SemaDecl.cpp revision 706df2fb3f00450cea6809c363eee35bfb3e1025
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext() ||
561      D->getLexicalDeclContext()->isDependentContext())
562    return false;
563
564  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566      return false;
567
568    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570        return false;
571    } else {
572      // 'static inline' functions are used in headers; don't warn.
573      if (FD->getStorageClass() == SC_Static &&
574          FD->isInlineSpecified())
575        return false;
576    }
577
578    if (FD->isThisDeclarationADefinition() &&
579        Context.DeclMustBeEmitted(FD))
580      return false;
581
582  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
583    if (!VD->isFileVarDecl() ||
584        VD->getType().isConstant(Context) ||
585        Context.DeclMustBeEmitted(VD))
586      return false;
587
588    if (VD->isStaticDataMember() &&
589        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
590      return false;
591
592  } else {
593    return false;
594  }
595
596  // Only warn for unused decls internal to the translation unit.
597  if (D->getLinkage() == ExternalLinkage)
598    return false;
599
600  return true;
601}
602
603void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
604  if (!D)
605    return;
606
607  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
608    const FunctionDecl *First = FD->getFirstDeclaration();
609    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
610      return; // First should already be in the vector.
611  }
612
613  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
614    const VarDecl *First = VD->getFirstDeclaration();
615    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
616      return; // First should already be in the vector.
617  }
618
619   if (ShouldWarnIfUnusedFileScopedDecl(D))
620     UnusedFileScopedDecls.push_back(D);
621 }
622
623static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
624  if (D->isInvalidDecl())
625    return false;
626
627  if (D->isUsed() || D->hasAttr<UnusedAttr>())
628    return false;
629
630  // White-list anything that isn't a local variable.
631  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
632      !D->getDeclContext()->isFunctionOrMethod())
633    return false;
634
635  // Types of valid local variables should be complete, so this should succeed.
636  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
637
638    // White-list anything with an __attribute__((unused)) type.
639    QualType Ty = VD->getType();
640
641    // Only look at the outermost level of typedef.
642    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
643      if (TT->getDecl()->hasAttr<UnusedAttr>())
644        return false;
645    }
646
647    // If we failed to complete the type for some reason, or if the type is
648    // dependent, don't diagnose the variable.
649    if (Ty->isIncompleteType() || Ty->isDependentType())
650      return false;
651
652    if (const TagType *TT = Ty->getAs<TagType>()) {
653      const TagDecl *Tag = TT->getDecl();
654      if (Tag->hasAttr<UnusedAttr>())
655        return false;
656
657      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
658        // FIXME: Checking for the presence of a user-declared constructor
659        // isn't completely accurate; we'd prefer to check that the initializer
660        // has no side effects.
661        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
662          return false;
663      }
664    }
665
666    // TODO: __attribute__((unused)) templates?
667  }
668
669  return true;
670}
671
672void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
673  if (!ShouldDiagnoseUnusedDecl(D))
674    return;
675
676  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
677    Diag(D->getLocation(), diag::warn_unused_exception_param)
678    << D->getDeclName();
679  else
680    Diag(D->getLocation(), diag::warn_unused_variable)
681    << D->getDeclName();
682}
683
684void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
685  if (S->decl_empty()) return;
686  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
687         "Scope shouldn't contain decls!");
688
689  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
690       I != E; ++I) {
691    Decl *TmpD = (*I);
692    assert(TmpD && "This decl didn't get pushed??");
693
694    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
695    NamedDecl *D = cast<NamedDecl>(TmpD);
696
697    if (!D->getDeclName()) continue;
698
699    // Diagnose unused variables in this scope.
700    if (!S->hasErrorOccurred())
701      DiagnoseUnusedDecl(D);
702
703    // Remove this name from our lexical scope.
704    IdResolver.RemoveDecl(D);
705  }
706}
707
708/// \brief Look for an Objective-C class in the translation unit.
709///
710/// \param Id The name of the Objective-C class we're looking for. If
711/// typo-correction fixes this name, the Id will be updated
712/// to the fixed name.
713///
714/// \param IdLoc The location of the name in the translation unit.
715///
716/// \param TypoCorrection If true, this routine will attempt typo correction
717/// if there is no class with the given name.
718///
719/// \returns The declaration of the named Objective-C class, or NULL if the
720/// class could not be found.
721ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
722                                              SourceLocation IdLoc,
723                                              bool TypoCorrection) {
724  // The third "scope" argument is 0 since we aren't enabling lazy built-in
725  // creation from this context.
726  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
727
728  if (!IDecl && TypoCorrection) {
729    // Perform typo correction at the given location, but only if we
730    // find an Objective-C class name.
731    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
732    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
733        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
734      Diag(IdLoc, diag::err_undef_interface_suggest)
735        << Id << IDecl->getDeclName()
736        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
737      Diag(IDecl->getLocation(), diag::note_previous_decl)
738        << IDecl->getDeclName();
739
740      Id = IDecl->getIdentifier();
741    }
742  }
743
744  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
745}
746
747/// getNonFieldDeclScope - Retrieves the innermost scope, starting
748/// from S, where a non-field would be declared. This routine copes
749/// with the difference between C and C++ scoping rules in structs and
750/// unions. For example, the following code is well-formed in C but
751/// ill-formed in C++:
752/// @code
753/// struct S6 {
754///   enum { BAR } e;
755/// };
756///
757/// void test_S6() {
758///   struct S6 a;
759///   a.e = BAR;
760/// }
761/// @endcode
762/// For the declaration of BAR, this routine will return a different
763/// scope. The scope S will be the scope of the unnamed enumeration
764/// within S6. In C++, this routine will return the scope associated
765/// with S6, because the enumeration's scope is a transparent
766/// context but structures can contain non-field names. In C, this
767/// routine will return the translation unit scope, since the
768/// enumeration's scope is a transparent context and structures cannot
769/// contain non-field names.
770Scope *Sema::getNonFieldDeclScope(Scope *S) {
771  while (((S->getFlags() & Scope::DeclScope) == 0) ||
772         (S->getEntity() &&
773          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
774         (S->isClassScope() && !getLangOptions().CPlusPlus))
775    S = S->getParent();
776  return S;
777}
778
779/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
780/// file scope.  lazily create a decl for it. ForRedeclaration is true
781/// if we're creating this built-in in anticipation of redeclaring the
782/// built-in.
783NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
784                                     Scope *S, bool ForRedeclaration,
785                                     SourceLocation Loc) {
786  Builtin::ID BID = (Builtin::ID)bid;
787
788  ASTContext::GetBuiltinTypeError Error;
789  QualType R = Context.GetBuiltinType(BID, Error);
790  switch (Error) {
791  case ASTContext::GE_None:
792    // Okay
793    break;
794
795  case ASTContext::GE_Missing_stdio:
796    if (ForRedeclaration)
797      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
798        << Context.BuiltinInfo.GetName(BID);
799    return 0;
800
801  case ASTContext::GE_Missing_setjmp:
802    if (ForRedeclaration)
803      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
804        << Context.BuiltinInfo.GetName(BID);
805    return 0;
806  }
807
808  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
809    Diag(Loc, diag::ext_implicit_lib_function_decl)
810      << Context.BuiltinInfo.GetName(BID)
811      << R;
812    if (Context.BuiltinInfo.getHeaderName(BID) &&
813        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
814          != Diagnostic::Ignored)
815      Diag(Loc, diag::note_please_include_header)
816        << Context.BuiltinInfo.getHeaderName(BID)
817        << Context.BuiltinInfo.GetName(BID);
818  }
819
820  FunctionDecl *New = FunctionDecl::Create(Context,
821                                           Context.getTranslationUnitDecl(),
822                                           Loc, II, R, /*TInfo=*/0,
823                                           SC_Extern,
824                                           SC_None, false,
825                                           /*hasPrototype=*/true);
826  New->setImplicit();
827
828  // Create Decl objects for each parameter, adding them to the
829  // FunctionDecl.
830  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
831    llvm::SmallVector<ParmVarDecl*, 16> Params;
832    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
833      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
834                                           FT->getArgType(i), /*TInfo=*/0,
835                                           SC_None, SC_None, 0));
836    New->setParams(Params.data(), Params.size());
837  }
838
839  AddKnownFunctionAttributes(New);
840
841  // TUScope is the translation-unit scope to insert this function into.
842  // FIXME: This is hideous. We need to teach PushOnScopeChains to
843  // relate Scopes to DeclContexts, and probably eliminate CurContext
844  // entirely, but we're not there yet.
845  DeclContext *SavedContext = CurContext;
846  CurContext = Context.getTranslationUnitDecl();
847  PushOnScopeChains(New, TUScope);
848  CurContext = SavedContext;
849  return New;
850}
851
852/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
853/// same name and scope as a previous declaration 'Old'.  Figure out
854/// how to resolve this situation, merging decls or emitting
855/// diagnostics as appropriate. If there was an error, set New to be invalid.
856///
857void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
858  // If the new decl is known invalid already, don't bother doing any
859  // merging checks.
860  if (New->isInvalidDecl()) return;
861
862  // Allow multiple definitions for ObjC built-in typedefs.
863  // FIXME: Verify the underlying types are equivalent!
864  if (getLangOptions().ObjC1) {
865    const IdentifierInfo *TypeID = New->getIdentifier();
866    switch (TypeID->getLength()) {
867    default: break;
868    case 2:
869      if (!TypeID->isStr("id"))
870        break;
871      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
872      // Install the built-in type for 'id', ignoring the current definition.
873      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
874      return;
875    case 5:
876      if (!TypeID->isStr("Class"))
877        break;
878      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
879      // Install the built-in type for 'Class', ignoring the current definition.
880      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
881      return;
882    case 3:
883      if (!TypeID->isStr("SEL"))
884        break;
885      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
886      // Install the built-in type for 'SEL', ignoring the current definition.
887      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
888      return;
889    case 8:
890      if (!TypeID->isStr("Protocol"))
891        break;
892      Context.setObjCProtoType(New->getUnderlyingType());
893      return;
894    }
895    // Fall through - the typedef name was not a builtin type.
896  }
897
898  // Verify the old decl was also a type.
899  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
900  if (!Old) {
901    Diag(New->getLocation(), diag::err_redefinition_different_kind)
902      << New->getDeclName();
903
904    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
905    if (OldD->getLocation().isValid())
906      Diag(OldD->getLocation(), diag::note_previous_definition);
907
908    return New->setInvalidDecl();
909  }
910
911  // If the old declaration is invalid, just give up here.
912  if (Old->isInvalidDecl())
913    return New->setInvalidDecl();
914
915  // Determine the "old" type we'll use for checking and diagnostics.
916  QualType OldType;
917  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
918    OldType = OldTypedef->getUnderlyingType();
919  else
920    OldType = Context.getTypeDeclType(Old);
921
922  // If the typedef types are not identical, reject them in all languages and
923  // with any extensions enabled.
924
925  if (OldType != New->getUnderlyingType() &&
926      Context.getCanonicalType(OldType) !=
927      Context.getCanonicalType(New->getUnderlyingType())) {
928    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
929      << New->getUnderlyingType() << OldType;
930    if (Old->getLocation().isValid())
931      Diag(Old->getLocation(), diag::note_previous_definition);
932    return New->setInvalidDecl();
933  }
934
935  // The types match.  Link up the redeclaration chain if the old
936  // declaration was a typedef.
937  // FIXME: this is a potential source of wierdness if the type
938  // spellings don't match exactly.
939  if (isa<TypedefDecl>(Old))
940    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
941
942  if (getLangOptions().Microsoft)
943    return;
944
945  if (getLangOptions().CPlusPlus) {
946    // C++ [dcl.typedef]p2:
947    //   In a given non-class scope, a typedef specifier can be used to
948    //   redefine the name of any type declared in that scope to refer
949    //   to the type to which it already refers.
950    if (!isa<CXXRecordDecl>(CurContext))
951      return;
952
953    // C++0x [dcl.typedef]p4:
954    //   In a given class scope, a typedef specifier can be used to redefine
955    //   any class-name declared in that scope that is not also a typedef-name
956    //   to refer to the type to which it already refers.
957    //
958    // This wording came in via DR424, which was a correction to the
959    // wording in DR56, which accidentally banned code like:
960    //
961    //   struct S {
962    //     typedef struct A { } A;
963    //   };
964    //
965    // in the C++03 standard. We implement the C++0x semantics, which
966    // allow the above but disallow
967    //
968    //   struct S {
969    //     typedef int I;
970    //     typedef int I;
971    //   };
972    //
973    // since that was the intent of DR56.
974    if (!isa<TypedefDecl >(Old))
975      return;
976
977    Diag(New->getLocation(), diag::err_redefinition)
978      << New->getDeclName();
979    Diag(Old->getLocation(), diag::note_previous_definition);
980    return New->setInvalidDecl();
981  }
982
983  // If we have a redefinition of a typedef in C, emit a warning.  This warning
984  // is normally mapped to an error, but can be controlled with
985  // -Wtypedef-redefinition.  If either the original or the redefinition is
986  // in a system header, don't emit this for compatibility with GCC.
987  if (getDiagnostics().getSuppressSystemWarnings() &&
988      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
989       Context.getSourceManager().isInSystemHeader(New->getLocation())))
990    return;
991
992  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
993    << New->getDeclName();
994  Diag(Old->getLocation(), diag::note_previous_definition);
995  return;
996}
997
998/// DeclhasAttr - returns true if decl Declaration already has the target
999/// attribute.
1000static bool
1001DeclHasAttr(const Decl *D, const Attr *A) {
1002  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1003  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1004    if ((*i)->getKind() == A->getKind()) {
1005      // FIXME: Don't hardcode this check
1006      if (OA && isa<OwnershipAttr>(*i))
1007        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1008      return true;
1009    }
1010
1011  return false;
1012}
1013
1014/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1015static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1016  if (!Old->hasAttrs())
1017    return;
1018  // Ensure that any moving of objects within the allocated map is done before
1019  // we process them.
1020  if (!New->hasAttrs())
1021    New->setAttrs(AttrVec());
1022  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1023       ++i) {
1024    // FIXME: Make this more general than just checking for Overloadable.
1025    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1026      Attr *NewAttr = (*i)->clone(C);
1027      NewAttr->setInherited(true);
1028      New->addAttr(NewAttr);
1029    }
1030  }
1031}
1032
1033namespace {
1034
1035/// Used in MergeFunctionDecl to keep track of function parameters in
1036/// C.
1037struct GNUCompatibleParamWarning {
1038  ParmVarDecl *OldParm;
1039  ParmVarDecl *NewParm;
1040  QualType PromotedType;
1041};
1042
1043}
1044
1045/// getSpecialMember - get the special member enum for a method.
1046Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1047  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1048    if (Ctor->isCopyConstructor())
1049      return Sema::CXXCopyConstructor;
1050
1051    return Sema::CXXConstructor;
1052  }
1053
1054  if (isa<CXXDestructorDecl>(MD))
1055    return Sema::CXXDestructor;
1056
1057  assert(MD->isCopyAssignmentOperator() &&
1058         "Must have copy assignment operator");
1059  return Sema::CXXCopyAssignment;
1060}
1061
1062/// canRedefineFunction - checks if a function can be redefined. Currently,
1063/// only extern inline functions can be redefined, and even then only in
1064/// GNU89 mode.
1065static bool canRedefineFunction(const FunctionDecl *FD,
1066                                const LangOptions& LangOpts) {
1067  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1068          FD->isInlineSpecified() &&
1069          FD->getStorageClass() == SC_Extern);
1070}
1071
1072/// MergeFunctionDecl - We just parsed a function 'New' from
1073/// declarator D which has the same name and scope as a previous
1074/// declaration 'Old'.  Figure out how to resolve this situation,
1075/// merging decls or emitting diagnostics as appropriate.
1076///
1077/// In C++, New and Old must be declarations that are not
1078/// overloaded. Use IsOverload to determine whether New and Old are
1079/// overloaded, and to select the Old declaration that New should be
1080/// merged with.
1081///
1082/// Returns true if there was an error, false otherwise.
1083bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1084  // Verify the old decl was also a function.
1085  FunctionDecl *Old = 0;
1086  if (FunctionTemplateDecl *OldFunctionTemplate
1087        = dyn_cast<FunctionTemplateDecl>(OldD))
1088    Old = OldFunctionTemplate->getTemplatedDecl();
1089  else
1090    Old = dyn_cast<FunctionDecl>(OldD);
1091  if (!Old) {
1092    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1093      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1094      Diag(Shadow->getTargetDecl()->getLocation(),
1095           diag::note_using_decl_target);
1096      Diag(Shadow->getUsingDecl()->getLocation(),
1097           diag::note_using_decl) << 0;
1098      return true;
1099    }
1100
1101    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1102      << New->getDeclName();
1103    Diag(OldD->getLocation(), diag::note_previous_definition);
1104    return true;
1105  }
1106
1107  // Determine whether the previous declaration was a definition,
1108  // implicit declaration, or a declaration.
1109  diag::kind PrevDiag;
1110  if (Old->isThisDeclarationADefinition())
1111    PrevDiag = diag::note_previous_definition;
1112  else if (Old->isImplicit())
1113    PrevDiag = diag::note_previous_implicit_declaration;
1114  else
1115    PrevDiag = diag::note_previous_declaration;
1116
1117  QualType OldQType = Context.getCanonicalType(Old->getType());
1118  QualType NewQType = Context.getCanonicalType(New->getType());
1119
1120  // Don't complain about this if we're in GNU89 mode and the old function
1121  // is an extern inline function.
1122  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1123      New->getStorageClass() == SC_Static &&
1124      Old->getStorageClass() != SC_Static &&
1125      !canRedefineFunction(Old, getLangOptions())) {
1126    Diag(New->getLocation(), diag::err_static_non_static)
1127      << New;
1128    Diag(Old->getLocation(), PrevDiag);
1129    return true;
1130  }
1131
1132  // If a function is first declared with a calling convention, but is
1133  // later declared or defined without one, the second decl assumes the
1134  // calling convention of the first.
1135  //
1136  // For the new decl, we have to look at the NON-canonical type to tell the
1137  // difference between a function that really doesn't have a calling
1138  // convention and one that is declared cdecl. That's because in
1139  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1140  // because it is the default calling convention.
1141  //
1142  // Note also that we DO NOT return at this point, because we still have
1143  // other tests to run.
1144  const FunctionType *OldType = cast<FunctionType>(OldQType);
1145  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1146  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1147  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1148  bool RequiresAdjustment = false;
1149  if (OldTypeInfo.getCC() != CC_Default &&
1150      NewTypeInfo.getCC() == CC_Default) {
1151    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1152    RequiresAdjustment = true;
1153  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1154                                     NewTypeInfo.getCC())) {
1155    // Calling conventions really aren't compatible, so complain.
1156    Diag(New->getLocation(), diag::err_cconv_change)
1157      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1158      << (OldTypeInfo.getCC() == CC_Default)
1159      << (OldTypeInfo.getCC() == CC_Default ? "" :
1160          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1161    Diag(Old->getLocation(), diag::note_previous_declaration);
1162    return true;
1163  }
1164
1165  // FIXME: diagnose the other way around?
1166  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1167    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1168    RequiresAdjustment = true;
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1173    if (NewTypeInfo.getRegParm()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1182    RequiresAdjustment = true;
1183  }
1184
1185  if (RequiresAdjustment) {
1186    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1187    New->setType(QualType(NewType, 0));
1188    NewQType = Context.getCanonicalType(New->getType());
1189  }
1190
1191  if (getLangOptions().CPlusPlus) {
1192    // (C++98 13.1p2):
1193    //   Certain function declarations cannot be overloaded:
1194    //     -- Function declarations that differ only in the return type
1195    //        cannot be overloaded.
1196    QualType OldReturnType = OldType->getResultType();
1197    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1198    QualType ResQT;
1199    if (OldReturnType != NewReturnType) {
1200      if (NewReturnType->isObjCObjectPointerType()
1201          && OldReturnType->isObjCObjectPointerType())
1202        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1203      if (ResQT.isNull()) {
1204        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1205        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1206        return true;
1207      }
1208      else
1209        NewQType = ResQT;
1210    }
1211
1212    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1213    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1214    if (OldMethod && NewMethod) {
1215      // Preserve triviality.
1216      NewMethod->setTrivial(OldMethod->isTrivial());
1217
1218      bool isFriend = NewMethod->getFriendObjectKind();
1219
1220      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1221        //    -- Member function declarations with the same name and the
1222        //       same parameter types cannot be overloaded if any of them
1223        //       is a static member function declaration.
1224        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1225          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1226          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1227          return true;
1228        }
1229
1230        // C++ [class.mem]p1:
1231        //   [...] A member shall not be declared twice in the
1232        //   member-specification, except that a nested class or member
1233        //   class template can be declared and then later defined.
1234        unsigned NewDiag;
1235        if (isa<CXXConstructorDecl>(OldMethod))
1236          NewDiag = diag::err_constructor_redeclared;
1237        else if (isa<CXXDestructorDecl>(NewMethod))
1238          NewDiag = diag::err_destructor_redeclared;
1239        else if (isa<CXXConversionDecl>(NewMethod))
1240          NewDiag = diag::err_conv_function_redeclared;
1241        else
1242          NewDiag = diag::err_member_redeclared;
1243
1244        Diag(New->getLocation(), NewDiag);
1245        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1246
1247      // Complain if this is an explicit declaration of a special
1248      // member that was initially declared implicitly.
1249      //
1250      // As an exception, it's okay to befriend such methods in order
1251      // to permit the implicit constructor/destructor/operator calls.
1252      } else if (OldMethod->isImplicit()) {
1253        if (isFriend) {
1254          NewMethod->setImplicit();
1255        } else {
1256          Diag(NewMethod->getLocation(),
1257               diag::err_definition_of_implicitly_declared_member)
1258            << New << getSpecialMember(OldMethod);
1259          return true;
1260        }
1261      }
1262    }
1263
1264    // (C++98 8.3.5p3):
1265    //   All declarations for a function shall agree exactly in both the
1266    //   return type and the parameter-type-list.
1267    // We also want to respect all the extended bits except noreturn.
1268
1269    // noreturn should now match unless the old type info didn't have it.
1270    QualType OldQTypeForComparison = OldQType;
1271    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1272      assert(OldQType == QualType(OldType, 0));
1273      const FunctionType *OldTypeForComparison
1274        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1275      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1276      assert(OldQTypeForComparison.isCanonical());
1277    }
1278
1279    if (OldQTypeForComparison == NewQType)
1280      return MergeCompatibleFunctionDecls(New, Old);
1281
1282    // Fall through for conflicting redeclarations and redefinitions.
1283  }
1284
1285  // C: Function types need to be compatible, not identical. This handles
1286  // duplicate function decls like "void f(int); void f(enum X);" properly.
1287  if (!getLangOptions().CPlusPlus &&
1288      Context.typesAreCompatible(OldQType, NewQType)) {
1289    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1290    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1291    const FunctionProtoType *OldProto = 0;
1292    if (isa<FunctionNoProtoType>(NewFuncType) &&
1293        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1294      // The old declaration provided a function prototype, but the
1295      // new declaration does not. Merge in the prototype.
1296      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1297      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1298                                                 OldProto->arg_type_end());
1299      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1300                                         ParamTypes.data(), ParamTypes.size(),
1301                                         OldProto->getExtProtoInfo());
1302      New->setType(NewQType);
1303      New->setHasInheritedPrototype();
1304
1305      // Synthesize a parameter for each argument type.
1306      llvm::SmallVector<ParmVarDecl*, 16> Params;
1307      for (FunctionProtoType::arg_type_iterator
1308             ParamType = OldProto->arg_type_begin(),
1309             ParamEnd = OldProto->arg_type_end();
1310           ParamType != ParamEnd; ++ParamType) {
1311        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1312                                                 SourceLocation(), 0,
1313                                                 *ParamType, /*TInfo=*/0,
1314                                                 SC_None, SC_None,
1315                                                 0);
1316        Param->setImplicit();
1317        Params.push_back(Param);
1318      }
1319
1320      New->setParams(Params.data(), Params.size());
1321    }
1322
1323    return MergeCompatibleFunctionDecls(New, Old);
1324  }
1325
1326  // GNU C permits a K&R definition to follow a prototype declaration
1327  // if the declared types of the parameters in the K&R definition
1328  // match the types in the prototype declaration, even when the
1329  // promoted types of the parameters from the K&R definition differ
1330  // from the types in the prototype. GCC then keeps the types from
1331  // the prototype.
1332  //
1333  // If a variadic prototype is followed by a non-variadic K&R definition,
1334  // the K&R definition becomes variadic.  This is sort of an edge case, but
1335  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1336  // C99 6.9.1p8.
1337  if (!getLangOptions().CPlusPlus &&
1338      Old->hasPrototype() && !New->hasPrototype() &&
1339      New->getType()->getAs<FunctionProtoType>() &&
1340      Old->getNumParams() == New->getNumParams()) {
1341    llvm::SmallVector<QualType, 16> ArgTypes;
1342    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1343    const FunctionProtoType *OldProto
1344      = Old->getType()->getAs<FunctionProtoType>();
1345    const FunctionProtoType *NewProto
1346      = New->getType()->getAs<FunctionProtoType>();
1347
1348    // Determine whether this is the GNU C extension.
1349    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1350                                               NewProto->getResultType());
1351    bool LooseCompatible = !MergedReturn.isNull();
1352    for (unsigned Idx = 0, End = Old->getNumParams();
1353         LooseCompatible && Idx != End; ++Idx) {
1354      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1355      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1356      if (Context.typesAreCompatible(OldParm->getType(),
1357                                     NewProto->getArgType(Idx))) {
1358        ArgTypes.push_back(NewParm->getType());
1359      } else if (Context.typesAreCompatible(OldParm->getType(),
1360                                            NewParm->getType(),
1361                                            /*CompareUnqualified=*/true)) {
1362        GNUCompatibleParamWarning Warn
1363          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1364        Warnings.push_back(Warn);
1365        ArgTypes.push_back(NewParm->getType());
1366      } else
1367        LooseCompatible = false;
1368    }
1369
1370    if (LooseCompatible) {
1371      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1372        Diag(Warnings[Warn].NewParm->getLocation(),
1373             diag::ext_param_promoted_not_compatible_with_prototype)
1374          << Warnings[Warn].PromotedType
1375          << Warnings[Warn].OldParm->getType();
1376        if (Warnings[Warn].OldParm->getLocation().isValid())
1377          Diag(Warnings[Warn].OldParm->getLocation(),
1378               diag::note_previous_declaration);
1379      }
1380
1381      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1382                                           ArgTypes.size(),
1383                                           OldProto->getExtProtoInfo()));
1384      return MergeCompatibleFunctionDecls(New, Old);
1385    }
1386
1387    // Fall through to diagnose conflicting types.
1388  }
1389
1390  // A function that has already been declared has been redeclared or defined
1391  // with a different type- show appropriate diagnostic
1392  if (unsigned BuiltinID = Old->getBuiltinID()) {
1393    // The user has declared a builtin function with an incompatible
1394    // signature.
1395    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1396      // The function the user is redeclaring is a library-defined
1397      // function like 'malloc' or 'printf'. Warn about the
1398      // redeclaration, then pretend that we don't know about this
1399      // library built-in.
1400      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1401      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1402        << Old << Old->getType();
1403      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1404      Old->setInvalidDecl();
1405      return false;
1406    }
1407
1408    PrevDiag = diag::note_previous_builtin_declaration;
1409  }
1410
1411  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1412  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1413  return true;
1414}
1415
1416/// \brief Completes the merge of two function declarations that are
1417/// known to be compatible.
1418///
1419/// This routine handles the merging of attributes and other
1420/// properties of function declarations form the old declaration to
1421/// the new declaration, once we know that New is in fact a
1422/// redeclaration of Old.
1423///
1424/// \returns false
1425bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1426  // Merge the attributes
1427  MergeDeclAttributes(New, Old, Context);
1428
1429  // Merge the storage class.
1430  if (Old->getStorageClass() != SC_Extern &&
1431      Old->getStorageClass() != SC_None)
1432    New->setStorageClass(Old->getStorageClass());
1433
1434  // Merge "pure" flag.
1435  if (Old->isPure())
1436    New->setPure();
1437
1438  // Merge the "deleted" flag.
1439  if (Old->isDeleted())
1440    New->setDeleted();
1441
1442  if (getLangOptions().CPlusPlus)
1443    return MergeCXXFunctionDecl(New, Old);
1444
1445  return false;
1446}
1447
1448/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1449/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1450/// situation, merging decls or emitting diagnostics as appropriate.
1451///
1452/// Tentative definition rules (C99 6.9.2p2) are checked by
1453/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1454/// definitions here, since the initializer hasn't been attached.
1455///
1456void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1457  // If the new decl is already invalid, don't do any other checking.
1458  if (New->isInvalidDecl())
1459    return;
1460
1461  // Verify the old decl was also a variable.
1462  VarDecl *Old = 0;
1463  if (!Previous.isSingleResult() ||
1464      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1465    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1466      << New->getDeclName();
1467    Diag(Previous.getRepresentativeDecl()->getLocation(),
1468         diag::note_previous_definition);
1469    return New->setInvalidDecl();
1470  }
1471
1472  // C++ [class.mem]p1:
1473  //   A member shall not be declared twice in the member-specification [...]
1474  //
1475  // Here, we need only consider static data members.
1476  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1477    Diag(New->getLocation(), diag::err_duplicate_member)
1478      << New->getIdentifier();
1479    Diag(Old->getLocation(), diag::note_previous_declaration);
1480    New->setInvalidDecl();
1481  }
1482
1483  MergeDeclAttributes(New, Old, Context);
1484
1485  // Merge the types
1486  QualType MergedT;
1487  if (getLangOptions().CPlusPlus) {
1488    if (Context.hasSameType(New->getType(), Old->getType()))
1489      MergedT = New->getType();
1490    // C++ [basic.link]p10:
1491    //   [...] the types specified by all declarations referring to a given
1492    //   object or function shall be identical, except that declarations for an
1493    //   array object can specify array types that differ by the presence or
1494    //   absence of a major array bound (8.3.4).
1495    else if (Old->getType()->isIncompleteArrayType() &&
1496             New->getType()->isArrayType()) {
1497      CanQual<ArrayType> OldArray
1498        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499      CanQual<ArrayType> NewArray
1500        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501      if (OldArray->getElementType() == NewArray->getElementType())
1502        MergedT = New->getType();
1503    } else if (Old->getType()->isArrayType() &&
1504             New->getType()->isIncompleteArrayType()) {
1505      CanQual<ArrayType> OldArray
1506        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1507      CanQual<ArrayType> NewArray
1508        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1509      if (OldArray->getElementType() == NewArray->getElementType())
1510        MergedT = Old->getType();
1511    } else if (New->getType()->isObjCObjectPointerType()
1512               && Old->getType()->isObjCObjectPointerType()) {
1513        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1514    }
1515  } else {
1516    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1517  }
1518  if (MergedT.isNull()) {
1519    Diag(New->getLocation(), diag::err_redefinition_different_type)
1520      << New->getDeclName();
1521    Diag(Old->getLocation(), diag::note_previous_definition);
1522    return New->setInvalidDecl();
1523  }
1524  New->setType(MergedT);
1525
1526  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1527  if (New->getStorageClass() == SC_Static &&
1528      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1529    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1530    Diag(Old->getLocation(), diag::note_previous_definition);
1531    return New->setInvalidDecl();
1532  }
1533  // C99 6.2.2p4:
1534  //   For an identifier declared with the storage-class specifier
1535  //   extern in a scope in which a prior declaration of that
1536  //   identifier is visible,23) if the prior declaration specifies
1537  //   internal or external linkage, the linkage of the identifier at
1538  //   the later declaration is the same as the linkage specified at
1539  //   the prior declaration. If no prior declaration is visible, or
1540  //   if the prior declaration specifies no linkage, then the
1541  //   identifier has external linkage.
1542  if (New->hasExternalStorage() && Old->hasLinkage())
1543    /* Okay */;
1544  else if (New->getStorageClass() != SC_Static &&
1545           Old->getStorageClass() == SC_Static) {
1546    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1547    Diag(Old->getLocation(), diag::note_previous_definition);
1548    return New->setInvalidDecl();
1549  }
1550
1551  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1552
1553  // FIXME: The test for external storage here seems wrong? We still
1554  // need to check for mismatches.
1555  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1556      // Don't complain about out-of-line definitions of static members.
1557      !(Old->getLexicalDeclContext()->isRecord() &&
1558        !New->getLexicalDeclContext()->isRecord())) {
1559    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1560    Diag(Old->getLocation(), diag::note_previous_definition);
1561    return New->setInvalidDecl();
1562  }
1563
1564  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1565    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1566    Diag(Old->getLocation(), diag::note_previous_definition);
1567  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1568    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1569    Diag(Old->getLocation(), diag::note_previous_definition);
1570  }
1571
1572  // C++ doesn't have tentative definitions, so go right ahead and check here.
1573  const VarDecl *Def;
1574  if (getLangOptions().CPlusPlus &&
1575      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1576      (Def = Old->getDefinition())) {
1577    Diag(New->getLocation(), diag::err_redefinition)
1578      << New->getDeclName();
1579    Diag(Def->getLocation(), diag::note_previous_definition);
1580    New->setInvalidDecl();
1581    return;
1582  }
1583  // c99 6.2.2 P4.
1584  // For an identifier declared with the storage-class specifier extern in a
1585  // scope in which a prior declaration of that identifier is visible, if
1586  // the prior declaration specifies internal or external linkage, the linkage
1587  // of the identifier at the later declaration is the same as the linkage
1588  // specified at the prior declaration.
1589  // FIXME. revisit this code.
1590  if (New->hasExternalStorage() &&
1591      Old->getLinkage() == InternalLinkage &&
1592      New->getDeclContext() == Old->getDeclContext())
1593    New->setStorageClass(Old->getStorageClass());
1594
1595  // Keep a chain of previous declarations.
1596  New->setPreviousDeclaration(Old);
1597
1598  // Inherit access appropriately.
1599  New->setAccess(Old->getAccess());
1600}
1601
1602/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1603/// no declarator (e.g. "struct foo;") is parsed.
1604Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1605                                            DeclSpec &DS) {
1606  // FIXME: Error on inline/virtual/explicit
1607  // FIXME: Warn on useless __thread
1608  // FIXME: Warn on useless const/volatile
1609  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1610  // FIXME: Warn on useless attributes
1611  Decl *TagD = 0;
1612  TagDecl *Tag = 0;
1613  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1614      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1615      DS.getTypeSpecType() == DeclSpec::TST_union ||
1616      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1617    TagD = DS.getRepAsDecl();
1618
1619    if (!TagD) // We probably had an error
1620      return 0;
1621
1622    // Note that the above type specs guarantee that the
1623    // type rep is a Decl, whereas in many of the others
1624    // it's a Type.
1625    Tag = dyn_cast<TagDecl>(TagD);
1626  }
1627
1628  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1629    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1630    // or incomplete types shall not be restrict-qualified."
1631    if (TypeQuals & DeclSpec::TQ_restrict)
1632      Diag(DS.getRestrictSpecLoc(),
1633           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1634           << DS.getSourceRange();
1635  }
1636
1637  if (DS.isFriendSpecified()) {
1638    // If we're dealing with a decl but not a TagDecl, assume that
1639    // whatever routines created it handled the friendship aspect.
1640    if (TagD && !Tag)
1641      return 0;
1642    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1643  }
1644
1645  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1646    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1647
1648    if (!Record->getDeclName() && Record->isDefinition() &&
1649        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1650      if (getLangOptions().CPlusPlus ||
1651          Record->getDeclContext()->isRecord())
1652        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1653
1654      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1655        << DS.getSourceRange();
1656    }
1657  }
1658
1659  // Check for Microsoft C extension: anonymous struct.
1660  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1661      CurContext->isRecord() &&
1662      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1663    // Handle 2 kinds of anonymous struct:
1664    //   struct STRUCT;
1665    // and
1666    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1667    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1668    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1669        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1670         DS.getRepAsType().get()->isStructureType())) {
1671      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1672        << DS.getSourceRange();
1673      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1674    }
1675  }
1676
1677  if (getLangOptions().CPlusPlus &&
1678      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1679    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1680      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1681          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1682        Diag(Enum->getLocation(), diag::ext_no_declarators)
1683          << DS.getSourceRange();
1684
1685  if (!DS.isMissingDeclaratorOk() &&
1686      DS.getTypeSpecType() != DeclSpec::TST_error) {
1687    // Warn about typedefs of enums without names, since this is an
1688    // extension in both Microsoft and GNU.
1689    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1690        Tag && isa<EnumDecl>(Tag)) {
1691      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1692        << DS.getSourceRange();
1693      return Tag;
1694    }
1695
1696    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1697      << DS.getSourceRange();
1698  }
1699
1700  return TagD;
1701}
1702
1703/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1704/// builds a statement for it and returns it so it is evaluated.
1705StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1706  StmtResult R;
1707  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1708    Expr *Exp = DS.getRepAsExpr();
1709    QualType Ty = Exp->getType();
1710    if (Ty->isPointerType()) {
1711      do
1712        Ty = Ty->getAs<PointerType>()->getPointeeType();
1713      while (Ty->isPointerType());
1714    }
1715    if (Ty->isVariableArrayType()) {
1716      R = ActOnExprStmt(MakeFullExpr(Exp));
1717    }
1718  }
1719  return R;
1720}
1721
1722/// We are trying to inject an anonymous member into the given scope;
1723/// check if there's an existing declaration that can't be overloaded.
1724///
1725/// \return true if this is a forbidden redeclaration
1726static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1727                                         Scope *S,
1728                                         DeclContext *Owner,
1729                                         DeclarationName Name,
1730                                         SourceLocation NameLoc,
1731                                         unsigned diagnostic) {
1732  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1733                 Sema::ForRedeclaration);
1734  if (!SemaRef.LookupName(R, S)) return false;
1735
1736  if (R.getAsSingle<TagDecl>())
1737    return false;
1738
1739  // Pick a representative declaration.
1740  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1741  assert(PrevDecl && "Expected a non-null Decl");
1742
1743  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1744    return false;
1745
1746  SemaRef.Diag(NameLoc, diagnostic) << Name;
1747  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1748
1749  return true;
1750}
1751
1752/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1753/// anonymous struct or union AnonRecord into the owning context Owner
1754/// and scope S. This routine will be invoked just after we realize
1755/// that an unnamed union or struct is actually an anonymous union or
1756/// struct, e.g.,
1757///
1758/// @code
1759/// union {
1760///   int i;
1761///   float f;
1762/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1763///    // f into the surrounding scope.x
1764/// @endcode
1765///
1766/// This routine is recursive, injecting the names of nested anonymous
1767/// structs/unions into the owning context and scope as well.
1768static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1769                                                DeclContext *Owner,
1770                                                RecordDecl *AnonRecord,
1771                                                AccessSpecifier AS,
1772                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1773                                                      bool MSAnonStruct) {
1774  unsigned diagKind
1775    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1776                            : diag::err_anonymous_struct_member_redecl;
1777
1778  bool Invalid = false;
1779
1780  // Look every FieldDecl and IndirectFieldDecl with a name.
1781  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1782                               DEnd = AnonRecord->decls_end();
1783       D != DEnd; ++D) {
1784    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1785        cast<NamedDecl>(*D)->getDeclName()) {
1786      ValueDecl *VD = cast<ValueDecl>(*D);
1787      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1788                                       VD->getLocation(), diagKind)) {
1789        // C++ [class.union]p2:
1790        //   The names of the members of an anonymous union shall be
1791        //   distinct from the names of any other entity in the
1792        //   scope in which the anonymous union is declared.
1793        Invalid = true;
1794      } else {
1795        // C++ [class.union]p2:
1796        //   For the purpose of name lookup, after the anonymous union
1797        //   definition, the members of the anonymous union are
1798        //   considered to have been defined in the scope in which the
1799        //   anonymous union is declared.
1800        unsigned OldChainingSize = Chaining.size();
1801        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1802          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1803               PE = IF->chain_end(); PI != PE; ++PI)
1804            Chaining.push_back(*PI);
1805        else
1806          Chaining.push_back(VD);
1807
1808        assert(Chaining.size() >= 2);
1809        NamedDecl **NamedChain =
1810          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1811        for (unsigned i = 0; i < Chaining.size(); i++)
1812          NamedChain[i] = Chaining[i];
1813
1814        IndirectFieldDecl* IndirectField =
1815          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1816                                    VD->getIdentifier(), VD->getType(),
1817                                    NamedChain, Chaining.size());
1818
1819        IndirectField->setAccess(AS);
1820        IndirectField->setImplicit();
1821        SemaRef.PushOnScopeChains(IndirectField, S);
1822
1823        // That includes picking up the appropriate access specifier.
1824        if (AS != AS_none) IndirectField->setAccess(AS);
1825
1826        Chaining.resize(OldChainingSize);
1827      }
1828    }
1829  }
1830
1831  return Invalid;
1832}
1833
1834/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1835/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1836/// illegal input values are mapped to SC_None.
1837static StorageClass
1838StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1839  switch (StorageClassSpec) {
1840  case DeclSpec::SCS_unspecified:    return SC_None;
1841  case DeclSpec::SCS_extern:         return SC_Extern;
1842  case DeclSpec::SCS_static:         return SC_Static;
1843  case DeclSpec::SCS_auto:           return SC_Auto;
1844  case DeclSpec::SCS_register:       return SC_Register;
1845  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1846    // Illegal SCSs map to None: error reporting is up to the caller.
1847  case DeclSpec::SCS_mutable:        // Fall through.
1848  case DeclSpec::SCS_typedef:        return SC_None;
1849  }
1850  llvm_unreachable("unknown storage class specifier");
1851}
1852
1853/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1854/// a StorageClass. Any error reporting is up to the caller:
1855/// illegal input values are mapped to SC_None.
1856static StorageClass
1857StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1858  switch (StorageClassSpec) {
1859  case DeclSpec::SCS_unspecified:    return SC_None;
1860  case DeclSpec::SCS_extern:         return SC_Extern;
1861  case DeclSpec::SCS_static:         return SC_Static;
1862  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1863    // Illegal SCSs map to None: error reporting is up to the caller.
1864  case DeclSpec::SCS_auto:           // Fall through.
1865  case DeclSpec::SCS_mutable:        // Fall through.
1866  case DeclSpec::SCS_register:       // Fall through.
1867  case DeclSpec::SCS_typedef:        return SC_None;
1868  }
1869  llvm_unreachable("unknown storage class specifier");
1870}
1871
1872/// BuildAnonymousStructOrUnion - Handle the declaration of an
1873/// anonymous structure or union. Anonymous unions are a C++ feature
1874/// (C++ [class.union]) and a GNU C extension; anonymous structures
1875/// are a GNU C and GNU C++ extension.
1876Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1877                                             AccessSpecifier AS,
1878                                             RecordDecl *Record) {
1879  DeclContext *Owner = Record->getDeclContext();
1880
1881  // Diagnose whether this anonymous struct/union is an extension.
1882  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1883    Diag(Record->getLocation(), diag::ext_anonymous_union);
1884  else if (!Record->isUnion())
1885    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1886
1887  // C and C++ require different kinds of checks for anonymous
1888  // structs/unions.
1889  bool Invalid = false;
1890  if (getLangOptions().CPlusPlus) {
1891    const char* PrevSpec = 0;
1892    unsigned DiagID;
1893    // C++ [class.union]p3:
1894    //   Anonymous unions declared in a named namespace or in the
1895    //   global namespace shall be declared static.
1896    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1897        (isa<TranslationUnitDecl>(Owner) ||
1898         (isa<NamespaceDecl>(Owner) &&
1899          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1900      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1901      Invalid = true;
1902
1903      // Recover by adding 'static'.
1904      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1905                             PrevSpec, DiagID);
1906    }
1907    // C++ [class.union]p3:
1908    //   A storage class is not allowed in a declaration of an
1909    //   anonymous union in a class scope.
1910    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1911             isa<RecordDecl>(Owner)) {
1912      Diag(DS.getStorageClassSpecLoc(),
1913           diag::err_anonymous_union_with_storage_spec);
1914      Invalid = true;
1915
1916      // Recover by removing the storage specifier.
1917      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1918                             PrevSpec, DiagID);
1919    }
1920
1921    // C++ [class.union]p2:
1922    //   The member-specification of an anonymous union shall only
1923    //   define non-static data members. [Note: nested types and
1924    //   functions cannot be declared within an anonymous union. ]
1925    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1926                                 MemEnd = Record->decls_end();
1927         Mem != MemEnd; ++Mem) {
1928      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1929        // C++ [class.union]p3:
1930        //   An anonymous union shall not have private or protected
1931        //   members (clause 11).
1932        assert(FD->getAccess() != AS_none);
1933        if (FD->getAccess() != AS_public) {
1934          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1935            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1936          Invalid = true;
1937        }
1938
1939        if (CheckNontrivialField(FD))
1940          Invalid = true;
1941      } else if ((*Mem)->isImplicit()) {
1942        // Any implicit members are fine.
1943      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1944        // This is a type that showed up in an
1945        // elaborated-type-specifier inside the anonymous struct or
1946        // union, but which actually declares a type outside of the
1947        // anonymous struct or union. It's okay.
1948      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1949        if (!MemRecord->isAnonymousStructOrUnion() &&
1950            MemRecord->getDeclName()) {
1951          // Visual C++ allows type definition in anonymous struct or union.
1952          if (getLangOptions().Microsoft)
1953            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1954              << (int)Record->isUnion();
1955          else {
1956            // This is a nested type declaration.
1957            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1958              << (int)Record->isUnion();
1959            Invalid = true;
1960          }
1961        }
1962      } else if (isa<AccessSpecDecl>(*Mem)) {
1963        // Any access specifier is fine.
1964      } else {
1965        // We have something that isn't a non-static data
1966        // member. Complain about it.
1967        unsigned DK = diag::err_anonymous_record_bad_member;
1968        if (isa<TypeDecl>(*Mem))
1969          DK = diag::err_anonymous_record_with_type;
1970        else if (isa<FunctionDecl>(*Mem))
1971          DK = diag::err_anonymous_record_with_function;
1972        else if (isa<VarDecl>(*Mem))
1973          DK = diag::err_anonymous_record_with_static;
1974
1975        // Visual C++ allows type definition in anonymous struct or union.
1976        if (getLangOptions().Microsoft &&
1977            DK == diag::err_anonymous_record_with_type)
1978          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1979            << (int)Record->isUnion();
1980        else {
1981          Diag((*Mem)->getLocation(), DK)
1982              << (int)Record->isUnion();
1983          Invalid = true;
1984        }
1985      }
1986    }
1987  }
1988
1989  if (!Record->isUnion() && !Owner->isRecord()) {
1990    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1991      << (int)getLangOptions().CPlusPlus;
1992    Invalid = true;
1993  }
1994
1995  // Mock up a declarator.
1996  Declarator Dc(DS, Declarator::TypeNameContext);
1997  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1998  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1999
2000  // Create a declaration for this anonymous struct/union.
2001  NamedDecl *Anon = 0;
2002  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2003    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2004                             /*IdentifierInfo=*/0,
2005                             Context.getTypeDeclType(Record),
2006                             TInfo,
2007                             /*BitWidth=*/0, /*Mutable=*/false);
2008    Anon->setAccess(AS);
2009    if (getLangOptions().CPlusPlus)
2010      FieldCollector->Add(cast<FieldDecl>(Anon));
2011  } else {
2012    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2013    assert(SCSpec != DeclSpec::SCS_typedef &&
2014           "Parser allowed 'typedef' as storage class VarDecl.");
2015    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2016    if (SCSpec == DeclSpec::SCS_mutable) {
2017      // mutable can only appear on non-static class members, so it's always
2018      // an error here
2019      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2020      Invalid = true;
2021      SC = SC_None;
2022    }
2023    SCSpec = DS.getStorageClassSpecAsWritten();
2024    VarDecl::StorageClass SCAsWritten
2025      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2026
2027    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2028                           /*IdentifierInfo=*/0,
2029                           Context.getTypeDeclType(Record),
2030                           TInfo, SC, SCAsWritten);
2031  }
2032  Anon->setImplicit();
2033
2034  // Add the anonymous struct/union object to the current
2035  // context. We'll be referencing this object when we refer to one of
2036  // its members.
2037  Owner->addDecl(Anon);
2038
2039  // Inject the members of the anonymous struct/union into the owning
2040  // context and into the identifier resolver chain for name lookup
2041  // purposes.
2042  llvm::SmallVector<NamedDecl*, 2> Chain;
2043  Chain.push_back(Anon);
2044
2045  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2046                                          Chain, false))
2047    Invalid = true;
2048
2049  // Mark this as an anonymous struct/union type. Note that we do not
2050  // do this until after we have already checked and injected the
2051  // members of this anonymous struct/union type, because otherwise
2052  // the members could be injected twice: once by DeclContext when it
2053  // builds its lookup table, and once by
2054  // InjectAnonymousStructOrUnionMembers.
2055  Record->setAnonymousStructOrUnion(true);
2056
2057  if (Invalid)
2058    Anon->setInvalidDecl();
2059
2060  return Anon;
2061}
2062
2063/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2064/// Microsoft C anonymous structure.
2065/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2066/// Example:
2067///
2068/// struct A { int a; };
2069/// struct B { struct A; int b; };
2070///
2071/// void foo() {
2072///   B var;
2073///   var.a = 3;
2074/// }
2075///
2076Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2077                                           RecordDecl *Record) {
2078
2079  // If there is no Record, get the record via the typedef.
2080  if (!Record)
2081    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2082
2083  // Mock up a declarator.
2084  Declarator Dc(DS, Declarator::TypeNameContext);
2085  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2086  assert(TInfo && "couldn't build declarator info for anonymous struct");
2087
2088  // Create a declaration for this anonymous struct.
2089  NamedDecl* Anon = FieldDecl::Create(Context,
2090                             cast<RecordDecl>(CurContext),
2091                             DS.getSourceRange().getBegin(),
2092                             /*IdentifierInfo=*/0,
2093                             Context.getTypeDeclType(Record),
2094                             TInfo,
2095                             /*BitWidth=*/0, /*Mutable=*/false);
2096  Anon->setImplicit();
2097
2098  // Add the anonymous struct object to the current context.
2099  CurContext->addDecl(Anon);
2100
2101  // Inject the members of the anonymous struct into the current
2102  // context and into the identifier resolver chain for name lookup
2103  // purposes.
2104  llvm::SmallVector<NamedDecl*, 2> Chain;
2105  Chain.push_back(Anon);
2106
2107  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2108                                          Record->getDefinition(),
2109                                          AS_none, Chain, true))
2110    Anon->setInvalidDecl();
2111
2112  return Anon;
2113}
2114
2115/// GetNameForDeclarator - Determine the full declaration name for the
2116/// given Declarator.
2117DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2118  return GetNameFromUnqualifiedId(D.getName());
2119}
2120
2121/// \brief Retrieves the declaration name from a parsed unqualified-id.
2122DeclarationNameInfo
2123Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2124  DeclarationNameInfo NameInfo;
2125  NameInfo.setLoc(Name.StartLocation);
2126
2127  switch (Name.getKind()) {
2128
2129  case UnqualifiedId::IK_Identifier:
2130    NameInfo.setName(Name.Identifier);
2131    NameInfo.setLoc(Name.StartLocation);
2132    return NameInfo;
2133
2134  case UnqualifiedId::IK_OperatorFunctionId:
2135    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2136                                           Name.OperatorFunctionId.Operator));
2137    NameInfo.setLoc(Name.StartLocation);
2138    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2139      = Name.OperatorFunctionId.SymbolLocations[0];
2140    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2141      = Name.EndLocation.getRawEncoding();
2142    return NameInfo;
2143
2144  case UnqualifiedId::IK_LiteralOperatorId:
2145    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2146                                                           Name.Identifier));
2147    NameInfo.setLoc(Name.StartLocation);
2148    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2149    return NameInfo;
2150
2151  case UnqualifiedId::IK_ConversionFunctionId: {
2152    TypeSourceInfo *TInfo;
2153    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2154    if (Ty.isNull())
2155      return DeclarationNameInfo();
2156    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2157                                               Context.getCanonicalType(Ty)));
2158    NameInfo.setLoc(Name.StartLocation);
2159    NameInfo.setNamedTypeInfo(TInfo);
2160    return NameInfo;
2161  }
2162
2163  case UnqualifiedId::IK_ConstructorName: {
2164    TypeSourceInfo *TInfo;
2165    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2166    if (Ty.isNull())
2167      return DeclarationNameInfo();
2168    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2169                                              Context.getCanonicalType(Ty)));
2170    NameInfo.setLoc(Name.StartLocation);
2171    NameInfo.setNamedTypeInfo(TInfo);
2172    return NameInfo;
2173  }
2174
2175  case UnqualifiedId::IK_ConstructorTemplateId: {
2176    // In well-formed code, we can only have a constructor
2177    // template-id that refers to the current context, so go there
2178    // to find the actual type being constructed.
2179    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2180    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2181      return DeclarationNameInfo();
2182
2183    // Determine the type of the class being constructed.
2184    QualType CurClassType = Context.getTypeDeclType(CurClass);
2185
2186    // FIXME: Check two things: that the template-id names the same type as
2187    // CurClassType, and that the template-id does not occur when the name
2188    // was qualified.
2189
2190    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2191                                    Context.getCanonicalType(CurClassType)));
2192    NameInfo.setLoc(Name.StartLocation);
2193    // FIXME: should we retrieve TypeSourceInfo?
2194    NameInfo.setNamedTypeInfo(0);
2195    return NameInfo;
2196  }
2197
2198  case UnqualifiedId::IK_DestructorName: {
2199    TypeSourceInfo *TInfo;
2200    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2201    if (Ty.isNull())
2202      return DeclarationNameInfo();
2203    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2204                                              Context.getCanonicalType(Ty)));
2205    NameInfo.setLoc(Name.StartLocation);
2206    NameInfo.setNamedTypeInfo(TInfo);
2207    return NameInfo;
2208  }
2209
2210  case UnqualifiedId::IK_TemplateId: {
2211    TemplateName TName = Name.TemplateId->Template.get();
2212    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2213    return Context.getNameForTemplate(TName, TNameLoc);
2214  }
2215
2216  } // switch (Name.getKind())
2217
2218  assert(false && "Unknown name kind");
2219  return DeclarationNameInfo();
2220}
2221
2222/// isNearlyMatchingFunction - Determine whether the C++ functions
2223/// Declaration and Definition are "nearly" matching. This heuristic
2224/// is used to improve diagnostics in the case where an out-of-line
2225/// function definition doesn't match any declaration within
2226/// the class or namespace.
2227static bool isNearlyMatchingFunction(ASTContext &Context,
2228                                     FunctionDecl *Declaration,
2229                                     FunctionDecl *Definition) {
2230  if (Declaration->param_size() != Definition->param_size())
2231    return false;
2232  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2233    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2234    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2235
2236    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2237                                        DefParamTy.getNonReferenceType()))
2238      return false;
2239  }
2240
2241  return true;
2242}
2243
2244/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2245/// declarator needs to be rebuilt in the current instantiation.
2246/// Any bits of declarator which appear before the name are valid for
2247/// consideration here.  That's specifically the type in the decl spec
2248/// and the base type in any member-pointer chunks.
2249static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2250                                                    DeclarationName Name) {
2251  // The types we specifically need to rebuild are:
2252  //   - typenames, typeofs, and decltypes
2253  //   - types which will become injected class names
2254  // Of course, we also need to rebuild any type referencing such a
2255  // type.  It's safest to just say "dependent", but we call out a
2256  // few cases here.
2257
2258  DeclSpec &DS = D.getMutableDeclSpec();
2259  switch (DS.getTypeSpecType()) {
2260  case DeclSpec::TST_typename:
2261  case DeclSpec::TST_typeofType:
2262  case DeclSpec::TST_decltype: {
2263    // Grab the type from the parser.
2264    TypeSourceInfo *TSI = 0;
2265    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2266    if (T.isNull() || !T->isDependentType()) break;
2267
2268    // Make sure there's a type source info.  This isn't really much
2269    // of a waste; most dependent types should have type source info
2270    // attached already.
2271    if (!TSI)
2272      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2273
2274    // Rebuild the type in the current instantiation.
2275    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2276    if (!TSI) return true;
2277
2278    // Store the new type back in the decl spec.
2279    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2280    DS.UpdateTypeRep(LocType);
2281    break;
2282  }
2283
2284  case DeclSpec::TST_typeofExpr: {
2285    Expr *E = DS.getRepAsExpr();
2286    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2287    if (Result.isInvalid()) return true;
2288    DS.UpdateExprRep(Result.get());
2289    break;
2290  }
2291
2292  default:
2293    // Nothing to do for these decl specs.
2294    break;
2295  }
2296
2297  // It doesn't matter what order we do this in.
2298  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2299    DeclaratorChunk &Chunk = D.getTypeObject(I);
2300
2301    // The only type information in the declarator which can come
2302    // before the declaration name is the base type of a member
2303    // pointer.
2304    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2305      continue;
2306
2307    // Rebuild the scope specifier in-place.
2308    CXXScopeSpec &SS = Chunk.Mem.Scope();
2309    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2310      return true;
2311  }
2312
2313  return false;
2314}
2315
2316Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2317  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2318}
2319
2320Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2321                             MultiTemplateParamsArg TemplateParamLists,
2322                             bool IsFunctionDefinition) {
2323  // TODO: consider using NameInfo for diagnostic.
2324  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2325  DeclarationName Name = NameInfo.getName();
2326
2327  // All of these full declarators require an identifier.  If it doesn't have
2328  // one, the ParsedFreeStandingDeclSpec action should be used.
2329  if (!Name) {
2330    if (!D.isInvalidType())  // Reject this if we think it is valid.
2331      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2332           diag::err_declarator_need_ident)
2333        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2334    return 0;
2335  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2336    return 0;
2337
2338  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2339  // we find one that is.
2340  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2341         (S->getFlags() & Scope::TemplateParamScope) != 0)
2342    S = S->getParent();
2343
2344  DeclContext *DC = CurContext;
2345  if (D.getCXXScopeSpec().isInvalid())
2346    D.setInvalidType();
2347  else if (D.getCXXScopeSpec().isSet()) {
2348    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2349                                        UPPC_DeclarationQualifier))
2350      return 0;
2351
2352    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2353    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2354    if (!DC) {
2355      // If we could not compute the declaration context, it's because the
2356      // declaration context is dependent but does not refer to a class,
2357      // class template, or class template partial specialization. Complain
2358      // and return early, to avoid the coming semantic disaster.
2359      Diag(D.getIdentifierLoc(),
2360           diag::err_template_qualified_declarator_no_match)
2361        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2362        << D.getCXXScopeSpec().getRange();
2363      return 0;
2364    }
2365
2366    bool IsDependentContext = DC->isDependentContext();
2367
2368    if (!IsDependentContext &&
2369        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2370      return 0;
2371
2372    if (isa<CXXRecordDecl>(DC)) {
2373      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2374        Diag(D.getIdentifierLoc(),
2375             diag::err_member_def_undefined_record)
2376          << Name << DC << D.getCXXScopeSpec().getRange();
2377        D.setInvalidType();
2378      } else if (isa<CXXRecordDecl>(CurContext) &&
2379                 !D.getDeclSpec().isFriendSpecified()) {
2380        // The user provided a superfluous scope specifier inside a class
2381        // definition:
2382        //
2383        // class X {
2384        //   void X::f();
2385        // };
2386        if (CurContext->Equals(DC))
2387          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2388            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2389        else
2390          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2391            << Name << D.getCXXScopeSpec().getRange();
2392
2393        // Pretend that this qualifier was not here.
2394        D.getCXXScopeSpec().clear();
2395      }
2396    }
2397
2398    // Check whether we need to rebuild the type of the given
2399    // declaration in the current instantiation.
2400    if (EnteringContext && IsDependentContext &&
2401        TemplateParamLists.size() != 0) {
2402      ContextRAII SavedContext(*this, DC);
2403      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2404        D.setInvalidType();
2405    }
2406  }
2407
2408  // C++ [class.mem]p13:
2409  //   If T is the name of a class, then each of the following shall have a
2410  //   name different from T:
2411  //     - every static data member of class T;
2412  //     - every member function of class T
2413  //     - every member of class T that is itself a type;
2414  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2415    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2416      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2417        << Name;
2418
2419      // If this is a typedef, we'll end up spewing multiple diagnostics.
2420      // Just return early; it's safer.
2421      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2422        return 0;
2423    }
2424
2425  NamedDecl *New;
2426
2427  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2428  QualType R = TInfo->getType();
2429
2430  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2431                                      UPPC_DeclarationType))
2432    D.setInvalidType();
2433
2434  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2435                        ForRedeclaration);
2436
2437  // See if this is a redefinition of a variable in the same scope.
2438  if (!D.getCXXScopeSpec().isSet()) {
2439    bool IsLinkageLookup = false;
2440
2441    // If the declaration we're planning to build will be a function
2442    // or object with linkage, then look for another declaration with
2443    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2444    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2445      /* Do nothing*/;
2446    else if (R->isFunctionType()) {
2447      if (CurContext->isFunctionOrMethod() ||
2448          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2449        IsLinkageLookup = true;
2450    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2451      IsLinkageLookup = true;
2452    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2453             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2454      IsLinkageLookup = true;
2455
2456    if (IsLinkageLookup)
2457      Previous.clear(LookupRedeclarationWithLinkage);
2458
2459    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2460  } else { // Something like "int foo::x;"
2461    LookupQualifiedName(Previous, DC);
2462
2463    // Don't consider using declarations as previous declarations for
2464    // out-of-line members.
2465    RemoveUsingDecls(Previous);
2466
2467    // C++ 7.3.1.2p2:
2468    // Members (including explicit specializations of templates) of a named
2469    // namespace can also be defined outside that namespace by explicit
2470    // qualification of the name being defined, provided that the entity being
2471    // defined was already declared in the namespace and the definition appears
2472    // after the point of declaration in a namespace that encloses the
2473    // declarations namespace.
2474    //
2475    // Note that we only check the context at this point. We don't yet
2476    // have enough information to make sure that PrevDecl is actually
2477    // the declaration we want to match. For example, given:
2478    //
2479    //   class X {
2480    //     void f();
2481    //     void f(float);
2482    //   };
2483    //
2484    //   void X::f(int) { } // ill-formed
2485    //
2486    // In this case, PrevDecl will point to the overload set
2487    // containing the two f's declared in X, but neither of them
2488    // matches.
2489
2490    // First check whether we named the global scope.
2491    if (isa<TranslationUnitDecl>(DC)) {
2492      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2493        << Name << D.getCXXScopeSpec().getRange();
2494    } else {
2495      DeclContext *Cur = CurContext;
2496      while (isa<LinkageSpecDecl>(Cur))
2497        Cur = Cur->getParent();
2498      if (!Cur->Encloses(DC)) {
2499        // The qualifying scope doesn't enclose the original declaration.
2500        // Emit diagnostic based on current scope.
2501        SourceLocation L = D.getIdentifierLoc();
2502        SourceRange R = D.getCXXScopeSpec().getRange();
2503        if (isa<FunctionDecl>(Cur))
2504          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2505        else
2506          Diag(L, diag::err_invalid_declarator_scope)
2507            << Name << cast<NamedDecl>(DC) << R;
2508        D.setInvalidType();
2509      }
2510    }
2511  }
2512
2513  if (Previous.isSingleResult() &&
2514      Previous.getFoundDecl()->isTemplateParameter()) {
2515    // Maybe we will complain about the shadowed template parameter.
2516    if (!D.isInvalidType())
2517      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2518                                          Previous.getFoundDecl()))
2519        D.setInvalidType();
2520
2521    // Just pretend that we didn't see the previous declaration.
2522    Previous.clear();
2523  }
2524
2525  // In C++, the previous declaration we find might be a tag type
2526  // (class or enum). In this case, the new declaration will hide the
2527  // tag type. Note that this does does not apply if we're declaring a
2528  // typedef (C++ [dcl.typedef]p4).
2529  if (Previous.isSingleTagDecl() &&
2530      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2531    Previous.clear();
2532
2533  bool Redeclaration = false;
2534  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2535    if (TemplateParamLists.size()) {
2536      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2537      return 0;
2538    }
2539
2540    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2541  } else if (R->isFunctionType()) {
2542    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2543                                  move(TemplateParamLists),
2544                                  IsFunctionDefinition, Redeclaration);
2545  } else {
2546    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2547                                  move(TemplateParamLists),
2548                                  Redeclaration);
2549  }
2550
2551  if (New == 0)
2552    return 0;
2553
2554  // If this has an identifier and is not an invalid redeclaration or
2555  // function template specialization, add it to the scope stack.
2556  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2557    PushOnScopeChains(New, S);
2558
2559  return New;
2560}
2561
2562/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2563/// types into constant array types in certain situations which would otherwise
2564/// be errors (for GCC compatibility).
2565static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2566                                                    ASTContext &Context,
2567                                                    bool &SizeIsNegative,
2568                                                    llvm::APSInt &Oversized) {
2569  // This method tries to turn a variable array into a constant
2570  // array even when the size isn't an ICE.  This is necessary
2571  // for compatibility with code that depends on gcc's buggy
2572  // constant expression folding, like struct {char x[(int)(char*)2];}
2573  SizeIsNegative = false;
2574  Oversized = 0;
2575
2576  if (T->isDependentType())
2577    return QualType();
2578
2579  QualifierCollector Qs;
2580  const Type *Ty = Qs.strip(T);
2581
2582  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2583    QualType Pointee = PTy->getPointeeType();
2584    QualType FixedType =
2585        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2586                                            Oversized);
2587    if (FixedType.isNull()) return FixedType;
2588    FixedType = Context.getPointerType(FixedType);
2589    return Qs.apply(Context, FixedType);
2590  }
2591  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2592    QualType Inner = PTy->getInnerType();
2593    QualType FixedType =
2594        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2595                                            Oversized);
2596    if (FixedType.isNull()) return FixedType;
2597    FixedType = Context.getParenType(FixedType);
2598    return Qs.apply(Context, FixedType);
2599  }
2600
2601  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2602  if (!VLATy)
2603    return QualType();
2604  // FIXME: We should probably handle this case
2605  if (VLATy->getElementType()->isVariablyModifiedType())
2606    return QualType();
2607
2608  Expr::EvalResult EvalResult;
2609  if (!VLATy->getSizeExpr() ||
2610      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2611      !EvalResult.Val.isInt())
2612    return QualType();
2613
2614  // Check whether the array size is negative.
2615  llvm::APSInt &Res = EvalResult.Val.getInt();
2616  if (Res.isSigned() && Res.isNegative()) {
2617    SizeIsNegative = true;
2618    return QualType();
2619  }
2620
2621  // Check whether the array is too large to be addressed.
2622  unsigned ActiveSizeBits
2623    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2624                                              Res);
2625  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2626    Oversized = Res;
2627    return QualType();
2628  }
2629
2630  return Context.getConstantArrayType(VLATy->getElementType(),
2631                                      Res, ArrayType::Normal, 0);
2632}
2633
2634/// \brief Register the given locally-scoped external C declaration so
2635/// that it can be found later for redeclarations
2636void
2637Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2638                                       const LookupResult &Previous,
2639                                       Scope *S) {
2640  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2641         "Decl is not a locally-scoped decl!");
2642  // Note that we have a locally-scoped external with this name.
2643  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2644
2645  if (!Previous.isSingleResult())
2646    return;
2647
2648  NamedDecl *PrevDecl = Previous.getFoundDecl();
2649
2650  // If there was a previous declaration of this variable, it may be
2651  // in our identifier chain. Update the identifier chain with the new
2652  // declaration.
2653  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2654    // The previous declaration was found on the identifer resolver
2655    // chain, so remove it from its scope.
2656    while (S && !S->isDeclScope(PrevDecl))
2657      S = S->getParent();
2658
2659    if (S)
2660      S->RemoveDecl(PrevDecl);
2661  }
2662}
2663
2664/// \brief Diagnose function specifiers on a declaration of an identifier that
2665/// does not identify a function.
2666void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2667  // FIXME: We should probably indicate the identifier in question to avoid
2668  // confusion for constructs like "inline int a(), b;"
2669  if (D.getDeclSpec().isInlineSpecified())
2670    Diag(D.getDeclSpec().getInlineSpecLoc(),
2671         diag::err_inline_non_function);
2672
2673  if (D.getDeclSpec().isVirtualSpecified())
2674    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2675         diag::err_virtual_non_function);
2676
2677  if (D.getDeclSpec().isExplicitSpecified())
2678    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2679         diag::err_explicit_non_function);
2680}
2681
2682NamedDecl*
2683Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2684                             QualType R,  TypeSourceInfo *TInfo,
2685                             LookupResult &Previous, bool &Redeclaration) {
2686  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2687  if (D.getCXXScopeSpec().isSet()) {
2688    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2689      << D.getCXXScopeSpec().getRange();
2690    D.setInvalidType();
2691    // Pretend we didn't see the scope specifier.
2692    DC = CurContext;
2693    Previous.clear();
2694  }
2695
2696  if (getLangOptions().CPlusPlus) {
2697    // Check that there are no default arguments (C++ only).
2698    CheckExtraCXXDefaultArguments(D);
2699  }
2700
2701  DiagnoseFunctionSpecifiers(D);
2702
2703  if (D.getDeclSpec().isThreadSpecified())
2704    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2705
2706  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2707    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2708      << D.getName().getSourceRange();
2709    return 0;
2710  }
2711
2712  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2713  if (!NewTD) return 0;
2714
2715  // Handle attributes prior to checking for duplicates in MergeVarDecl
2716  ProcessDeclAttributes(S, NewTD, D);
2717
2718  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2719  // then it shall have block scope.
2720  // Note that variably modified types must be fixed before merging the decl so
2721  // that redeclarations will match.
2722  QualType T = NewTD->getUnderlyingType();
2723  if (T->isVariablyModifiedType()) {
2724    getCurFunction()->setHasBranchProtectedScope();
2725
2726    if (S->getFnParent() == 0) {
2727      bool SizeIsNegative;
2728      llvm::APSInt Oversized;
2729      QualType FixedTy =
2730          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2731                                              Oversized);
2732      if (!FixedTy.isNull()) {
2733        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2734        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2735      } else {
2736        if (SizeIsNegative)
2737          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2738        else if (T->isVariableArrayType())
2739          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2740        else if (Oversized.getBoolValue())
2741          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2742            << Oversized.toString(10);
2743        else
2744          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2745        NewTD->setInvalidDecl();
2746      }
2747    }
2748  }
2749
2750  // Merge the decl with the existing one if appropriate. If the decl is
2751  // in an outer scope, it isn't the same thing.
2752  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2753  if (!Previous.empty()) {
2754    Redeclaration = true;
2755    MergeTypeDefDecl(NewTD, Previous);
2756  }
2757
2758  // If this is the C FILE type, notify the AST context.
2759  if (IdentifierInfo *II = NewTD->getIdentifier())
2760    if (!NewTD->isInvalidDecl() &&
2761        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2762      if (II->isStr("FILE"))
2763        Context.setFILEDecl(NewTD);
2764      else if (II->isStr("jmp_buf"))
2765        Context.setjmp_bufDecl(NewTD);
2766      else if (II->isStr("sigjmp_buf"))
2767        Context.setsigjmp_bufDecl(NewTD);
2768      else if (II->isStr("__builtin_va_list"))
2769        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2770    }
2771
2772  return NewTD;
2773}
2774
2775/// \brief Determines whether the given declaration is an out-of-scope
2776/// previous declaration.
2777///
2778/// This routine should be invoked when name lookup has found a
2779/// previous declaration (PrevDecl) that is not in the scope where a
2780/// new declaration by the same name is being introduced. If the new
2781/// declaration occurs in a local scope, previous declarations with
2782/// linkage may still be considered previous declarations (C99
2783/// 6.2.2p4-5, C++ [basic.link]p6).
2784///
2785/// \param PrevDecl the previous declaration found by name
2786/// lookup
2787///
2788/// \param DC the context in which the new declaration is being
2789/// declared.
2790///
2791/// \returns true if PrevDecl is an out-of-scope previous declaration
2792/// for a new delcaration with the same name.
2793static bool
2794isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2795                                ASTContext &Context) {
2796  if (!PrevDecl)
2797    return false;
2798
2799  if (!PrevDecl->hasLinkage())
2800    return false;
2801
2802  if (Context.getLangOptions().CPlusPlus) {
2803    // C++ [basic.link]p6:
2804    //   If there is a visible declaration of an entity with linkage
2805    //   having the same name and type, ignoring entities declared
2806    //   outside the innermost enclosing namespace scope, the block
2807    //   scope declaration declares that same entity and receives the
2808    //   linkage of the previous declaration.
2809    DeclContext *OuterContext = DC->getRedeclContext();
2810    if (!OuterContext->isFunctionOrMethod())
2811      // This rule only applies to block-scope declarations.
2812      return false;
2813
2814    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2815    if (PrevOuterContext->isRecord())
2816      // We found a member function: ignore it.
2817      return false;
2818
2819    // Find the innermost enclosing namespace for the new and
2820    // previous declarations.
2821    OuterContext = OuterContext->getEnclosingNamespaceContext();
2822    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2823
2824    // The previous declaration is in a different namespace, so it
2825    // isn't the same function.
2826    if (!OuterContext->Equals(PrevOuterContext))
2827      return false;
2828  }
2829
2830  return true;
2831}
2832
2833static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2834  CXXScopeSpec &SS = D.getCXXScopeSpec();
2835  if (!SS.isSet()) return;
2836  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2837                       SS.getRange());
2838}
2839
2840NamedDecl*
2841Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2842                              QualType R, TypeSourceInfo *TInfo,
2843                              LookupResult &Previous,
2844                              MultiTemplateParamsArg TemplateParamLists,
2845                              bool &Redeclaration) {
2846  DeclarationName Name = GetNameForDeclarator(D).getName();
2847
2848  // Check that there are no default arguments (C++ only).
2849  if (getLangOptions().CPlusPlus)
2850    CheckExtraCXXDefaultArguments(D);
2851
2852  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2853  assert(SCSpec != DeclSpec::SCS_typedef &&
2854         "Parser allowed 'typedef' as storage class VarDecl.");
2855  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2856  if (SCSpec == DeclSpec::SCS_mutable) {
2857    // mutable can only appear on non-static class members, so it's always
2858    // an error here
2859    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2860    D.setInvalidType();
2861    SC = SC_None;
2862  }
2863  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2864  VarDecl::StorageClass SCAsWritten
2865    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2866
2867  IdentifierInfo *II = Name.getAsIdentifierInfo();
2868  if (!II) {
2869    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2870      << Name.getAsString();
2871    return 0;
2872  }
2873
2874  DiagnoseFunctionSpecifiers(D);
2875
2876  if (!DC->isRecord() && S->getFnParent() == 0) {
2877    // C99 6.9p2: The storage-class specifiers auto and register shall not
2878    // appear in the declaration specifiers in an external declaration.
2879    if (SC == SC_Auto || SC == SC_Register) {
2880
2881      // If this is a register variable with an asm label specified, then this
2882      // is a GNU extension.
2883      if (SC == SC_Register && D.getAsmLabel())
2884        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2885      else
2886        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2887      D.setInvalidType();
2888    }
2889  }
2890
2891  bool isExplicitSpecialization;
2892  VarDecl *NewVD;
2893  if (!getLangOptions().CPlusPlus) {
2894      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2895                              II, R, TInfo, SC, SCAsWritten);
2896
2897    if (D.isInvalidType())
2898      NewVD->setInvalidDecl();
2899  } else {
2900    if (DC->isRecord() && !CurContext->isRecord()) {
2901      // This is an out-of-line definition of a static data member.
2902      if (SC == SC_Static) {
2903        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2904             diag::err_static_out_of_line)
2905          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2906      } else if (SC == SC_None)
2907        SC = SC_Static;
2908    }
2909    if (SC == SC_Static) {
2910      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2911        if (RD->isLocalClass())
2912          Diag(D.getIdentifierLoc(),
2913               diag::err_static_data_member_not_allowed_in_local_class)
2914            << Name << RD->getDeclName();
2915
2916        // C++ [class.union]p1: If a union contains a static data member,
2917        // the program is ill-formed.
2918        //
2919        // We also disallow static data members in anonymous structs.
2920        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2921          Diag(D.getIdentifierLoc(),
2922               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2923            << Name << RD->isUnion();
2924      }
2925    }
2926
2927    // Match up the template parameter lists with the scope specifier, then
2928    // determine whether we have a template or a template specialization.
2929    isExplicitSpecialization = false;
2930    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2931    bool Invalid = false;
2932    if (TemplateParameterList *TemplateParams
2933        = MatchTemplateParametersToScopeSpecifier(
2934                                                  D.getDeclSpec().getSourceRange().getBegin(),
2935                                                  D.getCXXScopeSpec(),
2936                                                  TemplateParamLists.get(),
2937                                                  TemplateParamLists.size(),
2938                                                  /*never a friend*/ false,
2939                                                  isExplicitSpecialization,
2940                                                  Invalid)) {
2941      // All but one template parameter lists have been matching.
2942      --NumMatchedTemplateParamLists;
2943
2944      if (TemplateParams->size() > 0) {
2945        // There is no such thing as a variable template.
2946        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2947          << II
2948          << SourceRange(TemplateParams->getTemplateLoc(),
2949                         TemplateParams->getRAngleLoc());
2950        return 0;
2951      } else {
2952        // There is an extraneous 'template<>' for this variable. Complain
2953        // about it, but allow the declaration of the variable.
2954        Diag(TemplateParams->getTemplateLoc(),
2955             diag::err_template_variable_noparams)
2956          << II
2957          << SourceRange(TemplateParams->getTemplateLoc(),
2958                         TemplateParams->getRAngleLoc());
2959
2960        isExplicitSpecialization = true;
2961      }
2962    }
2963
2964    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2965                            II, R, TInfo, SC, SCAsWritten);
2966
2967    if (D.isInvalidType() || Invalid)
2968      NewVD->setInvalidDecl();
2969
2970    SetNestedNameSpecifier(NewVD, D);
2971
2972    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2973      NewVD->setTemplateParameterListsInfo(Context,
2974                                           NumMatchedTemplateParamLists,
2975                                           TemplateParamLists.release());
2976    }
2977  }
2978
2979  if (D.getDeclSpec().isThreadSpecified()) {
2980    if (NewVD->hasLocalStorage())
2981      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2982    else if (!Context.Target.isTLSSupported())
2983      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2984    else
2985      NewVD->setThreadSpecified(true);
2986  }
2987
2988  // Set the lexical context. If the declarator has a C++ scope specifier, the
2989  // lexical context will be different from the semantic context.
2990  NewVD->setLexicalDeclContext(CurContext);
2991
2992  // Handle attributes prior to checking for duplicates in MergeVarDecl
2993  ProcessDeclAttributes(S, NewVD, D);
2994
2995  // Handle GNU asm-label extension (encoded as an attribute).
2996  if (Expr *E = (Expr*)D.getAsmLabel()) {
2997    // The parser guarantees this is a string.
2998    StringLiteral *SE = cast<StringLiteral>(E);
2999    llvm::StringRef Label = SE->getString();
3000    if (S->getFnParent() != 0) {
3001      switch (SC) {
3002      case SC_None:
3003      case SC_Auto:
3004        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3005        break;
3006      case SC_Register:
3007        if (!Context.Target.isValidGCCRegisterName(Label))
3008          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3009        break;
3010      case SC_Static:
3011      case SC_Extern:
3012      case SC_PrivateExtern:
3013        break;
3014      }
3015    }
3016
3017    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3018                                                Context, Label));
3019  }
3020
3021  // Diagnose shadowed variables before filtering for scope.
3022  if (!D.getCXXScopeSpec().isSet())
3023    CheckShadow(S, NewVD, Previous);
3024
3025  // Don't consider existing declarations that are in a different
3026  // scope and are out-of-semantic-context declarations (if the new
3027  // declaration has linkage).
3028  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3029
3030  if (!getLangOptions().CPlusPlus)
3031    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3032  else {
3033    // Merge the decl with the existing one if appropriate.
3034    if (!Previous.empty()) {
3035      if (Previous.isSingleResult() &&
3036          isa<FieldDecl>(Previous.getFoundDecl()) &&
3037          D.getCXXScopeSpec().isSet()) {
3038        // The user tried to define a non-static data member
3039        // out-of-line (C++ [dcl.meaning]p1).
3040        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3041          << D.getCXXScopeSpec().getRange();
3042        Previous.clear();
3043        NewVD->setInvalidDecl();
3044      }
3045    } else if (D.getCXXScopeSpec().isSet()) {
3046      // No previous declaration in the qualifying scope.
3047      Diag(D.getIdentifierLoc(), diag::err_no_member)
3048        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3049        << D.getCXXScopeSpec().getRange();
3050      NewVD->setInvalidDecl();
3051    }
3052
3053    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3054
3055    // This is an explicit specialization of a static data member. Check it.
3056    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3057        CheckMemberSpecialization(NewVD, Previous))
3058      NewVD->setInvalidDecl();
3059  }
3060
3061  // attributes declared post-definition are currently ignored
3062  // FIXME: This should be handled in attribute merging, not
3063  // here.
3064  if (Previous.isSingleResult()) {
3065    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3066    if (Def && (Def = Def->getDefinition()) &&
3067        Def != NewVD && D.hasAttributes()) {
3068      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3069      Diag(Def->getLocation(), diag::note_previous_definition);
3070    }
3071  }
3072
3073  // If this is a locally-scoped extern C variable, update the map of
3074  // such variables.
3075  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3076      !NewVD->isInvalidDecl())
3077    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3078
3079  // If there's a #pragma GCC visibility in scope, and this isn't a class
3080  // member, set the visibility of this variable.
3081  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3082    AddPushedVisibilityAttribute(NewVD);
3083
3084  MarkUnusedFileScopedDecl(NewVD);
3085
3086  return NewVD;
3087}
3088
3089/// \brief Diagnose variable or built-in function shadowing.  Implements
3090/// -Wshadow.
3091///
3092/// This method is called whenever a VarDecl is added to a "useful"
3093/// scope.
3094///
3095/// \param S the scope in which the shadowing name is being declared
3096/// \param R the lookup of the name
3097///
3098void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3099  // Return if warning is ignored.
3100  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3101        Diagnostic::Ignored)
3102    return;
3103
3104  // Don't diagnose declarations at file scope.  The scope might not
3105  // have a DeclContext if (e.g.) we're parsing a function prototype.
3106  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3107  if (NewDC && NewDC->isFileContext())
3108    return;
3109
3110  // Only diagnose if we're shadowing an unambiguous field or variable.
3111  if (R.getResultKind() != LookupResult::Found)
3112    return;
3113
3114  NamedDecl* ShadowedDecl = R.getFoundDecl();
3115  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3116    return;
3117
3118  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3119
3120  // Only warn about certain kinds of shadowing for class members.
3121  if (NewDC && NewDC->isRecord()) {
3122    // In particular, don't warn about shadowing non-class members.
3123    if (!OldDC->isRecord())
3124      return;
3125
3126    // TODO: should we warn about static data members shadowing
3127    // static data members from base classes?
3128
3129    // TODO: don't diagnose for inaccessible shadowed members.
3130    // This is hard to do perfectly because we might friend the
3131    // shadowing context, but that's just a false negative.
3132  }
3133
3134  // Determine what kind of declaration we're shadowing.
3135  unsigned Kind;
3136  if (isa<RecordDecl>(OldDC)) {
3137    if (isa<FieldDecl>(ShadowedDecl))
3138      Kind = 3; // field
3139    else
3140      Kind = 2; // static data member
3141  } else if (OldDC->isFileContext())
3142    Kind = 1; // global
3143  else
3144    Kind = 0; // local
3145
3146  DeclarationName Name = R.getLookupName();
3147
3148  // Emit warning and note.
3149  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3150  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3151}
3152
3153/// \brief Check -Wshadow without the advantage of a previous lookup.
3154void Sema::CheckShadow(Scope *S, VarDecl *D) {
3155  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3156        Diagnostic::Ignored)
3157    return;
3158
3159  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3160                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3161  LookupName(R, S);
3162  CheckShadow(S, D, R);
3163}
3164
3165/// \brief Perform semantic checking on a newly-created variable
3166/// declaration.
3167///
3168/// This routine performs all of the type-checking required for a
3169/// variable declaration once it has been built. It is used both to
3170/// check variables after they have been parsed and their declarators
3171/// have been translated into a declaration, and to check variables
3172/// that have been instantiated from a template.
3173///
3174/// Sets NewVD->isInvalidDecl() if an error was encountered.
3175void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3176                                    LookupResult &Previous,
3177                                    bool &Redeclaration) {
3178  // If the decl is already known invalid, don't check it.
3179  if (NewVD->isInvalidDecl())
3180    return;
3181
3182  QualType T = NewVD->getType();
3183
3184  if (T->isObjCObjectType()) {
3185    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3186    return NewVD->setInvalidDecl();
3187  }
3188
3189  // Emit an error if an address space was applied to decl with local storage.
3190  // This includes arrays of objects with address space qualifiers, but not
3191  // automatic variables that point to other address spaces.
3192  // ISO/IEC TR 18037 S5.1.2
3193  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3194    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3195    return NewVD->setInvalidDecl();
3196  }
3197
3198  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3199      && !NewVD->hasAttr<BlocksAttr>())
3200    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3201
3202  bool isVM = T->isVariablyModifiedType();
3203  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3204      NewVD->hasAttr<BlocksAttr>())
3205    getCurFunction()->setHasBranchProtectedScope();
3206
3207  if ((isVM && NewVD->hasLinkage()) ||
3208      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3209    bool SizeIsNegative;
3210    llvm::APSInt Oversized;
3211    QualType FixedTy =
3212        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3213                                            Oversized);
3214
3215    if (FixedTy.isNull() && T->isVariableArrayType()) {
3216      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3217      // FIXME: This won't give the correct result for
3218      // int a[10][n];
3219      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3220
3221      if (NewVD->isFileVarDecl())
3222        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3223        << SizeRange;
3224      else if (NewVD->getStorageClass() == SC_Static)
3225        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3226        << SizeRange;
3227      else
3228        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3229        << SizeRange;
3230      return NewVD->setInvalidDecl();
3231    }
3232
3233    if (FixedTy.isNull()) {
3234      if (NewVD->isFileVarDecl())
3235        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3236      else
3237        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3238      return NewVD->setInvalidDecl();
3239    }
3240
3241    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3242    NewVD->setType(FixedTy);
3243  }
3244
3245  if (Previous.empty() && NewVD->isExternC()) {
3246    // Since we did not find anything by this name and we're declaring
3247    // an extern "C" variable, look for a non-visible extern "C"
3248    // declaration with the same name.
3249    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3250      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3251    if (Pos != LocallyScopedExternalDecls.end())
3252      Previous.addDecl(Pos->second);
3253  }
3254
3255  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3256    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3257      << T;
3258    return NewVD->setInvalidDecl();
3259  }
3260
3261  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3262    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3263    return NewVD->setInvalidDecl();
3264  }
3265
3266  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3267    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3268    return NewVD->setInvalidDecl();
3269  }
3270
3271  // Function pointers and references cannot have qualified function type, only
3272  // function pointer-to-members can do that.
3273  QualType Pointee;
3274  unsigned PtrOrRef = 0;
3275  if (const PointerType *Ptr = T->getAs<PointerType>())
3276    Pointee = Ptr->getPointeeType();
3277  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3278    Pointee = Ref->getPointeeType();
3279    PtrOrRef = 1;
3280  }
3281  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3282      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3283    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3284        << PtrOrRef;
3285    return NewVD->setInvalidDecl();
3286  }
3287
3288  if (!Previous.empty()) {
3289    Redeclaration = true;
3290    MergeVarDecl(NewVD, Previous);
3291  }
3292}
3293
3294/// \brief Data used with FindOverriddenMethod
3295struct FindOverriddenMethodData {
3296  Sema *S;
3297  CXXMethodDecl *Method;
3298};
3299
3300/// \brief Member lookup function that determines whether a given C++
3301/// method overrides a method in a base class, to be used with
3302/// CXXRecordDecl::lookupInBases().
3303static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3304                                 CXXBasePath &Path,
3305                                 void *UserData) {
3306  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3307
3308  FindOverriddenMethodData *Data
3309    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3310
3311  DeclarationName Name = Data->Method->getDeclName();
3312
3313  // FIXME: Do we care about other names here too?
3314  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3315    // We really want to find the base class destructor here.
3316    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3317    CanQualType CT = Data->S->Context.getCanonicalType(T);
3318
3319    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3320  }
3321
3322  for (Path.Decls = BaseRecord->lookup(Name);
3323       Path.Decls.first != Path.Decls.second;
3324       ++Path.Decls.first) {
3325    NamedDecl *D = *Path.Decls.first;
3326    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3327      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3328        return true;
3329    }
3330  }
3331
3332  return false;
3333}
3334
3335/// AddOverriddenMethods - See if a method overrides any in the base classes,
3336/// and if so, check that it's a valid override and remember it.
3337bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3338  // Look for virtual methods in base classes that this method might override.
3339  CXXBasePaths Paths;
3340  FindOverriddenMethodData Data;
3341  Data.Method = MD;
3342  Data.S = this;
3343  bool AddedAny = false;
3344  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3345    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3346         E = Paths.found_decls_end(); I != E; ++I) {
3347      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3348        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3349            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3350            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3351          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3352          AddedAny = true;
3353        }
3354      }
3355    }
3356  }
3357
3358  return AddedAny;
3359}
3360
3361static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3362  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3363                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3364  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3365  assert(!Prev.isAmbiguous() &&
3366         "Cannot have an ambiguity in previous-declaration lookup");
3367  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3368       Func != FuncEnd; ++Func) {
3369    if (isa<FunctionDecl>(*Func) &&
3370        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3371      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3372  }
3373}
3374
3375/// CheckClassMemberNameAttributes - Check for class member name checking
3376/// attributes according to [dcl.attr.override]
3377static void
3378CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3379  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3380  if (!MD || !MD->isVirtual())
3381    return;
3382
3383  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3384  bool HasOverriddenMethods =
3385    MD->begin_overridden_methods() != MD->end_overridden_methods();
3386
3387  /// C++ [dcl.attr.override]p2:
3388  ///   If a virtual member function f is marked override and does not override
3389  ///   a member function of a base class the program is ill-formed.
3390  if (HasOverrideAttr && !HasOverriddenMethods) {
3391    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3392      << MD->getDeclName();
3393    return;
3394  }
3395
3396  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3397    return;
3398
3399  /// C++ [dcl.attr.override]p6:
3400  ///   In a class definition marked base_check, if a virtual member function
3401  ///    that is neither implicitly-declared nor a destructor overrides a
3402  ///    member function of a base class and it is not marked override, the
3403  ///    program is ill-formed.
3404  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3405      !isa<CXXDestructorDecl>(MD)) {
3406    llvm::SmallVector<const CXXMethodDecl*, 4>
3407      OverriddenMethods(MD->begin_overridden_methods(),
3408                        MD->end_overridden_methods());
3409
3410    SemaRef.Diag(MD->getLocation(),
3411                 diag::err_function_overriding_without_override)
3412      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3413
3414    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3415      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3416                   diag::note_overridden_virtual_function);
3417  }
3418}
3419
3420NamedDecl*
3421Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3422                              QualType R, TypeSourceInfo *TInfo,
3423                              LookupResult &Previous,
3424                              MultiTemplateParamsArg TemplateParamLists,
3425                              bool IsFunctionDefinition, bool &Redeclaration) {
3426  assert(R.getTypePtr()->isFunctionType());
3427
3428  // TODO: consider using NameInfo for diagnostic.
3429  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3430  DeclarationName Name = NameInfo.getName();
3431  FunctionDecl::StorageClass SC = SC_None;
3432  switch (D.getDeclSpec().getStorageClassSpec()) {
3433  default: assert(0 && "Unknown storage class!");
3434  case DeclSpec::SCS_auto:
3435  case DeclSpec::SCS_register:
3436  case DeclSpec::SCS_mutable:
3437    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3438         diag::err_typecheck_sclass_func);
3439    D.setInvalidType();
3440    break;
3441  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3442  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3443  case DeclSpec::SCS_static: {
3444    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3445      // C99 6.7.1p5:
3446      //   The declaration of an identifier for a function that has
3447      //   block scope shall have no explicit storage-class specifier
3448      //   other than extern
3449      // See also (C++ [dcl.stc]p4).
3450      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3451           diag::err_static_block_func);
3452      SC = SC_None;
3453    } else
3454      SC = SC_Static;
3455    break;
3456  }
3457  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3458  }
3459
3460  if (D.getDeclSpec().isThreadSpecified())
3461    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3462
3463  // Do not allow returning a objc interface by-value.
3464  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3465    Diag(D.getIdentifierLoc(),
3466         diag::err_object_cannot_be_passed_returned_by_value) << 0
3467    << R->getAs<FunctionType>()->getResultType();
3468    D.setInvalidType();
3469  }
3470
3471  FunctionDecl *NewFD;
3472  bool isInline = D.getDeclSpec().isInlineSpecified();
3473  bool isFriend = false;
3474  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3475  FunctionDecl::StorageClass SCAsWritten
3476    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3477  FunctionTemplateDecl *FunctionTemplate = 0;
3478  bool isExplicitSpecialization = false;
3479  bool isFunctionTemplateSpecialization = false;
3480  unsigned NumMatchedTemplateParamLists = 0;
3481
3482  if (!getLangOptions().CPlusPlus) {
3483    // Determine whether the function was written with a
3484    // prototype. This true when:
3485    //   - there is a prototype in the declarator, or
3486    //   - the type R of the function is some kind of typedef or other reference
3487    //     to a type name (which eventually refers to a function type).
3488    bool HasPrototype =
3489    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3490    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3491
3492    NewFD = FunctionDecl::Create(Context, DC,
3493                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3494                                 HasPrototype);
3495    if (D.isInvalidType())
3496      NewFD->setInvalidDecl();
3497
3498    // Set the lexical context.
3499    NewFD->setLexicalDeclContext(CurContext);
3500    // Filter out previous declarations that don't match the scope.
3501    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3502  } else {
3503    isFriend = D.getDeclSpec().isFriendSpecified();
3504    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3505    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3506    bool isVirtualOkay = false;
3507
3508    // Check that the return type is not an abstract class type.
3509    // For record types, this is done by the AbstractClassUsageDiagnoser once
3510    // the class has been completely parsed.
3511    if (!DC->isRecord() &&
3512      RequireNonAbstractType(D.getIdentifierLoc(),
3513                             R->getAs<FunctionType>()->getResultType(),
3514                             diag::err_abstract_type_in_decl,
3515                             AbstractReturnType))
3516      D.setInvalidType();
3517
3518
3519    if (isFriend) {
3520      // C++ [class.friend]p5
3521      //   A function can be defined in a friend declaration of a
3522      //   class . . . . Such a function is implicitly inline.
3523      isInline |= IsFunctionDefinition;
3524    }
3525
3526    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3527      // This is a C++ constructor declaration.
3528      assert(DC->isRecord() &&
3529             "Constructors can only be declared in a member context");
3530
3531      R = CheckConstructorDeclarator(D, R, SC);
3532
3533      // Create the new declaration
3534      NewFD = CXXConstructorDecl::Create(Context,
3535                                         cast<CXXRecordDecl>(DC),
3536                                         NameInfo, R, TInfo,
3537                                         isExplicit, isInline,
3538                                         /*isImplicitlyDeclared=*/false);
3539    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3540      // This is a C++ destructor declaration.
3541      if (DC->isRecord()) {
3542        R = CheckDestructorDeclarator(D, R, SC);
3543
3544        NewFD = CXXDestructorDecl::Create(Context,
3545                                          cast<CXXRecordDecl>(DC),
3546                                          NameInfo, R, TInfo,
3547                                          isInline,
3548                                          /*isImplicitlyDeclared=*/false);
3549        isVirtualOkay = true;
3550      } else {
3551        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3552
3553        // Create a FunctionDecl to satisfy the function definition parsing
3554        // code path.
3555        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3556                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3557                                     /*hasPrototype=*/true);
3558        D.setInvalidType();
3559      }
3560    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3561      if (!DC->isRecord()) {
3562        Diag(D.getIdentifierLoc(),
3563             diag::err_conv_function_not_member);
3564        return 0;
3565      }
3566
3567      CheckConversionDeclarator(D, R, SC);
3568      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3569                                        NameInfo, R, TInfo,
3570                                        isInline, isExplicit);
3571
3572      isVirtualOkay = true;
3573    } else if (DC->isRecord()) {
3574      // If the of the function is the same as the name of the record, then this
3575      // must be an invalid constructor that has a return type.
3576      // (The parser checks for a return type and makes the declarator a
3577      // constructor if it has no return type).
3578      // must have an invalid constructor that has a return type
3579      if (Name.getAsIdentifierInfo() &&
3580          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3581        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3582          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3583          << SourceRange(D.getIdentifierLoc());
3584        return 0;
3585      }
3586
3587      bool isStatic = SC == SC_Static;
3588
3589      // [class.free]p1:
3590      // Any allocation function for a class T is a static member
3591      // (even if not explicitly declared static).
3592      if (Name.getCXXOverloadedOperator() == OO_New ||
3593          Name.getCXXOverloadedOperator() == OO_Array_New)
3594        isStatic = true;
3595
3596      // [class.free]p6 Any deallocation function for a class X is a static member
3597      // (even if not explicitly declared static).
3598      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3599          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3600        isStatic = true;
3601
3602      // This is a C++ method declaration.
3603      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3604                                    NameInfo, R, TInfo,
3605                                    isStatic, SCAsWritten, isInline);
3606
3607      isVirtualOkay = !isStatic;
3608    } else {
3609      // Determine whether the function was written with a
3610      // prototype. This true when:
3611      //   - we're in C++ (where every function has a prototype),
3612      NewFD = FunctionDecl::Create(Context, DC,
3613                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3614                                   true/*HasPrototype*/);
3615    }
3616    SetNestedNameSpecifier(NewFD, D);
3617    isExplicitSpecialization = false;
3618    isFunctionTemplateSpecialization = false;
3619    NumMatchedTemplateParamLists = TemplateParamLists.size();
3620    if (D.isInvalidType())
3621      NewFD->setInvalidDecl();
3622
3623    // Set the lexical context. If the declarator has a C++
3624    // scope specifier, or is the object of a friend declaration, the
3625    // lexical context will be different from the semantic context.
3626    NewFD->setLexicalDeclContext(CurContext);
3627
3628    // Match up the template parameter lists with the scope specifier, then
3629    // determine whether we have a template or a template specialization.
3630    bool Invalid = false;
3631    if (TemplateParameterList *TemplateParams
3632        = MatchTemplateParametersToScopeSpecifier(
3633                                  D.getDeclSpec().getSourceRange().getBegin(),
3634                                  D.getCXXScopeSpec(),
3635                                  TemplateParamLists.get(),
3636                                  TemplateParamLists.size(),
3637                                  isFriend,
3638                                  isExplicitSpecialization,
3639                                  Invalid)) {
3640          // All but one template parameter lists have been matching.
3641          --NumMatchedTemplateParamLists;
3642
3643          if (TemplateParams->size() > 0) {
3644            // This is a function template
3645
3646            // Check that we can declare a template here.
3647            if (CheckTemplateDeclScope(S, TemplateParams))
3648              return 0;
3649
3650            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3651                                                      NewFD->getLocation(),
3652                                                      Name, TemplateParams,
3653                                                      NewFD);
3654            FunctionTemplate->setLexicalDeclContext(CurContext);
3655            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3656          } else {
3657            // This is a function template specialization.
3658            isFunctionTemplateSpecialization = true;
3659
3660            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3661            if (isFriend && isFunctionTemplateSpecialization) {
3662              // We want to remove the "template<>", found here.
3663              SourceRange RemoveRange = TemplateParams->getSourceRange();
3664
3665              // If we remove the template<> and the name is not a
3666              // template-id, we're actually silently creating a problem:
3667              // the friend declaration will refer to an untemplated decl,
3668              // and clearly the user wants a template specialization.  So
3669              // we need to insert '<>' after the name.
3670              SourceLocation InsertLoc;
3671              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3672                InsertLoc = D.getName().getSourceRange().getEnd();
3673                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3674              }
3675
3676              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3677              << Name << RemoveRange
3678              << FixItHint::CreateRemoval(RemoveRange)
3679              << FixItHint::CreateInsertion(InsertLoc, "<>");
3680            }
3681          }
3682        }
3683
3684    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3685      NewFD->setTemplateParameterListsInfo(Context,
3686                                           NumMatchedTemplateParamLists,
3687                                           TemplateParamLists.release());
3688    }
3689
3690    if (Invalid) {
3691      NewFD->setInvalidDecl();
3692      if (FunctionTemplate)
3693        FunctionTemplate->setInvalidDecl();
3694    }
3695
3696    // C++ [dcl.fct.spec]p5:
3697    //   The virtual specifier shall only be used in declarations of
3698    //   nonstatic class member functions that appear within a
3699    //   member-specification of a class declaration; see 10.3.
3700    //
3701    if (isVirtual && !NewFD->isInvalidDecl()) {
3702      if (!isVirtualOkay) {
3703        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3704             diag::err_virtual_non_function);
3705      } else if (!CurContext->isRecord()) {
3706        // 'virtual' was specified outside of the class.
3707        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3708          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3709      } else {
3710        // Okay: Add virtual to the method.
3711        NewFD->setVirtualAsWritten(true);
3712      }
3713    }
3714
3715    // C++ [dcl.fct.spec]p3:
3716    //  The inline specifier shall not appear on a block scope function declaration.
3717    if (isInline && !NewFD->isInvalidDecl()) {
3718      if (CurContext->isFunctionOrMethod()) {
3719        // 'inline' is not allowed on block scope function declaration.
3720        Diag(D.getDeclSpec().getInlineSpecLoc(),
3721             diag::err_inline_declaration_block_scope) << Name
3722          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3723      }
3724    }
3725
3726    // C++ [dcl.fct.spec]p6:
3727    //  The explicit specifier shall be used only in the declaration of a
3728    //  constructor or conversion function within its class definition; see 12.3.1
3729    //  and 12.3.2.
3730    if (isExplicit && !NewFD->isInvalidDecl()) {
3731      if (!CurContext->isRecord()) {
3732        // 'explicit' was specified outside of the class.
3733        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3734             diag::err_explicit_out_of_class)
3735          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3736      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3737                 !isa<CXXConversionDecl>(NewFD)) {
3738        // 'explicit' was specified on a function that wasn't a constructor
3739        // or conversion function.
3740        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3741             diag::err_explicit_non_ctor_or_conv_function)
3742          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3743      }
3744    }
3745
3746    // Filter out previous declarations that don't match the scope.
3747    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3748
3749    if (isFriend) {
3750      // For now, claim that the objects have no previous declaration.
3751      if (FunctionTemplate) {
3752        FunctionTemplate->setObjectOfFriendDecl(false);
3753        FunctionTemplate->setAccess(AS_public);
3754      }
3755      NewFD->setObjectOfFriendDecl(false);
3756      NewFD->setAccess(AS_public);
3757    }
3758
3759    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3760      // A method is implicitly inline if it's defined in its class
3761      // definition.
3762      NewFD->setImplicitlyInline();
3763    }
3764
3765    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3766        !CurContext->isRecord()) {
3767      // C++ [class.static]p1:
3768      //   A data or function member of a class may be declared static
3769      //   in a class definition, in which case it is a static member of
3770      //   the class.
3771
3772      // Complain about the 'static' specifier if it's on an out-of-line
3773      // member function definition.
3774      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3775           diag::err_static_out_of_line)
3776        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3777    }
3778  }
3779
3780  // Handle GNU asm-label extension (encoded as an attribute).
3781  if (Expr *E = (Expr*) D.getAsmLabel()) {
3782    // The parser guarantees this is a string.
3783    StringLiteral *SE = cast<StringLiteral>(E);
3784    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3785                                                SE->getString()));
3786  }
3787
3788  // Copy the parameter declarations from the declarator D to the function
3789  // declaration NewFD, if they are available.  First scavenge them into Params.
3790  llvm::SmallVector<ParmVarDecl*, 16> Params;
3791  if (D.isFunctionDeclarator()) {
3792    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3793
3794    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3795    // function that takes no arguments, not a function that takes a
3796    // single void argument.
3797    // We let through "const void" here because Sema::GetTypeForDeclarator
3798    // already checks for that case.
3799    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3800        FTI.ArgInfo[0].Param &&
3801        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3802      // Empty arg list, don't push any params.
3803      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3804
3805      // In C++, the empty parameter-type-list must be spelled "void"; a
3806      // typedef of void is not permitted.
3807      if (getLangOptions().CPlusPlus &&
3808          Param->getType().getUnqualifiedType() != Context.VoidTy)
3809        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3810    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3811      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3812        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3813        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3814        Param->setDeclContext(NewFD);
3815        Params.push_back(Param);
3816
3817        if (Param->isInvalidDecl())
3818          NewFD->setInvalidDecl();
3819      }
3820    }
3821
3822  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3823    // When we're declaring a function with a typedef, typeof, etc as in the
3824    // following example, we'll need to synthesize (unnamed)
3825    // parameters for use in the declaration.
3826    //
3827    // @code
3828    // typedef void fn(int);
3829    // fn f;
3830    // @endcode
3831
3832    // Synthesize a parameter for each argument type.
3833    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3834         AE = FT->arg_type_end(); AI != AE; ++AI) {
3835      ParmVarDecl *Param =
3836        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3837      Params.push_back(Param);
3838    }
3839  } else {
3840    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3841           "Should not need args for typedef of non-prototype fn");
3842  }
3843  // Finally, we know we have the right number of parameters, install them.
3844  NewFD->setParams(Params.data(), Params.size());
3845
3846  bool OverloadableAttrRequired=false; // FIXME: HACK!
3847  if (!getLangOptions().CPlusPlus) {
3848    // Perform semantic checking on the function declaration.
3849    bool isExplctSpecialization=false;
3850    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3851                             Redeclaration,
3852                             /*FIXME:*/OverloadableAttrRequired);
3853    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3854            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3855           "previous declaration set still overloaded");
3856  } else {
3857    // If the declarator is a template-id, translate the parser's template
3858    // argument list into our AST format.
3859    bool HasExplicitTemplateArgs = false;
3860    TemplateArgumentListInfo TemplateArgs;
3861    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3862      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3863      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3864      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3865      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3866                                         TemplateId->getTemplateArgs(),
3867                                         TemplateId->NumArgs);
3868      translateTemplateArguments(TemplateArgsPtr,
3869                                 TemplateArgs);
3870      TemplateArgsPtr.release();
3871
3872      HasExplicitTemplateArgs = true;
3873
3874      if (FunctionTemplate) {
3875        // FIXME: Diagnose function template with explicit template
3876        // arguments.
3877        HasExplicitTemplateArgs = false;
3878      } else if (!isFunctionTemplateSpecialization &&
3879                 !D.getDeclSpec().isFriendSpecified()) {
3880        // We have encountered something that the user meant to be a
3881        // specialization (because it has explicitly-specified template
3882        // arguments) but that was not introduced with a "template<>" (or had
3883        // too few of them).
3884        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3885          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3886          << FixItHint::CreateInsertion(
3887                                        D.getDeclSpec().getSourceRange().getBegin(),
3888                                                  "template<> ");
3889        isFunctionTemplateSpecialization = true;
3890      } else {
3891        // "friend void foo<>(int);" is an implicit specialization decl.
3892        isFunctionTemplateSpecialization = true;
3893      }
3894    } else if (isFriend && isFunctionTemplateSpecialization) {
3895      // This combination is only possible in a recovery case;  the user
3896      // wrote something like:
3897      //   template <> friend void foo(int);
3898      // which we're recovering from as if the user had written:
3899      //   friend void foo<>(int);
3900      // Go ahead and fake up a template id.
3901      HasExplicitTemplateArgs = true;
3902        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3903      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3904    }
3905
3906    // If it's a friend (and only if it's a friend), it's possible
3907    // that either the specialized function type or the specialized
3908    // template is dependent, and therefore matching will fail.  In
3909    // this case, don't check the specialization yet.
3910    if (isFunctionTemplateSpecialization && isFriend &&
3911        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3912      assert(HasExplicitTemplateArgs &&
3913             "friend function specialization without template args");
3914      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3915                                                       Previous))
3916        NewFD->setInvalidDecl();
3917    } else if (isFunctionTemplateSpecialization) {
3918      if (CheckFunctionTemplateSpecialization(NewFD,
3919                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3920                                              Previous))
3921        NewFD->setInvalidDecl();
3922    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3923      if (CheckMemberSpecialization(NewFD, Previous))
3924          NewFD->setInvalidDecl();
3925    }
3926
3927    // Perform semantic checking on the function declaration.
3928    bool flag_c_overloaded=false; // unused for c++
3929    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3930                             Redeclaration, /*FIXME:*/flag_c_overloaded);
3931
3932    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3933            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3934           "previous declaration set still overloaded");
3935
3936    NamedDecl *PrincipalDecl = (FunctionTemplate
3937                                ? cast<NamedDecl>(FunctionTemplate)
3938                                : NewFD);
3939
3940    if (isFriend && Redeclaration) {
3941      AccessSpecifier Access = AS_public;
3942      if (!NewFD->isInvalidDecl())
3943        Access = NewFD->getPreviousDeclaration()->getAccess();
3944
3945      NewFD->setAccess(Access);
3946      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3947
3948      PrincipalDecl->setObjectOfFriendDecl(true);
3949    }
3950
3951    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3952        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3953      PrincipalDecl->setNonMemberOperator();
3954
3955    // If we have a function template, check the template parameter
3956    // list. This will check and merge default template arguments.
3957    if (FunctionTemplate) {
3958      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3959      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3960                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3961                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3962                                                  : TPC_FunctionTemplate);
3963    }
3964
3965    if (NewFD->isInvalidDecl()) {
3966      // Ignore all the rest of this.
3967    } else if (!Redeclaration) {
3968      // Fake up an access specifier if it's supposed to be a class member.
3969      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3970        NewFD->setAccess(AS_public);
3971
3972      // Qualified decls generally require a previous declaration.
3973      if (D.getCXXScopeSpec().isSet()) {
3974        // ...with the major exception of templated-scope or
3975        // dependent-scope friend declarations.
3976
3977        // TODO: we currently also suppress this check in dependent
3978        // contexts because (1) the parameter depth will be off when
3979        // matching friend templates and (2) we might actually be
3980        // selecting a friend based on a dependent factor.  But there
3981        // are situations where these conditions don't apply and we
3982        // can actually do this check immediately.
3983        if (isFriend &&
3984            (NumMatchedTemplateParamLists ||
3985             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3986             CurContext->isDependentContext())) {
3987              // ignore these
3988            } else {
3989              // The user tried to provide an out-of-line definition for a
3990              // function that is a member of a class or namespace, but there
3991              // was no such member function declared (C++ [class.mfct]p2,
3992              // C++ [namespace.memdef]p2). For example:
3993              //
3994              // class X {
3995              //   void f() const;
3996              // };
3997              //
3998              // void X::f() { } // ill-formed
3999              //
4000              // Complain about this problem, and attempt to suggest close
4001              // matches (e.g., those that differ only in cv-qualifiers and
4002              // whether the parameter types are references).
4003              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4004              << Name << DC << D.getCXXScopeSpec().getRange();
4005              NewFD->setInvalidDecl();
4006
4007              DiagnoseInvalidRedeclaration(*this, NewFD);
4008            }
4009
4010        // Unqualified local friend declarations are required to resolve
4011        // to something.
4012        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4013          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4014          NewFD->setInvalidDecl();
4015          DiagnoseInvalidRedeclaration(*this, NewFD);
4016        }
4017
4018    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4019               !isFriend && !isFunctionTemplateSpecialization &&
4020               !isExplicitSpecialization) {
4021      // An out-of-line member function declaration must also be a
4022      // definition (C++ [dcl.meaning]p1).
4023      // Note that this is not the case for explicit specializations of
4024      // function templates or member functions of class templates, per
4025      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4026      // for compatibility with old SWIG code which likes to generate them.
4027      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4028        << D.getCXXScopeSpec().getRange();
4029    }
4030  }
4031
4032
4033  // Handle attributes. We need to have merged decls when handling attributes
4034  // (for example to check for conflicts, etc).
4035  // FIXME: This needs to happen before we merge declarations. Then,
4036  // let attribute merging cope with attribute conflicts.
4037  ProcessDeclAttributes(S, NewFD, D);
4038
4039  // attributes declared post-definition are currently ignored
4040  // FIXME: This should happen during attribute merging
4041  if (Redeclaration && Previous.isSingleResult()) {
4042    const FunctionDecl *Def;
4043    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4044    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4045      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4046      Diag(Def->getLocation(), diag::note_previous_definition);
4047    }
4048  }
4049
4050  AddKnownFunctionAttributes(NewFD);
4051
4052  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
4053    // If a function name is overloadable in C, then every function
4054    // with that name must be marked "overloadable".
4055    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4056      << Redeclaration << NewFD;
4057    if (!Previous.empty())
4058      Diag(Previous.getRepresentativeDecl()->getLocation(),
4059           diag::note_attribute_overloadable_prev_overload);
4060    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
4061  }
4062
4063  if (NewFD->hasAttr<OverloadableAttr>() &&
4064      !NewFD->getType()->getAs<FunctionProtoType>()) {
4065    Diag(NewFD->getLocation(),
4066         diag::err_attribute_overloadable_no_prototype)
4067      << NewFD;
4068
4069    // Turn this into a variadic function with no parameters.
4070    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4071    FunctionProtoType::ExtProtoInfo EPI;
4072    EPI.Variadic = true;
4073    EPI.ExtInfo = FT->getExtInfo();
4074
4075    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4076    NewFD->setType(R);
4077  }
4078
4079  // If there's a #pragma GCC visibility in scope, and this isn't a class
4080  // member, set the visibility of this function.
4081  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4082    AddPushedVisibilityAttribute(NewFD);
4083
4084  // If this is a locally-scoped extern C function, update the
4085  // map of such names.
4086  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4087      && !NewFD->isInvalidDecl())
4088    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4089
4090  // Set this FunctionDecl's range up to the right paren.
4091  NewFD->setLocEnd(D.getSourceRange().getEnd());
4092
4093  if (getLangOptions().CPlusPlus) {
4094    if (FunctionTemplate) {
4095      if (NewFD->isInvalidDecl())
4096        FunctionTemplate->setInvalidDecl();
4097      return FunctionTemplate;
4098    }
4099    CheckClassMemberNameAttributes(*this, NewFD);
4100  }
4101
4102  MarkUnusedFileScopedDecl(NewFD);
4103  return NewFD;
4104}
4105
4106/// \brief Perform semantic checking of a new function declaration.
4107///
4108/// Performs semantic analysis of the new function declaration
4109/// NewFD. This routine performs all semantic checking that does not
4110/// require the actual declarator involved in the declaration, and is
4111/// used both for the declaration of functions as they are parsed
4112/// (called via ActOnDeclarator) and for the declaration of functions
4113/// that have been instantiated via C++ template instantiation (called
4114/// via InstantiateDecl).
4115///
4116/// \param IsExplicitSpecialiation whether this new function declaration is
4117/// an explicit specialization of the previous declaration.
4118///
4119/// This sets NewFD->isInvalidDecl() to true if there was an error.
4120void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4121                                    LookupResult &Previous,
4122                                    bool IsExplicitSpecialization,
4123                                    bool &Redeclaration,
4124                                    bool &OverloadableAttrRequired) {
4125  // If NewFD is already known erroneous, don't do any of this checking.
4126  if (NewFD->isInvalidDecl()) {
4127    // If this is a class member, mark the class invalid immediately.
4128    // This avoids some consistency errors later.
4129    if (isa<CXXMethodDecl>(NewFD))
4130      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4131
4132    return;
4133  }
4134
4135  if (NewFD->getResultType()->isVariablyModifiedType()) {
4136    // Functions returning a variably modified type violate C99 6.7.5.2p2
4137    // because all functions have linkage.
4138    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4139    return NewFD->setInvalidDecl();
4140  }
4141
4142  if (NewFD->isMain())
4143    CheckMain(NewFD);
4144
4145  // Check for a previous declaration of this name.
4146  if (Previous.empty() && NewFD->isExternC()) {
4147    // Since we did not find anything by this name and we're declaring
4148    // an extern "C" function, look for a non-visible extern "C"
4149    // declaration with the same name.
4150    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4151      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4152    if (Pos != LocallyScopedExternalDecls.end())
4153      Previous.addDecl(Pos->second);
4154  }
4155
4156  // Merge or overload the declaration with an existing declaration of
4157  // the same name, if appropriate.
4158  if (!Previous.empty()) {
4159    // Determine whether NewFD is an overload of PrevDecl or
4160    // a declaration that requires merging. If it's an overload,
4161    // there's no more work to do here; we'll just add the new
4162    // function to the scope.
4163
4164    NamedDecl *OldDecl = 0;
4165    if (!AllowOverloadingOfFunction(Previous, Context)) {
4166      Redeclaration = true;
4167      OldDecl = Previous.getFoundDecl();
4168    } else {
4169      if (!getLangOptions().CPlusPlus)
4170        OverloadableAttrRequired = true;
4171
4172      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4173                            /*NewIsUsingDecl*/ false)) {
4174      case Ovl_Match:
4175        Redeclaration = true;
4176        break;
4177
4178      case Ovl_NonFunction:
4179        Redeclaration = true;
4180        break;
4181
4182      case Ovl_Overload:
4183        Redeclaration = false;
4184        break;
4185      }
4186    }
4187
4188    if (Redeclaration) {
4189      // NewFD and OldDecl represent declarations that need to be
4190      // merged.
4191      if (MergeFunctionDecl(NewFD, OldDecl))
4192        return NewFD->setInvalidDecl();
4193
4194      Previous.clear();
4195      Previous.addDecl(OldDecl);
4196
4197      if (FunctionTemplateDecl *OldTemplateDecl
4198                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4199        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4200        FunctionTemplateDecl *NewTemplateDecl
4201          = NewFD->getDescribedFunctionTemplate();
4202        assert(NewTemplateDecl && "Template/non-template mismatch");
4203        if (CXXMethodDecl *Method
4204              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4205          Method->setAccess(OldTemplateDecl->getAccess());
4206          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4207        }
4208
4209        // If this is an explicit specialization of a member that is a function
4210        // template, mark it as a member specialization.
4211        if (IsExplicitSpecialization &&
4212            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4213          NewTemplateDecl->setMemberSpecialization();
4214          assert(OldTemplateDecl->isMemberSpecialization());
4215        }
4216      } else {
4217        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4218          NewFD->setAccess(OldDecl->getAccess());
4219        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4220      }
4221    }
4222  }
4223
4224  // Semantic checking for this function declaration (in isolation).
4225  if (getLangOptions().CPlusPlus) {
4226    // C++-specific checks.
4227    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4228      CheckConstructor(Constructor);
4229    } else if (CXXDestructorDecl *Destructor =
4230                dyn_cast<CXXDestructorDecl>(NewFD)) {
4231      CXXRecordDecl *Record = Destructor->getParent();
4232      QualType ClassType = Context.getTypeDeclType(Record);
4233
4234      // FIXME: Shouldn't we be able to perform this check even when the class
4235      // type is dependent? Both gcc and edg can handle that.
4236      if (!ClassType->isDependentType()) {
4237        DeclarationName Name
4238          = Context.DeclarationNames.getCXXDestructorName(
4239                                        Context.getCanonicalType(ClassType));
4240        if (NewFD->getDeclName() != Name) {
4241          Diag(NewFD->getLocation(), diag::err_destructor_name);
4242          return NewFD->setInvalidDecl();
4243        }
4244      }
4245    } else if (CXXConversionDecl *Conversion
4246               = dyn_cast<CXXConversionDecl>(NewFD)) {
4247      ActOnConversionDeclarator(Conversion);
4248    }
4249
4250    // Find any virtual functions that this function overrides.
4251    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4252      if (!Method->isFunctionTemplateSpecialization() &&
4253          !Method->getDescribedFunctionTemplate()) {
4254        if (AddOverriddenMethods(Method->getParent(), Method)) {
4255          // If the function was marked as "static", we have a problem.
4256          if (NewFD->getStorageClass() == SC_Static) {
4257            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4258              << NewFD->getDeclName();
4259            for (CXXMethodDecl::method_iterator
4260                      Overridden = Method->begin_overridden_methods(),
4261                   OverriddenEnd = Method->end_overridden_methods();
4262                 Overridden != OverriddenEnd;
4263                 ++Overridden) {
4264              Diag((*Overridden)->getLocation(),
4265                   diag::note_overridden_virtual_function);
4266            }
4267          }
4268        }
4269      }
4270    }
4271
4272    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4273    if (NewFD->isOverloadedOperator() &&
4274        CheckOverloadedOperatorDeclaration(NewFD))
4275      return NewFD->setInvalidDecl();
4276
4277    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4278    if (NewFD->getLiteralIdentifier() &&
4279        CheckLiteralOperatorDeclaration(NewFD))
4280      return NewFD->setInvalidDecl();
4281
4282    // In C++, check default arguments now that we have merged decls. Unless
4283    // the lexical context is the class, because in this case this is done
4284    // during delayed parsing anyway.
4285    if (!CurContext->isRecord())
4286      CheckCXXDefaultArguments(NewFD);
4287
4288    // If this function declares a builtin function, check the type of this
4289    // declaration against the expected type for the builtin.
4290    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4291      ASTContext::GetBuiltinTypeError Error;
4292      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4293      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4294        // The type of this function differs from the type of the builtin,
4295        // so forget about the builtin entirely.
4296        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4297      }
4298    }
4299  }
4300}
4301
4302void Sema::CheckMain(FunctionDecl* FD) {
4303  // C++ [basic.start.main]p3:  A program that declares main to be inline
4304  //   or static is ill-formed.
4305  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4306  //   shall not appear in a declaration of main.
4307  // static main is not an error under C99, but we should warn about it.
4308  bool isInline = FD->isInlineSpecified();
4309  bool isStatic = FD->getStorageClass() == SC_Static;
4310  if (isInline || isStatic) {
4311    unsigned diagID = diag::warn_unusual_main_decl;
4312    if (isInline || getLangOptions().CPlusPlus)
4313      diagID = diag::err_unusual_main_decl;
4314
4315    int which = isStatic + (isInline << 1) - 1;
4316    Diag(FD->getLocation(), diagID) << which;
4317  }
4318
4319  QualType T = FD->getType();
4320  assert(T->isFunctionType() && "function decl is not of function type");
4321  const FunctionType* FT = T->getAs<FunctionType>();
4322
4323  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4324    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4325    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4326    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4327                                          diag::err_main_returns_nonint);
4328    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4329      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4330                                        "int");
4331    }
4332    FD->setInvalidDecl(true);
4333  }
4334
4335  // Treat protoless main() as nullary.
4336  if (isa<FunctionNoProtoType>(FT)) return;
4337
4338  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4339  unsigned nparams = FTP->getNumArgs();
4340  assert(FD->getNumParams() == nparams);
4341
4342  bool HasExtraParameters = (nparams > 3);
4343
4344  // Darwin passes an undocumented fourth argument of type char**.  If
4345  // other platforms start sprouting these, the logic below will start
4346  // getting shifty.
4347  if (nparams == 4 &&
4348      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4349    HasExtraParameters = false;
4350
4351  if (HasExtraParameters) {
4352    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4353    FD->setInvalidDecl(true);
4354    nparams = 3;
4355  }
4356
4357  // FIXME: a lot of the following diagnostics would be improved
4358  // if we had some location information about types.
4359
4360  QualType CharPP =
4361    Context.getPointerType(Context.getPointerType(Context.CharTy));
4362  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4363
4364  for (unsigned i = 0; i < nparams; ++i) {
4365    QualType AT = FTP->getArgType(i);
4366
4367    bool mismatch = true;
4368
4369    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4370      mismatch = false;
4371    else if (Expected[i] == CharPP) {
4372      // As an extension, the following forms are okay:
4373      //   char const **
4374      //   char const * const *
4375      //   char * const *
4376
4377      QualifierCollector qs;
4378      const PointerType* PT;
4379      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4380          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4381          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4382        qs.removeConst();
4383        mismatch = !qs.empty();
4384      }
4385    }
4386
4387    if (mismatch) {
4388      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4389      // TODO: suggest replacing given type with expected type
4390      FD->setInvalidDecl(true);
4391    }
4392  }
4393
4394  if (nparams == 1 && !FD->isInvalidDecl()) {
4395    Diag(FD->getLocation(), diag::warn_main_one_arg);
4396  }
4397
4398  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4399    Diag(FD->getLocation(), diag::err_main_template_decl);
4400    FD->setInvalidDecl();
4401  }
4402}
4403
4404bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4405  // FIXME: Need strict checking.  In C89, we need to check for
4406  // any assignment, increment, decrement, function-calls, or
4407  // commas outside of a sizeof.  In C99, it's the same list,
4408  // except that the aforementioned are allowed in unevaluated
4409  // expressions.  Everything else falls under the
4410  // "may accept other forms of constant expressions" exception.
4411  // (We never end up here for C++, so the constant expression
4412  // rules there don't matter.)
4413  if (Init->isConstantInitializer(Context, false))
4414    return false;
4415  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4416    << Init->getSourceRange();
4417  return true;
4418}
4419
4420void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4421  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4422}
4423
4424/// AddInitializerToDecl - Adds the initializer Init to the
4425/// declaration dcl. If DirectInit is true, this is C++ direct
4426/// initialization rather than copy initialization.
4427void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4428  // If there is no declaration, there was an error parsing it.  Just ignore
4429  // the initializer.
4430  if (RealDecl == 0)
4431    return;
4432
4433  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4434    // With declarators parsed the way they are, the parser cannot
4435    // distinguish between a normal initializer and a pure-specifier.
4436    // Thus this grotesque test.
4437    IntegerLiteral *IL;
4438    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4439        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4440      CheckPureMethod(Method, Init->getSourceRange());
4441    else {
4442      Diag(Method->getLocation(), diag::err_member_function_initialization)
4443        << Method->getDeclName() << Init->getSourceRange();
4444      Method->setInvalidDecl();
4445    }
4446    return;
4447  }
4448
4449  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4450  if (!VDecl) {
4451    if (getLangOptions().CPlusPlus &&
4452        RealDecl->getLexicalDeclContext()->isRecord() &&
4453        isa<NamedDecl>(RealDecl))
4454      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4455    else
4456      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4457    RealDecl->setInvalidDecl();
4458    return;
4459  }
4460
4461
4462
4463  // A definition must end up with a complete type, which means it must be
4464  // complete with the restriction that an array type might be completed by the
4465  // initializer; note that later code assumes this restriction.
4466  QualType BaseDeclType = VDecl->getType();
4467  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4468    BaseDeclType = Array->getElementType();
4469  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4470                          diag::err_typecheck_decl_incomplete_type)) {
4471    RealDecl->setInvalidDecl();
4472    return;
4473  }
4474
4475  // The variable can not have an abstract class type.
4476  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4477                             diag::err_abstract_type_in_decl,
4478                             AbstractVariableType))
4479    VDecl->setInvalidDecl();
4480
4481  const VarDecl *Def;
4482  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4483    Diag(VDecl->getLocation(), diag::err_redefinition)
4484      << VDecl->getDeclName();
4485    Diag(Def->getLocation(), diag::note_previous_definition);
4486    VDecl->setInvalidDecl();
4487    return;
4488  }
4489
4490  const VarDecl* PrevInit = 0;
4491  if (getLangOptions().CPlusPlus) {
4492    // C++ [class.static.data]p4
4493    //   If a static data member is of const integral or const
4494    //   enumeration type, its declaration in the class definition can
4495    //   specify a constant-initializer which shall be an integral
4496    //   constant expression (5.19). In that case, the member can appear
4497    //   in integral constant expressions. The member shall still be
4498    //   defined in a namespace scope if it is used in the program and the
4499    //   namespace scope definition shall not contain an initializer.
4500    //
4501    // We already performed a redefinition check above, but for static
4502    // data members we also need to check whether there was an in-class
4503    // declaration with an initializer.
4504    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4505      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4506      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4507      return;
4508    }
4509
4510    if (VDecl->hasLocalStorage())
4511      getCurFunction()->setHasBranchProtectedScope();
4512
4513    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4514      VDecl->setInvalidDecl();
4515      return;
4516    }
4517  }
4518
4519  // Capture the variable that is being initialized and the style of
4520  // initialization.
4521  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4522
4523  // FIXME: Poor source location information.
4524  InitializationKind Kind
4525    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4526                                                   Init->getLocStart(),
4527                                                   Init->getLocEnd())
4528                : InitializationKind::CreateCopy(VDecl->getLocation(),
4529                                                 Init->getLocStart());
4530
4531  // Get the decls type and save a reference for later, since
4532  // CheckInitializerTypes may change it.
4533  QualType DclT = VDecl->getType(), SavT = DclT;
4534  if (VDecl->isLocalVarDecl()) {
4535    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4536      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4537      VDecl->setInvalidDecl();
4538    } else if (!VDecl->isInvalidDecl()) {
4539      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4540      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4541                                                MultiExprArg(*this, &Init, 1),
4542                                                &DclT);
4543      if (Result.isInvalid()) {
4544        VDecl->setInvalidDecl();
4545        return;
4546      }
4547
4548      Init = Result.takeAs<Expr>();
4549
4550      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4551      // Don't check invalid declarations to avoid emitting useless diagnostics.
4552      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4553        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4554          CheckForConstantInitializer(Init, DclT);
4555      }
4556    }
4557  } else if (VDecl->isStaticDataMember() &&
4558             VDecl->getLexicalDeclContext()->isRecord()) {
4559    // This is an in-class initialization for a static data member, e.g.,
4560    //
4561    // struct S {
4562    //   static const int value = 17;
4563    // };
4564
4565    // Try to perform the initialization regardless.
4566    if (!VDecl->isInvalidDecl()) {
4567      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4568      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4569                                          MultiExprArg(*this, &Init, 1),
4570                                          &DclT);
4571      if (Result.isInvalid()) {
4572        VDecl->setInvalidDecl();
4573        return;
4574      }
4575
4576      Init = Result.takeAs<Expr>();
4577    }
4578
4579    // C++ [class.mem]p4:
4580    //   A member-declarator can contain a constant-initializer only
4581    //   if it declares a static member (9.4) of const integral or
4582    //   const enumeration type, see 9.4.2.
4583    QualType T = VDecl->getType();
4584
4585    // Do nothing on dependent types.
4586    if (T->isDependentType()) {
4587
4588    // Require constness.
4589    } else if (!T.isConstQualified()) {
4590      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4591        << Init->getSourceRange();
4592      VDecl->setInvalidDecl();
4593
4594    // We allow integer constant expressions in all cases.
4595    } else if (T->isIntegralOrEnumerationType()) {
4596      if (!Init->isValueDependent()) {
4597        // Check whether the expression is a constant expression.
4598        llvm::APSInt Value;
4599        SourceLocation Loc;
4600        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4601          Diag(Loc, diag::err_in_class_initializer_non_constant)
4602            << Init->getSourceRange();
4603          VDecl->setInvalidDecl();
4604        }
4605      }
4606
4607    // We allow floating-point constants as an extension in C++03, and
4608    // C++0x has far more complicated rules that we don't really
4609    // implement fully.
4610    } else {
4611      bool Allowed = false;
4612      if (getLangOptions().CPlusPlus0x) {
4613        Allowed = T->isLiteralType();
4614      } else if (T->isFloatingType()) { // also permits complex, which is ok
4615        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4616          << T << Init->getSourceRange();
4617        Allowed = true;
4618      }
4619
4620      if (!Allowed) {
4621        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4622          << T << Init->getSourceRange();
4623        VDecl->setInvalidDecl();
4624
4625      // TODO: there are probably expressions that pass here that shouldn't.
4626      } else if (!Init->isValueDependent() &&
4627                 !Init->isConstantInitializer(Context, false)) {
4628        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4629          << Init->getSourceRange();
4630        VDecl->setInvalidDecl();
4631      }
4632    }
4633  } else if (VDecl->isFileVarDecl()) {
4634    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4635        (!getLangOptions().CPlusPlus ||
4636         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4637      Diag(VDecl->getLocation(), diag::warn_extern_init);
4638    if (!VDecl->isInvalidDecl()) {
4639      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4640      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4641                                                MultiExprArg(*this, &Init, 1),
4642                                                &DclT);
4643      if (Result.isInvalid()) {
4644        VDecl->setInvalidDecl();
4645        return;
4646      }
4647
4648      Init = Result.takeAs<Expr>();
4649    }
4650
4651    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4652    // Don't check invalid declarations to avoid emitting useless diagnostics.
4653    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4654      // C99 6.7.8p4. All file scoped initializers need to be constant.
4655      CheckForConstantInitializer(Init, DclT);
4656    }
4657  }
4658  // If the type changed, it means we had an incomplete type that was
4659  // completed by the initializer. For example:
4660  //   int ary[] = { 1, 3, 5 };
4661  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4662  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4663    VDecl->setType(DclT);
4664    Init->setType(DclT);
4665  }
4666
4667
4668  // If this variable is a local declaration with record type, make sure it
4669  // doesn't have a flexible member initialization.  We only support this as a
4670  // global/static definition.
4671  if (VDecl->hasLocalStorage())
4672    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4673      if (RT->getDecl()->hasFlexibleArrayMember()) {
4674        // Check whether the initializer tries to initialize the flexible
4675        // array member itself to anything other than an empty initializer list.
4676        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4677          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4678                                         RT->getDecl()->field_end()) - 1;
4679          if (Index < ILE->getNumInits() &&
4680              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4681                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4682            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4683            VDecl->setInvalidDecl();
4684          }
4685        }
4686      }
4687
4688  // Check any implicit conversions within the expression.
4689  CheckImplicitConversions(Init, VDecl->getLocation());
4690
4691  Init = MaybeCreateExprWithCleanups(Init);
4692  // Attach the initializer to the decl.
4693  VDecl->setInit(Init);
4694
4695  CheckCompleteVariableDeclaration(VDecl);
4696}
4697
4698/// ActOnInitializerError - Given that there was an error parsing an
4699/// initializer for the given declaration, try to return to some form
4700/// of sanity.
4701void Sema::ActOnInitializerError(Decl *D) {
4702  // Our main concern here is re-establishing invariants like "a
4703  // variable's type is either dependent or complete".
4704  if (!D || D->isInvalidDecl()) return;
4705
4706  VarDecl *VD = dyn_cast<VarDecl>(D);
4707  if (!VD) return;
4708
4709  QualType Ty = VD->getType();
4710  if (Ty->isDependentType()) return;
4711
4712  // Require a complete type.
4713  if (RequireCompleteType(VD->getLocation(),
4714                          Context.getBaseElementType(Ty),
4715                          diag::err_typecheck_decl_incomplete_type)) {
4716    VD->setInvalidDecl();
4717    return;
4718  }
4719
4720  // Require an abstract type.
4721  if (RequireNonAbstractType(VD->getLocation(), Ty,
4722                             diag::err_abstract_type_in_decl,
4723                             AbstractVariableType)) {
4724    VD->setInvalidDecl();
4725    return;
4726  }
4727
4728  // Don't bother complaining about constructors or destructors,
4729  // though.
4730}
4731
4732void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4733                                  bool TypeContainsUndeducedAuto) {
4734  // If there is no declaration, there was an error parsing it. Just ignore it.
4735  if (RealDecl == 0)
4736    return;
4737
4738  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4739    QualType Type = Var->getType();
4740
4741    // C++0x [dcl.spec.auto]p3
4742    if (TypeContainsUndeducedAuto) {
4743      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4744        << Var->getDeclName() << Type;
4745      Var->setInvalidDecl();
4746      return;
4747    }
4748
4749    switch (Var->isThisDeclarationADefinition()) {
4750    case VarDecl::Definition:
4751      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4752        break;
4753
4754      // We have an out-of-line definition of a static data member
4755      // that has an in-class initializer, so we type-check this like
4756      // a declaration.
4757      //
4758      // Fall through
4759
4760    case VarDecl::DeclarationOnly:
4761      // It's only a declaration.
4762
4763      // Block scope. C99 6.7p7: If an identifier for an object is
4764      // declared with no linkage (C99 6.2.2p6), the type for the
4765      // object shall be complete.
4766      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4767          !Var->getLinkage() && !Var->isInvalidDecl() &&
4768          RequireCompleteType(Var->getLocation(), Type,
4769                              diag::err_typecheck_decl_incomplete_type))
4770        Var->setInvalidDecl();
4771
4772      // Make sure that the type is not abstract.
4773      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4774          RequireNonAbstractType(Var->getLocation(), Type,
4775                                 diag::err_abstract_type_in_decl,
4776                                 AbstractVariableType))
4777        Var->setInvalidDecl();
4778      return;
4779
4780    case VarDecl::TentativeDefinition:
4781      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4782      // object that has file scope without an initializer, and without a
4783      // storage-class specifier or with the storage-class specifier "static",
4784      // constitutes a tentative definition. Note: A tentative definition with
4785      // external linkage is valid (C99 6.2.2p5).
4786      if (!Var->isInvalidDecl()) {
4787        if (const IncompleteArrayType *ArrayT
4788                                    = Context.getAsIncompleteArrayType(Type)) {
4789          if (RequireCompleteType(Var->getLocation(),
4790                                  ArrayT->getElementType(),
4791                                  diag::err_illegal_decl_array_incomplete_type))
4792            Var->setInvalidDecl();
4793        } else if (Var->getStorageClass() == SC_Static) {
4794          // C99 6.9.2p3: If the declaration of an identifier for an object is
4795          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4796          // declared type shall not be an incomplete type.
4797          // NOTE: code such as the following
4798          //     static struct s;
4799          //     struct s { int a; };
4800          // is accepted by gcc. Hence here we issue a warning instead of
4801          // an error and we do not invalidate the static declaration.
4802          // NOTE: to avoid multiple warnings, only check the first declaration.
4803          if (Var->getPreviousDeclaration() == 0)
4804            RequireCompleteType(Var->getLocation(), Type,
4805                                diag::ext_typecheck_decl_incomplete_type);
4806        }
4807      }
4808
4809      // Record the tentative definition; we're done.
4810      if (!Var->isInvalidDecl())
4811        TentativeDefinitions.push_back(Var);
4812      return;
4813    }
4814
4815    // Provide a specific diagnostic for uninitialized variable
4816    // definitions with incomplete array type.
4817    if (Type->isIncompleteArrayType()) {
4818      Diag(Var->getLocation(),
4819           diag::err_typecheck_incomplete_array_needs_initializer);
4820      Var->setInvalidDecl();
4821      return;
4822    }
4823
4824    // Provide a specific diagnostic for uninitialized variable
4825    // definitions with reference type.
4826    if (Type->isReferenceType()) {
4827      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4828        << Var->getDeclName()
4829        << SourceRange(Var->getLocation(), Var->getLocation());
4830      Var->setInvalidDecl();
4831      return;
4832    }
4833
4834    // Do not attempt to type-check the default initializer for a
4835    // variable with dependent type.
4836    if (Type->isDependentType())
4837      return;
4838
4839    if (Var->isInvalidDecl())
4840      return;
4841
4842    if (RequireCompleteType(Var->getLocation(),
4843                            Context.getBaseElementType(Type),
4844                            diag::err_typecheck_decl_incomplete_type)) {
4845      Var->setInvalidDecl();
4846      return;
4847    }
4848
4849    // The variable can not have an abstract class type.
4850    if (RequireNonAbstractType(Var->getLocation(), Type,
4851                               diag::err_abstract_type_in_decl,
4852                               AbstractVariableType)) {
4853      Var->setInvalidDecl();
4854      return;
4855    }
4856
4857    const RecordType *Record
4858      = Context.getBaseElementType(Type)->getAs<RecordType>();
4859    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4860        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4861      // C++03 [dcl.init]p9:
4862      //   If no initializer is specified for an object, and the
4863      //   object is of (possibly cv-qualified) non-POD class type (or
4864      //   array thereof), the object shall be default-initialized; if
4865      //   the object is of const-qualified type, the underlying class
4866      //   type shall have a user-declared default
4867      //   constructor. Otherwise, if no initializer is specified for
4868      //   a non- static object, the object and its subobjects, if
4869      //   any, have an indeterminate initial value); if the object
4870      //   or any of its subobjects are of const-qualified type, the
4871      //   program is ill-formed.
4872      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4873    } else {
4874      // Check for jumps past the implicit initializer.  C++0x
4875      // clarifies that this applies to a "variable with automatic
4876      // storage duration", not a "local variable".
4877      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4878        getCurFunction()->setHasBranchProtectedScope();
4879
4880      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4881      InitializationKind Kind
4882        = InitializationKind::CreateDefault(Var->getLocation());
4883
4884      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4885      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4886                                        MultiExprArg(*this, 0, 0));
4887      if (Init.isInvalid())
4888        Var->setInvalidDecl();
4889      else if (Init.get())
4890        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4891    }
4892
4893    CheckCompleteVariableDeclaration(Var);
4894  }
4895}
4896
4897void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
4898  if (var->isInvalidDecl()) return;
4899
4900  // All the following checks are C++ only.
4901  if (!getLangOptions().CPlusPlus) return;
4902
4903  QualType baseType = Context.getBaseElementType(var->getType());
4904  if (baseType->isDependentType()) return;
4905
4906  // __block variables might require us to capture a copy-initializer.
4907  if (var->hasAttr<BlocksAttr>()) {
4908    // It's currently invalid to ever have a __block variable with an
4909    // array type; should we diagnose that here?
4910
4911    // Regardless, we don't want to ignore array nesting when
4912    // constructing this copy.
4913    QualType type = var->getType();
4914
4915    if (type->isStructureOrClassType()) {
4916      SourceLocation poi = var->getLocation();
4917      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
4918      ExprResult result =
4919        PerformCopyInitialization(
4920                        InitializedEntity::InitializeBlock(poi, type, false),
4921                                  poi, Owned(varRef));
4922      if (!result.isInvalid()) {
4923        result = MaybeCreateExprWithCleanups(result);
4924        Expr *init = result.takeAs<Expr>();
4925        Context.setBlockVarCopyInits(var, init);
4926      }
4927    }
4928  }
4929
4930  // Check for global constructors.
4931  if (!var->getDeclContext()->isDependentContext() &&
4932      var->hasGlobalStorage() &&
4933      !var->isStaticLocal() &&
4934      var->getInit() &&
4935      !var->getInit()->isConstantInitializer(Context,
4936                                             baseType->isReferenceType()))
4937    Diag(var->getLocation(), diag::warn_global_constructor)
4938      << var->getInit()->getSourceRange();
4939
4940  // Require the destructor.
4941  if (const RecordType *recordType = baseType->getAs<RecordType>())
4942    FinalizeVarWithDestructor(var, recordType);
4943}
4944
4945Sema::DeclGroupPtrTy
4946Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4947                              Decl **Group, unsigned NumDecls) {
4948  llvm::SmallVector<Decl*, 8> Decls;
4949
4950  if (DS.isTypeSpecOwned())
4951    Decls.push_back(DS.getRepAsDecl());
4952
4953  for (unsigned i = 0; i != NumDecls; ++i)
4954    if (Decl *D = Group[i])
4955      Decls.push_back(D);
4956
4957  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4958                                                   Decls.data(), Decls.size()));
4959}
4960
4961
4962/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4963/// to introduce parameters into function prototype scope.
4964Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4965  const DeclSpec &DS = D.getDeclSpec();
4966
4967  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4968  VarDecl::StorageClass StorageClass = SC_None;
4969  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4970  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4971    StorageClass = SC_Register;
4972    StorageClassAsWritten = SC_Register;
4973  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4974    Diag(DS.getStorageClassSpecLoc(),
4975         diag::err_invalid_storage_class_in_func_decl);
4976    D.getMutableDeclSpec().ClearStorageClassSpecs();
4977  }
4978
4979  if (D.getDeclSpec().isThreadSpecified())
4980    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4981
4982  DiagnoseFunctionSpecifiers(D);
4983
4984  TagDecl *OwnedDecl = 0;
4985  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4986  QualType parmDeclType = TInfo->getType();
4987
4988  if (getLangOptions().CPlusPlus) {
4989    // Check that there are no default arguments inside the type of this
4990    // parameter.
4991    CheckExtraCXXDefaultArguments(D);
4992
4993    if (OwnedDecl && OwnedDecl->isDefinition()) {
4994      // C++ [dcl.fct]p6:
4995      //   Types shall not be defined in return or parameter types.
4996      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4997        << Context.getTypeDeclType(OwnedDecl);
4998    }
4999
5000    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5001    if (D.getCXXScopeSpec().isSet()) {
5002      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5003        << D.getCXXScopeSpec().getRange();
5004      D.getCXXScopeSpec().clear();
5005    }
5006  }
5007
5008  // Ensure we have a valid name
5009  IdentifierInfo *II = 0;
5010  if (D.hasName()) {
5011    II = D.getIdentifier();
5012    if (!II) {
5013      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5014        << GetNameForDeclarator(D).getName().getAsString();
5015      D.setInvalidType(true);
5016    }
5017  }
5018
5019  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5020  if (II) {
5021    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5022                   ForRedeclaration);
5023    LookupName(R, S);
5024    if (R.isSingleResult()) {
5025      NamedDecl *PrevDecl = R.getFoundDecl();
5026      if (PrevDecl->isTemplateParameter()) {
5027        // Maybe we will complain about the shadowed template parameter.
5028        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5029        // Just pretend that we didn't see the previous declaration.
5030        PrevDecl = 0;
5031      } else if (S->isDeclScope(PrevDecl)) {
5032        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5033        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5034
5035        // Recover by removing the name
5036        II = 0;
5037        D.SetIdentifier(0, D.getIdentifierLoc());
5038        D.setInvalidType(true);
5039      }
5040    }
5041  }
5042
5043  // Temporarily put parameter variables in the translation unit, not
5044  // the enclosing context.  This prevents them from accidentally
5045  // looking like class members in C++.
5046  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5047                                    TInfo, parmDeclType, II,
5048                                    D.getIdentifierLoc(),
5049                                    StorageClass, StorageClassAsWritten);
5050
5051  if (D.isInvalidType())
5052    New->setInvalidDecl();
5053
5054  // Add the parameter declaration into this scope.
5055  S->AddDecl(New);
5056  if (II)
5057    IdResolver.AddDecl(New);
5058
5059  ProcessDeclAttributes(S, New, D);
5060
5061  if (New->hasAttr<BlocksAttr>()) {
5062    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5063  }
5064  return New;
5065}
5066
5067/// \brief Synthesizes a variable for a parameter arising from a
5068/// typedef.
5069ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5070                                              SourceLocation Loc,
5071                                              QualType T) {
5072  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5073                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5074                                           SC_None, SC_None, 0);
5075  Param->setImplicit();
5076  return Param;
5077}
5078
5079void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5080                                    ParmVarDecl * const *ParamEnd) {
5081  // Don't diagnose unused-parameter errors in template instantiations; we
5082  // will already have done so in the template itself.
5083  if (!ActiveTemplateInstantiations.empty())
5084    return;
5085
5086  for (; Param != ParamEnd; ++Param) {
5087    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5088        !(*Param)->hasAttr<UnusedAttr>()) {
5089      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5090        << (*Param)->getDeclName();
5091    }
5092  }
5093}
5094
5095void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5096                                                  ParmVarDecl * const *ParamEnd,
5097                                                  QualType ReturnTy,
5098                                                  NamedDecl *D) {
5099  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5100    return;
5101
5102  // Warn if the return value is pass-by-value and larger than the specified
5103  // threshold.
5104  if (ReturnTy->isPODType()) {
5105    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5106    if (Size > LangOpts.NumLargeByValueCopy)
5107      Diag(D->getLocation(), diag::warn_return_value_size)
5108          << D->getDeclName() << Size;
5109  }
5110
5111  // Warn if any parameter is pass-by-value and larger than the specified
5112  // threshold.
5113  for (; Param != ParamEnd; ++Param) {
5114    QualType T = (*Param)->getType();
5115    if (!T->isPODType())
5116      continue;
5117    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5118    if (Size > LangOpts.NumLargeByValueCopy)
5119      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5120          << (*Param)->getDeclName() << Size;
5121  }
5122}
5123
5124ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5125                                  TypeSourceInfo *TSInfo, QualType T,
5126                                  IdentifierInfo *Name,
5127                                  SourceLocation NameLoc,
5128                                  VarDecl::StorageClass StorageClass,
5129                                  VarDecl::StorageClass StorageClassAsWritten) {
5130  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5131                                         adjustParameterType(T), TSInfo,
5132                                         StorageClass, StorageClassAsWritten,
5133                                         0);
5134
5135  // Parameters can not be abstract class types.
5136  // For record types, this is done by the AbstractClassUsageDiagnoser once
5137  // the class has been completely parsed.
5138  if (!CurContext->isRecord() &&
5139      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5140                             AbstractParamType))
5141    New->setInvalidDecl();
5142
5143  // Parameter declarators cannot be interface types. All ObjC objects are
5144  // passed by reference.
5145  if (T->isObjCObjectType()) {
5146    Diag(NameLoc,
5147         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5148    New->setInvalidDecl();
5149  }
5150
5151  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5152  // duration shall not be qualified by an address-space qualifier."
5153  // Since all parameters have automatic store duration, they can not have
5154  // an address space.
5155  if (T.getAddressSpace() != 0) {
5156    Diag(NameLoc, diag::err_arg_with_address_space);
5157    New->setInvalidDecl();
5158  }
5159
5160  return New;
5161}
5162
5163void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5164                                           SourceLocation LocAfterDecls) {
5165  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5166
5167  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5168  // for a K&R function.
5169  if (!FTI.hasPrototype) {
5170    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5171      --i;
5172      if (FTI.ArgInfo[i].Param == 0) {
5173        llvm::SmallString<256> Code;
5174        llvm::raw_svector_ostream(Code) << "  int "
5175                                        << FTI.ArgInfo[i].Ident->getName()
5176                                        << ";\n";
5177        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5178          << FTI.ArgInfo[i].Ident
5179          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5180
5181        // Implicitly declare the argument as type 'int' for lack of a better
5182        // type.
5183        DeclSpec DS;
5184        const char* PrevSpec; // unused
5185        unsigned DiagID; // unused
5186        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5187                           PrevSpec, DiagID);
5188        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5189        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5190        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5191      }
5192    }
5193  }
5194}
5195
5196Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5197                                         Declarator &D) {
5198  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5199  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5200  Scope *ParentScope = FnBodyScope->getParent();
5201
5202  Decl *DP = HandleDeclarator(ParentScope, D,
5203                              MultiTemplateParamsArg(*this),
5204                              /*IsFunctionDefinition=*/true);
5205  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5206}
5207
5208static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5209  // Don't warn about invalid declarations.
5210  if (FD->isInvalidDecl())
5211    return false;
5212
5213  // Or declarations that aren't global.
5214  if (!FD->isGlobal())
5215    return false;
5216
5217  // Don't warn about C++ member functions.
5218  if (isa<CXXMethodDecl>(FD))
5219    return false;
5220
5221  // Don't warn about 'main'.
5222  if (FD->isMain())
5223    return false;
5224
5225  // Don't warn about inline functions.
5226  if (FD->isInlineSpecified())
5227    return false;
5228
5229  // Don't warn about function templates.
5230  if (FD->getDescribedFunctionTemplate())
5231    return false;
5232
5233  // Don't warn about function template specializations.
5234  if (FD->isFunctionTemplateSpecialization())
5235    return false;
5236
5237  bool MissingPrototype = true;
5238  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5239       Prev; Prev = Prev->getPreviousDeclaration()) {
5240    // Ignore any declarations that occur in function or method
5241    // scope, because they aren't visible from the header.
5242    if (Prev->getDeclContext()->isFunctionOrMethod())
5243      continue;
5244
5245    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5246    break;
5247  }
5248
5249  return MissingPrototype;
5250}
5251
5252Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5253  // Clear the last template instantiation error context.
5254  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5255
5256  if (!D)
5257    return D;
5258  FunctionDecl *FD = 0;
5259
5260  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5261    FD = FunTmpl->getTemplatedDecl();
5262  else
5263    FD = cast<FunctionDecl>(D);
5264
5265  // Enter a new function scope
5266  PushFunctionScope();
5267
5268  // See if this is a redefinition.
5269  // But don't complain if we're in GNU89 mode and the previous definition
5270  // was an extern inline function.
5271  const FunctionDecl *Definition;
5272  if (FD->hasBody(Definition) &&
5273      !canRedefineFunction(Definition, getLangOptions())) {
5274    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5275        Definition->getStorageClass() == SC_Extern)
5276      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5277        << FD->getDeclName() << getLangOptions().CPlusPlus;
5278    else
5279      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5280    Diag(Definition->getLocation(), diag::note_previous_definition);
5281  }
5282
5283  // Builtin functions cannot be defined.
5284  if (unsigned BuiltinID = FD->getBuiltinID()) {
5285    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5286      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5287      FD->setInvalidDecl();
5288    }
5289  }
5290
5291  // The return type of a function definition must be complete
5292  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5293  QualType ResultType = FD->getResultType();
5294  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5295      !FD->isInvalidDecl() &&
5296      RequireCompleteType(FD->getLocation(), ResultType,
5297                          diag::err_func_def_incomplete_result))
5298    FD->setInvalidDecl();
5299
5300  // GNU warning -Wmissing-prototypes:
5301  //   Warn if a global function is defined without a previous
5302  //   prototype declaration. This warning is issued even if the
5303  //   definition itself provides a prototype. The aim is to detect
5304  //   global functions that fail to be declared in header files.
5305  if (ShouldWarnAboutMissingPrototype(FD))
5306    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5307
5308  if (FnBodyScope)
5309    PushDeclContext(FnBodyScope, FD);
5310
5311  // Check the validity of our function parameters
5312  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5313                           /*CheckParameterNames=*/true);
5314
5315  // Introduce our parameters into the function scope
5316  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5317    ParmVarDecl *Param = FD->getParamDecl(p);
5318    Param->setOwningFunction(FD);
5319
5320    // If this has an identifier, add it to the scope stack.
5321    if (Param->getIdentifier() && FnBodyScope) {
5322      CheckShadow(FnBodyScope, Param);
5323
5324      PushOnScopeChains(Param, FnBodyScope);
5325    }
5326  }
5327
5328  // Checking attributes of current function definition
5329  // dllimport attribute.
5330  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5331  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5332    // dllimport attribute cannot be directly applied to definition.
5333    if (!DA->isInherited()) {
5334      Diag(FD->getLocation(),
5335           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5336        << "dllimport";
5337      FD->setInvalidDecl();
5338      return FD;
5339    }
5340
5341    // Visual C++ appears to not think this is an issue, so only issue
5342    // a warning when Microsoft extensions are disabled.
5343    if (!LangOpts.Microsoft) {
5344      // If a symbol previously declared dllimport is later defined, the
5345      // attribute is ignored in subsequent references, and a warning is
5346      // emitted.
5347      Diag(FD->getLocation(),
5348           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5349        << FD->getName() << "dllimport";
5350    }
5351  }
5352  return FD;
5353}
5354
5355/// \brief Given the set of return statements within a function body,
5356/// compute the variables that are subject to the named return value
5357/// optimization.
5358///
5359/// Each of the variables that is subject to the named return value
5360/// optimization will be marked as NRVO variables in the AST, and any
5361/// return statement that has a marked NRVO variable as its NRVO candidate can
5362/// use the named return value optimization.
5363///
5364/// This function applies a very simplistic algorithm for NRVO: if every return
5365/// statement in the function has the same NRVO candidate, that candidate is
5366/// the NRVO variable.
5367///
5368/// FIXME: Employ a smarter algorithm that accounts for multiple return
5369/// statements and the lifetimes of the NRVO candidates. We should be able to
5370/// find a maximal set of NRVO variables.
5371static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5372  ReturnStmt **Returns = Scope->Returns.data();
5373
5374  const VarDecl *NRVOCandidate = 0;
5375  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5376    if (!Returns[I]->getNRVOCandidate())
5377      return;
5378
5379    if (!NRVOCandidate)
5380      NRVOCandidate = Returns[I]->getNRVOCandidate();
5381    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5382      return;
5383  }
5384
5385  if (NRVOCandidate)
5386    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5387}
5388
5389Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5390  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5391}
5392
5393Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5394                                    bool IsInstantiation) {
5395  FunctionDecl *FD = 0;
5396  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5397  if (FunTmpl)
5398    FD = FunTmpl->getTemplatedDecl();
5399  else
5400    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5401
5402  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5403
5404  if (FD) {
5405    FD->setBody(Body);
5406    if (FD->isMain()) {
5407      // C and C++ allow for main to automagically return 0.
5408      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5409      FD->setHasImplicitReturnZero(true);
5410      WP.disableCheckFallThrough();
5411    }
5412
5413    if (!FD->isInvalidDecl()) {
5414      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5415      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5416                                             FD->getResultType(), FD);
5417
5418      // If this is a constructor, we need a vtable.
5419      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5420        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5421
5422      ComputeNRVO(Body, getCurFunction());
5423    }
5424
5425    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5426  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5427    assert(MD == getCurMethodDecl() && "Method parsing confused");
5428    MD->setBody(Body);
5429    if (Body)
5430      MD->setEndLoc(Body->getLocEnd());
5431    if (!MD->isInvalidDecl()) {
5432      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5433      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5434                                             MD->getResultType(), MD);
5435    }
5436  } else {
5437    return 0;
5438  }
5439
5440  // Verify and clean out per-function state.
5441
5442  // Check goto/label use.
5443  FunctionScopeInfo *CurFn = getCurFunction();
5444  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5445         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5446    LabelStmt *L = I->second;
5447
5448    // Verify that we have no forward references left.  If so, there was a goto
5449    // or address of a label taken, but no definition of it.  Label fwd
5450    // definitions are indicated with a null substmt.
5451    if (L->getSubStmt() != 0) {
5452      if (!L->isUsed())
5453        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5454      continue;
5455    }
5456
5457    // Emit error.
5458    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5459
5460    // At this point, we have gotos that use the bogus label.  Stitch it into
5461    // the function body so that they aren't leaked and that the AST is well
5462    // formed.
5463    if (Body == 0) {
5464      // The whole function wasn't parsed correctly.
5465      continue;
5466    }
5467
5468    // Otherwise, the body is valid: we want to stitch the label decl into the
5469    // function somewhere so that it is properly owned and so that the goto
5470    // has a valid target.  Do this by creating a new compound stmt with the
5471    // label in it.
5472
5473    // Give the label a sub-statement.
5474    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5475
5476    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5477                               cast<CXXTryStmt>(Body)->getTryBlock() :
5478                               cast<CompoundStmt>(Body);
5479    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5480                                          Compound->body_end());
5481    Elements.push_back(L);
5482    Compound->setStmts(Context, Elements.data(), Elements.size());
5483  }
5484
5485  if (Body) {
5486    // C++ constructors that have function-try-blocks can't have return
5487    // statements in the handlers of that block. (C++ [except.handle]p14)
5488    // Verify this.
5489    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5490      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5491
5492    // Verify that that gotos and switch cases don't jump into scopes illegally.
5493    // Verify that that gotos and switch cases don't jump into scopes illegally.
5494    if (getCurFunction()->NeedsScopeChecking() &&
5495        !dcl->isInvalidDecl() &&
5496        !hasAnyErrorsInThisFunction())
5497      DiagnoseInvalidJumps(Body);
5498
5499    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5500      if (!Destructor->getParent()->isDependentType())
5501        CheckDestructor(Destructor);
5502
5503      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5504                                             Destructor->getParent());
5505    }
5506
5507    // If any errors have occurred, clear out any temporaries that may have
5508    // been leftover. This ensures that these temporaries won't be picked up for
5509    // deletion in some later function.
5510    if (PP.getDiagnostics().hasErrorOccurred())
5511      ExprTemporaries.clear();
5512    else if (!isa<FunctionTemplateDecl>(dcl)) {
5513      // Since the body is valid, issue any analysis-based warnings that are
5514      // enabled.
5515      QualType ResultType;
5516      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5517        AnalysisWarnings.IssueWarnings(WP, FD);
5518      } else {
5519        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5520        AnalysisWarnings.IssueWarnings(WP, MD);
5521      }
5522    }
5523
5524    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5525  }
5526
5527  if (!IsInstantiation)
5528    PopDeclContext();
5529
5530  PopFunctionOrBlockScope();
5531
5532  // If any errors have occurred, clear out any temporaries that may have
5533  // been leftover. This ensures that these temporaries won't be picked up for
5534  // deletion in some later function.
5535  if (getDiagnostics().hasErrorOccurred())
5536    ExprTemporaries.clear();
5537
5538  return dcl;
5539}
5540
5541/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5542/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5543NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5544                                          IdentifierInfo &II, Scope *S) {
5545  // Before we produce a declaration for an implicitly defined
5546  // function, see whether there was a locally-scoped declaration of
5547  // this name as a function or variable. If so, use that
5548  // (non-visible) declaration, and complain about it.
5549  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5550    = LocallyScopedExternalDecls.find(&II);
5551  if (Pos != LocallyScopedExternalDecls.end()) {
5552    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5553    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5554    return Pos->second;
5555  }
5556
5557  // Extension in C99.  Legal in C90, but warn about it.
5558  if (II.getName().startswith("__builtin_"))
5559    Diag(Loc, diag::warn_builtin_unknown) << &II;
5560  else if (getLangOptions().C99)
5561    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5562  else
5563    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5564
5565  // Set a Declarator for the implicit definition: int foo();
5566  const char *Dummy;
5567  DeclSpec DS;
5568  unsigned DiagID;
5569  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5570  (void)Error; // Silence warning.
5571  assert(!Error && "Error setting up implicit decl!");
5572  Declarator D(DS, Declarator::BlockContext);
5573  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5574                                             false, false, SourceLocation(), 0,
5575                                             0, 0, false, SourceLocation(),
5576                                             false, 0,0,0, Loc, Loc, D),
5577                SourceLocation());
5578  D.SetIdentifier(&II, Loc);
5579
5580  // Insert this function into translation-unit scope.
5581
5582  DeclContext *PrevDC = CurContext;
5583  CurContext = Context.getTranslationUnitDecl();
5584
5585  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5586  FD->setImplicit();
5587
5588  CurContext = PrevDC;
5589
5590  AddKnownFunctionAttributes(FD);
5591
5592  return FD;
5593}
5594
5595/// \brief Adds any function attributes that we know a priori based on
5596/// the declaration of this function.
5597///
5598/// These attributes can apply both to implicitly-declared builtins
5599/// (like __builtin___printf_chk) or to library-declared functions
5600/// like NSLog or printf.
5601void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5602  if (FD->isInvalidDecl())
5603    return;
5604
5605  // If this is a built-in function, map its builtin attributes to
5606  // actual attributes.
5607  if (unsigned BuiltinID = FD->getBuiltinID()) {
5608    // Handle printf-formatting attributes.
5609    unsigned FormatIdx;
5610    bool HasVAListArg;
5611    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5612      if (!FD->getAttr<FormatAttr>())
5613        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5614                                                "printf", FormatIdx+1,
5615                                               HasVAListArg ? 0 : FormatIdx+2));
5616    }
5617    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5618                                             HasVAListArg)) {
5619     if (!FD->getAttr<FormatAttr>())
5620       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5621                                              "scanf", FormatIdx+1,
5622                                              HasVAListArg ? 0 : FormatIdx+2));
5623    }
5624
5625    // Mark const if we don't care about errno and that is the only
5626    // thing preventing the function from being const. This allows
5627    // IRgen to use LLVM intrinsics for such functions.
5628    if (!getLangOptions().MathErrno &&
5629        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5630      if (!FD->getAttr<ConstAttr>())
5631        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5632    }
5633
5634    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5635      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5636    if (Context.BuiltinInfo.isConst(BuiltinID))
5637      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5638  }
5639
5640  IdentifierInfo *Name = FD->getIdentifier();
5641  if (!Name)
5642    return;
5643  if ((!getLangOptions().CPlusPlus &&
5644       FD->getDeclContext()->isTranslationUnit()) ||
5645      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5646       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5647       LinkageSpecDecl::lang_c)) {
5648    // Okay: this could be a libc/libm/Objective-C function we know
5649    // about.
5650  } else
5651    return;
5652
5653  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5654    // FIXME: NSLog and NSLogv should be target specific
5655    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5656      // FIXME: We known better than our headers.
5657      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5658    } else
5659      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5660                                             "printf", 1,
5661                                             Name->isStr("NSLogv") ? 0 : 2));
5662  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5663    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5664    // target-specific builtins, perhaps?
5665    if (!FD->getAttr<FormatAttr>())
5666      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5667                                             "printf", 2,
5668                                             Name->isStr("vasprintf") ? 0 : 3));
5669  }
5670}
5671
5672TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5673                                    TypeSourceInfo *TInfo) {
5674  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5675  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5676
5677  if (!TInfo) {
5678    assert(D.isInvalidType() && "no declarator info for valid type");
5679    TInfo = Context.getTrivialTypeSourceInfo(T);
5680  }
5681
5682  // Scope manipulation handled by caller.
5683  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5684                                           D.getIdentifierLoc(),
5685                                           D.getIdentifier(),
5686                                           TInfo);
5687
5688  if (const TagType *TT = T->getAs<TagType>()) {
5689    TagDecl *TD = TT->getDecl();
5690
5691    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5692    // keep track of the TypedefDecl.
5693    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5694      TD->setTypedefForAnonDecl(NewTD);
5695  }
5696
5697  if (D.isInvalidType())
5698    NewTD->setInvalidDecl();
5699  return NewTD;
5700}
5701
5702
5703/// \brief Determine whether a tag with a given kind is acceptable
5704/// as a redeclaration of the given tag declaration.
5705///
5706/// \returns true if the new tag kind is acceptable, false otherwise.
5707bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5708                                        TagTypeKind NewTag,
5709                                        SourceLocation NewTagLoc,
5710                                        const IdentifierInfo &Name) {
5711  // C++ [dcl.type.elab]p3:
5712  //   The class-key or enum keyword present in the
5713  //   elaborated-type-specifier shall agree in kind with the
5714  //   declaration to which the name in the elaborated-type-specifier
5715  //   refers. This rule also applies to the form of
5716  //   elaborated-type-specifier that declares a class-name or
5717  //   friend class since it can be construed as referring to the
5718  //   definition of the class. Thus, in any
5719  //   elaborated-type-specifier, the enum keyword shall be used to
5720  //   refer to an enumeration (7.2), the union class-key shall be
5721  //   used to refer to a union (clause 9), and either the class or
5722  //   struct class-key shall be used to refer to a class (clause 9)
5723  //   declared using the class or struct class-key.
5724  TagTypeKind OldTag = Previous->getTagKind();
5725  if (OldTag == NewTag)
5726    return true;
5727
5728  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5729      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5730    // Warn about the struct/class tag mismatch.
5731    bool isTemplate = false;
5732    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5733      isTemplate = Record->getDescribedClassTemplate();
5734
5735    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5736      << (NewTag == TTK_Class)
5737      << isTemplate << &Name
5738      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5739                              OldTag == TTK_Class? "class" : "struct");
5740    Diag(Previous->getLocation(), diag::note_previous_use);
5741    return true;
5742  }
5743  return false;
5744}
5745
5746/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5747/// former case, Name will be non-null.  In the later case, Name will be null.
5748/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5749/// reference/declaration/definition of a tag.
5750Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5751                     SourceLocation KWLoc, CXXScopeSpec &SS,
5752                     IdentifierInfo *Name, SourceLocation NameLoc,
5753                     AttributeList *Attr, AccessSpecifier AS,
5754                     MultiTemplateParamsArg TemplateParameterLists,
5755                     bool &OwnedDecl, bool &IsDependent,
5756                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5757                     TypeResult UnderlyingType) {
5758  // If this is not a definition, it must have a name.
5759  assert((Name != 0 || TUK == TUK_Definition) &&
5760         "Nameless record must be a definition!");
5761  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5762
5763  OwnedDecl = false;
5764  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5765
5766  // FIXME: Check explicit specializations more carefully.
5767  bool isExplicitSpecialization = false;
5768  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5769  bool Invalid = false;
5770
5771  // We only need to do this matching if we have template parameters
5772  // or a scope specifier, which also conveniently avoids this work
5773  // for non-C++ cases.
5774  if (NumMatchedTemplateParamLists ||
5775      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5776    if (TemplateParameterList *TemplateParams
5777          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5778                                                TemplateParameterLists.get(),
5779                                               TemplateParameterLists.size(),
5780                                                    TUK == TUK_Friend,
5781                                                    isExplicitSpecialization,
5782                                                    Invalid)) {
5783      // All but one template parameter lists have been matching.
5784      --NumMatchedTemplateParamLists;
5785
5786      if (TemplateParams->size() > 0) {
5787        // This is a declaration or definition of a class template (which may
5788        // be a member of another template).
5789        if (Invalid)
5790          return 0;
5791
5792        OwnedDecl = false;
5793        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5794                                               SS, Name, NameLoc, Attr,
5795                                               TemplateParams,
5796                                               AS);
5797        TemplateParameterLists.release();
5798        return Result.get();
5799      } else {
5800        // The "template<>" header is extraneous.
5801        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5802          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5803        isExplicitSpecialization = true;
5804      }
5805    }
5806  }
5807
5808  // Figure out the underlying type if this a enum declaration. We need to do
5809  // this early, because it's needed to detect if this is an incompatible
5810  // redeclaration.
5811  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5812
5813  if (Kind == TTK_Enum) {
5814    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5815      // No underlying type explicitly specified, or we failed to parse the
5816      // type, default to int.
5817      EnumUnderlying = Context.IntTy.getTypePtr();
5818    else if (UnderlyingType.get()) {
5819      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5820      // integral type; any cv-qualification is ignored.
5821      TypeSourceInfo *TI = 0;
5822      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5823      EnumUnderlying = TI;
5824
5825      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5826
5827      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5828        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5829          << T;
5830        // Recover by falling back to int.
5831        EnumUnderlying = Context.IntTy.getTypePtr();
5832      }
5833
5834      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5835                                          UPPC_FixedUnderlyingType))
5836        EnumUnderlying = Context.IntTy.getTypePtr();
5837
5838    } else if (getLangOptions().Microsoft)
5839      // Microsoft enums are always of int type.
5840      EnumUnderlying = Context.IntTy.getTypePtr();
5841  }
5842
5843  DeclContext *SearchDC = CurContext;
5844  DeclContext *DC = CurContext;
5845  bool isStdBadAlloc = false;
5846
5847  RedeclarationKind Redecl = ForRedeclaration;
5848  if (TUK == TUK_Friend || TUK == TUK_Reference)
5849    Redecl = NotForRedeclaration;
5850
5851  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5852
5853  if (Name && SS.isNotEmpty()) {
5854    // We have a nested-name tag ('struct foo::bar').
5855
5856    // Check for invalid 'foo::'.
5857    if (SS.isInvalid()) {
5858      Name = 0;
5859      goto CreateNewDecl;
5860    }
5861
5862    // If this is a friend or a reference to a class in a dependent
5863    // context, don't try to make a decl for it.
5864    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5865      DC = computeDeclContext(SS, false);
5866      if (!DC) {
5867        IsDependent = true;
5868        return 0;
5869      }
5870    } else {
5871      DC = computeDeclContext(SS, true);
5872      if (!DC) {
5873        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5874          << SS.getRange();
5875        return 0;
5876      }
5877    }
5878
5879    if (RequireCompleteDeclContext(SS, DC))
5880      return 0;
5881
5882    SearchDC = DC;
5883    // Look-up name inside 'foo::'.
5884    LookupQualifiedName(Previous, DC);
5885
5886    if (Previous.isAmbiguous())
5887      return 0;
5888
5889    if (Previous.empty()) {
5890      // Name lookup did not find anything. However, if the
5891      // nested-name-specifier refers to the current instantiation,
5892      // and that current instantiation has any dependent base
5893      // classes, we might find something at instantiation time: treat
5894      // this as a dependent elaborated-type-specifier.
5895      // But this only makes any sense for reference-like lookups.
5896      if (Previous.wasNotFoundInCurrentInstantiation() &&
5897          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5898        IsDependent = true;
5899        return 0;
5900      }
5901
5902      // A tag 'foo::bar' must already exist.
5903      Diag(NameLoc, diag::err_not_tag_in_scope)
5904        << Kind << Name << DC << SS.getRange();
5905      Name = 0;
5906      Invalid = true;
5907      goto CreateNewDecl;
5908    }
5909  } else if (Name) {
5910    // If this is a named struct, check to see if there was a previous forward
5911    // declaration or definition.
5912    // FIXME: We're looking into outer scopes here, even when we
5913    // shouldn't be. Doing so can result in ambiguities that we
5914    // shouldn't be diagnosing.
5915    LookupName(Previous, S);
5916
5917    // Note:  there used to be some attempt at recovery here.
5918    if (Previous.isAmbiguous())
5919      return 0;
5920
5921    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5922      // FIXME: This makes sure that we ignore the contexts associated
5923      // with C structs, unions, and enums when looking for a matching
5924      // tag declaration or definition. See the similar lookup tweak
5925      // in Sema::LookupName; is there a better way to deal with this?
5926      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5927        SearchDC = SearchDC->getParent();
5928    }
5929  } else if (S->isFunctionPrototypeScope()) {
5930    // If this is an enum declaration in function prototype scope, set its
5931    // initial context to the translation unit.
5932    SearchDC = Context.getTranslationUnitDecl();
5933  }
5934
5935  if (Previous.isSingleResult() &&
5936      Previous.getFoundDecl()->isTemplateParameter()) {
5937    // Maybe we will complain about the shadowed template parameter.
5938    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5939    // Just pretend that we didn't see the previous declaration.
5940    Previous.clear();
5941  }
5942
5943  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5944      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5945    // This is a declaration of or a reference to "std::bad_alloc".
5946    isStdBadAlloc = true;
5947
5948    if (Previous.empty() && StdBadAlloc) {
5949      // std::bad_alloc has been implicitly declared (but made invisible to
5950      // name lookup). Fill in this implicit declaration as the previous
5951      // declaration, so that the declarations get chained appropriately.
5952      Previous.addDecl(getStdBadAlloc());
5953    }
5954  }
5955
5956  // If we didn't find a previous declaration, and this is a reference
5957  // (or friend reference), move to the correct scope.  In C++, we
5958  // also need to do a redeclaration lookup there, just in case
5959  // there's a shadow friend decl.
5960  if (Name && Previous.empty() &&
5961      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5962    if (Invalid) goto CreateNewDecl;
5963    assert(SS.isEmpty());
5964
5965    if (TUK == TUK_Reference) {
5966      // C++ [basic.scope.pdecl]p5:
5967      //   -- for an elaborated-type-specifier of the form
5968      //
5969      //          class-key identifier
5970      //
5971      //      if the elaborated-type-specifier is used in the
5972      //      decl-specifier-seq or parameter-declaration-clause of a
5973      //      function defined in namespace scope, the identifier is
5974      //      declared as a class-name in the namespace that contains
5975      //      the declaration; otherwise, except as a friend
5976      //      declaration, the identifier is declared in the smallest
5977      //      non-class, non-function-prototype scope that contains the
5978      //      declaration.
5979      //
5980      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5981      // C structs and unions.
5982      //
5983      // It is an error in C++ to declare (rather than define) an enum
5984      // type, including via an elaborated type specifier.  We'll
5985      // diagnose that later; for now, declare the enum in the same
5986      // scope as we would have picked for any other tag type.
5987      //
5988      // GNU C also supports this behavior as part of its incomplete
5989      // enum types extension, while GNU C++ does not.
5990      //
5991      // Find the context where we'll be declaring the tag.
5992      // FIXME: We would like to maintain the current DeclContext as the
5993      // lexical context,
5994      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
5995        SearchDC = SearchDC->getParent();
5996
5997      // Find the scope where we'll be declaring the tag.
5998      while (S->isClassScope() ||
5999             (getLangOptions().CPlusPlus &&
6000              S->isFunctionPrototypeScope()) ||
6001             ((S->getFlags() & Scope::DeclScope) == 0) ||
6002             (S->getEntity() &&
6003              ((DeclContext *)S->getEntity())->isTransparentContext()))
6004        S = S->getParent();
6005    } else {
6006      assert(TUK == TUK_Friend);
6007      // C++ [namespace.memdef]p3:
6008      //   If a friend declaration in a non-local class first declares a
6009      //   class or function, the friend class or function is a member of
6010      //   the innermost enclosing namespace.
6011      SearchDC = SearchDC->getEnclosingNamespaceContext();
6012    }
6013
6014    // In C++, we need to do a redeclaration lookup to properly
6015    // diagnose some problems.
6016    if (getLangOptions().CPlusPlus) {
6017      Previous.setRedeclarationKind(ForRedeclaration);
6018      LookupQualifiedName(Previous, SearchDC);
6019    }
6020  }
6021
6022  if (!Previous.empty()) {
6023    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6024
6025    // It's okay to have a tag decl in the same scope as a typedef
6026    // which hides a tag decl in the same scope.  Finding this
6027    // insanity with a redeclaration lookup can only actually happen
6028    // in C++.
6029    //
6030    // This is also okay for elaborated-type-specifiers, which is
6031    // technically forbidden by the current standard but which is
6032    // okay according to the likely resolution of an open issue;
6033    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6034    if (getLangOptions().CPlusPlus) {
6035      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6036        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6037          TagDecl *Tag = TT->getDecl();
6038          if (Tag->getDeclName() == Name &&
6039              Tag->getDeclContext()->getRedeclContext()
6040                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6041            PrevDecl = Tag;
6042            Previous.clear();
6043            Previous.addDecl(Tag);
6044            Previous.resolveKind();
6045          }
6046        }
6047      }
6048    }
6049
6050    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6051      // If this is a use of a previous tag, or if the tag is already declared
6052      // in the same scope (so that the definition/declaration completes or
6053      // rementions the tag), reuse the decl.
6054      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6055          isDeclInScope(PrevDecl, SearchDC, S)) {
6056        // Make sure that this wasn't declared as an enum and now used as a
6057        // struct or something similar.
6058        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6059          bool SafeToContinue
6060            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6061               Kind != TTK_Enum);
6062          if (SafeToContinue)
6063            Diag(KWLoc, diag::err_use_with_wrong_tag)
6064              << Name
6065              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6066                                              PrevTagDecl->getKindName());
6067          else
6068            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6069          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6070
6071          if (SafeToContinue)
6072            Kind = PrevTagDecl->getTagKind();
6073          else {
6074            // Recover by making this an anonymous redefinition.
6075            Name = 0;
6076            Previous.clear();
6077            Invalid = true;
6078          }
6079        }
6080
6081        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6082          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6083
6084          // All conflicts with previous declarations are recovered by
6085          // returning the previous declaration.
6086          if (ScopedEnum != PrevEnum->isScoped()) {
6087            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6088              << PrevEnum->isScoped();
6089            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6090            return PrevTagDecl;
6091          }
6092          else if (EnumUnderlying && PrevEnum->isFixed()) {
6093            QualType T;
6094            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6095                T = TI->getType();
6096            else
6097                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6098
6099            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6100              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6101                   diag::err_enum_redeclare_type_mismatch)
6102                << T
6103                << PrevEnum->getIntegerType();
6104              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6105              return PrevTagDecl;
6106            }
6107          }
6108          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6109            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6110              << PrevEnum->isFixed();
6111            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6112            return PrevTagDecl;
6113          }
6114        }
6115
6116        if (!Invalid) {
6117          // If this is a use, just return the declaration we found.
6118
6119          // FIXME: In the future, return a variant or some other clue
6120          // for the consumer of this Decl to know it doesn't own it.
6121          // For our current ASTs this shouldn't be a problem, but will
6122          // need to be changed with DeclGroups.
6123          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6124              TUK == TUK_Friend)
6125            return PrevTagDecl;
6126
6127          // Diagnose attempts to redefine a tag.
6128          if (TUK == TUK_Definition) {
6129            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6130              // If we're defining a specialization and the previous definition
6131              // is from an implicit instantiation, don't emit an error
6132              // here; we'll catch this in the general case below.
6133              if (!isExplicitSpecialization ||
6134                  !isa<CXXRecordDecl>(Def) ||
6135                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6136                                               == TSK_ExplicitSpecialization) {
6137                Diag(NameLoc, diag::err_redefinition) << Name;
6138                Diag(Def->getLocation(), diag::note_previous_definition);
6139                // If this is a redefinition, recover by making this
6140                // struct be anonymous, which will make any later
6141                // references get the previous definition.
6142                Name = 0;
6143                Previous.clear();
6144                Invalid = true;
6145              }
6146            } else {
6147              // If the type is currently being defined, complain
6148              // about a nested redefinition.
6149              const TagType *Tag
6150                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6151              if (Tag->isBeingDefined()) {
6152                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6153                Diag(PrevTagDecl->getLocation(),
6154                     diag::note_previous_definition);
6155                Name = 0;
6156                Previous.clear();
6157                Invalid = true;
6158              }
6159            }
6160
6161            // Okay, this is definition of a previously declared or referenced
6162            // tag PrevDecl. We're going to create a new Decl for it.
6163          }
6164        }
6165        // If we get here we have (another) forward declaration or we
6166        // have a definition.  Just create a new decl.
6167
6168      } else {
6169        // If we get here, this is a definition of a new tag type in a nested
6170        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6171        // new decl/type.  We set PrevDecl to NULL so that the entities
6172        // have distinct types.
6173        Previous.clear();
6174      }
6175      // If we get here, we're going to create a new Decl. If PrevDecl
6176      // is non-NULL, it's a definition of the tag declared by
6177      // PrevDecl. If it's NULL, we have a new definition.
6178
6179
6180    // Otherwise, PrevDecl is not a tag, but was found with tag
6181    // lookup.  This is only actually possible in C++, where a few
6182    // things like templates still live in the tag namespace.
6183    } else {
6184      assert(getLangOptions().CPlusPlus);
6185
6186      // Use a better diagnostic if an elaborated-type-specifier
6187      // found the wrong kind of type on the first
6188      // (non-redeclaration) lookup.
6189      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6190          !Previous.isForRedeclaration()) {
6191        unsigned Kind = 0;
6192        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6193        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6194        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6195        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6196        Invalid = true;
6197
6198      // Otherwise, only diagnose if the declaration is in scope.
6199      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6200        // do nothing
6201
6202      // Diagnose implicit declarations introduced by elaborated types.
6203      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6204        unsigned Kind = 0;
6205        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6206        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6207        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6208        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6209        Invalid = true;
6210
6211      // Otherwise it's a declaration.  Call out a particularly common
6212      // case here.
6213      } else if (isa<TypedefDecl>(PrevDecl)) {
6214        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6215          << Name
6216          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6217        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6218        Invalid = true;
6219
6220      // Otherwise, diagnose.
6221      } else {
6222        // The tag name clashes with something else in the target scope,
6223        // issue an error and recover by making this tag be anonymous.
6224        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6225        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6226        Name = 0;
6227        Invalid = true;
6228      }
6229
6230      // The existing declaration isn't relevant to us; we're in a
6231      // new scope, so clear out the previous declaration.
6232      Previous.clear();
6233    }
6234  }
6235
6236CreateNewDecl:
6237
6238  TagDecl *PrevDecl = 0;
6239  if (Previous.isSingleResult())
6240    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6241
6242  // If there is an identifier, use the location of the identifier as the
6243  // location of the decl, otherwise use the location of the struct/union
6244  // keyword.
6245  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6246
6247  // Otherwise, create a new declaration. If there is a previous
6248  // declaration of the same entity, the two will be linked via
6249  // PrevDecl.
6250  TagDecl *New;
6251
6252  bool IsForwardReference = false;
6253  if (Kind == TTK_Enum) {
6254    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6255    // enum X { A, B, C } D;    D should chain to X.
6256    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6257                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6258                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6259    // If this is an undefined enum, warn.
6260    if (TUK != TUK_Definition && !Invalid) {
6261      TagDecl *Def;
6262      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6263        // C++0x: 7.2p2: opaque-enum-declaration.
6264        // Conflicts are diagnosed above. Do nothing.
6265      }
6266      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6267        Diag(Loc, diag::ext_forward_ref_enum_def)
6268          << New;
6269        Diag(Def->getLocation(), diag::note_previous_definition);
6270      } else {
6271        unsigned DiagID = diag::ext_forward_ref_enum;
6272        if (getLangOptions().Microsoft)
6273          DiagID = diag::ext_ms_forward_ref_enum;
6274        else if (getLangOptions().CPlusPlus)
6275          DiagID = diag::err_forward_ref_enum;
6276        Diag(Loc, DiagID);
6277
6278        // If this is a forward-declared reference to an enumeration, make a
6279        // note of it; we won't actually be introducing the declaration into
6280        // the declaration context.
6281        if (TUK == TUK_Reference)
6282          IsForwardReference = true;
6283      }
6284    }
6285
6286    if (EnumUnderlying) {
6287      EnumDecl *ED = cast<EnumDecl>(New);
6288      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6289        ED->setIntegerTypeSourceInfo(TI);
6290      else
6291        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6292      ED->setPromotionType(ED->getIntegerType());
6293    }
6294
6295  } else {
6296    // struct/union/class
6297
6298    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6299    // struct X { int A; } D;    D should chain to X.
6300    if (getLangOptions().CPlusPlus) {
6301      // FIXME: Look for a way to use RecordDecl for simple structs.
6302      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6303                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6304
6305      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6306        StdBadAlloc = cast<CXXRecordDecl>(New);
6307    } else
6308      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6309                               cast_or_null<RecordDecl>(PrevDecl));
6310  }
6311
6312  // Maybe add qualifier info.
6313  if (SS.isNotEmpty()) {
6314    if (SS.isSet()) {
6315      NestedNameSpecifier *NNS
6316        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6317      New->setQualifierInfo(NNS, SS.getRange());
6318      if (NumMatchedTemplateParamLists > 0) {
6319        New->setTemplateParameterListsInfo(Context,
6320                                           NumMatchedTemplateParamLists,
6321                    (TemplateParameterList**) TemplateParameterLists.release());
6322      }
6323    }
6324    else
6325      Invalid = true;
6326  }
6327
6328  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6329    // Add alignment attributes if necessary; these attributes are checked when
6330    // the ASTContext lays out the structure.
6331    //
6332    // It is important for implementing the correct semantics that this
6333    // happen here (in act on tag decl). The #pragma pack stack is
6334    // maintained as a result of parser callbacks which can occur at
6335    // many points during the parsing of a struct declaration (because
6336    // the #pragma tokens are effectively skipped over during the
6337    // parsing of the struct).
6338    AddAlignmentAttributesForRecord(RD);
6339  }
6340
6341  // If this is a specialization of a member class (of a class template),
6342  // check the specialization.
6343  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6344    Invalid = true;
6345
6346  if (Invalid)
6347    New->setInvalidDecl();
6348
6349  if (Attr)
6350    ProcessDeclAttributeList(S, New, Attr);
6351
6352  // If we're declaring or defining a tag in function prototype scope
6353  // in C, note that this type can only be used within the function.
6354  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6355    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6356
6357  // Set the lexical context. If the tag has a C++ scope specifier, the
6358  // lexical context will be different from the semantic context.
6359  New->setLexicalDeclContext(CurContext);
6360
6361  // Mark this as a friend decl if applicable.
6362  if (TUK == TUK_Friend)
6363    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6364
6365  // Set the access specifier.
6366  if (!Invalid && SearchDC->isRecord())
6367    SetMemberAccessSpecifier(New, PrevDecl, AS);
6368
6369  if (TUK == TUK_Definition)
6370    New->startDefinition();
6371
6372  // If this has an identifier, add it to the scope stack.
6373  if (TUK == TUK_Friend) {
6374    // We might be replacing an existing declaration in the lookup tables;
6375    // if so, borrow its access specifier.
6376    if (PrevDecl)
6377      New->setAccess(PrevDecl->getAccess());
6378
6379    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6380    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6381    if (Name) // can be null along some error paths
6382      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6383        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6384  } else if (Name) {
6385    S = getNonFieldDeclScope(S);
6386    PushOnScopeChains(New, S, !IsForwardReference);
6387    if (IsForwardReference)
6388      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6389
6390  } else {
6391    CurContext->addDecl(New);
6392  }
6393
6394  // If this is the C FILE type, notify the AST context.
6395  if (IdentifierInfo *II = New->getIdentifier())
6396    if (!New->isInvalidDecl() &&
6397        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6398        II->isStr("FILE"))
6399      Context.setFILEDecl(New);
6400
6401  OwnedDecl = true;
6402  return New;
6403}
6404
6405void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6406  AdjustDeclIfTemplate(TagD);
6407  TagDecl *Tag = cast<TagDecl>(TagD);
6408
6409  // Enter the tag context.
6410  PushDeclContext(S, Tag);
6411}
6412
6413void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6414                                           SourceLocation LBraceLoc) {
6415  AdjustDeclIfTemplate(TagD);
6416  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6417
6418  FieldCollector->StartClass();
6419
6420  if (!Record->getIdentifier())
6421    return;
6422
6423  // C++ [class]p2:
6424  //   [...] The class-name is also inserted into the scope of the
6425  //   class itself; this is known as the injected-class-name. For
6426  //   purposes of access checking, the injected-class-name is treated
6427  //   as if it were a public member name.
6428  CXXRecordDecl *InjectedClassName
6429    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6430                            CurContext, Record->getLocation(),
6431                            Record->getIdentifier(),
6432                            Record->getTagKeywordLoc(),
6433                            /*PrevDecl=*/0,
6434                            /*DelayTypeCreation=*/true);
6435  Context.getTypeDeclType(InjectedClassName, Record);
6436  InjectedClassName->setImplicit();
6437  InjectedClassName->setAccess(AS_public);
6438  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6439      InjectedClassName->setDescribedClassTemplate(Template);
6440  PushOnScopeChains(InjectedClassName, S);
6441  assert(InjectedClassName->isInjectedClassName() &&
6442         "Broken injected-class-name");
6443}
6444
6445void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6446                                    SourceLocation RBraceLoc) {
6447  AdjustDeclIfTemplate(TagD);
6448  TagDecl *Tag = cast<TagDecl>(TagD);
6449  Tag->setRBraceLoc(RBraceLoc);
6450
6451  if (isa<CXXRecordDecl>(Tag))
6452    FieldCollector->FinishClass();
6453
6454  // Exit this scope of this tag's definition.
6455  PopDeclContext();
6456
6457  // Notify the consumer that we've defined a tag.
6458  Consumer.HandleTagDeclDefinition(Tag);
6459}
6460
6461void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6462  AdjustDeclIfTemplate(TagD);
6463  TagDecl *Tag = cast<TagDecl>(TagD);
6464  Tag->setInvalidDecl();
6465
6466  // We're undoing ActOnTagStartDefinition here, not
6467  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6468  // the FieldCollector.
6469
6470  PopDeclContext();
6471}
6472
6473// Note that FieldName may be null for anonymous bitfields.
6474bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6475                          QualType FieldTy, const Expr *BitWidth,
6476                          bool *ZeroWidth) {
6477  // Default to true; that shouldn't confuse checks for emptiness
6478  if (ZeroWidth)
6479    *ZeroWidth = true;
6480
6481  // C99 6.7.2.1p4 - verify the field type.
6482  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6483  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6484    // Handle incomplete types with specific error.
6485    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6486      return true;
6487    if (FieldName)
6488      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6489        << FieldName << FieldTy << BitWidth->getSourceRange();
6490    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6491      << FieldTy << BitWidth->getSourceRange();
6492  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6493                                             UPPC_BitFieldWidth))
6494    return true;
6495
6496  // If the bit-width is type- or value-dependent, don't try to check
6497  // it now.
6498  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6499    return false;
6500
6501  llvm::APSInt Value;
6502  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6503    return true;
6504
6505  if (Value != 0 && ZeroWidth)
6506    *ZeroWidth = false;
6507
6508  // Zero-width bitfield is ok for anonymous field.
6509  if (Value == 0 && FieldName)
6510    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6511
6512  if (Value.isSigned() && Value.isNegative()) {
6513    if (FieldName)
6514      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6515               << FieldName << Value.toString(10);
6516    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6517      << Value.toString(10);
6518  }
6519
6520  if (!FieldTy->isDependentType()) {
6521    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6522    if (Value.getZExtValue() > TypeSize) {
6523      if (!getLangOptions().CPlusPlus) {
6524        if (FieldName)
6525          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6526            << FieldName << (unsigned)Value.getZExtValue()
6527            << (unsigned)TypeSize;
6528
6529        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6530          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6531      }
6532
6533      if (FieldName)
6534        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6535          << FieldName << (unsigned)Value.getZExtValue()
6536          << (unsigned)TypeSize;
6537      else
6538        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6539          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6540    }
6541  }
6542
6543  return false;
6544}
6545
6546/// ActOnField - Each field of a struct/union/class is passed into this in order
6547/// to create a FieldDecl object for it.
6548Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6549                                 SourceLocation DeclStart,
6550                                 Declarator &D, ExprTy *BitfieldWidth) {
6551  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6552                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6553                               AS_public);
6554  return Res;
6555}
6556
6557/// HandleField - Analyze a field of a C struct or a C++ data member.
6558///
6559FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6560                             SourceLocation DeclStart,
6561                             Declarator &D, Expr *BitWidth,
6562                             AccessSpecifier AS) {
6563  IdentifierInfo *II = D.getIdentifier();
6564  SourceLocation Loc = DeclStart;
6565  if (II) Loc = D.getIdentifierLoc();
6566
6567  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6568  QualType T = TInfo->getType();
6569  if (getLangOptions().CPlusPlus) {
6570    CheckExtraCXXDefaultArguments(D);
6571
6572    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6573                                        UPPC_DataMemberType)) {
6574      D.setInvalidType();
6575      T = Context.IntTy;
6576      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6577    }
6578  }
6579
6580  DiagnoseFunctionSpecifiers(D);
6581
6582  if (D.getDeclSpec().isThreadSpecified())
6583    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6584
6585  // Check to see if this name was declared as a member previously
6586  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6587  LookupName(Previous, S);
6588  assert((Previous.empty() || Previous.isOverloadedResult() ||
6589          Previous.isSingleResult())
6590    && "Lookup of member name should be either overloaded, single or null");
6591
6592  // If the name is overloaded then get any declaration else get the single result
6593  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6594    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6595
6596  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6597    // Maybe we will complain about the shadowed template parameter.
6598    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6599    // Just pretend that we didn't see the previous declaration.
6600    PrevDecl = 0;
6601  }
6602
6603  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6604    PrevDecl = 0;
6605
6606  bool Mutable
6607    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6608  SourceLocation TSSL = D.getSourceRange().getBegin();
6609  FieldDecl *NewFD
6610    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6611                     AS, PrevDecl, &D);
6612
6613  if (NewFD->isInvalidDecl())
6614    Record->setInvalidDecl();
6615
6616  if (NewFD->isInvalidDecl() && PrevDecl) {
6617    // Don't introduce NewFD into scope; there's already something
6618    // with the same name in the same scope.
6619  } else if (II) {
6620    PushOnScopeChains(NewFD, S);
6621  } else
6622    Record->addDecl(NewFD);
6623
6624  return NewFD;
6625}
6626
6627/// \brief Build a new FieldDecl and check its well-formedness.
6628///
6629/// This routine builds a new FieldDecl given the fields name, type,
6630/// record, etc. \p PrevDecl should refer to any previous declaration
6631/// with the same name and in the same scope as the field to be
6632/// created.
6633///
6634/// \returns a new FieldDecl.
6635///
6636/// \todo The Declarator argument is a hack. It will be removed once
6637FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6638                                TypeSourceInfo *TInfo,
6639                                RecordDecl *Record, SourceLocation Loc,
6640                                bool Mutable, Expr *BitWidth,
6641                                SourceLocation TSSL,
6642                                AccessSpecifier AS, NamedDecl *PrevDecl,
6643                                Declarator *D) {
6644  IdentifierInfo *II = Name.getAsIdentifierInfo();
6645  bool InvalidDecl = false;
6646  if (D) InvalidDecl = D->isInvalidType();
6647
6648  // If we receive a broken type, recover by assuming 'int' and
6649  // marking this declaration as invalid.
6650  if (T.isNull()) {
6651    InvalidDecl = true;
6652    T = Context.IntTy;
6653  }
6654
6655  QualType EltTy = Context.getBaseElementType(T);
6656  if (!EltTy->isDependentType() &&
6657      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6658    // Fields of incomplete type force their record to be invalid.
6659    Record->setInvalidDecl();
6660    InvalidDecl = true;
6661  }
6662
6663  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6664  // than a variably modified type.
6665  if (!InvalidDecl && T->isVariablyModifiedType()) {
6666    bool SizeIsNegative;
6667    llvm::APSInt Oversized;
6668    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6669                                                           SizeIsNegative,
6670                                                           Oversized);
6671    if (!FixedTy.isNull()) {
6672      Diag(Loc, diag::warn_illegal_constant_array_size);
6673      T = FixedTy;
6674    } else {
6675      if (SizeIsNegative)
6676        Diag(Loc, diag::err_typecheck_negative_array_size);
6677      else if (Oversized.getBoolValue())
6678        Diag(Loc, diag::err_array_too_large)
6679          << Oversized.toString(10);
6680      else
6681        Diag(Loc, diag::err_typecheck_field_variable_size);
6682      InvalidDecl = true;
6683    }
6684  }
6685
6686  // Fields can not have abstract class types
6687  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6688                                             diag::err_abstract_type_in_decl,
6689                                             AbstractFieldType))
6690    InvalidDecl = true;
6691
6692  bool ZeroWidth = false;
6693  // If this is declared as a bit-field, check the bit-field.
6694  if (!InvalidDecl && BitWidth &&
6695      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6696    InvalidDecl = true;
6697    BitWidth = 0;
6698    ZeroWidth = false;
6699  }
6700
6701  // Check that 'mutable' is consistent with the type of the declaration.
6702  if (!InvalidDecl && Mutable) {
6703    unsigned DiagID = 0;
6704    if (T->isReferenceType())
6705      DiagID = diag::err_mutable_reference;
6706    else if (T.isConstQualified())
6707      DiagID = diag::err_mutable_const;
6708
6709    if (DiagID) {
6710      SourceLocation ErrLoc = Loc;
6711      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6712        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6713      Diag(ErrLoc, DiagID);
6714      Mutable = false;
6715      InvalidDecl = true;
6716    }
6717  }
6718
6719  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6720                                       BitWidth, Mutable);
6721  if (InvalidDecl)
6722    NewFD->setInvalidDecl();
6723
6724  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6725    Diag(Loc, diag::err_duplicate_member) << II;
6726    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6727    NewFD->setInvalidDecl();
6728  }
6729
6730  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6731    if (Record->isUnion()) {
6732      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6733        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6734        if (RDecl->getDefinition()) {
6735          // C++ [class.union]p1: An object of a class with a non-trivial
6736          // constructor, a non-trivial copy constructor, a non-trivial
6737          // destructor, or a non-trivial copy assignment operator
6738          // cannot be a member of a union, nor can an array of such
6739          // objects.
6740          // TODO: C++0x alters this restriction significantly.
6741          if (CheckNontrivialField(NewFD))
6742            NewFD->setInvalidDecl();
6743        }
6744      }
6745
6746      // C++ [class.union]p1: If a union contains a member of reference type,
6747      // the program is ill-formed.
6748      if (EltTy->isReferenceType()) {
6749        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6750          << NewFD->getDeclName() << EltTy;
6751        NewFD->setInvalidDecl();
6752      }
6753    }
6754  }
6755
6756  // FIXME: We need to pass in the attributes given an AST
6757  // representation, not a parser representation.
6758  if (D)
6759    // FIXME: What to pass instead of TUScope?
6760    ProcessDeclAttributes(TUScope, NewFD, *D);
6761
6762  if (T.isObjCGCWeak())
6763    Diag(Loc, diag::warn_attribute_weak_on_field);
6764
6765  NewFD->setAccess(AS);
6766  return NewFD;
6767}
6768
6769bool Sema::CheckNontrivialField(FieldDecl *FD) {
6770  assert(FD);
6771  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6772
6773  if (FD->isInvalidDecl())
6774    return true;
6775
6776  QualType EltTy = Context.getBaseElementType(FD->getType());
6777  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6778    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6779    if (RDecl->getDefinition()) {
6780      // We check for copy constructors before constructors
6781      // because otherwise we'll never get complaints about
6782      // copy constructors.
6783
6784      CXXSpecialMember member = CXXInvalid;
6785      if (!RDecl->hasTrivialCopyConstructor())
6786        member = CXXCopyConstructor;
6787      else if (!RDecl->hasTrivialConstructor())
6788        member = CXXConstructor;
6789      else if (!RDecl->hasTrivialCopyAssignment())
6790        member = CXXCopyAssignment;
6791      else if (!RDecl->hasTrivialDestructor())
6792        member = CXXDestructor;
6793
6794      if (member != CXXInvalid) {
6795        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6796              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6797        DiagnoseNontrivial(RT, member);
6798        return true;
6799      }
6800    }
6801  }
6802
6803  return false;
6804}
6805
6806/// DiagnoseNontrivial - Given that a class has a non-trivial
6807/// special member, figure out why.
6808void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6809  QualType QT(T, 0U);
6810  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6811
6812  // Check whether the member was user-declared.
6813  switch (member) {
6814  case CXXInvalid:
6815    break;
6816
6817  case CXXConstructor:
6818    if (RD->hasUserDeclaredConstructor()) {
6819      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6820      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6821        const FunctionDecl *body = 0;
6822        ci->hasBody(body);
6823        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6824          SourceLocation CtorLoc = ci->getLocation();
6825          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6826          return;
6827        }
6828      }
6829
6830      assert(0 && "found no user-declared constructors");
6831      return;
6832    }
6833    break;
6834
6835  case CXXCopyConstructor:
6836    if (RD->hasUserDeclaredCopyConstructor()) {
6837      SourceLocation CtorLoc =
6838        RD->getCopyConstructor(Context, 0)->getLocation();
6839      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6840      return;
6841    }
6842    break;
6843
6844  case CXXCopyAssignment:
6845    if (RD->hasUserDeclaredCopyAssignment()) {
6846      // FIXME: this should use the location of the copy
6847      // assignment, not the type.
6848      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6849      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6850      return;
6851    }
6852    break;
6853
6854  case CXXDestructor:
6855    if (RD->hasUserDeclaredDestructor()) {
6856      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6857      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6858      return;
6859    }
6860    break;
6861  }
6862
6863  typedef CXXRecordDecl::base_class_iterator base_iter;
6864
6865  // Virtual bases and members inhibit trivial copying/construction,
6866  // but not trivial destruction.
6867  if (member != CXXDestructor) {
6868    // Check for virtual bases.  vbases includes indirect virtual bases,
6869    // so we just iterate through the direct bases.
6870    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6871      if (bi->isVirtual()) {
6872        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6873        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6874        return;
6875      }
6876
6877    // Check for virtual methods.
6878    typedef CXXRecordDecl::method_iterator meth_iter;
6879    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6880         ++mi) {
6881      if (mi->isVirtual()) {
6882        SourceLocation MLoc = mi->getSourceRange().getBegin();
6883        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6884        return;
6885      }
6886    }
6887  }
6888
6889  bool (CXXRecordDecl::*hasTrivial)() const;
6890  switch (member) {
6891  case CXXConstructor:
6892    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6893  case CXXCopyConstructor:
6894    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6895  case CXXCopyAssignment:
6896    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6897  case CXXDestructor:
6898    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6899  default:
6900    assert(0 && "unexpected special member"); return;
6901  }
6902
6903  // Check for nontrivial bases (and recurse).
6904  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6905    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6906    assert(BaseRT && "Don't know how to handle dependent bases");
6907    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6908    if (!(BaseRecTy->*hasTrivial)()) {
6909      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6910      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6911      DiagnoseNontrivial(BaseRT, member);
6912      return;
6913    }
6914  }
6915
6916  // Check for nontrivial members (and recurse).
6917  typedef RecordDecl::field_iterator field_iter;
6918  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6919       ++fi) {
6920    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6921    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6922      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6923
6924      if (!(EltRD->*hasTrivial)()) {
6925        SourceLocation FLoc = (*fi)->getLocation();
6926        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6927        DiagnoseNontrivial(EltRT, member);
6928        return;
6929      }
6930    }
6931  }
6932
6933  assert(0 && "found no explanation for non-trivial member");
6934}
6935
6936/// TranslateIvarVisibility - Translate visibility from a token ID to an
6937///  AST enum value.
6938static ObjCIvarDecl::AccessControl
6939TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6940  switch (ivarVisibility) {
6941  default: assert(0 && "Unknown visitibility kind");
6942  case tok::objc_private: return ObjCIvarDecl::Private;
6943  case tok::objc_public: return ObjCIvarDecl::Public;
6944  case tok::objc_protected: return ObjCIvarDecl::Protected;
6945  case tok::objc_package: return ObjCIvarDecl::Package;
6946  }
6947}
6948
6949/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6950/// in order to create an IvarDecl object for it.
6951Decl *Sema::ActOnIvar(Scope *S,
6952                                SourceLocation DeclStart,
6953                                Decl *IntfDecl,
6954                                Declarator &D, ExprTy *BitfieldWidth,
6955                                tok::ObjCKeywordKind Visibility) {
6956
6957  IdentifierInfo *II = D.getIdentifier();
6958  Expr *BitWidth = (Expr*)BitfieldWidth;
6959  SourceLocation Loc = DeclStart;
6960  if (II) Loc = D.getIdentifierLoc();
6961
6962  // FIXME: Unnamed fields can be handled in various different ways, for
6963  // example, unnamed unions inject all members into the struct namespace!
6964
6965  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6966  QualType T = TInfo->getType();
6967
6968  if (BitWidth) {
6969    // 6.7.2.1p3, 6.7.2.1p4
6970    if (VerifyBitField(Loc, II, T, BitWidth)) {
6971      D.setInvalidType();
6972      BitWidth = 0;
6973    }
6974  } else {
6975    // Not a bitfield.
6976
6977    // validate II.
6978
6979  }
6980  if (T->isReferenceType()) {
6981    Diag(Loc, diag::err_ivar_reference_type);
6982    D.setInvalidType();
6983  }
6984  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6985  // than a variably modified type.
6986  else if (T->isVariablyModifiedType()) {
6987    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6988    D.setInvalidType();
6989  }
6990
6991  // Get the visibility (access control) for this ivar.
6992  ObjCIvarDecl::AccessControl ac =
6993    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6994                                        : ObjCIvarDecl::None;
6995  // Must set ivar's DeclContext to its enclosing interface.
6996  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6997  ObjCContainerDecl *EnclosingContext;
6998  if (ObjCImplementationDecl *IMPDecl =
6999      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7000    if (!LangOpts.ObjCNonFragileABI2) {
7001    // Case of ivar declared in an implementation. Context is that of its class.
7002      EnclosingContext = IMPDecl->getClassInterface();
7003      assert(EnclosingContext && "Implementation has no class interface!");
7004    }
7005    else
7006      EnclosingContext = EnclosingDecl;
7007  } else {
7008    if (ObjCCategoryDecl *CDecl =
7009        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7010      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7011        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7012        return 0;
7013      }
7014    }
7015    EnclosingContext = EnclosingDecl;
7016  }
7017
7018  // Construct the decl.
7019  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7020                                             EnclosingContext, Loc, II, T,
7021                                             TInfo, ac, (Expr *)BitfieldWidth);
7022
7023  if (II) {
7024    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7025                                           ForRedeclaration);
7026    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7027        && !isa<TagDecl>(PrevDecl)) {
7028      Diag(Loc, diag::err_duplicate_member) << II;
7029      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7030      NewID->setInvalidDecl();
7031    }
7032  }
7033
7034  // Process attributes attached to the ivar.
7035  ProcessDeclAttributes(S, NewID, D);
7036
7037  if (D.isInvalidType())
7038    NewID->setInvalidDecl();
7039
7040  if (II) {
7041    // FIXME: When interfaces are DeclContexts, we'll need to add
7042    // these to the interface.
7043    S->AddDecl(NewID);
7044    IdResolver.AddDecl(NewID);
7045  }
7046
7047  return NewID;
7048}
7049
7050/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7051/// class and class extensions. For every class @interface and class
7052/// extension @interface, if the last ivar is a bitfield of any type,
7053/// then add an implicit `char :0` ivar to the end of that interface.
7054void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7055                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7056  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7057    return;
7058
7059  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7060  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7061
7062  if (!Ivar->isBitField())
7063    return;
7064  uint64_t BitFieldSize =
7065    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7066  if (BitFieldSize == 0)
7067    return;
7068  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7069  if (!ID) {
7070    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7071      if (!CD->IsClassExtension())
7072        return;
7073    }
7074    // No need to add this to end of @implementation.
7075    else
7076      return;
7077  }
7078  // All conditions are met. Add a new bitfield to the tail end of ivars.
7079  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7080  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7081
7082  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7083                              DeclLoc, 0,
7084                              Context.CharTy,
7085                              Context.CreateTypeSourceInfo(Context.CharTy),
7086                              ObjCIvarDecl::Private, BW,
7087                              true);
7088  AllIvarDecls.push_back(Ivar);
7089}
7090
7091void Sema::ActOnFields(Scope* S,
7092                       SourceLocation RecLoc, Decl *EnclosingDecl,
7093                       Decl **Fields, unsigned NumFields,
7094                       SourceLocation LBrac, SourceLocation RBrac,
7095                       AttributeList *Attr) {
7096  assert(EnclosingDecl && "missing record or interface decl");
7097
7098  // If the decl this is being inserted into is invalid, then it may be a
7099  // redeclaration or some other bogus case.  Don't try to add fields to it.
7100  if (EnclosingDecl->isInvalidDecl()) {
7101    // FIXME: Deallocate fields?
7102    return;
7103  }
7104
7105
7106  // Verify that all the fields are okay.
7107  unsigned NumNamedMembers = 0;
7108  llvm::SmallVector<FieldDecl*, 32> RecFields;
7109
7110  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7111  for (unsigned i = 0; i != NumFields; ++i) {
7112    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7113
7114    // Get the type for the field.
7115    const Type *FDTy = FD->getType().getTypePtr();
7116
7117    if (!FD->isAnonymousStructOrUnion()) {
7118      // Remember all fields written by the user.
7119      RecFields.push_back(FD);
7120    }
7121
7122    // If the field is already invalid for some reason, don't emit more
7123    // diagnostics about it.
7124    if (FD->isInvalidDecl()) {
7125      EnclosingDecl->setInvalidDecl();
7126      continue;
7127    }
7128
7129    // C99 6.7.2.1p2:
7130    //   A structure or union shall not contain a member with
7131    //   incomplete or function type (hence, a structure shall not
7132    //   contain an instance of itself, but may contain a pointer to
7133    //   an instance of itself), except that the last member of a
7134    //   structure with more than one named member may have incomplete
7135    //   array type; such a structure (and any union containing,
7136    //   possibly recursively, a member that is such a structure)
7137    //   shall not be a member of a structure or an element of an
7138    //   array.
7139    if (FDTy->isFunctionType()) {
7140      // Field declared as a function.
7141      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7142        << FD->getDeclName();
7143      FD->setInvalidDecl();
7144      EnclosingDecl->setInvalidDecl();
7145      continue;
7146    } else if (FDTy->isIncompleteArrayType() && Record &&
7147               ((i == NumFields - 1 && !Record->isUnion()) ||
7148                (getLangOptions().Microsoft &&
7149                 (i == NumFields - 1 || Record->isUnion())))) {
7150      // Flexible array member.
7151      // Microsoft is more permissive regarding flexible array.
7152      // It will accept flexible array in union and also
7153      // as the sole element of a struct/class.
7154      if (getLangOptions().Microsoft) {
7155        if (Record->isUnion())
7156          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7157            << FD->getDeclName();
7158        else if (NumFields == 1)
7159          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7160            << FD->getDeclName() << Record->getTagKind();
7161      } else  if (NumNamedMembers < 1) {
7162        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7163          << FD->getDeclName();
7164        FD->setInvalidDecl();
7165        EnclosingDecl->setInvalidDecl();
7166        continue;
7167      }
7168      if (!FD->getType()->isDependentType() &&
7169          !Context.getBaseElementType(FD->getType())->isPODType()) {
7170        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7171          << FD->getDeclName() << FD->getType();
7172        FD->setInvalidDecl();
7173        EnclosingDecl->setInvalidDecl();
7174        continue;
7175      }
7176      // Okay, we have a legal flexible array member at the end of the struct.
7177      if (Record)
7178        Record->setHasFlexibleArrayMember(true);
7179    } else if (!FDTy->isDependentType() &&
7180               RequireCompleteType(FD->getLocation(), FD->getType(),
7181                                   diag::err_field_incomplete)) {
7182      // Incomplete type
7183      FD->setInvalidDecl();
7184      EnclosingDecl->setInvalidDecl();
7185      continue;
7186    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7187      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7188        // If this is a member of a union, then entire union becomes "flexible".
7189        if (Record && Record->isUnion()) {
7190          Record->setHasFlexibleArrayMember(true);
7191        } else {
7192          // If this is a struct/class and this is not the last element, reject
7193          // it.  Note that GCC supports variable sized arrays in the middle of
7194          // structures.
7195          if (i != NumFields-1)
7196            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7197              << FD->getDeclName() << FD->getType();
7198          else {
7199            // We support flexible arrays at the end of structs in
7200            // other structs as an extension.
7201            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7202              << FD->getDeclName();
7203            if (Record)
7204              Record->setHasFlexibleArrayMember(true);
7205          }
7206        }
7207      }
7208      if (Record && FDTTy->getDecl()->hasObjectMember())
7209        Record->setHasObjectMember(true);
7210    } else if (FDTy->isObjCObjectType()) {
7211      /// A field cannot be an Objective-c object
7212      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7213      FD->setInvalidDecl();
7214      EnclosingDecl->setInvalidDecl();
7215      continue;
7216    } else if (getLangOptions().ObjC1 &&
7217               getLangOptions().getGCMode() != LangOptions::NonGC &&
7218               Record &&
7219               (FD->getType()->isObjCObjectPointerType() ||
7220                FD->getType().isObjCGCStrong()))
7221      Record->setHasObjectMember(true);
7222    else if (Context.getAsArrayType(FD->getType())) {
7223      QualType BaseType = Context.getBaseElementType(FD->getType());
7224      if (Record && BaseType->isRecordType() &&
7225          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7226        Record->setHasObjectMember(true);
7227    }
7228    // Keep track of the number of named members.
7229    if (FD->getIdentifier())
7230      ++NumNamedMembers;
7231  }
7232
7233  // Okay, we successfully defined 'Record'.
7234  if (Record) {
7235    bool Completed = false;
7236    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7237      if (!CXXRecord->isInvalidDecl()) {
7238        // Set access bits correctly on the directly-declared conversions.
7239        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7240        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7241             I != E; ++I)
7242          Convs->setAccess(I, (*I)->getAccess());
7243
7244        if (!CXXRecord->isDependentType()) {
7245          // Add any implicitly-declared members to this class.
7246          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7247
7248          // If we have virtual base classes, we may end up finding multiple
7249          // final overriders for a given virtual function. Check for this
7250          // problem now.
7251          if (CXXRecord->getNumVBases()) {
7252            CXXFinalOverriderMap FinalOverriders;
7253            CXXRecord->getFinalOverriders(FinalOverriders);
7254
7255            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7256                                             MEnd = FinalOverriders.end();
7257                 M != MEnd; ++M) {
7258              for (OverridingMethods::iterator SO = M->second.begin(),
7259                                            SOEnd = M->second.end();
7260                   SO != SOEnd; ++SO) {
7261                assert(SO->second.size() > 0 &&
7262                       "Virtual function without overridding functions?");
7263                if (SO->second.size() == 1)
7264                  continue;
7265
7266                // C++ [class.virtual]p2:
7267                //   In a derived class, if a virtual member function of a base
7268                //   class subobject has more than one final overrider the
7269                //   program is ill-formed.
7270                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7271                  << (NamedDecl *)M->first << Record;
7272                Diag(M->first->getLocation(),
7273                     diag::note_overridden_virtual_function);
7274                for (OverridingMethods::overriding_iterator
7275                          OM = SO->second.begin(),
7276                       OMEnd = SO->second.end();
7277                     OM != OMEnd; ++OM)
7278                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7279                    << (NamedDecl *)M->first << OM->Method->getParent();
7280
7281                Record->setInvalidDecl();
7282              }
7283            }
7284            CXXRecord->completeDefinition(&FinalOverriders);
7285            Completed = true;
7286          }
7287        }
7288      }
7289    }
7290
7291    if (!Completed)
7292      Record->completeDefinition();
7293  } else {
7294    ObjCIvarDecl **ClsFields =
7295      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7296    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7297      ID->setLocEnd(RBrac);
7298      // Add ivar's to class's DeclContext.
7299      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7300        ClsFields[i]->setLexicalDeclContext(ID);
7301        ID->addDecl(ClsFields[i]);
7302      }
7303      // Must enforce the rule that ivars in the base classes may not be
7304      // duplicates.
7305      if (ID->getSuperClass())
7306        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7307    } else if (ObjCImplementationDecl *IMPDecl =
7308                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7309      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7310      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7311        // Ivar declared in @implementation never belongs to the implementation.
7312        // Only it is in implementation's lexical context.
7313        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7314      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7315    } else if (ObjCCategoryDecl *CDecl =
7316                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7317      // case of ivars in class extension; all other cases have been
7318      // reported as errors elsewhere.
7319      // FIXME. Class extension does not have a LocEnd field.
7320      // CDecl->setLocEnd(RBrac);
7321      // Add ivar's to class extension's DeclContext.
7322      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7323        ClsFields[i]->setLexicalDeclContext(CDecl);
7324        CDecl->addDecl(ClsFields[i]);
7325      }
7326    }
7327  }
7328
7329  if (Attr)
7330    ProcessDeclAttributeList(S, Record, Attr);
7331
7332  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7333  // set the visibility of this record.
7334  if (Record && !Record->getDeclContext()->isRecord())
7335    AddPushedVisibilityAttribute(Record);
7336}
7337
7338/// \brief Determine whether the given integral value is representable within
7339/// the given type T.
7340static bool isRepresentableIntegerValue(ASTContext &Context,
7341                                        llvm::APSInt &Value,
7342                                        QualType T) {
7343  assert(T->isIntegralType(Context) && "Integral type required!");
7344  unsigned BitWidth = Context.getIntWidth(T);
7345
7346  if (Value.isUnsigned() || Value.isNonNegative()) {
7347    if (T->isSignedIntegerType())
7348      --BitWidth;
7349    return Value.getActiveBits() <= BitWidth;
7350  }
7351  return Value.getMinSignedBits() <= BitWidth;
7352}
7353
7354// \brief Given an integral type, return the next larger integral type
7355// (or a NULL type of no such type exists).
7356static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7357  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7358  // enum checking below.
7359  assert(T->isIntegralType(Context) && "Integral type required!");
7360  const unsigned NumTypes = 4;
7361  QualType SignedIntegralTypes[NumTypes] = {
7362    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7363  };
7364  QualType UnsignedIntegralTypes[NumTypes] = {
7365    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7366    Context.UnsignedLongLongTy
7367  };
7368
7369  unsigned BitWidth = Context.getTypeSize(T);
7370  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7371                                            : UnsignedIntegralTypes;
7372  for (unsigned I = 0; I != NumTypes; ++I)
7373    if (Context.getTypeSize(Types[I]) > BitWidth)
7374      return Types[I];
7375
7376  return QualType();
7377}
7378
7379EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7380                                          EnumConstantDecl *LastEnumConst,
7381                                          SourceLocation IdLoc,
7382                                          IdentifierInfo *Id,
7383                                          Expr *Val) {
7384  unsigned IntWidth = Context.Target.getIntWidth();
7385  llvm::APSInt EnumVal(IntWidth);
7386  QualType EltTy;
7387
7388  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7389    Val = 0;
7390
7391  if (Val) {
7392    if (Enum->isDependentType() || Val->isTypeDependent())
7393      EltTy = Context.DependentTy;
7394    else {
7395      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7396      SourceLocation ExpLoc;
7397      if (!Val->isValueDependent() &&
7398          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7399        Val = 0;
7400      } else {
7401        if (!getLangOptions().CPlusPlus) {
7402          // C99 6.7.2.2p2:
7403          //   The expression that defines the value of an enumeration constant
7404          //   shall be an integer constant expression that has a value
7405          //   representable as an int.
7406
7407          // Complain if the value is not representable in an int.
7408          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7409            Diag(IdLoc, diag::ext_enum_value_not_int)
7410              << EnumVal.toString(10) << Val->getSourceRange()
7411              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7412          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7413            // Force the type of the expression to 'int'.
7414            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7415          }
7416        }
7417
7418        if (Enum->isFixed()) {
7419          EltTy = Enum->getIntegerType();
7420
7421          // C++0x [dcl.enum]p5:
7422          //   ... if the initializing value of an enumerator cannot be
7423          //   represented by the underlying type, the program is ill-formed.
7424          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7425            if (getLangOptions().Microsoft) {
7426              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7427              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7428            } else
7429              Diag(IdLoc, diag::err_enumerator_too_large)
7430                << EltTy;
7431          } else
7432            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7433        }
7434        else {
7435          // C++0x [dcl.enum]p5:
7436          //   If the underlying type is not fixed, the type of each enumerator
7437          //   is the type of its initializing value:
7438          //     - If an initializer is specified for an enumerator, the
7439          //       initializing value has the same type as the expression.
7440          EltTy = Val->getType();
7441        }
7442      }
7443    }
7444  }
7445
7446  if (!Val) {
7447    if (Enum->isDependentType())
7448      EltTy = Context.DependentTy;
7449    else if (!LastEnumConst) {
7450      // C++0x [dcl.enum]p5:
7451      //   If the underlying type is not fixed, the type of each enumerator
7452      //   is the type of its initializing value:
7453      //     - If no initializer is specified for the first enumerator, the
7454      //       initializing value has an unspecified integral type.
7455      //
7456      // GCC uses 'int' for its unspecified integral type, as does
7457      // C99 6.7.2.2p3.
7458      if (Enum->isFixed()) {
7459        EltTy = Enum->getIntegerType();
7460      }
7461      else {
7462        EltTy = Context.IntTy;
7463      }
7464    } else {
7465      // Assign the last value + 1.
7466      EnumVal = LastEnumConst->getInitVal();
7467      ++EnumVal;
7468      EltTy = LastEnumConst->getType();
7469
7470      // Check for overflow on increment.
7471      if (EnumVal < LastEnumConst->getInitVal()) {
7472        // C++0x [dcl.enum]p5:
7473        //   If the underlying type is not fixed, the type of each enumerator
7474        //   is the type of its initializing value:
7475        //
7476        //     - Otherwise the type of the initializing value is the same as
7477        //       the type of the initializing value of the preceding enumerator
7478        //       unless the incremented value is not representable in that type,
7479        //       in which case the type is an unspecified integral type
7480        //       sufficient to contain the incremented value. If no such type
7481        //       exists, the program is ill-formed.
7482        QualType T = getNextLargerIntegralType(Context, EltTy);
7483        if (T.isNull() || Enum->isFixed()) {
7484          // There is no integral type larger enough to represent this
7485          // value. Complain, then allow the value to wrap around.
7486          EnumVal = LastEnumConst->getInitVal();
7487          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7488          ++EnumVal;
7489          if (Enum->isFixed())
7490            // When the underlying type is fixed, this is ill-formed.
7491            Diag(IdLoc, diag::err_enumerator_wrapped)
7492              << EnumVal.toString(10)
7493              << EltTy;
7494          else
7495            Diag(IdLoc, diag::warn_enumerator_too_large)
7496              << EnumVal.toString(10);
7497        } else {
7498          EltTy = T;
7499        }
7500
7501        // Retrieve the last enumerator's value, extent that type to the
7502        // type that is supposed to be large enough to represent the incremented
7503        // value, then increment.
7504        EnumVal = LastEnumConst->getInitVal();
7505        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7506        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7507        ++EnumVal;
7508
7509        // If we're not in C++, diagnose the overflow of enumerator values,
7510        // which in C99 means that the enumerator value is not representable in
7511        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7512        // permits enumerator values that are representable in some larger
7513        // integral type.
7514        if (!getLangOptions().CPlusPlus && !T.isNull())
7515          Diag(IdLoc, diag::warn_enum_value_overflow);
7516      } else if (!getLangOptions().CPlusPlus &&
7517                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7518        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7519        Diag(IdLoc, diag::ext_enum_value_not_int)
7520          << EnumVal.toString(10) << 1;
7521      }
7522    }
7523  }
7524
7525  if (!EltTy->isDependentType()) {
7526    // Make the enumerator value match the signedness and size of the
7527    // enumerator's type.
7528    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7529    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7530  }
7531
7532  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7533                                  Val, EnumVal);
7534}
7535
7536
7537Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7538                              SourceLocation IdLoc, IdentifierInfo *Id,
7539                              AttributeList *Attr,
7540                              SourceLocation EqualLoc, ExprTy *val) {
7541  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7542  EnumConstantDecl *LastEnumConst =
7543    cast_or_null<EnumConstantDecl>(lastEnumConst);
7544  Expr *Val = static_cast<Expr*>(val);
7545
7546  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7547  // we find one that is.
7548  S = getNonFieldDeclScope(S);
7549
7550  // Verify that there isn't already something declared with this name in this
7551  // scope.
7552  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7553                                         ForRedeclaration);
7554  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7555    // Maybe we will complain about the shadowed template parameter.
7556    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7557    // Just pretend that we didn't see the previous declaration.
7558    PrevDecl = 0;
7559  }
7560
7561  if (PrevDecl) {
7562    // When in C++, we may get a TagDecl with the same name; in this case the
7563    // enum constant will 'hide' the tag.
7564    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7565           "Received TagDecl when not in C++!");
7566    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7567      if (isa<EnumConstantDecl>(PrevDecl))
7568        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7569      else
7570        Diag(IdLoc, diag::err_redefinition) << Id;
7571      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7572      return 0;
7573    }
7574  }
7575
7576  // C++ [class.mem]p13:
7577  //   If T is the name of a class, then each of the following shall have a
7578  //   name different from T:
7579  //     - every enumerator of every member of class T that is an enumerated
7580  //       type
7581  if (CXXRecordDecl *Record
7582                      = dyn_cast<CXXRecordDecl>(
7583                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7584    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7585      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7586
7587  EnumConstantDecl *New =
7588    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7589
7590  if (New) {
7591    // Process attributes.
7592    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7593
7594    // Register this decl in the current scope stack.
7595    New->setAccess(TheEnumDecl->getAccess());
7596    PushOnScopeChains(New, S);
7597  }
7598
7599  return New;
7600}
7601
7602void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7603                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7604                         Decl **Elements, unsigned NumElements,
7605                         Scope *S, AttributeList *Attr) {
7606  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7607  QualType EnumType = Context.getTypeDeclType(Enum);
7608
7609  if (Attr)
7610    ProcessDeclAttributeList(S, Enum, Attr);
7611
7612  if (Enum->isDependentType()) {
7613    for (unsigned i = 0; i != NumElements; ++i) {
7614      EnumConstantDecl *ECD =
7615        cast_or_null<EnumConstantDecl>(Elements[i]);
7616      if (!ECD) continue;
7617
7618      ECD->setType(EnumType);
7619    }
7620
7621    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7622    return;
7623  }
7624
7625  // TODO: If the result value doesn't fit in an int, it must be a long or long
7626  // long value.  ISO C does not support this, but GCC does as an extension,
7627  // emit a warning.
7628  unsigned IntWidth = Context.Target.getIntWidth();
7629  unsigned CharWidth = Context.Target.getCharWidth();
7630  unsigned ShortWidth = Context.Target.getShortWidth();
7631
7632  // Verify that all the values are okay, compute the size of the values, and
7633  // reverse the list.
7634  unsigned NumNegativeBits = 0;
7635  unsigned NumPositiveBits = 0;
7636
7637  // Keep track of whether all elements have type int.
7638  bool AllElementsInt = true;
7639
7640  for (unsigned i = 0; i != NumElements; ++i) {
7641    EnumConstantDecl *ECD =
7642      cast_or_null<EnumConstantDecl>(Elements[i]);
7643    if (!ECD) continue;  // Already issued a diagnostic.
7644
7645    const llvm::APSInt &InitVal = ECD->getInitVal();
7646
7647    // Keep track of the size of positive and negative values.
7648    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7649      NumPositiveBits = std::max(NumPositiveBits,
7650                                 (unsigned)InitVal.getActiveBits());
7651    else
7652      NumNegativeBits = std::max(NumNegativeBits,
7653                                 (unsigned)InitVal.getMinSignedBits());
7654
7655    // Keep track of whether every enum element has type int (very commmon).
7656    if (AllElementsInt)
7657      AllElementsInt = ECD->getType() == Context.IntTy;
7658  }
7659
7660  // Figure out the type that should be used for this enum.
7661  QualType BestType;
7662  unsigned BestWidth;
7663
7664  // C++0x N3000 [conv.prom]p3:
7665  //   An rvalue of an unscoped enumeration type whose underlying
7666  //   type is not fixed can be converted to an rvalue of the first
7667  //   of the following types that can represent all the values of
7668  //   the enumeration: int, unsigned int, long int, unsigned long
7669  //   int, long long int, or unsigned long long int.
7670  // C99 6.4.4.3p2:
7671  //   An identifier declared as an enumeration constant has type int.
7672  // The C99 rule is modified by a gcc extension
7673  QualType BestPromotionType;
7674
7675  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7676  // -fshort-enums is the equivalent to specifying the packed attribute on all
7677  // enum definitions.
7678  if (LangOpts.ShortEnums)
7679    Packed = true;
7680
7681  if (Enum->isFixed()) {
7682    BestType = BestPromotionType = Enum->getIntegerType();
7683    // We don't need to set BestWidth, because BestType is going to be the type
7684    // of the enumerators, but we do anyway because otherwise some compilers
7685    // warn that it might be used uninitialized.
7686    BestWidth = CharWidth;
7687  }
7688  else if (NumNegativeBits) {
7689    // If there is a negative value, figure out the smallest integer type (of
7690    // int/long/longlong) that fits.
7691    // If it's packed, check also if it fits a char or a short.
7692    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7693      BestType = Context.SignedCharTy;
7694      BestWidth = CharWidth;
7695    } else if (Packed && NumNegativeBits <= ShortWidth &&
7696               NumPositiveBits < ShortWidth) {
7697      BestType = Context.ShortTy;
7698      BestWidth = ShortWidth;
7699    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7700      BestType = Context.IntTy;
7701      BestWidth = IntWidth;
7702    } else {
7703      BestWidth = Context.Target.getLongWidth();
7704
7705      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7706        BestType = Context.LongTy;
7707      } else {
7708        BestWidth = Context.Target.getLongLongWidth();
7709
7710        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7711          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7712        BestType = Context.LongLongTy;
7713      }
7714    }
7715    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7716  } else {
7717    // If there is no negative value, figure out the smallest type that fits
7718    // all of the enumerator values.
7719    // If it's packed, check also if it fits a char or a short.
7720    if (Packed && NumPositiveBits <= CharWidth) {
7721      BestType = Context.UnsignedCharTy;
7722      BestPromotionType = Context.IntTy;
7723      BestWidth = CharWidth;
7724    } else if (Packed && NumPositiveBits <= ShortWidth) {
7725      BestType = Context.UnsignedShortTy;
7726      BestPromotionType = Context.IntTy;
7727      BestWidth = ShortWidth;
7728    } else if (NumPositiveBits <= IntWidth) {
7729      BestType = Context.UnsignedIntTy;
7730      BestWidth = IntWidth;
7731      BestPromotionType
7732        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7733                           ? Context.UnsignedIntTy : Context.IntTy;
7734    } else if (NumPositiveBits <=
7735               (BestWidth = Context.Target.getLongWidth())) {
7736      BestType = Context.UnsignedLongTy;
7737      BestPromotionType
7738        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7739                           ? Context.UnsignedLongTy : Context.LongTy;
7740    } else {
7741      BestWidth = Context.Target.getLongLongWidth();
7742      assert(NumPositiveBits <= BestWidth &&
7743             "How could an initializer get larger than ULL?");
7744      BestType = Context.UnsignedLongLongTy;
7745      BestPromotionType
7746        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7747                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7748    }
7749  }
7750
7751  // Loop over all of the enumerator constants, changing their types to match
7752  // the type of the enum if needed.
7753  for (unsigned i = 0; i != NumElements; ++i) {
7754    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7755    if (!ECD) continue;  // Already issued a diagnostic.
7756
7757    // Standard C says the enumerators have int type, but we allow, as an
7758    // extension, the enumerators to be larger than int size.  If each
7759    // enumerator value fits in an int, type it as an int, otherwise type it the
7760    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7761    // that X has type 'int', not 'unsigned'.
7762
7763    // Determine whether the value fits into an int.
7764    llvm::APSInt InitVal = ECD->getInitVal();
7765
7766    // If it fits into an integer type, force it.  Otherwise force it to match
7767    // the enum decl type.
7768    QualType NewTy;
7769    unsigned NewWidth;
7770    bool NewSign;
7771    if (!getLangOptions().CPlusPlus &&
7772        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7773      NewTy = Context.IntTy;
7774      NewWidth = IntWidth;
7775      NewSign = true;
7776    } else if (ECD->getType() == BestType) {
7777      // Already the right type!
7778      if (getLangOptions().CPlusPlus)
7779        // C++ [dcl.enum]p4: Following the closing brace of an
7780        // enum-specifier, each enumerator has the type of its
7781        // enumeration.
7782        ECD->setType(EnumType);
7783      continue;
7784    } else {
7785      NewTy = BestType;
7786      NewWidth = BestWidth;
7787      NewSign = BestType->isSignedIntegerType();
7788    }
7789
7790    // Adjust the APSInt value.
7791    InitVal = InitVal.extOrTrunc(NewWidth);
7792    InitVal.setIsSigned(NewSign);
7793    ECD->setInitVal(InitVal);
7794
7795    // Adjust the Expr initializer and type.
7796    if (ECD->getInitExpr() &&
7797	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7798      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7799                                                CK_IntegralCast,
7800                                                ECD->getInitExpr(),
7801                                                /*base paths*/ 0,
7802                                                VK_RValue));
7803    if (getLangOptions().CPlusPlus)
7804      // C++ [dcl.enum]p4: Following the closing brace of an
7805      // enum-specifier, each enumerator has the type of its
7806      // enumeration.
7807      ECD->setType(EnumType);
7808    else
7809      ECD->setType(NewTy);
7810  }
7811
7812  Enum->completeDefinition(BestType, BestPromotionType,
7813                           NumPositiveBits, NumNegativeBits);
7814}
7815
7816Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7817  StringLiteral *AsmString = cast<StringLiteral>(expr);
7818
7819  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7820                                                   Loc, AsmString);
7821  CurContext->addDecl(New);
7822  return New;
7823}
7824
7825void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7826                             SourceLocation PragmaLoc,
7827                             SourceLocation NameLoc) {
7828  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7829
7830  if (PrevDecl) {
7831    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7832  } else {
7833    (void)WeakUndeclaredIdentifiers.insert(
7834      std::pair<IdentifierInfo*,WeakInfo>
7835        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7836  }
7837}
7838
7839void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7840                                IdentifierInfo* AliasName,
7841                                SourceLocation PragmaLoc,
7842                                SourceLocation NameLoc,
7843                                SourceLocation AliasNameLoc) {
7844  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7845                                    LookupOrdinaryName);
7846  WeakInfo W = WeakInfo(Name, NameLoc);
7847
7848  if (PrevDecl) {
7849    if (!PrevDecl->hasAttr<AliasAttr>())
7850      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7851        DeclApplyPragmaWeak(TUScope, ND, W);
7852  } else {
7853    (void)WeakUndeclaredIdentifiers.insert(
7854      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7855  }
7856}
7857