumElements; ++i) {
6938    EnumConstantDecl *ECD =
6939      cast_or_null<EnumConstantDecl>(Elements[i]);
6940    if (!ECD) continue;  // Already issued a diagnostic.
6941
6942    const llvm::APSInt &InitVal = ECD->getInitVal();
6943
6944    // Keep track of the size of positive and negative values.
6945    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6946      NumPositiveBits = std::max(NumPositiveBits,
6947                                 (unsigned)InitVal.getActiveBits());
6948    else
6949      NumNegativeBits = std::max(NumNegativeBits,
6950                                 (unsigned)InitVal.getMinSignedBits());
6951
6952    // Keep track of whether every enum element has type int (very commmon).
6953    if (AllElementsInt)
6954      AllElementsInt = ECD->getType() == Context.IntTy;
6955  }
6956
6957  // Figure out the type that should be used for this enum.
6958  // FIXME: Support -fshort-enums.
6959  QualType BestType;
6960  unsigned BestWidth;
6961
6962  // C++0x N3000 [conv.prom]p3:
6963  //   An rvalue of an unscoped enumeration type whose underlying
6964  //   type is not fixed can be converted to an rvalue of the first
6965  //   of the following types that can represent all the values of
6966  //   the enumeration: int, unsigned int, long int, unsigned long
6967  //   int, long long int, or unsigned long long int.
6968  // C99 6.4.4.3p2:
6969  //   An identifier declared as an enumeration constant has type int.
6970  // The C99 rule is modified by a gcc extension
6971  QualType BestPromotionType;
6972
6973  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6974
6975  if (NumNegativeBits) {
6976    // If there is a negative value, figure out the smallest integer type (of
6977    // int/long/longlong) that fits.
6978    // If it's packed, check also if it fits a char or a short.
6979    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6980      BestType = Context.SignedCharTy;
6981      BestWidth = CharWidth;
6982    } else if (Packed && NumNegativeBits <= ShortWidth &&
6983               NumPositiveBits < ShortWidth) {
6984      BestType = Context.ShortTy;
6985      BestWidth = ShortWidth;
6986    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6987      BestType = Context.IntTy;
6988      BestWidth = IntWidth;
6989    } else {
6990      BestWidth = Context.Target.getLongWidth();
6991
6992      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6993        BestType = Context.LongTy;
6994      } else {
6995        BestWidth = Context.Target.getLongLongWidth();
6996
6997        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6998          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6999        BestType = Context.LongLongTy;
7000      }
7001    }
7002    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7003  } else {
7004    // If there is no negative value, figure out the smallest type that fits
7005    // all of the enumerator values.
7006    // If it's packed, check also if it fits a char or a short.
7007    if (Packed && NumPositiveBits <= CharWidth) {
7008      BestType = Context.UnsignedCharTy;
7009      BestPromotionType = Context.IntTy;
7010      BestWidth = CharWidth;
7011    } else if (Packed && NumPositiveBits <= ShortWidth) {
7012      BestType = Context.UnsignedShortTy;
7013      BestPromotionType = Context.IntTy;
7014      BestWidth = ShortWidth;
7015    } else if (NumPositiveBits <= IntWidth) {
7016      BestType = Context.UnsignedIntTy;
7017      BestWidth = IntWidth;
7018      BestPromotionType
7019        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7020                           ? Context.UnsignedIntTy : Context.IntTy;
7021    } else if (NumPositiveBits <=
7022               (BestWidth = Context.Target.getLongWidth())) {
7023      BestType = Context.UnsignedLongTy;
7024      BestPromotionType
7025        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7026                           ? Context.UnsignedLongTy : Context.LongTy;
7027    } else {
7028      BestWidth = Context.Target.getLongLongWidth();
7029      assert(NumPositiveBits <= BestWidth &&
7030             "How could an initializer get larger than ULL?");
7031      BestType = Context.UnsignedLongLongTy;
7032      BestPromotionType
7033        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7034                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7035    }
7036  }
7037
7038  // Loop over all of the enumerator constants, changing their types to match
7039  // the type of the enum if needed.
7040  for (unsigned i = 0; i != NumElements; ++i) {
7041    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7042    if (!ECD) continue;  // Already issued a diagnostic.
7043
7044    // Standard C says the enumerators have int type, but we allow, as an
7045    // extension, the enumerators to be larger than int size.  If each
7046    // enumerator value fits in an int, type it as an int, otherwise type it the
7047    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7048    // that X has type 'int', not 'unsigned'.
7049
7050    // Determine whether the value fits into an int.
7051    llvm::APSInt InitVal = ECD->getInitVal();
7052
7053    // If it fits into an integer type, force it.  Otherwise force it to match
7054    // the enum decl type.
7055    QualType NewTy;
7056    unsigned NewWidth;
7057    bool NewSign;
7058    if (!getLangOptions().CPlusPlus &&
7059        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7060      NewTy = Context.IntTy;
7061      NewWidth = IntWidth;
7062      NewSign = true;
7063    } else if (ECD->getType() == BestType) {
7064      // Already the right type!
7065      if (getLangOptions().CPlusPlus)
7066        // C++ [dcl.enum]p4: Following the closing brace of an
7067        // enum-specifier, each enumerator has the type of its
7068        // enumeration.
7069        ECD->setType(EnumType);
7070      continue;
7071    } else {
7072      NewTy = BestType;
7073      NewWidth = BestWidth;
7074      NewSign = BestType->isSignedIntegerType();
7075    }
7076
7077    // Adjust the APSInt value.
7078    InitVal.extOrTrunc(NewWidth);
7079    InitVal.setIsSigned(NewSign);
7080    ECD->setInitVal(InitVal);
7081
7082    // Adjust the Expr initializer and type.
7083    if (ECD->getInitExpr())
7084      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7085                                                CastExpr::CK_IntegralCast,
7086                                                ECD->getInitExpr(),
7087                                                /*base paths*/ 0,
7088                                                VK_RValue));
7089    if (getLangOptions().CPlusPlus)
7090      // C++ [dcl.enum]p4: Following the closing brace of an
7091      // enum-specifier, each enumerator has the type of its
7092      // enumeration.
7093      ECD->setType(EnumType);
7094    else
7095      ECD->setType(NewTy);
7096  }
7097
7098  Enum->completeDefinition(BestType, BestPromotionType,
7099                           NumPositiveBits, NumNegativeBits);
7100}
7101
7102Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7103  StringLiteral *AsmString = cast<StringLiteral>(expr);
7104
7105  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7106                                                   Loc, AsmString);
7107  CurContext->addDecl(New);
7108  return New;
7109}
7110
7111void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7112                             SourceLocation PragmaLoc,
7113                             SourceLocation NameLoc) {
7114  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7115
7116  if (PrevDecl) {
7117    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7118  } else {
7119    (void)WeakUndeclaredIdentifiers.insert(
7120      std::pair<IdentifierInfo*,WeakInfo>
7121        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7122  }
7123}
7124
7125void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7126                                IdentifierInfo* AliasName,
7127                                SourceLocation PragmaLoc,
7128                                SourceLocation NameLoc,
7129                                SourceLocation AliasNameLoc) {
7130  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7131                                    LookupOrdinaryName);
7132  WeakInfo W = WeakInfo(Name, NameLoc);
7133
7134  if (PrevDecl) {
7135    if (!PrevDecl->hasAttr<AliasAttr>())
7136      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7137        DeclApplyPragmaWeak(TUScope, ND, W);
7138  } else {
7139    (void)WeakUndeclaredIdentifiers.insert(
7140      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7141  }
7142}
7143