SemaDecl.cpp revision 6f7a17b718385464966251ee421b314570d32731
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    // C++ [temp.local]p2:
192    //   Within the scope of a class template specialization or
193    //   partial specialization, when the injected-class-name is
194    //   not followed by a <, it is equivalent to the
195    //   injected-class-name followed by the template-argument s
196    //   of the class template specialization or partial
197    //   specialization enclosed in <>.
198    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
199      if (RD->isInjectedClassName())
200        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
201          T = Template->getInjectedClassNameType(Context);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS)
207      T = getQualifiedNameType(*SS, T);
208
209  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
210    T = Context.getObjCInterfaceType(IDecl);
211  } else if (UnresolvedUsingTypenameDecl *UUDecl =
212               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
213    // FIXME: preserve source structure information.
214    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
215  } else {
216    // If it's not plausibly a type, suppress diagnostics.
217    Result.suppressDiagnostics();
218    return 0;
219  }
220
221  return T.getAsOpaquePtr();
222}
223
224/// isTagName() - This method is called *for error recovery purposes only*
225/// to determine if the specified name is a valid tag name ("struct foo").  If
226/// so, this returns the TST for the tag corresponding to it (TST_enum,
227/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
228/// where the user forgot to specify the tag.
229DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
230  // Do a tag name lookup in this scope.
231  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
232  LookupName(R, S, false);
233  R.suppressDiagnostics();
234  if (R.getResultKind() == LookupResult::Found)
235    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
236      switch (TD->getTagKind()) {
237      case TagDecl::TK_struct: return DeclSpec::TST_struct;
238      case TagDecl::TK_union:  return DeclSpec::TST_union;
239      case TagDecl::TK_class:  return DeclSpec::TST_class;
240      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
241      }
242    }
243
244  return DeclSpec::TST_unspecified;
245}
246
247bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
248                                   SourceLocation IILoc,
249                                   Scope *S,
250                                   const CXXScopeSpec *SS,
251                                   TypeTy *&SuggestedType) {
252  // We don't have anything to suggest (yet).
253  SuggestedType = 0;
254
255  // There may have been a typo in the name of the type. Look up typo
256  // results, in case we have something that we can suggest.
257  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
258                      NotForRedeclaration);
259
260  // FIXME: It would be nice if we could correct for typos in built-in
261  // names, such as "itn" for "int".
262
263  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
264    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
265    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
266        !Result->isInvalidDecl()) {
267      // We found a similarly-named type or interface; suggest that.
268      if (!SS || !SS->isSet())
269        Diag(IILoc, diag::err_unknown_typename_suggest)
270          << &II << Lookup.getLookupName()
271          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
272                                                     Result->getNameAsString());
273      else if (DeclContext *DC = computeDeclContext(*SS, false))
274        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
275          << &II << DC << Lookup.getLookupName() << SS->getRange()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else
279        llvm_unreachable("could not have corrected a typo here");
280
281      Diag(Result->getLocation(), diag::note_previous_decl)
282        << Result->getDeclName();
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line function and variable definitions should not be pushed into
440  // scope.
441  if ((isa<FunctionTemplateDecl>(D) &&
442       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
443      (isa<FunctionDecl>(D) &&
444       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
445        cast<FunctionDecl>(D)->isOutOfLine())) ||
446      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
447    return;
448
449  // If this replaces anything in the current scope,
450  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
451                               IEnd = IdResolver.end();
452  for (; I != IEnd; ++I) {
453    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
454      S->RemoveDecl(DeclPtrTy::make(*I));
455      IdResolver.RemoveDecl(*I);
456
457      // Should only need to replace one decl.
458      break;
459    }
460  }
461
462  S->AddDecl(DeclPtrTy::make(D));
463  IdResolver.AddDecl(D);
464}
465
466bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
467  return IdResolver.isDeclInScope(D, Ctx, Context, S);
468}
469
470static bool isOutOfScopePreviousDeclaration(NamedDecl *,
471                                            DeclContext*,
472                                            ASTContext&);
473
474/// Filters out lookup results that don't fall within the given scope
475/// as determined by isDeclInScope.
476static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
477                                 DeclContext *Ctx, Scope *S,
478                                 bool ConsiderLinkage) {
479  LookupResult::Filter F = R.makeFilter();
480  while (F.hasNext()) {
481    NamedDecl *D = F.next();
482
483    if (SemaRef.isDeclInScope(D, Ctx, S))
484      continue;
485
486    if (ConsiderLinkage &&
487        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
488      continue;
489
490    F.erase();
491  }
492
493  F.done();
494}
495
496static bool isUsingDecl(NamedDecl *D) {
497  return isa<UsingShadowDecl>(D) ||
498         isa<UnresolvedUsingTypenameDecl>(D) ||
499         isa<UnresolvedUsingValueDecl>(D);
500}
501
502/// Removes using shadow declarations from the lookup results.
503static void RemoveUsingDecls(LookupResult &R) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext())
506    if (isUsingDecl(F.next()))
507      F.erase();
508
509  F.done();
510}
511
512static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
513  if (D->isInvalidDecl())
514    return false;
515
516  if (D->isUsed() || D->hasAttr<UnusedAttr>())
517    return false;
518
519  // White-list anything that isn't a local variable.
520  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
521      !D->getDeclContext()->isFunctionOrMethod())
522    return false;
523
524  // Types of valid local variables should be complete, so this should succeed.
525  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
526    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
527      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
528        if (!RD->hasTrivialConstructor())
529          return false;
530        if (!RD->hasTrivialDestructor())
531          return false;
532      }
533    }
534  }
535
536  return true;
537}
538
539void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
540  if (S->decl_empty()) return;
541  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
542         "Scope shouldn't contain decls!");
543
544  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
545       I != E; ++I) {
546    Decl *TmpD = (*I).getAs<Decl>();
547    assert(TmpD && "This decl didn't get pushed??");
548
549    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
550    NamedDecl *D = cast<NamedDecl>(TmpD);
551
552    if (!D->getDeclName()) continue;
553
554    // Diagnose unused variables in this scope.
555    if (ShouldDiagnoseUnusedDecl(D))
556      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
557
558    // Remove this name from our lexical scope.
559    IdResolver.RemoveDecl(D);
560  }
561}
562
563/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
564/// return 0 if one not found.
565///
566/// \param Id the name of the Objective-C class we're looking for. If
567/// typo-correction fixes this name, the Id will be updated
568/// to the fixed name.
569///
570/// \param RecoverLoc if provided, this routine will attempt to
571/// recover from a typo in the name of an existing Objective-C class
572/// and, if successful, will return the lookup that results from
573/// typo-correction.
574ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
575                                              SourceLocation RecoverLoc) {
576  // The third "scope" argument is 0 since we aren't enabling lazy built-in
577  // creation from this context.
578  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
579
580  if (!IDecl && !RecoverLoc.isInvalid()) {
581    // Perform typo correction at the given location, but only if we
582    // find an Objective-C class name.
583    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
584    if (CorrectTypo(R, TUScope, 0) &&
585        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
586      Diag(RecoverLoc, diag::err_undef_interface_suggest)
587        << Id << IDecl->getDeclName()
588        << CodeModificationHint::CreateReplacement(RecoverLoc,
589                                                   IDecl->getNameAsString());
590      Diag(IDecl->getLocation(), diag::note_previous_decl)
591        << IDecl->getDeclName();
592
593      Id = IDecl->getIdentifier();
594    }
595  }
596
597  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
598}
599
600/// getNonFieldDeclScope - Retrieves the innermost scope, starting
601/// from S, where a non-field would be declared. This routine copes
602/// with the difference between C and C++ scoping rules in structs and
603/// unions. For example, the following code is well-formed in C but
604/// ill-formed in C++:
605/// @code
606/// struct S6 {
607///   enum { BAR } e;
608/// };
609///
610/// void test_S6() {
611///   struct S6 a;
612///   a.e = BAR;
613/// }
614/// @endcode
615/// For the declaration of BAR, this routine will return a different
616/// scope. The scope S will be the scope of the unnamed enumeration
617/// within S6. In C++, this routine will return the scope associated
618/// with S6, because the enumeration's scope is a transparent
619/// context but structures can contain non-field names. In C, this
620/// routine will return the translation unit scope, since the
621/// enumeration's scope is a transparent context and structures cannot
622/// contain non-field names.
623Scope *Sema::getNonFieldDeclScope(Scope *S) {
624  while (((S->getFlags() & Scope::DeclScope) == 0) ||
625         (S->getEntity() &&
626          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
627         (S->isClassScope() && !getLangOptions().CPlusPlus))
628    S = S->getParent();
629  return S;
630}
631
632void Sema::InitBuiltinVaListType() {
633  if (!Context.getBuiltinVaListType().isNull())
634    return;
635
636  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
637  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
638  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
639  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
640}
641
642/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
643/// file scope.  lazily create a decl for it. ForRedeclaration is true
644/// if we're creating this built-in in anticipation of redeclaring the
645/// built-in.
646NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
647                                     Scope *S, bool ForRedeclaration,
648                                     SourceLocation Loc) {
649  Builtin::ID BID = (Builtin::ID)bid;
650
651  if (Context.BuiltinInfo.hasVAListUse(BID))
652    InitBuiltinVaListType();
653
654  ASTContext::GetBuiltinTypeError Error;
655  QualType R = Context.GetBuiltinType(BID, Error);
656  switch (Error) {
657  case ASTContext::GE_None:
658    // Okay
659    break;
660
661  case ASTContext::GE_Missing_stdio:
662    if (ForRedeclaration)
663      Diag(Loc, diag::err_implicit_decl_requires_stdio)
664        << Context.BuiltinInfo.GetName(BID);
665    return 0;
666
667  case ASTContext::GE_Missing_setjmp:
668    if (ForRedeclaration)
669      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
670        << Context.BuiltinInfo.GetName(BID);
671    return 0;
672  }
673
674  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
675    Diag(Loc, diag::ext_implicit_lib_function_decl)
676      << Context.BuiltinInfo.GetName(BID)
677      << R;
678    if (Context.BuiltinInfo.getHeaderName(BID) &&
679        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
680          != Diagnostic::Ignored)
681      Diag(Loc, diag::note_please_include_header)
682        << Context.BuiltinInfo.getHeaderName(BID)
683        << Context.BuiltinInfo.GetName(BID);
684  }
685
686  FunctionDecl *New = FunctionDecl::Create(Context,
687                                           Context.getTranslationUnitDecl(),
688                                           Loc, II, R, /*TInfo=*/0,
689                                           FunctionDecl::Extern, false,
690                                           /*hasPrototype=*/true);
691  New->setImplicit();
692
693  // Create Decl objects for each parameter, adding them to the
694  // FunctionDecl.
695  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
696    llvm::SmallVector<ParmVarDecl*, 16> Params;
697    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
698      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
699                                           FT->getArgType(i), /*TInfo=*/0,
700                                           VarDecl::None, 0));
701    New->setParams(Context, Params.data(), Params.size());
702  }
703
704  AddKnownFunctionAttributes(New);
705
706  // TUScope is the translation-unit scope to insert this function into.
707  // FIXME: This is hideous. We need to teach PushOnScopeChains to
708  // relate Scopes to DeclContexts, and probably eliminate CurContext
709  // entirely, but we're not there yet.
710  DeclContext *SavedContext = CurContext;
711  CurContext = Context.getTranslationUnitDecl();
712  PushOnScopeChains(New, TUScope);
713  CurContext = SavedContext;
714  return New;
715}
716
717/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
718/// same name and scope as a previous declaration 'Old'.  Figure out
719/// how to resolve this situation, merging decls or emitting
720/// diagnostics as appropriate. If there was an error, set New to be invalid.
721///
722void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
723  // If the new decl is known invalid already, don't bother doing any
724  // merging checks.
725  if (New->isInvalidDecl()) return;
726
727  // Allow multiple definitions for ObjC built-in typedefs.
728  // FIXME: Verify the underlying types are equivalent!
729  if (getLangOptions().ObjC1) {
730    const IdentifierInfo *TypeID = New->getIdentifier();
731    switch (TypeID->getLength()) {
732    default: break;
733    case 2:
734      if (!TypeID->isStr("id"))
735        break;
736      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
737      // Install the built-in type for 'id', ignoring the current definition.
738      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
739      return;
740    case 5:
741      if (!TypeID->isStr("Class"))
742        break;
743      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
744      // Install the built-in type for 'Class', ignoring the current definition.
745      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
746      return;
747    case 3:
748      if (!TypeID->isStr("SEL"))
749        break;
750      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
751      // Install the built-in type for 'SEL', ignoring the current definition.
752      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
753      return;
754    case 8:
755      if (!TypeID->isStr("Protocol"))
756        break;
757      Context.setObjCProtoType(New->getUnderlyingType());
758      return;
759    }
760    // Fall through - the typedef name was not a builtin type.
761  }
762
763  // Verify the old decl was also a type.
764  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
765  if (!Old) {
766    Diag(New->getLocation(), diag::err_redefinition_different_kind)
767      << New->getDeclName();
768
769    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
770    if (OldD->getLocation().isValid())
771      Diag(OldD->getLocation(), diag::note_previous_definition);
772
773    return New->setInvalidDecl();
774  }
775
776  // If the old declaration is invalid, just give up here.
777  if (Old->isInvalidDecl())
778    return New->setInvalidDecl();
779
780  // Determine the "old" type we'll use for checking and diagnostics.
781  QualType OldType;
782  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
783    OldType = OldTypedef->getUnderlyingType();
784  else
785    OldType = Context.getTypeDeclType(Old);
786
787  // If the typedef types are not identical, reject them in all languages and
788  // with any extensions enabled.
789
790  if (OldType != New->getUnderlyingType() &&
791      Context.getCanonicalType(OldType) !=
792      Context.getCanonicalType(New->getUnderlyingType())) {
793    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
794      << New->getUnderlyingType() << OldType;
795    if (Old->getLocation().isValid())
796      Diag(Old->getLocation(), diag::note_previous_definition);
797    return New->setInvalidDecl();
798  }
799
800  // The types match.  Link up the redeclaration chain if the old
801  // declaration was a typedef.
802  // FIXME: this is a potential source of wierdness if the type
803  // spellings don't match exactly.
804  if (isa<TypedefDecl>(Old))
805    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
806
807  if (getLangOptions().Microsoft)
808    return;
809
810  if (getLangOptions().CPlusPlus) {
811    // C++ [dcl.typedef]p2:
812    //   In a given non-class scope, a typedef specifier can be used to
813    //   redefine the name of any type declared in that scope to refer
814    //   to the type to which it already refers.
815    if (!isa<CXXRecordDecl>(CurContext))
816      return;
817
818    // C++0x [dcl.typedef]p4:
819    //   In a given class scope, a typedef specifier can be used to redefine
820    //   any class-name declared in that scope that is not also a typedef-name
821    //   to refer to the type to which it already refers.
822    //
823    // This wording came in via DR424, which was a correction to the
824    // wording in DR56, which accidentally banned code like:
825    //
826    //   struct S {
827    //     typedef struct A { } A;
828    //   };
829    //
830    // in the C++03 standard. We implement the C++0x semantics, which
831    // allow the above but disallow
832    //
833    //   struct S {
834    //     typedef int I;
835    //     typedef int I;
836    //   };
837    //
838    // since that was the intent of DR56.
839    if (!isa<TypedefDecl >(Old))
840      return;
841
842    Diag(New->getLocation(), diag::err_redefinition)
843      << New->getDeclName();
844    Diag(Old->getLocation(), diag::note_previous_definition);
845    return New->setInvalidDecl();
846  }
847
848  // If we have a redefinition of a typedef in C, emit a warning.  This warning
849  // is normally mapped to an error, but can be controlled with
850  // -Wtypedef-redefinition.  If either the original or the redefinition is
851  // in a system header, don't emit this for compatibility with GCC.
852  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
853      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
854       Context.getSourceManager().isInSystemHeader(New->getLocation())))
855    return;
856
857  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
858    << New->getDeclName();
859  Diag(Old->getLocation(), diag::note_previous_definition);
860  return;
861}
862
863/// DeclhasAttr - returns true if decl Declaration already has the target
864/// attribute.
865static bool
866DeclHasAttr(const Decl *decl, const Attr *target) {
867  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
868    if (attr->getKind() == target->getKind())
869      return true;
870
871  return false;
872}
873
874/// MergeAttributes - append attributes from the Old decl to the New one.
875static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
876  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
877    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
878      Attr *NewAttr = attr->clone(C);
879      NewAttr->setInherited(true);
880      New->addAttr(NewAttr);
881    }
882  }
883}
884
885/// Used in MergeFunctionDecl to keep track of function parameters in
886/// C.
887struct GNUCompatibleParamWarning {
888  ParmVarDecl *OldParm;
889  ParmVarDecl *NewParm;
890  QualType PromotedType;
891};
892
893
894/// getSpecialMember - get the special member enum for a method.
895static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
896                                               const CXXMethodDecl *MD) {
897  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
898    if (Ctor->isDefaultConstructor())
899      return Sema::CXXDefaultConstructor;
900    if (Ctor->isCopyConstructor())
901      return Sema::CXXCopyConstructor;
902  }
903
904  if (isa<CXXDestructorDecl>(MD))
905    return Sema::CXXDestructor;
906
907  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
908  return Sema::CXXCopyAssignment;
909}
910
911static const char* getCallConvName(CallingConv CC) {
912  switch (CC) {
913  default: return "cdecl";
914  case CC_X86StdCall: return "stdcall";
915  case CC_X86FastCall: return "fastcall";
916  }
917}
918
919/// MergeFunctionDecl - We just parsed a function 'New' from
920/// declarator D which has the same name and scope as a previous
921/// declaration 'Old'.  Figure out how to resolve this situation,
922/// merging decls or emitting diagnostics as appropriate.
923///
924/// In C++, New and Old must be declarations that are not
925/// overloaded. Use IsOverload to determine whether New and Old are
926/// overloaded, and to select the Old declaration that New should be
927/// merged with.
928///
929/// Returns true if there was an error, false otherwise.
930bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
931  // Verify the old decl was also a function.
932  FunctionDecl *Old = 0;
933  if (FunctionTemplateDecl *OldFunctionTemplate
934        = dyn_cast<FunctionTemplateDecl>(OldD))
935    Old = OldFunctionTemplate->getTemplatedDecl();
936  else
937    Old = dyn_cast<FunctionDecl>(OldD);
938  if (!Old) {
939    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
940      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
941      Diag(Shadow->getTargetDecl()->getLocation(),
942           diag::note_using_decl_target);
943      Diag(Shadow->getUsingDecl()->getLocation(),
944           diag::note_using_decl) << 0;
945      return true;
946    }
947
948    Diag(New->getLocation(), diag::err_redefinition_different_kind)
949      << New->getDeclName();
950    Diag(OldD->getLocation(), diag::note_previous_definition);
951    return true;
952  }
953
954  // Determine whether the previous declaration was a definition,
955  // implicit declaration, or a declaration.
956  diag::kind PrevDiag;
957  if (Old->isThisDeclarationADefinition())
958    PrevDiag = diag::note_previous_definition;
959  else if (Old->isImplicit())
960    PrevDiag = diag::note_previous_implicit_declaration;
961  else
962    PrevDiag = diag::note_previous_declaration;
963
964  QualType OldQType = Context.getCanonicalType(Old->getType());
965  QualType NewQType = Context.getCanonicalType(New->getType());
966
967  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
968      New->getStorageClass() == FunctionDecl::Static &&
969      Old->getStorageClass() != FunctionDecl::Static) {
970    Diag(New->getLocation(), diag::err_static_non_static)
971      << New;
972    Diag(Old->getLocation(), PrevDiag);
973    return true;
974  }
975
976  // If a function is first declared with a calling convention, but is
977  // later declared or defined without one, the second decl assumes the
978  // calling convention of the first.
979  //
980  // For the new decl, we have to look at the NON-canonical type to tell the
981  // difference between a function that really doesn't have a calling
982  // convention and one that is declared cdecl. That's because in
983  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
984  // because it is the default calling convention.
985  //
986  // Note also that we DO NOT return at this point, because we still have
987  // other tests to run.
988  const FunctionType *OldType = OldQType->getAs<FunctionType>();
989  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
990  if (OldType->getCallConv() != CC_Default &&
991      NewType->getCallConv() == CC_Default) {
992    NewQType = Context.getCallConvType(NewQType, OldType->getCallConv());
993    New->setType(NewQType);
994    NewQType = Context.getCanonicalType(NewQType);
995  } else if (OldType->getCallConv() != NewType->getCallConv()) {
996    // Calling conventions really aren't compatible, so complain.
997    Diag(New->getLocation(), diag::err_attributes_are_not_compatible)
998      << getCallConvName(NewType->getCallConv())
999      << getCallConvName(OldType->getCallConv());
1000    return true;
1001  }
1002
1003  if (getLangOptions().CPlusPlus) {
1004    // (C++98 13.1p2):
1005    //   Certain function declarations cannot be overloaded:
1006    //     -- Function declarations that differ only in the return type
1007    //        cannot be overloaded.
1008    QualType OldReturnType
1009      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1010    QualType NewReturnType
1011      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1012    if (OldReturnType != NewReturnType) {
1013      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1014      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1015      return true;
1016    }
1017
1018    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1019    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1020    if (OldMethod && NewMethod) {
1021      if (!NewMethod->getFriendObjectKind() &&
1022          NewMethod->getLexicalDeclContext()->isRecord()) {
1023        //    -- Member function declarations with the same name and the
1024        //       same parameter types cannot be overloaded if any of them
1025        //       is a static member function declaration.
1026        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1027          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1028          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1029          return true;
1030        }
1031
1032        // C++ [class.mem]p1:
1033        //   [...] A member shall not be declared twice in the
1034        //   member-specification, except that a nested class or member
1035        //   class template can be declared and then later defined.
1036        unsigned NewDiag;
1037        if (isa<CXXConstructorDecl>(OldMethod))
1038          NewDiag = diag::err_constructor_redeclared;
1039        else if (isa<CXXDestructorDecl>(NewMethod))
1040          NewDiag = diag::err_destructor_redeclared;
1041        else if (isa<CXXConversionDecl>(NewMethod))
1042          NewDiag = diag::err_conv_function_redeclared;
1043        else
1044          NewDiag = diag::err_member_redeclared;
1045
1046        Diag(New->getLocation(), NewDiag);
1047        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1048      } else {
1049        if (OldMethod->isImplicit()) {
1050          Diag(NewMethod->getLocation(),
1051               diag::err_definition_of_implicitly_declared_member)
1052          << New << getSpecialMember(Context, OldMethod);
1053
1054          Diag(OldMethod->getLocation(),
1055               diag::note_previous_implicit_declaration);
1056          return true;
1057        }
1058      }
1059    }
1060
1061    // (C++98 8.3.5p3):
1062    //   All declarations for a function shall agree exactly in both the
1063    //   return type and the parameter-type-list.
1064    // attributes should be ignored when comparing.
1065    if (Context.getNoReturnType(OldQType, false) ==
1066        Context.getNoReturnType(NewQType, false))
1067      return MergeCompatibleFunctionDecls(New, Old);
1068
1069    // Fall through for conflicting redeclarations and redefinitions.
1070  }
1071
1072  // C: Function types need to be compatible, not identical. This handles
1073  // duplicate function decls like "void f(int); void f(enum X);" properly.
1074  if (!getLangOptions().CPlusPlus &&
1075      Context.typesAreCompatible(OldQType, NewQType)) {
1076    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1077    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1078    const FunctionProtoType *OldProto = 0;
1079    if (isa<FunctionNoProtoType>(NewFuncType) &&
1080        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1081      // The old declaration provided a function prototype, but the
1082      // new declaration does not. Merge in the prototype.
1083      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1084      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1085                                                 OldProto->arg_type_end());
1086      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1087                                         ParamTypes.data(), ParamTypes.size(),
1088                                         OldProto->isVariadic(),
1089                                         OldProto->getTypeQuals());
1090      New->setType(NewQType);
1091      New->setHasInheritedPrototype();
1092
1093      // Synthesize a parameter for each argument type.
1094      llvm::SmallVector<ParmVarDecl*, 16> Params;
1095      for (FunctionProtoType::arg_type_iterator
1096             ParamType = OldProto->arg_type_begin(),
1097             ParamEnd = OldProto->arg_type_end();
1098           ParamType != ParamEnd; ++ParamType) {
1099        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1100                                                 SourceLocation(), 0,
1101                                                 *ParamType, /*TInfo=*/0,
1102                                                 VarDecl::None, 0);
1103        Param->setImplicit();
1104        Params.push_back(Param);
1105      }
1106
1107      New->setParams(Context, Params.data(), Params.size());
1108    }
1109
1110    return MergeCompatibleFunctionDecls(New, Old);
1111  }
1112
1113  // GNU C permits a K&R definition to follow a prototype declaration
1114  // if the declared types of the parameters in the K&R definition
1115  // match the types in the prototype declaration, even when the
1116  // promoted types of the parameters from the K&R definition differ
1117  // from the types in the prototype. GCC then keeps the types from
1118  // the prototype.
1119  //
1120  // If a variadic prototype is followed by a non-variadic K&R definition,
1121  // the K&R definition becomes variadic.  This is sort of an edge case, but
1122  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1123  // C99 6.9.1p8.
1124  if (!getLangOptions().CPlusPlus &&
1125      Old->hasPrototype() && !New->hasPrototype() &&
1126      New->getType()->getAs<FunctionProtoType>() &&
1127      Old->getNumParams() == New->getNumParams()) {
1128    llvm::SmallVector<QualType, 16> ArgTypes;
1129    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1130    const FunctionProtoType *OldProto
1131      = Old->getType()->getAs<FunctionProtoType>();
1132    const FunctionProtoType *NewProto
1133      = New->getType()->getAs<FunctionProtoType>();
1134
1135    // Determine whether this is the GNU C extension.
1136    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1137                                               NewProto->getResultType());
1138    bool LooseCompatible = !MergedReturn.isNull();
1139    for (unsigned Idx = 0, End = Old->getNumParams();
1140         LooseCompatible && Idx != End; ++Idx) {
1141      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1142      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1143      if (Context.typesAreCompatible(OldParm->getType(),
1144                                     NewProto->getArgType(Idx))) {
1145        ArgTypes.push_back(NewParm->getType());
1146      } else if (Context.typesAreCompatible(OldParm->getType(),
1147                                            NewParm->getType())) {
1148        GNUCompatibleParamWarning Warn
1149          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1150        Warnings.push_back(Warn);
1151        ArgTypes.push_back(NewParm->getType());
1152      } else
1153        LooseCompatible = false;
1154    }
1155
1156    if (LooseCompatible) {
1157      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1158        Diag(Warnings[Warn].NewParm->getLocation(),
1159             diag::ext_param_promoted_not_compatible_with_prototype)
1160          << Warnings[Warn].PromotedType
1161          << Warnings[Warn].OldParm->getType();
1162        Diag(Warnings[Warn].OldParm->getLocation(),
1163             diag::note_previous_declaration);
1164      }
1165
1166      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1167                                           ArgTypes.size(),
1168                                           OldProto->isVariadic(), 0));
1169      return MergeCompatibleFunctionDecls(New, Old);
1170    }
1171
1172    // Fall through to diagnose conflicting types.
1173  }
1174
1175  // A function that has already been declared has been redeclared or defined
1176  // with a different type- show appropriate diagnostic
1177  if (unsigned BuiltinID = Old->getBuiltinID()) {
1178    // The user has declared a builtin function with an incompatible
1179    // signature.
1180    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1181      // The function the user is redeclaring is a library-defined
1182      // function like 'malloc' or 'printf'. Warn about the
1183      // redeclaration, then pretend that we don't know about this
1184      // library built-in.
1185      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1186      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1187        << Old << Old->getType();
1188      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1189      Old->setInvalidDecl();
1190      return false;
1191    }
1192
1193    PrevDiag = diag::note_previous_builtin_declaration;
1194  }
1195
1196  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1197  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1198  return true;
1199}
1200
1201/// \brief Completes the merge of two function declarations that are
1202/// known to be compatible.
1203///
1204/// This routine handles the merging of attributes and other
1205/// properties of function declarations form the old declaration to
1206/// the new declaration, once we know that New is in fact a
1207/// redeclaration of Old.
1208///
1209/// \returns false
1210bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1211  // Merge the attributes
1212  MergeAttributes(New, Old, Context);
1213
1214  // Merge the storage class.
1215  if (Old->getStorageClass() != FunctionDecl::Extern &&
1216      Old->getStorageClass() != FunctionDecl::None)
1217    New->setStorageClass(Old->getStorageClass());
1218
1219  // Merge "pure" flag.
1220  if (Old->isPure())
1221    New->setPure();
1222
1223  // Merge the "deleted" flag.
1224  if (Old->isDeleted())
1225    New->setDeleted();
1226
1227  if (getLangOptions().CPlusPlus)
1228    return MergeCXXFunctionDecl(New, Old);
1229
1230  return false;
1231}
1232
1233/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1234/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1235/// situation, merging decls or emitting diagnostics as appropriate.
1236///
1237/// Tentative definition rules (C99 6.9.2p2) are checked by
1238/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1239/// definitions here, since the initializer hasn't been attached.
1240///
1241void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1242  // If the new decl is already invalid, don't do any other checking.
1243  if (New->isInvalidDecl())
1244    return;
1245
1246  // Verify the old decl was also a variable.
1247  VarDecl *Old = 0;
1248  if (!Previous.isSingleResult() ||
1249      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1250    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1251      << New->getDeclName();
1252    Diag(Previous.getRepresentativeDecl()->getLocation(),
1253         diag::note_previous_definition);
1254    return New->setInvalidDecl();
1255  }
1256
1257  MergeAttributes(New, Old, Context);
1258
1259  // Merge the types
1260  QualType MergedT;
1261  if (getLangOptions().CPlusPlus) {
1262    if (Context.hasSameType(New->getType(), Old->getType()))
1263      MergedT = New->getType();
1264    // C++ [basic.link]p10:
1265    //   [...] the types specified by all declarations referring to a given
1266    //   object or function shall be identical, except that declarations for an
1267    //   array object can specify array types that differ by the presence or
1268    //   absence of a major array bound (8.3.4).
1269    else if (Old->getType()->isIncompleteArrayType() &&
1270             New->getType()->isArrayType()) {
1271      CanQual<ArrayType> OldArray
1272        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1273      CanQual<ArrayType> NewArray
1274        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1275      if (OldArray->getElementType() == NewArray->getElementType())
1276        MergedT = New->getType();
1277    } else if (Old->getType()->isArrayType() &&
1278             New->getType()->isIncompleteArrayType()) {
1279      CanQual<ArrayType> OldArray
1280        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1281      CanQual<ArrayType> NewArray
1282        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1283      if (OldArray->getElementType() == NewArray->getElementType())
1284        MergedT = Old->getType();
1285    }
1286  } else {
1287    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1288  }
1289  if (MergedT.isNull()) {
1290    Diag(New->getLocation(), diag::err_redefinition_different_type)
1291      << New->getDeclName();
1292    Diag(Old->getLocation(), diag::note_previous_definition);
1293    return New->setInvalidDecl();
1294  }
1295  New->setType(MergedT);
1296
1297  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1298  if (New->getStorageClass() == VarDecl::Static &&
1299      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1300    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1301    Diag(Old->getLocation(), diag::note_previous_definition);
1302    return New->setInvalidDecl();
1303  }
1304  // C99 6.2.2p4:
1305  //   For an identifier declared with the storage-class specifier
1306  //   extern in a scope in which a prior declaration of that
1307  //   identifier is visible,23) if the prior declaration specifies
1308  //   internal or external linkage, the linkage of the identifier at
1309  //   the later declaration is the same as the linkage specified at
1310  //   the prior declaration. If no prior declaration is visible, or
1311  //   if the prior declaration specifies no linkage, then the
1312  //   identifier has external linkage.
1313  if (New->hasExternalStorage() && Old->hasLinkage())
1314    /* Okay */;
1315  else if (New->getStorageClass() != VarDecl::Static &&
1316           Old->getStorageClass() == VarDecl::Static) {
1317    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1318    Diag(Old->getLocation(), diag::note_previous_definition);
1319    return New->setInvalidDecl();
1320  }
1321
1322  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1323
1324  // FIXME: The test for external storage here seems wrong? We still
1325  // need to check for mismatches.
1326  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1327      // Don't complain about out-of-line definitions of static members.
1328      !(Old->getLexicalDeclContext()->isRecord() &&
1329        !New->getLexicalDeclContext()->isRecord())) {
1330    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1331    Diag(Old->getLocation(), diag::note_previous_definition);
1332    return New->setInvalidDecl();
1333  }
1334
1335  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1336    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1337    Diag(Old->getLocation(), diag::note_previous_definition);
1338  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1339    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1340    Diag(Old->getLocation(), diag::note_previous_definition);
1341  }
1342
1343  // C++ doesn't have tentative definitions, so go right ahead and check here.
1344  const VarDecl *Def;
1345  if (getLangOptions().CPlusPlus &&
1346      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1347      (Def = Old->getDefinition())) {
1348    Diag(New->getLocation(), diag::err_redefinition)
1349      << New->getDeclName();
1350    Diag(Def->getLocation(), diag::note_previous_definition);
1351    New->setInvalidDecl();
1352    return;
1353  }
1354
1355  // Keep a chain of previous declarations.
1356  New->setPreviousDeclaration(Old);
1357
1358  // Inherit access appropriately.
1359  New->setAccess(Old->getAccess());
1360}
1361
1362/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1363/// no declarator (e.g. "struct foo;") is parsed.
1364Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1365  // FIXME: Error on auto/register at file scope
1366  // FIXME: Error on inline/virtual/explicit
1367  // FIXME: Warn on useless __thread
1368  // FIXME: Warn on useless const/volatile
1369  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1370  // FIXME: Warn on useless attributes
1371  Decl *TagD = 0;
1372  TagDecl *Tag = 0;
1373  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1374      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1375      DS.getTypeSpecType() == DeclSpec::TST_union ||
1376      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1377    TagD = static_cast<Decl *>(DS.getTypeRep());
1378
1379    if (!TagD) // We probably had an error
1380      return DeclPtrTy();
1381
1382    // Note that the above type specs guarantee that the
1383    // type rep is a Decl, whereas in many of the others
1384    // it's a Type.
1385    Tag = dyn_cast<TagDecl>(TagD);
1386  }
1387
1388  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1389    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1390    // or incomplete types shall not be restrict-qualified."
1391    if (TypeQuals & DeclSpec::TQ_restrict)
1392      Diag(DS.getRestrictSpecLoc(),
1393           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1394           << DS.getSourceRange();
1395  }
1396
1397  if (DS.isFriendSpecified()) {
1398    // If we're dealing with a class template decl, assume that the
1399    // template routines are handling it.
1400    if (TagD && isa<ClassTemplateDecl>(TagD))
1401      return DeclPtrTy();
1402    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1403  }
1404
1405  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1406    // If there are attributes in the DeclSpec, apply them to the record.
1407    if (const AttributeList *AL = DS.getAttributes())
1408      ProcessDeclAttributeList(S, Record, AL);
1409
1410    if (!Record->getDeclName() && Record->isDefinition() &&
1411        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1412      if (getLangOptions().CPlusPlus ||
1413          Record->getDeclContext()->isRecord())
1414        return BuildAnonymousStructOrUnion(S, DS, Record);
1415
1416      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1417        << DS.getSourceRange();
1418    }
1419
1420    // Microsoft allows unnamed struct/union fields. Don't complain
1421    // about them.
1422    // FIXME: Should we support Microsoft's extensions in this area?
1423    if (Record->getDeclName() && getLangOptions().Microsoft)
1424      return DeclPtrTy::make(Tag);
1425  }
1426
1427  if (!DS.isMissingDeclaratorOk() &&
1428      DS.getTypeSpecType() != DeclSpec::TST_error) {
1429    // Warn about typedefs of enums without names, since this is an
1430    // extension in both Microsoft an GNU.
1431    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1432        Tag && isa<EnumDecl>(Tag)) {
1433      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1434        << DS.getSourceRange();
1435      return DeclPtrTy::make(Tag);
1436    }
1437
1438    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1439      << DS.getSourceRange();
1440    return DeclPtrTy();
1441  }
1442
1443  return DeclPtrTy::make(Tag);
1444}
1445
1446/// We are trying to inject an anonymous member into the given scope;
1447/// check if there's an existing declaration that can't be overloaded.
1448///
1449/// \return true if this is a forbidden redeclaration
1450static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1451                                         Scope *S,
1452                                         DeclContext *Owner,
1453                                         DeclarationName Name,
1454                                         SourceLocation NameLoc,
1455                                         unsigned diagnostic) {
1456  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1457                 Sema::ForRedeclaration);
1458  if (!SemaRef.LookupName(R, S)) return false;
1459
1460  if (R.getAsSingle<TagDecl>())
1461    return false;
1462
1463  // Pick a representative declaration.
1464  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1465  if (PrevDecl && Owner->isRecord()) {
1466    RecordDecl *Record = cast<RecordDecl>(Owner);
1467    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1468      return false;
1469  }
1470
1471  SemaRef.Diag(NameLoc, diagnostic) << Name;
1472  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1473
1474  return true;
1475}
1476
1477/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1478/// anonymous struct or union AnonRecord into the owning context Owner
1479/// and scope S. This routine will be invoked just after we realize
1480/// that an unnamed union or struct is actually an anonymous union or
1481/// struct, e.g.,
1482///
1483/// @code
1484/// union {
1485///   int i;
1486///   float f;
1487/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1488///    // f into the surrounding scope.x
1489/// @endcode
1490///
1491/// This routine is recursive, injecting the names of nested anonymous
1492/// structs/unions into the owning context and scope as well.
1493bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1494                                               RecordDecl *AnonRecord) {
1495  unsigned diagKind
1496    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1497                            : diag::err_anonymous_struct_member_redecl;
1498
1499  bool Invalid = false;
1500  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1501                               FEnd = AnonRecord->field_end();
1502       F != FEnd; ++F) {
1503    if ((*F)->getDeclName()) {
1504      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1505                                       (*F)->getLocation(), diagKind)) {
1506        // C++ [class.union]p2:
1507        //   The names of the members of an anonymous union shall be
1508        //   distinct from the names of any other entity in the
1509        //   scope in which the anonymous union is declared.
1510        Invalid = true;
1511      } else {
1512        // C++ [class.union]p2:
1513        //   For the purpose of name lookup, after the anonymous union
1514        //   definition, the members of the anonymous union are
1515        //   considered to have been defined in the scope in which the
1516        //   anonymous union is declared.
1517        Owner->makeDeclVisibleInContext(*F);
1518        S->AddDecl(DeclPtrTy::make(*F));
1519        IdResolver.AddDecl(*F);
1520      }
1521    } else if (const RecordType *InnerRecordType
1522                 = (*F)->getType()->getAs<RecordType>()) {
1523      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1524      if (InnerRecord->isAnonymousStructOrUnion())
1525        Invalid = Invalid ||
1526          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1527    }
1528  }
1529
1530  return Invalid;
1531}
1532
1533/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1534/// anonymous structure or union. Anonymous unions are a C++ feature
1535/// (C++ [class.union]) and a GNU C extension; anonymous structures
1536/// are a GNU C and GNU C++ extension.
1537Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1538                                                  RecordDecl *Record) {
1539  DeclContext *Owner = Record->getDeclContext();
1540
1541  // Diagnose whether this anonymous struct/union is an extension.
1542  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1543    Diag(Record->getLocation(), diag::ext_anonymous_union);
1544  else if (!Record->isUnion())
1545    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1546
1547  // C and C++ require different kinds of checks for anonymous
1548  // structs/unions.
1549  bool Invalid = false;
1550  if (getLangOptions().CPlusPlus) {
1551    const char* PrevSpec = 0;
1552    unsigned DiagID;
1553    // C++ [class.union]p3:
1554    //   Anonymous unions declared in a named namespace or in the
1555    //   global namespace shall be declared static.
1556    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1557        (isa<TranslationUnitDecl>(Owner) ||
1558         (isa<NamespaceDecl>(Owner) &&
1559          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1560      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1561      Invalid = true;
1562
1563      // Recover by adding 'static'.
1564      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1565                             PrevSpec, DiagID);
1566    }
1567    // C++ [class.union]p3:
1568    //   A storage class is not allowed in a declaration of an
1569    //   anonymous union in a class scope.
1570    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1571             isa<RecordDecl>(Owner)) {
1572      Diag(DS.getStorageClassSpecLoc(),
1573           diag::err_anonymous_union_with_storage_spec);
1574      Invalid = true;
1575
1576      // Recover by removing the storage specifier.
1577      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1578                             PrevSpec, DiagID);
1579    }
1580
1581    // C++ [class.union]p2:
1582    //   The member-specification of an anonymous union shall only
1583    //   define non-static data members. [Note: nested types and
1584    //   functions cannot be declared within an anonymous union. ]
1585    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1586                                 MemEnd = Record->decls_end();
1587         Mem != MemEnd; ++Mem) {
1588      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1589        // C++ [class.union]p3:
1590        //   An anonymous union shall not have private or protected
1591        //   members (clause 11).
1592        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1593          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1594            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1595          Invalid = true;
1596        }
1597      } else if ((*Mem)->isImplicit()) {
1598        // Any implicit members are fine.
1599      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1600        // This is a type that showed up in an
1601        // elaborated-type-specifier inside the anonymous struct or
1602        // union, but which actually declares a type outside of the
1603        // anonymous struct or union. It's okay.
1604      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1605        if (!MemRecord->isAnonymousStructOrUnion() &&
1606            MemRecord->getDeclName()) {
1607          // This is a nested type declaration.
1608          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1609            << (int)Record->isUnion();
1610          Invalid = true;
1611        }
1612      } else {
1613        // We have something that isn't a non-static data
1614        // member. Complain about it.
1615        unsigned DK = diag::err_anonymous_record_bad_member;
1616        if (isa<TypeDecl>(*Mem))
1617          DK = diag::err_anonymous_record_with_type;
1618        else if (isa<FunctionDecl>(*Mem))
1619          DK = diag::err_anonymous_record_with_function;
1620        else if (isa<VarDecl>(*Mem))
1621          DK = diag::err_anonymous_record_with_static;
1622        Diag((*Mem)->getLocation(), DK)
1623            << (int)Record->isUnion();
1624          Invalid = true;
1625      }
1626    }
1627  }
1628
1629  if (!Record->isUnion() && !Owner->isRecord()) {
1630    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1631      << (int)getLangOptions().CPlusPlus;
1632    Invalid = true;
1633  }
1634
1635  // Mock up a declarator.
1636  Declarator Dc(DS, Declarator::TypeNameContext);
1637  TypeSourceInfo *TInfo = 0;
1638  GetTypeForDeclarator(Dc, S, &TInfo);
1639  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1640
1641  // Create a declaration for this anonymous struct/union.
1642  NamedDecl *Anon = 0;
1643  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1644    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1645                             /*IdentifierInfo=*/0,
1646                             Context.getTypeDeclType(Record),
1647                             TInfo,
1648                             /*BitWidth=*/0, /*Mutable=*/false);
1649    Anon->setAccess(AS_public);
1650    if (getLangOptions().CPlusPlus)
1651      FieldCollector->Add(cast<FieldDecl>(Anon));
1652  } else {
1653    VarDecl::StorageClass SC;
1654    switch (DS.getStorageClassSpec()) {
1655    default: assert(0 && "Unknown storage class!");
1656    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1657    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1658    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1659    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1660    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1661    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1662    case DeclSpec::SCS_mutable:
1663      // mutable can only appear on non-static class members, so it's always
1664      // an error here
1665      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1666      Invalid = true;
1667      SC = VarDecl::None;
1668      break;
1669    }
1670
1671    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1672                           /*IdentifierInfo=*/0,
1673                           Context.getTypeDeclType(Record),
1674                           TInfo,
1675                           SC);
1676  }
1677  Anon->setImplicit();
1678
1679  // Add the anonymous struct/union object to the current
1680  // context. We'll be referencing this object when we refer to one of
1681  // its members.
1682  Owner->addDecl(Anon);
1683
1684  // Inject the members of the anonymous struct/union into the owning
1685  // context and into the identifier resolver chain for name lookup
1686  // purposes.
1687  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1688    Invalid = true;
1689
1690  // Mark this as an anonymous struct/union type. Note that we do not
1691  // do this until after we have already checked and injected the
1692  // members of this anonymous struct/union type, because otherwise
1693  // the members could be injected twice: once by DeclContext when it
1694  // builds its lookup table, and once by
1695  // InjectAnonymousStructOrUnionMembers.
1696  Record->setAnonymousStructOrUnion(true);
1697
1698  if (Invalid)
1699    Anon->setInvalidDecl();
1700
1701  return DeclPtrTy::make(Anon);
1702}
1703
1704
1705/// GetNameForDeclarator - Determine the full declaration name for the
1706/// given Declarator.
1707DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1708  return GetNameFromUnqualifiedId(D.getName());
1709}
1710
1711/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1712DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1713  switch (Name.getKind()) {
1714    case UnqualifiedId::IK_Identifier:
1715      return DeclarationName(Name.Identifier);
1716
1717    case UnqualifiedId::IK_OperatorFunctionId:
1718      return Context.DeclarationNames.getCXXOperatorName(
1719                                              Name.OperatorFunctionId.Operator);
1720
1721    case UnqualifiedId::IK_LiteralOperatorId:
1722      return Context.DeclarationNames.getCXXLiteralOperatorName(
1723                                                               Name.Identifier);
1724
1725    case UnqualifiedId::IK_ConversionFunctionId: {
1726      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1727      if (Ty.isNull())
1728        return DeclarationName();
1729
1730      return Context.DeclarationNames.getCXXConversionFunctionName(
1731                                                  Context.getCanonicalType(Ty));
1732    }
1733
1734    case UnqualifiedId::IK_ConstructorName: {
1735      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1736      if (Ty.isNull())
1737        return DeclarationName();
1738
1739      return Context.DeclarationNames.getCXXConstructorName(
1740                                                  Context.getCanonicalType(Ty));
1741    }
1742
1743    case UnqualifiedId::IK_ConstructorTemplateId: {
1744      // In well-formed code, we can only have a constructor
1745      // template-id that refers to the current context, so go there
1746      // to find the actual type being constructed.
1747      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1748      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1749        return DeclarationName();
1750
1751      // Determine the type of the class being constructed.
1752      QualType CurClassType;
1753      if (ClassTemplateDecl *ClassTemplate
1754            = CurClass->getDescribedClassTemplate())
1755        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1756      else
1757        CurClassType = Context.getTypeDeclType(CurClass);
1758
1759      // FIXME: Check two things: that the template-id names the same type as
1760      // CurClassType, and that the template-id does not occur when the name
1761      // was qualified.
1762
1763      return Context.DeclarationNames.getCXXConstructorName(
1764                                       Context.getCanonicalType(CurClassType));
1765    }
1766
1767    case UnqualifiedId::IK_DestructorName: {
1768      QualType Ty = GetTypeFromParser(Name.DestructorName);
1769      if (Ty.isNull())
1770        return DeclarationName();
1771
1772      return Context.DeclarationNames.getCXXDestructorName(
1773                                                           Context.getCanonicalType(Ty));
1774    }
1775
1776    case UnqualifiedId::IK_TemplateId: {
1777      TemplateName TName
1778        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1779      return Context.getNameForTemplate(TName);
1780    }
1781  }
1782
1783  assert(false && "Unknown name kind");
1784  return DeclarationName();
1785}
1786
1787/// isNearlyMatchingFunction - Determine whether the C++ functions
1788/// Declaration and Definition are "nearly" matching. This heuristic
1789/// is used to improve diagnostics in the case where an out-of-line
1790/// function definition doesn't match any declaration within
1791/// the class or namespace.
1792static bool isNearlyMatchingFunction(ASTContext &Context,
1793                                     FunctionDecl *Declaration,
1794                                     FunctionDecl *Definition) {
1795  if (Declaration->param_size() != Definition->param_size())
1796    return false;
1797  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1798    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1799    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1800
1801    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1802                                        DefParamTy.getNonReferenceType()))
1803      return false;
1804  }
1805
1806  return true;
1807}
1808
1809Sema::DeclPtrTy
1810Sema::HandleDeclarator(Scope *S, Declarator &D,
1811                       MultiTemplateParamsArg TemplateParamLists,
1812                       bool IsFunctionDefinition) {
1813  DeclarationName Name = GetNameForDeclarator(D);
1814
1815  // All of these full declarators require an identifier.  If it doesn't have
1816  // one, the ParsedFreeStandingDeclSpec action should be used.
1817  if (!Name) {
1818    if (!D.isInvalidType())  // Reject this if we think it is valid.
1819      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1820           diag::err_declarator_need_ident)
1821        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1822    return DeclPtrTy();
1823  }
1824
1825  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1826  // we find one that is.
1827  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1828         (S->getFlags() & Scope::TemplateParamScope) != 0)
1829    S = S->getParent();
1830
1831  // If this is an out-of-line definition of a member of a class template
1832  // or class template partial specialization, we may need to rebuild the
1833  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1834  // for more information.
1835  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1836  // handle expressions properly.
1837  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1838  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1839      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1840      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1841       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1842       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1843       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1844    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1845      // FIXME: Preserve type source info.
1846      QualType T = GetTypeFromParser(DS.getTypeRep());
1847
1848      DeclContext *SavedContext = CurContext;
1849      CurContext = DC;
1850      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1851      CurContext = SavedContext;
1852
1853      if (T.isNull())
1854        return DeclPtrTy();
1855      DS.UpdateTypeRep(T.getAsOpaquePtr());
1856    }
1857  }
1858
1859  DeclContext *DC;
1860  NamedDecl *New;
1861
1862  TypeSourceInfo *TInfo = 0;
1863  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1864
1865  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1866                        ForRedeclaration);
1867
1868  // See if this is a redefinition of a variable in the same scope.
1869  if (D.getCXXScopeSpec().isInvalid()) {
1870    DC = CurContext;
1871    D.setInvalidType();
1872  } else if (!D.getCXXScopeSpec().isSet()) {
1873    bool IsLinkageLookup = false;
1874
1875    // If the declaration we're planning to build will be a function
1876    // or object with linkage, then look for another declaration with
1877    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1878    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1879      /* Do nothing*/;
1880    else if (R->isFunctionType()) {
1881      if (CurContext->isFunctionOrMethod() ||
1882          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1883        IsLinkageLookup = true;
1884    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1885      IsLinkageLookup = true;
1886    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1887             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1888      IsLinkageLookup = true;
1889
1890    if (IsLinkageLookup)
1891      Previous.clear(LookupRedeclarationWithLinkage);
1892
1893    DC = CurContext;
1894    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1895  } else { // Something like "int foo::x;"
1896    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1897
1898    if (!DC) {
1899      // If we could not compute the declaration context, it's because the
1900      // declaration context is dependent but does not refer to a class,
1901      // class template, or class template partial specialization. Complain
1902      // and return early, to avoid the coming semantic disaster.
1903      Diag(D.getIdentifierLoc(),
1904           diag::err_template_qualified_declarator_no_match)
1905        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1906        << D.getCXXScopeSpec().getRange();
1907      return DeclPtrTy();
1908    }
1909
1910    if (!DC->isDependentContext() &&
1911        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1912      return DeclPtrTy();
1913
1914    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1915      Diag(D.getIdentifierLoc(),
1916           diag::err_member_def_undefined_record)
1917        << Name << DC << D.getCXXScopeSpec().getRange();
1918      D.setInvalidType();
1919    }
1920
1921    LookupQualifiedName(Previous, DC);
1922
1923    // Don't consider using declarations as previous declarations for
1924    // out-of-line members.
1925    RemoveUsingDecls(Previous);
1926
1927    // C++ 7.3.1.2p2:
1928    // Members (including explicit specializations of templates) of a named
1929    // namespace can also be defined outside that namespace by explicit
1930    // qualification of the name being defined, provided that the entity being
1931    // defined was already declared in the namespace and the definition appears
1932    // after the point of declaration in a namespace that encloses the
1933    // declarations namespace.
1934    //
1935    // Note that we only check the context at this point. We don't yet
1936    // have enough information to make sure that PrevDecl is actually
1937    // the declaration we want to match. For example, given:
1938    //
1939    //   class X {
1940    //     void f();
1941    //     void f(float);
1942    //   };
1943    //
1944    //   void X::f(int) { } // ill-formed
1945    //
1946    // In this case, PrevDecl will point to the overload set
1947    // containing the two f's declared in X, but neither of them
1948    // matches.
1949
1950    // First check whether we named the global scope.
1951    if (isa<TranslationUnitDecl>(DC)) {
1952      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1953        << Name << D.getCXXScopeSpec().getRange();
1954    } else {
1955      DeclContext *Cur = CurContext;
1956      while (isa<LinkageSpecDecl>(Cur))
1957        Cur = Cur->getParent();
1958      if (!Cur->Encloses(DC)) {
1959        // The qualifying scope doesn't enclose the original declaration.
1960        // Emit diagnostic based on current scope.
1961        SourceLocation L = D.getIdentifierLoc();
1962        SourceRange R = D.getCXXScopeSpec().getRange();
1963        if (isa<FunctionDecl>(Cur))
1964          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1965        else
1966          Diag(L, diag::err_invalid_declarator_scope)
1967            << Name << cast<NamedDecl>(DC) << R;
1968        D.setInvalidType();
1969      }
1970    }
1971  }
1972
1973  if (Previous.isSingleResult() &&
1974      Previous.getFoundDecl()->isTemplateParameter()) {
1975    // Maybe we will complain about the shadowed template parameter.
1976    if (!D.isInvalidType())
1977      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1978                                          Previous.getFoundDecl()))
1979        D.setInvalidType();
1980
1981    // Just pretend that we didn't see the previous declaration.
1982    Previous.clear();
1983  }
1984
1985  // In C++, the previous declaration we find might be a tag type
1986  // (class or enum). In this case, the new declaration will hide the
1987  // tag type. Note that this does does not apply if we're declaring a
1988  // typedef (C++ [dcl.typedef]p4).
1989  if (Previous.isSingleTagDecl() &&
1990      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1991    Previous.clear();
1992
1993  bool Redeclaration = false;
1994  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1995    if (TemplateParamLists.size()) {
1996      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1997      return DeclPtrTy();
1998    }
1999
2000    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2001  } else if (R->isFunctionType()) {
2002    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2003                                  move(TemplateParamLists),
2004                                  IsFunctionDefinition, Redeclaration);
2005  } else {
2006    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2007                                  move(TemplateParamLists),
2008                                  Redeclaration);
2009  }
2010
2011  if (New == 0)
2012    return DeclPtrTy();
2013
2014  // If this has an identifier and is not an invalid redeclaration or
2015  // function template specialization, add it to the scope stack.
2016  if (Name && !(Redeclaration && New->isInvalidDecl()))
2017    PushOnScopeChains(New, S);
2018
2019  return DeclPtrTy::make(New);
2020}
2021
2022/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2023/// types into constant array types in certain situations which would otherwise
2024/// be errors (for GCC compatibility).
2025static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2026                                                    ASTContext &Context,
2027                                                    bool &SizeIsNegative) {
2028  // This method tries to turn a variable array into a constant
2029  // array even when the size isn't an ICE.  This is necessary
2030  // for compatibility with code that depends on gcc's buggy
2031  // constant expression folding, like struct {char x[(int)(char*)2];}
2032  SizeIsNegative = false;
2033
2034  QualifierCollector Qs;
2035  const Type *Ty = Qs.strip(T);
2036
2037  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2038    QualType Pointee = PTy->getPointeeType();
2039    QualType FixedType =
2040        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2041    if (FixedType.isNull()) return FixedType;
2042    FixedType = Context.getPointerType(FixedType);
2043    return Qs.apply(FixedType);
2044  }
2045
2046  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2047  if (!VLATy)
2048    return QualType();
2049  // FIXME: We should probably handle this case
2050  if (VLATy->getElementType()->isVariablyModifiedType())
2051    return QualType();
2052
2053  Expr::EvalResult EvalResult;
2054  if (!VLATy->getSizeExpr() ||
2055      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2056      !EvalResult.Val.isInt())
2057    return QualType();
2058
2059  llvm::APSInt &Res = EvalResult.Val.getInt();
2060  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2061    // TODO: preserve the size expression in declarator info
2062    return Context.getConstantArrayType(VLATy->getElementType(),
2063                                        Res, ArrayType::Normal, 0);
2064  }
2065
2066  SizeIsNegative = true;
2067  return QualType();
2068}
2069
2070/// \brief Register the given locally-scoped external C declaration so
2071/// that it can be found later for redeclarations
2072void
2073Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2074                                       const LookupResult &Previous,
2075                                       Scope *S) {
2076  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2077         "Decl is not a locally-scoped decl!");
2078  // Note that we have a locally-scoped external with this name.
2079  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2080
2081  if (!Previous.isSingleResult())
2082    return;
2083
2084  NamedDecl *PrevDecl = Previous.getFoundDecl();
2085
2086  // If there was a previous declaration of this variable, it may be
2087  // in our identifier chain. Update the identifier chain with the new
2088  // declaration.
2089  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2090    // The previous declaration was found on the identifer resolver
2091    // chain, so remove it from its scope.
2092    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2093      S = S->getParent();
2094
2095    if (S)
2096      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2097  }
2098}
2099
2100/// \brief Diagnose function specifiers on a declaration of an identifier that
2101/// does not identify a function.
2102void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2103  // FIXME: We should probably indicate the identifier in question to avoid
2104  // confusion for constructs like "inline int a(), b;"
2105  if (D.getDeclSpec().isInlineSpecified())
2106    Diag(D.getDeclSpec().getInlineSpecLoc(),
2107         diag::err_inline_non_function);
2108
2109  if (D.getDeclSpec().isVirtualSpecified())
2110    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2111         diag::err_virtual_non_function);
2112
2113  if (D.getDeclSpec().isExplicitSpecified())
2114    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2115         diag::err_explicit_non_function);
2116}
2117
2118NamedDecl*
2119Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2120                             QualType R,  TypeSourceInfo *TInfo,
2121                             LookupResult &Previous, bool &Redeclaration) {
2122  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2123  if (D.getCXXScopeSpec().isSet()) {
2124    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2125      << D.getCXXScopeSpec().getRange();
2126    D.setInvalidType();
2127    // Pretend we didn't see the scope specifier.
2128    DC = 0;
2129  }
2130
2131  if (getLangOptions().CPlusPlus) {
2132    // Check that there are no default arguments (C++ only).
2133    CheckExtraCXXDefaultArguments(D);
2134  }
2135
2136  DiagnoseFunctionSpecifiers(D);
2137
2138  if (D.getDeclSpec().isThreadSpecified())
2139    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2140
2141  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2142  if (!NewTD) return 0;
2143
2144  // Handle attributes prior to checking for duplicates in MergeVarDecl
2145  ProcessDeclAttributes(S, NewTD, D);
2146
2147  // Merge the decl with the existing one if appropriate. If the decl is
2148  // in an outer scope, it isn't the same thing.
2149  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2150  if (!Previous.empty()) {
2151    Redeclaration = true;
2152    MergeTypeDefDecl(NewTD, Previous);
2153  }
2154
2155  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2156  // then it shall have block scope.
2157  QualType T = NewTD->getUnderlyingType();
2158  if (T->isVariablyModifiedType()) {
2159    CurFunctionNeedsScopeChecking = true;
2160
2161    if (S->getFnParent() == 0) {
2162      bool SizeIsNegative;
2163      QualType FixedTy =
2164          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2165      if (!FixedTy.isNull()) {
2166        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2167        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2168      } else {
2169        if (SizeIsNegative)
2170          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2171        else if (T->isVariableArrayType())
2172          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2173        else
2174          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2175        NewTD->setInvalidDecl();
2176      }
2177    }
2178  }
2179
2180  // If this is the C FILE type, notify the AST context.
2181  if (IdentifierInfo *II = NewTD->getIdentifier())
2182    if (!NewTD->isInvalidDecl() &&
2183        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2184      if (II->isStr("FILE"))
2185        Context.setFILEDecl(NewTD);
2186      else if (II->isStr("jmp_buf"))
2187        Context.setjmp_bufDecl(NewTD);
2188      else if (II->isStr("sigjmp_buf"))
2189        Context.setsigjmp_bufDecl(NewTD);
2190    }
2191
2192  return NewTD;
2193}
2194
2195/// \brief Determines whether the given declaration is an out-of-scope
2196/// previous declaration.
2197///
2198/// This routine should be invoked when name lookup has found a
2199/// previous declaration (PrevDecl) that is not in the scope where a
2200/// new declaration by the same name is being introduced. If the new
2201/// declaration occurs in a local scope, previous declarations with
2202/// linkage may still be considered previous declarations (C99
2203/// 6.2.2p4-5, C++ [basic.link]p6).
2204///
2205/// \param PrevDecl the previous declaration found by name
2206/// lookup
2207///
2208/// \param DC the context in which the new declaration is being
2209/// declared.
2210///
2211/// \returns true if PrevDecl is an out-of-scope previous declaration
2212/// for a new delcaration with the same name.
2213static bool
2214isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2215                                ASTContext &Context) {
2216  if (!PrevDecl)
2217    return 0;
2218
2219  if (!PrevDecl->hasLinkage())
2220    return false;
2221
2222  if (Context.getLangOptions().CPlusPlus) {
2223    // C++ [basic.link]p6:
2224    //   If there is a visible declaration of an entity with linkage
2225    //   having the same name and type, ignoring entities declared
2226    //   outside the innermost enclosing namespace scope, the block
2227    //   scope declaration declares that same entity and receives the
2228    //   linkage of the previous declaration.
2229    DeclContext *OuterContext = DC->getLookupContext();
2230    if (!OuterContext->isFunctionOrMethod())
2231      // This rule only applies to block-scope declarations.
2232      return false;
2233    else {
2234      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2235      if (PrevOuterContext->isRecord())
2236        // We found a member function: ignore it.
2237        return false;
2238      else {
2239        // Find the innermost enclosing namespace for the new and
2240        // previous declarations.
2241        while (!OuterContext->isFileContext())
2242          OuterContext = OuterContext->getParent();
2243        while (!PrevOuterContext->isFileContext())
2244          PrevOuterContext = PrevOuterContext->getParent();
2245
2246        // The previous declaration is in a different namespace, so it
2247        // isn't the same function.
2248        if (OuterContext->getPrimaryContext() !=
2249            PrevOuterContext->getPrimaryContext())
2250          return false;
2251      }
2252    }
2253  }
2254
2255  return true;
2256}
2257
2258NamedDecl*
2259Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2260                              QualType R, TypeSourceInfo *TInfo,
2261                              LookupResult &Previous,
2262                              MultiTemplateParamsArg TemplateParamLists,
2263                              bool &Redeclaration) {
2264  DeclarationName Name = GetNameForDeclarator(D);
2265
2266  // Check that there are no default arguments (C++ only).
2267  if (getLangOptions().CPlusPlus)
2268    CheckExtraCXXDefaultArguments(D);
2269
2270  VarDecl *NewVD;
2271  VarDecl::StorageClass SC;
2272  switch (D.getDeclSpec().getStorageClassSpec()) {
2273  default: assert(0 && "Unknown storage class!");
2274  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2275  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2276  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2277  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2278  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2279  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2280  case DeclSpec::SCS_mutable:
2281    // mutable can only appear on non-static class members, so it's always
2282    // an error here
2283    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2284    D.setInvalidType();
2285    SC = VarDecl::None;
2286    break;
2287  }
2288
2289  IdentifierInfo *II = Name.getAsIdentifierInfo();
2290  if (!II) {
2291    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2292      << Name.getAsString();
2293    return 0;
2294  }
2295
2296  DiagnoseFunctionSpecifiers(D);
2297
2298  if (!DC->isRecord() && S->getFnParent() == 0) {
2299    // C99 6.9p2: The storage-class specifiers auto and register shall not
2300    // appear in the declaration specifiers in an external declaration.
2301    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2302
2303      // If this is a register variable with an asm label specified, then this
2304      // is a GNU extension.
2305      if (SC == VarDecl::Register && D.getAsmLabel())
2306        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2307      else
2308        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2309      D.setInvalidType();
2310    }
2311  }
2312  if (DC->isRecord() && !CurContext->isRecord()) {
2313    // This is an out-of-line definition of a static data member.
2314    if (SC == VarDecl::Static) {
2315      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2316           diag::err_static_out_of_line)
2317        << CodeModificationHint::CreateRemoval(
2318                                      D.getDeclSpec().getStorageClassSpecLoc());
2319    } else if (SC == VarDecl::None)
2320      SC = VarDecl::Static;
2321  }
2322  if (SC == VarDecl::Static) {
2323    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2324      if (RD->isLocalClass())
2325        Diag(D.getIdentifierLoc(),
2326             diag::err_static_data_member_not_allowed_in_local_class)
2327          << Name << RD->getDeclName();
2328    }
2329  }
2330
2331  // Match up the template parameter lists with the scope specifier, then
2332  // determine whether we have a template or a template specialization.
2333  bool isExplicitSpecialization = false;
2334  if (TemplateParameterList *TemplateParams
2335        = MatchTemplateParametersToScopeSpecifier(
2336                                  D.getDeclSpec().getSourceRange().getBegin(),
2337                                                  D.getCXXScopeSpec(),
2338                        (TemplateParameterList**)TemplateParamLists.get(),
2339                                                   TemplateParamLists.size(),
2340                                                  isExplicitSpecialization)) {
2341    if (TemplateParams->size() > 0) {
2342      // There is no such thing as a variable template.
2343      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2344        << II
2345        << SourceRange(TemplateParams->getTemplateLoc(),
2346                       TemplateParams->getRAngleLoc());
2347      return 0;
2348    } else {
2349      // There is an extraneous 'template<>' for this variable. Complain
2350      // about it, but allow the declaration of the variable.
2351      Diag(TemplateParams->getTemplateLoc(),
2352           diag::err_template_variable_noparams)
2353        << II
2354        << SourceRange(TemplateParams->getTemplateLoc(),
2355                       TemplateParams->getRAngleLoc());
2356
2357      isExplicitSpecialization = true;
2358    }
2359  }
2360
2361  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2362                          II, R, TInfo, SC);
2363
2364  if (D.isInvalidType())
2365    NewVD->setInvalidDecl();
2366
2367  if (D.getDeclSpec().isThreadSpecified()) {
2368    if (NewVD->hasLocalStorage())
2369      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2370    else if (!Context.Target.isTLSSupported())
2371      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2372    else
2373      NewVD->setThreadSpecified(true);
2374  }
2375
2376  // Set the lexical context. If the declarator has a C++ scope specifier, the
2377  // lexical context will be different from the semantic context.
2378  NewVD->setLexicalDeclContext(CurContext);
2379
2380  // Handle attributes prior to checking for duplicates in MergeVarDecl
2381  ProcessDeclAttributes(S, NewVD, D);
2382
2383  // Handle GNU asm-label extension (encoded as an attribute).
2384  if (Expr *E = (Expr*) D.getAsmLabel()) {
2385    // The parser guarantees this is a string.
2386    StringLiteral *SE = cast<StringLiteral>(E);
2387    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2388  }
2389
2390  // Don't consider existing declarations that are in a different
2391  // scope and are out-of-semantic-context declarations (if the new
2392  // declaration has linkage).
2393  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2394
2395  // Merge the decl with the existing one if appropriate.
2396  if (!Previous.empty()) {
2397    if (Previous.isSingleResult() &&
2398        isa<FieldDecl>(Previous.getFoundDecl()) &&
2399        D.getCXXScopeSpec().isSet()) {
2400      // The user tried to define a non-static data member
2401      // out-of-line (C++ [dcl.meaning]p1).
2402      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2403        << D.getCXXScopeSpec().getRange();
2404      Previous.clear();
2405      NewVD->setInvalidDecl();
2406    }
2407  } else if (D.getCXXScopeSpec().isSet()) {
2408    // No previous declaration in the qualifying scope.
2409    Diag(D.getIdentifierLoc(), diag::err_no_member)
2410      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2411      << D.getCXXScopeSpec().getRange();
2412    NewVD->setInvalidDecl();
2413  }
2414
2415  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2416
2417  // This is an explicit specialization of a static data member. Check it.
2418  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2419      CheckMemberSpecialization(NewVD, Previous))
2420    NewVD->setInvalidDecl();
2421
2422  // attributes declared post-definition are currently ignored
2423  if (Previous.isSingleResult()) {
2424    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2425    if (Def && (Def = Def->getDefinition()) &&
2426        Def != NewVD && D.hasAttributes()) {
2427      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2428      Diag(Def->getLocation(), diag::note_previous_definition);
2429    }
2430  }
2431
2432  // If this is a locally-scoped extern C variable, update the map of
2433  // such variables.
2434  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2435      !NewVD->isInvalidDecl())
2436    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2437
2438  return NewVD;
2439}
2440
2441/// \brief Perform semantic checking on a newly-created variable
2442/// declaration.
2443///
2444/// This routine performs all of the type-checking required for a
2445/// variable declaration once it has been built. It is used both to
2446/// check variables after they have been parsed and their declarators
2447/// have been translated into a declaration, and to check variables
2448/// that have been instantiated from a template.
2449///
2450/// Sets NewVD->isInvalidDecl() if an error was encountered.
2451void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2452                                    LookupResult &Previous,
2453                                    bool &Redeclaration) {
2454  // If the decl is already known invalid, don't check it.
2455  if (NewVD->isInvalidDecl())
2456    return;
2457
2458  QualType T = NewVD->getType();
2459
2460  if (T->isObjCInterfaceType()) {
2461    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2462    return NewVD->setInvalidDecl();
2463  }
2464
2465  // Emit an error if an address space was applied to decl with local storage.
2466  // This includes arrays of objects with address space qualifiers, but not
2467  // automatic variables that point to other address spaces.
2468  // ISO/IEC TR 18037 S5.1.2
2469  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2470    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2471    return NewVD->setInvalidDecl();
2472  }
2473
2474  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2475      && !NewVD->hasAttr<BlocksAttr>())
2476    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2477
2478  bool isVM = T->isVariablyModifiedType();
2479  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2480      NewVD->hasAttr<BlocksAttr>())
2481    CurFunctionNeedsScopeChecking = true;
2482
2483  if ((isVM && NewVD->hasLinkage()) ||
2484      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2485    bool SizeIsNegative;
2486    QualType FixedTy =
2487        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2488
2489    if (FixedTy.isNull() && T->isVariableArrayType()) {
2490      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2491      // FIXME: This won't give the correct result for
2492      // int a[10][n];
2493      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2494
2495      if (NewVD->isFileVarDecl())
2496        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2497        << SizeRange;
2498      else if (NewVD->getStorageClass() == VarDecl::Static)
2499        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2500        << SizeRange;
2501      else
2502        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2503        << SizeRange;
2504      return NewVD->setInvalidDecl();
2505    }
2506
2507    if (FixedTy.isNull()) {
2508      if (NewVD->isFileVarDecl())
2509        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2510      else
2511        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2512      return NewVD->setInvalidDecl();
2513    }
2514
2515    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2516    NewVD->setType(FixedTy);
2517  }
2518
2519  if (Previous.empty() && NewVD->isExternC()) {
2520    // Since we did not find anything by this name and we're declaring
2521    // an extern "C" variable, look for a non-visible extern "C"
2522    // declaration with the same name.
2523    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2524      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2525    if (Pos != LocallyScopedExternalDecls.end())
2526      Previous.addDecl(Pos->second);
2527  }
2528
2529  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2530    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2531      << T;
2532    return NewVD->setInvalidDecl();
2533  }
2534
2535  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2536    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2537    return NewVD->setInvalidDecl();
2538  }
2539
2540  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2541    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2542    return NewVD->setInvalidDecl();
2543  }
2544
2545  if (!Previous.empty()) {
2546    Redeclaration = true;
2547    MergeVarDecl(NewVD, Previous);
2548  }
2549}
2550
2551/// \brief Data used with FindOverriddenMethod
2552struct FindOverriddenMethodData {
2553  Sema *S;
2554  CXXMethodDecl *Method;
2555};
2556
2557/// \brief Member lookup function that determines whether a given C++
2558/// method overrides a method in a base class, to be used with
2559/// CXXRecordDecl::lookupInBases().
2560static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2561                                 CXXBasePath &Path,
2562                                 void *UserData) {
2563  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2564
2565  FindOverriddenMethodData *Data
2566    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2567
2568  DeclarationName Name = Data->Method->getDeclName();
2569
2570  // FIXME: Do we care about other names here too?
2571  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2572    // We really want to find the base class constructor here.
2573    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2574    CanQualType CT = Data->S->Context.getCanonicalType(T);
2575
2576    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2577  }
2578
2579  for (Path.Decls = BaseRecord->lookup(Name);
2580       Path.Decls.first != Path.Decls.second;
2581       ++Path.Decls.first) {
2582    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2583      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2584        return true;
2585    }
2586  }
2587
2588  return false;
2589}
2590
2591/// AddOverriddenMethods - See if a method overrides any in the base classes,
2592/// and if so, check that it's a valid override and remember it.
2593void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2594  // Look for virtual methods in base classes that this method might override.
2595  CXXBasePaths Paths;
2596  FindOverriddenMethodData Data;
2597  Data.Method = MD;
2598  Data.S = this;
2599  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2600    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2601         E = Paths.found_decls_end(); I != E; ++I) {
2602      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2603        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2604            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2605            !CheckOverridingFunctionAttributes(MD, OldMD))
2606          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2607      }
2608    }
2609  }
2610}
2611
2612NamedDecl*
2613Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2614                              QualType R, TypeSourceInfo *TInfo,
2615                              LookupResult &Previous,
2616                              MultiTemplateParamsArg TemplateParamLists,
2617                              bool IsFunctionDefinition, bool &Redeclaration) {
2618  assert(R.getTypePtr()->isFunctionType());
2619
2620  DeclarationName Name = GetNameForDeclarator(D);
2621  FunctionDecl::StorageClass SC = FunctionDecl::None;
2622  switch (D.getDeclSpec().getStorageClassSpec()) {
2623  default: assert(0 && "Unknown storage class!");
2624  case DeclSpec::SCS_auto:
2625  case DeclSpec::SCS_register:
2626  case DeclSpec::SCS_mutable:
2627    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2628         diag::err_typecheck_sclass_func);
2629    D.setInvalidType();
2630    break;
2631  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2632  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2633  case DeclSpec::SCS_static: {
2634    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2635      // C99 6.7.1p5:
2636      //   The declaration of an identifier for a function that has
2637      //   block scope shall have no explicit storage-class specifier
2638      //   other than extern
2639      // See also (C++ [dcl.stc]p4).
2640      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2641           diag::err_static_block_func);
2642      SC = FunctionDecl::None;
2643    } else
2644      SC = FunctionDecl::Static;
2645    break;
2646  }
2647  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2648  }
2649
2650  if (D.getDeclSpec().isThreadSpecified())
2651    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2652
2653  bool isFriend = D.getDeclSpec().isFriendSpecified();
2654  bool isInline = D.getDeclSpec().isInlineSpecified();
2655  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2656  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2657
2658  // Check that the return type is not an abstract class type.
2659  // For record types, this is done by the AbstractClassUsageDiagnoser once
2660  // the class has been completely parsed.
2661  if (!DC->isRecord() &&
2662      RequireNonAbstractType(D.getIdentifierLoc(),
2663                             R->getAs<FunctionType>()->getResultType(),
2664                             diag::err_abstract_type_in_decl,
2665                             AbstractReturnType))
2666    D.setInvalidType();
2667
2668  // Do not allow returning a objc interface by-value.
2669  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2670    Diag(D.getIdentifierLoc(),
2671         diag::err_object_cannot_be_passed_returned_by_value) << 0
2672      << R->getAs<FunctionType>()->getResultType();
2673    D.setInvalidType();
2674  }
2675
2676  bool isVirtualOkay = false;
2677  FunctionDecl *NewFD;
2678
2679  if (isFriend) {
2680    // C++ [class.friend]p5
2681    //   A function can be defined in a friend declaration of a
2682    //   class . . . . Such a function is implicitly inline.
2683    isInline |= IsFunctionDefinition;
2684  }
2685
2686  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2687    // This is a C++ constructor declaration.
2688    assert(DC->isRecord() &&
2689           "Constructors can only be declared in a member context");
2690
2691    R = CheckConstructorDeclarator(D, R, SC);
2692
2693    // Create the new declaration
2694    NewFD = CXXConstructorDecl::Create(Context,
2695                                       cast<CXXRecordDecl>(DC),
2696                                       D.getIdentifierLoc(), Name, R, TInfo,
2697                                       isExplicit, isInline,
2698                                       /*isImplicitlyDeclared=*/false);
2699  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2700    // This is a C++ destructor declaration.
2701    if (DC->isRecord()) {
2702      R = CheckDestructorDeclarator(D, SC);
2703
2704      NewFD = CXXDestructorDecl::Create(Context,
2705                                        cast<CXXRecordDecl>(DC),
2706                                        D.getIdentifierLoc(), Name, R,
2707                                        isInline,
2708                                        /*isImplicitlyDeclared=*/false);
2709
2710      isVirtualOkay = true;
2711    } else {
2712      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2713
2714      // Create a FunctionDecl to satisfy the function definition parsing
2715      // code path.
2716      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2717                                   Name, R, TInfo, SC, isInline,
2718                                   /*hasPrototype=*/true);
2719      D.setInvalidType();
2720    }
2721  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2722    if (!DC->isRecord()) {
2723      Diag(D.getIdentifierLoc(),
2724           diag::err_conv_function_not_member);
2725      return 0;
2726    }
2727
2728    CheckConversionDeclarator(D, R, SC);
2729    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2730                                      D.getIdentifierLoc(), Name, R, TInfo,
2731                                      isInline, isExplicit);
2732
2733    isVirtualOkay = true;
2734  } else if (DC->isRecord()) {
2735    // If the of the function is the same as the name of the record, then this
2736    // must be an invalid constructor that has a return type.
2737    // (The parser checks for a return type and makes the declarator a
2738    // constructor if it has no return type).
2739    // must have an invalid constructor that has a return type
2740    if (Name.getAsIdentifierInfo() &&
2741        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2742      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2743        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2744        << SourceRange(D.getIdentifierLoc());
2745      return 0;
2746    }
2747
2748    bool isStatic = SC == FunctionDecl::Static;
2749
2750    // [class.free]p1:
2751    // Any allocation function for a class T is a static member
2752    // (even if not explicitly declared static).
2753    if (Name.getCXXOverloadedOperator() == OO_New ||
2754        Name.getCXXOverloadedOperator() == OO_Array_New)
2755      isStatic = true;
2756
2757    // [class.free]p6 Any deallocation function for a class X is a static member
2758    // (even if not explicitly declared static).
2759    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2760        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2761      isStatic = true;
2762
2763    // This is a C++ method declaration.
2764    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2765                                  D.getIdentifierLoc(), Name, R, TInfo,
2766                                  isStatic, isInline);
2767
2768    isVirtualOkay = !isStatic;
2769  } else {
2770    // Determine whether the function was written with a
2771    // prototype. This true when:
2772    //   - we're in C++ (where every function has a prototype),
2773    //   - there is a prototype in the declarator, or
2774    //   - the type R of the function is some kind of typedef or other reference
2775    //     to a type name (which eventually refers to a function type).
2776    bool HasPrototype =
2777       getLangOptions().CPlusPlus ||
2778       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2779       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2780
2781    NewFD = FunctionDecl::Create(Context, DC,
2782                                 D.getIdentifierLoc(),
2783                                 Name, R, TInfo, SC, isInline, HasPrototype);
2784  }
2785
2786  if (D.isInvalidType())
2787    NewFD->setInvalidDecl();
2788
2789  // Set the lexical context. If the declarator has a C++
2790  // scope specifier, or is the object of a friend declaration, the
2791  // lexical context will be different from the semantic context.
2792  NewFD->setLexicalDeclContext(CurContext);
2793
2794  // Match up the template parameter lists with the scope specifier, then
2795  // determine whether we have a template or a template specialization.
2796  FunctionTemplateDecl *FunctionTemplate = 0;
2797  bool isExplicitSpecialization = false;
2798  bool isFunctionTemplateSpecialization = false;
2799  if (TemplateParameterList *TemplateParams
2800        = MatchTemplateParametersToScopeSpecifier(
2801                                  D.getDeclSpec().getSourceRange().getBegin(),
2802                                  D.getCXXScopeSpec(),
2803                           (TemplateParameterList**)TemplateParamLists.get(),
2804                                                  TemplateParamLists.size(),
2805                                                  isExplicitSpecialization)) {
2806    if (TemplateParams->size() > 0) {
2807      // This is a function template
2808
2809      // Check that we can declare a template here.
2810      if (CheckTemplateDeclScope(S, TemplateParams))
2811        return 0;
2812
2813      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2814                                                      NewFD->getLocation(),
2815                                                      Name, TemplateParams,
2816                                                      NewFD);
2817      FunctionTemplate->setLexicalDeclContext(CurContext);
2818      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2819    } else {
2820      // This is a function template specialization.
2821      isFunctionTemplateSpecialization = true;
2822    }
2823
2824    // FIXME: Free this memory properly.
2825    TemplateParamLists.release();
2826  }
2827
2828  // C++ [dcl.fct.spec]p5:
2829  //   The virtual specifier shall only be used in declarations of
2830  //   nonstatic class member functions that appear within a
2831  //   member-specification of a class declaration; see 10.3.
2832  //
2833  if (isVirtual && !NewFD->isInvalidDecl()) {
2834    if (!isVirtualOkay) {
2835       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2836           diag::err_virtual_non_function);
2837    } else if (!CurContext->isRecord()) {
2838      // 'virtual' was specified outside of the class.
2839      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2840        << CodeModificationHint::CreateRemoval(
2841                                           D.getDeclSpec().getVirtualSpecLoc());
2842    } else {
2843      // Okay: Add virtual to the method.
2844      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2845      CurClass->setMethodAsVirtual(NewFD);
2846    }
2847  }
2848
2849  // C++ [dcl.fct.spec]p6:
2850  //  The explicit specifier shall be used only in the declaration of a
2851  //  constructor or conversion function within its class definition; see 12.3.1
2852  //  and 12.3.2.
2853  if (isExplicit && !NewFD->isInvalidDecl()) {
2854    if (!CurContext->isRecord()) {
2855      // 'explicit' was specified outside of the class.
2856      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2857           diag::err_explicit_out_of_class)
2858        << CodeModificationHint::CreateRemoval(
2859                                          D.getDeclSpec().getExplicitSpecLoc());
2860    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2861               !isa<CXXConversionDecl>(NewFD)) {
2862      // 'explicit' was specified on a function that wasn't a constructor
2863      // or conversion function.
2864      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2865           diag::err_explicit_non_ctor_or_conv_function)
2866        << CodeModificationHint::CreateRemoval(
2867                                          D.getDeclSpec().getExplicitSpecLoc());
2868    }
2869  }
2870
2871  // Filter out previous declarations that don't match the scope.
2872  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2873
2874  if (isFriend) {
2875    // DC is the namespace in which the function is being declared.
2876    assert((DC->isFileContext() || !Previous.empty()) &&
2877           "previously-undeclared friend function being created "
2878           "in a non-namespace context");
2879
2880    if (FunctionTemplate) {
2881      FunctionTemplate->setObjectOfFriendDecl(
2882                                   /* PreviouslyDeclared= */ !Previous.empty());
2883      FunctionTemplate->setAccess(AS_public);
2884    }
2885    else
2886      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2887
2888    NewFD->setAccess(AS_public);
2889  }
2890
2891  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2892      !CurContext->isRecord()) {
2893    // C++ [class.static]p1:
2894    //   A data or function member of a class may be declared static
2895    //   in a class definition, in which case it is a static member of
2896    //   the class.
2897
2898    // Complain about the 'static' specifier if it's on an out-of-line
2899    // member function definition.
2900    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2901         diag::err_static_out_of_line)
2902      << CodeModificationHint::CreateRemoval(
2903                                      D.getDeclSpec().getStorageClassSpecLoc());
2904  }
2905
2906  // Handle GNU asm-label extension (encoded as an attribute).
2907  if (Expr *E = (Expr*) D.getAsmLabel()) {
2908    // The parser guarantees this is a string.
2909    StringLiteral *SE = cast<StringLiteral>(E);
2910    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2911  }
2912
2913  // Copy the parameter declarations from the declarator D to the function
2914  // declaration NewFD, if they are available.  First scavenge them into Params.
2915  llvm::SmallVector<ParmVarDecl*, 16> Params;
2916  if (D.getNumTypeObjects() > 0) {
2917    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2918
2919    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2920    // function that takes no arguments, not a function that takes a
2921    // single void argument.
2922    // We let through "const void" here because Sema::GetTypeForDeclarator
2923    // already checks for that case.
2924    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2925        FTI.ArgInfo[0].Param &&
2926        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2927      // Empty arg list, don't push any params.
2928      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2929
2930      // In C++, the empty parameter-type-list must be spelled "void"; a
2931      // typedef of void is not permitted.
2932      if (getLangOptions().CPlusPlus &&
2933          Param->getType().getUnqualifiedType() != Context.VoidTy)
2934        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2935      // FIXME: Leaks decl?
2936    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2937      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2938        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2939        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2940        Param->setDeclContext(NewFD);
2941        Params.push_back(Param);
2942      }
2943    }
2944
2945  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2946    // When we're declaring a function with a typedef, typeof, etc as in the
2947    // following example, we'll need to synthesize (unnamed)
2948    // parameters for use in the declaration.
2949    //
2950    // @code
2951    // typedef void fn(int);
2952    // fn f;
2953    // @endcode
2954
2955    // Synthesize a parameter for each argument type.
2956    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2957         AE = FT->arg_type_end(); AI != AE; ++AI) {
2958      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
2959                                               SourceLocation(), 0,
2960                                               *AI, /*TInfo=*/0,
2961                                               VarDecl::None, 0);
2962      Param->setImplicit();
2963      Params.push_back(Param);
2964    }
2965  } else {
2966    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2967           "Should not need args for typedef of non-prototype fn");
2968  }
2969  // Finally, we know we have the right number of parameters, install them.
2970  NewFD->setParams(Context, Params.data(), Params.size());
2971
2972  // If the declarator is a template-id, translate the parser's template
2973  // argument list into our AST format.
2974  bool HasExplicitTemplateArgs = false;
2975  TemplateArgumentListInfo TemplateArgs;
2976  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2977    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2978    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2979    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2980    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2981                                       TemplateId->getTemplateArgs(),
2982                                       TemplateId->NumArgs);
2983    translateTemplateArguments(TemplateArgsPtr,
2984                               TemplateArgs);
2985    TemplateArgsPtr.release();
2986
2987    HasExplicitTemplateArgs = true;
2988
2989    if (FunctionTemplate) {
2990      // FIXME: Diagnose function template with explicit template
2991      // arguments.
2992      HasExplicitTemplateArgs = false;
2993    } else if (!isFunctionTemplateSpecialization &&
2994               !D.getDeclSpec().isFriendSpecified()) {
2995      // We have encountered something that the user meant to be a
2996      // specialization (because it has explicitly-specified template
2997      // arguments) but that was not introduced with a "template<>" (or had
2998      // too few of them).
2999      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3000        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3001        << CodeModificationHint::CreateInsertion(
3002                                   D.getDeclSpec().getSourceRange().getBegin(),
3003                                                 "template<> ");
3004      isFunctionTemplateSpecialization = true;
3005    }
3006  }
3007
3008  if (isFunctionTemplateSpecialization) {
3009      if (CheckFunctionTemplateSpecialization(NewFD,
3010                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3011                                              Previous))
3012        NewFD->setInvalidDecl();
3013  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3014             CheckMemberSpecialization(NewFD, Previous))
3015    NewFD->setInvalidDecl();
3016
3017  // Perform semantic checking on the function declaration.
3018  bool OverloadableAttrRequired = false; // FIXME: HACK!
3019  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3020                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3021
3022  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3023          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3024         "previous declaration set still overloaded");
3025
3026  // If we have a function template, check the template parameter
3027  // list. This will check and merge default template arguments.
3028  if (FunctionTemplate) {
3029    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3030    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3031                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3032             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3033                                                : TPC_FunctionTemplate);
3034  }
3035
3036  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3037    // Fake up an access specifier if it's supposed to be a class member.
3038    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3039      NewFD->setAccess(AS_public);
3040
3041    // An out-of-line member function declaration must also be a
3042    // definition (C++ [dcl.meaning]p1).
3043    // Note that this is not the case for explicit specializations of
3044    // function templates or member functions of class templates, per
3045    // C++ [temp.expl.spec]p2.
3046    if (!IsFunctionDefinition && !isFriend &&
3047        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3048      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3049        << D.getCXXScopeSpec().getRange();
3050      NewFD->setInvalidDecl();
3051    } else if (!Redeclaration &&
3052               !(isFriend && CurContext->isDependentContext())) {
3053      // The user tried to provide an out-of-line definition for a
3054      // function that is a member of a class or namespace, but there
3055      // was no such member function declared (C++ [class.mfct]p2,
3056      // C++ [namespace.memdef]p2). For example:
3057      //
3058      // class X {
3059      //   void f() const;
3060      // };
3061      //
3062      // void X::f() { } // ill-formed
3063      //
3064      // Complain about this problem, and attempt to suggest close
3065      // matches (e.g., those that differ only in cv-qualifiers and
3066      // whether the parameter types are references).
3067      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3068        << Name << DC << D.getCXXScopeSpec().getRange();
3069      NewFD->setInvalidDecl();
3070
3071      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3072                        ForRedeclaration);
3073      LookupQualifiedName(Prev, DC);
3074      assert(!Prev.isAmbiguous() &&
3075             "Cannot have an ambiguity in previous-declaration lookup");
3076      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3077           Func != FuncEnd; ++Func) {
3078        if (isa<FunctionDecl>(*Func) &&
3079            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3080          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3081      }
3082    }
3083  }
3084
3085  // Handle attributes. We need to have merged decls when handling attributes
3086  // (for example to check for conflicts, etc).
3087  // FIXME: This needs to happen before we merge declarations. Then,
3088  // let attribute merging cope with attribute conflicts.
3089  ProcessDeclAttributes(S, NewFD, D);
3090
3091  // attributes declared post-definition are currently ignored
3092  if (Redeclaration && Previous.isSingleResult()) {
3093    const FunctionDecl *Def;
3094    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3095    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3096      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3097      Diag(Def->getLocation(), diag::note_previous_definition);
3098    }
3099  }
3100
3101  AddKnownFunctionAttributes(NewFD);
3102
3103  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3104    // If a function name is overloadable in C, then every function
3105    // with that name must be marked "overloadable".
3106    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3107      << Redeclaration << NewFD;
3108    if (!Previous.empty())
3109      Diag(Previous.getRepresentativeDecl()->getLocation(),
3110           diag::note_attribute_overloadable_prev_overload);
3111    NewFD->addAttr(::new (Context) OverloadableAttr());
3112  }
3113
3114  // If this is a locally-scoped extern C function, update the
3115  // map of such names.
3116  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3117      && !NewFD->isInvalidDecl())
3118    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3119
3120  // Set this FunctionDecl's range up to the right paren.
3121  NewFD->setLocEnd(D.getSourceRange().getEnd());
3122
3123  if (FunctionTemplate && NewFD->isInvalidDecl())
3124    FunctionTemplate->setInvalidDecl();
3125
3126  if (FunctionTemplate)
3127    return FunctionTemplate;
3128
3129  return NewFD;
3130}
3131
3132/// \brief Perform semantic checking of a new function declaration.
3133///
3134/// Performs semantic analysis of the new function declaration
3135/// NewFD. This routine performs all semantic checking that does not
3136/// require the actual declarator involved in the declaration, and is
3137/// used both for the declaration of functions as they are parsed
3138/// (called via ActOnDeclarator) and for the declaration of functions
3139/// that have been instantiated via C++ template instantiation (called
3140/// via InstantiateDecl).
3141///
3142/// \param IsExplicitSpecialiation whether this new function declaration is
3143/// an explicit specialization of the previous declaration.
3144///
3145/// This sets NewFD->isInvalidDecl() to true if there was an error.
3146void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3147                                    LookupResult &Previous,
3148                                    bool IsExplicitSpecialization,
3149                                    bool &Redeclaration,
3150                                    bool &OverloadableAttrRequired) {
3151  // If NewFD is already known erroneous, don't do any of this checking.
3152  if (NewFD->isInvalidDecl())
3153    return;
3154
3155  if (NewFD->getResultType()->isVariablyModifiedType()) {
3156    // Functions returning a variably modified type violate C99 6.7.5.2p2
3157    // because all functions have linkage.
3158    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3159    return NewFD->setInvalidDecl();
3160  }
3161
3162  if (NewFD->isMain())
3163    CheckMain(NewFD);
3164
3165  // Check for a previous declaration of this name.
3166  if (Previous.empty() && NewFD->isExternC()) {
3167    // Since we did not find anything by this name and we're declaring
3168    // an extern "C" function, look for a non-visible extern "C"
3169    // declaration with the same name.
3170    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3171      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3172    if (Pos != LocallyScopedExternalDecls.end())
3173      Previous.addDecl(Pos->second);
3174  }
3175
3176  // Merge or overload the declaration with an existing declaration of
3177  // the same name, if appropriate.
3178  if (!Previous.empty()) {
3179    // Determine whether NewFD is an overload of PrevDecl or
3180    // a declaration that requires merging. If it's an overload,
3181    // there's no more work to do here; we'll just add the new
3182    // function to the scope.
3183
3184    NamedDecl *OldDecl = 0;
3185    if (!AllowOverloadingOfFunction(Previous, Context)) {
3186      Redeclaration = true;
3187      OldDecl = Previous.getFoundDecl();
3188    } else {
3189      if (!getLangOptions().CPlusPlus) {
3190        OverloadableAttrRequired = true;
3191
3192        // Functions marked "overloadable" must have a prototype (that
3193        // we can't get through declaration merging).
3194        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3195          Diag(NewFD->getLocation(),
3196               diag::err_attribute_overloadable_no_prototype)
3197            << NewFD;
3198          Redeclaration = true;
3199
3200          // Turn this into a variadic function with no parameters.
3201          QualType R = Context.getFunctionType(
3202                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3203                     0, 0, true, 0);
3204          NewFD->setType(R);
3205          return NewFD->setInvalidDecl();
3206        }
3207      }
3208
3209      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3210      case Ovl_Match:
3211        Redeclaration = true;
3212        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3213          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3214          Redeclaration = false;
3215        }
3216        break;
3217
3218      case Ovl_NonFunction:
3219        Redeclaration = true;
3220        break;
3221
3222      case Ovl_Overload:
3223        Redeclaration = false;
3224        break;
3225      }
3226    }
3227
3228    if (Redeclaration) {
3229      // NewFD and OldDecl represent declarations that need to be
3230      // merged.
3231      if (MergeFunctionDecl(NewFD, OldDecl))
3232        return NewFD->setInvalidDecl();
3233
3234      Previous.clear();
3235      Previous.addDecl(OldDecl);
3236
3237      if (FunctionTemplateDecl *OldTemplateDecl
3238                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3239        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3240        FunctionTemplateDecl *NewTemplateDecl
3241          = NewFD->getDescribedFunctionTemplate();
3242        assert(NewTemplateDecl && "Template/non-template mismatch");
3243        if (CXXMethodDecl *Method
3244              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3245          Method->setAccess(OldTemplateDecl->getAccess());
3246          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3247        }
3248
3249        // If this is an explicit specialization of a member that is a function
3250        // template, mark it as a member specialization.
3251        if (IsExplicitSpecialization &&
3252            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3253          NewTemplateDecl->setMemberSpecialization();
3254          assert(OldTemplateDecl->isMemberSpecialization());
3255        }
3256      } else {
3257        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3258          NewFD->setAccess(OldDecl->getAccess());
3259        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3260      }
3261    }
3262  }
3263
3264  // Semantic checking for this function declaration (in isolation).
3265  if (getLangOptions().CPlusPlus) {
3266    // C++-specific checks.
3267    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3268      CheckConstructor(Constructor);
3269    } else if (CXXDestructorDecl *Destructor =
3270                dyn_cast<CXXDestructorDecl>(NewFD)) {
3271      CXXRecordDecl *Record = Destructor->getParent();
3272      QualType ClassType = Context.getTypeDeclType(Record);
3273
3274      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3275      // type is dependent? Both gcc and edg can handle that.
3276      if (!ClassType->isDependentType()) {
3277        DeclarationName Name
3278          = Context.DeclarationNames.getCXXDestructorName(
3279                                        Context.getCanonicalType(ClassType));
3280        if (NewFD->getDeclName() != Name) {
3281          Diag(NewFD->getLocation(), diag::err_destructor_name);
3282          return NewFD->setInvalidDecl();
3283        }
3284      }
3285
3286      Record->setUserDeclaredDestructor(true);
3287      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3288      // user-defined destructor.
3289      Record->setPOD(false);
3290
3291      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3292      // declared destructor.
3293      // FIXME: C++0x: don't do this for "= default" destructors
3294      Record->setHasTrivialDestructor(false);
3295    } else if (CXXConversionDecl *Conversion
3296               = dyn_cast<CXXConversionDecl>(NewFD)) {
3297      ActOnConversionDeclarator(Conversion);
3298    }
3299
3300    // Find any virtual functions that this function overrides.
3301    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3302      if (!Method->isFunctionTemplateSpecialization() &&
3303          !Method->getDescribedFunctionTemplate())
3304        AddOverriddenMethods(Method->getParent(), Method);
3305    }
3306
3307    // Additional checks for the destructor; make sure we do this after we
3308    // figure out whether the destructor is virtual.
3309    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3310      if (!Destructor->getParent()->isDependentType())
3311        CheckDestructor(Destructor);
3312
3313    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3314    if (NewFD->isOverloadedOperator() &&
3315        CheckOverloadedOperatorDeclaration(NewFD))
3316      return NewFD->setInvalidDecl();
3317
3318    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3319    if (NewFD->getLiteralIdentifier() &&
3320        CheckLiteralOperatorDeclaration(NewFD))
3321      return NewFD->setInvalidDecl();
3322
3323    // In C++, check default arguments now that we have merged decls. Unless
3324    // the lexical context is the class, because in this case this is done
3325    // during delayed parsing anyway.
3326    if (!CurContext->isRecord())
3327      CheckCXXDefaultArguments(NewFD);
3328  }
3329}
3330
3331void Sema::CheckMain(FunctionDecl* FD) {
3332  // C++ [basic.start.main]p3:  A program that declares main to be inline
3333  //   or static is ill-formed.
3334  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3335  //   shall not appear in a declaration of main.
3336  // static main is not an error under C99, but we should warn about it.
3337  bool isInline = FD->isInlineSpecified();
3338  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3339  if (isInline || isStatic) {
3340    unsigned diagID = diag::warn_unusual_main_decl;
3341    if (isInline || getLangOptions().CPlusPlus)
3342      diagID = diag::err_unusual_main_decl;
3343
3344    int which = isStatic + (isInline << 1) - 1;
3345    Diag(FD->getLocation(), diagID) << which;
3346  }
3347
3348  QualType T = FD->getType();
3349  assert(T->isFunctionType() && "function decl is not of function type");
3350  const FunctionType* FT = T->getAs<FunctionType>();
3351
3352  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3353    // TODO: add a replacement fixit to turn the return type into 'int'.
3354    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3355    FD->setInvalidDecl(true);
3356  }
3357
3358  // Treat protoless main() as nullary.
3359  if (isa<FunctionNoProtoType>(FT)) return;
3360
3361  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3362  unsigned nparams = FTP->getNumArgs();
3363  assert(FD->getNumParams() == nparams);
3364
3365  bool HasExtraParameters = (nparams > 3);
3366
3367  // Darwin passes an undocumented fourth argument of type char**.  If
3368  // other platforms start sprouting these, the logic below will start
3369  // getting shifty.
3370  if (nparams == 4 &&
3371      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3372    HasExtraParameters = false;
3373
3374  if (HasExtraParameters) {
3375    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3376    FD->setInvalidDecl(true);
3377    nparams = 3;
3378  }
3379
3380  // FIXME: a lot of the following diagnostics would be improved
3381  // if we had some location information about types.
3382
3383  QualType CharPP =
3384    Context.getPointerType(Context.getPointerType(Context.CharTy));
3385  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3386
3387  for (unsigned i = 0; i < nparams; ++i) {
3388    QualType AT = FTP->getArgType(i);
3389
3390    bool mismatch = true;
3391
3392    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3393      mismatch = false;
3394    else if (Expected[i] == CharPP) {
3395      // As an extension, the following forms are okay:
3396      //   char const **
3397      //   char const * const *
3398      //   char * const *
3399
3400      QualifierCollector qs;
3401      const PointerType* PT;
3402      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3403          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3404          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3405        qs.removeConst();
3406        mismatch = !qs.empty();
3407      }
3408    }
3409
3410    if (mismatch) {
3411      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3412      // TODO: suggest replacing given type with expected type
3413      FD->setInvalidDecl(true);
3414    }
3415  }
3416
3417  if (nparams == 1 && !FD->isInvalidDecl()) {
3418    Diag(FD->getLocation(), diag::warn_main_one_arg);
3419  }
3420}
3421
3422bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3423  // FIXME: Need strict checking.  In C89, we need to check for
3424  // any assignment, increment, decrement, function-calls, or
3425  // commas outside of a sizeof.  In C99, it's the same list,
3426  // except that the aforementioned are allowed in unevaluated
3427  // expressions.  Everything else falls under the
3428  // "may accept other forms of constant expressions" exception.
3429  // (We never end up here for C++, so the constant expression
3430  // rules there don't matter.)
3431  if (Init->isConstantInitializer(Context))
3432    return false;
3433  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3434    << Init->getSourceRange();
3435  return true;
3436}
3437
3438void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3439  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3440}
3441
3442/// AddInitializerToDecl - Adds the initializer Init to the
3443/// declaration dcl. If DirectInit is true, this is C++ direct
3444/// initialization rather than copy initialization.
3445void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3446  Decl *RealDecl = dcl.getAs<Decl>();
3447  // If there is no declaration, there was an error parsing it.  Just ignore
3448  // the initializer.
3449  if (RealDecl == 0)
3450    return;
3451
3452  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3453    // With declarators parsed the way they are, the parser cannot
3454    // distinguish between a normal initializer and a pure-specifier.
3455    // Thus this grotesque test.
3456    IntegerLiteral *IL;
3457    Expr *Init = static_cast<Expr *>(init.get());
3458    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3459        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3460      CheckPureMethod(Method, Init->getSourceRange());
3461    else {
3462      Diag(Method->getLocation(), diag::err_member_function_initialization)
3463        << Method->getDeclName() << Init->getSourceRange();
3464      Method->setInvalidDecl();
3465    }
3466    return;
3467  }
3468
3469  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3470  if (!VDecl) {
3471    if (getLangOptions().CPlusPlus &&
3472        RealDecl->getLexicalDeclContext()->isRecord() &&
3473        isa<NamedDecl>(RealDecl))
3474      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3475        << cast<NamedDecl>(RealDecl)->getDeclName();
3476    else
3477      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3478    RealDecl->setInvalidDecl();
3479    return;
3480  }
3481
3482  // A definition must end up with a complete type, which means it must be
3483  // complete with the restriction that an array type might be completed by the
3484  // initializer; note that later code assumes this restriction.
3485  QualType BaseDeclType = VDecl->getType();
3486  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3487    BaseDeclType = Array->getElementType();
3488  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3489                          diag::err_typecheck_decl_incomplete_type)) {
3490    RealDecl->setInvalidDecl();
3491    return;
3492  }
3493
3494  // The variable can not have an abstract class type.
3495  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3496                             diag::err_abstract_type_in_decl,
3497                             AbstractVariableType))
3498    VDecl->setInvalidDecl();
3499
3500  const VarDecl *Def;
3501  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3502    Diag(VDecl->getLocation(), diag::err_redefinition)
3503      << VDecl->getDeclName();
3504    Diag(Def->getLocation(), diag::note_previous_definition);
3505    VDecl->setInvalidDecl();
3506    return;
3507  }
3508
3509  // Take ownership of the expression, now that we're sure we have somewhere
3510  // to put it.
3511  Expr *Init = init.takeAs<Expr>();
3512  assert(Init && "missing initializer");
3513
3514  // Capture the variable that is being initialized and the style of
3515  // initialization.
3516  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3517
3518  // FIXME: Poor source location information.
3519  InitializationKind Kind
3520    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3521                                                   Init->getLocStart(),
3522                                                   Init->getLocEnd())
3523                : InitializationKind::CreateCopy(VDecl->getLocation(),
3524                                                 Init->getLocStart());
3525
3526  // Get the decls type and save a reference for later, since
3527  // CheckInitializerTypes may change it.
3528  QualType DclT = VDecl->getType(), SavT = DclT;
3529  if (VDecl->isBlockVarDecl()) {
3530    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3531      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3532      VDecl->setInvalidDecl();
3533    } else if (!VDecl->isInvalidDecl()) {
3534      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3535      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3536                                          MultiExprArg(*this, (void**)&Init, 1),
3537                                                &DclT);
3538      if (Result.isInvalid()) {
3539        VDecl->setInvalidDecl();
3540        return;
3541      }
3542
3543      Init = Result.takeAs<Expr>();
3544
3545      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3546      // Don't check invalid declarations to avoid emitting useless diagnostics.
3547      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3548        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3549          CheckForConstantInitializer(Init, DclT);
3550      }
3551    }
3552  } else if (VDecl->isStaticDataMember() &&
3553             VDecl->getLexicalDeclContext()->isRecord()) {
3554    // This is an in-class initialization for a static data member, e.g.,
3555    //
3556    // struct S {
3557    //   static const int value = 17;
3558    // };
3559
3560    // Attach the initializer
3561    VDecl->setInit(Context, Init);
3562
3563    // C++ [class.mem]p4:
3564    //   A member-declarator can contain a constant-initializer only
3565    //   if it declares a static member (9.4) of const integral or
3566    //   const enumeration type, see 9.4.2.
3567    QualType T = VDecl->getType();
3568    if (!T->isDependentType() &&
3569        (!Context.getCanonicalType(T).isConstQualified() ||
3570         !T->isIntegralType())) {
3571      Diag(VDecl->getLocation(), diag::err_member_initialization)
3572        << VDecl->getDeclName() << Init->getSourceRange();
3573      VDecl->setInvalidDecl();
3574    } else {
3575      // C++ [class.static.data]p4:
3576      //   If a static data member is of const integral or const
3577      //   enumeration type, its declaration in the class definition
3578      //   can specify a constant-initializer which shall be an
3579      //   integral constant expression (5.19).
3580      if (!Init->isTypeDependent() &&
3581          !Init->getType()->isIntegralType()) {
3582        // We have a non-dependent, non-integral or enumeration type.
3583        Diag(Init->getSourceRange().getBegin(),
3584             diag::err_in_class_initializer_non_integral_type)
3585          << Init->getType() << Init->getSourceRange();
3586        VDecl->setInvalidDecl();
3587      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3588        // Check whether the expression is a constant expression.
3589        llvm::APSInt Value;
3590        SourceLocation Loc;
3591        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3592          Diag(Loc, diag::err_in_class_initializer_non_constant)
3593            << Init->getSourceRange();
3594          VDecl->setInvalidDecl();
3595        } else if (!VDecl->getType()->isDependentType())
3596          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3597      }
3598    }
3599  } else if (VDecl->isFileVarDecl()) {
3600    if (VDecl->getStorageClass() == VarDecl::Extern)
3601      Diag(VDecl->getLocation(), diag::warn_extern_init);
3602    if (!VDecl->isInvalidDecl()) {
3603      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3604      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3605                                          MultiExprArg(*this, (void**)&Init, 1),
3606                                                &DclT);
3607      if (Result.isInvalid()) {
3608        VDecl->setInvalidDecl();
3609        return;
3610      }
3611
3612      Init = Result.takeAs<Expr>();
3613    }
3614
3615    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3616    // Don't check invalid declarations to avoid emitting useless diagnostics.
3617    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3618      // C99 6.7.8p4. All file scoped initializers need to be constant.
3619      CheckForConstantInitializer(Init, DclT);
3620    }
3621  }
3622  // If the type changed, it means we had an incomplete type that was
3623  // completed by the initializer. For example:
3624  //   int ary[] = { 1, 3, 5 };
3625  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3626  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3627    VDecl->setType(DclT);
3628    Init->setType(DclT);
3629  }
3630
3631  Init = MaybeCreateCXXExprWithTemporaries(Init);
3632  // Attach the initializer to the decl.
3633  VDecl->setInit(Context, Init);
3634
3635  if (getLangOptions().CPlusPlus) {
3636    // Make sure we mark the destructor as used if necessary.
3637    QualType InitType = VDecl->getType();
3638    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3639      InitType = Context.getBaseElementType(Array);
3640    if (const RecordType *Record = InitType->getAs<RecordType>())
3641      FinalizeVarWithDestructor(VDecl, Record);
3642  }
3643
3644  return;
3645}
3646
3647void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3648                                  bool TypeContainsUndeducedAuto) {
3649  Decl *RealDecl = dcl.getAs<Decl>();
3650
3651  // If there is no declaration, there was an error parsing it. Just ignore it.
3652  if (RealDecl == 0)
3653    return;
3654
3655  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3656    QualType Type = Var->getType();
3657
3658    // Record tentative definitions.
3659    if (Var->isTentativeDefinitionNow())
3660      TentativeDefinitions.push_back(Var);
3661
3662    // C++ [dcl.init.ref]p3:
3663    //   The initializer can be omitted for a reference only in a
3664    //   parameter declaration (8.3.5), in the declaration of a
3665    //   function return type, in the declaration of a class member
3666    //   within its class declaration (9.2), and where the extern
3667    //   specifier is explicitly used.
3668    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3669      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3670        << Var->getDeclName()
3671        << SourceRange(Var->getLocation(), Var->getLocation());
3672      Var->setInvalidDecl();
3673      return;
3674    }
3675
3676    // C++0x [dcl.spec.auto]p3
3677    if (TypeContainsUndeducedAuto) {
3678      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3679        << Var->getDeclName() << Type;
3680      Var->setInvalidDecl();
3681      return;
3682    }
3683
3684    // An array without size is an incomplete type, and there are no special
3685    // rules in C++ to make such a definition acceptable.
3686    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3687        !Var->hasExternalStorage()) {
3688      Diag(Var->getLocation(),
3689           diag::err_typecheck_incomplete_array_needs_initializer);
3690      Var->setInvalidDecl();
3691      return;
3692    }
3693
3694    // C++ [temp.expl.spec]p15:
3695    //   An explicit specialization of a static data member of a template is a
3696    //   definition if the declaration includes an initializer; otherwise, it
3697    //   is a declaration.
3698    if (Var->isStaticDataMember() &&
3699        Var->getInstantiatedFromStaticDataMember() &&
3700        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3701      return;
3702
3703    // C++ [dcl.init]p9:
3704    //   If no initializer is specified for an object, and the object
3705    //   is of (possibly cv-qualified) non-POD class type (or array
3706    //   thereof), the object shall be default-initialized; if the
3707    //   object is of const-qualified type, the underlying class type
3708    //   shall have a user-declared default constructor.
3709    //
3710    // FIXME: Diagnose the "user-declared default constructor" bit.
3711    if (getLangOptions().CPlusPlus) {
3712      QualType InitType = Type;
3713      if (const ArrayType *Array = Context.getAsArrayType(Type))
3714        InitType = Context.getBaseElementType(Array);
3715      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3716          InitType->isRecordType() && !InitType->isDependentType()) {
3717        if (!RequireCompleteType(Var->getLocation(), InitType,
3718                                 diag::err_invalid_incomplete_type_use)) {
3719          InitializedEntity Entity
3720            = InitializedEntity::InitializeVariable(Var);
3721          InitializationKind Kind
3722            = InitializationKind::CreateDefault(Var->getLocation());
3723
3724          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3725          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3726                                                  MultiExprArg(*this, 0, 0));
3727          if (Init.isInvalid())
3728            Var->setInvalidDecl();
3729          else {
3730            Var->setInit(Context,
3731                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3732            FinalizeVarWithDestructor(Var, InitType->getAs<RecordType>());
3733          }
3734        } else {
3735          Var->setInvalidDecl();
3736        }
3737      }
3738
3739      // The variable can not have an abstract class type.
3740      if (RequireNonAbstractType(Var->getLocation(), Type,
3741                                 diag::err_abstract_type_in_decl,
3742                                 AbstractVariableType))
3743        Var->setInvalidDecl();
3744    }
3745
3746#if 0
3747    // FIXME: Temporarily disabled because we are not properly parsing
3748    // linkage specifications on declarations, e.g.,
3749    //
3750    //   extern "C" const CGPoint CGPointerZero;
3751    //
3752    // C++ [dcl.init]p9:
3753    //
3754    //     If no initializer is specified for an object, and the
3755    //     object is of (possibly cv-qualified) non-POD class type (or
3756    //     array thereof), the object shall be default-initialized; if
3757    //     the object is of const-qualified type, the underlying class
3758    //     type shall have a user-declared default
3759    //     constructor. Otherwise, if no initializer is specified for
3760    //     an object, the object and its subobjects, if any, have an
3761    //     indeterminate initial value; if the object or any of its
3762    //     subobjects are of const-qualified type, the program is
3763    //     ill-formed.
3764    //
3765    // This isn't technically an error in C, so we don't diagnose it.
3766    //
3767    // FIXME: Actually perform the POD/user-defined default
3768    // constructor check.
3769    if (getLangOptions().CPlusPlus &&
3770        Context.getCanonicalType(Type).isConstQualified() &&
3771        !Var->hasExternalStorage())
3772      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3773        << Var->getName()
3774        << SourceRange(Var->getLocation(), Var->getLocation());
3775#endif
3776  }
3777}
3778
3779Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3780                                                   DeclPtrTy *Group,
3781                                                   unsigned NumDecls) {
3782  llvm::SmallVector<Decl*, 8> Decls;
3783
3784  if (DS.isTypeSpecOwned())
3785    Decls.push_back((Decl*)DS.getTypeRep());
3786
3787  for (unsigned i = 0; i != NumDecls; ++i)
3788    if (Decl *D = Group[i].getAs<Decl>())
3789      Decls.push_back(D);
3790
3791  // Perform semantic analysis that depends on having fully processed both
3792  // the declarator and initializer.
3793  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3794    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3795    if (!IDecl)
3796      continue;
3797    QualType T = IDecl->getType();
3798
3799    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3800    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3801    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3802      if (T->isDependentType()) {
3803        // If T is dependent, we should not require a complete type.
3804        // (RequireCompleteType shouldn't be called with dependent types.)
3805        // But we still can at least check if we've got an array of unspecified
3806        // size without an initializer.
3807        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3808            !IDecl->getInit()) {
3809          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3810            << T;
3811          IDecl->setInvalidDecl();
3812        }
3813      } else if (!IDecl->isInvalidDecl()) {
3814        // If T is an incomplete array type with an initializer list that is
3815        // dependent on something, its size has not been fixed. We could attempt
3816        // to fix the size for such arrays, but we would still have to check
3817        // here for initializers containing a C++0x vararg expansion, e.g.
3818        // template <typename... Args> void f(Args... args) {
3819        //   int vals[] = { args };
3820        // }
3821        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3822        Expr *Init = IDecl->getInit();
3823        if (IAT && Init &&
3824            (Init->isTypeDependent() || Init->isValueDependent())) {
3825          // Check that the member type of the array is complete, at least.
3826          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3827                                  diag::err_typecheck_decl_incomplete_type))
3828            IDecl->setInvalidDecl();
3829        } else if (RequireCompleteType(IDecl->getLocation(), T,
3830                                      diag::err_typecheck_decl_incomplete_type))
3831          IDecl->setInvalidDecl();
3832      }
3833    }
3834    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3835    // object that has file scope without an initializer, and without a
3836    // storage-class specifier or with the storage-class specifier "static",
3837    // constitutes a tentative definition. Note: A tentative definition with
3838    // external linkage is valid (C99 6.2.2p5).
3839    if (IDecl->isThisDeclarationADefinition() == VarDecl::TentativeDefinition &&
3840        !IDecl->isInvalidDecl()) {
3841      if (const IncompleteArrayType *ArrayT
3842          = Context.getAsIncompleteArrayType(T)) {
3843        if (RequireCompleteType(IDecl->getLocation(),
3844                                ArrayT->getElementType(),
3845                                diag::err_illegal_decl_array_incomplete_type))
3846          IDecl->setInvalidDecl();
3847      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3848        // C99 6.9.2p3: If the declaration of an identifier for an object is
3849        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3850        // declared type shall not be an incomplete type.
3851        // NOTE: code such as the following
3852        //     static struct s;
3853        //     struct s { int a; };
3854        // is accepted by gcc. Hence here we issue a warning instead of
3855        // an error and we do not invalidate the static declaration.
3856        // NOTE: to avoid multiple warnings, only check the first declaration.
3857        if (IDecl->getPreviousDeclaration() == 0)
3858          RequireCompleteType(IDecl->getLocation(), T,
3859                              diag::ext_typecheck_decl_incomplete_type);
3860      }
3861    }
3862  }
3863  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3864                                                   Decls.data(), Decls.size()));
3865}
3866
3867
3868/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3869/// to introduce parameters into function prototype scope.
3870Sema::DeclPtrTy
3871Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3872  const DeclSpec &DS = D.getDeclSpec();
3873
3874  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3875  VarDecl::StorageClass StorageClass = VarDecl::None;
3876  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3877    StorageClass = VarDecl::Register;
3878  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3879    Diag(DS.getStorageClassSpecLoc(),
3880         diag::err_invalid_storage_class_in_func_decl);
3881    D.getMutableDeclSpec().ClearStorageClassSpecs();
3882  }
3883
3884  if (D.getDeclSpec().isThreadSpecified())
3885    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3886
3887  DiagnoseFunctionSpecifiers(D);
3888
3889  // Check that there are no default arguments inside the type of this
3890  // parameter (C++ only).
3891  if (getLangOptions().CPlusPlus)
3892    CheckExtraCXXDefaultArguments(D);
3893
3894  TypeSourceInfo *TInfo = 0;
3895  TagDecl *OwnedDecl = 0;
3896  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3897
3898  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3899    // C++ [dcl.fct]p6:
3900    //   Types shall not be defined in return or parameter types.
3901    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3902      << Context.getTypeDeclType(OwnedDecl);
3903  }
3904
3905  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3906  // Can this happen for params?  We already checked that they don't conflict
3907  // among each other.  Here they can only shadow globals, which is ok.
3908  IdentifierInfo *II = D.getIdentifier();
3909  if (II) {
3910    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3911      if (PrevDecl->isTemplateParameter()) {
3912        // Maybe we will complain about the shadowed template parameter.
3913        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3914        // Just pretend that we didn't see the previous declaration.
3915        PrevDecl = 0;
3916      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3917        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3918
3919        // Recover by removing the name
3920        II = 0;
3921        D.SetIdentifier(0, D.getIdentifierLoc());
3922      }
3923    }
3924  }
3925
3926  // Parameters can not be abstract class types.
3927  // For record types, this is done by the AbstractClassUsageDiagnoser once
3928  // the class has been completely parsed.
3929  if (!CurContext->isRecord() &&
3930      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3931                             diag::err_abstract_type_in_decl,
3932                             AbstractParamType))
3933    D.setInvalidType(true);
3934
3935  QualType T = adjustParameterType(parmDeclType);
3936
3937  // Temporarily put parameter variables in the translation unit, not
3938  // the enclosing context.  This prevents them from accidentally
3939  // looking like class members in C++.
3940  DeclContext *DC = Context.getTranslationUnitDecl();
3941
3942  ParmVarDecl *New
3943    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
3944                          T, TInfo, StorageClass, 0);
3945
3946  if (D.isInvalidType())
3947    New->setInvalidDecl();
3948
3949  // Parameter declarators cannot be interface types. All ObjC objects are
3950  // passed by reference.
3951  if (T->isObjCInterfaceType()) {
3952    Diag(D.getIdentifierLoc(),
3953         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3954    New->setInvalidDecl();
3955  }
3956
3957  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3958  if (D.getCXXScopeSpec().isSet()) {
3959    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3960      << D.getCXXScopeSpec().getRange();
3961    New->setInvalidDecl();
3962  }
3963
3964  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3965  // duration shall not be qualified by an address-space qualifier."
3966  // Since all parameters have automatic store duration, they can not have
3967  // an address space.
3968  if (T.getAddressSpace() != 0) {
3969    Diag(D.getIdentifierLoc(),
3970         diag::err_arg_with_address_space);
3971    New->setInvalidDecl();
3972  }
3973
3974
3975  // Add the parameter declaration into this scope.
3976  S->AddDecl(DeclPtrTy::make(New));
3977  if (II)
3978    IdResolver.AddDecl(New);
3979
3980  ProcessDeclAttributes(S, New, D);
3981
3982  if (New->hasAttr<BlocksAttr>()) {
3983    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3984  }
3985  return DeclPtrTy::make(New);
3986}
3987
3988void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
3989  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
3990  Param->setDeclContext(CurContext);
3991}
3992
3993void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3994                                           SourceLocation LocAfterDecls) {
3995  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3996         "Not a function declarator!");
3997  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3998
3999  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4000  // for a K&R function.
4001  if (!FTI.hasPrototype) {
4002    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4003      --i;
4004      if (FTI.ArgInfo[i].Param == 0) {
4005        llvm::SmallString<256> Code;
4006        llvm::raw_svector_ostream(Code) << "  int "
4007                                        << FTI.ArgInfo[i].Ident->getName()
4008                                        << ";\n";
4009        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4010          << FTI.ArgInfo[i].Ident
4011          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4012
4013        // Implicitly declare the argument as type 'int' for lack of a better
4014        // type.
4015        DeclSpec DS;
4016        const char* PrevSpec; // unused
4017        unsigned DiagID; // unused
4018        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4019                           PrevSpec, DiagID);
4020        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4021        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4022        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4023      }
4024    }
4025  }
4026}
4027
4028Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4029                                              Declarator &D) {
4030  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4031  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4032         "Not a function declarator!");
4033  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4034
4035  if (FTI.hasPrototype) {
4036    // FIXME: Diagnose arguments without names in C.
4037  }
4038
4039  Scope *ParentScope = FnBodyScope->getParent();
4040
4041  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4042                                  MultiTemplateParamsArg(*this),
4043                                  /*IsFunctionDefinition=*/true);
4044  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4045}
4046
4047static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4048  // Don't warn about invalid declarations.
4049  if (FD->isInvalidDecl())
4050    return false;
4051
4052  // Or declarations that aren't global.
4053  if (!FD->isGlobal())
4054    return false;
4055
4056  // Don't warn about C++ member functions.
4057  if (isa<CXXMethodDecl>(FD))
4058    return false;
4059
4060  // Don't warn about 'main'.
4061  if (FD->isMain())
4062    return false;
4063
4064  // Don't warn about inline functions.
4065  if (FD->isInlineSpecified())
4066    return false;
4067
4068  // Don't warn about function templates.
4069  if (FD->getDescribedFunctionTemplate())
4070    return false;
4071
4072  // Don't warn about function template specializations.
4073  if (FD->isFunctionTemplateSpecialization())
4074    return false;
4075
4076  bool MissingPrototype = true;
4077  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4078       Prev; Prev = Prev->getPreviousDeclaration()) {
4079    // Ignore any declarations that occur in function or method
4080    // scope, because they aren't visible from the header.
4081    if (Prev->getDeclContext()->isFunctionOrMethod())
4082      continue;
4083
4084    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4085    break;
4086  }
4087
4088  return MissingPrototype;
4089}
4090
4091Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4092  // Clear the last template instantiation error context.
4093  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4094
4095  if (!D)
4096    return D;
4097  FunctionDecl *FD = 0;
4098
4099  if (FunctionTemplateDecl *FunTmpl
4100        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4101    FD = FunTmpl->getTemplatedDecl();
4102  else
4103    FD = cast<FunctionDecl>(D.getAs<Decl>());
4104
4105  CurFunctionNeedsScopeChecking = false;
4106
4107  // See if this is a redefinition.
4108  const FunctionDecl *Definition;
4109  if (FD->getBody(Definition)) {
4110    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4111    Diag(Definition->getLocation(), diag::note_previous_definition);
4112  }
4113
4114  // Builtin functions cannot be defined.
4115  if (unsigned BuiltinID = FD->getBuiltinID()) {
4116    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4117      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4118      FD->setInvalidDecl();
4119    }
4120  }
4121
4122  // The return type of a function definition must be complete
4123  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4124  QualType ResultType = FD->getResultType();
4125  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4126      !FD->isInvalidDecl() &&
4127      RequireCompleteType(FD->getLocation(), ResultType,
4128                          diag::err_func_def_incomplete_result))
4129    FD->setInvalidDecl();
4130
4131  // GNU warning -Wmissing-prototypes:
4132  //   Warn if a global function is defined without a previous
4133  //   prototype declaration. This warning is issued even if the
4134  //   definition itself provides a prototype. The aim is to detect
4135  //   global functions that fail to be declared in header files.
4136  if (ShouldWarnAboutMissingPrototype(FD))
4137    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4138
4139  if (FnBodyScope)
4140    PushDeclContext(FnBodyScope, FD);
4141
4142  // Check the validity of our function parameters
4143  CheckParmsForFunctionDef(FD);
4144
4145  // Introduce our parameters into the function scope
4146  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4147    ParmVarDecl *Param = FD->getParamDecl(p);
4148    Param->setOwningFunction(FD);
4149
4150    // If this has an identifier, add it to the scope stack.
4151    if (Param->getIdentifier() && FnBodyScope)
4152      PushOnScopeChains(Param, FnBodyScope);
4153  }
4154
4155  // Checking attributes of current function definition
4156  // dllimport attribute.
4157  if (FD->getAttr<DLLImportAttr>() &&
4158      (!FD->getAttr<DLLExportAttr>())) {
4159    // dllimport attribute cannot be applied to definition.
4160    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4161      Diag(FD->getLocation(),
4162           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4163        << "dllimport";
4164      FD->setInvalidDecl();
4165      return DeclPtrTy::make(FD);
4166    } else {
4167      // If a symbol previously declared dllimport is later defined, the
4168      // attribute is ignored in subsequent references, and a warning is
4169      // emitted.
4170      Diag(FD->getLocation(),
4171           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4172        << FD->getNameAsCString() << "dllimport";
4173    }
4174  }
4175  return DeclPtrTy::make(FD);
4176}
4177
4178Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4179  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4180}
4181
4182Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4183                                              bool IsInstantiation) {
4184  Decl *dcl = D.getAs<Decl>();
4185  Stmt *Body = BodyArg.takeAs<Stmt>();
4186
4187  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
4188  // explosion for destrutors that can result and the compile time hit.
4189  AnalysisContext AC(dcl, false);
4190  FunctionDecl *FD = 0;
4191  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4192  if (FunTmpl)
4193    FD = FunTmpl->getTemplatedDecl();
4194  else
4195    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4196
4197  if (FD) {
4198    FD->setBody(Body);
4199    if (FD->isMain())
4200      // C and C++ allow for main to automagically return 0.
4201      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4202      FD->setHasImplicitReturnZero(true);
4203    else
4204      CheckFallThroughForFunctionDef(FD, Body, AC);
4205
4206    if (!FD->isInvalidDecl())
4207      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4208
4209    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4210      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4211
4212    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4213  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4214    assert(MD == getCurMethodDecl() && "Method parsing confused");
4215    MD->setBody(Body);
4216    CheckFallThroughForFunctionDef(MD, Body, AC);
4217    MD->setEndLoc(Body->getLocEnd());
4218
4219    if (!MD->isInvalidDecl())
4220      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4221  } else {
4222    Body->Destroy(Context);
4223    return DeclPtrTy();
4224  }
4225  if (!IsInstantiation)
4226    PopDeclContext();
4227
4228  // Verify and clean out per-function state.
4229
4230  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4231
4232  // Check goto/label use.
4233  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4234       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4235    LabelStmt *L = I->second;
4236
4237    // Verify that we have no forward references left.  If so, there was a goto
4238    // or address of a label taken, but no definition of it.  Label fwd
4239    // definitions are indicated with a null substmt.
4240    if (L->getSubStmt() != 0)
4241      continue;
4242
4243    // Emit error.
4244    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4245
4246    // At this point, we have gotos that use the bogus label.  Stitch it into
4247    // the function body so that they aren't leaked and that the AST is well
4248    // formed.
4249    if (Body == 0) {
4250      // The whole function wasn't parsed correctly, just delete this.
4251      L->Destroy(Context);
4252      continue;
4253    }
4254
4255    // Otherwise, the body is valid: we want to stitch the label decl into the
4256    // function somewhere so that it is properly owned and so that the goto
4257    // has a valid target.  Do this by creating a new compound stmt with the
4258    // label in it.
4259
4260    // Give the label a sub-statement.
4261    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4262
4263    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4264                               cast<CXXTryStmt>(Body)->getTryBlock() :
4265                               cast<CompoundStmt>(Body);
4266    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4267    Elements.push_back(L);
4268    Compound->setStmts(Context, &Elements[0], Elements.size());
4269  }
4270  FunctionLabelMap.clear();
4271
4272  if (!Body) return D;
4273
4274  CheckUnreachable(AC);
4275
4276  // Verify that that gotos and switch cases don't jump into scopes illegally.
4277  if (CurFunctionNeedsScopeChecking)
4278    DiagnoseInvalidJumps(Body);
4279
4280  // C++ constructors that have function-try-blocks can't have return
4281  // statements in the handlers of that block. (C++ [except.handle]p14)
4282  // Verify this.
4283  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4284    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4285
4286  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4287    MarkBaseAndMemberDestructorsReferenced(Destructor);
4288
4289  // If any errors have occurred, clear out any temporaries that may have
4290  // been leftover. This ensures that these temporaries won't be picked up for
4291  // deletion in some later function.
4292  if (PP.getDiagnostics().hasErrorOccurred())
4293    ExprTemporaries.clear();
4294
4295  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4296  return D;
4297}
4298
4299/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4300/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4301NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4302                                          IdentifierInfo &II, Scope *S) {
4303  // Before we produce a declaration for an implicitly defined
4304  // function, see whether there was a locally-scoped declaration of
4305  // this name as a function or variable. If so, use that
4306  // (non-visible) declaration, and complain about it.
4307  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4308    = LocallyScopedExternalDecls.find(&II);
4309  if (Pos != LocallyScopedExternalDecls.end()) {
4310    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4311    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4312    return Pos->second;
4313  }
4314
4315  // Extension in C99.  Legal in C90, but warn about it.
4316  if (II.getName().startswith("__builtin_"))
4317    Diag(Loc, diag::warn_builtin_unknown) << &II;
4318  else if (getLangOptions().C99)
4319    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4320  else
4321    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4322
4323  // Set a Declarator for the implicit definition: int foo();
4324  const char *Dummy;
4325  DeclSpec DS;
4326  unsigned DiagID;
4327  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4328  Error = Error; // Silence warning.
4329  assert(!Error && "Error setting up implicit decl!");
4330  Declarator D(DS, Declarator::BlockContext);
4331  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4332                                             0, 0, false, SourceLocation(),
4333                                             false, 0,0,0, Loc, Loc, D),
4334                SourceLocation());
4335  D.SetIdentifier(&II, Loc);
4336
4337  // Insert this function into translation-unit scope.
4338
4339  DeclContext *PrevDC = CurContext;
4340  CurContext = Context.getTranslationUnitDecl();
4341
4342  FunctionDecl *FD =
4343 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4344  FD->setImplicit();
4345
4346  CurContext = PrevDC;
4347
4348  AddKnownFunctionAttributes(FD);
4349
4350  return FD;
4351}
4352
4353/// \brief Adds any function attributes that we know a priori based on
4354/// the declaration of this function.
4355///
4356/// These attributes can apply both to implicitly-declared builtins
4357/// (like __builtin___printf_chk) or to library-declared functions
4358/// like NSLog or printf.
4359void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4360  if (FD->isInvalidDecl())
4361    return;
4362
4363  // If this is a built-in function, map its builtin attributes to
4364  // actual attributes.
4365  if (unsigned BuiltinID = FD->getBuiltinID()) {
4366    // Handle printf-formatting attributes.
4367    unsigned FormatIdx;
4368    bool HasVAListArg;
4369    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4370      if (!FD->getAttr<FormatAttr>())
4371        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4372                                             HasVAListArg ? 0 : FormatIdx + 2));
4373    }
4374
4375    // Mark const if we don't care about errno and that is the only
4376    // thing preventing the function from being const. This allows
4377    // IRgen to use LLVM intrinsics for such functions.
4378    if (!getLangOptions().MathErrno &&
4379        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4380      if (!FD->getAttr<ConstAttr>())
4381        FD->addAttr(::new (Context) ConstAttr());
4382    }
4383
4384    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4385      FD->addAttr(::new (Context) NoReturnAttr());
4386    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4387      FD->addAttr(::new (Context) NoThrowAttr());
4388    if (Context.BuiltinInfo.isConst(BuiltinID))
4389      FD->addAttr(::new (Context) ConstAttr());
4390  }
4391
4392  IdentifierInfo *Name = FD->getIdentifier();
4393  if (!Name)
4394    return;
4395  if ((!getLangOptions().CPlusPlus &&
4396       FD->getDeclContext()->isTranslationUnit()) ||
4397      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4398       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4399       LinkageSpecDecl::lang_c)) {
4400    // Okay: this could be a libc/libm/Objective-C function we know
4401    // about.
4402  } else
4403    return;
4404
4405  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4406    // FIXME: NSLog and NSLogv should be target specific
4407    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4408      // FIXME: We known better than our headers.
4409      const_cast<FormatAttr *>(Format)->setType("printf");
4410    } else
4411      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4412                                             Name->isStr("NSLogv") ? 0 : 2));
4413  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4414    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4415    // target-specific builtins, perhaps?
4416    if (!FD->getAttr<FormatAttr>())
4417      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4418                                             Name->isStr("vasprintf") ? 0 : 3));
4419  }
4420}
4421
4422TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4423                                    TypeSourceInfo *TInfo) {
4424  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4425  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4426
4427  if (!TInfo) {
4428    assert(D.isInvalidType() && "no declarator info for valid type");
4429    TInfo = Context.getTrivialTypeSourceInfo(T);
4430  }
4431
4432  // Scope manipulation handled by caller.
4433  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4434                                           D.getIdentifierLoc(),
4435                                           D.getIdentifier(),
4436                                           TInfo);
4437
4438  if (const TagType *TT = T->getAs<TagType>()) {
4439    TagDecl *TD = TT->getDecl();
4440
4441    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4442    // keep track of the TypedefDecl.
4443    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4444      TD->setTypedefForAnonDecl(NewTD);
4445  }
4446
4447  if (D.isInvalidType())
4448    NewTD->setInvalidDecl();
4449  return NewTD;
4450}
4451
4452
4453/// \brief Determine whether a tag with a given kind is acceptable
4454/// as a redeclaration of the given tag declaration.
4455///
4456/// \returns true if the new tag kind is acceptable, false otherwise.
4457bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4458                                        TagDecl::TagKind NewTag,
4459                                        SourceLocation NewTagLoc,
4460                                        const IdentifierInfo &Name) {
4461  // C++ [dcl.type.elab]p3:
4462  //   The class-key or enum keyword present in the
4463  //   elaborated-type-specifier shall agree in kind with the
4464  //   declaration to which the name in theelaborated-type-specifier
4465  //   refers. This rule also applies to the form of
4466  //   elaborated-type-specifier that declares a class-name or
4467  //   friend class since it can be construed as referring to the
4468  //   definition of the class. Thus, in any
4469  //   elaborated-type-specifier, the enum keyword shall be used to
4470  //   refer to an enumeration (7.2), the union class-keyshall be
4471  //   used to refer to a union (clause 9), and either the class or
4472  //   struct class-key shall be used to refer to a class (clause 9)
4473  //   declared using the class or struct class-key.
4474  TagDecl::TagKind OldTag = Previous->getTagKind();
4475  if (OldTag == NewTag)
4476    return true;
4477
4478  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4479      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4480    // Warn about the struct/class tag mismatch.
4481    bool isTemplate = false;
4482    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4483      isTemplate = Record->getDescribedClassTemplate();
4484
4485    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4486      << (NewTag == TagDecl::TK_class)
4487      << isTemplate << &Name
4488      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4489                              OldTag == TagDecl::TK_class? "class" : "struct");
4490    Diag(Previous->getLocation(), diag::note_previous_use);
4491    return true;
4492  }
4493  return false;
4494}
4495
4496/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4497/// former case, Name will be non-null.  In the later case, Name will be null.
4498/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4499/// reference/declaration/definition of a tag.
4500Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4501                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4502                               IdentifierInfo *Name, SourceLocation NameLoc,
4503                               AttributeList *Attr, AccessSpecifier AS,
4504                               MultiTemplateParamsArg TemplateParameterLists,
4505                               bool &OwnedDecl, bool &IsDependent) {
4506  // If this is not a definition, it must have a name.
4507  assert((Name != 0 || TUK == TUK_Definition) &&
4508         "Nameless record must be a definition!");
4509
4510  OwnedDecl = false;
4511  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4512
4513  // FIXME: Check explicit specializations more carefully.
4514  bool isExplicitSpecialization = false;
4515  if (TUK != TUK_Reference) {
4516    if (TemplateParameterList *TemplateParams
4517          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4518                        (TemplateParameterList**)TemplateParameterLists.get(),
4519                                              TemplateParameterLists.size(),
4520                                                    isExplicitSpecialization)) {
4521      if (TemplateParams->size() > 0) {
4522        // This is a declaration or definition of a class template (which may
4523        // be a member of another template).
4524        OwnedDecl = false;
4525        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4526                                               SS, Name, NameLoc, Attr,
4527                                               TemplateParams,
4528                                               AS);
4529        TemplateParameterLists.release();
4530        return Result.get();
4531      } else {
4532        // The "template<>" header is extraneous.
4533        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4534          << ElaboratedType::getNameForTagKind(Kind) << Name;
4535        isExplicitSpecialization = true;
4536      }
4537    }
4538
4539    TemplateParameterLists.release();
4540  }
4541
4542  DeclContext *SearchDC = CurContext;
4543  DeclContext *DC = CurContext;
4544  bool isStdBadAlloc = false;
4545  bool Invalid = false;
4546
4547  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4548                                                   : NotForRedeclaration);
4549
4550  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4551
4552  if (Name && SS.isNotEmpty()) {
4553    // We have a nested-name tag ('struct foo::bar').
4554
4555    // Check for invalid 'foo::'.
4556    if (SS.isInvalid()) {
4557      Name = 0;
4558      goto CreateNewDecl;
4559    }
4560
4561    // If this is a friend or a reference to a class in a dependent
4562    // context, don't try to make a decl for it.
4563    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4564      DC = computeDeclContext(SS, false);
4565      if (!DC) {
4566        IsDependent = true;
4567        return DeclPtrTy();
4568      }
4569    }
4570
4571    if (RequireCompleteDeclContext(SS))
4572      return DeclPtrTy::make((Decl *)0);
4573
4574    DC = computeDeclContext(SS, true);
4575    SearchDC = DC;
4576    // Look-up name inside 'foo::'.
4577    LookupQualifiedName(Previous, DC);
4578
4579    if (Previous.isAmbiguous())
4580      return DeclPtrTy();
4581
4582    if (Previous.empty()) {
4583      // Name lookup did not find anything. However, if the
4584      // nested-name-specifier refers to the current instantiation,
4585      // and that current instantiation has any dependent base
4586      // classes, we might find something at instantiation time: treat
4587      // this as a dependent elaborated-type-specifier.
4588      if (Previous.wasNotFoundInCurrentInstantiation()) {
4589        IsDependent = true;
4590        return DeclPtrTy();
4591      }
4592
4593      // A tag 'foo::bar' must already exist.
4594      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4595      Name = 0;
4596      Invalid = true;
4597      goto CreateNewDecl;
4598    }
4599  } else if (Name) {
4600    // If this is a named struct, check to see if there was a previous forward
4601    // declaration or definition.
4602    // FIXME: We're looking into outer scopes here, even when we
4603    // shouldn't be. Doing so can result in ambiguities that we
4604    // shouldn't be diagnosing.
4605    LookupName(Previous, S);
4606
4607    // Note:  there used to be some attempt at recovery here.
4608    if (Previous.isAmbiguous())
4609      return DeclPtrTy();
4610
4611    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4612      // FIXME: This makes sure that we ignore the contexts associated
4613      // with C structs, unions, and enums when looking for a matching
4614      // tag declaration or definition. See the similar lookup tweak
4615      // in Sema::LookupName; is there a better way to deal with this?
4616      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4617        SearchDC = SearchDC->getParent();
4618    }
4619  }
4620
4621  if (Previous.isSingleResult() &&
4622      Previous.getFoundDecl()->isTemplateParameter()) {
4623    // Maybe we will complain about the shadowed template parameter.
4624    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4625    // Just pretend that we didn't see the previous declaration.
4626    Previous.clear();
4627  }
4628
4629  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4630      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4631    // This is a declaration of or a reference to "std::bad_alloc".
4632    isStdBadAlloc = true;
4633
4634    if (Previous.empty() && StdBadAlloc) {
4635      // std::bad_alloc has been implicitly declared (but made invisible to
4636      // name lookup). Fill in this implicit declaration as the previous
4637      // declaration, so that the declarations get chained appropriately.
4638      Previous.addDecl(StdBadAlloc);
4639    }
4640  }
4641
4642  if (!Previous.empty()) {
4643    assert(Previous.isSingleResult());
4644    NamedDecl *PrevDecl = Previous.getFoundDecl();
4645    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4646      // If this is a use of a previous tag, or if the tag is already declared
4647      // in the same scope (so that the definition/declaration completes or
4648      // rementions the tag), reuse the decl.
4649      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4650          isDeclInScope(PrevDecl, SearchDC, S)) {
4651        // Make sure that this wasn't declared as an enum and now used as a
4652        // struct or something similar.
4653        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4654          bool SafeToContinue
4655            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4656               Kind != TagDecl::TK_enum);
4657          if (SafeToContinue)
4658            Diag(KWLoc, diag::err_use_with_wrong_tag)
4659              << Name
4660              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4661                                                  PrevTagDecl->getKindName());
4662          else
4663            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4664          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4665
4666          if (SafeToContinue)
4667            Kind = PrevTagDecl->getTagKind();
4668          else {
4669            // Recover by making this an anonymous redefinition.
4670            Name = 0;
4671            Previous.clear();
4672            Invalid = true;
4673          }
4674        }
4675
4676        if (!Invalid) {
4677          // If this is a use, just return the declaration we found.
4678
4679          // FIXME: In the future, return a variant or some other clue
4680          // for the consumer of this Decl to know it doesn't own it.
4681          // For our current ASTs this shouldn't be a problem, but will
4682          // need to be changed with DeclGroups.
4683          if (TUK == TUK_Reference || TUK == TUK_Friend)
4684            return DeclPtrTy::make(PrevTagDecl);
4685
4686          // Diagnose attempts to redefine a tag.
4687          if (TUK == TUK_Definition) {
4688            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4689              // If we're defining a specialization and the previous definition
4690              // is from an implicit instantiation, don't emit an error
4691              // here; we'll catch this in the general case below.
4692              if (!isExplicitSpecialization ||
4693                  !isa<CXXRecordDecl>(Def) ||
4694                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4695                                               == TSK_ExplicitSpecialization) {
4696                Diag(NameLoc, diag::err_redefinition) << Name;
4697                Diag(Def->getLocation(), diag::note_previous_definition);
4698                // If this is a redefinition, recover by making this
4699                // struct be anonymous, which will make any later
4700                // references get the previous definition.
4701                Name = 0;
4702                Previous.clear();
4703                Invalid = true;
4704              }
4705            } else {
4706              // If the type is currently being defined, complain
4707              // about a nested redefinition.
4708              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4709              if (Tag->isBeingDefined()) {
4710                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4711                Diag(PrevTagDecl->getLocation(),
4712                     diag::note_previous_definition);
4713                Name = 0;
4714                Previous.clear();
4715                Invalid = true;
4716              }
4717            }
4718
4719            // Okay, this is definition of a previously declared or referenced
4720            // tag PrevDecl. We're going to create a new Decl for it.
4721          }
4722        }
4723        // If we get here we have (another) forward declaration or we
4724        // have a definition.  Just create a new decl.
4725
4726      } else {
4727        // If we get here, this is a definition of a new tag type in a nested
4728        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4729        // new decl/type.  We set PrevDecl to NULL so that the entities
4730        // have distinct types.
4731        Previous.clear();
4732      }
4733      // If we get here, we're going to create a new Decl. If PrevDecl
4734      // is non-NULL, it's a definition of the tag declared by
4735      // PrevDecl. If it's NULL, we have a new definition.
4736    } else {
4737      // PrevDecl is a namespace, template, or anything else
4738      // that lives in the IDNS_Tag identifier namespace.
4739      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4740        // The tag name clashes with a namespace name, issue an error and
4741        // recover by making this tag be anonymous.
4742        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4743        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4744        Name = 0;
4745        Previous.clear();
4746        Invalid = true;
4747      } else {
4748        // The existing declaration isn't relevant to us; we're in a
4749        // new scope, so clear out the previous declaration.
4750        Previous.clear();
4751      }
4752    }
4753  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4754    // C++ [basic.scope.pdecl]p5:
4755    //   -- for an elaborated-type-specifier of the form
4756    //
4757    //          class-key identifier
4758    //
4759    //      if the elaborated-type-specifier is used in the
4760    //      decl-specifier-seq or parameter-declaration-clause of a
4761    //      function defined in namespace scope, the identifier is
4762    //      declared as a class-name in the namespace that contains
4763    //      the declaration; otherwise, except as a friend
4764    //      declaration, the identifier is declared in the smallest
4765    //      non-class, non-function-prototype scope that contains the
4766    //      declaration.
4767    //
4768    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4769    // C structs and unions.
4770    //
4771    // It is an error in C++ to declare (rather than define) an enum
4772    // type, including via an elaborated type specifier.  We'll
4773    // diagnose that later; for now, declare the enum in the same
4774    // scope as we would have picked for any other tag type.
4775    //
4776    // GNU C also supports this behavior as part of its incomplete
4777    // enum types extension, while GNU C++ does not.
4778    //
4779    // Find the context where we'll be declaring the tag.
4780    // FIXME: We would like to maintain the current DeclContext as the
4781    // lexical context,
4782    while (SearchDC->isRecord())
4783      SearchDC = SearchDC->getParent();
4784
4785    // Find the scope where we'll be declaring the tag.
4786    while (S->isClassScope() ||
4787           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4788           ((S->getFlags() & Scope::DeclScope) == 0) ||
4789           (S->getEntity() &&
4790            ((DeclContext *)S->getEntity())->isTransparentContext()))
4791      S = S->getParent();
4792
4793  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4794    // C++ [namespace.memdef]p3:
4795    //   If a friend declaration in a non-local class first declares a
4796    //   class or function, the friend class or function is a member of
4797    //   the innermost enclosing namespace.
4798    while (!SearchDC->isFileContext())
4799      SearchDC = SearchDC->getParent();
4800
4801    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4802    while (S->getEntity() != SearchDC)
4803      S = S->getParent();
4804  }
4805
4806CreateNewDecl:
4807
4808  TagDecl *PrevDecl = 0;
4809  if (Previous.isSingleResult())
4810    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4811
4812  // If there is an identifier, use the location of the identifier as the
4813  // location of the decl, otherwise use the location of the struct/union
4814  // keyword.
4815  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4816
4817  // Otherwise, create a new declaration. If there is a previous
4818  // declaration of the same entity, the two will be linked via
4819  // PrevDecl.
4820  TagDecl *New;
4821
4822  if (Kind == TagDecl::TK_enum) {
4823    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4824    // enum X { A, B, C } D;    D should chain to X.
4825    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4826                           cast_or_null<EnumDecl>(PrevDecl));
4827    // If this is an undefined enum, warn.
4828    if (TUK != TUK_Definition && !Invalid)  {
4829      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4830                                              : diag::ext_forward_ref_enum;
4831      Diag(Loc, DK);
4832    }
4833  } else {
4834    // struct/union/class
4835
4836    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4837    // struct X { int A; } D;    D should chain to X.
4838    if (getLangOptions().CPlusPlus) {
4839      // FIXME: Look for a way to use RecordDecl for simple structs.
4840      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4841                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4842
4843      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4844        StdBadAlloc = cast<CXXRecordDecl>(New);
4845    } else
4846      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4847                               cast_or_null<RecordDecl>(PrevDecl));
4848  }
4849
4850  if (Kind != TagDecl::TK_enum) {
4851    // Handle #pragma pack: if the #pragma pack stack has non-default
4852    // alignment, make up a packed attribute for this decl. These
4853    // attributes are checked when the ASTContext lays out the
4854    // structure.
4855    //
4856    // It is important for implementing the correct semantics that this
4857    // happen here (in act on tag decl). The #pragma pack stack is
4858    // maintained as a result of parser callbacks which can occur at
4859    // many points during the parsing of a struct declaration (because
4860    // the #pragma tokens are effectively skipped over during the
4861    // parsing of the struct).
4862    if (unsigned Alignment = getPragmaPackAlignment())
4863      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4864  }
4865
4866  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4867    // C++ [dcl.typedef]p3:
4868    //   [...] Similarly, in a given scope, a class or enumeration
4869    //   shall not be declared with the same name as a typedef-name
4870    //   that is declared in that scope and refers to a type other
4871    //   than the class or enumeration itself.
4872    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4873                        ForRedeclaration);
4874    LookupName(Lookup, S);
4875    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4876    NamedDecl *PrevTypedefNamed = PrevTypedef;
4877    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4878        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4879          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4880      Diag(Loc, diag::err_tag_definition_of_typedef)
4881        << Context.getTypeDeclType(New)
4882        << PrevTypedef->getUnderlyingType();
4883      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4884      Invalid = true;
4885    }
4886  }
4887
4888  // If this is a specialization of a member class (of a class template),
4889  // check the specialization.
4890  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4891    Invalid = true;
4892
4893  if (Invalid)
4894    New->setInvalidDecl();
4895
4896  if (Attr)
4897    ProcessDeclAttributeList(S, New, Attr);
4898
4899  // If we're declaring or defining a tag in function prototype scope
4900  // in C, note that this type can only be used within the function.
4901  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4902    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4903
4904  // Set the lexical context. If the tag has a C++ scope specifier, the
4905  // lexical context will be different from the semantic context.
4906  New->setLexicalDeclContext(CurContext);
4907
4908  // Mark this as a friend decl if applicable.
4909  if (TUK == TUK_Friend)
4910    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4911
4912  // Set the access specifier.
4913  if (!Invalid && TUK != TUK_Friend)
4914    SetMemberAccessSpecifier(New, PrevDecl, AS);
4915
4916  if (TUK == TUK_Definition)
4917    New->startDefinition();
4918
4919  // If this has an identifier, add it to the scope stack.
4920  if (TUK == TUK_Friend) {
4921    // We might be replacing an existing declaration in the lookup tables;
4922    // if so, borrow its access specifier.
4923    if (PrevDecl)
4924      New->setAccess(PrevDecl->getAccess());
4925
4926    // Friend tag decls are visible in fairly strange ways.
4927    if (!CurContext->isDependentContext()) {
4928      DeclContext *DC = New->getDeclContext()->getLookupContext();
4929      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4930      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4931        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4932    }
4933  } else if (Name) {
4934    S = getNonFieldDeclScope(S);
4935    PushOnScopeChains(New, S);
4936  } else {
4937    CurContext->addDecl(New);
4938  }
4939
4940  // If this is the C FILE type, notify the AST context.
4941  if (IdentifierInfo *II = New->getIdentifier())
4942    if (!New->isInvalidDecl() &&
4943        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4944        II->isStr("FILE"))
4945      Context.setFILEDecl(New);
4946
4947  OwnedDecl = true;
4948  return DeclPtrTy::make(New);
4949}
4950
4951void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4952  AdjustDeclIfTemplate(TagD);
4953  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4954
4955  // Enter the tag context.
4956  PushDeclContext(S, Tag);
4957}
4958
4959void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4960                                           SourceLocation LBraceLoc) {
4961  AdjustDeclIfTemplate(TagD);
4962  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4963
4964  FieldCollector->StartClass();
4965
4966  if (!Record->getIdentifier())
4967    return;
4968
4969  // C++ [class]p2:
4970  //   [...] The class-name is also inserted into the scope of the
4971  //   class itself; this is known as the injected-class-name. For
4972  //   purposes of access checking, the injected-class-name is treated
4973  //   as if it were a public member name.
4974  CXXRecordDecl *InjectedClassName
4975    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4976                            CurContext, Record->getLocation(),
4977                            Record->getIdentifier(),
4978                            Record->getTagKeywordLoc(),
4979                            Record);
4980  InjectedClassName->setImplicit();
4981  InjectedClassName->setAccess(AS_public);
4982  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4983      InjectedClassName->setDescribedClassTemplate(Template);
4984  PushOnScopeChains(InjectedClassName, S);
4985  assert(InjectedClassName->isInjectedClassName() &&
4986         "Broken injected-class-name");
4987}
4988
4989// Traverses the class and any nested classes, making a note of any
4990// dynamic classes that have no key function so that we can mark all of
4991// their virtual member functions as "used" at the end of the translation
4992// unit. This ensures that all functions needed by the vtable will get
4993// instantiated/synthesized.
4994static void
4995RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4996                                      SourceLocation Loc) {
4997  // We don't look at dependent or undefined classes.
4998  if (Record->isDependentContext() || !Record->isDefinition())
4999    return;
5000
5001  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
5002    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
5003
5004  for (DeclContext::decl_iterator D = Record->decls_begin(),
5005                               DEnd = Record->decls_end();
5006       D != DEnd; ++D) {
5007    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5008      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5009  }
5010}
5011
5012void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5013                                    SourceLocation RBraceLoc) {
5014  AdjustDeclIfTemplate(TagD);
5015  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5016  Tag->setRBraceLoc(RBraceLoc);
5017
5018  if (isa<CXXRecordDecl>(Tag))
5019    FieldCollector->FinishClass();
5020
5021  // Exit this scope of this tag's definition.
5022  PopDeclContext();
5023
5024  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
5025    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5026                                          RBraceLoc);
5027
5028  // Notify the consumer that we've defined a tag.
5029  Consumer.HandleTagDeclDefinition(Tag);
5030}
5031
5032// Note that FieldName may be null for anonymous bitfields.
5033bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5034                          QualType FieldTy, const Expr *BitWidth,
5035                          bool *ZeroWidth) {
5036  // Default to true; that shouldn't confuse checks for emptiness
5037  if (ZeroWidth)
5038    *ZeroWidth = true;
5039
5040  // C99 6.7.2.1p4 - verify the field type.
5041  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5042  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5043    // Handle incomplete types with specific error.
5044    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5045      return true;
5046    if (FieldName)
5047      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5048        << FieldName << FieldTy << BitWidth->getSourceRange();
5049    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5050      << FieldTy << BitWidth->getSourceRange();
5051  }
5052
5053  // If the bit-width is type- or value-dependent, don't try to check
5054  // it now.
5055  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5056    return false;
5057
5058  llvm::APSInt Value;
5059  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5060    return true;
5061
5062  if (Value != 0 && ZeroWidth)
5063    *ZeroWidth = false;
5064
5065  // Zero-width bitfield is ok for anonymous field.
5066  if (Value == 0 && FieldName)
5067    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5068
5069  if (Value.isSigned() && Value.isNegative()) {
5070    if (FieldName)
5071      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5072               << FieldName << Value.toString(10);
5073    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5074      << Value.toString(10);
5075  }
5076
5077  if (!FieldTy->isDependentType()) {
5078    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5079    if (Value.getZExtValue() > TypeSize) {
5080      if (FieldName)
5081        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5082          << FieldName << (unsigned)TypeSize;
5083      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5084        << (unsigned)TypeSize;
5085    }
5086  }
5087
5088  return false;
5089}
5090
5091/// ActOnField - Each field of a struct/union/class is passed into this in order
5092/// to create a FieldDecl object for it.
5093Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5094                                 SourceLocation DeclStart,
5095                                 Declarator &D, ExprTy *BitfieldWidth) {
5096  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5097                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5098                               AS_public);
5099  return DeclPtrTy::make(Res);
5100}
5101
5102/// HandleField - Analyze a field of a C struct or a C++ data member.
5103///
5104FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5105                             SourceLocation DeclStart,
5106                             Declarator &D, Expr *BitWidth,
5107                             AccessSpecifier AS) {
5108  IdentifierInfo *II = D.getIdentifier();
5109  SourceLocation Loc = DeclStart;
5110  if (II) Loc = D.getIdentifierLoc();
5111
5112  TypeSourceInfo *TInfo = 0;
5113  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5114  if (getLangOptions().CPlusPlus)
5115    CheckExtraCXXDefaultArguments(D);
5116
5117  DiagnoseFunctionSpecifiers(D);
5118
5119  if (D.getDeclSpec().isThreadSpecified())
5120    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5121
5122  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5123                                         ForRedeclaration);
5124
5125  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5126    // Maybe we will complain about the shadowed template parameter.
5127    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5128    // Just pretend that we didn't see the previous declaration.
5129    PrevDecl = 0;
5130  }
5131
5132  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5133    PrevDecl = 0;
5134
5135  bool Mutable
5136    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5137  SourceLocation TSSL = D.getSourceRange().getBegin();
5138  FieldDecl *NewFD
5139    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5140                     AS, PrevDecl, &D);
5141  if (NewFD->isInvalidDecl() && PrevDecl) {
5142    // Don't introduce NewFD into scope; there's already something
5143    // with the same name in the same scope.
5144  } else if (II) {
5145    PushOnScopeChains(NewFD, S);
5146  } else
5147    Record->addDecl(NewFD);
5148
5149  return NewFD;
5150}
5151
5152/// \brief Build a new FieldDecl and check its well-formedness.
5153///
5154/// This routine builds a new FieldDecl given the fields name, type,
5155/// record, etc. \p PrevDecl should refer to any previous declaration
5156/// with the same name and in the same scope as the field to be
5157/// created.
5158///
5159/// \returns a new FieldDecl.
5160///
5161/// \todo The Declarator argument is a hack. It will be removed once
5162FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5163                                TypeSourceInfo *TInfo,
5164                                RecordDecl *Record, SourceLocation Loc,
5165                                bool Mutable, Expr *BitWidth,
5166                                SourceLocation TSSL,
5167                                AccessSpecifier AS, NamedDecl *PrevDecl,
5168                                Declarator *D) {
5169  IdentifierInfo *II = Name.getAsIdentifierInfo();
5170  bool InvalidDecl = false;
5171  if (D) InvalidDecl = D->isInvalidType();
5172
5173  // If we receive a broken type, recover by assuming 'int' and
5174  // marking this declaration as invalid.
5175  if (T.isNull()) {
5176    InvalidDecl = true;
5177    T = Context.IntTy;
5178  }
5179
5180  QualType EltTy = Context.getBaseElementType(T);
5181  if (!EltTy->isDependentType() &&
5182      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5183    InvalidDecl = true;
5184
5185  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5186  // than a variably modified type.
5187  if (!InvalidDecl && T->isVariablyModifiedType()) {
5188    bool SizeIsNegative;
5189    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5190                                                           SizeIsNegative);
5191    if (!FixedTy.isNull()) {
5192      Diag(Loc, diag::warn_illegal_constant_array_size);
5193      T = FixedTy;
5194    } else {
5195      if (SizeIsNegative)
5196        Diag(Loc, diag::err_typecheck_negative_array_size);
5197      else
5198        Diag(Loc, diag::err_typecheck_field_variable_size);
5199      InvalidDecl = true;
5200    }
5201  }
5202
5203  // Fields can not have abstract class types
5204  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5205                                             diag::err_abstract_type_in_decl,
5206                                             AbstractFieldType))
5207    InvalidDecl = true;
5208
5209  bool ZeroWidth = false;
5210  // If this is declared as a bit-field, check the bit-field.
5211  if (!InvalidDecl && BitWidth &&
5212      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5213    InvalidDecl = true;
5214    DeleteExpr(BitWidth);
5215    BitWidth = 0;
5216    ZeroWidth = false;
5217  }
5218
5219  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5220                                       BitWidth, Mutable);
5221  if (InvalidDecl)
5222    NewFD->setInvalidDecl();
5223
5224  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5225    Diag(Loc, diag::err_duplicate_member) << II;
5226    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5227    NewFD->setInvalidDecl();
5228  }
5229
5230  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5231    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5232
5233    if (!T->isPODType())
5234      CXXRecord->setPOD(false);
5235    if (!ZeroWidth)
5236      CXXRecord->setEmpty(false);
5237
5238    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5239      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5240
5241      if (!RDecl->hasTrivialConstructor())
5242        CXXRecord->setHasTrivialConstructor(false);
5243      if (!RDecl->hasTrivialCopyConstructor())
5244        CXXRecord->setHasTrivialCopyConstructor(false);
5245      if (!RDecl->hasTrivialCopyAssignment())
5246        CXXRecord->setHasTrivialCopyAssignment(false);
5247      if (!RDecl->hasTrivialDestructor())
5248        CXXRecord->setHasTrivialDestructor(false);
5249
5250      // C++ 9.5p1: An object of a class with a non-trivial
5251      // constructor, a non-trivial copy constructor, a non-trivial
5252      // destructor, or a non-trivial copy assignment operator
5253      // cannot be a member of a union, nor can an array of such
5254      // objects.
5255      // TODO: C++0x alters this restriction significantly.
5256      if (Record->isUnion()) {
5257        // We check for copy constructors before constructors
5258        // because otherwise we'll never get complaints about
5259        // copy constructors.
5260
5261        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5262
5263        CXXSpecialMember member;
5264        if (!RDecl->hasTrivialCopyConstructor())
5265          member = CXXCopyConstructor;
5266        else if (!RDecl->hasTrivialConstructor())
5267          member = CXXDefaultConstructor;
5268        else if (!RDecl->hasTrivialCopyAssignment())
5269          member = CXXCopyAssignment;
5270        else if (!RDecl->hasTrivialDestructor())
5271          member = CXXDestructor;
5272        else
5273          member = invalid;
5274
5275        if (member != invalid) {
5276          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5277          DiagnoseNontrivial(RT, member);
5278          NewFD->setInvalidDecl();
5279        }
5280      }
5281    }
5282  }
5283
5284  // FIXME: We need to pass in the attributes given an AST
5285  // representation, not a parser representation.
5286  if (D)
5287    // FIXME: What to pass instead of TUScope?
5288    ProcessDeclAttributes(TUScope, NewFD, *D);
5289
5290  if (T.isObjCGCWeak())
5291    Diag(Loc, diag::warn_attribute_weak_on_field);
5292
5293  NewFD->setAccess(AS);
5294
5295  // C++ [dcl.init.aggr]p1:
5296  //   An aggregate is an array or a class (clause 9) with [...] no
5297  //   private or protected non-static data members (clause 11).
5298  // A POD must be an aggregate.
5299  if (getLangOptions().CPlusPlus &&
5300      (AS == AS_private || AS == AS_protected)) {
5301    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5302    CXXRecord->setAggregate(false);
5303    CXXRecord->setPOD(false);
5304  }
5305
5306  return NewFD;
5307}
5308
5309/// DiagnoseNontrivial - Given that a class has a non-trivial
5310/// special member, figure out why.
5311void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5312  QualType QT(T, 0U);
5313  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5314
5315  // Check whether the member was user-declared.
5316  switch (member) {
5317  case CXXDefaultConstructor:
5318    if (RD->hasUserDeclaredConstructor()) {
5319      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5320      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5321        const FunctionDecl *body = 0;
5322        ci->getBody(body);
5323        if (!body ||
5324            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5325          SourceLocation CtorLoc = ci->getLocation();
5326          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5327          return;
5328        }
5329      }
5330
5331      assert(0 && "found no user-declared constructors");
5332      return;
5333    }
5334    break;
5335
5336  case CXXCopyConstructor:
5337    if (RD->hasUserDeclaredCopyConstructor()) {
5338      SourceLocation CtorLoc =
5339        RD->getCopyConstructor(Context, 0)->getLocation();
5340      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5341      return;
5342    }
5343    break;
5344
5345  case CXXCopyAssignment:
5346    if (RD->hasUserDeclaredCopyAssignment()) {
5347      // FIXME: this should use the location of the copy
5348      // assignment, not the type.
5349      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5350      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5351      return;
5352    }
5353    break;
5354
5355  case CXXDestructor:
5356    if (RD->hasUserDeclaredDestructor()) {
5357      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5358      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5359      return;
5360    }
5361    break;
5362  }
5363
5364  typedef CXXRecordDecl::base_class_iterator base_iter;
5365
5366  // Virtual bases and members inhibit trivial copying/construction,
5367  // but not trivial destruction.
5368  if (member != CXXDestructor) {
5369    // Check for virtual bases.  vbases includes indirect virtual bases,
5370    // so we just iterate through the direct bases.
5371    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5372      if (bi->isVirtual()) {
5373        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5374        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5375        return;
5376      }
5377
5378    // Check for virtual methods.
5379    typedef CXXRecordDecl::method_iterator meth_iter;
5380    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5381         ++mi) {
5382      if (mi->isVirtual()) {
5383        SourceLocation MLoc = mi->getSourceRange().getBegin();
5384        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5385        return;
5386      }
5387    }
5388  }
5389
5390  bool (CXXRecordDecl::*hasTrivial)() const;
5391  switch (member) {
5392  case CXXDefaultConstructor:
5393    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5394  case CXXCopyConstructor:
5395    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5396  case CXXCopyAssignment:
5397    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5398  case CXXDestructor:
5399    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5400  default:
5401    assert(0 && "unexpected special member"); return;
5402  }
5403
5404  // Check for nontrivial bases (and recurse).
5405  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5406    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5407    assert(BaseRT && "Don't know how to handle dependent bases");
5408    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5409    if (!(BaseRecTy->*hasTrivial)()) {
5410      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5411      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5412      DiagnoseNontrivial(BaseRT, member);
5413      return;
5414    }
5415  }
5416
5417  // Check for nontrivial members (and recurse).
5418  typedef RecordDecl::field_iterator field_iter;
5419  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5420       ++fi) {
5421    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5422    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5423      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5424
5425      if (!(EltRD->*hasTrivial)()) {
5426        SourceLocation FLoc = (*fi)->getLocation();
5427        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5428        DiagnoseNontrivial(EltRT, member);
5429        return;
5430      }
5431    }
5432  }
5433
5434  assert(0 && "found no explanation for non-trivial member");
5435}
5436
5437/// TranslateIvarVisibility - Translate visibility from a token ID to an
5438///  AST enum value.
5439static ObjCIvarDecl::AccessControl
5440TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5441  switch (ivarVisibility) {
5442  default: assert(0 && "Unknown visitibility kind");
5443  case tok::objc_private: return ObjCIvarDecl::Private;
5444  case tok::objc_public: return ObjCIvarDecl::Public;
5445  case tok::objc_protected: return ObjCIvarDecl::Protected;
5446  case tok::objc_package: return ObjCIvarDecl::Package;
5447  }
5448}
5449
5450/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5451/// in order to create an IvarDecl object for it.
5452Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5453                                SourceLocation DeclStart,
5454                                DeclPtrTy IntfDecl,
5455                                Declarator &D, ExprTy *BitfieldWidth,
5456                                tok::ObjCKeywordKind Visibility) {
5457
5458  IdentifierInfo *II = D.getIdentifier();
5459  Expr *BitWidth = (Expr*)BitfieldWidth;
5460  SourceLocation Loc = DeclStart;
5461  if (II) Loc = D.getIdentifierLoc();
5462
5463  // FIXME: Unnamed fields can be handled in various different ways, for
5464  // example, unnamed unions inject all members into the struct namespace!
5465
5466  TypeSourceInfo *TInfo = 0;
5467  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5468
5469  if (BitWidth) {
5470    // 6.7.2.1p3, 6.7.2.1p4
5471    if (VerifyBitField(Loc, II, T, BitWidth)) {
5472      D.setInvalidType();
5473      DeleteExpr(BitWidth);
5474      BitWidth = 0;
5475    }
5476  } else {
5477    // Not a bitfield.
5478
5479    // validate II.
5480
5481  }
5482
5483  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5484  // than a variably modified type.
5485  if (T->isVariablyModifiedType()) {
5486    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5487    D.setInvalidType();
5488  }
5489
5490  // Get the visibility (access control) for this ivar.
5491  ObjCIvarDecl::AccessControl ac =
5492    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5493                                        : ObjCIvarDecl::None;
5494  // Must set ivar's DeclContext to its enclosing interface.
5495  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5496  DeclContext *EnclosingContext;
5497  if (ObjCImplementationDecl *IMPDecl =
5498      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5499    // Case of ivar declared in an implementation. Context is that of its class.
5500    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5501    assert(IDecl && "No class- ActOnIvar");
5502    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5503  } else
5504    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5505  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5506
5507  // Construct the decl.
5508  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5509                                             EnclosingContext, Loc, II, T,
5510                                             TInfo, ac, (Expr *)BitfieldWidth);
5511
5512  if (II) {
5513    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5514                                           ForRedeclaration);
5515    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5516        && !isa<TagDecl>(PrevDecl)) {
5517      Diag(Loc, diag::err_duplicate_member) << II;
5518      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5519      NewID->setInvalidDecl();
5520    }
5521  }
5522
5523  // Process attributes attached to the ivar.
5524  ProcessDeclAttributes(S, NewID, D);
5525
5526  if (D.isInvalidType())
5527    NewID->setInvalidDecl();
5528
5529  if (II) {
5530    // FIXME: When interfaces are DeclContexts, we'll need to add
5531    // these to the interface.
5532    S->AddDecl(DeclPtrTy::make(NewID));
5533    IdResolver.AddDecl(NewID);
5534  }
5535
5536  return DeclPtrTy::make(NewID);
5537}
5538
5539void Sema::ActOnFields(Scope* S,
5540                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5541                       DeclPtrTy *Fields, unsigned NumFields,
5542                       SourceLocation LBrac, SourceLocation RBrac,
5543                       AttributeList *Attr) {
5544  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5545  assert(EnclosingDecl && "missing record or interface decl");
5546
5547  // If the decl this is being inserted into is invalid, then it may be a
5548  // redeclaration or some other bogus case.  Don't try to add fields to it.
5549  if (EnclosingDecl->isInvalidDecl()) {
5550    // FIXME: Deallocate fields?
5551    return;
5552  }
5553
5554
5555  // Verify that all the fields are okay.
5556  unsigned NumNamedMembers = 0;
5557  llvm::SmallVector<FieldDecl*, 32> RecFields;
5558
5559  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5560  for (unsigned i = 0; i != NumFields; ++i) {
5561    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5562
5563    // Get the type for the field.
5564    Type *FDTy = FD->getType().getTypePtr();
5565
5566    if (!FD->isAnonymousStructOrUnion()) {
5567      // Remember all fields written by the user.
5568      RecFields.push_back(FD);
5569    }
5570
5571    // If the field is already invalid for some reason, don't emit more
5572    // diagnostics about it.
5573    if (FD->isInvalidDecl()) {
5574      EnclosingDecl->setInvalidDecl();
5575      continue;
5576    }
5577
5578    // C99 6.7.2.1p2:
5579    //   A structure or union shall not contain a member with
5580    //   incomplete or function type (hence, a structure shall not
5581    //   contain an instance of itself, but may contain a pointer to
5582    //   an instance of itself), except that the last member of a
5583    //   structure with more than one named member may have incomplete
5584    //   array type; such a structure (and any union containing,
5585    //   possibly recursively, a member that is such a structure)
5586    //   shall not be a member of a structure or an element of an
5587    //   array.
5588    if (FDTy->isFunctionType()) {
5589      // Field declared as a function.
5590      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5591        << FD->getDeclName();
5592      FD->setInvalidDecl();
5593      EnclosingDecl->setInvalidDecl();
5594      continue;
5595    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5596               Record && Record->isStruct()) {
5597      // Flexible array member.
5598      if (NumNamedMembers < 1) {
5599        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5600          << FD->getDeclName();
5601        FD->setInvalidDecl();
5602        EnclosingDecl->setInvalidDecl();
5603        continue;
5604      }
5605      // Okay, we have a legal flexible array member at the end of the struct.
5606      if (Record)
5607        Record->setHasFlexibleArrayMember(true);
5608    } else if (!FDTy->isDependentType() &&
5609               RequireCompleteType(FD->getLocation(), FD->getType(),
5610                                   diag::err_field_incomplete)) {
5611      // Incomplete type
5612      FD->setInvalidDecl();
5613      EnclosingDecl->setInvalidDecl();
5614      continue;
5615    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5616      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5617        // If this is a member of a union, then entire union becomes "flexible".
5618        if (Record && Record->isUnion()) {
5619          Record->setHasFlexibleArrayMember(true);
5620        } else {
5621          // If this is a struct/class and this is not the last element, reject
5622          // it.  Note that GCC supports variable sized arrays in the middle of
5623          // structures.
5624          if (i != NumFields-1)
5625            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5626              << FD->getDeclName() << FD->getType();
5627          else {
5628            // We support flexible arrays at the end of structs in
5629            // other structs as an extension.
5630            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5631              << FD->getDeclName();
5632            if (Record)
5633              Record->setHasFlexibleArrayMember(true);
5634          }
5635        }
5636      }
5637      if (Record && FDTTy->getDecl()->hasObjectMember())
5638        Record->setHasObjectMember(true);
5639    } else if (FDTy->isObjCInterfaceType()) {
5640      /// A field cannot be an Objective-c object
5641      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5642      FD->setInvalidDecl();
5643      EnclosingDecl->setInvalidDecl();
5644      continue;
5645    } else if (getLangOptions().ObjC1 &&
5646               getLangOptions().getGCMode() != LangOptions::NonGC &&
5647               Record &&
5648               (FD->getType()->isObjCObjectPointerType() ||
5649                FD->getType().isObjCGCStrong()))
5650      Record->setHasObjectMember(true);
5651    // Keep track of the number of named members.
5652    if (FD->getIdentifier())
5653      ++NumNamedMembers;
5654  }
5655
5656  // Okay, we successfully defined 'Record'.
5657  if (Record) {
5658    Record->completeDefinition(Context);
5659  } else {
5660    ObjCIvarDecl **ClsFields =
5661      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5662    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5663      ID->setIVarList(ClsFields, RecFields.size(), Context);
5664      ID->setLocEnd(RBrac);
5665      // Add ivar's to class's DeclContext.
5666      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5667        ClsFields[i]->setLexicalDeclContext(ID);
5668        ID->addDecl(ClsFields[i]);
5669      }
5670      // Must enforce the rule that ivars in the base classes may not be
5671      // duplicates.
5672      if (ID->getSuperClass()) {
5673        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5674             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5675          ObjCIvarDecl* Ivar = (*IVI);
5676
5677          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5678            ObjCIvarDecl* prevIvar =
5679              ID->getSuperClass()->lookupInstanceVariable(II);
5680            if (prevIvar) {
5681              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5682              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5683            }
5684          }
5685        }
5686      }
5687    } else if (ObjCImplementationDecl *IMPDecl =
5688                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5689      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5690      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5691        // Ivar declared in @implementation never belongs to the implementation.
5692        // Only it is in implementation's lexical context.
5693        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5694      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5695    }
5696  }
5697
5698  if (Attr)
5699    ProcessDeclAttributeList(S, Record, Attr);
5700}
5701
5702/// \brief Determine whether the given integral value is representable within
5703/// the given type T.
5704static bool isRepresentableIntegerValue(ASTContext &Context,
5705                                        llvm::APSInt &Value,
5706                                        QualType T) {
5707  assert(T->isIntegralType() && "Integral type required!");
5708  unsigned BitWidth = Context.getTypeSize(T);
5709
5710  if (Value.isUnsigned() || Value.isNonNegative())
5711    return Value.getActiveBits() < BitWidth;
5712
5713  return Value.getMinSignedBits() <= BitWidth;
5714}
5715
5716// \brief Given an integral type, return the next larger integral type
5717// (or a NULL type of no such type exists).
5718static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5719  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5720  // enum checking below.
5721  assert(T->isIntegralType() && "Integral type required!");
5722  const unsigned NumTypes = 4;
5723  QualType SignedIntegralTypes[NumTypes] = {
5724    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5725  };
5726  QualType UnsignedIntegralTypes[NumTypes] = {
5727    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5728    Context.UnsignedLongLongTy
5729  };
5730
5731  unsigned BitWidth = Context.getTypeSize(T);
5732  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5733                                            : UnsignedIntegralTypes;
5734  for (unsigned I = 0; I != NumTypes; ++I)
5735    if (Context.getTypeSize(Types[I]) > BitWidth)
5736      return Types[I];
5737
5738  return QualType();
5739}
5740
5741EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5742                                          EnumConstantDecl *LastEnumConst,
5743                                          SourceLocation IdLoc,
5744                                          IdentifierInfo *Id,
5745                                          ExprArg val) {
5746  Expr *Val = (Expr *)val.get();
5747
5748  unsigned IntWidth = Context.Target.getIntWidth();
5749  llvm::APSInt EnumVal(IntWidth);
5750  QualType EltTy;
5751  if (Val) {
5752    if (Enum->isDependentType())
5753      EltTy = Context.DependentTy;
5754    else {
5755      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5756      SourceLocation ExpLoc;
5757      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5758        Val = 0;
5759      } else {
5760        if (!getLangOptions().CPlusPlus) {
5761          // C99 6.7.2.2p2:
5762          //   The expression that defines the value of an enumeration constant
5763          //   shall be an integer constant expression that has a value
5764          //   representable as an int.
5765
5766          // Complain if the value is not representable in an int.
5767          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
5768            Diag(IdLoc, diag::ext_enum_value_not_int)
5769              << EnumVal.toString(10) << Val->getSourceRange()
5770              << EnumVal.isNonNegative();
5771          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
5772            // Force the type of the expression to 'int'.
5773            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
5774
5775            if (Val != val.get()) {
5776              val.release();
5777              val = Val;
5778            }
5779          }
5780        }
5781
5782        // C++0x [dcl.enum]p5:
5783        //   If the underlying type is not fixed, the type of each enumerator
5784        //   is the type of its initializing value:
5785        //     - If an initializer is specified for an enumerator, the
5786        //       initializing value has the same type as the expression.
5787        EltTy = Val->getType();
5788      }
5789    }
5790  }
5791
5792  if (!Val) {
5793    if (Enum->isDependentType())
5794      EltTy = Context.DependentTy;
5795    else if (!LastEnumConst) {
5796      // C++0x [dcl.enum]p5:
5797      //   If the underlying type is not fixed, the type of each enumerator
5798      //   is the type of its initializing value:
5799      //     - If no initializer is specified for the first enumerator, the
5800      //       initializing value has an unspecified integral type.
5801      //
5802      // GCC uses 'int' for its unspecified integral type, as does
5803      // C99 6.7.2.2p3.
5804      EltTy = Context.IntTy;
5805    } else {
5806      // Assign the last value + 1.
5807      EnumVal = LastEnumConst->getInitVal();
5808      ++EnumVal;
5809      EltTy = LastEnumConst->getType();
5810
5811      // Check for overflow on increment.
5812      if (EnumVal < LastEnumConst->getInitVal()) {
5813        // C++0x [dcl.enum]p5:
5814        //   If the underlying type is not fixed, the type of each enumerator
5815        //   is the type of its initializing value:
5816        //
5817        //     - Otherwise the type of the initializing value is the same as
5818        //       the type of the initializing value of the preceding enumerator
5819        //       unless the incremented value is not representable in that type,
5820        //       in which case the type is an unspecified integral type
5821        //       sufficient to contain the incremented value. If no such type
5822        //       exists, the program is ill-formed.
5823        QualType T = getNextLargerIntegralType(Context, EltTy);
5824        if (T.isNull()) {
5825          // There is no integral type larger enough to represent this
5826          // value. Complain, then allow the value to wrap around.
5827          EnumVal = LastEnumConst->getInitVal();
5828          EnumVal.zext(EnumVal.getBitWidth() * 2);
5829          Diag(IdLoc, diag::warn_enumerator_too_large)
5830            << EnumVal.toString(10);
5831        } else {
5832          EltTy = T;
5833        }
5834
5835        // Retrieve the last enumerator's value, extent that type to the
5836        // type that is supposed to be large enough to represent the incremented
5837        // value, then increment.
5838        EnumVal = LastEnumConst->getInitVal();
5839        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5840        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5841        ++EnumVal;
5842
5843        // If we're not in C++, diagnose the overflow of enumerator values,
5844        // which in C99 means that the enumerator value is not representable in
5845        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
5846        // permits enumerator values that are representable in some larger
5847        // integral type.
5848        if (!getLangOptions().CPlusPlus && !T.isNull())
5849          Diag(IdLoc, diag::warn_enum_value_overflow);
5850      } else if (!getLangOptions().CPlusPlus &&
5851                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
5852        // Enforce C99 6.7.2.2p2 even when we compute the next value.
5853        Diag(IdLoc, diag::ext_enum_value_not_int)
5854          << EnumVal.toString(10) << 1;
5855      }
5856    }
5857  }
5858
5859  if (!Enum->isDependentType()) {
5860    // Make the enumerator value match the signedness and size of the
5861    // enumerator's type.
5862    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5863    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5864  }
5865
5866  val.release();
5867  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5868                                  Val, EnumVal);
5869}
5870
5871
5872Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5873                                        DeclPtrTy lastEnumConst,
5874                                        SourceLocation IdLoc,
5875                                        IdentifierInfo *Id,
5876                                        SourceLocation EqualLoc, ExprTy *val) {
5877  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5878  EnumConstantDecl *LastEnumConst =
5879    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5880  Expr *Val = static_cast<Expr*>(val);
5881
5882  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5883  // we find one that is.
5884  S = getNonFieldDeclScope(S);
5885
5886  // Verify that there isn't already something declared with this name in this
5887  // scope.
5888  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5889                                         ForRedeclaration);
5890  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5891    // Maybe we will complain about the shadowed template parameter.
5892    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5893    // Just pretend that we didn't see the previous declaration.
5894    PrevDecl = 0;
5895  }
5896
5897  if (PrevDecl) {
5898    // When in C++, we may get a TagDecl with the same name; in this case the
5899    // enum constant will 'hide' the tag.
5900    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5901           "Received TagDecl when not in C++!");
5902    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5903      if (isa<EnumConstantDecl>(PrevDecl))
5904        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5905      else
5906        Diag(IdLoc, diag::err_redefinition) << Id;
5907      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5908      if (Val) Val->Destroy(Context);
5909      return DeclPtrTy();
5910    }
5911  }
5912
5913  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5914                                            IdLoc, Id, Owned(Val));
5915
5916  // Register this decl in the current scope stack.
5917  if (New) {
5918    New->setAccess(TheEnumDecl->getAccess());
5919    PushOnScopeChains(New, S);
5920  }
5921
5922  return DeclPtrTy::make(New);
5923}
5924
5925void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5926                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5927                         DeclPtrTy *Elements, unsigned NumElements,
5928                         Scope *S, AttributeList *Attr) {
5929  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5930  QualType EnumType = Context.getTypeDeclType(Enum);
5931
5932  if (Attr)
5933    ProcessDeclAttributeList(S, Enum, Attr);
5934
5935  if (Enum->isDependentType()) {
5936    for (unsigned i = 0; i != NumElements; ++i) {
5937      EnumConstantDecl *ECD =
5938        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5939      if (!ECD) continue;
5940
5941      ECD->setType(EnumType);
5942    }
5943
5944    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5945    return;
5946  }
5947
5948  // TODO: If the result value doesn't fit in an int, it must be a long or long
5949  // long value.  ISO C does not support this, but GCC does as an extension,
5950  // emit a warning.
5951  unsigned IntWidth = Context.Target.getIntWidth();
5952  unsigned CharWidth = Context.Target.getCharWidth();
5953  unsigned ShortWidth = Context.Target.getShortWidth();
5954
5955  // Verify that all the values are okay, compute the size of the values, and
5956  // reverse the list.
5957  unsigned NumNegativeBits = 0;
5958  unsigned NumPositiveBits = 0;
5959
5960  // Keep track of whether all elements have type int.
5961  bool AllElementsInt = true;
5962
5963  for (unsigned i = 0; i != NumElements; ++i) {
5964    EnumConstantDecl *ECD =
5965      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5966    if (!ECD) continue;  // Already issued a diagnostic.
5967
5968    const llvm::APSInt &InitVal = ECD->getInitVal();
5969
5970    // Keep track of the size of positive and negative values.
5971    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5972      NumPositiveBits = std::max(NumPositiveBits,
5973                                 (unsigned)InitVal.getActiveBits());
5974    else
5975      NumNegativeBits = std::max(NumNegativeBits,
5976                                 (unsigned)InitVal.getMinSignedBits());
5977
5978    // Keep track of whether every enum element has type int (very commmon).
5979    if (AllElementsInt)
5980      AllElementsInt = ECD->getType() == Context.IntTy;
5981  }
5982
5983  // Figure out the type that should be used for this enum.
5984  // FIXME: Support -fshort-enums.
5985  QualType BestType;
5986  unsigned BestWidth;
5987
5988  // C++0x N3000 [conv.prom]p3:
5989  //   An rvalue of an unscoped enumeration type whose underlying
5990  //   type is not fixed can be converted to an rvalue of the first
5991  //   of the following types that can represent all the values of
5992  //   the enumeration: int, unsigned int, long int, unsigned long
5993  //   int, long long int, or unsigned long long int.
5994  // C99 6.4.4.3p2:
5995  //   An identifier declared as an enumeration constant has type int.
5996  // The C99 rule is modified by a gcc extension
5997  QualType BestPromotionType;
5998
5999  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6000
6001  if (NumNegativeBits) {
6002    // If there is a negative value, figure out the smallest integer type (of
6003    // int/long/longlong) that fits.
6004    // If it's packed, check also if it fits a char or a short.
6005    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6006      BestType = Context.SignedCharTy;
6007      BestWidth = CharWidth;
6008    } else if (Packed && NumNegativeBits <= ShortWidth &&
6009               NumPositiveBits < ShortWidth) {
6010      BestType = Context.ShortTy;
6011      BestWidth = ShortWidth;
6012    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6013      BestType = Context.IntTy;
6014      BestWidth = IntWidth;
6015    } else {
6016      BestWidth = Context.Target.getLongWidth();
6017
6018      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6019        BestType = Context.LongTy;
6020      } else {
6021        BestWidth = Context.Target.getLongLongWidth();
6022
6023        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6024          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6025        BestType = Context.LongLongTy;
6026      }
6027    }
6028    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6029  } else {
6030    // If there is no negative value, figure out the smallest type that fits
6031    // all of the enumerator values.
6032    // If it's packed, check also if it fits a char or a short.
6033    if (Packed && NumPositiveBits <= CharWidth) {
6034      BestType = Context.UnsignedCharTy;
6035      BestPromotionType = Context.IntTy;
6036      BestWidth = CharWidth;
6037    } else if (Packed && NumPositiveBits <= ShortWidth) {
6038      BestType = Context.UnsignedShortTy;
6039      BestPromotionType = Context.IntTy;
6040      BestWidth = ShortWidth;
6041    } else if (NumPositiveBits <= IntWidth) {
6042      BestType = Context.UnsignedIntTy;
6043      BestWidth = IntWidth;
6044      BestPromotionType
6045        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6046                           ? Context.UnsignedIntTy : Context.IntTy;
6047    } else if (NumPositiveBits <=
6048               (BestWidth = Context.Target.getLongWidth())) {
6049      BestType = Context.UnsignedLongTy;
6050      BestPromotionType
6051        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6052                           ? Context.UnsignedLongTy : Context.LongTy;
6053    } else {
6054      BestWidth = Context.Target.getLongLongWidth();
6055      assert(NumPositiveBits <= BestWidth &&
6056             "How could an initializer get larger than ULL?");
6057      BestType = Context.UnsignedLongLongTy;
6058      BestPromotionType
6059        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6060                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6061    }
6062  }
6063
6064  // Loop over all of the enumerator constants, changing their types to match
6065  // the type of the enum if needed.
6066  for (unsigned i = 0; i != NumElements; ++i) {
6067    EnumConstantDecl *ECD =
6068      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6069    if (!ECD) continue;  // Already issued a diagnostic.
6070
6071    // Standard C says the enumerators have int type, but we allow, as an
6072    // extension, the enumerators to be larger than int size.  If each
6073    // enumerator value fits in an int, type it as an int, otherwise type it the
6074    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6075    // that X has type 'int', not 'unsigned'.
6076
6077    // Determine whether the value fits into an int.
6078    llvm::APSInt InitVal = ECD->getInitVal();
6079
6080    // If it fits into an integer type, force it.  Otherwise force it to match
6081    // the enum decl type.
6082    QualType NewTy;
6083    unsigned NewWidth;
6084    bool NewSign;
6085    if (!getLangOptions().CPlusPlus &&
6086        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6087      NewTy = Context.IntTy;
6088      NewWidth = IntWidth;
6089      NewSign = true;
6090    } else if (ECD->getType() == BestType) {
6091      // Already the right type!
6092      if (getLangOptions().CPlusPlus)
6093        // C++ [dcl.enum]p4: Following the closing brace of an
6094        // enum-specifier, each enumerator has the type of its
6095        // enumeration.
6096        ECD->setType(EnumType);
6097      continue;
6098    } else {
6099      NewTy = BestType;
6100      NewWidth = BestWidth;
6101      NewSign = BestType->isSignedIntegerType();
6102    }
6103
6104    // Adjust the APSInt value.
6105    InitVal.extOrTrunc(NewWidth);
6106    InitVal.setIsSigned(NewSign);
6107    ECD->setInitVal(InitVal);
6108
6109    // Adjust the Expr initializer and type.
6110    if (ECD->getInitExpr())
6111      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6112                                                      CastExpr::CK_IntegralCast,
6113                                                      ECD->getInitExpr(),
6114                                                      /*isLvalue=*/false));
6115    if (getLangOptions().CPlusPlus)
6116      // C++ [dcl.enum]p4: Following the closing brace of an
6117      // enum-specifier, each enumerator has the type of its
6118      // enumeration.
6119      ECD->setType(EnumType);
6120    else
6121      ECD->setType(NewTy);
6122  }
6123
6124  Enum->completeDefinition(Context, BestType, BestPromotionType);
6125}
6126
6127Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6128                                            ExprArg expr) {
6129  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6130
6131  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6132                                                   Loc, AsmString);
6133  CurContext->addDecl(New);
6134  return DeclPtrTy::make(New);
6135}
6136
6137void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6138                             SourceLocation PragmaLoc,
6139                             SourceLocation NameLoc) {
6140  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6141
6142  if (PrevDecl) {
6143    PrevDecl->addAttr(::new (Context) WeakAttr());
6144  } else {
6145    (void)WeakUndeclaredIdentifiers.insert(
6146      std::pair<IdentifierInfo*,WeakInfo>
6147        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6148  }
6149}
6150
6151void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6152                                IdentifierInfo* AliasName,
6153                                SourceLocation PragmaLoc,
6154                                SourceLocation NameLoc,
6155                                SourceLocation AliasNameLoc) {
6156  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6157  WeakInfo W = WeakInfo(Name, NameLoc);
6158
6159  if (PrevDecl) {
6160    if (!PrevDecl->hasAttr<AliasAttr>())
6161      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6162        DeclApplyPragmaWeak(TUScope, ND, W);
6163  } else {
6164    (void)WeakUndeclaredIdentifiers.insert(
6165      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6166  }
6167}
6168