SemaDecl.cpp revision 72b505b7904b3c9320a1312998800ba76e4f5841
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29
30using namespace clang;
31
32Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
33                               const CXXScopeSpec *SS) {
34  DeclContext *DC = 0;
35  if (SS) {
36    if (SS->isInvalid())
37      return 0;
38    DC = static_cast<DeclContext*>(SS->getScopeRep());
39  }
40  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
41
42  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
43                 isa<ObjCInterfaceDecl>(IIDecl) ||
44                 isa<TagDecl>(IIDecl) ||
45		 isa<TemplateTypeParmDecl>(IIDecl)))
46    return IIDecl;
47  return 0;
48}
49
50DeclContext *Sema::getContainingDC(DeclContext *DC) {
51  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
52    // A C++ out-of-line method will return to the file declaration context.
53    if (MD->isOutOfLineDefinition())
54      return MD->getLexicalDeclContext();
55
56    // A C++ inline method is parsed *after* the topmost class it was declared in
57    // is fully parsed (it's "complete").
58    // The parsing of a C++ inline method happens at the declaration context of
59    // the topmost (non-nested) class it is lexically declared in.
60    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
61    DC = MD->getParent();
62    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
63      DC = RD;
64
65    // Return the declaration context of the topmost class the inline method is
66    // declared in.
67    return DC;
68  }
69
70  if (isa<ObjCMethodDecl>(DC))
71    return Context.getTranslationUnitDecl();
72
73  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
74    return SD->getLexicalDeclContext();
75
76  return DC->getLexicalParent();
77}
78
79void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
80  assert(getContainingDC(DC) == CurContext &&
81      "The next DeclContext should be lexically contained in the current one.");
82  CurContext = DC;
83  S->setEntity(DC);
84}
85
86void Sema::PopDeclContext() {
87  assert(CurContext && "DeclContext imbalance!");
88
89  CurContext = getContainingDC(CurContext);
90}
91
92/// Add this decl to the scope shadowed decl chains.
93void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
94  S->AddDecl(D);
95
96  // C++ [basic.scope]p4:
97  //   -- exactly one declaration shall declare a class name or
98  //   enumeration name that is not a typedef name and the other
99  //   declarations shall all refer to the same object or
100  //   enumerator, or all refer to functions and function templates;
101  //   in this case the class name or enumeration name is hidden.
102  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
103    // We are pushing the name of a tag (enum or class).
104    if (CurContext == TD->getDeclContext()) {
105      // We're pushing the tag into the current context, which might
106      // require some reshuffling in the identifier resolver.
107      IdentifierResolver::iterator
108        I = IdResolver.begin(TD->getIdentifier(), CurContext,
109                            false/*LookInParentCtx*/);
110      if (I != IdResolver.end()) {
111       // There is already a declaration with the same name in the same
112       // scope. It must be found before we find the new declaration,
113       // so swap the order on the shadowed declaration chain.
114       IdResolver.AddShadowedDecl(TD, *I);
115
116       // Add this declaration to the current context.
117       CurContext->addDecl(Context, TD);
118
119       return;
120      }
121    }
122  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
123    // We are pushing the name of a function, which might be an
124    // overloaded name.
125    FunctionDecl *FD = cast<FunctionDecl>(D);
126    Decl *Prev = LookupDecl(FD->getDeclName(), Decl::IDNS_Ordinary, S,
127                           FD->getDeclContext(), false, false);
128    if (Prev && (isa<OverloadedFunctionDecl>(Prev) || isa<FunctionDecl>(Prev))) {
129      // There is already a declaration with the same name in
130      // the same scope. It must be a function or an overloaded
131      // function.
132      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(Prev);
133      if (!Ovl) {
134        // We haven't yet overloaded this function. Take the existing
135        // FunctionDecl and put it into an OverloadedFunctionDecl.
136        Ovl = OverloadedFunctionDecl::Create(Context,
137                                             FD->getDeclContext(),
138                                             FD->getDeclName());
139        Ovl->addOverload(cast<FunctionDecl>(Prev));
140
141        // If there is a name binding for the existing FunctionDecl,
142        // remove it.
143        for (IdentifierResolver::iterator I
144               = IdResolver.begin(FD->getDeclName(), FD->getDeclContext(),
145                                  false/*LookInParentCtx*/),
146               E = IdResolver.end(); I != E; ++I) {
147          if (*I == Prev) {
148            IdResolver.RemoveDecl(*I);
149            S->RemoveDecl(*I);
150            break;
151          }
152        }
153
154        // Add the name binding for the OverloadedFunctionDecl.
155        IdResolver.AddDecl(Ovl);
156
157        // Update the context with the newly-created overloaded
158        // function set.
159        FD->getDeclContext()->insert(Context, Ovl);
160
161       S->AddDecl(Ovl);
162      }
163
164      // We added this function declaration to the scope earlier, but
165      // we don't want it there because it is part of the overloaded
166      // function declaration.
167      S->RemoveDecl(FD);
168
169      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
170      // to its list of overloads.
171      Ovl->addOverload(FD);
172
173      // Add this new function declaration to the declaration context.
174      CurContext->addDecl(Context, FD, false);
175
176      return;
177    }
178  }
179
180  // Add scoped declarations into their context, so that they can be
181  // found later. Declarations without a context won't be inserted
182  // into any context.
183  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
184    CurContext->addDecl(Context, SD);
185
186  IdResolver.AddDecl(D);
187}
188
189void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
190  if (S->decl_empty()) return;
191  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
192	 "Scope shouldn't contain decls!");
193
194  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
195       I != E; ++I) {
196    Decl *TmpD = static_cast<Decl*>(*I);
197    assert(TmpD && "This decl didn't get pushed??");
198
199    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
200    NamedDecl *D = cast<NamedDecl>(TmpD);
201
202    if (!D->getDeclName()) continue;
203
204    // Remove this name from our lexical scope.
205    IdResolver.RemoveDecl(D);
206  }
207}
208
209/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
210/// return 0 if one not found.
211ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
212  // The third "scope" argument is 0 since we aren't enabling lazy built-in
213  // creation from this context.
214  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
215
216  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
217}
218
219/// LookupDecl - Look up the inner-most declaration in the specified
220/// namespace.
221Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
222                       const DeclContext *LookupCtx,
223                       bool enableLazyBuiltinCreation,
224                       bool LookInParent) {
225  if (!Name) return 0;
226  unsigned NS = NSI;
227  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
228    NS |= Decl::IDNS_Tag;
229
230  if (LookupCtx == 0 &&
231      (!getLangOptions().CPlusPlus || (NS == Decl::IDNS_Label))) {
232    // Unqualified name lookup in C/Objective-C and name lookup for
233    // labels in C++ is purely lexical, so search in the
234    // declarations attached to the name.
235    assert(!LookupCtx && "Can't perform qualified name lookup here");
236    IdentifierResolver::iterator I
237      = IdResolver.begin(Name, CurContext, LookInParent);
238
239    // Scan up the scope chain looking for a decl that matches this
240    // identifier that is in the appropriate namespace.  This search
241    // should not take long, as shadowing of names is uncommon, and
242    // deep shadowing is extremely uncommon.
243    for (; I != IdResolver.end(); ++I)
244      if ((*I)->getIdentifierNamespace() & NS)
245         return *I;
246  } else if (LookupCtx) {
247    assert(getLangOptions().CPlusPlus && "No qualified name lookup in C");
248
249    // Perform qualified name lookup into the LookupCtx.
250    // FIXME: Will need to look into base classes and such.
251    DeclContext::lookup_const_iterator I, E;
252    for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
253      if ((*I)->getIdentifierNamespace() & NS)
254       return *I;
255  } else {
256    // Name lookup for ordinary names and tag names in C++ requires
257    // looking into scopes that aren't strictly lexical, and
258    // therefore we walk through the context as well as walking
259    // through the scopes.
260    IdentifierResolver::iterator
261      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
262      IEnd = IdResolver.end();
263    for (; S; S = S->getParent()) {
264      // Check whether the IdResolver has anything in this scope.
265      // FIXME: The isDeclScope check could be expensive. Can we do better?
266      for (; I != IEnd && S->isDeclScope(*I); ++I)
267        if ((*I)->getIdentifierNamespace() & NS)
268          return *I;
269
270      // If there is an entity associated with this scope, it's a
271      // DeclContext. We might need to perform qualified lookup into
272      // it.
273      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
274      while (Ctx && Ctx->isFunctionOrMethod())
275        Ctx = Ctx->getParent();
276      while (Ctx && (Ctx->isNamespace() || Ctx->isCXXRecord())) {
277        // Look for declarations of this name in this scope.
278        DeclContext::lookup_const_iterator I, E;
279        for (llvm::tie(I, E) = Ctx->lookup(Context, Name); I != E; ++I) {
280          // FIXME: Cache this result in the IdResolver
281          if ((*I)->getIdentifierNamespace() & NS)
282            return  *I;
283        }
284
285        Ctx = Ctx->getParent();
286      }
287
288      if (!LookInParent)
289        return 0;
290    }
291  }
292
293  // If we didn't find a use of this identifier, and if the identifier
294  // corresponds to a compiler builtin, create the decl object for the builtin
295  // now, injecting it into translation unit scope, and return it.
296  if (NS & Decl::IDNS_Ordinary) {
297    IdentifierInfo *II = Name.getAsIdentifierInfo();
298    if (enableLazyBuiltinCreation && II &&
299        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
300      // If this is a builtin on this (or all) targets, create the decl.
301      if (unsigned BuiltinID = II->getBuiltinID())
302        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
303    }
304    if (getLangOptions().ObjC1 && II) {
305      // @interface and @compatibility_alias introduce typedef-like names.
306      // Unlike typedef's, they can only be introduced at file-scope (and are
307      // therefore not scoped decls). They can, however, be shadowed by
308      // other names in IDNS_Ordinary.
309      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
310      if (IDI != ObjCInterfaceDecls.end())
311        return IDI->second;
312      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
313      if (I != ObjCAliasDecls.end())
314        return I->second->getClassInterface();
315    }
316  }
317  return 0;
318}
319
320void Sema::InitBuiltinVaListType() {
321  if (!Context.getBuiltinVaListType().isNull())
322    return;
323
324  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
325  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
326  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
327  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
328}
329
330/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
331/// lazily create a decl for it.
332ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
333                                      Scope *S) {
334  Builtin::ID BID = (Builtin::ID)bid;
335
336  if (Context.BuiltinInfo.hasVAListUse(BID))
337    InitBuiltinVaListType();
338
339  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
340  FunctionDecl *New = FunctionDecl::Create(Context,
341                                           Context.getTranslationUnitDecl(),
342                                           SourceLocation(), II, R,
343                                           FunctionDecl::Extern, false, 0);
344
345  // Create Decl objects for each parameter, adding them to the
346  // FunctionDecl.
347  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
348    llvm::SmallVector<ParmVarDecl*, 16> Params;
349    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
350      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
351                                           FT->getArgType(i), VarDecl::None, 0,
352                                           0));
353    New->setParams(&Params[0], Params.size());
354  }
355
356
357
358  // TUScope is the translation-unit scope to insert this function into.
359  PushOnScopeChains(New, TUScope);
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
370                           0, Global, /*enableLazyBuiltinCreation=*/false);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
377/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
378/// situation, merging decls or emitting diagnostics as appropriate.
379///
380TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
381  // Allow multiple definitions for ObjC built-in typedefs.
382  // FIXME: Verify the underlying types are equivalent!
383  if (getLangOptions().ObjC1) {
384    const IdentifierInfo *TypeID = New->getIdentifier();
385    switch (TypeID->getLength()) {
386    default: break;
387    case 2:
388      if (!TypeID->isStr("id"))
389        break;
390      Context.setObjCIdType(New);
391      return New;
392    case 5:
393      if (!TypeID->isStr("Class"))
394        break;
395      Context.setObjCClassType(New);
396      return New;
397    case 3:
398      if (!TypeID->isStr("SEL"))
399        break;
400      Context.setObjCSelType(New);
401      return New;
402    case 8:
403      if (!TypeID->isStr("Protocol"))
404        break;
405      Context.setObjCProtoType(New->getUnderlyingType());
406      return New;
407    }
408    // Fall through - the typedef name was not a builtin type.
409  }
410  // Verify the old decl was also a typedef.
411  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
412  if (!Old) {
413    Diag(New->getLocation(), diag::err_redefinition_different_kind)
414      << New->getDeclName();
415    Diag(OldD->getLocation(), diag::note_previous_definition);
416    return New;
417  }
418
419  // If the typedef types are not identical, reject them in all languages and
420  // with any extensions enabled.
421  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
422      Context.getCanonicalType(Old->getUnderlyingType()) !=
423      Context.getCanonicalType(New->getUnderlyingType())) {
424    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
425      << New->getUnderlyingType() << Old->getUnderlyingType();
426    Diag(Old->getLocation(), diag::note_previous_definition);
427    return Old;
428  }
429
430  if (getLangOptions().Microsoft) return New;
431
432  // C++ [dcl.typedef]p2:
433  //   In a given non-class scope, a typedef specifier can be used to
434  //   redefine the name of any type declared in that scope to refer
435  //   to the type to which it already refers.
436  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
437    return New;
438
439  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
440  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
441  // *either* declaration is in a system header. The code below implements
442  // this adhoc compatibility rule. FIXME: The following code will not
443  // work properly when compiling ".i" files (containing preprocessed output).
444  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
445    SourceManager &SrcMgr = Context.getSourceManager();
446    if (SrcMgr.isInSystemHeader(Old->getLocation()))
447      return New;
448    if (SrcMgr.isInSystemHeader(New->getLocation()))
449      return New;
450  }
451
452  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
453  Diag(Old->getLocation(), diag::note_previous_definition);
454  return New;
455}
456
457/// DeclhasAttr - returns true if decl Declaration already has the target
458/// attribute.
459static bool DeclHasAttr(const Decl *decl, const Attr *target) {
460  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
461    if (attr->getKind() == target->getKind())
462      return true;
463
464  return false;
465}
466
467/// MergeAttributes - append attributes from the Old decl to the New one.
468static void MergeAttributes(Decl *New, Decl *Old) {
469  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
470
471  while (attr) {
472     tmp = attr;
473     attr = attr->getNext();
474
475    if (!DeclHasAttr(New, tmp)) {
476       New->addAttr(tmp);
477    } else {
478       tmp->setNext(0);
479       delete(tmp);
480    }
481  }
482
483  Old->invalidateAttrs();
484}
485
486/// MergeFunctionDecl - We just parsed a function 'New' from
487/// declarator D which has the same name and scope as a previous
488/// declaration 'Old'.  Figure out how to resolve this situation,
489/// merging decls or emitting diagnostics as appropriate.
490/// Redeclaration will be set true if this New is a redeclaration OldD.
491///
492/// In C++, New and Old must be declarations that are not
493/// overloaded. Use IsOverload to determine whether New and Old are
494/// overloaded, and to select the Old declaration that New should be
495/// merged with.
496FunctionDecl *
497Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
498  assert(!isa<OverloadedFunctionDecl>(OldD) &&
499         "Cannot merge with an overloaded function declaration");
500
501  Redeclaration = false;
502  // Verify the old decl was also a function.
503  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
504  if (!Old) {
505    Diag(New->getLocation(), diag::err_redefinition_different_kind)
506      << New->getDeclName();
507    Diag(OldD->getLocation(), diag::note_previous_definition);
508    return New;
509  }
510
511  // Determine whether the previous declaration was a definition,
512  // implicit declaration, or a declaration.
513  diag::kind PrevDiag;
514  if (Old->isThisDeclarationADefinition())
515    PrevDiag = diag::note_previous_definition;
516  else if (Old->isImplicit())
517    PrevDiag = diag::note_previous_implicit_declaration;
518  else
519    PrevDiag = diag::note_previous_declaration;
520
521  QualType OldQType = Context.getCanonicalType(Old->getType());
522  QualType NewQType = Context.getCanonicalType(New->getType());
523
524  if (getLangOptions().CPlusPlus) {
525    // (C++98 13.1p2):
526    //   Certain function declarations cannot be overloaded:
527    //     -- Function declarations that differ only in the return type
528    //        cannot be overloaded.
529    QualType OldReturnType
530      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
531    QualType NewReturnType
532      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
533    if (OldReturnType != NewReturnType) {
534      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
535      Diag(Old->getLocation(), PrevDiag);
536      return New;
537    }
538
539    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
540    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
541    if (OldMethod && NewMethod) {
542      //    -- Member function declarations with the same name and the
543      //       same parameter types cannot be overloaded if any of them
544      //       is a static member function declaration.
545      if (OldMethod->isStatic() || NewMethod->isStatic()) {
546        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
547        Diag(Old->getLocation(), PrevDiag);
548        return New;
549      }
550
551      // C++ [class.mem]p1:
552      //   [...] A member shall not be declared twice in the
553      //   member-specification, except that a nested class or member
554      //   class template can be declared and then later defined.
555      if (OldMethod->getLexicalDeclContext() ==
556            NewMethod->getLexicalDeclContext()) {
557        unsigned NewDiag;
558        if (isa<CXXConstructorDecl>(OldMethod))
559          NewDiag = diag::err_constructor_redeclared;
560        else if (isa<CXXDestructorDecl>(NewMethod))
561          NewDiag = diag::err_destructor_redeclared;
562        else if (isa<CXXConversionDecl>(NewMethod))
563          NewDiag = diag::err_conv_function_redeclared;
564        else
565          NewDiag = diag::err_member_redeclared;
566
567        Diag(New->getLocation(), NewDiag);
568        Diag(Old->getLocation(), PrevDiag);
569      }
570    }
571
572    // (C++98 8.3.5p3):
573    //   All declarations for a function shall agree exactly in both the
574    //   return type and the parameter-type-list.
575    if (OldQType == NewQType) {
576      // We have a redeclaration.
577      MergeAttributes(New, Old);
578      Redeclaration = true;
579      return MergeCXXFunctionDecl(New, Old);
580    }
581
582    // Fall through for conflicting redeclarations and redefinitions.
583  }
584
585  // C: Function types need to be compatible, not identical. This handles
586  // duplicate function decls like "void f(int); void f(enum X);" properly.
587  if (!getLangOptions().CPlusPlus &&
588      Context.typesAreCompatible(OldQType, NewQType)) {
589    MergeAttributes(New, Old);
590    Redeclaration = true;
591    return New;
592  }
593
594  // A function that has already been declared has been redeclared or defined
595  // with a different type- show appropriate diagnostic
596
597  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
598  // TODO: This is totally simplistic.  It should handle merging functions
599  // together etc, merging extern int X; int X; ...
600  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
601  Diag(Old->getLocation(), PrevDiag);
602  return New;
603}
604
605/// Predicate for C "tentative" external object definitions (C99 6.9.2).
606static bool isTentativeDefinition(VarDecl *VD) {
607  if (VD->isFileVarDecl())
608    return (!VD->getInit() &&
609            (VD->getStorageClass() == VarDecl::None ||
610             VD->getStorageClass() == VarDecl::Static));
611  return false;
612}
613
614/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
615/// when dealing with C "tentative" external object definitions (C99 6.9.2).
616void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
617  bool VDIsTentative = isTentativeDefinition(VD);
618  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
619
620  for (IdentifierResolver::iterator
621       I = IdResolver.begin(VD->getIdentifier(),
622                            VD->getDeclContext(), false/*LookInParentCtx*/),
623       E = IdResolver.end(); I != E; ++I) {
624    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
625      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
626
627      // Handle the following case:
628      //   int a[10];
629      //   int a[];   - the code below makes sure we set the correct type.
630      //   int a[11]; - this is an error, size isn't 10.
631      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
632          OldDecl->getType()->isConstantArrayType())
633        VD->setType(OldDecl->getType());
634
635      // Check for "tentative" definitions. We can't accomplish this in
636      // MergeVarDecl since the initializer hasn't been attached.
637      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
638        continue;
639
640      // Handle __private_extern__ just like extern.
641      if (OldDecl->getStorageClass() != VarDecl::Extern &&
642          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
643          VD->getStorageClass() != VarDecl::Extern &&
644          VD->getStorageClass() != VarDecl::PrivateExtern) {
645        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
646        Diag(OldDecl->getLocation(), diag::note_previous_definition);
647      }
648    }
649  }
650}
651
652/// MergeVarDecl - We just parsed a variable 'New' which has the same name
653/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
654/// situation, merging decls or emitting diagnostics as appropriate.
655///
656/// Tentative definition rules (C99 6.9.2p2) are checked by
657/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
658/// definitions here, since the initializer hasn't been attached.
659///
660VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
661  // Verify the old decl was also a variable.
662  VarDecl *Old = dyn_cast<VarDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return New;
668  }
669
670  MergeAttributes(New, Old);
671
672  // Verify the types match.
673  QualType OldCType = Context.getCanonicalType(Old->getType());
674  QualType NewCType = Context.getCanonicalType(New->getType());
675  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
676    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
677    Diag(Old->getLocation(), diag::note_previous_definition);
678    return New;
679  }
680  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
681  if (New->getStorageClass() == VarDecl::Static &&
682      (Old->getStorageClass() == VarDecl::None ||
683       Old->getStorageClass() == VarDecl::Extern)) {
684    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
685    Diag(Old->getLocation(), diag::note_previous_definition);
686    return New;
687  }
688  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
689  if (New->getStorageClass() != VarDecl::Static &&
690      Old->getStorageClass() == VarDecl::Static) {
691    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
692    Diag(Old->getLocation(), diag::note_previous_definition);
693    return New;
694  }
695  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
696  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
697    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
698    Diag(Old->getLocation(), diag::note_previous_definition);
699  }
700  return New;
701}
702
703/// CheckParmsForFunctionDef - Check that the parameters of the given
704/// function are appropriate for the definition of a function. This
705/// takes care of any checks that cannot be performed on the
706/// declaration itself, e.g., that the types of each of the function
707/// parameters are complete.
708bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
709  bool HasInvalidParm = false;
710  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
711    ParmVarDecl *Param = FD->getParamDecl(p);
712
713    // C99 6.7.5.3p4: the parameters in a parameter type list in a
714    // function declarator that is part of a function definition of
715    // that function shall not have incomplete type.
716    if (Param->getType()->isIncompleteType() &&
717        !Param->isInvalidDecl()) {
718      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
719        << Param->getType();
720      Param->setInvalidDecl();
721      HasInvalidParm = true;
722    }
723  }
724
725  return HasInvalidParm;
726}
727
728/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
729/// no declarator (e.g. "struct foo;") is parsed.
730Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
731  // TODO: emit error on 'int;' or 'const enum foo;'.
732  // TODO: emit error on 'typedef int;'
733  // if (!DS.isMissingDeclaratorOk()) Diag(...);
734
735  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
736}
737
738bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
739  // Get the type before calling CheckSingleAssignmentConstraints(), since
740  // it can promote the expression.
741  QualType InitType = Init->getType();
742
743  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
744  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
745                                  InitType, Init, "initializing");
746}
747
748bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
749  const ArrayType *AT = Context.getAsArrayType(DeclT);
750
751  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
752    // C99 6.7.8p14. We have an array of character type with unknown size
753    // being initialized to a string literal.
754    llvm::APSInt ConstVal(32);
755    ConstVal = strLiteral->getByteLength() + 1;
756    // Return a new array type (C99 6.7.8p22).
757    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
758                                         ArrayType::Normal, 0);
759  } else {
760    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
761    // C99 6.7.8p14. We have an array of character type with known size.
762    // FIXME: Avoid truncation for 64-bit length strings.
763    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
764      Diag(strLiteral->getSourceRange().getBegin(),
765           diag::warn_initializer_string_for_char_array_too_long)
766        << strLiteral->getSourceRange();
767  }
768  // Set type from "char *" to "constant array of char".
769  strLiteral->setType(DeclT);
770  // For now, we always return false (meaning success).
771  return false;
772}
773
774StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
775  const ArrayType *AT = Context.getAsArrayType(DeclType);
776  if (AT && AT->getElementType()->isCharType()) {
777    return dyn_cast<StringLiteral>(Init);
778  }
779  return 0;
780}
781
782bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
783                                 SourceLocation InitLoc,
784                                 DeclarationName InitEntity) {
785  // C++ [dcl.init.ref]p1:
786  //   A variable declared to be a T&, that is "reference to type T"
787  //   (8.3.2), shall be initialized by an object, or function, of
788  //   type T or by an object that can be converted into a T.
789  if (DeclType->isReferenceType())
790    return CheckReferenceInit(Init, DeclType);
791
792  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
793  // of unknown size ("[]") or an object type that is not a variable array type.
794  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
795    return Diag(InitLoc,  diag::err_variable_object_no_init)
796      << VAT->getSizeExpr()->getSourceRange();
797
798  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
799  if (!InitList) {
800    // FIXME: Handle wide strings
801    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
802      return CheckStringLiteralInit(strLiteral, DeclType);
803
804    // C++ [dcl.init]p14:
805    //   -- If the destination type is a (possibly cv-qualified) class
806    //      type:
807    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
808      QualType DeclTypeC = Context.getCanonicalType(DeclType);
809      QualType InitTypeC = Context.getCanonicalType(Init->getType());
810
811      //   -- If the initialization is direct-initialization, or if it is
812      //      copy-initialization where the cv-unqualified version of the
813      //      source type is the same class as, or a derived class of, the
814      //      class of the destination, constructors are considered.
815      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
816          IsDerivedFrom(InitTypeC, DeclTypeC)) {
817        CXXConstructorDecl *Constructor
818          = PerformInitializationByConstructor(DeclType, &Init, 1,
819                                               InitLoc, Init->getSourceRange(),
820                                               InitEntity, IK_Copy);
821        return Constructor == 0;
822      }
823
824      //   -- Otherwise (i.e., for the remaining copy-initialization
825      //      cases), user-defined conversion sequences that can
826      //      convert from the source type to the destination type or
827      //      (when a conversion function is used) to a derived class
828      //      thereof are enumerated as described in 13.3.1.4, and the
829      //      best one is chosen through overload resolution
830      //      (13.3). If the conversion cannot be done or is
831      //      ambiguous, the initialization is ill-formed. The
832      //      function selected is called with the initializer
833      //      expression as its argument; if the function is a
834      //      constructor, the call initializes a temporary of the
835      //      destination type.
836      // FIXME: We're pretending to do copy elision here; return to
837      // this when we have ASTs for such things.
838      if (!PerformImplicitConversion(Init, DeclType))
839        return false;
840
841      return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
842        << DeclType << InitEntity << "initializing"
843        << Init->getSourceRange();
844    }
845
846    // C99 6.7.8p16.
847    if (DeclType->isArrayType())
848      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
849        << Init->getSourceRange();
850
851    return CheckSingleInitializer(Init, DeclType);
852  } else if (getLangOptions().CPlusPlus) {
853    // C++ [dcl.init]p14:
854    //   [...] If the class is an aggregate (8.5.1), and the initializer
855    //   is a brace-enclosed list, see 8.5.1.
856    //
857    // Note: 8.5.1 is handled below; here, we diagnose the case where
858    // we have an initializer list and a destination type that is not
859    // an aggregate.
860    // FIXME: In C++0x, this is yet another form of initialization.
861    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
862      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
863      if (!ClassDecl->isAggregate())
864        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
865           << DeclType << Init->getSourceRange();
866    }
867  }
868
869  InitListChecker CheckInitList(this, InitList, DeclType);
870  return CheckInitList.HadError();
871}
872
873/// GetNameForDeclarator - Determine the full declaration name for the
874/// given Declarator.
875DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
876  switch (D.getKind()) {
877  case Declarator::DK_Abstract:
878    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
879    return DeclarationName();
880
881  case Declarator::DK_Normal:
882    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
883    return DeclarationName(D.getIdentifier());
884
885  case Declarator::DK_Constructor: {
886    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
887    Ty = Context.getCanonicalType(Ty);
888    return Context.DeclarationNames.getCXXConstructorName(Ty);
889  }
890
891  case Declarator::DK_Destructor: {
892    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
893    Ty = Context.getCanonicalType(Ty);
894    return Context.DeclarationNames.getCXXDestructorName(Ty);
895  }
896
897  case Declarator::DK_Conversion: {
898    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
899    Ty = Context.getCanonicalType(Ty);
900    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
901  }
902
903  case Declarator::DK_Operator:
904    assert(D.getIdentifier() == 0 && "operator names have no identifier");
905    return Context.DeclarationNames.getCXXOperatorName(
906                                                D.getOverloadedOperator());
907  }
908
909  assert(false && "Unknown name kind");
910  return DeclarationName();
911}
912
913/// isNearlyMatchingMemberFunction - Determine whether the C++ member
914/// functions Declaration and Definition are "nearly" matching. This
915/// heuristic is used to improve diagnostics in the case where an
916/// out-of-line member function definition doesn't match any
917/// declaration within the class.
918static bool isNearlyMatchingMemberFunction(ASTContext &Context,
919                                           FunctionDecl *Declaration,
920                                           FunctionDecl *Definition) {
921  if (Declaration->param_size() != Definition->param_size())
922    return false;
923  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
924    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
925    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
926
927    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
928    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
929    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
930      return false;
931  }
932
933  return true;
934}
935
936Sema::DeclTy *
937Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
938                      bool IsFunctionDefinition) {
939  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
940  DeclarationName Name = GetNameForDeclarator(D);
941
942  // All of these full declarators require an identifier.  If it doesn't have
943  // one, the ParsedFreeStandingDeclSpec action should be used.
944  if (!Name) {
945    if (!D.getInvalidType())  // Reject this if we think it is valid.
946      Diag(D.getDeclSpec().getSourceRange().getBegin(),
947           diag::err_declarator_need_ident)
948        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
949    return 0;
950  }
951
952  // The scope passed in may not be a decl scope.  Zip up the scope tree until
953  // we find one that is.
954  while ((S->getFlags() & Scope::DeclScope) == 0 ||
955        (S->getFlags() & Scope::TemplateParamScope) != 0)
956    S = S->getParent();
957
958  DeclContext *DC;
959  Decl *PrevDecl;
960  ScopedDecl *New;
961  bool InvalidDecl = false;
962
963  // See if this is a redefinition of a variable in the same scope.
964  if (!D.getCXXScopeSpec().isSet()) {
965    DC = CurContext;
966    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
967  } else { // Something like "int foo::x;"
968    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
969    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
970
971    // C++ 7.3.1.2p2:
972    // Members (including explicit specializations of templates) of a named
973    // namespace can also be defined outside that namespace by explicit
974    // qualification of the name being defined, provided that the entity being
975    // defined was already declared in the namespace and the definition appears
976    // after the point of declaration in a namespace that encloses the
977    // declarations namespace.
978    //
979    // Note that we only check the context at this point. We don't yet
980    // have enough information to make sure that PrevDecl is actually
981    // the declaration we want to match. For example, given:
982    //
983    //   class X {
984    //     void f();
985    //     void f(float);
986    //   };
987    //
988    //   void X::f(int) { } // ill-formed
989    //
990    // In this case, PrevDecl will point to the overload set
991    // containing the two f's declared in X, but neither of them
992    // matches.
993    if (!CurContext->Encloses(DC)) {
994      // The qualifying scope doesn't enclose the original declaration.
995      // Emit diagnostic based on current scope.
996      SourceLocation L = D.getIdentifierLoc();
997      SourceRange R = D.getCXXScopeSpec().getRange();
998      if (isa<FunctionDecl>(CurContext)) {
999        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1000      } else {
1001        Diag(L, diag::err_invalid_declarator_scope)
1002          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1003      }
1004      InvalidDecl = true;
1005    }
1006  }
1007
1008  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1009    // Maybe we will complain about the shadowed template parameter.
1010    InvalidDecl = InvalidDecl
1011      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1012    // Just pretend that we didn't see the previous declaration.
1013    PrevDecl = 0;
1014  }
1015
1016  // In C++, the previous declaration we find might be a tag type
1017  // (class or enum). In this case, the new declaration will hide the
1018  // tag type.
1019  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1020    PrevDecl = 0;
1021
1022  QualType R = GetTypeForDeclarator(D, S);
1023  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1024
1025  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1026    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1027    if (D.getCXXScopeSpec().isSet()) {
1028      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1029        << D.getCXXScopeSpec().getRange();
1030      InvalidDecl = true;
1031      // Pretend we didn't see the scope specifier.
1032      DC = 0;
1033    }
1034
1035    // Check that there are no default arguments (C++ only).
1036    if (getLangOptions().CPlusPlus)
1037      CheckExtraCXXDefaultArguments(D);
1038
1039    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1040    if (!NewTD) return 0;
1041
1042    // Handle attributes prior to checking for duplicates in MergeVarDecl
1043    ProcessDeclAttributes(NewTD, D);
1044    // Merge the decl with the existing one if appropriate. If the decl is
1045    // in an outer scope, it isn't the same thing.
1046    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1047      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1048      if (NewTD == 0) return 0;
1049    }
1050    New = NewTD;
1051    if (S->getFnParent() == 0) {
1052      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1053      // then it shall have block scope.
1054      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1055        if (NewTD->getUnderlyingType()->isVariableArrayType())
1056          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1057        else
1058          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1059
1060        InvalidDecl = true;
1061      }
1062    }
1063  } else if (R.getTypePtr()->isFunctionType()) {
1064    FunctionDecl::StorageClass SC = FunctionDecl::None;
1065    switch (D.getDeclSpec().getStorageClassSpec()) {
1066      default: assert(0 && "Unknown storage class!");
1067      case DeclSpec::SCS_auto:
1068      case DeclSpec::SCS_register:
1069      case DeclSpec::SCS_mutable:
1070        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1071        InvalidDecl = true;
1072        break;
1073      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1074      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1075      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1076      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1077    }
1078
1079    bool isInline = D.getDeclSpec().isInlineSpecified();
1080    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1081    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1082
1083    FunctionDecl *NewFD;
1084    if (D.getKind() == Declarator::DK_Constructor) {
1085      // This is a C++ constructor declaration.
1086      assert(DC->isCXXRecord() &&
1087             "Constructors can only be declared in a member context");
1088
1089      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
1090
1091      // Create the new declaration
1092      NewFD = CXXConstructorDecl::Create(Context,
1093                                         cast<CXXRecordDecl>(DC),
1094                                         D.getIdentifierLoc(), Name, R,
1095                                         isExplicit, isInline,
1096                                         /*isImplicitlyDeclared=*/false);
1097
1098      if (isInvalidDecl)
1099        NewFD->setInvalidDecl();
1100    } else if (D.getKind() == Declarator::DK_Destructor) {
1101      // This is a C++ destructor declaration.
1102      if (DC->isCXXRecord()) {
1103        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
1104
1105        NewFD = CXXDestructorDecl::Create(Context,
1106                                          cast<CXXRecordDecl>(DC),
1107                                          D.getIdentifierLoc(), Name, R,
1108                                          isInline,
1109                                          /*isImplicitlyDeclared=*/false);
1110
1111        if (isInvalidDecl)
1112          NewFD->setInvalidDecl();
1113      } else {
1114        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1115        // Create a FunctionDecl to satisfy the function definition parsing
1116        // code path.
1117        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1118                                     Name, R, SC, isInline, LastDeclarator,
1119                                     // FIXME: Move to DeclGroup...
1120                                   D.getDeclSpec().getSourceRange().getBegin());
1121        NewFD->setInvalidDecl();
1122      }
1123    } else if (D.getKind() == Declarator::DK_Conversion) {
1124      if (!DC->isCXXRecord()) {
1125        Diag(D.getIdentifierLoc(),
1126             diag::err_conv_function_not_member);
1127        return 0;
1128      } else {
1129        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
1130
1131        NewFD = CXXConversionDecl::Create(Context,
1132                                          cast<CXXRecordDecl>(DC),
1133                                          D.getIdentifierLoc(), Name, R,
1134                                          isInline, isExplicit);
1135
1136        if (isInvalidDecl)
1137          NewFD->setInvalidDecl();
1138      }
1139    } else if (DC->isCXXRecord()) {
1140      // This is a C++ method declaration.
1141      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1142                                    D.getIdentifierLoc(), Name, R,
1143                                    (SC == FunctionDecl::Static), isInline,
1144                                    LastDeclarator);
1145    } else {
1146      NewFD = FunctionDecl::Create(Context, DC,
1147                                   D.getIdentifierLoc(),
1148                                   Name, R, SC, isInline, LastDeclarator,
1149                                   // FIXME: Move to DeclGroup...
1150                                   D.getDeclSpec().getSourceRange().getBegin());
1151    }
1152
1153    // Handle attributes.
1154    ProcessDeclAttributes(NewFD, D);
1155
1156    // Set the lexical context. If the declarator has a C++
1157    // scope specifier, the lexical context will be different
1158    // from the semantic context.
1159    NewFD->setLexicalDeclContext(CurContext);
1160
1161    // Handle GNU asm-label extension (encoded as an attribute).
1162    if (Expr *E = (Expr*) D.getAsmLabel()) {
1163      // The parser guarantees this is a string.
1164      StringLiteral *SE = cast<StringLiteral>(E);
1165      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1166                                                  SE->getByteLength())));
1167    }
1168
1169    // Copy the parameter declarations from the declarator D to
1170    // the function declaration NewFD, if they are available.
1171    if (D.getNumTypeObjects() > 0) {
1172      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1173
1174      // Create Decl objects for each parameter, adding them to the
1175      // FunctionDecl.
1176      llvm::SmallVector<ParmVarDecl*, 16> Params;
1177
1178      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1179      // function that takes no arguments, not a function that takes a
1180      // single void argument.
1181      // We let through "const void" here because Sema::GetTypeForDeclarator
1182      // already checks for that case.
1183      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1184          FTI.ArgInfo[0].Param &&
1185          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1186        // empty arg list, don't push any params.
1187        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1188
1189        // In C++, the empty parameter-type-list must be spelled "void"; a
1190        // typedef of void is not permitted.
1191        if (getLangOptions().CPlusPlus &&
1192            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1193          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1194        }
1195      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1196        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1197          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1198      }
1199
1200      NewFD->setParams(&Params[0], Params.size());
1201    } else if (R->getAsTypedefType()) {
1202      // When we're declaring a function with a typedef, as in the
1203      // following example, we'll need to synthesize (unnamed)
1204      // parameters for use in the declaration.
1205      //
1206      // @code
1207      // typedef void fn(int);
1208      // fn f;
1209      // @endcode
1210      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1211      if (!FT) {
1212        // This is a typedef of a function with no prototype, so we
1213        // don't need to do anything.
1214      } else if ((FT->getNumArgs() == 0) ||
1215          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1216           FT->getArgType(0)->isVoidType())) {
1217        // This is a zero-argument function. We don't need to do anything.
1218      } else {
1219        // Synthesize a parameter for each argument type.
1220        llvm::SmallVector<ParmVarDecl*, 16> Params;
1221        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1222             ArgType != FT->arg_type_end(); ++ArgType) {
1223          Params.push_back(ParmVarDecl::Create(Context, DC,
1224                                               SourceLocation(), 0,
1225                                               *ArgType, VarDecl::None,
1226                                               0, 0));
1227        }
1228
1229        NewFD->setParams(&Params[0], Params.size());
1230      }
1231    }
1232
1233    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1234      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1235    else if (isa<CXXDestructorDecl>(NewFD))
1236      cast<CXXRecordDecl>(NewFD->getParent())->setUserDeclaredDestructor(true);
1237    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1238      ActOnConversionDeclarator(Conversion);
1239
1240    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1241    if (NewFD->isOverloadedOperator() &&
1242        CheckOverloadedOperatorDeclaration(NewFD))
1243      NewFD->setInvalidDecl();
1244
1245    // Merge the decl with the existing one if appropriate. Since C functions
1246    // are in a flat namespace, make sure we consider decls in outer scopes.
1247    if (PrevDecl &&
1248        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1249      bool Redeclaration = false;
1250
1251      // If C++, determine whether NewFD is an overload of PrevDecl or
1252      // a declaration that requires merging. If it's an overload,
1253      // there's no more work to do here; we'll just add the new
1254      // function to the scope.
1255      OverloadedFunctionDecl::function_iterator MatchedDecl;
1256      if (!getLangOptions().CPlusPlus ||
1257          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1258        Decl *OldDecl = PrevDecl;
1259
1260        // If PrevDecl was an overloaded function, extract the
1261        // FunctionDecl that matched.
1262        if (isa<OverloadedFunctionDecl>(PrevDecl))
1263          OldDecl = *MatchedDecl;
1264
1265        // NewFD and PrevDecl represent declarations that need to be
1266        // merged.
1267        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1268
1269        if (NewFD == 0) return 0;
1270        if (Redeclaration) {
1271          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1272
1273          if (OldDecl == PrevDecl) {
1274            // Remove the name binding for the previous
1275            // declaration.
1276           if (S->isDeclScope(PrevDecl)) {
1277             IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1278             S->RemoveDecl(PrevDecl);
1279           }
1280
1281           // Introduce the new binding for this declaration.
1282           IdResolver.AddDecl(NewFD);
1283           if (getLangOptions().CPlusPlus && NewFD->getParent())
1284             NewFD->getParent()->insert(Context, NewFD);
1285
1286           // Add the redeclaration to the current scope, since we'll
1287           // be skipping PushOnScopeChains.
1288           S->AddDecl(NewFD);
1289          } else {
1290            // We need to update the OverloadedFunctionDecl with the
1291            // latest declaration of this function, so that name
1292            // lookup will always refer to the latest declaration of
1293            // this function.
1294            *MatchedDecl = NewFD;
1295         }
1296
1297          if (getLangOptions().CPlusPlus) {
1298            // Add this declaration to the current context.
1299            CurContext->addDecl(Context, NewFD, false);
1300
1301            // Check default arguments now that we have merged decls.
1302            CheckCXXDefaultArguments(NewFD);
1303
1304            // An out-of-line member function declaration must also be a
1305            // definition (C++ [dcl.meaning]p1).
1306            if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1307                !InvalidDecl) {
1308              Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1309                << D.getCXXScopeSpec().getRange();
1310              NewFD->setInvalidDecl();
1311            }
1312          }
1313
1314         return NewFD;
1315        }
1316      }
1317
1318      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1319        // The user tried to provide an out-of-line definition for a
1320        // member function, but there was no such member function
1321        // declared (C++ [class.mfct]p2). For example:
1322        //
1323        // class X {
1324        //   void f() const;
1325        // };
1326        //
1327        // void X::f() { } // ill-formed
1328        //
1329        // Complain about this problem, and attempt to suggest close
1330        // matches (e.g., those that differ only in cv-qualifiers and
1331        // whether the parameter types are references).
1332        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1333          << cast<CXXRecordDecl>(DC)->getDeclName()
1334          << D.getCXXScopeSpec().getRange();
1335        InvalidDecl = true;
1336
1337        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1338        if (!PrevDecl) {
1339          // Nothing to suggest.
1340        } else if (OverloadedFunctionDecl *Ovl
1341                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1342          for (OverloadedFunctionDecl::function_iterator
1343                 Func = Ovl->function_begin(),
1344                 FuncEnd = Ovl->function_end();
1345               Func != FuncEnd; ++Func) {
1346            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1347              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1348
1349          }
1350        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1351          // Suggest this no matter how mismatched it is; it's the only
1352          // thing we have.
1353          unsigned diag;
1354          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1355            diag = diag::note_member_def_close_match;
1356          else if (Method->getBody())
1357            diag = diag::note_previous_definition;
1358          else
1359            diag = diag::note_previous_declaration;
1360          Diag(Method->getLocation(), diag);
1361        }
1362
1363        PrevDecl = 0;
1364      }
1365    }
1366    New = NewFD;
1367
1368    if (getLangOptions().CPlusPlus) {
1369      // In C++, check default arguments now that we have merged decls.
1370      CheckCXXDefaultArguments(NewFD);
1371
1372      // An out-of-line member function declaration must also be a
1373      // definition (C++ [dcl.meaning]p1).
1374      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet()) {
1375        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1376          << D.getCXXScopeSpec().getRange();
1377        InvalidDecl = true;
1378      }
1379    }
1380  } else {
1381    // Check that there are no default arguments (C++ only).
1382    if (getLangOptions().CPlusPlus)
1383      CheckExtraCXXDefaultArguments(D);
1384
1385    if (R.getTypePtr()->isObjCInterfaceType()) {
1386      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1387        << D.getIdentifier();
1388      InvalidDecl = true;
1389    }
1390
1391    VarDecl *NewVD;
1392    VarDecl::StorageClass SC;
1393    switch (D.getDeclSpec().getStorageClassSpec()) {
1394    default: assert(0 && "Unknown storage class!");
1395    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1396    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1397    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1398    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1399    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1400    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1401    case DeclSpec::SCS_mutable:
1402      // mutable can only appear on non-static class members, so it's always
1403      // an error here
1404      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1405      InvalidDecl = true;
1406      SC = VarDecl::None;
1407      break;
1408    }
1409
1410    IdentifierInfo *II = Name.getAsIdentifierInfo();
1411    if (!II) {
1412      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1413       << Name.getAsString();
1414      return 0;
1415    }
1416
1417    if (DC->isCXXRecord()) {
1418      // This is a static data member for a C++ class.
1419      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1420                                      D.getIdentifierLoc(), II,
1421                                      R, LastDeclarator);
1422    } else {
1423      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1424      if (S->getFnParent() == 0) {
1425        // C99 6.9p2: The storage-class specifiers auto and register shall not
1426        // appear in the declaration specifiers in an external declaration.
1427        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1428          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1429          InvalidDecl = true;
1430        }
1431      }
1432      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1433                              II, R, SC, LastDeclarator,
1434                              // FIXME: Move to DeclGroup...
1435                              D.getDeclSpec().getSourceRange().getBegin());
1436      NewVD->setThreadSpecified(ThreadSpecified);
1437    }
1438    // Handle attributes prior to checking for duplicates in MergeVarDecl
1439    ProcessDeclAttributes(NewVD, D);
1440
1441    // Handle GNU asm-label extension (encoded as an attribute).
1442    if (Expr *E = (Expr*) D.getAsmLabel()) {
1443      // The parser guarantees this is a string.
1444      StringLiteral *SE = cast<StringLiteral>(E);
1445      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1446                                                  SE->getByteLength())));
1447    }
1448
1449    // Emit an error if an address space was applied to decl with local storage.
1450    // This includes arrays of objects with address space qualifiers, but not
1451    // automatic variables that point to other address spaces.
1452    // ISO/IEC TR 18037 S5.1.2
1453    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1454      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1455      InvalidDecl = true;
1456    }
1457    // Merge the decl with the existing one if appropriate. If the decl is
1458    // in an outer scope, it isn't the same thing.
1459    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1460      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1461        // The user tried to define a non-static data member
1462        // out-of-line (C++ [dcl.meaning]p1).
1463        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1464          << D.getCXXScopeSpec().getRange();
1465        NewVD->Destroy(Context);
1466        return 0;
1467      }
1468
1469      NewVD = MergeVarDecl(NewVD, PrevDecl);
1470      if (NewVD == 0) return 0;
1471
1472      if (D.getCXXScopeSpec().isSet()) {
1473        // No previous declaration in the qualifying scope.
1474        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1475          << Name << D.getCXXScopeSpec().getRange();
1476        InvalidDecl = true;
1477      }
1478    }
1479    New = NewVD;
1480  }
1481
1482  // Set the lexical context. If the declarator has a C++ scope specifier, the
1483  // lexical context will be different from the semantic context.
1484  New->setLexicalDeclContext(CurContext);
1485
1486  // If this has an identifier, add it to the scope stack.
1487  if (Name)
1488    PushOnScopeChains(New, S);
1489  // If any semantic error occurred, mark the decl as invalid.
1490  if (D.getInvalidType() || InvalidDecl)
1491    New->setInvalidDecl();
1492
1493  return New;
1494}
1495
1496void Sema::InitializerElementNotConstant(const Expr *Init) {
1497  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1498    << Init->getSourceRange();
1499}
1500
1501bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1502  switch (Init->getStmtClass()) {
1503  default:
1504    InitializerElementNotConstant(Init);
1505    return true;
1506  case Expr::ParenExprClass: {
1507    const ParenExpr* PE = cast<ParenExpr>(Init);
1508    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1509  }
1510  case Expr::CompoundLiteralExprClass:
1511    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1512  case Expr::DeclRefExprClass: {
1513    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1514    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1515      if (VD->hasGlobalStorage())
1516        return false;
1517      InitializerElementNotConstant(Init);
1518      return true;
1519    }
1520    if (isa<FunctionDecl>(D))
1521      return false;
1522    InitializerElementNotConstant(Init);
1523    return true;
1524  }
1525  case Expr::MemberExprClass: {
1526    const MemberExpr *M = cast<MemberExpr>(Init);
1527    if (M->isArrow())
1528      return CheckAddressConstantExpression(M->getBase());
1529    return CheckAddressConstantExpressionLValue(M->getBase());
1530  }
1531  case Expr::ArraySubscriptExprClass: {
1532    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1533    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1534    return CheckAddressConstantExpression(ASE->getBase()) ||
1535           CheckArithmeticConstantExpression(ASE->getIdx());
1536  }
1537  case Expr::StringLiteralClass:
1538  case Expr::PredefinedExprClass:
1539    return false;
1540  case Expr::UnaryOperatorClass: {
1541    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1542
1543    // C99 6.6p9
1544    if (Exp->getOpcode() == UnaryOperator::Deref)
1545      return CheckAddressConstantExpression(Exp->getSubExpr());
1546
1547    InitializerElementNotConstant(Init);
1548    return true;
1549  }
1550  }
1551}
1552
1553bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1554  switch (Init->getStmtClass()) {
1555  default:
1556    InitializerElementNotConstant(Init);
1557    return true;
1558  case Expr::ParenExprClass:
1559    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1560  case Expr::StringLiteralClass:
1561  case Expr::ObjCStringLiteralClass:
1562    return false;
1563  case Expr::CallExprClass:
1564  case Expr::CXXOperatorCallExprClass:
1565    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1566    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1567           Builtin::BI__builtin___CFStringMakeConstantString)
1568      return false;
1569
1570    InitializerElementNotConstant(Init);
1571    return true;
1572
1573  case Expr::UnaryOperatorClass: {
1574    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1575
1576    // C99 6.6p9
1577    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1578      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1579
1580    if (Exp->getOpcode() == UnaryOperator::Extension)
1581      return CheckAddressConstantExpression(Exp->getSubExpr());
1582
1583    InitializerElementNotConstant(Init);
1584    return true;
1585  }
1586  case Expr::BinaryOperatorClass: {
1587    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1588    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1589
1590    Expr *PExp = Exp->getLHS();
1591    Expr *IExp = Exp->getRHS();
1592    if (IExp->getType()->isPointerType())
1593      std::swap(PExp, IExp);
1594
1595    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1596    return CheckAddressConstantExpression(PExp) ||
1597           CheckArithmeticConstantExpression(IExp);
1598  }
1599  case Expr::ImplicitCastExprClass:
1600  case Expr::CStyleCastExprClass: {
1601    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1602    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1603      // Check for implicit promotion
1604      if (SubExpr->getType()->isFunctionType() ||
1605          SubExpr->getType()->isArrayType())
1606        return CheckAddressConstantExpressionLValue(SubExpr);
1607    }
1608
1609    // Check for pointer->pointer cast
1610    if (SubExpr->getType()->isPointerType())
1611      return CheckAddressConstantExpression(SubExpr);
1612
1613    if (SubExpr->getType()->isIntegralType()) {
1614      // Check for the special-case of a pointer->int->pointer cast;
1615      // this isn't standard, but some code requires it. See
1616      // PR2720 for an example.
1617      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1618        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1619          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1620          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1621          if (IntWidth >= PointerWidth) {
1622            return CheckAddressConstantExpression(SubCast->getSubExpr());
1623          }
1624        }
1625      }
1626    }
1627    if (SubExpr->getType()->isArithmeticType()) {
1628      return CheckArithmeticConstantExpression(SubExpr);
1629    }
1630
1631    InitializerElementNotConstant(Init);
1632    return true;
1633  }
1634  case Expr::ConditionalOperatorClass: {
1635    // FIXME: Should we pedwarn here?
1636    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1637    if (!Exp->getCond()->getType()->isArithmeticType()) {
1638      InitializerElementNotConstant(Init);
1639      return true;
1640    }
1641    if (CheckArithmeticConstantExpression(Exp->getCond()))
1642      return true;
1643    if (Exp->getLHS() &&
1644        CheckAddressConstantExpression(Exp->getLHS()))
1645      return true;
1646    return CheckAddressConstantExpression(Exp->getRHS());
1647  }
1648  case Expr::AddrLabelExprClass:
1649    return false;
1650  }
1651}
1652
1653static const Expr* FindExpressionBaseAddress(const Expr* E);
1654
1655static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1656  switch (E->getStmtClass()) {
1657  default:
1658    return E;
1659  case Expr::ParenExprClass: {
1660    const ParenExpr* PE = cast<ParenExpr>(E);
1661    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1662  }
1663  case Expr::MemberExprClass: {
1664    const MemberExpr *M = cast<MemberExpr>(E);
1665    if (M->isArrow())
1666      return FindExpressionBaseAddress(M->getBase());
1667    return FindExpressionBaseAddressLValue(M->getBase());
1668  }
1669  case Expr::ArraySubscriptExprClass: {
1670    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1671    return FindExpressionBaseAddress(ASE->getBase());
1672  }
1673  case Expr::UnaryOperatorClass: {
1674    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1675
1676    if (Exp->getOpcode() == UnaryOperator::Deref)
1677      return FindExpressionBaseAddress(Exp->getSubExpr());
1678
1679    return E;
1680  }
1681  }
1682}
1683
1684static const Expr* FindExpressionBaseAddress(const Expr* E) {
1685  switch (E->getStmtClass()) {
1686  default:
1687    return E;
1688  case Expr::ParenExprClass: {
1689    const ParenExpr* PE = cast<ParenExpr>(E);
1690    return FindExpressionBaseAddress(PE->getSubExpr());
1691  }
1692  case Expr::UnaryOperatorClass: {
1693    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1694
1695    // C99 6.6p9
1696    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1697      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1698
1699    if (Exp->getOpcode() == UnaryOperator::Extension)
1700      return FindExpressionBaseAddress(Exp->getSubExpr());
1701
1702    return E;
1703  }
1704  case Expr::BinaryOperatorClass: {
1705    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1706
1707    Expr *PExp = Exp->getLHS();
1708    Expr *IExp = Exp->getRHS();
1709    if (IExp->getType()->isPointerType())
1710      std::swap(PExp, IExp);
1711
1712    return FindExpressionBaseAddress(PExp);
1713  }
1714  case Expr::ImplicitCastExprClass: {
1715    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1716
1717    // Check for implicit promotion
1718    if (SubExpr->getType()->isFunctionType() ||
1719        SubExpr->getType()->isArrayType())
1720      return FindExpressionBaseAddressLValue(SubExpr);
1721
1722    // Check for pointer->pointer cast
1723    if (SubExpr->getType()->isPointerType())
1724      return FindExpressionBaseAddress(SubExpr);
1725
1726    // We assume that we have an arithmetic expression here;
1727    // if we don't, we'll figure it out later
1728    return 0;
1729  }
1730  case Expr::CStyleCastExprClass: {
1731    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1732
1733    // Check for pointer->pointer cast
1734    if (SubExpr->getType()->isPointerType())
1735      return FindExpressionBaseAddress(SubExpr);
1736
1737    // We assume that we have an arithmetic expression here;
1738    // if we don't, we'll figure it out later
1739    return 0;
1740  }
1741  }
1742}
1743
1744bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1745  switch (Init->getStmtClass()) {
1746  default:
1747    InitializerElementNotConstant(Init);
1748    return true;
1749  case Expr::ParenExprClass: {
1750    const ParenExpr* PE = cast<ParenExpr>(Init);
1751    return CheckArithmeticConstantExpression(PE->getSubExpr());
1752  }
1753  case Expr::FloatingLiteralClass:
1754  case Expr::IntegerLiteralClass:
1755  case Expr::CharacterLiteralClass:
1756  case Expr::ImaginaryLiteralClass:
1757  case Expr::TypesCompatibleExprClass:
1758  case Expr::CXXBoolLiteralExprClass:
1759    return false;
1760  case Expr::CallExprClass:
1761  case Expr::CXXOperatorCallExprClass: {
1762    const CallExpr *CE = cast<CallExpr>(Init);
1763
1764    // Allow any constant foldable calls to builtins.
1765    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1766      return false;
1767
1768    InitializerElementNotConstant(Init);
1769    return true;
1770  }
1771  case Expr::DeclRefExprClass: {
1772    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1773    if (isa<EnumConstantDecl>(D))
1774      return false;
1775    InitializerElementNotConstant(Init);
1776    return true;
1777  }
1778  case Expr::CompoundLiteralExprClass:
1779    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1780    // but vectors are allowed to be magic.
1781    if (Init->getType()->isVectorType())
1782      return false;
1783    InitializerElementNotConstant(Init);
1784    return true;
1785  case Expr::UnaryOperatorClass: {
1786    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1787
1788    switch (Exp->getOpcode()) {
1789    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1790    // See C99 6.6p3.
1791    default:
1792      InitializerElementNotConstant(Init);
1793      return true;
1794    case UnaryOperator::OffsetOf:
1795      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1796        return false;
1797      InitializerElementNotConstant(Init);
1798      return true;
1799    case UnaryOperator::Extension:
1800    case UnaryOperator::LNot:
1801    case UnaryOperator::Plus:
1802    case UnaryOperator::Minus:
1803    case UnaryOperator::Not:
1804      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1805    }
1806  }
1807  case Expr::SizeOfAlignOfExprClass: {
1808    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1809    // Special check for void types, which are allowed as an extension
1810    if (Exp->getTypeOfArgument()->isVoidType())
1811      return false;
1812    // alignof always evaluates to a constant.
1813    // FIXME: is sizeof(int[3.0]) a constant expression?
1814    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1815      InitializerElementNotConstant(Init);
1816      return true;
1817    }
1818    return false;
1819  }
1820  case Expr::BinaryOperatorClass: {
1821    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1822
1823    if (Exp->getLHS()->getType()->isArithmeticType() &&
1824        Exp->getRHS()->getType()->isArithmeticType()) {
1825      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1826             CheckArithmeticConstantExpression(Exp->getRHS());
1827    }
1828
1829    if (Exp->getLHS()->getType()->isPointerType() &&
1830        Exp->getRHS()->getType()->isPointerType()) {
1831      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1832      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1833
1834      // Only allow a null (constant integer) base; we could
1835      // allow some additional cases if necessary, but this
1836      // is sufficient to cover offsetof-like constructs.
1837      if (!LHSBase && !RHSBase) {
1838        return CheckAddressConstantExpression(Exp->getLHS()) ||
1839               CheckAddressConstantExpression(Exp->getRHS());
1840      }
1841    }
1842
1843    InitializerElementNotConstant(Init);
1844    return true;
1845  }
1846  case Expr::ImplicitCastExprClass:
1847  case Expr::CStyleCastExprClass: {
1848    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1849    if (SubExpr->getType()->isArithmeticType())
1850      return CheckArithmeticConstantExpression(SubExpr);
1851
1852    if (SubExpr->getType()->isPointerType()) {
1853      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1854      // If the pointer has a null base, this is an offsetof-like construct
1855      if (!Base)
1856        return CheckAddressConstantExpression(SubExpr);
1857    }
1858
1859    InitializerElementNotConstant(Init);
1860    return true;
1861  }
1862  case Expr::ConditionalOperatorClass: {
1863    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1864
1865    // If GNU extensions are disabled, we require all operands to be arithmetic
1866    // constant expressions.
1867    if (getLangOptions().NoExtensions) {
1868      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1869          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1870             CheckArithmeticConstantExpression(Exp->getRHS());
1871    }
1872
1873    // Otherwise, we have to emulate some of the behavior of fold here.
1874    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1875    // because it can constant fold things away.  To retain compatibility with
1876    // GCC code, we see if we can fold the condition to a constant (which we
1877    // should always be able to do in theory).  If so, we only require the
1878    // specified arm of the conditional to be a constant.  This is a horrible
1879    // hack, but is require by real world code that uses __builtin_constant_p.
1880    APValue Val;
1881    if (!Exp->getCond()->Evaluate(Val, Context)) {
1882      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1883      // won't be able to either.  Use it to emit the diagnostic though.
1884      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1885      assert(Res && "Evaluate couldn't evaluate this constant?");
1886      return Res;
1887    }
1888
1889    // Verify that the side following the condition is also a constant.
1890    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1891    if (Val.getInt() == 0)
1892      std::swap(TrueSide, FalseSide);
1893
1894    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1895      return true;
1896
1897    // Okay, the evaluated side evaluates to a constant, so we accept this.
1898    // Check to see if the other side is obviously not a constant.  If so,
1899    // emit a warning that this is a GNU extension.
1900    if (FalseSide && !FalseSide->isEvaluatable(Context))
1901      Diag(Init->getExprLoc(),
1902           diag::ext_typecheck_expression_not_constant_but_accepted)
1903        << FalseSide->getSourceRange();
1904    return false;
1905  }
1906  }
1907}
1908
1909bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1910  Expr::EvalResult Result;
1911
1912  Init = Init->IgnoreParens();
1913
1914  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1915    return false;
1916
1917  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1918  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1919    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1920
1921  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1922    return CheckForConstantInitializer(e->getInitializer(), DclT);
1923
1924  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1925    unsigned numInits = Exp->getNumInits();
1926    for (unsigned i = 0; i < numInits; i++) {
1927      // FIXME: Need to get the type of the declaration for C++,
1928      // because it could be a reference?
1929      if (CheckForConstantInitializer(Exp->getInit(i),
1930                                      Exp->getInit(i)->getType()))
1931        return true;
1932    }
1933    return false;
1934  }
1935
1936  // FIXME: We can probably remove some of this code below, now that
1937  // Expr::Evaluate is doing the heavy lifting for scalars.
1938
1939  if (Init->isNullPointerConstant(Context))
1940    return false;
1941  if (Init->getType()->isArithmeticType()) {
1942    QualType InitTy = Context.getCanonicalType(Init->getType())
1943                             .getUnqualifiedType();
1944    if (InitTy == Context.BoolTy) {
1945      // Special handling for pointers implicitly cast to bool;
1946      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1947      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1948        Expr* SubE = ICE->getSubExpr();
1949        if (SubE->getType()->isPointerType() ||
1950            SubE->getType()->isArrayType() ||
1951            SubE->getType()->isFunctionType()) {
1952          return CheckAddressConstantExpression(Init);
1953        }
1954      }
1955    } else if (InitTy->isIntegralType()) {
1956      Expr* SubE = 0;
1957      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1958        SubE = CE->getSubExpr();
1959      // Special check for pointer cast to int; we allow as an extension
1960      // an address constant cast to an integer if the integer
1961      // is of an appropriate width (this sort of code is apparently used
1962      // in some places).
1963      // FIXME: Add pedwarn?
1964      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1965      if (SubE && (SubE->getType()->isPointerType() ||
1966                   SubE->getType()->isArrayType() ||
1967                   SubE->getType()->isFunctionType())) {
1968        unsigned IntWidth = Context.getTypeSize(Init->getType());
1969        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1970        if (IntWidth >= PointerWidth)
1971          return CheckAddressConstantExpression(Init);
1972      }
1973    }
1974
1975    return CheckArithmeticConstantExpression(Init);
1976  }
1977
1978  if (Init->getType()->isPointerType())
1979    return CheckAddressConstantExpression(Init);
1980
1981  // An array type at the top level that isn't an init-list must
1982  // be a string literal
1983  if (Init->getType()->isArrayType())
1984    return false;
1985
1986  if (Init->getType()->isFunctionType())
1987    return false;
1988
1989  // Allow block exprs at top level.
1990  if (Init->getType()->isBlockPointerType())
1991    return false;
1992
1993  InitializerElementNotConstant(Init);
1994  return true;
1995}
1996
1997void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
1998  Decl *RealDecl = static_cast<Decl *>(dcl);
1999  Expr *Init = static_cast<Expr *>(init.release());
2000  assert(Init && "missing initializer");
2001
2002  // If there is no declaration, there was an error parsing it.  Just ignore
2003  // the initializer.
2004  if (RealDecl == 0) {
2005    delete Init;
2006    return;
2007  }
2008
2009  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2010  if (!VDecl) {
2011    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2012         diag::err_illegal_initializer);
2013    RealDecl->setInvalidDecl();
2014    return;
2015  }
2016  // Get the decls type and save a reference for later, since
2017  // CheckInitializerTypes may change it.
2018  QualType DclT = VDecl->getType(), SavT = DclT;
2019  if (VDecl->isBlockVarDecl()) {
2020    VarDecl::StorageClass SC = VDecl->getStorageClass();
2021    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2022      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2023      VDecl->setInvalidDecl();
2024    } else if (!VDecl->isInvalidDecl()) {
2025      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2026                                VDecl->getDeclName()))
2027        VDecl->setInvalidDecl();
2028
2029      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2030      if (!getLangOptions().CPlusPlus) {
2031        if (SC == VarDecl::Static) // C99 6.7.8p4.
2032          CheckForConstantInitializer(Init, DclT);
2033      }
2034    }
2035  } else if (VDecl->isFileVarDecl()) {
2036    if (VDecl->getStorageClass() == VarDecl::Extern)
2037      Diag(VDecl->getLocation(), diag::warn_extern_init);
2038    if (!VDecl->isInvalidDecl())
2039      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2040                                VDecl->getDeclName()))
2041        VDecl->setInvalidDecl();
2042
2043    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2044    if (!getLangOptions().CPlusPlus) {
2045      // C99 6.7.8p4. All file scoped initializers need to be constant.
2046      CheckForConstantInitializer(Init, DclT);
2047    }
2048  }
2049  // If the type changed, it means we had an incomplete type that was
2050  // completed by the initializer. For example:
2051  //   int ary[] = { 1, 3, 5 };
2052  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2053  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2054    VDecl->setType(DclT);
2055    Init->setType(DclT);
2056  }
2057
2058  // Attach the initializer to the decl.
2059  VDecl->setInit(Init);
2060  return;
2061}
2062
2063void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2064  Decl *RealDecl = static_cast<Decl *>(dcl);
2065
2066  // If there is no declaration, there was an error parsing it. Just ignore it.
2067  if (RealDecl == 0)
2068    return;
2069
2070  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2071    QualType Type = Var->getType();
2072    // C++ [dcl.init.ref]p3:
2073    //   The initializer can be omitted for a reference only in a
2074    //   parameter declaration (8.3.5), in the declaration of a
2075    //   function return type, in the declaration of a class member
2076    //   within its class declaration (9.2), and where the extern
2077    //   specifier is explicitly used.
2078    if (Type->isReferenceType() &&
2079        Var->getStorageClass() != VarDecl::Extern &&
2080        Var->getStorageClass() != VarDecl::PrivateExtern) {
2081      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2082        << Var->getDeclName()
2083        << SourceRange(Var->getLocation(), Var->getLocation());
2084      Var->setInvalidDecl();
2085      return;
2086    }
2087
2088    // C++ [dcl.init]p9:
2089    //
2090    //   If no initializer is specified for an object, and the object
2091    //   is of (possibly cv-qualified) non-POD class type (or array
2092    //   thereof), the object shall be default-initialized; if the
2093    //   object is of const-qualified type, the underlying class type
2094    //   shall have a user-declared default constructor.
2095    if (getLangOptions().CPlusPlus) {
2096      QualType InitType = Type;
2097      if (const ArrayType *Array = Context.getAsArrayType(Type))
2098        InitType = Array->getElementType();
2099      if (Var->getStorageClass() != VarDecl::Extern &&
2100          Var->getStorageClass() != VarDecl::PrivateExtern &&
2101          InitType->isRecordType()) {
2102        const CXXConstructorDecl *Constructor
2103          = PerformInitializationByConstructor(InitType, 0, 0,
2104                                               Var->getLocation(),
2105                                               SourceRange(Var->getLocation(),
2106                                                           Var->getLocation()),
2107                                               Var->getDeclName(),
2108                                               IK_Default);
2109        if (!Constructor)
2110          Var->setInvalidDecl();
2111      }
2112    }
2113
2114#if 0
2115    // FIXME: Temporarily disabled because we are not properly parsing
2116    // linkage specifications on declarations, e.g.,
2117    //
2118    //   extern "C" const CGPoint CGPointerZero;
2119    //
2120    // C++ [dcl.init]p9:
2121    //
2122    //     If no initializer is specified for an object, and the
2123    //     object is of (possibly cv-qualified) non-POD class type (or
2124    //     array thereof), the object shall be default-initialized; if
2125    //     the object is of const-qualified type, the underlying class
2126    //     type shall have a user-declared default
2127    //     constructor. Otherwise, if no initializer is specified for
2128    //     an object, the object and its subobjects, if any, have an
2129    //     indeterminate initial value; if the object or any of its
2130    //     subobjects are of const-qualified type, the program is
2131    //     ill-formed.
2132    //
2133    // This isn't technically an error in C, so we don't diagnose it.
2134    //
2135    // FIXME: Actually perform the POD/user-defined default
2136    // constructor check.
2137    if (getLangOptions().CPlusPlus &&
2138        Context.getCanonicalType(Type).isConstQualified() &&
2139        Var->getStorageClass() != VarDecl::Extern)
2140      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2141        << Var->getName()
2142        << SourceRange(Var->getLocation(), Var->getLocation());
2143#endif
2144  }
2145}
2146
2147/// The declarators are chained together backwards, reverse the list.
2148Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2149  // Often we have single declarators, handle them quickly.
2150  Decl *GroupDecl = static_cast<Decl*>(group);
2151  if (GroupDecl == 0)
2152    return 0;
2153
2154  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2155  ScopedDecl *NewGroup = 0;
2156  if (Group->getNextDeclarator() == 0)
2157    NewGroup = Group;
2158  else { // reverse the list.
2159    while (Group) {
2160      ScopedDecl *Next = Group->getNextDeclarator();
2161      Group->setNextDeclarator(NewGroup);
2162      NewGroup = Group;
2163      Group = Next;
2164    }
2165  }
2166  // Perform semantic analysis that depends on having fully processed both
2167  // the declarator and initializer.
2168  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2169    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2170    if (!IDecl)
2171      continue;
2172    QualType T = IDecl->getType();
2173
2174    if (T->isVariableArrayType()) {
2175      const VariableArrayType *VAT =
2176        cast<VariableArrayType>(T.getUnqualifiedType());
2177
2178      // FIXME: This won't give the correct result for
2179      // int a[10][n];
2180      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2181      if (IDecl->isFileVarDecl()) {
2182        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2183          SizeRange;
2184
2185        IDecl->setInvalidDecl();
2186      } else {
2187        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2188        // static storage duration, it shall not have a variable length array.
2189        if (IDecl->getStorageClass() == VarDecl::Static) {
2190          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2191            << SizeRange;
2192          IDecl->setInvalidDecl();
2193        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2194          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2195            << SizeRange;
2196          IDecl->setInvalidDecl();
2197        }
2198      }
2199    } else if (T->isVariablyModifiedType()) {
2200      if (IDecl->isFileVarDecl()) {
2201        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2202        IDecl->setInvalidDecl();
2203      } else {
2204        if (IDecl->getStorageClass() == VarDecl::Extern) {
2205          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2206          IDecl->setInvalidDecl();
2207        }
2208      }
2209    }
2210
2211    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2212    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2213    if (IDecl->isBlockVarDecl() &&
2214        IDecl->getStorageClass() != VarDecl::Extern) {
2215      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2216        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2217        IDecl->setInvalidDecl();
2218      }
2219    }
2220    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2221    // object that has file scope without an initializer, and without a
2222    // storage-class specifier or with the storage-class specifier "static",
2223    // constitutes a tentative definition. Note: A tentative definition with
2224    // external linkage is valid (C99 6.2.2p5).
2225    if (isTentativeDefinition(IDecl)) {
2226      if (T->isIncompleteArrayType()) {
2227        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2228        // array to be completed. Don't issue a diagnostic.
2229      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2230        // C99 6.9.2p3: If the declaration of an identifier for an object is
2231        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2232        // declared type shall not be an incomplete type.
2233        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2234        IDecl->setInvalidDecl();
2235      }
2236    }
2237    if (IDecl->isFileVarDecl())
2238      CheckForFileScopedRedefinitions(S, IDecl);
2239  }
2240  return NewGroup;
2241}
2242
2243/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2244/// to introduce parameters into function prototype scope.
2245Sema::DeclTy *
2246Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2247  const DeclSpec &DS = D.getDeclSpec();
2248
2249  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2250  VarDecl::StorageClass StorageClass = VarDecl::None;
2251  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2252    StorageClass = VarDecl::Register;
2253  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2254    Diag(DS.getStorageClassSpecLoc(),
2255         diag::err_invalid_storage_class_in_func_decl);
2256    D.getMutableDeclSpec().ClearStorageClassSpecs();
2257  }
2258  if (DS.isThreadSpecified()) {
2259    Diag(DS.getThreadSpecLoc(),
2260         diag::err_invalid_storage_class_in_func_decl);
2261    D.getMutableDeclSpec().ClearStorageClassSpecs();
2262  }
2263
2264  // Check that there are no default arguments inside the type of this
2265  // parameter (C++ only).
2266  if (getLangOptions().CPlusPlus)
2267    CheckExtraCXXDefaultArguments(D);
2268
2269  // In this context, we *do not* check D.getInvalidType(). If the declarator
2270  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2271  // though it will not reflect the user specified type.
2272  QualType parmDeclType = GetTypeForDeclarator(D, S);
2273
2274  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2275
2276  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2277  // Can this happen for params?  We already checked that they don't conflict
2278  // among each other.  Here they can only shadow globals, which is ok.
2279  IdentifierInfo *II = D.getIdentifier();
2280  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2281    if (PrevDecl->isTemplateParameter()) {
2282      // Maybe we will complain about the shadowed template parameter.
2283      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2284      // Just pretend that we didn't see the previous declaration.
2285      PrevDecl = 0;
2286    } else if (S->isDeclScope(PrevDecl)) {
2287      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2288
2289      // Recover by removing the name
2290      II = 0;
2291      D.SetIdentifier(0, D.getIdentifierLoc());
2292    }
2293  }
2294
2295  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2296  // Doing the promotion here has a win and a loss. The win is the type for
2297  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2298  // code generator). The loss is the orginal type isn't preserved. For example:
2299  //
2300  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2301  //    int blockvardecl[5];
2302  //    sizeof(parmvardecl);  // size == 4
2303  //    sizeof(blockvardecl); // size == 20
2304  // }
2305  //
2306  // For expressions, all implicit conversions are captured using the
2307  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2308  //
2309  // FIXME: If a source translation tool needs to see the original type, then
2310  // we need to consider storing both types (in ParmVarDecl)...
2311  //
2312  if (parmDeclType->isArrayType()) {
2313    // int x[restrict 4] ->  int *restrict
2314    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2315  } else if (parmDeclType->isFunctionType())
2316    parmDeclType = Context.getPointerType(parmDeclType);
2317
2318  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2319                                         D.getIdentifierLoc(), II,
2320                                         parmDeclType, StorageClass,
2321                                         0, 0);
2322
2323  if (D.getInvalidType())
2324    New->setInvalidDecl();
2325
2326  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2327  if (D.getCXXScopeSpec().isSet()) {
2328    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2329      << D.getCXXScopeSpec().getRange();
2330    New->setInvalidDecl();
2331  }
2332
2333  // Add the parameter declaration into this scope.
2334  S->AddDecl(New);
2335  if (II)
2336    IdResolver.AddDecl(New);
2337
2338  ProcessDeclAttributes(New, D);
2339  return New;
2340
2341}
2342
2343Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2344  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2345  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2346         "Not a function declarator!");
2347  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2348
2349  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2350  // for a K&R function.
2351  if (!FTI.hasPrototype) {
2352    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2353      if (FTI.ArgInfo[i].Param == 0) {
2354        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2355          << FTI.ArgInfo[i].Ident;
2356        // Implicitly declare the argument as type 'int' for lack of a better
2357        // type.
2358        DeclSpec DS;
2359        const char* PrevSpec; // unused
2360        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2361                           PrevSpec);
2362        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2363        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2364        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2365      }
2366    }
2367  } else {
2368    // FIXME: Diagnose arguments without names in C.
2369  }
2370
2371  Scope *ParentScope = FnBodyScope->getParent();
2372
2373  return ActOnStartOfFunctionDef(FnBodyScope,
2374                                 ActOnDeclarator(ParentScope, D, 0,
2375                                                 /*IsFunctionDefinition=*/true));
2376}
2377
2378Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2379  Decl *decl = static_cast<Decl*>(D);
2380  FunctionDecl *FD = cast<FunctionDecl>(decl);
2381
2382  // See if this is a redefinition.
2383  const FunctionDecl *Definition;
2384  if (FD->getBody(Definition)) {
2385    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2386    Diag(Definition->getLocation(), diag::note_previous_definition);
2387  }
2388
2389  PushDeclContext(FnBodyScope, FD);
2390
2391  // Check the validity of our function parameters
2392  CheckParmsForFunctionDef(FD);
2393
2394  // Introduce our parameters into the function scope
2395  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2396    ParmVarDecl *Param = FD->getParamDecl(p);
2397    // If this has an identifier, add it to the scope stack.
2398    if (Param->getIdentifier())
2399      PushOnScopeChains(Param, FnBodyScope);
2400  }
2401
2402  return FD;
2403}
2404
2405Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2406  Decl *dcl = static_cast<Decl *>(D);
2407  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2408  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2409    FD->setBody(Body);
2410    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2411  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2412    MD->setBody((Stmt*)Body);
2413  } else
2414    return 0;
2415  PopDeclContext();
2416  // Verify and clean out per-function state.
2417
2418  // Check goto/label use.
2419  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2420       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2421    // Verify that we have no forward references left.  If so, there was a goto
2422    // or address of a label taken, but no definition of it.  Label fwd
2423    // definitions are indicated with a null substmt.
2424    if (I->second->getSubStmt() == 0) {
2425      LabelStmt *L = I->second;
2426      // Emit error.
2427      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2428
2429      // At this point, we have gotos that use the bogus label.  Stitch it into
2430      // the function body so that they aren't leaked and that the AST is well
2431      // formed.
2432      if (Body) {
2433        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2434        cast<CompoundStmt>(Body)->push_back(L);
2435      } else {
2436        // The whole function wasn't parsed correctly, just delete this.
2437        delete L;
2438      }
2439    }
2440  }
2441  LabelMap.clear();
2442
2443  return D;
2444}
2445
2446/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2447/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2448ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2449                                           IdentifierInfo &II, Scope *S) {
2450  // Extension in C99.  Legal in C90, but warn about it.
2451  if (getLangOptions().C99)
2452    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2453  else
2454    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2455
2456  // FIXME: handle stuff like:
2457  // void foo() { extern float X(); }
2458  // void bar() { X(); }  <-- implicit decl for X in another scope.
2459
2460  // Set a Declarator for the implicit definition: int foo();
2461  const char *Dummy;
2462  DeclSpec DS;
2463  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2464  Error = Error; // Silence warning.
2465  assert(!Error && "Error setting up implicit decl!");
2466  Declarator D(DS, Declarator::BlockContext);
2467  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2468  D.SetIdentifier(&II, Loc);
2469
2470  // Insert this function into translation-unit scope.
2471
2472  DeclContext *PrevDC = CurContext;
2473  CurContext = Context.getTranslationUnitDecl();
2474
2475  FunctionDecl *FD =
2476    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2477  FD->setImplicit();
2478
2479  CurContext = PrevDC;
2480
2481  return FD;
2482}
2483
2484
2485TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2486                                    ScopedDecl *LastDeclarator) {
2487  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2488  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2489
2490  // Scope manipulation handled by caller.
2491  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2492                                           D.getIdentifierLoc(),
2493                                           D.getIdentifier(),
2494                                           T, LastDeclarator);
2495  if (D.getInvalidType())
2496    NewTD->setInvalidDecl();
2497  return NewTD;
2498}
2499
2500/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2501/// former case, Name will be non-null.  In the later case, Name will be null.
2502/// TagType indicates what kind of tag this is. TK indicates whether this is a
2503/// reference/declaration/definition of a tag.
2504Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2505                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2506                             IdentifierInfo *Name, SourceLocation NameLoc,
2507                             AttributeList *Attr) {
2508  // If this is not a definition, it must have a name.
2509  assert((Name != 0 || TK == TK_Definition) &&
2510         "Nameless record must be a definition!");
2511
2512  TagDecl::TagKind Kind;
2513  switch (TagType) {
2514  default: assert(0 && "Unknown tag type!");
2515  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2516  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2517  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2518  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2519  }
2520
2521  DeclContext *DC = CurContext;
2522  ScopedDecl *PrevDecl = 0;
2523
2524  if (Name && SS.isNotEmpty()) {
2525    // We have a nested-name tag ('struct foo::bar').
2526
2527    // Check for invalid 'foo::'.
2528    if (SS.isInvalid()) {
2529      Name = 0;
2530      goto CreateNewDecl;
2531    }
2532
2533    DC = static_cast<DeclContext*>(SS.getScopeRep());
2534    // Look-up name inside 'foo::'.
2535    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2536
2537    // A tag 'foo::bar' must already exist.
2538    if (PrevDecl == 0) {
2539      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2540      Name = 0;
2541      goto CreateNewDecl;
2542    }
2543  } else {
2544    // If this is a named struct, check to see if there was a previous forward
2545    // declaration or definition.
2546    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2547    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2548  }
2549
2550  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2551    // Maybe we will complain about the shadowed template parameter.
2552    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2553    // Just pretend that we didn't see the previous declaration.
2554    PrevDecl = 0;
2555  }
2556
2557  if (PrevDecl) {
2558    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2559            "unexpected Decl type");
2560    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2561      // If this is a use of a previous tag, or if the tag is already declared
2562      // in the same scope (so that the definition/declaration completes or
2563      // rementions the tag), reuse the decl.
2564      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2565        // Make sure that this wasn't declared as an enum and now used as a
2566        // struct or something similar.
2567        if (PrevTagDecl->getTagKind() != Kind) {
2568          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2569          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2570          // Recover by making this an anonymous redefinition.
2571          Name = 0;
2572          PrevDecl = 0;
2573        } else {
2574          // If this is a use, just return the declaration we found.
2575
2576          // FIXME: In the future, return a variant or some other clue
2577          // for the consumer of this Decl to know it doesn't own it.
2578          // For our current ASTs this shouldn't be a problem, but will
2579          // need to be changed with DeclGroups.
2580          if (TK == TK_Reference)
2581            return PrevDecl;
2582
2583          // Diagnose attempts to redefine a tag.
2584          if (TK == TK_Definition) {
2585            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2586              Diag(NameLoc, diag::err_redefinition) << Name;
2587              Diag(Def->getLocation(), diag::note_previous_definition);
2588              // If this is a redefinition, recover by making this struct be
2589              // anonymous, which will make any later references get the previous
2590              // definition.
2591              Name = 0;
2592              PrevDecl = 0;
2593            }
2594            // Okay, this is definition of a previously declared or referenced
2595            // tag PrevDecl. We're going to create a new Decl for it.
2596          }
2597        }
2598        // If we get here we have (another) forward declaration or we
2599        // have a definition.  Just create a new decl.
2600      } else {
2601        // If we get here, this is a definition of a new tag type in a nested
2602        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2603        // new decl/type.  We set PrevDecl to NULL so that the entities
2604        // have distinct types.
2605        PrevDecl = 0;
2606      }
2607      // If we get here, we're going to create a new Decl. If PrevDecl
2608      // is non-NULL, it's a definition of the tag declared by
2609      // PrevDecl. If it's NULL, we have a new definition.
2610    } else {
2611      // PrevDecl is a namespace.
2612      if (isDeclInScope(PrevDecl, DC, S)) {
2613        // The tag name clashes with a namespace name, issue an error and
2614        // recover by making this tag be anonymous.
2615        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2616        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2617        Name = 0;
2618        PrevDecl = 0;
2619      } else {
2620        // The existing declaration isn't relevant to us; we're in a
2621        // new scope, so clear out the previous declaration.
2622        PrevDecl = 0;
2623      }
2624    }
2625  }
2626
2627  CreateNewDecl:
2628
2629  // If there is an identifier, use the location of the identifier as the
2630  // location of the decl, otherwise use the location of the struct/union
2631  // keyword.
2632  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2633
2634  // Otherwise, create a new declaration. If there is a previous
2635  // declaration of the same entity, the two will be linked via
2636  // PrevDecl.
2637  TagDecl *New;
2638  if (Kind == TagDecl::TK_enum) {
2639    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2640    // enum X { A, B, C } D;    D should chain to X.
2641    New = EnumDecl::Create(Context, DC, Loc, Name,
2642                           cast_or_null<EnumDecl>(PrevDecl));
2643    // If this is an undefined enum, warn.
2644    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2645  } else {
2646    // struct/union/class
2647
2648    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2649    // struct X { int A; } D;    D should chain to X.
2650    if (getLangOptions().CPlusPlus)
2651      // FIXME: Look for a way to use RecordDecl for simple structs.
2652      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2653                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2654    else
2655      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2656                               cast_or_null<RecordDecl>(PrevDecl));
2657  }
2658
2659  if (Kind != TagDecl::TK_enum) {
2660    // Handle #pragma pack: if the #pragma pack stack has non-default
2661    // alignment, make up a packed attribute for this decl. These
2662    // attributes are checked when the ASTContext lays out the
2663    // structure.
2664    //
2665    // It is important for implementing the correct semantics that this
2666    // happen here (in act on tag decl). The #pragma pack stack is
2667    // maintained as a result of parser callbacks which can occur at
2668    // many points during the parsing of a struct declaration (because
2669    // the #pragma tokens are effectively skipped over during the
2670    // parsing of the struct).
2671    if (unsigned Alignment = PackContext.getAlignment())
2672      New->addAttr(new PackedAttr(Alignment * 8));
2673  }
2674
2675  if (Attr)
2676    ProcessDeclAttributeList(New, Attr);
2677
2678  // Set the lexical context. If the tag has a C++ scope specifier, the
2679  // lexical context will be different from the semantic context.
2680  New->setLexicalDeclContext(CurContext);
2681
2682  // If this has an identifier, add it to the scope stack.
2683  if (Name) {
2684    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2685    // we find one that is.
2686    while ((S->getFlags() & Scope::DeclScope) == 0)
2687      S = S->getParent();
2688
2689    // Add it to the decl chain.
2690    PushOnScopeChains(New, S);
2691  }
2692
2693  return New;
2694}
2695
2696/// Collect the instance variables declared in an Objective-C object.  Used in
2697/// the creation of structures from objects using the @defs directive.
2698/// FIXME: This should be consolidated with CollectObjCIvars as it is also
2699/// part of the AST generation logic of @defs.
2700static void CollectIvars(ObjCInterfaceDecl *Class, RecordDecl *Record,
2701                         ASTContext& Ctx,
2702                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2703  if (Class->getSuperClass())
2704    CollectIvars(Class->getSuperClass(), Record, Ctx, ivars);
2705
2706  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2707  for (ObjCInterfaceDecl::ivar_iterator
2708        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2709
2710    ObjCIvarDecl* ID = *I;
2711    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, Record,
2712                                                ID->getLocation(),
2713                                                ID->getIdentifier(),
2714                                                ID->getType(),
2715                                                ID->getBitWidth()));
2716  }
2717}
2718
2719/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2720/// instance variables of ClassName into Decls.
2721void Sema::ActOnDefs(Scope *S, DeclTy *TagD, SourceLocation DeclStart,
2722                     IdentifierInfo *ClassName,
2723                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2724  // Check that ClassName is a valid class
2725  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2726  if (!Class) {
2727    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2728    return;
2729  }
2730  // Collect the instance variables
2731  CollectIvars(Class, dyn_cast<RecordDecl>((Decl*)TagD), Context, Decls);
2732
2733  // Introduce all of these fields into the appropriate scope.
2734  for (llvm::SmallVectorImpl<DeclTy*>::iterator D = Decls.begin();
2735       D != Decls.end(); ++D) {
2736    FieldDecl *FD = cast<FieldDecl>((Decl*)*D);
2737    if (getLangOptions().CPlusPlus)
2738      PushOnScopeChains(cast<FieldDecl>(FD), S);
2739    else if (RecordDecl *Record = dyn_cast<RecordDecl>((Decl*)TagD))
2740      Record->addDecl(Context, FD);
2741  }
2742}
2743
2744/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2745/// types into constant array types in certain situations which would otherwise
2746/// be errors (for GCC compatibility).
2747static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2748                                                    ASTContext &Context) {
2749  // This method tries to turn a variable array into a constant
2750  // array even when the size isn't an ICE.  This is necessary
2751  // for compatibility with code that depends on gcc's buggy
2752  // constant expression folding, like struct {char x[(int)(char*)2];}
2753  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2754  if (!VLATy) return QualType();
2755
2756  APValue Result;
2757  if (!VLATy->getSizeExpr() ||
2758      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2759    return QualType();
2760
2761  assert(Result.isInt() && "Size expressions must be integers!");
2762  llvm::APSInt &Res = Result.getInt();
2763  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2764    return Context.getConstantArrayType(VLATy->getElementType(),
2765                                        Res, ArrayType::Normal, 0);
2766  return QualType();
2767}
2768
2769bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2770                          QualType FieldTy, const Expr *BitWidth) {
2771  // FIXME: 6.7.2.1p4 - verify the field type.
2772
2773  llvm::APSInt Value;
2774  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2775    return true;
2776
2777  // Zero-width bitfield is ok for anonymous field.
2778  if (Value == 0 && FieldName)
2779    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
2780
2781  if (Value.isNegative())
2782    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2783
2784  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2785  // FIXME: We won't need the 0 size once we check that the field type is valid.
2786  if (TypeSize && Value.getZExtValue() > TypeSize)
2787    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
2788       << FieldName << (unsigned)TypeSize;
2789
2790  return false;
2791}
2792
2793/// ActOnField - Each field of a struct/union/class is passed into this in order
2794/// to create a FieldDecl object for it.
2795Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
2796                               SourceLocation DeclStart,
2797                               Declarator &D, ExprTy *BitfieldWidth) {
2798  IdentifierInfo *II = D.getIdentifier();
2799  Expr *BitWidth = (Expr*)BitfieldWidth;
2800  SourceLocation Loc = DeclStart;
2801  RecordDecl *Record = (RecordDecl *)TagD;
2802  if (II) Loc = D.getIdentifierLoc();
2803
2804  // FIXME: Unnamed fields can be handled in various different ways, for
2805  // example, unnamed unions inject all members into the struct namespace!
2806
2807  QualType T = GetTypeForDeclarator(D, S);
2808  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2809  bool InvalidDecl = false;
2810
2811  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2812  // than a variably modified type.
2813  if (T->isVariablyModifiedType()) {
2814    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2815    if (!FixedTy.isNull()) {
2816      Diag(Loc, diag::warn_illegal_constant_array_size);
2817      T = FixedTy;
2818    } else {
2819      Diag(Loc, diag::err_typecheck_field_variable_size);
2820      T = Context.IntTy;
2821      InvalidDecl = true;
2822    }
2823  }
2824
2825  if (BitWidth) {
2826    if (VerifyBitField(Loc, II, T, BitWidth))
2827      InvalidDecl = true;
2828  } else {
2829    // Not a bitfield.
2830
2831    // validate II.
2832
2833  }
2834
2835  // FIXME: Chain fielddecls together.
2836  FieldDecl *NewFD;
2837
2838  // FIXME: We don't want CurContext for C, do we? No, we'll need some
2839  // other way to determine the current RecordDecl.
2840  NewFD = FieldDecl::Create(Context, Record,
2841                            Loc, II, T, BitWidth,
2842                            D.getDeclSpec().getStorageClassSpec() ==
2843                              DeclSpec::SCS_mutable,
2844                            /*PrevDecl=*/0);
2845
2846  if (getLangOptions().CPlusPlus)
2847    CheckExtraCXXDefaultArguments(D);
2848
2849  ProcessDeclAttributes(NewFD, D);
2850
2851  if (D.getInvalidType() || InvalidDecl)
2852    NewFD->setInvalidDecl();
2853
2854  if (II && getLangOptions().CPlusPlus)
2855    PushOnScopeChains(NewFD, S);
2856  else
2857    Record->addDecl(Context, NewFD);
2858
2859  return NewFD;
2860}
2861
2862/// TranslateIvarVisibility - Translate visibility from a token ID to an
2863///  AST enum value.
2864static ObjCIvarDecl::AccessControl
2865TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2866  switch (ivarVisibility) {
2867  default: assert(0 && "Unknown visitibility kind");
2868  case tok::objc_private: return ObjCIvarDecl::Private;
2869  case tok::objc_public: return ObjCIvarDecl::Public;
2870  case tok::objc_protected: return ObjCIvarDecl::Protected;
2871  case tok::objc_package: return ObjCIvarDecl::Package;
2872  }
2873}
2874
2875/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2876/// in order to create an IvarDecl object for it.
2877Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2878                              SourceLocation DeclStart,
2879                              Declarator &D, ExprTy *BitfieldWidth,
2880                              tok::ObjCKeywordKind Visibility) {
2881  IdentifierInfo *II = D.getIdentifier();
2882  Expr *BitWidth = (Expr*)BitfieldWidth;
2883  SourceLocation Loc = DeclStart;
2884  if (II) Loc = D.getIdentifierLoc();
2885
2886  // FIXME: Unnamed fields can be handled in various different ways, for
2887  // example, unnamed unions inject all members into the struct namespace!
2888
2889  QualType T = GetTypeForDeclarator(D, S);
2890  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2891  bool InvalidDecl = false;
2892
2893  if (BitWidth) {
2894    // TODO: Validate.
2895    //printf("WARNING: BITFIELDS IGNORED!\n");
2896
2897    // 6.7.2.1p3
2898    // 6.7.2.1p4
2899
2900  } else {
2901    // Not a bitfield.
2902
2903    // validate II.
2904
2905  }
2906
2907  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2908  // than a variably modified type.
2909  if (T->isVariablyModifiedType()) {
2910    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2911    InvalidDecl = true;
2912  }
2913
2914  // Get the visibility (access control) for this ivar.
2915  ObjCIvarDecl::AccessControl ac =
2916    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2917                                        : ObjCIvarDecl::None;
2918
2919  // Construct the decl.
2920  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2921                                             (Expr *)BitfieldWidth);
2922
2923  // Process attributes attached to the ivar.
2924  ProcessDeclAttributes(NewID, D);
2925
2926  if (D.getInvalidType() || InvalidDecl)
2927    NewID->setInvalidDecl();
2928
2929  return NewID;
2930}
2931
2932void Sema::ActOnFields(Scope* S,
2933                       SourceLocation RecLoc, DeclTy *RecDecl,
2934                       DeclTy **Fields, unsigned NumFields,
2935                       SourceLocation LBrac, SourceLocation RBrac,
2936                       AttributeList *Attr) {
2937  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2938  assert(EnclosingDecl && "missing record or interface decl");
2939  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2940
2941  if (Record)
2942    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2943      // Diagnose code like:
2944      //     struct S { struct S {} X; };
2945      // We discover this when we complete the outer S.  Reject and ignore the
2946      // outer S.
2947      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2948        << DefRecord->getDeclName();
2949      Diag(RecLoc, diag::note_previous_definition);
2950      Record->setInvalidDecl();
2951      return;
2952    }
2953
2954  // Verify that all the fields are okay.
2955  unsigned NumNamedMembers = 0;
2956  llvm::SmallVector<FieldDecl*, 32> RecFields;
2957  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2958
2959  for (unsigned i = 0; i != NumFields; ++i) {
2960
2961    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2962    assert(FD && "missing field decl");
2963
2964    // Remember all fields.
2965    RecFields.push_back(FD);
2966
2967    // Get the type for the field.
2968    Type *FDTy = FD->getType().getTypePtr();
2969
2970    // C99 6.7.2.1p2 - A field may not be a function type.
2971    if (FDTy->isFunctionType()) {
2972      Diag(FD->getLocation(), diag::err_field_declared_as_function)
2973        << FD->getDeclName();
2974      FD->setInvalidDecl();
2975      EnclosingDecl->setInvalidDecl();
2976      continue;
2977    }
2978    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2979    if (FDTy->isIncompleteType()) {
2980      if (!Record) {  // Incomplete ivar type is always an error.
2981        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2982        FD->setInvalidDecl();
2983        EnclosingDecl->setInvalidDecl();
2984        continue;
2985      }
2986      if (i != NumFields-1 ||                   // ... that the last member ...
2987          !Record->isStruct() ||  // ... of a structure ...
2988          !FDTy->isArrayType()) {         //... may have incomplete array type.
2989        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2990        FD->setInvalidDecl();
2991        EnclosingDecl->setInvalidDecl();
2992        continue;
2993      }
2994      if (NumNamedMembers < 1) {  //... must have more than named member ...
2995        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
2996          << FD->getDeclName();
2997        FD->setInvalidDecl();
2998        EnclosingDecl->setInvalidDecl();
2999        continue;
3000      }
3001      // Okay, we have a legal flexible array member at the end of the struct.
3002      if (Record)
3003        Record->setHasFlexibleArrayMember(true);
3004    }
3005    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3006    /// field of another structure or the element of an array.
3007    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3008      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3009        // If this is a member of a union, then entire union becomes "flexible".
3010        if (Record && Record->isUnion()) {
3011          Record->setHasFlexibleArrayMember(true);
3012        } else {
3013          // If this is a struct/class and this is not the last element, reject
3014          // it.  Note that GCC supports variable sized arrays in the middle of
3015          // structures.
3016          if (i != NumFields-1) {
3017            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3018              << FD->getDeclName();
3019            FD->setInvalidDecl();
3020            EnclosingDecl->setInvalidDecl();
3021            continue;
3022          }
3023          // We support flexible arrays at the end of structs in other structs
3024          // as an extension.
3025          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3026            << FD->getDeclName();
3027          if (Record)
3028            Record->setHasFlexibleArrayMember(true);
3029        }
3030      }
3031    }
3032    /// A field cannot be an Objective-c object
3033    if (FDTy->isObjCInterfaceType()) {
3034      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3035        << FD->getDeclName();
3036      FD->setInvalidDecl();
3037      EnclosingDecl->setInvalidDecl();
3038      continue;
3039    }
3040    // Keep track of the number of named members.
3041    if (IdentifierInfo *II = FD->getIdentifier()) {
3042      // Detect duplicate member names.
3043      if (!FieldIDs.insert(II)) {
3044        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
3045        // Find the previous decl.
3046        SourceLocation PrevLoc;
3047        for (unsigned i = 0; ; ++i) {
3048          assert(i != RecFields.size() && "Didn't find previous def!");
3049          if (RecFields[i]->getIdentifier() == II) {
3050            PrevLoc = RecFields[i]->getLocation();
3051            break;
3052          }
3053        }
3054        Diag(PrevLoc, diag::note_previous_definition);
3055        FD->setInvalidDecl();
3056        EnclosingDecl->setInvalidDecl();
3057        continue;
3058      }
3059      ++NumNamedMembers;
3060    }
3061  }
3062
3063  // Okay, we successfully defined 'Record'.
3064  if (Record) {
3065    Record->completeDefinition(Context);
3066    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
3067    // Sema::ActOnFinishCXXClassDef.
3068    if (!isa<CXXRecordDecl>(Record))
3069      Consumer.HandleTagDeclDefinition(Record);
3070  } else {
3071    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3072    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3073      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3074      ID->addRecordToClass(Context);
3075      // Must enforce the rule that ivars in the base classes may not be
3076      // duplicates.
3077      FieldIDs.clear();
3078      RecordDecl *RD = ID->getRecordForDecl();
3079      for (RecordDecl::field_iterator i = RD->field_begin(),
3080           e = RD->field_end(); i != e; ++i) {
3081        FieldDecl *FD = *i;
3082        if (IdentifierInfo *II = FD->getIdentifier())
3083          if (!FieldIDs.insert(II)) {
3084            Diag(FD->getLocation(), diag::err_duplicate_member) << II;
3085            FD->setInvalidDecl();
3086            for (RecordDecl::field_iterator j = RD->field_begin(),
3087                 e1 = RD->field_end(); j != e1; ++j)
3088              if (II == (*j)->getIdentifier()) {
3089                Diag((*j)->getLocation(), diag::note_previous_definition);
3090                break;
3091              }
3092          }
3093      }
3094    }
3095    else if (ObjCImplementationDecl *IMPDecl =
3096               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3097      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3098      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3099      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3100    }
3101  }
3102
3103  if (Attr)
3104    ProcessDeclAttributeList(Record, Attr);
3105}
3106
3107Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3108                                      DeclTy *lastEnumConst,
3109                                      SourceLocation IdLoc, IdentifierInfo *Id,
3110                                      SourceLocation EqualLoc, ExprTy *val) {
3111  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3112  EnumConstantDecl *LastEnumConst =
3113    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3114  Expr *Val = static_cast<Expr*>(val);
3115
3116  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3117  // we find one that is.
3118  while ((S->getFlags() & Scope::DeclScope) == 0)
3119    S = S->getParent();
3120
3121  // Verify that there isn't already something declared with this name in this
3122  // scope.
3123  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3124  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3125    // Maybe we will complain about the shadowed template parameter.
3126    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3127    // Just pretend that we didn't see the previous declaration.
3128    PrevDecl = 0;
3129  }
3130
3131  if (PrevDecl) {
3132    // When in C++, we may get a TagDecl with the same name; in this case the
3133    // enum constant will 'hide' the tag.
3134    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3135           "Received TagDecl when not in C++!");
3136    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3137      if (isa<EnumConstantDecl>(PrevDecl))
3138        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3139      else
3140        Diag(IdLoc, diag::err_redefinition) << Id;
3141      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3142      delete Val;
3143      return 0;
3144    }
3145  }
3146
3147  llvm::APSInt EnumVal(32);
3148  QualType EltTy;
3149  if (Val) {
3150    // Make sure to promote the operand type to int.
3151    UsualUnaryConversions(Val);
3152
3153    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3154    SourceLocation ExpLoc;
3155    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3156      delete Val;
3157      Val = 0;  // Just forget about it.
3158    } else {
3159      EltTy = Val->getType();
3160    }
3161  }
3162
3163  if (!Val) {
3164    if (LastEnumConst) {
3165      // Assign the last value + 1.
3166      EnumVal = LastEnumConst->getInitVal();
3167      ++EnumVal;
3168
3169      // Check for overflow on increment.
3170      if (EnumVal < LastEnumConst->getInitVal())
3171        Diag(IdLoc, diag::warn_enum_value_overflow);
3172
3173      EltTy = LastEnumConst->getType();
3174    } else {
3175      // First value, set to zero.
3176      EltTy = Context.IntTy;
3177      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3178    }
3179  }
3180
3181  EnumConstantDecl *New =
3182    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3183                             Val, EnumVal,
3184                             LastEnumConst);
3185
3186  // Register this decl in the current scope stack.
3187  PushOnScopeChains(New, S);
3188  return New;
3189}
3190
3191// FIXME: For consistency with ActOnFields(), we should have the parser
3192// pass in the source location for the left/right braces.
3193void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3194                         DeclTy **Elements, unsigned NumElements) {
3195  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3196
3197  if (Enum) {
3198    if (EnumDecl *Def = cast_or_null<EnumDecl>(Enum->getDefinition(Context))) {
3199      // Diagnose code like:
3200      //   enum e0 {
3201      //     E0 = sizeof(enum e0 { E1 })
3202      //   };
3203      Diag(Def->getLocation(), diag::err_nested_redefinition)
3204        << Enum->getDeclName();
3205      Diag(Enum->getLocation(), diag::note_previous_definition);
3206      Enum->setInvalidDecl();
3207      return;
3208    }
3209  }
3210  // TODO: If the result value doesn't fit in an int, it must be a long or long
3211  // long value.  ISO C does not support this, but GCC does as an extension,
3212  // emit a warning.
3213  unsigned IntWidth = Context.Target.getIntWidth();
3214
3215  // Verify that all the values are okay, compute the size of the values, and
3216  // reverse the list.
3217  unsigned NumNegativeBits = 0;
3218  unsigned NumPositiveBits = 0;
3219
3220  // Keep track of whether all elements have type int.
3221  bool AllElementsInt = true;
3222
3223  QualType EnumType = Context.getTypeDeclType(Enum);
3224  EnumConstantDecl *EltList = 0;
3225  for (unsigned i = 0; i != NumElements; ++i) {
3226    EnumConstantDecl *ECD =
3227      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3228    if (!ECD) continue;  // Already issued a diagnostic.
3229
3230    // If the enum value doesn't fit in an int, emit an extension warning.
3231    const llvm::APSInt &InitVal = ECD->getInitVal();
3232    assert(InitVal.getBitWidth() >= IntWidth &&
3233           "Should have promoted value to int");
3234    if (InitVal.getBitWidth() > IntWidth) {
3235      llvm::APSInt V(InitVal);
3236      V.trunc(IntWidth);
3237      V.extend(InitVal.getBitWidth());
3238      if (V != InitVal)
3239        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3240          << InitVal.toString(10);
3241    }
3242
3243    // Keep track of the size of positive and negative values.
3244    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3245      NumPositiveBits = std::max(NumPositiveBits,
3246                                 (unsigned)InitVal.getActiveBits());
3247    else
3248      NumNegativeBits = std::max(NumNegativeBits,
3249                                 (unsigned)InitVal.getMinSignedBits());
3250
3251    // Keep track of whether every enum element has type int (very commmon).
3252    if (AllElementsInt)
3253      AllElementsInt = ECD->getType() == Context.IntTy;
3254
3255    ECD->setNextDeclarator(EltList);
3256    EltList = ECD;
3257  }
3258
3259  // Figure out the type that should be used for this enum.
3260  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3261  QualType BestType;
3262  unsigned BestWidth;
3263
3264  if (NumNegativeBits) {
3265    // If there is a negative value, figure out the smallest integer type (of
3266    // int/long/longlong) that fits.
3267    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3268      BestType = Context.IntTy;
3269      BestWidth = IntWidth;
3270    } else {
3271      BestWidth = Context.Target.getLongWidth();
3272
3273      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3274        BestType = Context.LongTy;
3275      else {
3276        BestWidth = Context.Target.getLongLongWidth();
3277
3278        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3279          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3280        BestType = Context.LongLongTy;
3281      }
3282    }
3283  } else {
3284    // If there is no negative value, figure out which of uint, ulong, ulonglong
3285    // fits.
3286    if (NumPositiveBits <= IntWidth) {
3287      BestType = Context.UnsignedIntTy;
3288      BestWidth = IntWidth;
3289    } else if (NumPositiveBits <=
3290               (BestWidth = Context.Target.getLongWidth())) {
3291      BestType = Context.UnsignedLongTy;
3292    } else {
3293      BestWidth = Context.Target.getLongLongWidth();
3294      assert(NumPositiveBits <= BestWidth &&
3295             "How could an initializer get larger than ULL?");
3296      BestType = Context.UnsignedLongLongTy;
3297    }
3298  }
3299
3300  // Loop over all of the enumerator constants, changing their types to match
3301  // the type of the enum if needed.
3302  for (unsigned i = 0; i != NumElements; ++i) {
3303    EnumConstantDecl *ECD =
3304      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3305    if (!ECD) continue;  // Already issued a diagnostic.
3306
3307    // Standard C says the enumerators have int type, but we allow, as an
3308    // extension, the enumerators to be larger than int size.  If each
3309    // enumerator value fits in an int, type it as an int, otherwise type it the
3310    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3311    // that X has type 'int', not 'unsigned'.
3312    if (ECD->getType() == Context.IntTy) {
3313      // Make sure the init value is signed.
3314      llvm::APSInt IV = ECD->getInitVal();
3315      IV.setIsSigned(true);
3316      ECD->setInitVal(IV);
3317
3318      if (getLangOptions().CPlusPlus)
3319        // C++ [dcl.enum]p4: Following the closing brace of an
3320        // enum-specifier, each enumerator has the type of its
3321        // enumeration.
3322        ECD->setType(EnumType);
3323      continue;  // Already int type.
3324    }
3325
3326    // Determine whether the value fits into an int.
3327    llvm::APSInt InitVal = ECD->getInitVal();
3328    bool FitsInInt;
3329    if (InitVal.isUnsigned() || !InitVal.isNegative())
3330      FitsInInt = InitVal.getActiveBits() < IntWidth;
3331    else
3332      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3333
3334    // If it fits into an integer type, force it.  Otherwise force it to match
3335    // the enum decl type.
3336    QualType NewTy;
3337    unsigned NewWidth;
3338    bool NewSign;
3339    if (FitsInInt) {
3340      NewTy = Context.IntTy;
3341      NewWidth = IntWidth;
3342      NewSign = true;
3343    } else if (ECD->getType() == BestType) {
3344      // Already the right type!
3345      if (getLangOptions().CPlusPlus)
3346        // C++ [dcl.enum]p4: Following the closing brace of an
3347        // enum-specifier, each enumerator has the type of its
3348        // enumeration.
3349        ECD->setType(EnumType);
3350      continue;
3351    } else {
3352      NewTy = BestType;
3353      NewWidth = BestWidth;
3354      NewSign = BestType->isSignedIntegerType();
3355    }
3356
3357    // Adjust the APSInt value.
3358    InitVal.extOrTrunc(NewWidth);
3359    InitVal.setIsSigned(NewSign);
3360    ECD->setInitVal(InitVal);
3361
3362    // Adjust the Expr initializer and type.
3363    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3364                                          /*isLvalue=*/false));
3365    if (getLangOptions().CPlusPlus)
3366      // C++ [dcl.enum]p4: Following the closing brace of an
3367      // enum-specifier, each enumerator has the type of its
3368      // enumeration.
3369      ECD->setType(EnumType);
3370    else
3371      ECD->setType(NewTy);
3372  }
3373
3374  Enum->completeDefinition(Context, BestType);
3375  Consumer.HandleTagDeclDefinition(Enum);
3376}
3377
3378Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3379                                          ExprArg expr) {
3380  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3381
3382  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3383}
3384
3385Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3386                                     SourceLocation LBrace,
3387                                     SourceLocation RBrace,
3388                                     const char *Lang,
3389                                     unsigned StrSize,
3390                                     DeclTy *D) {
3391  LinkageSpecDecl::LanguageIDs Language;
3392  Decl *dcl = static_cast<Decl *>(D);
3393  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3394    Language = LinkageSpecDecl::lang_c;
3395  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3396    Language = LinkageSpecDecl::lang_cxx;
3397  else {
3398    Diag(Loc, diag::err_bad_language);
3399    return 0;
3400  }
3401
3402  // FIXME: Add all the various semantics of linkage specifications
3403  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3404}
3405
3406void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3407                           ExprTy *alignment, SourceLocation PragmaLoc,
3408                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3409  Expr *Alignment = static_cast<Expr *>(alignment);
3410
3411  // If specified then alignment must be a "small" power of two.
3412  unsigned AlignmentVal = 0;
3413  if (Alignment) {
3414    llvm::APSInt Val;
3415    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3416        !Val.isPowerOf2() ||
3417        Val.getZExtValue() > 16) {
3418      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3419      delete Alignment;
3420      return; // Ignore
3421    }
3422
3423    AlignmentVal = (unsigned) Val.getZExtValue();
3424  }
3425
3426  switch (Kind) {
3427  case Action::PPK_Default: // pack([n])
3428    PackContext.setAlignment(AlignmentVal);
3429    break;
3430
3431  case Action::PPK_Show: // pack(show)
3432    // Show the current alignment, making sure to show the right value
3433    // for the default.
3434    AlignmentVal = PackContext.getAlignment();
3435    // FIXME: This should come from the target.
3436    if (AlignmentVal == 0)
3437      AlignmentVal = 8;
3438    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3439    break;
3440
3441  case Action::PPK_Push: // pack(push [, id] [, [n])
3442    PackContext.push(Name);
3443    // Set the new alignment if specified.
3444    if (Alignment)
3445      PackContext.setAlignment(AlignmentVal);
3446    break;
3447
3448  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3449    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3450    // "#pragma pack(pop, identifier, n) is undefined"
3451    if (Alignment && Name)
3452      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3453
3454    // Do the pop.
3455    if (!PackContext.pop(Name)) {
3456      // If a name was specified then failure indicates the name
3457      // wasn't found. Otherwise failure indicates the stack was
3458      // empty.
3459      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3460        << (Name ? "no record matching name" : "stack empty");
3461
3462      // FIXME: Warn about popping named records as MSVC does.
3463    } else {
3464      // Pop succeeded, set the new alignment if specified.
3465      if (Alignment)
3466        PackContext.setAlignment(AlignmentVal);
3467    }
3468    break;
3469
3470  default:
3471    assert(0 && "Invalid #pragma pack kind.");
3472  }
3473}
3474
3475bool PragmaPackStack::pop(IdentifierInfo *Name) {
3476  if (Stack.empty())
3477    return false;
3478
3479  // If name is empty just pop top.
3480  if (!Name) {
3481    Alignment = Stack.back().first;
3482    Stack.pop_back();
3483    return true;
3484  }
3485
3486  // Otherwise, find the named record.
3487  for (unsigned i = Stack.size(); i != 0; ) {
3488    --i;
3489    if (Stack[i].second == Name) {
3490      // Found it, pop up to and including this record.
3491      Alignment = Stack[i].first;
3492      Stack.erase(Stack.begin() + i, Stack.end());
3493      return true;
3494    }
3495  }
3496
3497  return false;
3498}
3499