SemaDecl.cpp revision 73d7115d5bb3aa845ac04fe61f3a94491b24cba3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  ASTContext::GetBuiltinTypeError Error;
784  QualType R = Context.GetBuiltinType(BID, Error);
785  switch (Error) {
786  case ASTContext::GE_None:
787    // Okay
788    break;
789
790  case ASTContext::GE_Missing_stdio:
791    if (ForRedeclaration)
792      Diag(Loc, diag::err_implicit_decl_requires_stdio)
793        << Context.BuiltinInfo.GetName(BID);
794    return 0;
795
796  case ASTContext::GE_Missing_setjmp:
797    if (ForRedeclaration)
798      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
799        << Context.BuiltinInfo.GetName(BID);
800    return 0;
801  }
802
803  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
804    Diag(Loc, diag::ext_implicit_lib_function_decl)
805      << Context.BuiltinInfo.GetName(BID)
806      << R;
807    if (Context.BuiltinInfo.getHeaderName(BID) &&
808        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
809          != Diagnostic::Ignored)
810      Diag(Loc, diag::note_please_include_header)
811        << Context.BuiltinInfo.getHeaderName(BID)
812        << Context.BuiltinInfo.GetName(BID);
813  }
814
815  FunctionDecl *New = FunctionDecl::Create(Context,
816                                           Context.getTranslationUnitDecl(),
817                                           Loc, II, R, /*TInfo=*/0,
818                                           SC_Extern,
819                                           SC_None, false,
820                                           /*hasPrototype=*/true);
821  New->setImplicit();
822
823  // Create Decl objects for each parameter, adding them to the
824  // FunctionDecl.
825  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
826    llvm::SmallVector<ParmVarDecl*, 16> Params;
827    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
828      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
829                                           FT->getArgType(i), /*TInfo=*/0,
830                                           SC_None, SC_None, 0));
831    New->setParams(Params.data(), Params.size());
832  }
833
834  AddKnownFunctionAttributes(New);
835
836  // TUScope is the translation-unit scope to insert this function into.
837  // FIXME: This is hideous. We need to teach PushOnScopeChains to
838  // relate Scopes to DeclContexts, and probably eliminate CurContext
839  // entirely, but we're not there yet.
840  DeclContext *SavedContext = CurContext;
841  CurContext = Context.getTranslationUnitDecl();
842  PushOnScopeChains(New, TUScope);
843  CurContext = SavedContext;
844  return New;
845}
846
847/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
848/// same name and scope as a previous declaration 'Old'.  Figure out
849/// how to resolve this situation, merging decls or emitting
850/// diagnostics as appropriate. If there was an error, set New to be invalid.
851///
852void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
853  // If the new decl is known invalid already, don't bother doing any
854  // merging checks.
855  if (New->isInvalidDecl()) return;
856
857  // Allow multiple definitions for ObjC built-in typedefs.
858  // FIXME: Verify the underlying types are equivalent!
859  if (getLangOptions().ObjC1) {
860    const IdentifierInfo *TypeID = New->getIdentifier();
861    switch (TypeID->getLength()) {
862    default: break;
863    case 2:
864      if (!TypeID->isStr("id"))
865        break;
866      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
867      // Install the built-in type for 'id', ignoring the current definition.
868      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
869      return;
870    case 5:
871      if (!TypeID->isStr("Class"))
872        break;
873      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
874      // Install the built-in type for 'Class', ignoring the current definition.
875      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
876      return;
877    case 3:
878      if (!TypeID->isStr("SEL"))
879        break;
880      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'SEL', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
883      return;
884    case 8:
885      if (!TypeID->isStr("Protocol"))
886        break;
887      Context.setObjCProtoType(New->getUnderlyingType());
888      return;
889    }
890    // Fall through - the typedef name was not a builtin type.
891  }
892
893  // Verify the old decl was also a type.
894  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
895  if (!Old) {
896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
897      << New->getDeclName();
898
899    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
900    if (OldD->getLocation().isValid())
901      Diag(OldD->getLocation(), diag::note_previous_definition);
902
903    return New->setInvalidDecl();
904  }
905
906  // If the old declaration is invalid, just give up here.
907  if (Old->isInvalidDecl())
908    return New->setInvalidDecl();
909
910  // Determine the "old" type we'll use for checking and diagnostics.
911  QualType OldType;
912  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
913    OldType = OldTypedef->getUnderlyingType();
914  else
915    OldType = Context.getTypeDeclType(Old);
916
917  // If the typedef types are not identical, reject them in all languages and
918  // with any extensions enabled.
919
920  if (OldType != New->getUnderlyingType() &&
921      Context.getCanonicalType(OldType) !=
922      Context.getCanonicalType(New->getUnderlyingType())) {
923    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
924      << New->getUnderlyingType() << OldType;
925    if (Old->getLocation().isValid())
926      Diag(Old->getLocation(), diag::note_previous_definition);
927    return New->setInvalidDecl();
928  }
929
930  // The types match.  Link up the redeclaration chain if the old
931  // declaration was a typedef.
932  // FIXME: this is a potential source of wierdness if the type
933  // spellings don't match exactly.
934  if (isa<TypedefDecl>(Old))
935    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
936
937  if (getLangOptions().Microsoft)
938    return;
939
940  if (getLangOptions().CPlusPlus) {
941    // C++ [dcl.typedef]p2:
942    //   In a given non-class scope, a typedef specifier can be used to
943    //   redefine the name of any type declared in that scope to refer
944    //   to the type to which it already refers.
945    if (!isa<CXXRecordDecl>(CurContext))
946      return;
947
948    // C++0x [dcl.typedef]p4:
949    //   In a given class scope, a typedef specifier can be used to redefine
950    //   any class-name declared in that scope that is not also a typedef-name
951    //   to refer to the type to which it already refers.
952    //
953    // This wording came in via DR424, which was a correction to the
954    // wording in DR56, which accidentally banned code like:
955    //
956    //   struct S {
957    //     typedef struct A { } A;
958    //   };
959    //
960    // in the C++03 standard. We implement the C++0x semantics, which
961    // allow the above but disallow
962    //
963    //   struct S {
964    //     typedef int I;
965    //     typedef int I;
966    //   };
967    //
968    // since that was the intent of DR56.
969    if (!isa<TypedefDecl >(Old))
970      return;
971
972    Diag(New->getLocation(), diag::err_redefinition)
973      << New->getDeclName();
974    Diag(Old->getLocation(), diag::note_previous_definition);
975    return New->setInvalidDecl();
976  }
977
978  // If we have a redefinition of a typedef in C, emit a warning.  This warning
979  // is normally mapped to an error, but can be controlled with
980  // -Wtypedef-redefinition.  If either the original or the redefinition is
981  // in a system header, don't emit this for compatibility with GCC.
982  if (getDiagnostics().getSuppressSystemWarnings() &&
983      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
984       Context.getSourceManager().isInSystemHeader(New->getLocation())))
985    return;
986
987  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
988    << New->getDeclName();
989  Diag(Old->getLocation(), diag::note_previous_definition);
990  return;
991}
992
993/// DeclhasAttr - returns true if decl Declaration already has the target
994/// attribute.
995static bool
996DeclHasAttr(const Decl *D, const Attr *A) {
997  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
998  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
999    if ((*i)->getKind() == A->getKind()) {
1000      // FIXME: Don't hardcode this check
1001      if (OA && isa<OwnershipAttr>(*i))
1002        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1003      return true;
1004    }
1005
1006  return false;
1007}
1008
1009/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1010static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1011  if (!Old->hasAttrs())
1012    return;
1013  // Ensure that any moving of objects within the allocated map is done before
1014  // we process them.
1015  if (!New->hasAttrs())
1016    New->setAttrs(AttrVec());
1017  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1018       ++i) {
1019    // FIXME: Make this more general than just checking for Overloadable.
1020    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1021      Attr *NewAttr = (*i)->clone(C);
1022      NewAttr->setInherited(true);
1023      New->addAttr(NewAttr);
1024    }
1025  }
1026}
1027
1028namespace {
1029
1030/// Used in MergeFunctionDecl to keep track of function parameters in
1031/// C.
1032struct GNUCompatibleParamWarning {
1033  ParmVarDecl *OldParm;
1034  ParmVarDecl *NewParm;
1035  QualType PromotedType;
1036};
1037
1038}
1039
1040/// getSpecialMember - get the special member enum for a method.
1041Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1042  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1043    if (Ctor->isCopyConstructor())
1044      return Sema::CXXCopyConstructor;
1045
1046    return Sema::CXXConstructor;
1047  }
1048
1049  if (isa<CXXDestructorDecl>(MD))
1050    return Sema::CXXDestructor;
1051
1052  assert(MD->isCopyAssignmentOperator() &&
1053         "Must have copy assignment operator");
1054  return Sema::CXXCopyAssignment;
1055}
1056
1057/// canRedefineFunction - checks if a function can be redefined. Currently,
1058/// only extern inline functions can be redefined, and even then only in
1059/// GNU89 mode.
1060static bool canRedefineFunction(const FunctionDecl *FD,
1061                                const LangOptions& LangOpts) {
1062  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1063          FD->isInlineSpecified() &&
1064          FD->getStorageClass() == SC_Extern);
1065}
1066
1067/// MergeFunctionDecl - We just parsed a function 'New' from
1068/// declarator D which has the same name and scope as a previous
1069/// declaration 'Old'.  Figure out how to resolve this situation,
1070/// merging decls or emitting diagnostics as appropriate.
1071///
1072/// In C++, New and Old must be declarations that are not
1073/// overloaded. Use IsOverload to determine whether New and Old are
1074/// overloaded, and to select the Old declaration that New should be
1075/// merged with.
1076///
1077/// Returns true if there was an error, false otherwise.
1078bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1079  // Verify the old decl was also a function.
1080  FunctionDecl *Old = 0;
1081  if (FunctionTemplateDecl *OldFunctionTemplate
1082        = dyn_cast<FunctionTemplateDecl>(OldD))
1083    Old = OldFunctionTemplate->getTemplatedDecl();
1084  else
1085    Old = dyn_cast<FunctionDecl>(OldD);
1086  if (!Old) {
1087    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1088      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1089      Diag(Shadow->getTargetDecl()->getLocation(),
1090           diag::note_using_decl_target);
1091      Diag(Shadow->getUsingDecl()->getLocation(),
1092           diag::note_using_decl) << 0;
1093      return true;
1094    }
1095
1096    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1097      << New->getDeclName();
1098    Diag(OldD->getLocation(), diag::note_previous_definition);
1099    return true;
1100  }
1101
1102  // Determine whether the previous declaration was a definition,
1103  // implicit declaration, or a declaration.
1104  diag::kind PrevDiag;
1105  if (Old->isThisDeclarationADefinition())
1106    PrevDiag = diag::note_previous_definition;
1107  else if (Old->isImplicit())
1108    PrevDiag = diag::note_previous_implicit_declaration;
1109  else
1110    PrevDiag = diag::note_previous_declaration;
1111
1112  QualType OldQType = Context.getCanonicalType(Old->getType());
1113  QualType NewQType = Context.getCanonicalType(New->getType());
1114
1115  // Don't complain about this if we're in GNU89 mode and the old function
1116  // is an extern inline function.
1117  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1118      New->getStorageClass() == SC_Static &&
1119      Old->getStorageClass() != SC_Static &&
1120      !canRedefineFunction(Old, getLangOptions())) {
1121    Diag(New->getLocation(), diag::err_static_non_static)
1122      << New;
1123    Diag(Old->getLocation(), PrevDiag);
1124    return true;
1125  }
1126
1127  // If a function is first declared with a calling convention, but is
1128  // later declared or defined without one, the second decl assumes the
1129  // calling convention of the first.
1130  //
1131  // For the new decl, we have to look at the NON-canonical type to tell the
1132  // difference between a function that really doesn't have a calling
1133  // convention and one that is declared cdecl. That's because in
1134  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1135  // because it is the default calling convention.
1136  //
1137  // Note also that we DO NOT return at this point, because we still have
1138  // other tests to run.
1139  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1140  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1141  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1142  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1143  if (OldTypeInfo.getCC() != CC_Default &&
1144      NewTypeInfo.getCC() == CC_Default) {
1145    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1146    New->setType(NewQType);
1147    NewQType = Context.getCanonicalType(NewQType);
1148  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1149                                     NewTypeInfo.getCC())) {
1150    // Calling conventions really aren't compatible, so complain.
1151    Diag(New->getLocation(), diag::err_cconv_change)
1152      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1153      << (OldTypeInfo.getCC() == CC_Default)
1154      << (OldTypeInfo.getCC() == CC_Default ? "" :
1155          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1156    Diag(Old->getLocation(), diag::note_previous_declaration);
1157    return true;
1158  }
1159
1160  // FIXME: diagnose the other way around?
1161  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1162    NewQType = Context.getNoReturnType(NewQType);
1163    New->setType(NewQType);
1164    assert(NewQType.isCanonical());
1165  }
1166
1167  // Merge regparm attribute.
1168  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1169    if (NewType->getRegParmType()) {
1170      Diag(New->getLocation(), diag::err_regparm_mismatch)
1171        << NewType->getRegParmType()
1172        << OldType->getRegParmType();
1173      Diag(Old->getLocation(), diag::note_previous_declaration);
1174      return true;
1175    }
1176
1177    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1178    New->setType(NewQType);
1179    assert(NewQType.isCanonical());
1180  }
1181
1182  if (getLangOptions().CPlusPlus) {
1183    // (C++98 13.1p2):
1184    //   Certain function declarations cannot be overloaded:
1185    //     -- Function declarations that differ only in the return type
1186    //        cannot be overloaded.
1187    QualType OldReturnType
1188      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1189    QualType NewReturnType
1190      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1191    QualType ResQT;
1192    if (OldReturnType != NewReturnType) {
1193      if (NewReturnType->isObjCObjectPointerType()
1194          && OldReturnType->isObjCObjectPointerType())
1195        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1196      if (ResQT.isNull()) {
1197        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1198        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1199        return true;
1200      }
1201      else
1202        NewQType = ResQT;
1203    }
1204
1205    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1206    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1207    if (OldMethod && NewMethod) {
1208      // Preserve triviality.
1209      NewMethod->setTrivial(OldMethod->isTrivial());
1210
1211      bool isFriend = NewMethod->getFriendObjectKind();
1212
1213      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1214        //    -- Member function declarations with the same name and the
1215        //       same parameter types cannot be overloaded if any of them
1216        //       is a static member function declaration.
1217        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1218          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1219          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1220          return true;
1221        }
1222
1223        // C++ [class.mem]p1:
1224        //   [...] A member shall not be declared twice in the
1225        //   member-specification, except that a nested class or member
1226        //   class template can be declared and then later defined.
1227        unsigned NewDiag;
1228        if (isa<CXXConstructorDecl>(OldMethod))
1229          NewDiag = diag::err_constructor_redeclared;
1230        else if (isa<CXXDestructorDecl>(NewMethod))
1231          NewDiag = diag::err_destructor_redeclared;
1232        else if (isa<CXXConversionDecl>(NewMethod))
1233          NewDiag = diag::err_conv_function_redeclared;
1234        else
1235          NewDiag = diag::err_member_redeclared;
1236
1237        Diag(New->getLocation(), NewDiag);
1238        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1239
1240      // Complain if this is an explicit declaration of a special
1241      // member that was initially declared implicitly.
1242      //
1243      // As an exception, it's okay to befriend such methods in order
1244      // to permit the implicit constructor/destructor/operator calls.
1245      } else if (OldMethod->isImplicit()) {
1246        if (isFriend) {
1247          NewMethod->setImplicit();
1248        } else {
1249          Diag(NewMethod->getLocation(),
1250               diag::err_definition_of_implicitly_declared_member)
1251            << New << getSpecialMember(OldMethod);
1252          return true;
1253        }
1254      }
1255    }
1256
1257    // (C++98 8.3.5p3):
1258    //   All declarations for a function shall agree exactly in both the
1259    //   return type and the parameter-type-list.
1260    // attributes should be ignored when comparing.
1261    if (Context.getNoReturnType(OldQType, false) ==
1262        Context.getNoReturnType(NewQType, false))
1263      return MergeCompatibleFunctionDecls(New, Old);
1264
1265    // Fall through for conflicting redeclarations and redefinitions.
1266  }
1267
1268  // C: Function types need to be compatible, not identical. This handles
1269  // duplicate function decls like "void f(int); void f(enum X);" properly.
1270  if (!getLangOptions().CPlusPlus &&
1271      Context.typesAreCompatible(OldQType, NewQType)) {
1272    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1273    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1274    const FunctionProtoType *OldProto = 0;
1275    if (isa<FunctionNoProtoType>(NewFuncType) &&
1276        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1277      // The old declaration provided a function prototype, but the
1278      // new declaration does not. Merge in the prototype.
1279      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1280      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1281                                                 OldProto->arg_type_end());
1282      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1283                                         ParamTypes.data(), ParamTypes.size(),
1284                                         OldProto->isVariadic(),
1285                                         OldProto->getTypeQuals(),
1286                                         false, false, 0, 0,
1287                                         OldProto->getExtInfo());
1288      New->setType(NewQType);
1289      New->setHasInheritedPrototype();
1290
1291      // Synthesize a parameter for each argument type.
1292      llvm::SmallVector<ParmVarDecl*, 16> Params;
1293      for (FunctionProtoType::arg_type_iterator
1294             ParamType = OldProto->arg_type_begin(),
1295             ParamEnd = OldProto->arg_type_end();
1296           ParamType != ParamEnd; ++ParamType) {
1297        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1298                                                 SourceLocation(), 0,
1299                                                 *ParamType, /*TInfo=*/0,
1300                                                 SC_None, SC_None,
1301                                                 0);
1302        Param->setImplicit();
1303        Params.push_back(Param);
1304      }
1305
1306      New->setParams(Params.data(), Params.size());
1307    }
1308
1309    return MergeCompatibleFunctionDecls(New, Old);
1310  }
1311
1312  // GNU C permits a K&R definition to follow a prototype declaration
1313  // if the declared types of the parameters in the K&R definition
1314  // match the types in the prototype declaration, even when the
1315  // promoted types of the parameters from the K&R definition differ
1316  // from the types in the prototype. GCC then keeps the types from
1317  // the prototype.
1318  //
1319  // If a variadic prototype is followed by a non-variadic K&R definition,
1320  // the K&R definition becomes variadic.  This is sort of an edge case, but
1321  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1322  // C99 6.9.1p8.
1323  if (!getLangOptions().CPlusPlus &&
1324      Old->hasPrototype() && !New->hasPrototype() &&
1325      New->getType()->getAs<FunctionProtoType>() &&
1326      Old->getNumParams() == New->getNumParams()) {
1327    llvm::SmallVector<QualType, 16> ArgTypes;
1328    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1329    const FunctionProtoType *OldProto
1330      = Old->getType()->getAs<FunctionProtoType>();
1331    const FunctionProtoType *NewProto
1332      = New->getType()->getAs<FunctionProtoType>();
1333
1334    // Determine whether this is the GNU C extension.
1335    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1336                                               NewProto->getResultType());
1337    bool LooseCompatible = !MergedReturn.isNull();
1338    for (unsigned Idx = 0, End = Old->getNumParams();
1339         LooseCompatible && Idx != End; ++Idx) {
1340      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1341      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1342      if (Context.typesAreCompatible(OldParm->getType(),
1343                                     NewProto->getArgType(Idx))) {
1344        ArgTypes.push_back(NewParm->getType());
1345      } else if (Context.typesAreCompatible(OldParm->getType(),
1346                                            NewParm->getType(),
1347                                            /*CompareUnqualified=*/true)) {
1348        GNUCompatibleParamWarning Warn
1349          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1350        Warnings.push_back(Warn);
1351        ArgTypes.push_back(NewParm->getType());
1352      } else
1353        LooseCompatible = false;
1354    }
1355
1356    if (LooseCompatible) {
1357      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1358        Diag(Warnings[Warn].NewParm->getLocation(),
1359             diag::ext_param_promoted_not_compatible_with_prototype)
1360          << Warnings[Warn].PromotedType
1361          << Warnings[Warn].OldParm->getType();
1362        if (Warnings[Warn].OldParm->getLocation().isValid())
1363          Diag(Warnings[Warn].OldParm->getLocation(),
1364               diag::note_previous_declaration);
1365      }
1366
1367      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1368                                           ArgTypes.size(),
1369                                           OldProto->isVariadic(), 0,
1370                                           false, false, 0, 0,
1371                                           OldProto->getExtInfo()));
1372      return MergeCompatibleFunctionDecls(New, Old);
1373    }
1374
1375    // Fall through to diagnose conflicting types.
1376  }
1377
1378  // A function that has already been declared has been redeclared or defined
1379  // with a different type- show appropriate diagnostic
1380  if (unsigned BuiltinID = Old->getBuiltinID()) {
1381    // The user has declared a builtin function with an incompatible
1382    // signature.
1383    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1384      // The function the user is redeclaring is a library-defined
1385      // function like 'malloc' or 'printf'. Warn about the
1386      // redeclaration, then pretend that we don't know about this
1387      // library built-in.
1388      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1389      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1390        << Old << Old->getType();
1391      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1392      Old->setInvalidDecl();
1393      return false;
1394    }
1395
1396    PrevDiag = diag::note_previous_builtin_declaration;
1397  }
1398
1399  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1400  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1401  return true;
1402}
1403
1404/// \brief Completes the merge of two function declarations that are
1405/// known to be compatible.
1406///
1407/// This routine handles the merging of attributes and other
1408/// properties of function declarations form the old declaration to
1409/// the new declaration, once we know that New is in fact a
1410/// redeclaration of Old.
1411///
1412/// \returns false
1413bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1414  // Merge the attributes
1415  MergeDeclAttributes(New, Old, Context);
1416
1417  // Merge the storage class.
1418  if (Old->getStorageClass() != SC_Extern &&
1419      Old->getStorageClass() != SC_None)
1420    New->setStorageClass(Old->getStorageClass());
1421
1422  // Merge "pure" flag.
1423  if (Old->isPure())
1424    New->setPure();
1425
1426  // Merge the "deleted" flag.
1427  if (Old->isDeleted())
1428    New->setDeleted();
1429
1430  if (getLangOptions().CPlusPlus)
1431    return MergeCXXFunctionDecl(New, Old);
1432
1433  return false;
1434}
1435
1436/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1437/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1438/// situation, merging decls or emitting diagnostics as appropriate.
1439///
1440/// Tentative definition rules (C99 6.9.2p2) are checked by
1441/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1442/// definitions here, since the initializer hasn't been attached.
1443///
1444void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1445  // If the new decl is already invalid, don't do any other checking.
1446  if (New->isInvalidDecl())
1447    return;
1448
1449  // Verify the old decl was also a variable.
1450  VarDecl *Old = 0;
1451  if (!Previous.isSingleResult() ||
1452      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1453    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1454      << New->getDeclName();
1455    Diag(Previous.getRepresentativeDecl()->getLocation(),
1456         diag::note_previous_definition);
1457    return New->setInvalidDecl();
1458  }
1459
1460  // C++ [class.mem]p1:
1461  //   A member shall not be declared twice in the member-specification [...]
1462  //
1463  // Here, we need only consider static data members.
1464  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1465    Diag(New->getLocation(), diag::err_duplicate_member)
1466      << New->getIdentifier();
1467    Diag(Old->getLocation(), diag::note_previous_declaration);
1468    New->setInvalidDecl();
1469  }
1470
1471  MergeDeclAttributes(New, Old, Context);
1472
1473  // Merge the types
1474  QualType MergedT;
1475  if (getLangOptions().CPlusPlus) {
1476    if (Context.hasSameType(New->getType(), Old->getType()))
1477      MergedT = New->getType();
1478    // C++ [basic.link]p10:
1479    //   [...] the types specified by all declarations referring to a given
1480    //   object or function shall be identical, except that declarations for an
1481    //   array object can specify array types that differ by the presence or
1482    //   absence of a major array bound (8.3.4).
1483    else if (Old->getType()->isIncompleteArrayType() &&
1484             New->getType()->isArrayType()) {
1485      CanQual<ArrayType> OldArray
1486        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487      CanQual<ArrayType> NewArray
1488        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489      if (OldArray->getElementType() == NewArray->getElementType())
1490        MergedT = New->getType();
1491    } else if (Old->getType()->isArrayType() &&
1492             New->getType()->isIncompleteArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = Old->getType();
1499    } else if (New->getType()->isObjCObjectPointerType()
1500               && Old->getType()->isObjCObjectPointerType()) {
1501        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1502    }
1503  } else {
1504    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1505  }
1506  if (MergedT.isNull()) {
1507    Diag(New->getLocation(), diag::err_redefinition_different_type)
1508      << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  New->setType(MergedT);
1513
1514  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515  if (New->getStorageClass() == SC_Static &&
1516      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518    Diag(Old->getLocation(), diag::note_previous_definition);
1519    return New->setInvalidDecl();
1520  }
1521  // C99 6.2.2p4:
1522  //   For an identifier declared with the storage-class specifier
1523  //   extern in a scope in which a prior declaration of that
1524  //   identifier is visible,23) if the prior declaration specifies
1525  //   internal or external linkage, the linkage of the identifier at
1526  //   the later declaration is the same as the linkage specified at
1527  //   the prior declaration. If no prior declaration is visible, or
1528  //   if the prior declaration specifies no linkage, then the
1529  //   identifier has external linkage.
1530  if (New->hasExternalStorage() && Old->hasLinkage())
1531    /* Okay */;
1532  else if (New->getStorageClass() != SC_Static &&
1533           Old->getStorageClass() == SC_Static) {
1534    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535    Diag(Old->getLocation(), diag::note_previous_definition);
1536    return New->setInvalidDecl();
1537  }
1538
1539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1540
1541  // FIXME: The test for external storage here seems wrong? We still
1542  // need to check for mismatches.
1543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544      // Don't complain about out-of-line definitions of static members.
1545      !(Old->getLexicalDeclContext()->isRecord() &&
1546        !New->getLexicalDeclContext()->isRecord())) {
1547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554    Diag(Old->getLocation(), diag::note_previous_definition);
1555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  }
1559
1560  // C++ doesn't have tentative definitions, so go right ahead and check here.
1561  const VarDecl *Def;
1562  if (getLangOptions().CPlusPlus &&
1563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564      (Def = Old->getDefinition())) {
1565    Diag(New->getLocation(), diag::err_redefinition)
1566      << New->getDeclName();
1567    Diag(Def->getLocation(), diag::note_previous_definition);
1568    New->setInvalidDecl();
1569    return;
1570  }
1571  // c99 6.2.2 P4.
1572  // For an identifier declared with the storage-class specifier extern in a
1573  // scope in which a prior declaration of that identifier is visible, if
1574  // the prior declaration specifies internal or external linkage, the linkage
1575  // of the identifier at the later declaration is the same as the linkage
1576  // specified at the prior declaration.
1577  // FIXME. revisit this code.
1578  if (New->hasExternalStorage() &&
1579      Old->getLinkage() == InternalLinkage &&
1580      New->getDeclContext() == Old->getDeclContext())
1581    New->setStorageClass(Old->getStorageClass());
1582
1583  // Keep a chain of previous declarations.
1584  New->setPreviousDeclaration(Old);
1585
1586  // Inherit access appropriately.
1587  New->setAccess(Old->getAccess());
1588}
1589
1590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591/// no declarator (e.g. "struct foo;") is parsed.
1592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593                                            DeclSpec &DS) {
1594  // FIXME: Error on inline/virtual/explicit
1595  // FIXME: Warn on useless __thread
1596  // FIXME: Warn on useless const/volatile
1597  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1598  // FIXME: Warn on useless attributes
1599  Decl *TagD = 0;
1600  TagDecl *Tag = 0;
1601  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1602      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1603      DS.getTypeSpecType() == DeclSpec::TST_union ||
1604      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1605    TagD = DS.getRepAsDecl();
1606
1607    if (!TagD) // We probably had an error
1608      return 0;
1609
1610    // Note that the above type specs guarantee that the
1611    // type rep is a Decl, whereas in many of the others
1612    // it's a Type.
1613    Tag = dyn_cast<TagDecl>(TagD);
1614  }
1615
1616  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1617    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1618    // or incomplete types shall not be restrict-qualified."
1619    if (TypeQuals & DeclSpec::TQ_restrict)
1620      Diag(DS.getRestrictSpecLoc(),
1621           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1622           << DS.getSourceRange();
1623  }
1624
1625  if (DS.isFriendSpecified()) {
1626    // If we're dealing with a class template decl, assume that the
1627    // template routines are handling it.
1628    if (TagD && isa<ClassTemplateDecl>(TagD))
1629      return 0;
1630    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1631  }
1632
1633  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1634    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1635
1636    if (!Record->getDeclName() && Record->isDefinition() &&
1637        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1638      if (getLangOptions().CPlusPlus ||
1639          Record->getDeclContext()->isRecord())
1640        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1641
1642      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1643        << DS.getSourceRange();
1644    }
1645
1646    // Microsoft allows unnamed struct/union fields. Don't complain
1647    // about them.
1648    // FIXME: Should we support Microsoft's extensions in this area?
1649    if (Record->getDeclName() && getLangOptions().Microsoft)
1650      return Tag;
1651  }
1652
1653  if (getLangOptions().CPlusPlus &&
1654      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1655    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1656      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1657          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1658        Diag(Enum->getLocation(), diag::ext_no_declarators)
1659          << DS.getSourceRange();
1660
1661  if (!DS.isMissingDeclaratorOk() &&
1662      DS.getTypeSpecType() != DeclSpec::TST_error) {
1663    // Warn about typedefs of enums without names, since this is an
1664    // extension in both Microsoft and GNU.
1665    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1666        Tag && isa<EnumDecl>(Tag)) {
1667      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1668        << DS.getSourceRange();
1669      return Tag;
1670    }
1671
1672    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1673      << DS.getSourceRange();
1674  }
1675
1676  return TagD;
1677}
1678
1679/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1680/// builds a statement for it and returns it so it is evaluated.
1681StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1682  StmtResult R;
1683  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1684    Expr *Exp = DS.getRepAsExpr();
1685    QualType Ty = Exp->getType();
1686    if (Ty->isPointerType()) {
1687      do
1688        Ty = Ty->getAs<PointerType>()->getPointeeType();
1689      while (Ty->isPointerType());
1690    }
1691    if (Ty->isVariableArrayType()) {
1692      R = ActOnExprStmt(MakeFullExpr(Exp));
1693    }
1694  }
1695  return R;
1696}
1697
1698/// We are trying to inject an anonymous member into the given scope;
1699/// check if there's an existing declaration that can't be overloaded.
1700///
1701/// \return true if this is a forbidden redeclaration
1702static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1703                                         Scope *S,
1704                                         DeclContext *Owner,
1705                                         DeclarationName Name,
1706                                         SourceLocation NameLoc,
1707                                         unsigned diagnostic) {
1708  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1709                 Sema::ForRedeclaration);
1710  if (!SemaRef.LookupName(R, S)) return false;
1711
1712  if (R.getAsSingle<TagDecl>())
1713    return false;
1714
1715  // Pick a representative declaration.
1716  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1717  assert(PrevDecl && "Expected a non-null Decl");
1718
1719  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1720    return false;
1721
1722  SemaRef.Diag(NameLoc, diagnostic) << Name;
1723  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1724
1725  return true;
1726}
1727
1728/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1729/// anonymous struct or union AnonRecord into the owning context Owner
1730/// and scope S. This routine will be invoked just after we realize
1731/// that an unnamed union or struct is actually an anonymous union or
1732/// struct, e.g.,
1733///
1734/// @code
1735/// union {
1736///   int i;
1737///   float f;
1738/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1739///    // f into the surrounding scope.x
1740/// @endcode
1741///
1742/// This routine is recursive, injecting the names of nested anonymous
1743/// structs/unions into the owning context and scope as well.
1744static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1745                                                DeclContext *Owner,
1746                                                RecordDecl *AnonRecord,
1747                                                AccessSpecifier AS) {
1748  unsigned diagKind
1749    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1750                            : diag::err_anonymous_struct_member_redecl;
1751
1752  bool Invalid = false;
1753  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1754                               FEnd = AnonRecord->field_end();
1755       F != FEnd; ++F) {
1756    if ((*F)->getDeclName()) {
1757      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1758                                       (*F)->getLocation(), diagKind)) {
1759        // C++ [class.union]p2:
1760        //   The names of the members of an anonymous union shall be
1761        //   distinct from the names of any other entity in the
1762        //   scope in which the anonymous union is declared.
1763        Invalid = true;
1764      } else {
1765        // C++ [class.union]p2:
1766        //   For the purpose of name lookup, after the anonymous union
1767        //   definition, the members of the anonymous union are
1768        //   considered to have been defined in the scope in which the
1769        //   anonymous union is declared.
1770        Owner->makeDeclVisibleInContext(*F);
1771        S->AddDecl(*F);
1772        SemaRef.IdResolver.AddDecl(*F);
1773
1774        // That includes picking up the appropriate access specifier.
1775        if (AS != AS_none) (*F)->setAccess(AS);
1776      }
1777    } else if (const RecordType *InnerRecordType
1778                 = (*F)->getType()->getAs<RecordType>()) {
1779      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1780      if (InnerRecord->isAnonymousStructOrUnion())
1781        Invalid = Invalid ||
1782          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1783                                              InnerRecord, AS);
1784    }
1785  }
1786
1787  return Invalid;
1788}
1789
1790/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1791/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1792/// illegal input values are mapped to SC_None.
1793static StorageClass
1794StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1795  switch (StorageClassSpec) {
1796  case DeclSpec::SCS_unspecified:    return SC_None;
1797  case DeclSpec::SCS_extern:         return SC_Extern;
1798  case DeclSpec::SCS_static:         return SC_Static;
1799  case DeclSpec::SCS_auto:           return SC_Auto;
1800  case DeclSpec::SCS_register:       return SC_Register;
1801  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1802    // Illegal SCSs map to None: error reporting is up to the caller.
1803  case DeclSpec::SCS_mutable:        // Fall through.
1804  case DeclSpec::SCS_typedef:        return SC_None;
1805  }
1806  llvm_unreachable("unknown storage class specifier");
1807}
1808
1809/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1810/// a StorageClass. Any error reporting is up to the caller:
1811/// illegal input values are mapped to SC_None.
1812static StorageClass
1813StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1814  switch (StorageClassSpec) {
1815  case DeclSpec::SCS_unspecified:    return SC_None;
1816  case DeclSpec::SCS_extern:         return SC_Extern;
1817  case DeclSpec::SCS_static:         return SC_Static;
1818  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1819    // Illegal SCSs map to None: error reporting is up to the caller.
1820  case DeclSpec::SCS_auto:           // Fall through.
1821  case DeclSpec::SCS_mutable:        // Fall through.
1822  case DeclSpec::SCS_register:       // Fall through.
1823  case DeclSpec::SCS_typedef:        return SC_None;
1824  }
1825  llvm_unreachable("unknown storage class specifier");
1826}
1827
1828/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1829/// anonymous structure or union. Anonymous unions are a C++ feature
1830/// (C++ [class.union]) and a GNU C extension; anonymous structures
1831/// are a GNU C and GNU C++ extension.
1832Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1833                                             AccessSpecifier AS,
1834                                             RecordDecl *Record) {
1835  DeclContext *Owner = Record->getDeclContext();
1836
1837  // Diagnose whether this anonymous struct/union is an extension.
1838  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1839    Diag(Record->getLocation(), diag::ext_anonymous_union);
1840  else if (!Record->isUnion())
1841    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1842
1843  // C and C++ require different kinds of checks for anonymous
1844  // structs/unions.
1845  bool Invalid = false;
1846  if (getLangOptions().CPlusPlus) {
1847    const char* PrevSpec = 0;
1848    unsigned DiagID;
1849    // C++ [class.union]p3:
1850    //   Anonymous unions declared in a named namespace or in the
1851    //   global namespace shall be declared static.
1852    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1853        (isa<TranslationUnitDecl>(Owner) ||
1854         (isa<NamespaceDecl>(Owner) &&
1855          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1856      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1857      Invalid = true;
1858
1859      // Recover by adding 'static'.
1860      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1861                             PrevSpec, DiagID);
1862    }
1863    // C++ [class.union]p3:
1864    //   A storage class is not allowed in a declaration of an
1865    //   anonymous union in a class scope.
1866    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1867             isa<RecordDecl>(Owner)) {
1868      Diag(DS.getStorageClassSpecLoc(),
1869           diag::err_anonymous_union_with_storage_spec);
1870      Invalid = true;
1871
1872      // Recover by removing the storage specifier.
1873      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1874                             PrevSpec, DiagID);
1875    }
1876
1877    // C++ [class.union]p2:
1878    //   The member-specification of an anonymous union shall only
1879    //   define non-static data members. [Note: nested types and
1880    //   functions cannot be declared within an anonymous union. ]
1881    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1882                                 MemEnd = Record->decls_end();
1883         Mem != MemEnd; ++Mem) {
1884      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1885        // C++ [class.union]p3:
1886        //   An anonymous union shall not have private or protected
1887        //   members (clause 11).
1888        assert(FD->getAccess() != AS_none);
1889        if (FD->getAccess() != AS_public) {
1890          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1891            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1892          Invalid = true;
1893        }
1894
1895        if (CheckNontrivialField(FD))
1896          Invalid = true;
1897      } else if ((*Mem)->isImplicit()) {
1898        // Any implicit members are fine.
1899      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1900        // This is a type that showed up in an
1901        // elaborated-type-specifier inside the anonymous struct or
1902        // union, but which actually declares a type outside of the
1903        // anonymous struct or union. It's okay.
1904      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1905        if (!MemRecord->isAnonymousStructOrUnion() &&
1906            MemRecord->getDeclName()) {
1907          // Visual C++ allows type definition in anonymous struct or union.
1908          if (getLangOptions().Microsoft)
1909            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1910              << (int)Record->isUnion();
1911          else {
1912            // This is a nested type declaration.
1913            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1914              << (int)Record->isUnion();
1915            Invalid = true;
1916          }
1917        }
1918      } else if (isa<AccessSpecDecl>(*Mem)) {
1919        // Any access specifier is fine.
1920      } else {
1921        // We have something that isn't a non-static data
1922        // member. Complain about it.
1923        unsigned DK = diag::err_anonymous_record_bad_member;
1924        if (isa<TypeDecl>(*Mem))
1925          DK = diag::err_anonymous_record_with_type;
1926        else if (isa<FunctionDecl>(*Mem))
1927          DK = diag::err_anonymous_record_with_function;
1928        else if (isa<VarDecl>(*Mem))
1929          DK = diag::err_anonymous_record_with_static;
1930
1931        // Visual C++ allows type definition in anonymous struct or union.
1932        if (getLangOptions().Microsoft &&
1933            DK == diag::err_anonymous_record_with_type)
1934          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1935            << (int)Record->isUnion();
1936        else {
1937          Diag((*Mem)->getLocation(), DK)
1938              << (int)Record->isUnion();
1939          Invalid = true;
1940        }
1941      }
1942    }
1943  }
1944
1945  if (!Record->isUnion() && !Owner->isRecord()) {
1946    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1947      << (int)getLangOptions().CPlusPlus;
1948    Invalid = true;
1949  }
1950
1951  // Mock up a declarator.
1952  Declarator Dc(DS, Declarator::TypeNameContext);
1953  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1954  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1955
1956  // Create a declaration for this anonymous struct/union.
1957  NamedDecl *Anon = 0;
1958  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1959    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1960                             /*IdentifierInfo=*/0,
1961                             Context.getTypeDeclType(Record),
1962                             TInfo,
1963                             /*BitWidth=*/0, /*Mutable=*/false);
1964    Anon->setAccess(AS);
1965    if (getLangOptions().CPlusPlus)
1966      FieldCollector->Add(cast<FieldDecl>(Anon));
1967  } else {
1968    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1969    assert(SCSpec != DeclSpec::SCS_typedef &&
1970           "Parser allowed 'typedef' as storage class VarDecl.");
1971    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1972    if (SCSpec == DeclSpec::SCS_mutable) {
1973      // mutable can only appear on non-static class members, so it's always
1974      // an error here
1975      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1976      Invalid = true;
1977      SC = SC_None;
1978    }
1979    SCSpec = DS.getStorageClassSpecAsWritten();
1980    VarDecl::StorageClass SCAsWritten
1981      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1982
1983    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1984                           /*IdentifierInfo=*/0,
1985                           Context.getTypeDeclType(Record),
1986                           TInfo, SC, SCAsWritten);
1987  }
1988  Anon->setImplicit();
1989
1990  // Add the anonymous struct/union object to the current
1991  // context. We'll be referencing this object when we refer to one of
1992  // its members.
1993  Owner->addDecl(Anon);
1994
1995  // Inject the members of the anonymous struct/union into the owning
1996  // context and into the identifier resolver chain for name lookup
1997  // purposes.
1998  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1999    Invalid = true;
2000
2001  // Mark this as an anonymous struct/union type. Note that we do not
2002  // do this until after we have already checked and injected the
2003  // members of this anonymous struct/union type, because otherwise
2004  // the members could be injected twice: once by DeclContext when it
2005  // builds its lookup table, and once by
2006  // InjectAnonymousStructOrUnionMembers.
2007  Record->setAnonymousStructOrUnion(true);
2008
2009  if (Invalid)
2010    Anon->setInvalidDecl();
2011
2012  return Anon;
2013}
2014
2015
2016/// GetNameForDeclarator - Determine the full declaration name for the
2017/// given Declarator.
2018DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2019  return GetNameFromUnqualifiedId(D.getName());
2020}
2021
2022/// \brief Retrieves the declaration name from a parsed unqualified-id.
2023DeclarationNameInfo
2024Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2025  DeclarationNameInfo NameInfo;
2026  NameInfo.setLoc(Name.StartLocation);
2027
2028  switch (Name.getKind()) {
2029
2030  case UnqualifiedId::IK_Identifier:
2031    NameInfo.setName(Name.Identifier);
2032    NameInfo.setLoc(Name.StartLocation);
2033    return NameInfo;
2034
2035  case UnqualifiedId::IK_OperatorFunctionId:
2036    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2037                                           Name.OperatorFunctionId.Operator));
2038    NameInfo.setLoc(Name.StartLocation);
2039    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2040      = Name.OperatorFunctionId.SymbolLocations[0];
2041    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2042      = Name.EndLocation.getRawEncoding();
2043    return NameInfo;
2044
2045  case UnqualifiedId::IK_LiteralOperatorId:
2046    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2047                                                           Name.Identifier));
2048    NameInfo.setLoc(Name.StartLocation);
2049    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2050    return NameInfo;
2051
2052  case UnqualifiedId::IK_ConversionFunctionId: {
2053    TypeSourceInfo *TInfo;
2054    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2055    if (Ty.isNull())
2056      return DeclarationNameInfo();
2057    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2058                                               Context.getCanonicalType(Ty)));
2059    NameInfo.setLoc(Name.StartLocation);
2060    NameInfo.setNamedTypeInfo(TInfo);
2061    return NameInfo;
2062  }
2063
2064  case UnqualifiedId::IK_ConstructorName: {
2065    TypeSourceInfo *TInfo;
2066    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2067    if (Ty.isNull())
2068      return DeclarationNameInfo();
2069    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2070                                              Context.getCanonicalType(Ty)));
2071    NameInfo.setLoc(Name.StartLocation);
2072    NameInfo.setNamedTypeInfo(TInfo);
2073    return NameInfo;
2074  }
2075
2076  case UnqualifiedId::IK_ConstructorTemplateId: {
2077    // In well-formed code, we can only have a constructor
2078    // template-id that refers to the current context, so go there
2079    // to find the actual type being constructed.
2080    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2081    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2082      return DeclarationNameInfo();
2083
2084    // Determine the type of the class being constructed.
2085    QualType CurClassType = Context.getTypeDeclType(CurClass);
2086
2087    // FIXME: Check two things: that the template-id names the same type as
2088    // CurClassType, and that the template-id does not occur when the name
2089    // was qualified.
2090
2091    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2092                                    Context.getCanonicalType(CurClassType)));
2093    NameInfo.setLoc(Name.StartLocation);
2094    // FIXME: should we retrieve TypeSourceInfo?
2095    NameInfo.setNamedTypeInfo(0);
2096    return NameInfo;
2097  }
2098
2099  case UnqualifiedId::IK_DestructorName: {
2100    TypeSourceInfo *TInfo;
2101    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2102    if (Ty.isNull())
2103      return DeclarationNameInfo();
2104    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2105                                              Context.getCanonicalType(Ty)));
2106    NameInfo.setLoc(Name.StartLocation);
2107    NameInfo.setNamedTypeInfo(TInfo);
2108    return NameInfo;
2109  }
2110
2111  case UnqualifiedId::IK_TemplateId: {
2112    TemplateName TName = Name.TemplateId->Template.get();
2113    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2114    return Context.getNameForTemplate(TName, TNameLoc);
2115  }
2116
2117  } // switch (Name.getKind())
2118
2119  assert(false && "Unknown name kind");
2120  return DeclarationNameInfo();
2121}
2122
2123/// isNearlyMatchingFunction - Determine whether the C++ functions
2124/// Declaration and Definition are "nearly" matching. This heuristic
2125/// is used to improve diagnostics in the case where an out-of-line
2126/// function definition doesn't match any declaration within
2127/// the class or namespace.
2128static bool isNearlyMatchingFunction(ASTContext &Context,
2129                                     FunctionDecl *Declaration,
2130                                     FunctionDecl *Definition) {
2131  if (Declaration->param_size() != Definition->param_size())
2132    return false;
2133  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2134    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2135    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2136
2137    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2138                                        DefParamTy.getNonReferenceType()))
2139      return false;
2140  }
2141
2142  return true;
2143}
2144
2145/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2146/// declarator needs to be rebuilt in the current instantiation.
2147/// Any bits of declarator which appear before the name are valid for
2148/// consideration here.  That's specifically the type in the decl spec
2149/// and the base type in any member-pointer chunks.
2150static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2151                                                    DeclarationName Name) {
2152  // The types we specifically need to rebuild are:
2153  //   - typenames, typeofs, and decltypes
2154  //   - types which will become injected class names
2155  // Of course, we also need to rebuild any type referencing such a
2156  // type.  It's safest to just say "dependent", but we call out a
2157  // few cases here.
2158
2159  DeclSpec &DS = D.getMutableDeclSpec();
2160  switch (DS.getTypeSpecType()) {
2161  case DeclSpec::TST_typename:
2162  case DeclSpec::TST_typeofType:
2163  case DeclSpec::TST_decltype: {
2164    // Grab the type from the parser.
2165    TypeSourceInfo *TSI = 0;
2166    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2167    if (T.isNull() || !T->isDependentType()) break;
2168
2169    // Make sure there's a type source info.  This isn't really much
2170    // of a waste; most dependent types should have type source info
2171    // attached already.
2172    if (!TSI)
2173      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2174
2175    // Rebuild the type in the current instantiation.
2176    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2177    if (!TSI) return true;
2178
2179    // Store the new type back in the decl spec.
2180    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2181    DS.UpdateTypeRep(LocType);
2182    break;
2183  }
2184
2185  case DeclSpec::TST_typeofExpr: {
2186    Expr *E = DS.getRepAsExpr();
2187    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2188    if (Result.isInvalid()) return true;
2189    DS.UpdateExprRep(Result.get());
2190    break;
2191  }
2192
2193  default:
2194    // Nothing to do for these decl specs.
2195    break;
2196  }
2197
2198  // It doesn't matter what order we do this in.
2199  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2200    DeclaratorChunk &Chunk = D.getTypeObject(I);
2201
2202    // The only type information in the declarator which can come
2203    // before the declaration name is the base type of a member
2204    // pointer.
2205    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2206      continue;
2207
2208    // Rebuild the scope specifier in-place.
2209    CXXScopeSpec &SS = Chunk.Mem.Scope();
2210    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2211      return true;
2212  }
2213
2214  return false;
2215}
2216
2217Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2218  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2219}
2220
2221Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2222                             MultiTemplateParamsArg TemplateParamLists,
2223                             bool IsFunctionDefinition) {
2224  // TODO: consider using NameInfo for diagnostic.
2225  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2226  DeclarationName Name = NameInfo.getName();
2227
2228  // All of these full declarators require an identifier.  If it doesn't have
2229  // one, the ParsedFreeStandingDeclSpec action should be used.
2230  if (!Name) {
2231    if (!D.isInvalidType())  // Reject this if we think it is valid.
2232      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2233           diag::err_declarator_need_ident)
2234        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2235    return 0;
2236  }
2237
2238  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2239  // we find one that is.
2240  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2241         (S->getFlags() & Scope::TemplateParamScope) != 0)
2242    S = S->getParent();
2243
2244  DeclContext *DC = CurContext;
2245  if (D.getCXXScopeSpec().isInvalid())
2246    D.setInvalidType();
2247  else if (D.getCXXScopeSpec().isSet()) {
2248    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2249    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2250    if (!DC) {
2251      // If we could not compute the declaration context, it's because the
2252      // declaration context is dependent but does not refer to a class,
2253      // class template, or class template partial specialization. Complain
2254      // and return early, to avoid the coming semantic disaster.
2255      Diag(D.getIdentifierLoc(),
2256           diag::err_template_qualified_declarator_no_match)
2257        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2258        << D.getCXXScopeSpec().getRange();
2259      return 0;
2260    }
2261
2262    bool IsDependentContext = DC->isDependentContext();
2263
2264    if (!IsDependentContext &&
2265        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2266      return 0;
2267
2268    if (isa<CXXRecordDecl>(DC)) {
2269      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2270        Diag(D.getIdentifierLoc(),
2271             diag::err_member_def_undefined_record)
2272          << Name << DC << D.getCXXScopeSpec().getRange();
2273        D.setInvalidType();
2274      } else if (isa<CXXRecordDecl>(CurContext) &&
2275                 !D.getDeclSpec().isFriendSpecified()) {
2276        // The user provided a superfluous scope specifier inside a class
2277        // definition:
2278        //
2279        // class X {
2280        //   void X::f();
2281        // };
2282        if (CurContext->Equals(DC))
2283          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2284            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2285        else
2286          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2287            << Name << D.getCXXScopeSpec().getRange();
2288
2289        // Pretend that this qualifier was not here.
2290        D.getCXXScopeSpec().clear();
2291      }
2292    }
2293
2294    // Check whether we need to rebuild the type of the given
2295    // declaration in the current instantiation.
2296    if (EnteringContext && IsDependentContext &&
2297        TemplateParamLists.size() != 0) {
2298      ContextRAII SavedContext(*this, DC);
2299      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2300        D.setInvalidType();
2301    }
2302  }
2303
2304  // C++ [class.mem]p13:
2305  //   If T is the name of a class, then each of the following shall have a
2306  //   name different from T:
2307  //     - every static data member of class T;
2308  //     - every member function of class T
2309  //     - every member of class T that is itself a type;
2310  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2311    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2312      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2313        << Name;
2314
2315      // If this is a typedef, we'll end up spewing multiple diagnostics.
2316      // Just return early; it's safer.
2317      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2318        return 0;
2319    }
2320
2321  NamedDecl *New;
2322
2323  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2324  QualType R = TInfo->getType();
2325
2326  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2327                        ForRedeclaration);
2328
2329  // See if this is a redefinition of a variable in the same scope.
2330  if (!D.getCXXScopeSpec().isSet()) {
2331    bool IsLinkageLookup = false;
2332
2333    // If the declaration we're planning to build will be a function
2334    // or object with linkage, then look for another declaration with
2335    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2336    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2337      /* Do nothing*/;
2338    else if (R->isFunctionType()) {
2339      if (CurContext->isFunctionOrMethod() ||
2340          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2341        IsLinkageLookup = true;
2342    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2343      IsLinkageLookup = true;
2344    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2345             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2346      IsLinkageLookup = true;
2347
2348    if (IsLinkageLookup)
2349      Previous.clear(LookupRedeclarationWithLinkage);
2350
2351    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2352  } else { // Something like "int foo::x;"
2353    LookupQualifiedName(Previous, DC);
2354
2355    // Don't consider using declarations as previous declarations for
2356    // out-of-line members.
2357    RemoveUsingDecls(Previous);
2358
2359    // C++ 7.3.1.2p2:
2360    // Members (including explicit specializations of templates) of a named
2361    // namespace can also be defined outside that namespace by explicit
2362    // qualification of the name being defined, provided that the entity being
2363    // defined was already declared in the namespace and the definition appears
2364    // after the point of declaration in a namespace that encloses the
2365    // declarations namespace.
2366    //
2367    // Note that we only check the context at this point. We don't yet
2368    // have enough information to make sure that PrevDecl is actually
2369    // the declaration we want to match. For example, given:
2370    //
2371    //   class X {
2372    //     void f();
2373    //     void f(float);
2374    //   };
2375    //
2376    //   void X::f(int) { } // ill-formed
2377    //
2378    // In this case, PrevDecl will point to the overload set
2379    // containing the two f's declared in X, but neither of them
2380    // matches.
2381
2382    // First check whether we named the global scope.
2383    if (isa<TranslationUnitDecl>(DC)) {
2384      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2385        << Name << D.getCXXScopeSpec().getRange();
2386    } else {
2387      DeclContext *Cur = CurContext;
2388      while (isa<LinkageSpecDecl>(Cur))
2389        Cur = Cur->getParent();
2390      if (!Cur->Encloses(DC)) {
2391        // The qualifying scope doesn't enclose the original declaration.
2392        // Emit diagnostic based on current scope.
2393        SourceLocation L = D.getIdentifierLoc();
2394        SourceRange R = D.getCXXScopeSpec().getRange();
2395        if (isa<FunctionDecl>(Cur))
2396          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2397        else
2398          Diag(L, diag::err_invalid_declarator_scope)
2399            << Name << cast<NamedDecl>(DC) << R;
2400        D.setInvalidType();
2401      }
2402    }
2403  }
2404
2405  if (Previous.isSingleResult() &&
2406      Previous.getFoundDecl()->isTemplateParameter()) {
2407    // Maybe we will complain about the shadowed template parameter.
2408    if (!D.isInvalidType())
2409      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2410                                          Previous.getFoundDecl()))
2411        D.setInvalidType();
2412
2413    // Just pretend that we didn't see the previous declaration.
2414    Previous.clear();
2415  }
2416
2417  // In C++, the previous declaration we find might be a tag type
2418  // (class or enum). In this case, the new declaration will hide the
2419  // tag type. Note that this does does not apply if we're declaring a
2420  // typedef (C++ [dcl.typedef]p4).
2421  if (Previous.isSingleTagDecl() &&
2422      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2423    Previous.clear();
2424
2425  bool Redeclaration = false;
2426  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2427    if (TemplateParamLists.size()) {
2428      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2429      return 0;
2430    }
2431
2432    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2433  } else if (R->isFunctionType()) {
2434    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2435                                  move(TemplateParamLists),
2436                                  IsFunctionDefinition, Redeclaration);
2437  } else {
2438    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2439                                  move(TemplateParamLists),
2440                                  Redeclaration);
2441  }
2442
2443  if (New == 0)
2444    return 0;
2445
2446  // If this has an identifier and is not an invalid redeclaration or
2447  // function template specialization, add it to the scope stack.
2448  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2449    PushOnScopeChains(New, S);
2450
2451  return New;
2452}
2453
2454/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2455/// types into constant array types in certain situations which would otherwise
2456/// be errors (for GCC compatibility).
2457static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2458                                                    ASTContext &Context,
2459                                                    bool &SizeIsNegative,
2460                                                    llvm::APSInt &Oversized) {
2461  // This method tries to turn a variable array into a constant
2462  // array even when the size isn't an ICE.  This is necessary
2463  // for compatibility with code that depends on gcc's buggy
2464  // constant expression folding, like struct {char x[(int)(char*)2];}
2465  SizeIsNegative = false;
2466  Oversized = 0;
2467
2468  if (T->isDependentType())
2469    return QualType();
2470
2471  QualifierCollector Qs;
2472  const Type *Ty = Qs.strip(T);
2473
2474  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2475    QualType Pointee = PTy->getPointeeType();
2476    QualType FixedType =
2477        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2478                                            Oversized);
2479    if (FixedType.isNull()) return FixedType;
2480    FixedType = Context.getPointerType(FixedType);
2481    return Qs.apply(FixedType);
2482  }
2483
2484  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2485  if (!VLATy)
2486    return QualType();
2487  // FIXME: We should probably handle this case
2488  if (VLATy->getElementType()->isVariablyModifiedType())
2489    return QualType();
2490
2491  Expr::EvalResult EvalResult;
2492  if (!VLATy->getSizeExpr() ||
2493      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2494      !EvalResult.Val.isInt())
2495    return QualType();
2496
2497  // Check whether the array size is negative.
2498  llvm::APSInt &Res = EvalResult.Val.getInt();
2499  if (Res.isSigned() && Res.isNegative()) {
2500    SizeIsNegative = true;
2501    return QualType();
2502  }
2503
2504  // Check whether the array is too large to be addressed.
2505  unsigned ActiveSizeBits
2506    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2507                                              Res);
2508  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2509    Oversized = Res;
2510    return QualType();
2511  }
2512
2513  return Context.getConstantArrayType(VLATy->getElementType(),
2514                                      Res, ArrayType::Normal, 0);
2515}
2516
2517/// \brief Register the given locally-scoped external C declaration so
2518/// that it can be found later for redeclarations
2519void
2520Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2521                                       const LookupResult &Previous,
2522                                       Scope *S) {
2523  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2524         "Decl is not a locally-scoped decl!");
2525  // Note that we have a locally-scoped external with this name.
2526  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2527
2528  if (!Previous.isSingleResult())
2529    return;
2530
2531  NamedDecl *PrevDecl = Previous.getFoundDecl();
2532
2533  // If there was a previous declaration of this variable, it may be
2534  // in our identifier chain. Update the identifier chain with the new
2535  // declaration.
2536  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2537    // The previous declaration was found on the identifer resolver
2538    // chain, so remove it from its scope.
2539    while (S && !S->isDeclScope(PrevDecl))
2540      S = S->getParent();
2541
2542    if (S)
2543      S->RemoveDecl(PrevDecl);
2544  }
2545}
2546
2547/// \brief Diagnose function specifiers on a declaration of an identifier that
2548/// does not identify a function.
2549void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2550  // FIXME: We should probably indicate the identifier in question to avoid
2551  // confusion for constructs like "inline int a(), b;"
2552  if (D.getDeclSpec().isInlineSpecified())
2553    Diag(D.getDeclSpec().getInlineSpecLoc(),
2554         diag::err_inline_non_function);
2555
2556  if (D.getDeclSpec().isVirtualSpecified())
2557    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2558         diag::err_virtual_non_function);
2559
2560  if (D.getDeclSpec().isExplicitSpecified())
2561    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2562         diag::err_explicit_non_function);
2563}
2564
2565NamedDecl*
2566Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2567                             QualType R,  TypeSourceInfo *TInfo,
2568                             LookupResult &Previous, bool &Redeclaration) {
2569  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2570  if (D.getCXXScopeSpec().isSet()) {
2571    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2572      << D.getCXXScopeSpec().getRange();
2573    D.setInvalidType();
2574    // Pretend we didn't see the scope specifier.
2575    DC = CurContext;
2576    Previous.clear();
2577  }
2578
2579  if (getLangOptions().CPlusPlus) {
2580    // Check that there are no default arguments (C++ only).
2581    CheckExtraCXXDefaultArguments(D);
2582  }
2583
2584  DiagnoseFunctionSpecifiers(D);
2585
2586  if (D.getDeclSpec().isThreadSpecified())
2587    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2588
2589  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2590    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2591      << D.getName().getSourceRange();
2592    return 0;
2593  }
2594
2595  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2596  if (!NewTD) return 0;
2597
2598  // Handle attributes prior to checking for duplicates in MergeVarDecl
2599  ProcessDeclAttributes(S, NewTD, D);
2600
2601  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2602  // then it shall have block scope.
2603  // Note that variably modified types must be fixed before merging the decl so
2604  // that redeclarations will match.
2605  QualType T = NewTD->getUnderlyingType();
2606  if (T->isVariablyModifiedType()) {
2607    getCurFunction()->setHasBranchProtectedScope();
2608
2609    if (S->getFnParent() == 0) {
2610      bool SizeIsNegative;
2611      llvm::APSInt Oversized;
2612      QualType FixedTy =
2613          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2614                                              Oversized);
2615      if (!FixedTy.isNull()) {
2616        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2617        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2618      } else {
2619        if (SizeIsNegative)
2620          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2621        else if (T->isVariableArrayType())
2622          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2623        else if (Oversized.getBoolValue())
2624          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2625            << Oversized.toString(10);
2626        else
2627          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2628        NewTD->setInvalidDecl();
2629      }
2630    }
2631  }
2632
2633  // Merge the decl with the existing one if appropriate. If the decl is
2634  // in an outer scope, it isn't the same thing.
2635  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2636  if (!Previous.empty()) {
2637    Redeclaration = true;
2638    MergeTypeDefDecl(NewTD, Previous);
2639  }
2640
2641  // If this is the C FILE type, notify the AST context.
2642  if (IdentifierInfo *II = NewTD->getIdentifier())
2643    if (!NewTD->isInvalidDecl() &&
2644        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2645      if (II->isStr("FILE"))
2646        Context.setFILEDecl(NewTD);
2647      else if (II->isStr("jmp_buf"))
2648        Context.setjmp_bufDecl(NewTD);
2649      else if (II->isStr("sigjmp_buf"))
2650        Context.setsigjmp_bufDecl(NewTD);
2651      else if (II->isStr("__builtin_va_list"))
2652        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2653    }
2654
2655  return NewTD;
2656}
2657
2658/// \brief Determines whether the given declaration is an out-of-scope
2659/// previous declaration.
2660///
2661/// This routine should be invoked when name lookup has found a
2662/// previous declaration (PrevDecl) that is not in the scope where a
2663/// new declaration by the same name is being introduced. If the new
2664/// declaration occurs in a local scope, previous declarations with
2665/// linkage may still be considered previous declarations (C99
2666/// 6.2.2p4-5, C++ [basic.link]p6).
2667///
2668/// \param PrevDecl the previous declaration found by name
2669/// lookup
2670///
2671/// \param DC the context in which the new declaration is being
2672/// declared.
2673///
2674/// \returns true if PrevDecl is an out-of-scope previous declaration
2675/// for a new delcaration with the same name.
2676static bool
2677isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2678                                ASTContext &Context) {
2679  if (!PrevDecl)
2680    return false;
2681
2682  if (!PrevDecl->hasLinkage())
2683    return false;
2684
2685  if (Context.getLangOptions().CPlusPlus) {
2686    // C++ [basic.link]p6:
2687    //   If there is a visible declaration of an entity with linkage
2688    //   having the same name and type, ignoring entities declared
2689    //   outside the innermost enclosing namespace scope, the block
2690    //   scope declaration declares that same entity and receives the
2691    //   linkage of the previous declaration.
2692    DeclContext *OuterContext = DC->getRedeclContext();
2693    if (!OuterContext->isFunctionOrMethod())
2694      // This rule only applies to block-scope declarations.
2695      return false;
2696
2697    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2698    if (PrevOuterContext->isRecord())
2699      // We found a member function: ignore it.
2700      return false;
2701
2702    // Find the innermost enclosing namespace for the new and
2703    // previous declarations.
2704    OuterContext = OuterContext->getEnclosingNamespaceContext();
2705    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2706
2707    // The previous declaration is in a different namespace, so it
2708    // isn't the same function.
2709    if (!OuterContext->Equals(PrevOuterContext))
2710      return false;
2711  }
2712
2713  return true;
2714}
2715
2716static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2717  CXXScopeSpec &SS = D.getCXXScopeSpec();
2718  if (!SS.isSet()) return;
2719  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2720                       SS.getRange());
2721}
2722
2723NamedDecl*
2724Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2725                              QualType R, TypeSourceInfo *TInfo,
2726                              LookupResult &Previous,
2727                              MultiTemplateParamsArg TemplateParamLists,
2728                              bool &Redeclaration) {
2729  DeclarationName Name = GetNameForDeclarator(D).getName();
2730
2731  // Check that there are no default arguments (C++ only).
2732  if (getLangOptions().CPlusPlus)
2733    CheckExtraCXXDefaultArguments(D);
2734
2735  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2736  assert(SCSpec != DeclSpec::SCS_typedef &&
2737         "Parser allowed 'typedef' as storage class VarDecl.");
2738  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2739  if (SCSpec == DeclSpec::SCS_mutable) {
2740    // mutable can only appear on non-static class members, so it's always
2741    // an error here
2742    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2743    D.setInvalidType();
2744    SC = SC_None;
2745  }
2746  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2747  VarDecl::StorageClass SCAsWritten
2748    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2749
2750  IdentifierInfo *II = Name.getAsIdentifierInfo();
2751  if (!II) {
2752    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2753      << Name.getAsString();
2754    return 0;
2755  }
2756
2757  DiagnoseFunctionSpecifiers(D);
2758
2759  if (!DC->isRecord() && S->getFnParent() == 0) {
2760    // C99 6.9p2: The storage-class specifiers auto and register shall not
2761    // appear in the declaration specifiers in an external declaration.
2762    if (SC == SC_Auto || SC == SC_Register) {
2763
2764      // If this is a register variable with an asm label specified, then this
2765      // is a GNU extension.
2766      if (SC == SC_Register && D.getAsmLabel())
2767        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2768      else
2769        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2770      D.setInvalidType();
2771    }
2772  }
2773  if (DC->isRecord() && !CurContext->isRecord()) {
2774    // This is an out-of-line definition of a static data member.
2775    if (SC == SC_Static) {
2776      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2777           diag::err_static_out_of_line)
2778        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2779    } else if (SC == SC_None)
2780      SC = SC_Static;
2781  }
2782  if (SC == SC_Static) {
2783    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2784      if (RD->isLocalClass())
2785        Diag(D.getIdentifierLoc(),
2786             diag::err_static_data_member_not_allowed_in_local_class)
2787          << Name << RD->getDeclName();
2788    }
2789  }
2790
2791  // Match up the template parameter lists with the scope specifier, then
2792  // determine whether we have a template or a template specialization.
2793  bool isExplicitSpecialization = false;
2794  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2795  bool Invalid = false;
2796  if (TemplateParameterList *TemplateParams
2797        = MatchTemplateParametersToScopeSpecifier(
2798                                  D.getDeclSpec().getSourceRange().getBegin(),
2799                                                  D.getCXXScopeSpec(),
2800                        (TemplateParameterList**)TemplateParamLists.get(),
2801                                                   TemplateParamLists.size(),
2802                                                  /*never a friend*/ false,
2803                                                  isExplicitSpecialization,
2804                                                  Invalid)) {
2805    // All but one template parameter lists have been matching.
2806    --NumMatchedTemplateParamLists;
2807
2808    if (TemplateParams->size() > 0) {
2809      // There is no such thing as a variable template.
2810      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2811        << II
2812        << SourceRange(TemplateParams->getTemplateLoc(),
2813                       TemplateParams->getRAngleLoc());
2814      return 0;
2815    } else {
2816      // There is an extraneous 'template<>' for this variable. Complain
2817      // about it, but allow the declaration of the variable.
2818      Diag(TemplateParams->getTemplateLoc(),
2819           diag::err_template_variable_noparams)
2820        << II
2821        << SourceRange(TemplateParams->getTemplateLoc(),
2822                       TemplateParams->getRAngleLoc());
2823
2824      isExplicitSpecialization = true;
2825    }
2826  }
2827
2828  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2829                                   II, R, TInfo, SC, SCAsWritten);
2830
2831  if (D.isInvalidType() || Invalid)
2832    NewVD->setInvalidDecl();
2833
2834  SetNestedNameSpecifier(NewVD, D);
2835
2836  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2837    NewVD->setTemplateParameterListsInfo(Context,
2838                                         NumMatchedTemplateParamLists,
2839                        (TemplateParameterList**)TemplateParamLists.release());
2840  }
2841
2842  if (D.getDeclSpec().isThreadSpecified()) {
2843    if (NewVD->hasLocalStorage())
2844      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2845    else if (!Context.Target.isTLSSupported())
2846      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2847    else
2848      NewVD->setThreadSpecified(true);
2849  }
2850
2851  // Set the lexical context. If the declarator has a C++ scope specifier, the
2852  // lexical context will be different from the semantic context.
2853  NewVD->setLexicalDeclContext(CurContext);
2854
2855  // Handle attributes prior to checking for duplicates in MergeVarDecl
2856  ProcessDeclAttributes(S, NewVD, D);
2857
2858  // Handle GNU asm-label extension (encoded as an attribute).
2859  if (Expr *E = (Expr*)D.getAsmLabel()) {
2860    // The parser guarantees this is a string.
2861    StringLiteral *SE = cast<StringLiteral>(E);
2862    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2863                                                Context, SE->getString()));
2864  }
2865
2866  // Diagnose shadowed variables before filtering for scope.
2867  if (!D.getCXXScopeSpec().isSet())
2868    CheckShadow(S, NewVD, Previous);
2869
2870  // Don't consider existing declarations that are in a different
2871  // scope and are out-of-semantic-context declarations (if the new
2872  // declaration has linkage).
2873  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2874
2875  // Merge the decl with the existing one if appropriate.
2876  if (!Previous.empty()) {
2877    if (Previous.isSingleResult() &&
2878        isa<FieldDecl>(Previous.getFoundDecl()) &&
2879        D.getCXXScopeSpec().isSet()) {
2880      // The user tried to define a non-static data member
2881      // out-of-line (C++ [dcl.meaning]p1).
2882      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2883        << D.getCXXScopeSpec().getRange();
2884      Previous.clear();
2885      NewVD->setInvalidDecl();
2886    }
2887  } else if (D.getCXXScopeSpec().isSet()) {
2888    // No previous declaration in the qualifying scope.
2889    Diag(D.getIdentifierLoc(), diag::err_no_member)
2890      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2891      << D.getCXXScopeSpec().getRange();
2892    NewVD->setInvalidDecl();
2893  }
2894
2895  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2896
2897  // This is an explicit specialization of a static data member. Check it.
2898  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2899      CheckMemberSpecialization(NewVD, Previous))
2900    NewVD->setInvalidDecl();
2901
2902  // attributes declared post-definition are currently ignored
2903  // FIXME: This should be handled in attribute merging, not
2904  // here.
2905  if (Previous.isSingleResult()) {
2906    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2907    if (Def && (Def = Def->getDefinition()) &&
2908        Def != NewVD && D.hasAttributes()) {
2909      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2910      Diag(Def->getLocation(), diag::note_previous_definition);
2911    }
2912  }
2913
2914  // If this is a locally-scoped extern C variable, update the map of
2915  // such variables.
2916  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2917      !NewVD->isInvalidDecl())
2918    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2919
2920  // If there's a #pragma GCC visibility in scope, and this isn't a class
2921  // member, set the visibility of this variable.
2922  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2923    AddPushedVisibilityAttribute(NewVD);
2924
2925  MarkUnusedFileScopedDecl(NewVD);
2926
2927  return NewVD;
2928}
2929
2930/// \brief Diagnose variable or built-in function shadowing.  Implements
2931/// -Wshadow.
2932///
2933/// This method is called whenever a VarDecl is added to a "useful"
2934/// scope.
2935///
2936/// \param S the scope in which the shadowing name is being declared
2937/// \param R the lookup of the name
2938///
2939void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2940  // Return if warning is ignored.
2941  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2942    return;
2943
2944  // Don't diagnose declarations at file scope.  The scope might not
2945  // have a DeclContext if (e.g.) we're parsing a function prototype.
2946  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2947  if (NewDC && NewDC->isFileContext())
2948    return;
2949
2950  // Only diagnose if we're shadowing an unambiguous field or variable.
2951  if (R.getResultKind() != LookupResult::Found)
2952    return;
2953
2954  NamedDecl* ShadowedDecl = R.getFoundDecl();
2955  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2956    return;
2957
2958  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2959
2960  // Only warn about certain kinds of shadowing for class members.
2961  if (NewDC && NewDC->isRecord()) {
2962    // In particular, don't warn about shadowing non-class members.
2963    if (!OldDC->isRecord())
2964      return;
2965
2966    // TODO: should we warn about static data members shadowing
2967    // static data members from base classes?
2968
2969    // TODO: don't diagnose for inaccessible shadowed members.
2970    // This is hard to do perfectly because we might friend the
2971    // shadowing context, but that's just a false negative.
2972  }
2973
2974  // Determine what kind of declaration we're shadowing.
2975  unsigned Kind;
2976  if (isa<RecordDecl>(OldDC)) {
2977    if (isa<FieldDecl>(ShadowedDecl))
2978      Kind = 3; // field
2979    else
2980      Kind = 2; // static data member
2981  } else if (OldDC->isFileContext())
2982    Kind = 1; // global
2983  else
2984    Kind = 0; // local
2985
2986  DeclarationName Name = R.getLookupName();
2987
2988  // Emit warning and note.
2989  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2990  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2991}
2992
2993/// \brief Check -Wshadow without the advantage of a previous lookup.
2994void Sema::CheckShadow(Scope *S, VarDecl *D) {
2995  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2996                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2997  LookupName(R, S);
2998  CheckShadow(S, D, R);
2999}
3000
3001/// \brief Perform semantic checking on a newly-created variable
3002/// declaration.
3003///
3004/// This routine performs all of the type-checking required for a
3005/// variable declaration once it has been built. It is used both to
3006/// check variables after they have been parsed and their declarators
3007/// have been translated into a declaration, and to check variables
3008/// that have been instantiated from a template.
3009///
3010/// Sets NewVD->isInvalidDecl() if an error was encountered.
3011void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3012                                    LookupResult &Previous,
3013                                    bool &Redeclaration) {
3014  // If the decl is already known invalid, don't check it.
3015  if (NewVD->isInvalidDecl())
3016    return;
3017
3018  QualType T = NewVD->getType();
3019
3020  if (T->isObjCObjectType()) {
3021    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3022    return NewVD->setInvalidDecl();
3023  }
3024
3025  // Emit an error if an address space was applied to decl with local storage.
3026  // This includes arrays of objects with address space qualifiers, but not
3027  // automatic variables that point to other address spaces.
3028  // ISO/IEC TR 18037 S5.1.2
3029  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3030    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3031    return NewVD->setInvalidDecl();
3032  }
3033
3034  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3035      && !NewVD->hasAttr<BlocksAttr>())
3036    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3037
3038  bool isVM = T->isVariablyModifiedType();
3039  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3040      NewVD->hasAttr<BlocksAttr>())
3041    getCurFunction()->setHasBranchProtectedScope();
3042
3043  if ((isVM && NewVD->hasLinkage()) ||
3044      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3045    bool SizeIsNegative;
3046    llvm::APSInt Oversized;
3047    QualType FixedTy =
3048        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3049                                            Oversized);
3050
3051    if (FixedTy.isNull() && T->isVariableArrayType()) {
3052      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3053      // FIXME: This won't give the correct result for
3054      // int a[10][n];
3055      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3056
3057      if (NewVD->isFileVarDecl())
3058        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3059        << SizeRange;
3060      else if (NewVD->getStorageClass() == SC_Static)
3061        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3062        << SizeRange;
3063      else
3064        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3065        << SizeRange;
3066      return NewVD->setInvalidDecl();
3067    }
3068
3069    if (FixedTy.isNull()) {
3070      if (NewVD->isFileVarDecl())
3071        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3072      else
3073        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3074      return NewVD->setInvalidDecl();
3075    }
3076
3077    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3078    NewVD->setType(FixedTy);
3079  }
3080
3081  if (Previous.empty() && NewVD->isExternC()) {
3082    // Since we did not find anything by this name and we're declaring
3083    // an extern "C" variable, look for a non-visible extern "C"
3084    // declaration with the same name.
3085    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3086      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3087    if (Pos != LocallyScopedExternalDecls.end())
3088      Previous.addDecl(Pos->second);
3089  }
3090
3091  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3092    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3093      << T;
3094    return NewVD->setInvalidDecl();
3095  }
3096
3097  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3098    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3099    return NewVD->setInvalidDecl();
3100  }
3101
3102  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3103    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3104    return NewVD->setInvalidDecl();
3105  }
3106
3107  // Function pointers and references cannot have qualified function type, only
3108  // function pointer-to-members can do that.
3109  QualType Pointee;
3110  unsigned PtrOrRef = 0;
3111  if (const PointerType *Ptr = T->getAs<PointerType>())
3112    Pointee = Ptr->getPointeeType();
3113  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3114    Pointee = Ref->getPointeeType();
3115    PtrOrRef = 1;
3116  }
3117  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3118      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3119    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3120        << PtrOrRef;
3121    return NewVD->setInvalidDecl();
3122  }
3123
3124  if (!Previous.empty()) {
3125    Redeclaration = true;
3126    MergeVarDecl(NewVD, Previous);
3127  }
3128}
3129
3130/// \brief Data used with FindOverriddenMethod
3131struct FindOverriddenMethodData {
3132  Sema *S;
3133  CXXMethodDecl *Method;
3134};
3135
3136/// \brief Member lookup function that determines whether a given C++
3137/// method overrides a method in a base class, to be used with
3138/// CXXRecordDecl::lookupInBases().
3139static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3140                                 CXXBasePath &Path,
3141                                 void *UserData) {
3142  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3143
3144  FindOverriddenMethodData *Data
3145    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3146
3147  DeclarationName Name = Data->Method->getDeclName();
3148
3149  // FIXME: Do we care about other names here too?
3150  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3151    // We really want to find the base class destructor here.
3152    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3153    CanQualType CT = Data->S->Context.getCanonicalType(T);
3154
3155    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3156  }
3157
3158  for (Path.Decls = BaseRecord->lookup(Name);
3159       Path.Decls.first != Path.Decls.second;
3160       ++Path.Decls.first) {
3161    NamedDecl *D = *Path.Decls.first;
3162    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3163      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3164        return true;
3165    }
3166  }
3167
3168  return false;
3169}
3170
3171/// AddOverriddenMethods - See if a method overrides any in the base classes,
3172/// and if so, check that it's a valid override and remember it.
3173bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3174  // Look for virtual methods in base classes that this method might override.
3175  CXXBasePaths Paths;
3176  FindOverriddenMethodData Data;
3177  Data.Method = MD;
3178  Data.S = this;
3179  bool AddedAny = false;
3180  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3181    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3182         E = Paths.found_decls_end(); I != E; ++I) {
3183      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3184        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3185            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3186            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3187          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3188          AddedAny = true;
3189        }
3190      }
3191    }
3192  }
3193
3194  return AddedAny;
3195}
3196
3197static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3198  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3199                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3200  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3201  assert(!Prev.isAmbiguous() &&
3202         "Cannot have an ambiguity in previous-declaration lookup");
3203  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3204       Func != FuncEnd; ++Func) {
3205    if (isa<FunctionDecl>(*Func) &&
3206        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3207      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3208  }
3209}
3210
3211NamedDecl*
3212Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3213                              QualType R, TypeSourceInfo *TInfo,
3214                              LookupResult &Previous,
3215                              MultiTemplateParamsArg TemplateParamLists,
3216                              bool IsFunctionDefinition, bool &Redeclaration) {
3217  assert(R.getTypePtr()->isFunctionType());
3218
3219  // TODO: consider using NameInfo for diagnostic.
3220  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3221  DeclarationName Name = NameInfo.getName();
3222  FunctionDecl::StorageClass SC = SC_None;
3223  switch (D.getDeclSpec().getStorageClassSpec()) {
3224  default: assert(0 && "Unknown storage class!");
3225  case DeclSpec::SCS_auto:
3226  case DeclSpec::SCS_register:
3227  case DeclSpec::SCS_mutable:
3228    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3229         diag::err_typecheck_sclass_func);
3230    D.setInvalidType();
3231    break;
3232  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3233  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3234  case DeclSpec::SCS_static: {
3235    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3236      // C99 6.7.1p5:
3237      //   The declaration of an identifier for a function that has
3238      //   block scope shall have no explicit storage-class specifier
3239      //   other than extern
3240      // See also (C++ [dcl.stc]p4).
3241      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3242           diag::err_static_block_func);
3243      SC = SC_None;
3244    } else
3245      SC = SC_Static;
3246    break;
3247  }
3248  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3249  }
3250
3251  if (D.getDeclSpec().isThreadSpecified())
3252    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3253
3254  bool isFriend = D.getDeclSpec().isFriendSpecified();
3255  bool isInline = D.getDeclSpec().isInlineSpecified();
3256  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3257  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3258
3259  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3260  FunctionDecl::StorageClass SCAsWritten
3261    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3262
3263  // Check that the return type is not an abstract class type.
3264  // For record types, this is done by the AbstractClassUsageDiagnoser once
3265  // the class has been completely parsed.
3266  if (!DC->isRecord() &&
3267      RequireNonAbstractType(D.getIdentifierLoc(),
3268                             R->getAs<FunctionType>()->getResultType(),
3269                             diag::err_abstract_type_in_decl,
3270                             AbstractReturnType))
3271    D.setInvalidType();
3272
3273  // Do not allow returning a objc interface by-value.
3274  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3275    Diag(D.getIdentifierLoc(),
3276         diag::err_object_cannot_be_passed_returned_by_value) << 0
3277      << R->getAs<FunctionType>()->getResultType();
3278    D.setInvalidType();
3279  }
3280
3281  bool isVirtualOkay = false;
3282  FunctionDecl *NewFD;
3283
3284  if (isFriend) {
3285    // C++ [class.friend]p5
3286    //   A function can be defined in a friend declaration of a
3287    //   class . . . . Such a function is implicitly inline.
3288    isInline |= IsFunctionDefinition;
3289  }
3290
3291  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3292    // This is a C++ constructor declaration.
3293    assert(DC->isRecord() &&
3294           "Constructors can only be declared in a member context");
3295
3296    R = CheckConstructorDeclarator(D, R, SC);
3297
3298    // Create the new declaration
3299    NewFD = CXXConstructorDecl::Create(Context,
3300                                       cast<CXXRecordDecl>(DC),
3301                                       NameInfo, R, TInfo,
3302                                       isExplicit, isInline,
3303                                       /*isImplicitlyDeclared=*/false);
3304  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3305    // This is a C++ destructor declaration.
3306    if (DC->isRecord()) {
3307      R = CheckDestructorDeclarator(D, R, SC);
3308
3309      NewFD = CXXDestructorDecl::Create(Context,
3310                                        cast<CXXRecordDecl>(DC),
3311                                        NameInfo, R,
3312                                        isInline,
3313                                        /*isImplicitlyDeclared=*/false);
3314      NewFD->setTypeSourceInfo(TInfo);
3315
3316      isVirtualOkay = true;
3317    } else {
3318      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3319
3320      // Create a FunctionDecl to satisfy the function definition parsing
3321      // code path.
3322      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3323                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3324                                   /*hasPrototype=*/true);
3325      D.setInvalidType();
3326    }
3327  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3328    if (!DC->isRecord()) {
3329      Diag(D.getIdentifierLoc(),
3330           diag::err_conv_function_not_member);
3331      return 0;
3332    }
3333
3334    CheckConversionDeclarator(D, R, SC);
3335    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3336                                      NameInfo, R, TInfo,
3337                                      isInline, isExplicit);
3338
3339    isVirtualOkay = true;
3340  } else if (DC->isRecord()) {
3341    // If the of the function is the same as the name of the record, then this
3342    // must be an invalid constructor that has a return type.
3343    // (The parser checks for a return type and makes the declarator a
3344    // constructor if it has no return type).
3345    // must have an invalid constructor that has a return type
3346    if (Name.getAsIdentifierInfo() &&
3347        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3348      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3349        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3350        << SourceRange(D.getIdentifierLoc());
3351      return 0;
3352    }
3353
3354    bool isStatic = SC == SC_Static;
3355
3356    // [class.free]p1:
3357    // Any allocation function for a class T is a static member
3358    // (even if not explicitly declared static).
3359    if (Name.getCXXOverloadedOperator() == OO_New ||
3360        Name.getCXXOverloadedOperator() == OO_Array_New)
3361      isStatic = true;
3362
3363    // [class.free]p6 Any deallocation function for a class X is a static member
3364    // (even if not explicitly declared static).
3365    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3366        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3367      isStatic = true;
3368
3369    // This is a C++ method declaration.
3370    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3371                                  NameInfo, R, TInfo,
3372                                  isStatic, SCAsWritten, isInline);
3373
3374    isVirtualOkay = !isStatic;
3375  } else {
3376    // Determine whether the function was written with a
3377    // prototype. This true when:
3378    //   - we're in C++ (where every function has a prototype),
3379    //   - there is a prototype in the declarator, or
3380    //   - the type R of the function is some kind of typedef or other reference
3381    //     to a type name (which eventually refers to a function type).
3382    bool HasPrototype =
3383       getLangOptions().CPlusPlus ||
3384       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3385       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3386
3387    NewFD = FunctionDecl::Create(Context, DC,
3388                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3389                                 HasPrototype);
3390  }
3391
3392  if (D.isInvalidType())
3393    NewFD->setInvalidDecl();
3394
3395  SetNestedNameSpecifier(NewFD, D);
3396
3397  // Set the lexical context. If the declarator has a C++
3398  // scope specifier, or is the object of a friend declaration, the
3399  // lexical context will be different from the semantic context.
3400  NewFD->setLexicalDeclContext(CurContext);
3401
3402  // Match up the template parameter lists with the scope specifier, then
3403  // determine whether we have a template or a template specialization.
3404  FunctionTemplateDecl *FunctionTemplate = 0;
3405  bool isExplicitSpecialization = false;
3406  bool isFunctionTemplateSpecialization = false;
3407  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3408  bool Invalid = false;
3409  if (TemplateParameterList *TemplateParams
3410        = MatchTemplateParametersToScopeSpecifier(
3411                                  D.getDeclSpec().getSourceRange().getBegin(),
3412                                  D.getCXXScopeSpec(),
3413                           (TemplateParameterList**)TemplateParamLists.get(),
3414                                                  TemplateParamLists.size(),
3415                                                  isFriend,
3416                                                  isExplicitSpecialization,
3417                                                  Invalid)) {
3418    // All but one template parameter lists have been matching.
3419    --NumMatchedTemplateParamLists;
3420
3421    if (TemplateParams->size() > 0) {
3422      // This is a function template
3423
3424      // Check that we can declare a template here.
3425      if (CheckTemplateDeclScope(S, TemplateParams))
3426        return 0;
3427
3428      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3429                                                      NewFD->getLocation(),
3430                                                      Name, TemplateParams,
3431                                                      NewFD);
3432      FunctionTemplate->setLexicalDeclContext(CurContext);
3433      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3434    } else {
3435      // This is a function template specialization.
3436      isFunctionTemplateSpecialization = true;
3437
3438      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3439      if (isFriend && isFunctionTemplateSpecialization) {
3440        // We want to remove the "template<>", found here.
3441        SourceRange RemoveRange = TemplateParams->getSourceRange();
3442
3443        // If we remove the template<> and the name is not a
3444        // template-id, we're actually silently creating a problem:
3445        // the friend declaration will refer to an untemplated decl,
3446        // and clearly the user wants a template specialization.  So
3447        // we need to insert '<>' after the name.
3448        SourceLocation InsertLoc;
3449        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3450          InsertLoc = D.getName().getSourceRange().getEnd();
3451          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3452        }
3453
3454        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3455          << Name << RemoveRange
3456          << FixItHint::CreateRemoval(RemoveRange)
3457          << FixItHint::CreateInsertion(InsertLoc, "<>");
3458      }
3459    }
3460  }
3461
3462  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3463    NewFD->setTemplateParameterListsInfo(Context,
3464                                         NumMatchedTemplateParamLists,
3465                        (TemplateParameterList**)TemplateParamLists.release());
3466  }
3467
3468  if (Invalid) {
3469    NewFD->setInvalidDecl();
3470    if (FunctionTemplate)
3471      FunctionTemplate->setInvalidDecl();
3472  }
3473
3474  // C++ [dcl.fct.spec]p5:
3475  //   The virtual specifier shall only be used in declarations of
3476  //   nonstatic class member functions that appear within a
3477  //   member-specification of a class declaration; see 10.3.
3478  //
3479  if (isVirtual && !NewFD->isInvalidDecl()) {
3480    if (!isVirtualOkay) {
3481       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3482           diag::err_virtual_non_function);
3483    } else if (!CurContext->isRecord()) {
3484      // 'virtual' was specified outside of the class.
3485      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3486        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3487    } else {
3488      // Okay: Add virtual to the method.
3489      NewFD->setVirtualAsWritten(true);
3490    }
3491  }
3492
3493  // C++ [dcl.fct.spec]p3:
3494  //  The inline specifier shall not appear on a block scope function declaration.
3495  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3496    if (CurContext->isFunctionOrMethod()) {
3497      // 'inline' is not allowed on block scope function declaration.
3498      Diag(D.getDeclSpec().getInlineSpecLoc(),
3499           diag::err_inline_declaration_block_scope) << Name
3500        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3501    }
3502  }
3503
3504  // C++ [dcl.fct.spec]p6:
3505  //  The explicit specifier shall be used only in the declaration of a
3506  //  constructor or conversion function within its class definition; see 12.3.1
3507  //  and 12.3.2.
3508  if (isExplicit && !NewFD->isInvalidDecl()) {
3509    if (!CurContext->isRecord()) {
3510      // 'explicit' was specified outside of the class.
3511      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3512           diag::err_explicit_out_of_class)
3513        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3514    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3515               !isa<CXXConversionDecl>(NewFD)) {
3516      // 'explicit' was specified on a function that wasn't a constructor
3517      // or conversion function.
3518      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3519           diag::err_explicit_non_ctor_or_conv_function)
3520        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3521    }
3522  }
3523
3524  // Filter out previous declarations that don't match the scope.
3525  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3526
3527  if (isFriend) {
3528    // For now, claim that the objects have no previous declaration.
3529    if (FunctionTemplate) {
3530      FunctionTemplate->setObjectOfFriendDecl(false);
3531      FunctionTemplate->setAccess(AS_public);
3532    }
3533    NewFD->setObjectOfFriendDecl(false);
3534    NewFD->setAccess(AS_public);
3535  }
3536
3537  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3538      !CurContext->isRecord()) {
3539    // C++ [class.static]p1:
3540    //   A data or function member of a class may be declared static
3541    //   in a class definition, in which case it is a static member of
3542    //   the class.
3543
3544    // Complain about the 'static' specifier if it's on an out-of-line
3545    // member function definition.
3546    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3547         diag::err_static_out_of_line)
3548      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3549  }
3550
3551  // Handle GNU asm-label extension (encoded as an attribute).
3552  if (Expr *E = (Expr*) D.getAsmLabel()) {
3553    // The parser guarantees this is a string.
3554    StringLiteral *SE = cast<StringLiteral>(E);
3555    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3556                                                SE->getString()));
3557  }
3558
3559  // Copy the parameter declarations from the declarator D to the function
3560  // declaration NewFD, if they are available.  First scavenge them into Params.
3561  llvm::SmallVector<ParmVarDecl*, 16> Params;
3562  if (D.getNumTypeObjects() > 0) {
3563    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3564
3565    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3566    // function that takes no arguments, not a function that takes a
3567    // single void argument.
3568    // We let through "const void" here because Sema::GetTypeForDeclarator
3569    // already checks for that case.
3570    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3571        FTI.ArgInfo[0].Param &&
3572        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3573      // Empty arg list, don't push any params.
3574      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3575
3576      // In C++, the empty parameter-type-list must be spelled "void"; a
3577      // typedef of void is not permitted.
3578      if (getLangOptions().CPlusPlus &&
3579          Param->getType().getUnqualifiedType() != Context.VoidTy)
3580        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3581      // FIXME: Leaks decl?
3582    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3583      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3584        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3585        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3586        Param->setDeclContext(NewFD);
3587        Params.push_back(Param);
3588
3589        if (Param->isInvalidDecl())
3590          NewFD->setInvalidDecl();
3591      }
3592    }
3593
3594  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3595    // When we're declaring a function with a typedef, typeof, etc as in the
3596    // following example, we'll need to synthesize (unnamed)
3597    // parameters for use in the declaration.
3598    //
3599    // @code
3600    // typedef void fn(int);
3601    // fn f;
3602    // @endcode
3603
3604    // Synthesize a parameter for each argument type.
3605    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3606         AE = FT->arg_type_end(); AI != AE; ++AI) {
3607      ParmVarDecl *Param =
3608        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3609      Params.push_back(Param);
3610    }
3611  } else {
3612    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3613           "Should not need args for typedef of non-prototype fn");
3614  }
3615  // Finally, we know we have the right number of parameters, install them.
3616  NewFD->setParams(Params.data(), Params.size());
3617
3618  // If the declarator is a template-id, translate the parser's template
3619  // argument list into our AST format.
3620  bool HasExplicitTemplateArgs = false;
3621  TemplateArgumentListInfo TemplateArgs;
3622  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3623    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3624    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3625    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3626    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3627                                       TemplateId->getTemplateArgs(),
3628                                       TemplateId->NumArgs);
3629    translateTemplateArguments(TemplateArgsPtr,
3630                               TemplateArgs);
3631    TemplateArgsPtr.release();
3632
3633    HasExplicitTemplateArgs = true;
3634
3635    if (FunctionTemplate) {
3636      // FIXME: Diagnose function template with explicit template
3637      // arguments.
3638      HasExplicitTemplateArgs = false;
3639    } else if (!isFunctionTemplateSpecialization &&
3640               !D.getDeclSpec().isFriendSpecified()) {
3641      // We have encountered something that the user meant to be a
3642      // specialization (because it has explicitly-specified template
3643      // arguments) but that was not introduced with a "template<>" (or had
3644      // too few of them).
3645      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3646        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3647        << FixItHint::CreateInsertion(
3648                                   D.getDeclSpec().getSourceRange().getBegin(),
3649                                                 "template<> ");
3650      isFunctionTemplateSpecialization = true;
3651    } else {
3652      // "friend void foo<>(int);" is an implicit specialization decl.
3653      isFunctionTemplateSpecialization = true;
3654    }
3655  } else if (isFriend && isFunctionTemplateSpecialization) {
3656    // This combination is only possible in a recovery case;  the user
3657    // wrote something like:
3658    //   template <> friend void foo(int);
3659    // which we're recovering from as if the user had written:
3660    //   friend void foo<>(int);
3661    // Go ahead and fake up a template id.
3662    HasExplicitTemplateArgs = true;
3663    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3664    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3665  }
3666
3667  // If it's a friend (and only if it's a friend), it's possible
3668  // that either the specialized function type or the specialized
3669  // template is dependent, and therefore matching will fail.  In
3670  // this case, don't check the specialization yet.
3671  if (isFunctionTemplateSpecialization && isFriend &&
3672      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3673    assert(HasExplicitTemplateArgs &&
3674           "friend function specialization without template args");
3675    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3676                                                     Previous))
3677      NewFD->setInvalidDecl();
3678  } else if (isFunctionTemplateSpecialization) {
3679    if (CheckFunctionTemplateSpecialization(NewFD,
3680                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3681                                            Previous))
3682      NewFD->setInvalidDecl();
3683  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3684    if (CheckMemberSpecialization(NewFD, Previous))
3685      NewFD->setInvalidDecl();
3686  }
3687
3688  // Perform semantic checking on the function declaration.
3689  bool OverloadableAttrRequired = false; // FIXME: HACK!
3690  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3691                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3692
3693  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3694          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3695         "previous declaration set still overloaded");
3696
3697  NamedDecl *PrincipalDecl = (FunctionTemplate
3698                              ? cast<NamedDecl>(FunctionTemplate)
3699                              : NewFD);
3700
3701  if (isFriend && Redeclaration) {
3702    AccessSpecifier Access = AS_public;
3703    if (!NewFD->isInvalidDecl())
3704      Access = NewFD->getPreviousDeclaration()->getAccess();
3705
3706    NewFD->setAccess(Access);
3707    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3708
3709    PrincipalDecl->setObjectOfFriendDecl(true);
3710  }
3711
3712  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3713      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3714    PrincipalDecl->setNonMemberOperator();
3715
3716  // If we have a function template, check the template parameter
3717  // list. This will check and merge default template arguments.
3718  if (FunctionTemplate) {
3719    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3720    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3721                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3722             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3723                                                : TPC_FunctionTemplate);
3724  }
3725
3726  if (NewFD->isInvalidDecl()) {
3727    // Ignore all the rest of this.
3728  } else if (!Redeclaration) {
3729    // Fake up an access specifier if it's supposed to be a class member.
3730    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3731      NewFD->setAccess(AS_public);
3732
3733    // Qualified decls generally require a previous declaration.
3734    if (D.getCXXScopeSpec().isSet()) {
3735      // ...with the major exception of dependent friend declarations.
3736      // In theory, this condition could be whether the qualifier
3737      // is dependent;  in practice, the way we nest template parameters
3738      // prevents this sort of matching from working, so we have to base it
3739      // on the general dependence of the context.
3740      if (isFriend && CurContext->isDependentContext()) {
3741        // ignore these
3742
3743      } else {
3744        // The user tried to provide an out-of-line definition for a
3745        // function that is a member of a class or namespace, but there
3746        // was no such member function declared (C++ [class.mfct]p2,
3747        // C++ [namespace.memdef]p2). For example:
3748        //
3749        // class X {
3750        //   void f() const;
3751        // };
3752        //
3753        // void X::f() { } // ill-formed
3754        //
3755        // Complain about this problem, and attempt to suggest close
3756        // matches (e.g., those that differ only in cv-qualifiers and
3757        // whether the parameter types are references).
3758        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3759          << Name << DC << D.getCXXScopeSpec().getRange();
3760        NewFD->setInvalidDecl();
3761
3762        DiagnoseInvalidRedeclaration(*this, NewFD);
3763      }
3764
3765    // Unqualified local friend declarations are required to resolve
3766    // to something.
3767    } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3768      Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3769      NewFD->setInvalidDecl();
3770      DiagnoseInvalidRedeclaration(*this, NewFD);
3771    }
3772
3773  } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3774             !isFriend && !isFunctionTemplateSpecialization &&
3775             !isExplicitSpecialization) {
3776    // An out-of-line member function declaration must also be a
3777    // definition (C++ [dcl.meaning]p1).
3778    // Note that this is not the case for explicit specializations of
3779    // function templates or member functions of class templates, per
3780    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3781    // for compatibility with old SWIG code which likes to generate them.
3782    Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3783      << D.getCXXScopeSpec().getRange();
3784  }
3785
3786  // Handle attributes. We need to have merged decls when handling attributes
3787  // (for example to check for conflicts, etc).
3788  // FIXME: This needs to happen before we merge declarations. Then,
3789  // let attribute merging cope with attribute conflicts.
3790  ProcessDeclAttributes(S, NewFD, D);
3791
3792  // attributes declared post-definition are currently ignored
3793  // FIXME: This should happen during attribute merging
3794  if (Redeclaration && Previous.isSingleResult()) {
3795    const FunctionDecl *Def;
3796    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3797    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3798      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3799      Diag(Def->getLocation(), diag::note_previous_definition);
3800    }
3801  }
3802
3803  AddKnownFunctionAttributes(NewFD);
3804
3805  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3806    // If a function name is overloadable in C, then every function
3807    // with that name must be marked "overloadable".
3808    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3809      << Redeclaration << NewFD;
3810    if (!Previous.empty())
3811      Diag(Previous.getRepresentativeDecl()->getLocation(),
3812           diag::note_attribute_overloadable_prev_overload);
3813    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3814  }
3815
3816  if (NewFD->hasAttr<OverloadableAttr>() &&
3817      !NewFD->getType()->getAs<FunctionProtoType>()) {
3818    Diag(NewFD->getLocation(),
3819         diag::err_attribute_overloadable_no_prototype)
3820      << NewFD;
3821
3822    // Turn this into a variadic function with no parameters.
3823    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3824    QualType R = Context.getFunctionType(FT->getResultType(),
3825                                         0, 0, true, 0, false, false, 0, 0,
3826                                         FT->getExtInfo());
3827    NewFD->setType(R);
3828  }
3829
3830  // If there's a #pragma GCC visibility in scope, and this isn't a class
3831  // member, set the visibility of this function.
3832  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3833    AddPushedVisibilityAttribute(NewFD);
3834
3835  // If this is a locally-scoped extern C function, update the
3836  // map of such names.
3837  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3838      && !NewFD->isInvalidDecl())
3839    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3840
3841  // Set this FunctionDecl's range up to the right paren.
3842  NewFD->setLocEnd(D.getSourceRange().getEnd());
3843
3844  if (FunctionTemplate && NewFD->isInvalidDecl())
3845    FunctionTemplate->setInvalidDecl();
3846
3847  if (FunctionTemplate)
3848    return FunctionTemplate;
3849
3850  MarkUnusedFileScopedDecl(NewFD);
3851
3852  return NewFD;
3853}
3854
3855/// \brief Perform semantic checking of a new function declaration.
3856///
3857/// Performs semantic analysis of the new function declaration
3858/// NewFD. This routine performs all semantic checking that does not
3859/// require the actual declarator involved in the declaration, and is
3860/// used both for the declaration of functions as they are parsed
3861/// (called via ActOnDeclarator) and for the declaration of functions
3862/// that have been instantiated via C++ template instantiation (called
3863/// via InstantiateDecl).
3864///
3865/// \param IsExplicitSpecialiation whether this new function declaration is
3866/// an explicit specialization of the previous declaration.
3867///
3868/// This sets NewFD->isInvalidDecl() to true if there was an error.
3869void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3870                                    LookupResult &Previous,
3871                                    bool IsExplicitSpecialization,
3872                                    bool &Redeclaration,
3873                                    bool &OverloadableAttrRequired) {
3874  // If NewFD is already known erroneous, don't do any of this checking.
3875  if (NewFD->isInvalidDecl()) {
3876    // If this is a class member, mark the class invalid immediately.
3877    // This avoids some consistency errors later.
3878    if (isa<CXXMethodDecl>(NewFD))
3879      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3880
3881    return;
3882  }
3883
3884  if (NewFD->getResultType()->isVariablyModifiedType()) {
3885    // Functions returning a variably modified type violate C99 6.7.5.2p2
3886    // because all functions have linkage.
3887    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3888    return NewFD->setInvalidDecl();
3889  }
3890
3891  if (NewFD->isMain())
3892    CheckMain(NewFD);
3893
3894  // Check for a previous declaration of this name.
3895  if (Previous.empty() && NewFD->isExternC()) {
3896    // Since we did not find anything by this name and we're declaring
3897    // an extern "C" function, look for a non-visible extern "C"
3898    // declaration with the same name.
3899    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3900      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3901    if (Pos != LocallyScopedExternalDecls.end())
3902      Previous.addDecl(Pos->second);
3903  }
3904
3905  // Merge or overload the declaration with an existing declaration of
3906  // the same name, if appropriate.
3907  if (!Previous.empty()) {
3908    // Determine whether NewFD is an overload of PrevDecl or
3909    // a declaration that requires merging. If it's an overload,
3910    // there's no more work to do here; we'll just add the new
3911    // function to the scope.
3912
3913    NamedDecl *OldDecl = 0;
3914    if (!AllowOverloadingOfFunction(Previous, Context)) {
3915      Redeclaration = true;
3916      OldDecl = Previous.getFoundDecl();
3917    } else {
3918      if (!getLangOptions().CPlusPlus)
3919        OverloadableAttrRequired = true;
3920
3921      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3922                            /*NewIsUsingDecl*/ false)) {
3923      case Ovl_Match:
3924        Redeclaration = true;
3925        break;
3926
3927      case Ovl_NonFunction:
3928        Redeclaration = true;
3929        break;
3930
3931      case Ovl_Overload:
3932        Redeclaration = false;
3933        break;
3934      }
3935    }
3936
3937    if (Redeclaration) {
3938      // NewFD and OldDecl represent declarations that need to be
3939      // merged.
3940      if (MergeFunctionDecl(NewFD, OldDecl))
3941        return NewFD->setInvalidDecl();
3942
3943      Previous.clear();
3944      Previous.addDecl(OldDecl);
3945
3946      if (FunctionTemplateDecl *OldTemplateDecl
3947                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3948        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3949        FunctionTemplateDecl *NewTemplateDecl
3950          = NewFD->getDescribedFunctionTemplate();
3951        assert(NewTemplateDecl && "Template/non-template mismatch");
3952        if (CXXMethodDecl *Method
3953              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3954          Method->setAccess(OldTemplateDecl->getAccess());
3955          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3956        }
3957
3958        // If this is an explicit specialization of a member that is a function
3959        // template, mark it as a member specialization.
3960        if (IsExplicitSpecialization &&
3961            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3962          NewTemplateDecl->setMemberSpecialization();
3963          assert(OldTemplateDecl->isMemberSpecialization());
3964        }
3965      } else {
3966        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3967          NewFD->setAccess(OldDecl->getAccess());
3968        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3969      }
3970    }
3971  }
3972
3973  // Semantic checking for this function declaration (in isolation).
3974  if (getLangOptions().CPlusPlus) {
3975    // C++-specific checks.
3976    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3977      CheckConstructor(Constructor);
3978    } else if (CXXDestructorDecl *Destructor =
3979                dyn_cast<CXXDestructorDecl>(NewFD)) {
3980      CXXRecordDecl *Record = Destructor->getParent();
3981      QualType ClassType = Context.getTypeDeclType(Record);
3982
3983      // FIXME: Shouldn't we be able to perform this check even when the class
3984      // type is dependent? Both gcc and edg can handle that.
3985      if (!ClassType->isDependentType()) {
3986        DeclarationName Name
3987          = Context.DeclarationNames.getCXXDestructorName(
3988                                        Context.getCanonicalType(ClassType));
3989        if (NewFD->getDeclName() != Name) {
3990          Diag(NewFD->getLocation(), diag::err_destructor_name);
3991          return NewFD->setInvalidDecl();
3992        }
3993      }
3994    } else if (CXXConversionDecl *Conversion
3995               = dyn_cast<CXXConversionDecl>(NewFD)) {
3996      ActOnConversionDeclarator(Conversion);
3997    }
3998
3999    // Find any virtual functions that this function overrides.
4000    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4001      if (!Method->isFunctionTemplateSpecialization() &&
4002          !Method->getDescribedFunctionTemplate()) {
4003        if (AddOverriddenMethods(Method->getParent(), Method)) {
4004          // If the function was marked as "static", we have a problem.
4005          if (NewFD->getStorageClass() == SC_Static) {
4006            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4007              << NewFD->getDeclName();
4008            for (CXXMethodDecl::method_iterator
4009                      Overridden = Method->begin_overridden_methods(),
4010                   OverriddenEnd = Method->end_overridden_methods();
4011                 Overridden != OverriddenEnd;
4012                 ++Overridden) {
4013              Diag((*Overridden)->getLocation(),
4014                   diag::note_overridden_virtual_function);
4015            }
4016          }
4017        }
4018      }
4019    }
4020
4021    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4022    if (NewFD->isOverloadedOperator() &&
4023        CheckOverloadedOperatorDeclaration(NewFD))
4024      return NewFD->setInvalidDecl();
4025
4026    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4027    if (NewFD->getLiteralIdentifier() &&
4028        CheckLiteralOperatorDeclaration(NewFD))
4029      return NewFD->setInvalidDecl();
4030
4031    // In C++, check default arguments now that we have merged decls. Unless
4032    // the lexical context is the class, because in this case this is done
4033    // during delayed parsing anyway.
4034    if (!CurContext->isRecord())
4035      CheckCXXDefaultArguments(NewFD);
4036  }
4037}
4038
4039void Sema::CheckMain(FunctionDecl* FD) {
4040  // C++ [basic.start.main]p3:  A program that declares main to be inline
4041  //   or static is ill-formed.
4042  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4043  //   shall not appear in a declaration of main.
4044  // static main is not an error under C99, but we should warn about it.
4045  bool isInline = FD->isInlineSpecified();
4046  bool isStatic = FD->getStorageClass() == SC_Static;
4047  if (isInline || isStatic) {
4048    unsigned diagID = diag::warn_unusual_main_decl;
4049    if (isInline || getLangOptions().CPlusPlus)
4050      diagID = diag::err_unusual_main_decl;
4051
4052    int which = isStatic + (isInline << 1) - 1;
4053    Diag(FD->getLocation(), diagID) << which;
4054  }
4055
4056  QualType T = FD->getType();
4057  assert(T->isFunctionType() && "function decl is not of function type");
4058  const FunctionType* FT = T->getAs<FunctionType>();
4059
4060  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4061    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4062    TypeLoc TL = TSI->getTypeLoc();
4063    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4064                                          diag::err_main_returns_nonint);
4065    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4066      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4067                                        "int");
4068    }
4069    FD->setInvalidDecl(true);
4070  }
4071
4072  // Treat protoless main() as nullary.
4073  if (isa<FunctionNoProtoType>(FT)) return;
4074
4075  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4076  unsigned nparams = FTP->getNumArgs();
4077  assert(FD->getNumParams() == nparams);
4078
4079  bool HasExtraParameters = (nparams > 3);
4080
4081  // Darwin passes an undocumented fourth argument of type char**.  If
4082  // other platforms start sprouting these, the logic below will start
4083  // getting shifty.
4084  if (nparams == 4 &&
4085      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4086    HasExtraParameters = false;
4087
4088  if (HasExtraParameters) {
4089    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4090    FD->setInvalidDecl(true);
4091    nparams = 3;
4092  }
4093
4094  // FIXME: a lot of the following diagnostics would be improved
4095  // if we had some location information about types.
4096
4097  QualType CharPP =
4098    Context.getPointerType(Context.getPointerType(Context.CharTy));
4099  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4100
4101  for (unsigned i = 0; i < nparams; ++i) {
4102    QualType AT = FTP->getArgType(i);
4103
4104    bool mismatch = true;
4105
4106    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4107      mismatch = false;
4108    else if (Expected[i] == CharPP) {
4109      // As an extension, the following forms are okay:
4110      //   char const **
4111      //   char const * const *
4112      //   char * const *
4113
4114      QualifierCollector qs;
4115      const PointerType* PT;
4116      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4117          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4118          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4119        qs.removeConst();
4120        mismatch = !qs.empty();
4121      }
4122    }
4123
4124    if (mismatch) {
4125      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4126      // TODO: suggest replacing given type with expected type
4127      FD->setInvalidDecl(true);
4128    }
4129  }
4130
4131  if (nparams == 1 && !FD->isInvalidDecl()) {
4132    Diag(FD->getLocation(), diag::warn_main_one_arg);
4133  }
4134}
4135
4136bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4137  // FIXME: Need strict checking.  In C89, we need to check for
4138  // any assignment, increment, decrement, function-calls, or
4139  // commas outside of a sizeof.  In C99, it's the same list,
4140  // except that the aforementioned are allowed in unevaluated
4141  // expressions.  Everything else falls under the
4142  // "may accept other forms of constant expressions" exception.
4143  // (We never end up here for C++, so the constant expression
4144  // rules there don't matter.)
4145  if (Init->isConstantInitializer(Context, false))
4146    return false;
4147  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4148    << Init->getSourceRange();
4149  return true;
4150}
4151
4152void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4153  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4154}
4155
4156/// AddInitializerToDecl - Adds the initializer Init to the
4157/// declaration dcl. If DirectInit is true, this is C++ direct
4158/// initialization rather than copy initialization.
4159void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4160  // If there is no declaration, there was an error parsing it.  Just ignore
4161  // the initializer.
4162  if (RealDecl == 0)
4163    return;
4164
4165  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4166    // With declarators parsed the way they are, the parser cannot
4167    // distinguish between a normal initializer and a pure-specifier.
4168    // Thus this grotesque test.
4169    IntegerLiteral *IL;
4170    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4171        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4172      CheckPureMethod(Method, Init->getSourceRange());
4173    else {
4174      Diag(Method->getLocation(), diag::err_member_function_initialization)
4175        << Method->getDeclName() << Init->getSourceRange();
4176      Method->setInvalidDecl();
4177    }
4178    return;
4179  }
4180
4181  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4182  if (!VDecl) {
4183    if (getLangOptions().CPlusPlus &&
4184        RealDecl->getLexicalDeclContext()->isRecord() &&
4185        isa<NamedDecl>(RealDecl))
4186      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4187    else
4188      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4189    RealDecl->setInvalidDecl();
4190    return;
4191  }
4192
4193
4194
4195  // A definition must end up with a complete type, which means it must be
4196  // complete with the restriction that an array type might be completed by the
4197  // initializer; note that later code assumes this restriction.
4198  QualType BaseDeclType = VDecl->getType();
4199  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4200    BaseDeclType = Array->getElementType();
4201  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4202                          diag::err_typecheck_decl_incomplete_type)) {
4203    RealDecl->setInvalidDecl();
4204    return;
4205  }
4206
4207  // The variable can not have an abstract class type.
4208  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4209                             diag::err_abstract_type_in_decl,
4210                             AbstractVariableType))
4211    VDecl->setInvalidDecl();
4212
4213  const VarDecl *Def;
4214  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4215    Diag(VDecl->getLocation(), diag::err_redefinition)
4216      << VDecl->getDeclName();
4217    Diag(Def->getLocation(), diag::note_previous_definition);
4218    VDecl->setInvalidDecl();
4219    return;
4220  }
4221
4222  // C++ [class.static.data]p4
4223  //   If a static data member is of const integral or const
4224  //   enumeration type, its declaration in the class definition can
4225  //   specify a constant-initializer which shall be an integral
4226  //   constant expression (5.19). In that case, the member can appear
4227  //   in integral constant expressions. The member shall still be
4228  //   defined in a namespace scope if it is used in the program and the
4229  //   namespace scope definition shall not contain an initializer.
4230  //
4231  // We already performed a redefinition check above, but for static
4232  // data members we also need to check whether there was an in-class
4233  // declaration with an initializer.
4234  const VarDecl* PrevInit = 0;
4235  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4236    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4237    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4238    return;
4239  }
4240
4241  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4242    getCurFunction()->setHasBranchProtectedScope();
4243
4244  // Capture the variable that is being initialized and the style of
4245  // initialization.
4246  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4247
4248  // FIXME: Poor source location information.
4249  InitializationKind Kind
4250    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4251                                                   Init->getLocStart(),
4252                                                   Init->getLocEnd())
4253                : InitializationKind::CreateCopy(VDecl->getLocation(),
4254                                                 Init->getLocStart());
4255
4256  // Get the decls type and save a reference for later, since
4257  // CheckInitializerTypes may change it.
4258  QualType DclT = VDecl->getType(), SavT = DclT;
4259  if (VDecl->isLocalVarDecl()) {
4260    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4261      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4262      VDecl->setInvalidDecl();
4263    } else if (!VDecl->isInvalidDecl()) {
4264      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4265      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4266                                                MultiExprArg(*this, &Init, 1),
4267                                                &DclT);
4268      if (Result.isInvalid()) {
4269        VDecl->setInvalidDecl();
4270        return;
4271      }
4272
4273      Init = Result.takeAs<Expr>();
4274
4275      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4276      // Don't check invalid declarations to avoid emitting useless diagnostics.
4277      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4278        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4279          CheckForConstantInitializer(Init, DclT);
4280      }
4281    }
4282  } else if (VDecl->isStaticDataMember() &&
4283             VDecl->getLexicalDeclContext()->isRecord()) {
4284    // This is an in-class initialization for a static data member, e.g.,
4285    //
4286    // struct S {
4287    //   static const int value = 17;
4288    // };
4289
4290    // Try to perform the initialization regardless.
4291    if (!VDecl->isInvalidDecl()) {
4292      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4293      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4294                                          MultiExprArg(*this, &Init, 1),
4295                                          &DclT);
4296      if (Result.isInvalid()) {
4297        VDecl->setInvalidDecl();
4298        return;
4299      }
4300
4301      Init = Result.takeAs<Expr>();
4302    }
4303
4304    // C++ [class.mem]p4:
4305    //   A member-declarator can contain a constant-initializer only
4306    //   if it declares a static member (9.4) of const integral or
4307    //   const enumeration type, see 9.4.2.
4308    QualType T = VDecl->getType();
4309
4310    // Do nothing on dependent types.
4311    if (T->isDependentType()) {
4312
4313    // Require constness.
4314    } else if (!T.isConstQualified()) {
4315      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4316        << Init->getSourceRange();
4317      VDecl->setInvalidDecl();
4318
4319    // We allow integer constant expressions in all cases.
4320    } else if (T->isIntegralOrEnumerationType()) {
4321      if (!Init->isValueDependent()) {
4322        // Check whether the expression is a constant expression.
4323        llvm::APSInt Value;
4324        SourceLocation Loc;
4325        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4326          Diag(Loc, diag::err_in_class_initializer_non_constant)
4327            << Init->getSourceRange();
4328          VDecl->setInvalidDecl();
4329        }
4330      }
4331
4332    // We allow floating-point constants as an extension in C++03, and
4333    // C++0x has far more complicated rules that we don't really
4334    // implement fully.
4335    } else {
4336      bool Allowed = false;
4337      if (getLangOptions().CPlusPlus0x) {
4338        Allowed = T->isLiteralType();
4339      } else if (T->isFloatingType()) { // also permits complex, which is ok
4340        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4341          << T << Init->getSourceRange();
4342        Allowed = true;
4343      }
4344
4345      if (!Allowed) {
4346        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4347          << T << Init->getSourceRange();
4348        VDecl->setInvalidDecl();
4349
4350      // TODO: there are probably expressions that pass here that shouldn't.
4351      } else if (!Init->isValueDependent() &&
4352                 !Init->isConstantInitializer(Context, false)) {
4353        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4354          << Init->getSourceRange();
4355        VDecl->setInvalidDecl();
4356      }
4357    }
4358  } else if (VDecl->isFileVarDecl()) {
4359    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4360        (!getLangOptions().CPlusPlus ||
4361         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4362      Diag(VDecl->getLocation(), diag::warn_extern_init);
4363    if (!VDecl->isInvalidDecl()) {
4364      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4365      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4366                                                MultiExprArg(*this, &Init, 1),
4367                                                &DclT);
4368      if (Result.isInvalid()) {
4369        VDecl->setInvalidDecl();
4370        return;
4371      }
4372
4373      Init = Result.takeAs<Expr>();
4374    }
4375
4376    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4377    // Don't check invalid declarations to avoid emitting useless diagnostics.
4378    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4379      // C99 6.7.8p4. All file scoped initializers need to be constant.
4380      CheckForConstantInitializer(Init, DclT);
4381    }
4382  }
4383  // If the type changed, it means we had an incomplete type that was
4384  // completed by the initializer. For example:
4385  //   int ary[] = { 1, 3, 5 };
4386  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4387  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4388    VDecl->setType(DclT);
4389    Init->setType(DclT);
4390  }
4391
4392
4393  // If this variable is a local declaration with record type, make sure it
4394  // doesn't have a flexible member initialization.  We only support this as a
4395  // global/static definition.
4396  if (VDecl->hasLocalStorage())
4397    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4398      if (RT->getDecl()->hasFlexibleArrayMember()) {
4399        // Check whether the initializer tries to initialize the flexible
4400        // array member itself to anything other than an empty initializer list.
4401        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4402          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4403                                         RT->getDecl()->field_end()) - 1;
4404          if (Index < ILE->getNumInits() &&
4405              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4406                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4407            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4408            VDecl->setInvalidDecl();
4409          }
4410        }
4411      }
4412
4413  // Check any implicit conversions within the expression.
4414  CheckImplicitConversions(Init, VDecl->getLocation());
4415
4416  Init = MaybeCreateCXXExprWithTemporaries(Init);
4417  // Attach the initializer to the decl.
4418  VDecl->setInit(Init);
4419
4420  if (getLangOptions().CPlusPlus) {
4421    if (!VDecl->isInvalidDecl() &&
4422        !VDecl->getDeclContext()->isDependentContext() &&
4423        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4424        !Init->isConstantInitializer(Context,
4425                                     VDecl->getType()->isReferenceType()))
4426      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4427        << Init->getSourceRange();
4428
4429    // Make sure we mark the destructor as used if necessary.
4430    QualType InitType = VDecl->getType();
4431    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4432      InitType = Context.getBaseElementType(Array);
4433    if (const RecordType *Record = InitType->getAs<RecordType>())
4434      FinalizeVarWithDestructor(VDecl, Record);
4435  }
4436
4437  return;
4438}
4439
4440/// ActOnInitializerError - Given that there was an error parsing an
4441/// initializer for the given declaration, try to return to some form
4442/// of sanity.
4443void Sema::ActOnInitializerError(Decl *D) {
4444  // Our main concern here is re-establishing invariants like "a
4445  // variable's type is either dependent or complete".
4446  if (!D || D->isInvalidDecl()) return;
4447
4448  VarDecl *VD = dyn_cast<VarDecl>(D);
4449  if (!VD) return;
4450
4451  QualType Ty = VD->getType();
4452  if (Ty->isDependentType()) return;
4453
4454  // Require a complete type.
4455  if (RequireCompleteType(VD->getLocation(),
4456                          Context.getBaseElementType(Ty),
4457                          diag::err_typecheck_decl_incomplete_type)) {
4458    VD->setInvalidDecl();
4459    return;
4460  }
4461
4462  // Require an abstract type.
4463  if (RequireNonAbstractType(VD->getLocation(), Ty,
4464                             diag::err_abstract_type_in_decl,
4465                             AbstractVariableType)) {
4466    VD->setInvalidDecl();
4467    return;
4468  }
4469
4470  // Don't bother complaining about constructors or destructors,
4471  // though.
4472}
4473
4474void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4475                                  bool TypeContainsUndeducedAuto) {
4476  // If there is no declaration, there was an error parsing it. Just ignore it.
4477  if (RealDecl == 0)
4478    return;
4479
4480  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4481    QualType Type = Var->getType();
4482
4483    // C++0x [dcl.spec.auto]p3
4484    if (TypeContainsUndeducedAuto) {
4485      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4486        << Var->getDeclName() << Type;
4487      Var->setInvalidDecl();
4488      return;
4489    }
4490
4491    switch (Var->isThisDeclarationADefinition()) {
4492    case VarDecl::Definition:
4493      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4494        break;
4495
4496      // We have an out-of-line definition of a static data member
4497      // that has an in-class initializer, so we type-check this like
4498      // a declaration.
4499      //
4500      // Fall through
4501
4502    case VarDecl::DeclarationOnly:
4503      // It's only a declaration.
4504
4505      // Block scope. C99 6.7p7: If an identifier for an object is
4506      // declared with no linkage (C99 6.2.2p6), the type for the
4507      // object shall be complete.
4508      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4509          !Var->getLinkage() && !Var->isInvalidDecl() &&
4510          RequireCompleteType(Var->getLocation(), Type,
4511                              diag::err_typecheck_decl_incomplete_type))
4512        Var->setInvalidDecl();
4513
4514      // Make sure that the type is not abstract.
4515      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4516          RequireNonAbstractType(Var->getLocation(), Type,
4517                                 diag::err_abstract_type_in_decl,
4518                                 AbstractVariableType))
4519        Var->setInvalidDecl();
4520      return;
4521
4522    case VarDecl::TentativeDefinition:
4523      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4524      // object that has file scope without an initializer, and without a
4525      // storage-class specifier or with the storage-class specifier "static",
4526      // constitutes a tentative definition. Note: A tentative definition with
4527      // external linkage is valid (C99 6.2.2p5).
4528      if (!Var->isInvalidDecl()) {
4529        if (const IncompleteArrayType *ArrayT
4530                                    = Context.getAsIncompleteArrayType(Type)) {
4531          if (RequireCompleteType(Var->getLocation(),
4532                                  ArrayT->getElementType(),
4533                                  diag::err_illegal_decl_array_incomplete_type))
4534            Var->setInvalidDecl();
4535        } else if (Var->getStorageClass() == SC_Static) {
4536          // C99 6.9.2p3: If the declaration of an identifier for an object is
4537          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4538          // declared type shall not be an incomplete type.
4539          // NOTE: code such as the following
4540          //     static struct s;
4541          //     struct s { int a; };
4542          // is accepted by gcc. Hence here we issue a warning instead of
4543          // an error and we do not invalidate the static declaration.
4544          // NOTE: to avoid multiple warnings, only check the first declaration.
4545          if (Var->getPreviousDeclaration() == 0)
4546            RequireCompleteType(Var->getLocation(), Type,
4547                                diag::ext_typecheck_decl_incomplete_type);
4548        }
4549      }
4550
4551      // Record the tentative definition; we're done.
4552      if (!Var->isInvalidDecl())
4553        TentativeDefinitions.push_back(Var);
4554      return;
4555    }
4556
4557    // Provide a specific diagnostic for uninitialized variable
4558    // definitions with incomplete array type.
4559    if (Type->isIncompleteArrayType()) {
4560      Diag(Var->getLocation(),
4561           diag::err_typecheck_incomplete_array_needs_initializer);
4562      Var->setInvalidDecl();
4563      return;
4564    }
4565
4566    // Provide a specific diagnostic for uninitialized variable
4567    // definitions with reference type.
4568    if (Type->isReferenceType()) {
4569      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4570        << Var->getDeclName()
4571        << SourceRange(Var->getLocation(), Var->getLocation());
4572      Var->setInvalidDecl();
4573      return;
4574    }
4575
4576    // Do not attempt to type-check the default initializer for a
4577    // variable with dependent type.
4578    if (Type->isDependentType())
4579      return;
4580
4581    if (Var->isInvalidDecl())
4582      return;
4583
4584    if (RequireCompleteType(Var->getLocation(),
4585                            Context.getBaseElementType(Type),
4586                            diag::err_typecheck_decl_incomplete_type)) {
4587      Var->setInvalidDecl();
4588      return;
4589    }
4590
4591    // The variable can not have an abstract class type.
4592    if (RequireNonAbstractType(Var->getLocation(), Type,
4593                               diag::err_abstract_type_in_decl,
4594                               AbstractVariableType)) {
4595      Var->setInvalidDecl();
4596      return;
4597    }
4598
4599    const RecordType *Record
4600      = Context.getBaseElementType(Type)->getAs<RecordType>();
4601    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4602        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4603      // C++03 [dcl.init]p9:
4604      //   If no initializer is specified for an object, and the
4605      //   object is of (possibly cv-qualified) non-POD class type (or
4606      //   array thereof), the object shall be default-initialized; if
4607      //   the object is of const-qualified type, the underlying class
4608      //   type shall have a user-declared default
4609      //   constructor. Otherwise, if no initializer is specified for
4610      //   a non- static object, the object and its subobjects, if
4611      //   any, have an indeterminate initial value); if the object
4612      //   or any of its subobjects are of const-qualified type, the
4613      //   program is ill-formed.
4614      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4615    } else {
4616      // Check for jumps past the implicit initializer.  C++0x
4617      // clarifies that this applies to a "variable with automatic
4618      // storage duration", not a "local variable".
4619      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4620        getCurFunction()->setHasBranchProtectedScope();
4621
4622      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4623      InitializationKind Kind
4624        = InitializationKind::CreateDefault(Var->getLocation());
4625
4626      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4627      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4628                                        MultiExprArg(*this, 0, 0));
4629      if (Init.isInvalid())
4630        Var->setInvalidDecl();
4631      else if (Init.get()) {
4632        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4633
4634        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4635            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4636            !Var->getDeclContext()->isDependentContext() &&
4637            !Var->getInit()->isConstantInitializer(Context, false))
4638          Diag(Var->getLocation(), diag::warn_global_constructor);
4639      }
4640    }
4641
4642    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4643      FinalizeVarWithDestructor(Var, Record);
4644  }
4645}
4646
4647Sema::DeclGroupPtrTy
4648Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4649                              Decl **Group, unsigned NumDecls) {
4650  llvm::SmallVector<Decl*, 8> Decls;
4651
4652  if (DS.isTypeSpecOwned())
4653    Decls.push_back(DS.getRepAsDecl());
4654
4655  for (unsigned i = 0; i != NumDecls; ++i)
4656    if (Decl *D = Group[i])
4657      Decls.push_back(D);
4658
4659  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4660                                                   Decls.data(), Decls.size()));
4661}
4662
4663
4664/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4665/// to introduce parameters into function prototype scope.
4666Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4667  const DeclSpec &DS = D.getDeclSpec();
4668
4669  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4670  VarDecl::StorageClass StorageClass = SC_None;
4671  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4672  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4673    StorageClass = SC_Register;
4674    StorageClassAsWritten = SC_Register;
4675  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4676    Diag(DS.getStorageClassSpecLoc(),
4677         diag::err_invalid_storage_class_in_func_decl);
4678    D.getMutableDeclSpec().ClearStorageClassSpecs();
4679  }
4680
4681  if (D.getDeclSpec().isThreadSpecified())
4682    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4683
4684  DiagnoseFunctionSpecifiers(D);
4685
4686  // Check that there are no default arguments inside the type of this
4687  // parameter (C++ only).
4688  if (getLangOptions().CPlusPlus)
4689    CheckExtraCXXDefaultArguments(D);
4690
4691  TagDecl *OwnedDecl = 0;
4692  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4693  QualType parmDeclType = TInfo->getType();
4694
4695  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4696    // C++ [dcl.fct]p6:
4697    //   Types shall not be defined in return or parameter types.
4698    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4699      << Context.getTypeDeclType(OwnedDecl);
4700  }
4701
4702  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4703  IdentifierInfo *II = D.getIdentifier();
4704  if (II) {
4705    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4706                   ForRedeclaration);
4707    LookupName(R, S);
4708    if (R.isSingleResult()) {
4709      NamedDecl *PrevDecl = R.getFoundDecl();
4710      if (PrevDecl->isTemplateParameter()) {
4711        // Maybe we will complain about the shadowed template parameter.
4712        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4713        // Just pretend that we didn't see the previous declaration.
4714        PrevDecl = 0;
4715      } else if (S->isDeclScope(PrevDecl)) {
4716        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4717        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4718
4719        // Recover by removing the name
4720        II = 0;
4721        D.SetIdentifier(0, D.getIdentifierLoc());
4722        D.setInvalidType(true);
4723      }
4724    }
4725  }
4726
4727  // Temporarily put parameter variables in the translation unit, not
4728  // the enclosing context.  This prevents them from accidentally
4729  // looking like class members in C++.
4730  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4731                                    TInfo, parmDeclType, II,
4732                                    D.getIdentifierLoc(),
4733                                    StorageClass, StorageClassAsWritten);
4734
4735  if (D.isInvalidType())
4736    New->setInvalidDecl();
4737
4738  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4739  if (D.getCXXScopeSpec().isSet()) {
4740    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4741      << D.getCXXScopeSpec().getRange();
4742    New->setInvalidDecl();
4743  }
4744
4745  // Add the parameter declaration into this scope.
4746  S->AddDecl(New);
4747  if (II)
4748    IdResolver.AddDecl(New);
4749
4750  ProcessDeclAttributes(S, New, D);
4751
4752  if (New->hasAttr<BlocksAttr>()) {
4753    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4754  }
4755  return New;
4756}
4757
4758/// \brief Synthesizes a variable for a parameter arising from a
4759/// typedef.
4760ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4761                                              SourceLocation Loc,
4762                                              QualType T) {
4763  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4764                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4765                                           SC_None, SC_None, 0);
4766  Param->setImplicit();
4767  return Param;
4768}
4769
4770void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4771                                    ParmVarDecl * const *ParamEnd) {
4772  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4773        Diagnostic::Ignored)
4774    return;
4775
4776  // Don't diagnose unused-parameter errors in template instantiations; we
4777  // will already have done so in the template itself.
4778  if (!ActiveTemplateInstantiations.empty())
4779    return;
4780
4781  for (; Param != ParamEnd; ++Param) {
4782    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4783        !(*Param)->hasAttr<UnusedAttr>()) {
4784      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4785        << (*Param)->getDeclName();
4786    }
4787  }
4788}
4789
4790ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4791                                  TypeSourceInfo *TSInfo, QualType T,
4792                                  IdentifierInfo *Name,
4793                                  SourceLocation NameLoc,
4794                                  VarDecl::StorageClass StorageClass,
4795                                  VarDecl::StorageClass StorageClassAsWritten) {
4796  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4797                                         adjustParameterType(T), TSInfo,
4798                                         StorageClass, StorageClassAsWritten,
4799                                         0);
4800
4801  // Parameters can not be abstract class types.
4802  // For record types, this is done by the AbstractClassUsageDiagnoser once
4803  // the class has been completely parsed.
4804  if (!CurContext->isRecord() &&
4805      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4806                             AbstractParamType))
4807    New->setInvalidDecl();
4808
4809  // Parameter declarators cannot be interface types. All ObjC objects are
4810  // passed by reference.
4811  if (T->isObjCObjectType()) {
4812    Diag(NameLoc,
4813         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4814    New->setInvalidDecl();
4815  }
4816
4817  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4818  // duration shall not be qualified by an address-space qualifier."
4819  // Since all parameters have automatic store duration, they can not have
4820  // an address space.
4821  if (T.getAddressSpace() != 0) {
4822    Diag(NameLoc, diag::err_arg_with_address_space);
4823    New->setInvalidDecl();
4824  }
4825
4826  return New;
4827}
4828
4829void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4830                                           SourceLocation LocAfterDecls) {
4831  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4832         "Not a function declarator!");
4833  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4834
4835  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4836  // for a K&R function.
4837  if (!FTI.hasPrototype) {
4838    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4839      --i;
4840      if (FTI.ArgInfo[i].Param == 0) {
4841        llvm::SmallString<256> Code;
4842        llvm::raw_svector_ostream(Code) << "  int "
4843                                        << FTI.ArgInfo[i].Ident->getName()
4844                                        << ";\n";
4845        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4846          << FTI.ArgInfo[i].Ident
4847          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4848
4849        // Implicitly declare the argument as type 'int' for lack of a better
4850        // type.
4851        DeclSpec DS;
4852        const char* PrevSpec; // unused
4853        unsigned DiagID; // unused
4854        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4855                           PrevSpec, DiagID);
4856        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4857        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4858        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4859      }
4860    }
4861  }
4862}
4863
4864Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4865                                         Declarator &D) {
4866  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4867  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4868         "Not a function declarator!");
4869  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4870
4871  if (FTI.hasPrototype) {
4872    // FIXME: Diagnose arguments without names in C.
4873  }
4874
4875  Scope *ParentScope = FnBodyScope->getParent();
4876
4877  Decl *DP = HandleDeclarator(ParentScope, D,
4878                              MultiTemplateParamsArg(*this),
4879                              /*IsFunctionDefinition=*/true);
4880  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4881}
4882
4883static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4884  // Don't warn about invalid declarations.
4885  if (FD->isInvalidDecl())
4886    return false;
4887
4888  // Or declarations that aren't global.
4889  if (!FD->isGlobal())
4890    return false;
4891
4892  // Don't warn about C++ member functions.
4893  if (isa<CXXMethodDecl>(FD))
4894    return false;
4895
4896  // Don't warn about 'main'.
4897  if (FD->isMain())
4898    return false;
4899
4900  // Don't warn about inline functions.
4901  if (FD->isInlineSpecified())
4902    return false;
4903
4904  // Don't warn about function templates.
4905  if (FD->getDescribedFunctionTemplate())
4906    return false;
4907
4908  // Don't warn about function template specializations.
4909  if (FD->isFunctionTemplateSpecialization())
4910    return false;
4911
4912  bool MissingPrototype = true;
4913  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4914       Prev; Prev = Prev->getPreviousDeclaration()) {
4915    // Ignore any declarations that occur in function or method
4916    // scope, because they aren't visible from the header.
4917    if (Prev->getDeclContext()->isFunctionOrMethod())
4918      continue;
4919
4920    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4921    break;
4922  }
4923
4924  return MissingPrototype;
4925}
4926
4927Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4928  // Clear the last template instantiation error context.
4929  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4930
4931  if (!D)
4932    return D;
4933  FunctionDecl *FD = 0;
4934
4935  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4936    FD = FunTmpl->getTemplatedDecl();
4937  else
4938    FD = cast<FunctionDecl>(D);
4939
4940  // Enter a new function scope
4941  PushFunctionScope();
4942
4943  // See if this is a redefinition.
4944  // But don't complain if we're in GNU89 mode and the previous definition
4945  // was an extern inline function.
4946  const FunctionDecl *Definition;
4947  if (FD->hasBody(Definition) &&
4948      !canRedefineFunction(Definition, getLangOptions())) {
4949    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4950        Definition->getStorageClass() == SC_Extern)
4951      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4952        << FD->getDeclName() << getLangOptions().CPlusPlus;
4953    else
4954      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4955    Diag(Definition->getLocation(), diag::note_previous_definition);
4956  }
4957
4958  // Builtin functions cannot be defined.
4959  if (unsigned BuiltinID = FD->getBuiltinID()) {
4960    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4961      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4962      FD->setInvalidDecl();
4963    }
4964  }
4965
4966  // The return type of a function definition must be complete
4967  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4968  QualType ResultType = FD->getResultType();
4969  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4970      !FD->isInvalidDecl() &&
4971      RequireCompleteType(FD->getLocation(), ResultType,
4972                          diag::err_func_def_incomplete_result))
4973    FD->setInvalidDecl();
4974
4975  // GNU warning -Wmissing-prototypes:
4976  //   Warn if a global function is defined without a previous
4977  //   prototype declaration. This warning is issued even if the
4978  //   definition itself provides a prototype. The aim is to detect
4979  //   global functions that fail to be declared in header files.
4980  if (ShouldWarnAboutMissingPrototype(FD))
4981    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4982
4983  if (FnBodyScope)
4984    PushDeclContext(FnBodyScope, FD);
4985
4986  // Check the validity of our function parameters
4987  CheckParmsForFunctionDef(FD);
4988
4989  bool ShouldCheckShadow =
4990    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4991
4992  // Introduce our parameters into the function scope
4993  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4994    ParmVarDecl *Param = FD->getParamDecl(p);
4995    Param->setOwningFunction(FD);
4996
4997    // If this has an identifier, add it to the scope stack.
4998    if (Param->getIdentifier() && FnBodyScope) {
4999      if (ShouldCheckShadow)
5000        CheckShadow(FnBodyScope, Param);
5001
5002      PushOnScopeChains(Param, FnBodyScope);
5003    }
5004  }
5005
5006  // Checking attributes of current function definition
5007  // dllimport attribute.
5008  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5009  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5010    // dllimport attribute cannot be directly applied to definition.
5011    if (!DA->isInherited()) {
5012      Diag(FD->getLocation(),
5013           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5014        << "dllimport";
5015      FD->setInvalidDecl();
5016      return FD;
5017    }
5018
5019    // Visual C++ appears to not think this is an issue, so only issue
5020    // a warning when Microsoft extensions are disabled.
5021    if (!LangOpts.Microsoft) {
5022      // If a symbol previously declared dllimport is later defined, the
5023      // attribute is ignored in subsequent references, and a warning is
5024      // emitted.
5025      Diag(FD->getLocation(),
5026           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5027        << FD->getName() << "dllimport";
5028    }
5029  }
5030  return FD;
5031}
5032
5033/// \brief Given the set of return statements within a function body,
5034/// compute the variables that are subject to the named return value
5035/// optimization.
5036///
5037/// Each of the variables that is subject to the named return value
5038/// optimization will be marked as NRVO variables in the AST, and any
5039/// return statement that has a marked NRVO variable as its NRVO candidate can
5040/// use the named return value optimization.
5041///
5042/// This function applies a very simplistic algorithm for NRVO: if every return
5043/// statement in the function has the same NRVO candidate, that candidate is
5044/// the NRVO variable.
5045///
5046/// FIXME: Employ a smarter algorithm that accounts for multiple return
5047/// statements and the lifetimes of the NRVO candidates. We should be able to
5048/// find a maximal set of NRVO variables.
5049static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5050  ReturnStmt **Returns = Scope->Returns.data();
5051
5052  const VarDecl *NRVOCandidate = 0;
5053  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5054    if (!Returns[I]->getNRVOCandidate())
5055      return;
5056
5057    if (!NRVOCandidate)
5058      NRVOCandidate = Returns[I]->getNRVOCandidate();
5059    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5060      return;
5061  }
5062
5063  if (NRVOCandidate)
5064    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5065}
5066
5067Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5068  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5069}
5070
5071Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5072                                    bool IsInstantiation) {
5073  FunctionDecl *FD = 0;
5074  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5075  if (FunTmpl)
5076    FD = FunTmpl->getTemplatedDecl();
5077  else
5078    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5079
5080  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5081
5082  if (FD) {
5083    FD->setBody(Body);
5084    if (FD->isMain()) {
5085      // C and C++ allow for main to automagically return 0.
5086      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5087      FD->setHasImplicitReturnZero(true);
5088      WP.disableCheckFallThrough();
5089    }
5090
5091    if (!FD->isInvalidDecl()) {
5092      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5093
5094      // If this is a constructor, we need a vtable.
5095      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5096        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5097
5098      ComputeNRVO(Body, getCurFunction());
5099    }
5100
5101    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5102  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5103    assert(MD == getCurMethodDecl() && "Method parsing confused");
5104    MD->setBody(Body);
5105    MD->setEndLoc(Body->getLocEnd());
5106    if (!MD->isInvalidDecl())
5107      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5108  } else {
5109    return 0;
5110  }
5111
5112  // Verify and clean out per-function state.
5113
5114  // Check goto/label use.
5115  FunctionScopeInfo *CurFn = getCurFunction();
5116  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5117         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5118    LabelStmt *L = I->second;
5119
5120    // Verify that we have no forward references left.  If so, there was a goto
5121    // or address of a label taken, but no definition of it.  Label fwd
5122    // definitions are indicated with a null substmt.
5123    if (L->getSubStmt() != 0) {
5124      if (!L->isUsed())
5125        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5126      continue;
5127    }
5128
5129    // Emit error.
5130    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5131
5132    // At this point, we have gotos that use the bogus label.  Stitch it into
5133    // the function body so that they aren't leaked and that the AST is well
5134    // formed.
5135    if (Body == 0) {
5136      // The whole function wasn't parsed correctly.
5137      continue;
5138    }
5139
5140    // Otherwise, the body is valid: we want to stitch the label decl into the
5141    // function somewhere so that it is properly owned and so that the goto
5142    // has a valid target.  Do this by creating a new compound stmt with the
5143    // label in it.
5144
5145    // Give the label a sub-statement.
5146    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5147
5148    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5149                               cast<CXXTryStmt>(Body)->getTryBlock() :
5150                               cast<CompoundStmt>(Body);
5151    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5152                                          Compound->body_end());
5153    Elements.push_back(L);
5154    Compound->setStmts(Context, Elements.data(), Elements.size());
5155  }
5156
5157  if (Body) {
5158    // C++ constructors that have function-try-blocks can't have return
5159    // statements in the handlers of that block. (C++ [except.handle]p14)
5160    // Verify this.
5161    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5162      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5163
5164    // Verify that that gotos and switch cases don't jump into scopes illegally.
5165    // Verify that that gotos and switch cases don't jump into scopes illegally.
5166    if (getCurFunction()->NeedsScopeChecking() &&
5167        !dcl->isInvalidDecl() &&
5168        !hasAnyErrorsInThisFunction())
5169      DiagnoseInvalidJumps(Body);
5170
5171    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5172      if (!Destructor->getParent()->isDependentType())
5173        CheckDestructor(Destructor);
5174
5175      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5176                                             Destructor->getParent());
5177    }
5178
5179    // If any errors have occurred, clear out any temporaries that may have
5180    // been leftover. This ensures that these temporaries won't be picked up for
5181    // deletion in some later function.
5182    if (PP.getDiagnostics().hasErrorOccurred())
5183      ExprTemporaries.clear();
5184    else if (!isa<FunctionTemplateDecl>(dcl)) {
5185      // Since the body is valid, issue any analysis-based warnings that are
5186      // enabled.
5187      QualType ResultType;
5188      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5189        AnalysisWarnings.IssueWarnings(WP, FD);
5190      } else {
5191        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5192        AnalysisWarnings.IssueWarnings(WP, MD);
5193      }
5194    }
5195
5196    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5197  }
5198
5199  if (!IsInstantiation)
5200    PopDeclContext();
5201
5202  PopFunctionOrBlockScope();
5203
5204  // If any errors have occurred, clear out any temporaries that may have
5205  // been leftover. This ensures that these temporaries won't be picked up for
5206  // deletion in some later function.
5207  if (getDiagnostics().hasErrorOccurred())
5208    ExprTemporaries.clear();
5209
5210  return dcl;
5211}
5212
5213/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5214/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5215NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5216                                          IdentifierInfo &II, Scope *S) {
5217  // Before we produce a declaration for an implicitly defined
5218  // function, see whether there was a locally-scoped declaration of
5219  // this name as a function or variable. If so, use that
5220  // (non-visible) declaration, and complain about it.
5221  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5222    = LocallyScopedExternalDecls.find(&II);
5223  if (Pos != LocallyScopedExternalDecls.end()) {
5224    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5225    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5226    return Pos->second;
5227  }
5228
5229  // Extension in C99.  Legal in C90, but warn about it.
5230  if (II.getName().startswith("__builtin_"))
5231    Diag(Loc, diag::warn_builtin_unknown) << &II;
5232  else if (getLangOptions().C99)
5233    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5234  else
5235    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5236
5237  // Set a Declarator for the implicit definition: int foo();
5238  const char *Dummy;
5239  DeclSpec DS;
5240  unsigned DiagID;
5241  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5242  Error = Error; // Silence warning.
5243  assert(!Error && "Error setting up implicit decl!");
5244  Declarator D(DS, Declarator::BlockContext);
5245  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5246                                             0, 0, false, SourceLocation(),
5247                                             false, 0,0,0, Loc, Loc, D),
5248                SourceLocation());
5249  D.SetIdentifier(&II, Loc);
5250
5251  // Insert this function into translation-unit scope.
5252
5253  DeclContext *PrevDC = CurContext;
5254  CurContext = Context.getTranslationUnitDecl();
5255
5256  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5257  FD->setImplicit();
5258
5259  CurContext = PrevDC;
5260
5261  AddKnownFunctionAttributes(FD);
5262
5263  return FD;
5264}
5265
5266/// \brief Adds any function attributes that we know a priori based on
5267/// the declaration of this function.
5268///
5269/// These attributes can apply both to implicitly-declared builtins
5270/// (like __builtin___printf_chk) or to library-declared functions
5271/// like NSLog or printf.
5272void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5273  if (FD->isInvalidDecl())
5274    return;
5275
5276  // If this is a built-in function, map its builtin attributes to
5277  // actual attributes.
5278  if (unsigned BuiltinID = FD->getBuiltinID()) {
5279    // Handle printf-formatting attributes.
5280    unsigned FormatIdx;
5281    bool HasVAListArg;
5282    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5283      if (!FD->getAttr<FormatAttr>())
5284        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5285                                                "printf", FormatIdx+1,
5286                                               HasVAListArg ? 0 : FormatIdx+2));
5287    }
5288    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5289                                             HasVAListArg)) {
5290     if (!FD->getAttr<FormatAttr>())
5291       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5292                                              "scanf", FormatIdx+1,
5293                                              HasVAListArg ? 0 : FormatIdx+2));
5294    }
5295
5296    // Mark const if we don't care about errno and that is the only
5297    // thing preventing the function from being const. This allows
5298    // IRgen to use LLVM intrinsics for such functions.
5299    if (!getLangOptions().MathErrno &&
5300        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5301      if (!FD->getAttr<ConstAttr>())
5302        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5303    }
5304
5305    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5306      FD->setType(Context.getNoReturnType(FD->getType()));
5307    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5308      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5309    if (Context.BuiltinInfo.isConst(BuiltinID))
5310      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5311  }
5312
5313  IdentifierInfo *Name = FD->getIdentifier();
5314  if (!Name)
5315    return;
5316  if ((!getLangOptions().CPlusPlus &&
5317       FD->getDeclContext()->isTranslationUnit()) ||
5318      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5319       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5320       LinkageSpecDecl::lang_c)) {
5321    // Okay: this could be a libc/libm/Objective-C function we know
5322    // about.
5323  } else
5324    return;
5325
5326  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5327    // FIXME: NSLog and NSLogv should be target specific
5328    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5329      // FIXME: We known better than our headers.
5330      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5331    } else
5332      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5333                                             "printf", 1,
5334                                             Name->isStr("NSLogv") ? 0 : 2));
5335  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5336    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5337    // target-specific builtins, perhaps?
5338    if (!FD->getAttr<FormatAttr>())
5339      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5340                                             "printf", 2,
5341                                             Name->isStr("vasprintf") ? 0 : 3));
5342  }
5343}
5344
5345TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5346                                    TypeSourceInfo *TInfo) {
5347  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5348  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5349
5350  if (!TInfo) {
5351    assert(D.isInvalidType() && "no declarator info for valid type");
5352    TInfo = Context.getTrivialTypeSourceInfo(T);
5353  }
5354
5355  // Scope manipulation handled by caller.
5356  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5357                                           D.getIdentifierLoc(),
5358                                           D.getIdentifier(),
5359                                           TInfo);
5360
5361  if (const TagType *TT = T->getAs<TagType>()) {
5362    TagDecl *TD = TT->getDecl();
5363
5364    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5365    // keep track of the TypedefDecl.
5366    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5367      TD->setTypedefForAnonDecl(NewTD);
5368  }
5369
5370  if (D.isInvalidType())
5371    NewTD->setInvalidDecl();
5372  return NewTD;
5373}
5374
5375
5376/// \brief Determine whether a tag with a given kind is acceptable
5377/// as a redeclaration of the given tag declaration.
5378///
5379/// \returns true if the new tag kind is acceptable, false otherwise.
5380bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5381                                        TagTypeKind NewTag,
5382                                        SourceLocation NewTagLoc,
5383                                        const IdentifierInfo &Name) {
5384  // C++ [dcl.type.elab]p3:
5385  //   The class-key or enum keyword present in the
5386  //   elaborated-type-specifier shall agree in kind with the
5387  //   declaration to which the name in the elaborated-type-specifier
5388  //   refers. This rule also applies to the form of
5389  //   elaborated-type-specifier that declares a class-name or
5390  //   friend class since it can be construed as referring to the
5391  //   definition of the class. Thus, in any
5392  //   elaborated-type-specifier, the enum keyword shall be used to
5393  //   refer to an enumeration (7.2), the union class-key shall be
5394  //   used to refer to a union (clause 9), and either the class or
5395  //   struct class-key shall be used to refer to a class (clause 9)
5396  //   declared using the class or struct class-key.
5397  TagTypeKind OldTag = Previous->getTagKind();
5398  if (OldTag == NewTag)
5399    return true;
5400
5401  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5402      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5403    // Warn about the struct/class tag mismatch.
5404    bool isTemplate = false;
5405    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5406      isTemplate = Record->getDescribedClassTemplate();
5407
5408    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5409      << (NewTag == TTK_Class)
5410      << isTemplate << &Name
5411      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5412                              OldTag == TTK_Class? "class" : "struct");
5413    Diag(Previous->getLocation(), diag::note_previous_use);
5414    return true;
5415  }
5416  return false;
5417}
5418
5419/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5420/// former case, Name will be non-null.  In the later case, Name will be null.
5421/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5422/// reference/declaration/definition of a tag.
5423Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5424                     SourceLocation KWLoc, CXXScopeSpec &SS,
5425                     IdentifierInfo *Name, SourceLocation NameLoc,
5426                     AttributeList *Attr, AccessSpecifier AS,
5427                     MultiTemplateParamsArg TemplateParameterLists,
5428                     bool &OwnedDecl, bool &IsDependent, bool ScopedEnum,
5429                     TypeResult UnderlyingType) {
5430  // If this is not a definition, it must have a name.
5431  assert((Name != 0 || TUK == TUK_Definition) &&
5432         "Nameless record must be a definition!");
5433
5434  OwnedDecl = false;
5435  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5436
5437  // FIXME: Check explicit specializations more carefully.
5438  bool isExplicitSpecialization = false;
5439  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5440  bool Invalid = false;
5441  if (TUK != TUK_Reference) {
5442    if (TemplateParameterList *TemplateParams
5443          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5444                        (TemplateParameterList**)TemplateParameterLists.get(),
5445                                              TemplateParameterLists.size(),
5446                                                    TUK == TUK_Friend,
5447                                                    isExplicitSpecialization,
5448                                                    Invalid)) {
5449      // All but one template parameter lists have been matching.
5450      --NumMatchedTemplateParamLists;
5451
5452      if (TemplateParams->size() > 0) {
5453        // This is a declaration or definition of a class template (which may
5454        // be a member of another template).
5455        if (Invalid)
5456          return 0;
5457
5458        OwnedDecl = false;
5459        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5460                                               SS, Name, NameLoc, Attr,
5461                                               TemplateParams,
5462                                               AS);
5463        TemplateParameterLists.release();
5464        return Result.get();
5465      } else {
5466        // The "template<>" header is extraneous.
5467        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5468          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5469        isExplicitSpecialization = true;
5470      }
5471    }
5472  }
5473
5474  // Figure out the underlying type if this a enum declaration. We need to do
5475  // this early, because it's needed to detect if this is an incompatible
5476  // redeclaration.
5477  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5478
5479  if (Kind == TTK_Enum) {
5480    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5481      // No underlying type explicitly specified, or we failed to parse the
5482      // type, default to int.
5483      EnumUnderlying = Context.IntTy.getTypePtr();
5484    else if (UnderlyingType.get()) {
5485      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5486      // integral type; any cv-qualification is ignored.
5487      TypeSourceInfo *TI = 0;
5488      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5489      EnumUnderlying = TI;
5490
5491      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5492
5493      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5494        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5495          << T;
5496        // Recover by falling back to int.
5497        EnumUnderlying = Context.IntTy.getTypePtr();
5498      }
5499    }
5500  }
5501
5502  DeclContext *SearchDC = CurContext;
5503  DeclContext *DC = CurContext;
5504  bool isStdBadAlloc = false;
5505
5506  RedeclarationKind Redecl = ForRedeclaration;
5507  if (TUK == TUK_Friend || TUK == TUK_Reference)
5508    Redecl = NotForRedeclaration;
5509
5510  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5511
5512  if (Name && SS.isNotEmpty()) {
5513    // We have a nested-name tag ('struct foo::bar').
5514
5515    // Check for invalid 'foo::'.
5516    if (SS.isInvalid()) {
5517      Name = 0;
5518      goto CreateNewDecl;
5519    }
5520
5521    // If this is a friend or a reference to a class in a dependent
5522    // context, don't try to make a decl for it.
5523    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5524      DC = computeDeclContext(SS, false);
5525      if (!DC) {
5526        IsDependent = true;
5527        return 0;
5528      }
5529    } else {
5530      DC = computeDeclContext(SS, true);
5531      if (!DC) {
5532        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5533          << SS.getRange();
5534        return 0;
5535      }
5536    }
5537
5538    if (RequireCompleteDeclContext(SS, DC))
5539      return 0;
5540
5541    SearchDC = DC;
5542    // Look-up name inside 'foo::'.
5543    LookupQualifiedName(Previous, DC);
5544
5545    if (Previous.isAmbiguous())
5546      return 0;
5547
5548    if (Previous.empty()) {
5549      // Name lookup did not find anything. However, if the
5550      // nested-name-specifier refers to the current instantiation,
5551      // and that current instantiation has any dependent base
5552      // classes, we might find something at instantiation time: treat
5553      // this as a dependent elaborated-type-specifier.
5554      if (Previous.wasNotFoundInCurrentInstantiation()) {
5555        IsDependent = true;
5556        return 0;
5557      }
5558
5559      // A tag 'foo::bar' must already exist.
5560      Diag(NameLoc, diag::err_not_tag_in_scope)
5561        << Kind << Name << DC << SS.getRange();
5562      Name = 0;
5563      Invalid = true;
5564      goto CreateNewDecl;
5565    }
5566  } else if (Name) {
5567    // If this is a named struct, check to see if there was a previous forward
5568    // declaration or definition.
5569    // FIXME: We're looking into outer scopes here, even when we
5570    // shouldn't be. Doing so can result in ambiguities that we
5571    // shouldn't be diagnosing.
5572    LookupName(Previous, S);
5573
5574    // Note:  there used to be some attempt at recovery here.
5575    if (Previous.isAmbiguous())
5576      return 0;
5577
5578    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5579      // FIXME: This makes sure that we ignore the contexts associated
5580      // with C structs, unions, and enums when looking for a matching
5581      // tag declaration or definition. See the similar lookup tweak
5582      // in Sema::LookupName; is there a better way to deal with this?
5583      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5584        SearchDC = SearchDC->getParent();
5585    }
5586  } else if (S->isFunctionPrototypeScope()) {
5587    // If this is an enum declaration in function prototype scope, set its
5588    // initial context to the translation unit.
5589    SearchDC = Context.getTranslationUnitDecl();
5590  }
5591
5592  if (Previous.isSingleResult() &&
5593      Previous.getFoundDecl()->isTemplateParameter()) {
5594    // Maybe we will complain about the shadowed template parameter.
5595    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5596    // Just pretend that we didn't see the previous declaration.
5597    Previous.clear();
5598  }
5599
5600  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5601      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5602    // This is a declaration of or a reference to "std::bad_alloc".
5603    isStdBadAlloc = true;
5604
5605    if (Previous.empty() && StdBadAlloc) {
5606      // std::bad_alloc has been implicitly declared (but made invisible to
5607      // name lookup). Fill in this implicit declaration as the previous
5608      // declaration, so that the declarations get chained appropriately.
5609      Previous.addDecl(getStdBadAlloc());
5610    }
5611  }
5612
5613  // If we didn't find a previous declaration, and this is a reference
5614  // (or friend reference), move to the correct scope.  In C++, we
5615  // also need to do a redeclaration lookup there, just in case
5616  // there's a shadow friend decl.
5617  if (Name && Previous.empty() &&
5618      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5619    if (Invalid) goto CreateNewDecl;
5620    assert(SS.isEmpty());
5621
5622    if (TUK == TUK_Reference) {
5623      // C++ [basic.scope.pdecl]p5:
5624      //   -- for an elaborated-type-specifier of the form
5625      //
5626      //          class-key identifier
5627      //
5628      //      if the elaborated-type-specifier is used in the
5629      //      decl-specifier-seq or parameter-declaration-clause of a
5630      //      function defined in namespace scope, the identifier is
5631      //      declared as a class-name in the namespace that contains
5632      //      the declaration; otherwise, except as a friend
5633      //      declaration, the identifier is declared in the smallest
5634      //      non-class, non-function-prototype scope that contains the
5635      //      declaration.
5636      //
5637      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5638      // C structs and unions.
5639      //
5640      // It is an error in C++ to declare (rather than define) an enum
5641      // type, including via an elaborated type specifier.  We'll
5642      // diagnose that later; for now, declare the enum in the same
5643      // scope as we would have picked for any other tag type.
5644      //
5645      // GNU C also supports this behavior as part of its incomplete
5646      // enum types extension, while GNU C++ does not.
5647      //
5648      // Find the context where we'll be declaring the tag.
5649      // FIXME: We would like to maintain the current DeclContext as the
5650      // lexical context,
5651      while (SearchDC->isRecord())
5652        SearchDC = SearchDC->getParent();
5653
5654      // Find the scope where we'll be declaring the tag.
5655      while (S->isClassScope() ||
5656             (getLangOptions().CPlusPlus &&
5657              S->isFunctionPrototypeScope()) ||
5658             ((S->getFlags() & Scope::DeclScope) == 0) ||
5659             (S->getEntity() &&
5660              ((DeclContext *)S->getEntity())->isTransparentContext()))
5661        S = S->getParent();
5662    } else {
5663      assert(TUK == TUK_Friend);
5664      // C++ [namespace.memdef]p3:
5665      //   If a friend declaration in a non-local class first declares a
5666      //   class or function, the friend class or function is a member of
5667      //   the innermost enclosing namespace.
5668      SearchDC = SearchDC->getEnclosingNamespaceContext();
5669    }
5670
5671    // In C++, we need to do a redeclaration lookup to properly
5672    // diagnose some problems.
5673    if (getLangOptions().CPlusPlus) {
5674      Previous.setRedeclarationKind(ForRedeclaration);
5675      LookupQualifiedName(Previous, SearchDC);
5676    }
5677  }
5678
5679  if (!Previous.empty()) {
5680    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5681
5682    // It's okay to have a tag decl in the same scope as a typedef
5683    // which hides a tag decl in the same scope.  Finding this
5684    // insanity with a redeclaration lookup can only actually happen
5685    // in C++.
5686    //
5687    // This is also okay for elaborated-type-specifiers, which is
5688    // technically forbidden by the current standard but which is
5689    // okay according to the likely resolution of an open issue;
5690    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5691    if (getLangOptions().CPlusPlus) {
5692      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5693        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5694          TagDecl *Tag = TT->getDecl();
5695          if (Tag->getDeclName() == Name &&
5696              Tag->getDeclContext()->getRedeclContext()
5697                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5698            PrevDecl = Tag;
5699            Previous.clear();
5700            Previous.addDecl(Tag);
5701            Previous.resolveKind();
5702          }
5703        }
5704      }
5705    }
5706
5707    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5708      // If this is a use of a previous tag, or if the tag is already declared
5709      // in the same scope (so that the definition/declaration completes or
5710      // rementions the tag), reuse the decl.
5711      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5712          isDeclInScope(PrevDecl, SearchDC, S)) {
5713        // Make sure that this wasn't declared as an enum and now used as a
5714        // struct or something similar.
5715        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5716          bool SafeToContinue
5717            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5718               Kind != TTK_Enum);
5719          if (SafeToContinue)
5720            Diag(KWLoc, diag::err_use_with_wrong_tag)
5721              << Name
5722              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5723                                              PrevTagDecl->getKindName());
5724          else
5725            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5726          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5727
5728          if (SafeToContinue)
5729            Kind = PrevTagDecl->getTagKind();
5730          else {
5731            // Recover by making this an anonymous redefinition.
5732            Name = 0;
5733            Previous.clear();
5734            Invalid = true;
5735          }
5736        }
5737
5738        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5739          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5740
5741          // All conflicts with previous declarations are recovered by
5742          // returning the previous declaration.
5743          if (ScopedEnum != PrevEnum->isScoped()) {
5744            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5745              << PrevEnum->isScoped();
5746            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5747            return PrevTagDecl;
5748          }
5749          else if (EnumUnderlying && PrevEnum->isFixed()) {
5750            QualType T;
5751            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5752                T = TI->getType();
5753            else
5754                T = QualType(EnumUnderlying.get<const Type*>(), 0);
5755
5756            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5757              Diag(KWLoc, diag::err_enum_redeclare_type_mismatch);
5758              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5759              return PrevTagDecl;
5760            }
5761          }
5762          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5763            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5764              << PrevEnum->isFixed();
5765            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5766            return PrevTagDecl;
5767          }
5768        }
5769
5770        if (!Invalid) {
5771          // If this is a use, just return the declaration we found.
5772
5773          // FIXME: In the future, return a variant or some other clue
5774          // for the consumer of this Decl to know it doesn't own it.
5775          // For our current ASTs this shouldn't be a problem, but will
5776          // need to be changed with DeclGroups.
5777          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5778              TUK == TUK_Friend)
5779            return PrevTagDecl;
5780
5781          // Diagnose attempts to redefine a tag.
5782          if (TUK == TUK_Definition) {
5783            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5784              // If we're defining a specialization and the previous definition
5785              // is from an implicit instantiation, don't emit an error
5786              // here; we'll catch this in the general case below.
5787              if (!isExplicitSpecialization ||
5788                  !isa<CXXRecordDecl>(Def) ||
5789                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5790                                               == TSK_ExplicitSpecialization) {
5791                Diag(NameLoc, diag::err_redefinition) << Name;
5792                Diag(Def->getLocation(), diag::note_previous_definition);
5793                // If this is a redefinition, recover by making this
5794                // struct be anonymous, which will make any later
5795                // references get the previous definition.
5796                Name = 0;
5797                Previous.clear();
5798                Invalid = true;
5799              }
5800            } else {
5801              // If the type is currently being defined, complain
5802              // about a nested redefinition.
5803              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5804              if (Tag->isBeingDefined()) {
5805                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5806                Diag(PrevTagDecl->getLocation(),
5807                     diag::note_previous_definition);
5808                Name = 0;
5809                Previous.clear();
5810                Invalid = true;
5811              }
5812            }
5813
5814            // Okay, this is definition of a previously declared or referenced
5815            // tag PrevDecl. We're going to create a new Decl for it.
5816          }
5817        }
5818        // If we get here we have (another) forward declaration or we
5819        // have a definition.  Just create a new decl.
5820
5821      } else {
5822        // If we get here, this is a definition of a new tag type in a nested
5823        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5824        // new decl/type.  We set PrevDecl to NULL so that the entities
5825        // have distinct types.
5826        Previous.clear();
5827      }
5828      // If we get here, we're going to create a new Decl. If PrevDecl
5829      // is non-NULL, it's a definition of the tag declared by
5830      // PrevDecl. If it's NULL, we have a new definition.
5831
5832
5833    // Otherwise, PrevDecl is not a tag, but was found with tag
5834    // lookup.  This is only actually possible in C++, where a few
5835    // things like templates still live in the tag namespace.
5836    } else {
5837      assert(getLangOptions().CPlusPlus);
5838
5839      // Use a better diagnostic if an elaborated-type-specifier
5840      // found the wrong kind of type on the first
5841      // (non-redeclaration) lookup.
5842      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5843          !Previous.isForRedeclaration()) {
5844        unsigned Kind = 0;
5845        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5846        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5847        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5848        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5849        Invalid = true;
5850
5851      // Otherwise, only diagnose if the declaration is in scope.
5852      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5853        // do nothing
5854
5855      // Diagnose implicit declarations introduced by elaborated types.
5856      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5857        unsigned Kind = 0;
5858        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5859        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5860        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5861        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5862        Invalid = true;
5863
5864      // Otherwise it's a declaration.  Call out a particularly common
5865      // case here.
5866      } else if (isa<TypedefDecl>(PrevDecl)) {
5867        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5868          << Name
5869          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5870        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5871        Invalid = true;
5872
5873      // Otherwise, diagnose.
5874      } else {
5875        // The tag name clashes with something else in the target scope,
5876        // issue an error and recover by making this tag be anonymous.
5877        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5878        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5879        Name = 0;
5880        Invalid = true;
5881      }
5882
5883      // The existing declaration isn't relevant to us; we're in a
5884      // new scope, so clear out the previous declaration.
5885      Previous.clear();
5886    }
5887  }
5888
5889CreateNewDecl:
5890
5891  TagDecl *PrevDecl = 0;
5892  if (Previous.isSingleResult())
5893    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5894
5895  // If there is an identifier, use the location of the identifier as the
5896  // location of the decl, otherwise use the location of the struct/union
5897  // keyword.
5898  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5899
5900  // Otherwise, create a new declaration. If there is a previous
5901  // declaration of the same entity, the two will be linked via
5902  // PrevDecl.
5903  TagDecl *New;
5904
5905  bool IsForwardReference = false;
5906  if (Kind == TTK_Enum) {
5907    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5908    // enum X { A, B, C } D;    D should chain to X.
5909    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5910                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
5911                           !EnumUnderlying.isNull());
5912    // If this is an undefined enum, warn.
5913    if (TUK != TUK_Definition && !Invalid) {
5914      TagDecl *Def;
5915      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
5916        // C++0x: 7.2p2: opaque-enum-declaration.
5917        // Conflicts are diagnosed above. Do nothing.
5918      }
5919      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5920        Diag(Loc, diag::ext_forward_ref_enum_def)
5921          << New;
5922        Diag(Def->getLocation(), diag::note_previous_definition);
5923      } else {
5924        unsigned DiagID = diag::ext_forward_ref_enum;
5925        if (getLangOptions().Microsoft)
5926          DiagID = diag::ext_ms_forward_ref_enum;
5927        else if (getLangOptions().CPlusPlus)
5928          DiagID = diag::err_forward_ref_enum;
5929        Diag(Loc, DiagID);
5930
5931        // If this is a forward-declared reference to an enumeration, make a
5932        // note of it; we won't actually be introducing the declaration into
5933        // the declaration context.
5934        if (TUK == TUK_Reference)
5935          IsForwardReference = true;
5936      }
5937    }
5938
5939    if (EnumUnderlying) {
5940      EnumDecl *ED = cast<EnumDecl>(New);
5941      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5942        ED->setIntegerTypeSourceInfo(TI);
5943      else
5944        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
5945      ED->setPromotionType(ED->getIntegerType());
5946    }
5947
5948  } else {
5949    // struct/union/class
5950
5951    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5952    // struct X { int A; } D;    D should chain to X.
5953    if (getLangOptions().CPlusPlus) {
5954      // FIXME: Look for a way to use RecordDecl for simple structs.
5955      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5956                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5957
5958      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5959        StdBadAlloc = cast<CXXRecordDecl>(New);
5960    } else
5961      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5962                               cast_or_null<RecordDecl>(PrevDecl));
5963  }
5964
5965  // Maybe add qualifier info.
5966  if (SS.isNotEmpty()) {
5967    if (SS.isSet()) {
5968      NestedNameSpecifier *NNS
5969        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5970      New->setQualifierInfo(NNS, SS.getRange());
5971      if (NumMatchedTemplateParamLists > 0) {
5972        New->setTemplateParameterListsInfo(Context,
5973                                           NumMatchedTemplateParamLists,
5974                    (TemplateParameterList**) TemplateParameterLists.release());
5975      }
5976    }
5977    else
5978      Invalid = true;
5979  }
5980
5981  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5982    // Add alignment attributes if necessary; these attributes are checked when
5983    // the ASTContext lays out the structure.
5984    //
5985    // It is important for implementing the correct semantics that this
5986    // happen here (in act on tag decl). The #pragma pack stack is
5987    // maintained as a result of parser callbacks which can occur at
5988    // many points during the parsing of a struct declaration (because
5989    // the #pragma tokens are effectively skipped over during the
5990    // parsing of the struct).
5991    AddAlignmentAttributesForRecord(RD);
5992  }
5993
5994  // If this is a specialization of a member class (of a class template),
5995  // check the specialization.
5996  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5997    Invalid = true;
5998
5999  if (Invalid)
6000    New->setInvalidDecl();
6001
6002  if (Attr)
6003    ProcessDeclAttributeList(S, New, Attr);
6004
6005  // If we're declaring or defining a tag in function prototype scope
6006  // in C, note that this type can only be used within the function.
6007  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6008    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6009
6010  // Set the lexical context. If the tag has a C++ scope specifier, the
6011  // lexical context will be different from the semantic context.
6012  New->setLexicalDeclContext(CurContext);
6013
6014  // Mark this as a friend decl if applicable.
6015  if (TUK == TUK_Friend)
6016    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6017
6018  // Set the access specifier.
6019  if (!Invalid && SearchDC->isRecord())
6020    SetMemberAccessSpecifier(New, PrevDecl, AS);
6021
6022  if (TUK == TUK_Definition)
6023    New->startDefinition();
6024
6025  // If this has an identifier, add it to the scope stack.
6026  if (TUK == TUK_Friend) {
6027    // We might be replacing an existing declaration in the lookup tables;
6028    // if so, borrow its access specifier.
6029    if (PrevDecl)
6030      New->setAccess(PrevDecl->getAccess());
6031
6032    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6033    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6034    if (Name) // can be null along some error paths
6035      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6036        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6037  } else if (Name) {
6038    S = getNonFieldDeclScope(S);
6039    PushOnScopeChains(New, S, !IsForwardReference);
6040    if (IsForwardReference)
6041      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6042
6043  } else {
6044    CurContext->addDecl(New);
6045  }
6046
6047  // If this is the C FILE type, notify the AST context.
6048  if (IdentifierInfo *II = New->getIdentifier())
6049    if (!New->isInvalidDecl() &&
6050        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6051        II->isStr("FILE"))
6052      Context.setFILEDecl(New);
6053
6054  OwnedDecl = true;
6055  return New;
6056}
6057
6058void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6059  AdjustDeclIfTemplate(TagD);
6060  TagDecl *Tag = cast<TagDecl>(TagD);
6061
6062  // Enter the tag context.
6063  PushDeclContext(S, Tag);
6064}
6065
6066void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6067                                           SourceLocation LBraceLoc) {
6068  AdjustDeclIfTemplate(TagD);
6069  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6070
6071  FieldCollector->StartClass();
6072
6073  if (!Record->getIdentifier())
6074    return;
6075
6076  // C++ [class]p2:
6077  //   [...] The class-name is also inserted into the scope of the
6078  //   class itself; this is known as the injected-class-name. For
6079  //   purposes of access checking, the injected-class-name is treated
6080  //   as if it were a public member name.
6081  CXXRecordDecl *InjectedClassName
6082    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6083                            CurContext, Record->getLocation(),
6084                            Record->getIdentifier(),
6085                            Record->getTagKeywordLoc(),
6086                            /*PrevDecl=*/0,
6087                            /*DelayTypeCreation=*/true);
6088  Context.getTypeDeclType(InjectedClassName, Record);
6089  InjectedClassName->setImplicit();
6090  InjectedClassName->setAccess(AS_public);
6091  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6092      InjectedClassName->setDescribedClassTemplate(Template);
6093  PushOnScopeChains(InjectedClassName, S);
6094  assert(InjectedClassName->isInjectedClassName() &&
6095         "Broken injected-class-name");
6096}
6097
6098void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6099                                    SourceLocation RBraceLoc) {
6100  AdjustDeclIfTemplate(TagD);
6101  TagDecl *Tag = cast<TagDecl>(TagD);
6102  Tag->setRBraceLoc(RBraceLoc);
6103
6104  if (isa<CXXRecordDecl>(Tag))
6105    FieldCollector->FinishClass();
6106
6107  // Exit this scope of this tag's definition.
6108  PopDeclContext();
6109
6110  // Notify the consumer that we've defined a tag.
6111  Consumer.HandleTagDeclDefinition(Tag);
6112}
6113
6114void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6115  AdjustDeclIfTemplate(TagD);
6116  TagDecl *Tag = cast<TagDecl>(TagD);
6117  Tag->setInvalidDecl();
6118
6119  // We're undoing ActOnTagStartDefinition here, not
6120  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6121  // the FieldCollector.
6122
6123  PopDeclContext();
6124}
6125
6126// Note that FieldName may be null for anonymous bitfields.
6127bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6128                          QualType FieldTy, const Expr *BitWidth,
6129                          bool *ZeroWidth) {
6130  // Default to true; that shouldn't confuse checks for emptiness
6131  if (ZeroWidth)
6132    *ZeroWidth = true;
6133
6134  // C99 6.7.2.1p4 - verify the field type.
6135  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6136  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6137    // Handle incomplete types with specific error.
6138    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6139      return true;
6140    if (FieldName)
6141      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6142        << FieldName << FieldTy << BitWidth->getSourceRange();
6143    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6144      << FieldTy << BitWidth->getSourceRange();
6145  }
6146
6147  // If the bit-width is type- or value-dependent, don't try to check
6148  // it now.
6149  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6150    return false;
6151
6152  llvm::APSInt Value;
6153  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6154    return true;
6155
6156  if (Value != 0 && ZeroWidth)
6157    *ZeroWidth = false;
6158
6159  // Zero-width bitfield is ok for anonymous field.
6160  if (Value == 0 && FieldName)
6161    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6162
6163  if (Value.isSigned() && Value.isNegative()) {
6164    if (FieldName)
6165      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6166               << FieldName << Value.toString(10);
6167    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6168      << Value.toString(10);
6169  }
6170
6171  if (!FieldTy->isDependentType()) {
6172    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6173    if (Value.getZExtValue() > TypeSize) {
6174      if (!getLangOptions().CPlusPlus) {
6175        if (FieldName)
6176          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6177            << FieldName << (unsigned)Value.getZExtValue()
6178            << (unsigned)TypeSize;
6179
6180        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6181          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6182      }
6183
6184      if (FieldName)
6185        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6186          << FieldName << (unsigned)Value.getZExtValue()
6187          << (unsigned)TypeSize;
6188      else
6189        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6190          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6191    }
6192  }
6193
6194  return false;
6195}
6196
6197/// ActOnField - Each field of a struct/union/class is passed into this in order
6198/// to create a FieldDecl object for it.
6199Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6200                                 SourceLocation DeclStart,
6201                                 Declarator &D, ExprTy *BitfieldWidth) {
6202  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6203                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6204                               AS_public);
6205  return Res;
6206}
6207
6208/// HandleField - Analyze a field of a C struct or a C++ data member.
6209///
6210FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6211                             SourceLocation DeclStart,
6212                             Declarator &D, Expr *BitWidth,
6213                             AccessSpecifier AS) {
6214  IdentifierInfo *II = D.getIdentifier();
6215  SourceLocation Loc = DeclStart;
6216  if (II) Loc = D.getIdentifierLoc();
6217
6218  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6219  QualType T = TInfo->getType();
6220  if (getLangOptions().CPlusPlus)
6221    CheckExtraCXXDefaultArguments(D);
6222
6223  DiagnoseFunctionSpecifiers(D);
6224
6225  if (D.getDeclSpec().isThreadSpecified())
6226    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6227
6228  // Check to see if this name was declared as a member previously
6229  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6230  LookupName(Previous, S);
6231  assert((Previous.empty() || Previous.isOverloadedResult() ||
6232          Previous.isSingleResult())
6233    && "Lookup of member name should be either overloaded, single or null");
6234
6235  // If the name is overloaded then get any declaration else get the single result
6236  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6237    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6238
6239  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6240    // Maybe we will complain about the shadowed template parameter.
6241    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6242    // Just pretend that we didn't see the previous declaration.
6243    PrevDecl = 0;
6244  }
6245
6246  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6247    PrevDecl = 0;
6248
6249  bool Mutable
6250    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6251  SourceLocation TSSL = D.getSourceRange().getBegin();
6252  FieldDecl *NewFD
6253    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6254                     AS, PrevDecl, &D);
6255
6256  if (NewFD->isInvalidDecl())
6257    Record->setInvalidDecl();
6258
6259  if (NewFD->isInvalidDecl() && PrevDecl) {
6260    // Don't introduce NewFD into scope; there's already something
6261    // with the same name in the same scope.
6262  } else if (II) {
6263    PushOnScopeChains(NewFD, S);
6264  } else
6265    Record->addDecl(NewFD);
6266
6267  return NewFD;
6268}
6269
6270/// \brief Build a new FieldDecl and check its well-formedness.
6271///
6272/// This routine builds a new FieldDecl given the fields name, type,
6273/// record, etc. \p PrevDecl should refer to any previous declaration
6274/// with the same name and in the same scope as the field to be
6275/// created.
6276///
6277/// \returns a new FieldDecl.
6278///
6279/// \todo The Declarator argument is a hack. It will be removed once
6280FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6281                                TypeSourceInfo *TInfo,
6282                                RecordDecl *Record, SourceLocation Loc,
6283                                bool Mutable, Expr *BitWidth,
6284                                SourceLocation TSSL,
6285                                AccessSpecifier AS, NamedDecl *PrevDecl,
6286                                Declarator *D) {
6287  IdentifierInfo *II = Name.getAsIdentifierInfo();
6288  bool InvalidDecl = false;
6289  if (D) InvalidDecl = D->isInvalidType();
6290
6291  // If we receive a broken type, recover by assuming 'int' and
6292  // marking this declaration as invalid.
6293  if (T.isNull()) {
6294    InvalidDecl = true;
6295    T = Context.IntTy;
6296  }
6297
6298  QualType EltTy = Context.getBaseElementType(T);
6299  if (!EltTy->isDependentType() &&
6300      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6301    // Fields of incomplete type force their record to be invalid.
6302    Record->setInvalidDecl();
6303    InvalidDecl = true;
6304  }
6305
6306  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6307  // than a variably modified type.
6308  if (!InvalidDecl && T->isVariablyModifiedType()) {
6309    bool SizeIsNegative;
6310    llvm::APSInt Oversized;
6311    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6312                                                           SizeIsNegative,
6313                                                           Oversized);
6314    if (!FixedTy.isNull()) {
6315      Diag(Loc, diag::warn_illegal_constant_array_size);
6316      T = FixedTy;
6317    } else {
6318      if (SizeIsNegative)
6319        Diag(Loc, diag::err_typecheck_negative_array_size);
6320      else if (Oversized.getBoolValue())
6321        Diag(Loc, diag::err_array_too_large)
6322          << Oversized.toString(10);
6323      else
6324        Diag(Loc, diag::err_typecheck_field_variable_size);
6325      InvalidDecl = true;
6326    }
6327  }
6328
6329  // Fields can not have abstract class types
6330  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6331                                             diag::err_abstract_type_in_decl,
6332                                             AbstractFieldType))
6333    InvalidDecl = true;
6334
6335  bool ZeroWidth = false;
6336  // If this is declared as a bit-field, check the bit-field.
6337  if (!InvalidDecl && BitWidth &&
6338      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6339    InvalidDecl = true;
6340    BitWidth = 0;
6341    ZeroWidth = false;
6342  }
6343
6344  // Check that 'mutable' is consistent with the type of the declaration.
6345  if (!InvalidDecl && Mutable) {
6346    unsigned DiagID = 0;
6347    if (T->isReferenceType())
6348      DiagID = diag::err_mutable_reference;
6349    else if (T.isConstQualified())
6350      DiagID = diag::err_mutable_const;
6351
6352    if (DiagID) {
6353      SourceLocation ErrLoc = Loc;
6354      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6355        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6356      Diag(ErrLoc, DiagID);
6357      Mutable = false;
6358      InvalidDecl = true;
6359    }
6360  }
6361
6362  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6363                                       BitWidth, Mutable);
6364  if (InvalidDecl)
6365    NewFD->setInvalidDecl();
6366
6367  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6368    Diag(Loc, diag::err_duplicate_member) << II;
6369    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6370    NewFD->setInvalidDecl();
6371  }
6372
6373  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6374    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6375      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6376      if (RDecl->getDefinition()) {
6377        // C++ 9.5p1: An object of a class with a non-trivial
6378        // constructor, a non-trivial copy constructor, a non-trivial
6379        // destructor, or a non-trivial copy assignment operator
6380        // cannot be a member of a union, nor can an array of such
6381        // objects.
6382        // TODO: C++0x alters this restriction significantly.
6383        if (Record->isUnion() && CheckNontrivialField(NewFD))
6384          NewFD->setInvalidDecl();
6385      }
6386    }
6387  }
6388
6389  // FIXME: We need to pass in the attributes given an AST
6390  // representation, not a parser representation.
6391  if (D)
6392    // FIXME: What to pass instead of TUScope?
6393    ProcessDeclAttributes(TUScope, NewFD, *D);
6394
6395  if (T.isObjCGCWeak())
6396    Diag(Loc, diag::warn_attribute_weak_on_field);
6397
6398  NewFD->setAccess(AS);
6399  return NewFD;
6400}
6401
6402bool Sema::CheckNontrivialField(FieldDecl *FD) {
6403  assert(FD);
6404  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6405
6406  if (FD->isInvalidDecl())
6407    return true;
6408
6409  QualType EltTy = Context.getBaseElementType(FD->getType());
6410  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6411    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6412    if (RDecl->getDefinition()) {
6413      // We check for copy constructors before constructors
6414      // because otherwise we'll never get complaints about
6415      // copy constructors.
6416
6417      CXXSpecialMember member = CXXInvalid;
6418      if (!RDecl->hasTrivialCopyConstructor())
6419        member = CXXCopyConstructor;
6420      else if (!RDecl->hasTrivialConstructor())
6421        member = CXXConstructor;
6422      else if (!RDecl->hasTrivialCopyAssignment())
6423        member = CXXCopyAssignment;
6424      else if (!RDecl->hasTrivialDestructor())
6425        member = CXXDestructor;
6426
6427      if (member != CXXInvalid) {
6428        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6429              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6430        DiagnoseNontrivial(RT, member);
6431        return true;
6432      }
6433    }
6434  }
6435
6436  return false;
6437}
6438
6439/// DiagnoseNontrivial - Given that a class has a non-trivial
6440/// special member, figure out why.
6441void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6442  QualType QT(T, 0U);
6443  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6444
6445  // Check whether the member was user-declared.
6446  switch (member) {
6447  case CXXInvalid:
6448    break;
6449
6450  case CXXConstructor:
6451    if (RD->hasUserDeclaredConstructor()) {
6452      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6453      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6454        const FunctionDecl *body = 0;
6455        ci->hasBody(body);
6456        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6457          SourceLocation CtorLoc = ci->getLocation();
6458          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6459          return;
6460        }
6461      }
6462
6463      assert(0 && "found no user-declared constructors");
6464      return;
6465    }
6466    break;
6467
6468  case CXXCopyConstructor:
6469    if (RD->hasUserDeclaredCopyConstructor()) {
6470      SourceLocation CtorLoc =
6471        RD->getCopyConstructor(Context, 0)->getLocation();
6472      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6473      return;
6474    }
6475    break;
6476
6477  case CXXCopyAssignment:
6478    if (RD->hasUserDeclaredCopyAssignment()) {
6479      // FIXME: this should use the location of the copy
6480      // assignment, not the type.
6481      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6482      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6483      return;
6484    }
6485    break;
6486
6487  case CXXDestructor:
6488    if (RD->hasUserDeclaredDestructor()) {
6489      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6490      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6491      return;
6492    }
6493    break;
6494  }
6495
6496  typedef CXXRecordDecl::base_class_iterator base_iter;
6497
6498  // Virtual bases and members inhibit trivial copying/construction,
6499  // but not trivial destruction.
6500  if (member != CXXDestructor) {
6501    // Check for virtual bases.  vbases includes indirect virtual bases,
6502    // so we just iterate through the direct bases.
6503    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6504      if (bi->isVirtual()) {
6505        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6506        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6507        return;
6508      }
6509
6510    // Check for virtual methods.
6511    typedef CXXRecordDecl::method_iterator meth_iter;
6512    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6513         ++mi) {
6514      if (mi->isVirtual()) {
6515        SourceLocation MLoc = mi->getSourceRange().getBegin();
6516        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6517        return;
6518      }
6519    }
6520  }
6521
6522  bool (CXXRecordDecl::*hasTrivial)() const;
6523  switch (member) {
6524  case CXXConstructor:
6525    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6526  case CXXCopyConstructor:
6527    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6528  case CXXCopyAssignment:
6529    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6530  case CXXDestructor:
6531    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6532  default:
6533    assert(0 && "unexpected special member"); return;
6534  }
6535
6536  // Check for nontrivial bases (and recurse).
6537  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6538    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6539    assert(BaseRT && "Don't know how to handle dependent bases");
6540    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6541    if (!(BaseRecTy->*hasTrivial)()) {
6542      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6543      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6544      DiagnoseNontrivial(BaseRT, member);
6545      return;
6546    }
6547  }
6548
6549  // Check for nontrivial members (and recurse).
6550  typedef RecordDecl::field_iterator field_iter;
6551  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6552       ++fi) {
6553    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6554    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6555      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6556
6557      if (!(EltRD->*hasTrivial)()) {
6558        SourceLocation FLoc = (*fi)->getLocation();
6559        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6560        DiagnoseNontrivial(EltRT, member);
6561        return;
6562      }
6563    }
6564  }
6565
6566  assert(0 && "found no explanation for non-trivial member");
6567}
6568
6569/// TranslateIvarVisibility - Translate visibility from a token ID to an
6570///  AST enum value.
6571static ObjCIvarDecl::AccessControl
6572TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6573  switch (ivarVisibility) {
6574  default: assert(0 && "Unknown visitibility kind");
6575  case tok::objc_private: return ObjCIvarDecl::Private;
6576  case tok::objc_public: return ObjCIvarDecl::Public;
6577  case tok::objc_protected: return ObjCIvarDecl::Protected;
6578  case tok::objc_package: return ObjCIvarDecl::Package;
6579  }
6580}
6581
6582/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6583/// in order to create an IvarDecl object for it.
6584Decl *Sema::ActOnIvar(Scope *S,
6585                                SourceLocation DeclStart,
6586                                Decl *IntfDecl,
6587                                Declarator &D, ExprTy *BitfieldWidth,
6588                                tok::ObjCKeywordKind Visibility) {
6589
6590  IdentifierInfo *II = D.getIdentifier();
6591  Expr *BitWidth = (Expr*)BitfieldWidth;
6592  SourceLocation Loc = DeclStart;
6593  if (II) Loc = D.getIdentifierLoc();
6594
6595  // FIXME: Unnamed fields can be handled in various different ways, for
6596  // example, unnamed unions inject all members into the struct namespace!
6597
6598  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6599  QualType T = TInfo->getType();
6600
6601  if (BitWidth) {
6602    // 6.7.2.1p3, 6.7.2.1p4
6603    if (VerifyBitField(Loc, II, T, BitWidth)) {
6604      D.setInvalidType();
6605      BitWidth = 0;
6606    }
6607  } else {
6608    // Not a bitfield.
6609
6610    // validate II.
6611
6612  }
6613  if (T->isReferenceType()) {
6614    Diag(Loc, diag::err_ivar_reference_type);
6615    D.setInvalidType();
6616  }
6617  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6618  // than a variably modified type.
6619  else if (T->isVariablyModifiedType()) {
6620    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6621    D.setInvalidType();
6622  }
6623
6624  // Get the visibility (access control) for this ivar.
6625  ObjCIvarDecl::AccessControl ac =
6626    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6627                                        : ObjCIvarDecl::None;
6628  // Must set ivar's DeclContext to its enclosing interface.
6629  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6630  ObjCContainerDecl *EnclosingContext;
6631  if (ObjCImplementationDecl *IMPDecl =
6632      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6633    if (!LangOpts.ObjCNonFragileABI2) {
6634    // Case of ivar declared in an implementation. Context is that of its class.
6635      EnclosingContext = IMPDecl->getClassInterface();
6636      assert(EnclosingContext && "Implementation has no class interface!");
6637    }
6638    else
6639      EnclosingContext = EnclosingDecl;
6640  } else {
6641    if (ObjCCategoryDecl *CDecl =
6642        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6643      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6644        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6645        return 0;
6646      }
6647    }
6648    EnclosingContext = EnclosingDecl;
6649  }
6650
6651  // Construct the decl.
6652  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6653                                             EnclosingContext, Loc, II, T,
6654                                             TInfo, ac, (Expr *)BitfieldWidth);
6655
6656  if (II) {
6657    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6658                                           ForRedeclaration);
6659    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6660        && !isa<TagDecl>(PrevDecl)) {
6661      Diag(Loc, diag::err_duplicate_member) << II;
6662      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6663      NewID->setInvalidDecl();
6664    }
6665  }
6666
6667  // Process attributes attached to the ivar.
6668  ProcessDeclAttributes(S, NewID, D);
6669
6670  if (D.isInvalidType())
6671    NewID->setInvalidDecl();
6672
6673  if (II) {
6674    // FIXME: When interfaces are DeclContexts, we'll need to add
6675    // these to the interface.
6676    S->AddDecl(NewID);
6677    IdResolver.AddDecl(NewID);
6678  }
6679
6680  return NewID;
6681}
6682
6683/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6684/// class and class extensions. For every class @interface and class
6685/// extension @interface, if the last ivar is a bitfield of any type,
6686/// then add an implicit `char :0` ivar to the end of that interface.
6687void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6688                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6689  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6690    return;
6691
6692  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6693  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6694
6695  if (!Ivar->isBitField())
6696    return;
6697  uint64_t BitFieldSize =
6698    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6699  if (BitFieldSize == 0)
6700    return;
6701  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6702  if (!ID) {
6703    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6704      if (!CD->IsClassExtension())
6705        return;
6706    }
6707    // No need to add this to end of @implementation.
6708    else
6709      return;
6710  }
6711  // All conditions are met. Add a new bitfield to the tail end of ivars.
6712  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6713  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6714
6715  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6716                              DeclLoc, 0,
6717                              Context.CharTy,
6718                              Context.CreateTypeSourceInfo(Context.CharTy),
6719                              ObjCIvarDecl::Private, BW,
6720                              true);
6721  AllIvarDecls.push_back(Ivar);
6722}
6723
6724void Sema::ActOnFields(Scope* S,
6725                       SourceLocation RecLoc, Decl *EnclosingDecl,
6726                       Decl **Fields, unsigned NumFields,
6727                       SourceLocation LBrac, SourceLocation RBrac,
6728                       AttributeList *Attr) {
6729  assert(EnclosingDecl && "missing record or interface decl");
6730
6731  // If the decl this is being inserted into is invalid, then it may be a
6732  // redeclaration or some other bogus case.  Don't try to add fields to it.
6733  if (EnclosingDecl->isInvalidDecl()) {
6734    // FIXME: Deallocate fields?
6735    return;
6736  }
6737
6738
6739  // Verify that all the fields are okay.
6740  unsigned NumNamedMembers = 0;
6741  llvm::SmallVector<FieldDecl*, 32> RecFields;
6742
6743  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6744  for (unsigned i = 0; i != NumFields; ++i) {
6745    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6746
6747    // Get the type for the field.
6748    Type *FDTy = FD->getType().getTypePtr();
6749
6750    if (!FD->isAnonymousStructOrUnion()) {
6751      // Remember all fields written by the user.
6752      RecFields.push_back(FD);
6753    }
6754
6755    // If the field is already invalid for some reason, don't emit more
6756    // diagnostics about it.
6757    if (FD->isInvalidDecl()) {
6758      EnclosingDecl->setInvalidDecl();
6759      continue;
6760    }
6761
6762    // C99 6.7.2.1p2:
6763    //   A structure or union shall not contain a member with
6764    //   incomplete or function type (hence, a structure shall not
6765    //   contain an instance of itself, but may contain a pointer to
6766    //   an instance of itself), except that the last member of a
6767    //   structure with more than one named member may have incomplete
6768    //   array type; such a structure (and any union containing,
6769    //   possibly recursively, a member that is such a structure)
6770    //   shall not be a member of a structure or an element of an
6771    //   array.
6772    if (FDTy->isFunctionType()) {
6773      // Field declared as a function.
6774      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6775        << FD->getDeclName();
6776      FD->setInvalidDecl();
6777      EnclosingDecl->setInvalidDecl();
6778      continue;
6779    } else if (FDTy->isIncompleteArrayType() && Record &&
6780               ((i == NumFields - 1 && !Record->isUnion()) ||
6781                (getLangOptions().Microsoft &&
6782                 (i == NumFields - 1 || Record->isUnion())))) {
6783      // Flexible array member.
6784      // Microsoft is more permissive regarding flexible array.
6785      // It will accept flexible array in union and also
6786	    // as the sole element of a struct/class.
6787      if (getLangOptions().Microsoft) {
6788        if (Record->isUnion())
6789          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6790            << FD->getDeclName();
6791        else if (NumFields == 1)
6792          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6793            << FD->getDeclName() << Record->getTagKind();
6794      } else  if (NumNamedMembers < 1) {
6795        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6796          << FD->getDeclName();
6797        FD->setInvalidDecl();
6798        EnclosingDecl->setInvalidDecl();
6799        continue;
6800      }
6801      if (!FD->getType()->isDependentType() &&
6802          !Context.getBaseElementType(FD->getType())->isPODType()) {
6803        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6804          << FD->getDeclName() << FD->getType();
6805        FD->setInvalidDecl();
6806        EnclosingDecl->setInvalidDecl();
6807        continue;
6808      }
6809      // Okay, we have a legal flexible array member at the end of the struct.
6810      if (Record)
6811        Record->setHasFlexibleArrayMember(true);
6812    } else if (!FDTy->isDependentType() &&
6813               RequireCompleteType(FD->getLocation(), FD->getType(),
6814                                   diag::err_field_incomplete)) {
6815      // Incomplete type
6816      FD->setInvalidDecl();
6817      EnclosingDecl->setInvalidDecl();
6818      continue;
6819    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6820      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6821        // If this is a member of a union, then entire union becomes "flexible".
6822        if (Record && Record->isUnion()) {
6823          Record->setHasFlexibleArrayMember(true);
6824        } else {
6825          // If this is a struct/class and this is not the last element, reject
6826          // it.  Note that GCC supports variable sized arrays in the middle of
6827          // structures.
6828          if (i != NumFields-1)
6829            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6830              << FD->getDeclName() << FD->getType();
6831          else {
6832            // We support flexible arrays at the end of structs in
6833            // other structs as an extension.
6834            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6835              << FD->getDeclName();
6836            if (Record)
6837              Record->setHasFlexibleArrayMember(true);
6838          }
6839        }
6840      }
6841      if (Record && FDTTy->getDecl()->hasObjectMember())
6842        Record->setHasObjectMember(true);
6843    } else if (FDTy->isObjCObjectType()) {
6844      /// A field cannot be an Objective-c object
6845      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6846      FD->setInvalidDecl();
6847      EnclosingDecl->setInvalidDecl();
6848      continue;
6849    } else if (getLangOptions().ObjC1 &&
6850               getLangOptions().getGCMode() != LangOptions::NonGC &&
6851               Record &&
6852               (FD->getType()->isObjCObjectPointerType() ||
6853                FD->getType().isObjCGCStrong()))
6854      Record->setHasObjectMember(true);
6855    else if (Context.getAsArrayType(FD->getType())) {
6856      QualType BaseType = Context.getBaseElementType(FD->getType());
6857      if (Record && BaseType->isRecordType() &&
6858          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6859        Record->setHasObjectMember(true);
6860    }
6861    // Keep track of the number of named members.
6862    if (FD->getIdentifier())
6863      ++NumNamedMembers;
6864  }
6865
6866  // Okay, we successfully defined 'Record'.
6867  if (Record) {
6868    bool Completed = false;
6869    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
6870      if (!CXXRecord->isInvalidDecl()) {
6871        // Set access bits correctly on the directly-declared conversions.
6872        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
6873        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
6874             I != E; ++I)
6875          Convs->setAccess(I, (*I)->getAccess());
6876
6877        if (!CXXRecord->isDependentType()) {
6878          // Add any implicitly-declared members to this class.
6879          AddImplicitlyDeclaredMembersToClass(CXXRecord);
6880
6881          // If we have virtual base classes, we may end up finding multiple
6882          // final overriders for a given virtual function. Check for this
6883          // problem now.
6884          if (CXXRecord->getNumVBases()) {
6885            CXXFinalOverriderMap FinalOverriders;
6886            CXXRecord->getFinalOverriders(FinalOverriders);
6887
6888            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6889                                             MEnd = FinalOverriders.end();
6890                 M != MEnd; ++M) {
6891              for (OverridingMethods::iterator SO = M->second.begin(),
6892                                            SOEnd = M->second.end();
6893                   SO != SOEnd; ++SO) {
6894                assert(SO->second.size() > 0 &&
6895                       "Virtual function without overridding functions?");
6896                if (SO->second.size() == 1)
6897                  continue;
6898
6899                // C++ [class.virtual]p2:
6900                //   In a derived class, if a virtual member function of a base
6901                //   class subobject has more than one final overrider the
6902                //   program is ill-formed.
6903                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
6904                  << (NamedDecl *)M->first << Record;
6905                Diag(M->first->getLocation(),
6906                     diag::note_overridden_virtual_function);
6907                for (OverridingMethods::overriding_iterator
6908                          OM = SO->second.begin(),
6909                       OMEnd = SO->second.end();
6910                     OM != OMEnd; ++OM)
6911                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
6912                    << (NamedDecl *)M->first << OM->Method->getParent();
6913
6914                Record->setInvalidDecl();
6915              }
6916            }
6917            CXXRecord->completeDefinition(&FinalOverriders);
6918            Completed = true;
6919          }
6920        }
6921      }
6922    }
6923
6924    if (!Completed)
6925      Record->completeDefinition();
6926  } else {
6927    ObjCIvarDecl **ClsFields =
6928      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6929    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6930      ID->setLocEnd(RBrac);
6931      // Add ivar's to class's DeclContext.
6932      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6933        ClsFields[i]->setLexicalDeclContext(ID);
6934        ID->addDecl(ClsFields[i]);
6935      }
6936      // Must enforce the rule that ivars in the base classes may not be
6937      // duplicates.
6938      if (ID->getSuperClass())
6939        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6940    } else if (ObjCImplementationDecl *IMPDecl =
6941                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6942      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6943      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6944        // Ivar declared in @implementation never belongs to the implementation.
6945        // Only it is in implementation's lexical context.
6946        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6947      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6948    } else if (ObjCCategoryDecl *CDecl =
6949                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6950      // case of ivars in class extension; all other cases have been
6951      // reported as errors elsewhere.
6952      // FIXME. Class extension does not have a LocEnd field.
6953      // CDecl->setLocEnd(RBrac);
6954      // Add ivar's to class extension's DeclContext.
6955      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6956        ClsFields[i]->setLexicalDeclContext(CDecl);
6957        CDecl->addDecl(ClsFields[i]);
6958      }
6959    }
6960  }
6961
6962  if (Attr)
6963    ProcessDeclAttributeList(S, Record, Attr);
6964
6965  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6966  // set the visibility of this record.
6967  if (Record && !Record->getDeclContext()->isRecord())
6968    AddPushedVisibilityAttribute(Record);
6969}
6970
6971/// \brief Determine whether the given integral value is representable within
6972/// the given type T.
6973static bool isRepresentableIntegerValue(ASTContext &Context,
6974                                        llvm::APSInt &Value,
6975                                        QualType T) {
6976  assert(T->isIntegralType(Context) && "Integral type required!");
6977  unsigned BitWidth = Context.getIntWidth(T);
6978
6979  if (Value.isUnsigned() || Value.isNonNegative()) {
6980    if (T->isSignedIntegerType())
6981      --BitWidth;
6982    return Value.getActiveBits() <= BitWidth;
6983  }
6984  return Value.getMinSignedBits() <= BitWidth;
6985}
6986
6987// \brief Given an integral type, return the next larger integral type
6988// (or a NULL type of no such type exists).
6989static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6990  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6991  // enum checking below.
6992  assert(T->isIntegralType(Context) && "Integral type required!");
6993  const unsigned NumTypes = 4;
6994  QualType SignedIntegralTypes[NumTypes] = {
6995    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6996  };
6997  QualType UnsignedIntegralTypes[NumTypes] = {
6998    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6999    Context.UnsignedLongLongTy
7000  };
7001
7002  unsigned BitWidth = Context.getTypeSize(T);
7003  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7004                                            : UnsignedIntegralTypes;
7005  for (unsigned I = 0; I != NumTypes; ++I)
7006    if (Context.getTypeSize(Types[I]) > BitWidth)
7007      return Types[I];
7008
7009  return QualType();
7010}
7011
7012EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7013                                          EnumConstantDecl *LastEnumConst,
7014                                          SourceLocation IdLoc,
7015                                          IdentifierInfo *Id,
7016                                          Expr *Val) {
7017  unsigned IntWidth = Context.Target.getIntWidth();
7018  llvm::APSInt EnumVal(IntWidth);
7019  QualType EltTy;
7020  if (Val) {
7021    if (Enum->isDependentType() || Val->isTypeDependent())
7022      EltTy = Context.DependentTy;
7023    else {
7024      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7025      SourceLocation ExpLoc;
7026      if (!Val->isValueDependent() &&
7027          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7028        Val = 0;
7029      } else {
7030        if (!getLangOptions().CPlusPlus) {
7031          // C99 6.7.2.2p2:
7032          //   The expression that defines the value of an enumeration constant
7033          //   shall be an integer constant expression that has a value
7034          //   representable as an int.
7035
7036          // Complain if the value is not representable in an int.
7037          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7038            Diag(IdLoc, diag::ext_enum_value_not_int)
7039              << EnumVal.toString(10) << Val->getSourceRange()
7040              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7041          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7042            // Force the type of the expression to 'int'.
7043            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7044          }
7045        }
7046
7047        if (Enum->isFixed()) {
7048          EltTy = Enum->getIntegerType();
7049
7050          // C++0x [dcl.enum]p5:
7051          //   ... if the initializing value of an enumerator cannot be
7052          //   represented by the underlying type, the program is ill-formed.
7053          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy))
7054            Diag(IdLoc, diag::err_enumerator_too_large)
7055              << EltTy;
7056          else
7057            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7058        }
7059        else {
7060          // C++0x [dcl.enum]p5:
7061          //   If the underlying type is not fixed, the type of each enumerator
7062          //   is the type of its initializing value:
7063          //     - If an initializer is specified for an enumerator, the
7064          //       initializing value has the same type as the expression.
7065          EltTy = Val->getType();
7066        }
7067      }
7068    }
7069  }
7070
7071  if (!Val) {
7072    if (Enum->isDependentType())
7073      EltTy = Context.DependentTy;
7074    else if (!LastEnumConst) {
7075      // C++0x [dcl.enum]p5:
7076      //   If the underlying type is not fixed, the type of each enumerator
7077      //   is the type of its initializing value:
7078      //     - If no initializer is specified for the first enumerator, the
7079      //       initializing value has an unspecified integral type.
7080      //
7081      // GCC uses 'int' for its unspecified integral type, as does
7082      // C99 6.7.2.2p3.
7083      if (Enum->isFixed()) {
7084        EltTy = Enum->getIntegerType();
7085      }
7086      else {
7087        EltTy = Context.IntTy;
7088      }
7089    } else {
7090      // Assign the last value + 1.
7091      EnumVal = LastEnumConst->getInitVal();
7092      ++EnumVal;
7093      EltTy = LastEnumConst->getType();
7094
7095      // Check for overflow on increment.
7096      if (EnumVal < LastEnumConst->getInitVal()) {
7097        // C++0x [dcl.enum]p5:
7098        //   If the underlying type is not fixed, the type of each enumerator
7099        //   is the type of its initializing value:
7100        //
7101        //     - Otherwise the type of the initializing value is the same as
7102        //       the type of the initializing value of the preceding enumerator
7103        //       unless the incremented value is not representable in that type,
7104        //       in which case the type is an unspecified integral type
7105        //       sufficient to contain the incremented value. If no such type
7106        //       exists, the program is ill-formed.
7107        QualType T = getNextLargerIntegralType(Context, EltTy);
7108        if (T.isNull() || Enum->isFixed()) {
7109          // There is no integral type larger enough to represent this
7110          // value. Complain, then allow the value to wrap around.
7111          EnumVal = LastEnumConst->getInitVal();
7112          EnumVal.zext(EnumVal.getBitWidth() * 2);
7113          ++EnumVal;
7114          if (Enum->isFixed())
7115            // When the underlying type is fixed, this is ill-formed.
7116            Diag(IdLoc, diag::err_enumerator_wrapped)
7117              << EnumVal.toString(10)
7118              << EltTy;
7119          else
7120            Diag(IdLoc, diag::warn_enumerator_too_large)
7121              << EnumVal.toString(10);
7122        } else {
7123          EltTy = T;
7124        }
7125
7126        // Retrieve the last enumerator's value, extent that type to the
7127        // type that is supposed to be large enough to represent the incremented
7128        // value, then increment.
7129        EnumVal = LastEnumConst->getInitVal();
7130        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7131        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7132        ++EnumVal;
7133
7134        // If we're not in C++, diagnose the overflow of enumerator values,
7135        // which in C99 means that the enumerator value is not representable in
7136        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7137        // permits enumerator values that are representable in some larger
7138        // integral type.
7139        if (!getLangOptions().CPlusPlus && !T.isNull())
7140          Diag(IdLoc, diag::warn_enum_value_overflow);
7141      } else if (!getLangOptions().CPlusPlus &&
7142                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7143        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7144        Diag(IdLoc, diag::ext_enum_value_not_int)
7145          << EnumVal.toString(10) << 1;
7146      }
7147    }
7148  }
7149
7150  if (!EltTy->isDependentType()) {
7151    // Make the enumerator value match the signedness and size of the
7152    // enumerator's type.
7153    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7154    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7155  }
7156
7157  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7158                                  Val, EnumVal);
7159}
7160
7161
7162Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
7163                                        Decl *lastEnumConst,
7164                                        SourceLocation IdLoc,
7165                                        IdentifierInfo *Id,
7166                                        SourceLocation EqualLoc, ExprTy *val) {
7167  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7168  EnumConstantDecl *LastEnumConst =
7169    cast_or_null<EnumConstantDecl>(lastEnumConst);
7170  Expr *Val = static_cast<Expr*>(val);
7171
7172  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7173  // we find one that is.
7174  S = getNonFieldDeclScope(S);
7175
7176  // Verify that there isn't already something declared with this name in this
7177  // scope.
7178  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7179                                         ForRedeclaration);
7180  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7181    // Maybe we will complain about the shadowed template parameter.
7182    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7183    // Just pretend that we didn't see the previous declaration.
7184    PrevDecl = 0;
7185  }
7186
7187  if (PrevDecl) {
7188    // When in C++, we may get a TagDecl with the same name; in this case the
7189    // enum constant will 'hide' the tag.
7190    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7191           "Received TagDecl when not in C++!");
7192    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7193      if (isa<EnumConstantDecl>(PrevDecl))
7194        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7195      else
7196        Diag(IdLoc, diag::err_redefinition) << Id;
7197      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7198      return 0;
7199    }
7200  }
7201
7202  // C++ [class.mem]p13:
7203  //   If T is the name of a class, then each of the following shall have a
7204  //   name different from T:
7205  //     - every enumerator of every member of class T that is an enumerated
7206  //       type
7207  if (CXXRecordDecl *Record
7208                      = dyn_cast<CXXRecordDecl>(
7209                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7210    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7211      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7212
7213  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
7214                                            IdLoc, Id, Val);
7215
7216  // Register this decl in the current scope stack.
7217  if (New) {
7218    New->setAccess(TheEnumDecl->getAccess());
7219    PushOnScopeChains(New, S);
7220  }
7221
7222  return New;
7223}
7224
7225void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7226                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7227                         Decl **Elements, unsigned NumElements,
7228                         Scope *S, AttributeList *Attr) {
7229  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7230  QualType EnumType = Context.getTypeDeclType(Enum);
7231
7232  if (Attr)
7233    ProcessDeclAttributeList(S, Enum, Attr);
7234
7235  if (Enum->isDependentType()) {
7236    for (unsigned i = 0; i != NumElements; ++i) {
7237      EnumConstantDecl *ECD =
7238        cast_or_null<EnumConstantDecl>(Elements[i]);
7239      if (!ECD) continue;
7240
7241      ECD->setType(EnumType);
7242    }
7243
7244    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7245    return;
7246  }
7247
7248  // TODO: If the result value doesn't fit in an int, it must be a long or long
7249  // long value.  ISO C does not support this, but GCC does as an extension,
7250  // emit a warning.
7251  unsigned IntWidth = Context.Target.getIntWidth();
7252  unsigned CharWidth = Context.Target.getCharWidth();
7253  unsigned ShortWidth = Context.Target.getShortWidth();
7254
7255  // Verify that all the values are okay, compute the size of the values, and
7256  // reverse the list.
7257  unsigned NumNegativeBits = 0;
7258  unsigned NumPositiveBits = 0;
7259
7260  // Keep track of whether all elements have type int.
7261  bool AllElementsInt = true;
7262
7263  for (unsigned i = 0; i != NumElements; ++i) {
7264    EnumConstantDecl *ECD =
7265      cast_or_null<EnumConstantDecl>(Elements[i]);
7266    if (!ECD) continue;  // Already issued a diagnostic.
7267
7268    const llvm::APSInt &InitVal = ECD->getInitVal();
7269
7270    // Keep track of the size of positive and negative values.
7271    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7272      NumPositiveBits = std::max(NumPositiveBits,
7273                                 (unsigned)InitVal.getActiveBits());
7274    else
7275      NumNegativeBits = std::max(NumNegativeBits,
7276                                 (unsigned)InitVal.getMinSignedBits());
7277
7278    // Keep track of whether every enum element has type int (very commmon).
7279    if (AllElementsInt)
7280      AllElementsInt = ECD->getType() == Context.IntTy;
7281  }
7282
7283  // Figure out the type that should be used for this enum.
7284  // FIXME: Support -fshort-enums.
7285  QualType BestType;
7286  unsigned BestWidth;
7287
7288  // C++0x N3000 [conv.prom]p3:
7289  //   An rvalue of an unscoped enumeration type whose underlying
7290  //   type is not fixed can be converted to an rvalue of the first
7291  //   of the following types that can represent all the values of
7292  //   the enumeration: int, unsigned int, long int, unsigned long
7293  //   int, long long int, or unsigned long long int.
7294  // C99 6.4.4.3p2:
7295  //   An identifier declared as an enumeration constant has type int.
7296  // The C99 rule is modified by a gcc extension
7297  QualType BestPromotionType;
7298
7299  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7300  // -fshort-enums is the equivalent to specifying the packed attribute on all
7301  // enum definitions.
7302  if (LangOpts.ShortEnums)
7303    Packed = true;
7304
7305  if (Enum->isFixed()) {
7306    BestType = BestPromotionType = Enum->getIntegerType();
7307    // We don't need to set BestWidth, because BestType is going to be the type
7308    // of the enumerators, but we do anyway because otherwise some compilers
7309    // warn that it might be used uninitialized.
7310    BestWidth = CharWidth;
7311  }
7312  else if (NumNegativeBits) {
7313    // If there is a negative value, figure out the smallest integer type (of
7314    // int/long/longlong) that fits.
7315    // If it's packed, check also if it fits a char or a short.
7316    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7317      BestType = Context.SignedCharTy;
7318      BestWidth = CharWidth;
7319    } else if (Packed && NumNegativeBits <= ShortWidth &&
7320               NumPositiveBits < ShortWidth) {
7321      BestType = Context.ShortTy;
7322      BestWidth = ShortWidth;
7323    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7324      BestType = Context.IntTy;
7325      BestWidth = IntWidth;
7326    } else {
7327      BestWidth = Context.Target.getLongWidth();
7328
7329      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7330        BestType = Context.LongTy;
7331      } else {
7332        BestWidth = Context.Target.getLongLongWidth();
7333
7334        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7335          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7336        BestType = Context.LongLongTy;
7337      }
7338    }
7339    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7340  } else {
7341    // If there is no negative value, figure out the smallest type that fits
7342    // all of the enumerator values.
7343    // If it's packed, check also if it fits a char or a short.
7344    if (Packed && NumPositiveBits <= CharWidth) {
7345      BestType = Context.UnsignedCharTy;
7346      BestPromotionType = Context.IntTy;
7347      BestWidth = CharWidth;
7348    } else if (Packed && NumPositiveBits <= ShortWidth) {
7349      BestType = Context.UnsignedShortTy;
7350      BestPromotionType = Context.IntTy;
7351      BestWidth = ShortWidth;
7352    } else if (NumPositiveBits <= IntWidth) {
7353      BestType = Context.UnsignedIntTy;
7354      BestWidth = IntWidth;
7355      BestPromotionType
7356        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7357                           ? Context.UnsignedIntTy : Context.IntTy;
7358    } else if (NumPositiveBits <=
7359               (BestWidth = Context.Target.getLongWidth())) {
7360      BestType = Context.UnsignedLongTy;
7361      BestPromotionType
7362        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7363                           ? Context.UnsignedLongTy : Context.LongTy;
7364    } else {
7365      BestWidth = Context.Target.getLongLongWidth();
7366      assert(NumPositiveBits <= BestWidth &&
7367             "How could an initializer get larger than ULL?");
7368      BestType = Context.UnsignedLongLongTy;
7369      BestPromotionType
7370        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7371                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7372    }
7373  }
7374
7375  // Loop over all of the enumerator constants, changing their types to match
7376  // the type of the enum if needed.
7377  for (unsigned i = 0; i != NumElements; ++i) {
7378    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7379    if (!ECD) continue;  // Already issued a diagnostic.
7380
7381    // Standard C says the enumerators have int type, but we allow, as an
7382    // extension, the enumerators to be larger than int size.  If each
7383    // enumerator value fits in an int, type it as an int, otherwise type it the
7384    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7385    // that X has type 'int', not 'unsigned'.
7386
7387    // Determine whether the value fits into an int.
7388    llvm::APSInt InitVal = ECD->getInitVal();
7389
7390    // If it fits into an integer type, force it.  Otherwise force it to match
7391    // the enum decl type.
7392    QualType NewTy;
7393    unsigned NewWidth;
7394    bool NewSign;
7395    if (!getLangOptions().CPlusPlus &&
7396        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7397      NewTy = Context.IntTy;
7398      NewWidth = IntWidth;
7399      NewSign = true;
7400    } else if (ECD->getType() == BestType) {
7401      // Already the right type!
7402      if (getLangOptions().CPlusPlus)
7403        // C++ [dcl.enum]p4: Following the closing brace of an
7404        // enum-specifier, each enumerator has the type of its
7405        // enumeration.
7406        ECD->setType(EnumType);
7407      continue;
7408    } else {
7409      NewTy = BestType;
7410      NewWidth = BestWidth;
7411      NewSign = BestType->isSignedIntegerType();
7412    }
7413
7414    // Adjust the APSInt value.
7415    InitVal.extOrTrunc(NewWidth);
7416    InitVal.setIsSigned(NewSign);
7417    ECD->setInitVal(InitVal);
7418
7419    // Adjust the Expr initializer and type.
7420    if (ECD->getInitExpr())
7421      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7422                                                CK_IntegralCast,
7423                                                ECD->getInitExpr(),
7424                                                /*base paths*/ 0,
7425                                                VK_RValue));
7426    if (getLangOptions().CPlusPlus)
7427      // C++ [dcl.enum]p4: Following the closing brace of an
7428      // enum-specifier, each enumerator has the type of its
7429      // enumeration.
7430      ECD->setType(EnumType);
7431    else
7432      ECD->setType(NewTy);
7433  }
7434
7435  Enum->completeDefinition(BestType, BestPromotionType,
7436                           NumPositiveBits, NumNegativeBits);
7437}
7438
7439Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7440  StringLiteral *AsmString = cast<StringLiteral>(expr);
7441
7442  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7443                                                   Loc, AsmString);
7444  CurContext->addDecl(New);
7445  return New;
7446}
7447
7448void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7449                             SourceLocation PragmaLoc,
7450                             SourceLocation NameLoc) {
7451  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7452
7453  if (PrevDecl) {
7454    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7455  } else {
7456    (void)WeakUndeclaredIdentifiers.insert(
7457      std::pair<IdentifierInfo*,WeakInfo>
7458        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7459  }
7460}
7461
7462void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7463                                IdentifierInfo* AliasName,
7464                                SourceLocation PragmaLoc,
7465                                SourceLocation NameLoc,
7466                                SourceLocation AliasNameLoc) {
7467  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7468                                    LookupOrdinaryName);
7469  WeakInfo W = WeakInfo(Name, NameLoc);
7470
7471  if (PrevDecl) {
7472    if (!PrevDecl->hasAttr<AliasAttr>())
7473      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7474        DeclApplyPragmaWeak(TUScope, ND, W);
7475  } else {
7476    (void)WeakUndeclaredIdentifiers.insert(
7477      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7478  }
7479}
7480