SemaDecl.cpp revision 74e611a5fd0b5977c664d13a07b625ae23527d0d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = ObjectTypePtr.get();
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isNotEmpty()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return ParsedType();
96
97        // We know from the grammar that this name refers to a type,
98        // so build a dependent node to describe the type.
99        if (WantNontrivialTypeSourceInfo)
100          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
101
102        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
103        QualType T =
104          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
105                            II, NameLoc);
106
107          return ParsedType::make(T);
108      }
109
110      return ParsedType();
111    }
112
113    if (!LookupCtx->isDependentContext() &&
114        RequireCompleteDeclContext(*SS, LookupCtx))
115      return ParsedType();
116  }
117
118  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
119  // lookup for class-names.
120  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
121                                      LookupOrdinaryName;
122  LookupResult Result(*this, &II, NameLoc, Kind);
123  if (LookupCtx) {
124    // Perform "qualified" name lookup into the declaration context we
125    // computed, which is either the type of the base of a member access
126    // expression or the declaration context associated with a prior
127    // nested-name-specifier.
128    LookupQualifiedName(Result, LookupCtx);
129
130    if (ObjectTypePtr && Result.empty()) {
131      // C++ [basic.lookup.classref]p3:
132      //   If the unqualified-id is ~type-name, the type-name is looked up
133      //   in the context of the entire postfix-expression. If the type T of
134      //   the object expression is of a class type C, the type-name is also
135      //   looked up in the scope of class C. At least one of the lookups shall
136      //   find a name that refers to (possibly cv-qualified) T.
137      LookupName(Result, S);
138    }
139  } else {
140    // Perform unqualified name lookup.
141    LookupName(Result, S);
142  }
143
144  NamedDecl *IIDecl = 0;
145  switch (Result.getResultKind()) {
146  case LookupResult::NotFound:
147  case LookupResult::NotFoundInCurrentInstantiation:
148  case LookupResult::FoundOverloaded:
149  case LookupResult::FoundUnresolvedValue:
150    Result.suppressDiagnostics();
151    return ParsedType();
152
153  case LookupResult::Ambiguous:
154    // Recover from type-hiding ambiguities by hiding the type.  We'll
155    // do the lookup again when looking for an object, and we can
156    // diagnose the error then.  If we don't do this, then the error
157    // about hiding the type will be immediately followed by an error
158    // that only makes sense if the identifier was treated like a type.
159    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
160      Result.suppressDiagnostics();
161      return ParsedType();
162    }
163
164    // Look to see if we have a type anywhere in the list of results.
165    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
166         Res != ResEnd; ++Res) {
167      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
168        if (!IIDecl ||
169            (*Res)->getLocation().getRawEncoding() <
170              IIDecl->getLocation().getRawEncoding())
171          IIDecl = *Res;
172      }
173    }
174
175    if (!IIDecl) {
176      // None of the entities we found is a type, so there is no way
177      // to even assume that the result is a type. In this case, don't
178      // complain about the ambiguity. The parser will either try to
179      // perform this lookup again (e.g., as an object name), which
180      // will produce the ambiguity, or will complain that it expected
181      // a type name.
182      Result.suppressDiagnostics();
183      return ParsedType();
184    }
185
186    // We found a type within the ambiguous lookup; diagnose the
187    // ambiguity and then return that type. This might be the right
188    // answer, or it might not be, but it suppresses any attempt to
189    // perform the name lookup again.
190    break;
191
192  case LookupResult::Found:
193    IIDecl = Result.getFoundDecl();
194    break;
195  }
196
197  assert(IIDecl && "Didn't find decl");
198
199  QualType T;
200  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
201    DiagnoseUseOfDecl(IIDecl, NameLoc);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS && SS->isNotEmpty()) {
207      if (WantNontrivialTypeSourceInfo) {
208        // Construct a type with type-source information.
209        TypeLocBuilder Builder;
210        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
211
212        T = getElaboratedType(ETK_None, *SS, T);
213        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
214        ElabTL.setKeywordLoc(SourceLocation());
215        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
216        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
217      } else {
218        T = getElaboratedType(ETK_None, *SS, T);
219      }
220    }
221  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
222    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
223    if (!HasTrailingDot)
224      T = Context.getObjCInterfaceType(IDecl);
225  }
226
227  if (T.isNull()) {
228    // If it's not plausibly a type, suppress diagnostics.
229    Result.suppressDiagnostics();
230    return ParsedType();
231  }
232  return ParsedType::make(T);
233}
234
235/// isTagName() - This method is called *for error recovery purposes only*
236/// to determine if the specified name is a valid tag name ("struct foo").  If
237/// so, this returns the TST for the tag corresponding to it (TST_enum,
238/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
239/// where the user forgot to specify the tag.
240DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
241  // Do a tag name lookup in this scope.
242  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
243  LookupName(R, S, false);
244  R.suppressDiagnostics();
245  if (R.getResultKind() == LookupResult::Found)
246    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
247      switch (TD->getTagKind()) {
248      default:         return DeclSpec::TST_unspecified;
249      case TTK_Struct: return DeclSpec::TST_struct;
250      case TTK_Union:  return DeclSpec::TST_union;
251      case TTK_Class:  return DeclSpec::TST_class;
252      case TTK_Enum:   return DeclSpec::TST_enum;
253      }
254    }
255
256  return DeclSpec::TST_unspecified;
257}
258
259/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
260/// if a CXXScopeSpec's type is equal to the type of one of the base classes
261/// then downgrade the missing typename error to a warning.
262/// This is needed for MSVC compatibility; Example:
263/// @code
264/// template<class T> class A {
265/// public:
266///   typedef int TYPE;
267/// };
268/// template<class T> class B : public A<T> {
269/// public:
270///   A<T>::TYPE a; // no typename required because A<T> is a base class.
271/// };
272/// @endcode
273bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
274  if (CurContext->isRecord()) {
275    const Type *Ty = SS->getScopeRep()->getAsType();
276
277    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
278    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
279          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
280      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
281        return true;
282  }
283  return false;
284}
285
286bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
287                                   SourceLocation IILoc,
288                                   Scope *S,
289                                   CXXScopeSpec *SS,
290                                   ParsedType &SuggestedType) {
291  // We don't have anything to suggest (yet).
292  SuggestedType = ParsedType();
293
294  // There may have been a typo in the name of the type. Look up typo
295  // results, in case we have something that we can suggest.
296  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
297                                             LookupOrdinaryName, S, SS, NULL,
298                                             false, CTC_Type)) {
299    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
300    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
301
302    if (Corrected.isKeyword()) {
303      // We corrected to a keyword.
304      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
305      Diag(IILoc, diag::err_unknown_typename_suggest)
306        << &II << CorrectedQuotedStr;
307      return true;
308    } else {
309      NamedDecl *Result = Corrected.getCorrectionDecl();
310      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
311          !Result->isInvalidDecl()) {
312        // We found a similarly-named type or interface; suggest that.
313        if (!SS || !SS->isSet())
314          Diag(IILoc, diag::err_unknown_typename_suggest)
315            << &II << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
317        else if (DeclContext *DC = computeDeclContext(*SS, false))
318          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
319            << &II << DC << CorrectedQuotedStr << SS->getRange()
320            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
321        else
322          llvm_unreachable("could not have corrected a typo here");
323
324        Diag(Result->getLocation(), diag::note_previous_decl)
325          << CorrectedQuotedStr;
326
327        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
328                                    false, false, ParsedType(),
329                                    /*NonTrivialTypeSourceInfo=*/true);
330        return true;
331      }
332    }
333  }
334
335  if (getLangOptions().CPlusPlus) {
336    // See if II is a class template that the user forgot to pass arguments to.
337    UnqualifiedId Name;
338    Name.setIdentifier(&II, IILoc);
339    CXXScopeSpec EmptySS;
340    TemplateTy TemplateResult;
341    bool MemberOfUnknownSpecialization;
342    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
343                       Name, ParsedType(), true, TemplateResult,
344                       MemberOfUnknownSpecialization) == TNK_Type_template) {
345      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
346      Diag(IILoc, diag::err_template_missing_args) << TplName;
347      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
348        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
349          << TplDecl->getTemplateParameters()->getSourceRange();
350      }
351      return true;
352    }
353  }
354
355  // FIXME: Should we move the logic that tries to recover from a missing tag
356  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
357
358  if (!SS || (!SS->isSet() && !SS->isInvalid()))
359    Diag(IILoc, diag::err_unknown_typename) << &II;
360  else if (DeclContext *DC = computeDeclContext(*SS, false))
361    Diag(IILoc, diag::err_typename_nested_not_found)
362      << &II << DC << SS->getRange();
363  else if (isDependentScopeSpecifier(*SS)) {
364    unsigned DiagID = diag::err_typename_missing;
365    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
366      DiagID = diag::warn_typename_missing;
367
368    Diag(SS->getRange().getBegin(), DiagID)
369      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
370      << SourceRange(SS->getRange().getBegin(), IILoc)
371      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
372    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
373  } else {
374    assert(SS && SS->isInvalid() &&
375           "Invalid scope specifier has already been diagnosed");
376  }
377
378  return true;
379}
380
381/// \brief Determine whether the given result set contains either a type name
382/// or
383static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
384  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
385                       NextToken.is(tok::less);
386
387  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
388    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
389      return true;
390
391    if (CheckTemplate && isa<TemplateDecl>(*I))
392      return true;
393  }
394
395  return false;
396}
397
398Sema::NameClassification Sema::ClassifyName(Scope *S,
399                                            CXXScopeSpec &SS,
400                                            IdentifierInfo *&Name,
401                                            SourceLocation NameLoc,
402                                            const Token &NextToken) {
403  DeclarationNameInfo NameInfo(Name, NameLoc);
404  ObjCMethodDecl *CurMethod = getCurMethodDecl();
405
406  if (NextToken.is(tok::coloncolon)) {
407    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
408                                QualType(), false, SS, 0, false);
409
410  }
411
412  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
413  LookupParsedName(Result, S, &SS, !CurMethod);
414
415  // Perform lookup for Objective-C instance variables (including automatically
416  // synthesized instance variables), if we're in an Objective-C method.
417  // FIXME: This lookup really, really needs to be folded in to the normal
418  // unqualified lookup mechanism.
419  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
420    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
421    if (E.get() || E.isInvalid())
422      return E;
423  }
424
425  bool SecondTry = false;
426  bool IsFilteredTemplateName = false;
427
428Corrected:
429  switch (Result.getResultKind()) {
430  case LookupResult::NotFound:
431    // If an unqualified-id is followed by a '(', then we have a function
432    // call.
433    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
434      // In C++, this is an ADL-only call.
435      // FIXME: Reference?
436      if (getLangOptions().CPlusPlus)
437        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
438
439      // C90 6.3.2.2:
440      //   If the expression that precedes the parenthesized argument list in a
441      //   function call consists solely of an identifier, and if no
442      //   declaration is visible for this identifier, the identifier is
443      //   implicitly declared exactly as if, in the innermost block containing
444      //   the function call, the declaration
445      //
446      //     extern int identifier ();
447      //
448      //   appeared.
449      //
450      // We also allow this in C99 as an extension.
451      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
452        Result.addDecl(D);
453        Result.resolveKind();
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
455      }
456    }
457
458    // In C, we first see whether there is a tag type by the same name, in
459    // which case it's likely that the user just forget to write "enum",
460    // "struct", or "union".
461    if (!getLangOptions().CPlusPlus && !SecondTry) {
462      Result.clear(LookupTagName);
463      LookupParsedName(Result, S, &SS);
464      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
465        const char *TagName = 0;
466        const char *FixItTagName = 0;
467        switch (Tag->getTagKind()) {
468          case TTK_Class:
469            TagName = "class";
470            FixItTagName = "class ";
471            break;
472
473          case TTK_Enum:
474            TagName = "enum";
475            FixItTagName = "enum ";
476            break;
477
478          case TTK_Struct:
479            TagName = "struct";
480            FixItTagName = "struct ";
481            break;
482
483          case TTK_Union:
484            TagName = "union";
485            FixItTagName = "union ";
486            break;
487        }
488
489        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
490          << Name << TagName << getLangOptions().CPlusPlus
491          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
492        break;
493      }
494
495      Result.clear(LookupOrdinaryName);
496    }
497
498    // Perform typo correction to determine if there is another name that is
499    // close to this name.
500    if (!SecondTry) {
501      SecondTry = true;
502      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
503                                                 Result.getLookupKind(), S, &SS)) {
504        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
505        unsigned QualifiedDiag = diag::err_no_member_suggest;
506        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
507        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
508
509        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
510        NamedDecl *UnderlyingFirstDecl
511          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
512        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
513            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
514          UnqualifiedDiag = diag::err_no_template_suggest;
515          QualifiedDiag = diag::err_no_member_template_suggest;
516        } else if (UnderlyingFirstDecl &&
517                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
518                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
520           UnqualifiedDiag = diag::err_unknown_typename_suggest;
521           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
522         }
523
524        if (SS.isEmpty())
525          Diag(NameLoc, UnqualifiedDiag)
526            << Name << CorrectedQuotedStr
527            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
528        else
529          Diag(NameLoc, QualifiedDiag)
530            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
531            << SS.getRange()
532            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
533
534        // Update the name, so that the caller has the new name.
535        Name = Corrected.getCorrectionAsIdentifierInfo();
536
537        // Also update the LookupResult...
538        // FIXME: This should probably go away at some point
539        Result.clear();
540        Result.setLookupName(Corrected.getCorrection());
541        if (FirstDecl) Result.addDecl(FirstDecl);
542
543        // Typo correction corrected to a keyword.
544        if (Corrected.isKeyword())
545          return Corrected.getCorrectionAsIdentifierInfo();
546
547        if (FirstDecl)
548          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549            << CorrectedQuotedStr;
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  return DC->getLexicalParent();
724}
725
726void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
727  assert(getContainingDC(DC) == CurContext &&
728      "The next DeclContext should be lexically contained in the current one.");
729  CurContext = DC;
730  S->setEntity(DC);
731}
732
733void Sema::PopDeclContext() {
734  assert(CurContext && "DeclContext imbalance!");
735
736  CurContext = getContainingDC(CurContext);
737  assert(CurContext && "Popped translation unit!");
738}
739
740/// EnterDeclaratorContext - Used when we must lookup names in the context
741/// of a declarator's nested name specifier.
742///
743void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
744  // C++0x [basic.lookup.unqual]p13:
745  //   A name used in the definition of a static data member of class
746  //   X (after the qualified-id of the static member) is looked up as
747  //   if the name was used in a member function of X.
748  // C++0x [basic.lookup.unqual]p14:
749  //   If a variable member of a namespace is defined outside of the
750  //   scope of its namespace then any name used in the definition of
751  //   the variable member (after the declarator-id) is looked up as
752  //   if the definition of the variable member occurred in its
753  //   namespace.
754  // Both of these imply that we should push a scope whose context
755  // is the semantic context of the declaration.  We can't use
756  // PushDeclContext here because that context is not necessarily
757  // lexically contained in the current context.  Fortunately,
758  // the containing scope should have the appropriate information.
759
760  assert(!S->getEntity() && "scope already has entity");
761
762#ifndef NDEBUG
763  Scope *Ancestor = S->getParent();
764  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
765  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
766#endif
767
768  CurContext = DC;
769  S->setEntity(DC);
770}
771
772void Sema::ExitDeclaratorContext(Scope *S) {
773  assert(S->getEntity() == CurContext && "Context imbalance!");
774
775  // Switch back to the lexical context.  The safety of this is
776  // enforced by an assert in EnterDeclaratorContext.
777  Scope *Ancestor = S->getParent();
778  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
779  CurContext = (DeclContext*) Ancestor->getEntity();
780
781  // We don't need to do anything with the scope, which is going to
782  // disappear.
783}
784
785/// \brief Determine whether we allow overloading of the function
786/// PrevDecl with another declaration.
787///
788/// This routine determines whether overloading is possible, not
789/// whether some new function is actually an overload. It will return
790/// true in C++ (where we can always provide overloads) or, as an
791/// extension, in C when the previous function is already an
792/// overloaded function declaration or has the "overloadable"
793/// attribute.
794static bool AllowOverloadingOfFunction(LookupResult &Previous,
795                                       ASTContext &Context) {
796  if (Context.getLangOptions().CPlusPlus)
797    return true;
798
799  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
800    return true;
801
802  return (Previous.getResultKind() == LookupResult::Found
803          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
804}
805
806/// Add this decl to the scope shadowed decl chains.
807void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
808  // Move up the scope chain until we find the nearest enclosing
809  // non-transparent context. The declaration will be introduced into this
810  // scope.
811  while (S->getEntity() &&
812         ((DeclContext *)S->getEntity())->isTransparentContext())
813    S = S->getParent();
814
815  // Add scoped declarations into their context, so that they can be
816  // found later. Declarations without a context won't be inserted
817  // into any context.
818  if (AddToContext)
819    CurContext->addDecl(D);
820
821  // Out-of-line definitions shouldn't be pushed into scope in C++.
822  // Out-of-line variable and function definitions shouldn't even in C.
823  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
824      D->isOutOfLine())
825    return;
826
827  // Template instantiations should also not be pushed into scope.
828  if (isa<FunctionDecl>(D) &&
829      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
830    return;
831
832  // If this replaces anything in the current scope,
833  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
834                               IEnd = IdResolver.end();
835  for (; I != IEnd; ++I) {
836    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
837      S->RemoveDecl(*I);
838      IdResolver.RemoveDecl(*I);
839
840      // Should only need to replace one decl.
841      break;
842    }
843  }
844
845  S->AddDecl(D);
846
847  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
848    // Implicitly-generated labels may end up getting generated in an order that
849    // isn't strictly lexical, which breaks name lookup. Be careful to insert
850    // the label at the appropriate place in the identifier chain.
851    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
852      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
853      if (IDC == CurContext) {
854        if (!S->isDeclScope(*I))
855          continue;
856      } else if (IDC->Encloses(CurContext))
857        break;
858    }
859
860    IdResolver.InsertDeclAfter(I, D);
861  } else {
862    IdResolver.AddDecl(D);
863  }
864}
865
866bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
867                         bool ExplicitInstantiationOrSpecialization) {
868  return IdResolver.isDeclInScope(D, Ctx, Context, S,
869                                  ExplicitInstantiationOrSpecialization);
870}
871
872Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
873  DeclContext *TargetDC = DC->getPrimaryContext();
874  do {
875    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
876      if (ScopeDC->getPrimaryContext() == TargetDC)
877        return S;
878  } while ((S = S->getParent()));
879
880  return 0;
881}
882
883static bool isOutOfScopePreviousDeclaration(NamedDecl *,
884                                            DeclContext*,
885                                            ASTContext&);
886
887/// Filters out lookup results that don't fall within the given scope
888/// as determined by isDeclInScope.
889void Sema::FilterLookupForScope(LookupResult &R,
890                                DeclContext *Ctx, Scope *S,
891                                bool ConsiderLinkage,
892                                bool ExplicitInstantiationOrSpecialization) {
893  LookupResult::Filter F = R.makeFilter();
894  while (F.hasNext()) {
895    NamedDecl *D = F.next();
896
897    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
898      continue;
899
900    if (ConsiderLinkage &&
901        isOutOfScopePreviousDeclaration(D, Ctx, Context))
902      continue;
903
904    F.erase();
905  }
906
907  F.done();
908}
909
910static bool isUsingDecl(NamedDecl *D) {
911  return isa<UsingShadowDecl>(D) ||
912         isa<UnresolvedUsingTypenameDecl>(D) ||
913         isa<UnresolvedUsingValueDecl>(D);
914}
915
916/// Removes using shadow declarations from the lookup results.
917static void RemoveUsingDecls(LookupResult &R) {
918  LookupResult::Filter F = R.makeFilter();
919  while (F.hasNext())
920    if (isUsingDecl(F.next()))
921      F.erase();
922
923  F.done();
924}
925
926/// \brief Check for this common pattern:
927/// @code
928/// class S {
929///   S(const S&); // DO NOT IMPLEMENT
930///   void operator=(const S&); // DO NOT IMPLEMENT
931/// };
932/// @endcode
933static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
934  // FIXME: Should check for private access too but access is set after we get
935  // the decl here.
936  if (D->doesThisDeclarationHaveABody())
937    return false;
938
939  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
940    return CD->isCopyConstructor();
941  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
942    return Method->isCopyAssignmentOperator();
943  return false;
944}
945
946bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
947  assert(D);
948
949  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
950    return false;
951
952  // Ignore class templates.
953  if (D->getDeclContext()->isDependentContext() ||
954      D->getLexicalDeclContext()->isDependentContext())
955    return false;
956
957  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
958    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
959      return false;
960
961    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
962      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
963        return false;
964    } else {
965      // 'static inline' functions are used in headers; don't warn.
966      if (FD->getStorageClass() == SC_Static &&
967          FD->isInlineSpecified())
968        return false;
969    }
970
971    if (FD->doesThisDeclarationHaveABody() &&
972        Context.DeclMustBeEmitted(FD))
973      return false;
974  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
975    if (!VD->isFileVarDecl() ||
976        VD->getType().isConstant(Context) ||
977        Context.DeclMustBeEmitted(VD))
978      return false;
979
980    if (VD->isStaticDataMember() &&
981        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
982      return false;
983
984  } else {
985    return false;
986  }
987
988  // Only warn for unused decls internal to the translation unit.
989  if (D->getLinkage() == ExternalLinkage)
990    return false;
991
992  return true;
993}
994
995void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
996  if (!D)
997    return;
998
999  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1000    const FunctionDecl *First = FD->getFirstDeclaration();
1001    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1002      return; // First should already be in the vector.
1003  }
1004
1005  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1006    const VarDecl *First = VD->getFirstDeclaration();
1007    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1008      return; // First should already be in the vector.
1009  }
1010
1011   if (ShouldWarnIfUnusedFileScopedDecl(D))
1012     UnusedFileScopedDecls.push_back(D);
1013 }
1014
1015static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1016  if (D->isInvalidDecl())
1017    return false;
1018
1019  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1020    return false;
1021
1022  if (isa<LabelDecl>(D))
1023    return true;
1024
1025  // White-list anything that isn't a local variable.
1026  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1027      !D->getDeclContext()->isFunctionOrMethod())
1028    return false;
1029
1030  // Types of valid local variables should be complete, so this should succeed.
1031  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1032
1033    // White-list anything with an __attribute__((unused)) type.
1034    QualType Ty = VD->getType();
1035
1036    // Only look at the outermost level of typedef.
1037    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1038      if (TT->getDecl()->hasAttr<UnusedAttr>())
1039        return false;
1040    }
1041
1042    // If we failed to complete the type for some reason, or if the type is
1043    // dependent, don't diagnose the variable.
1044    if (Ty->isIncompleteType() || Ty->isDependentType())
1045      return false;
1046
1047    if (const TagType *TT = Ty->getAs<TagType>()) {
1048      const TagDecl *Tag = TT->getDecl();
1049      if (Tag->hasAttr<UnusedAttr>())
1050        return false;
1051
1052      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1053        // FIXME: Checking for the presence of a user-declared constructor
1054        // isn't completely accurate; we'd prefer to check that the initializer
1055        // has no side effects.
1056        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1057          return false;
1058      }
1059    }
1060
1061    // TODO: __attribute__((unused)) templates?
1062  }
1063
1064  return true;
1065}
1066
1067static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1068                                     FixItHint &Hint) {
1069  if (isa<LabelDecl>(D)) {
1070    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1071                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1072    if (AfterColon.isInvalid())
1073      return;
1074    Hint = FixItHint::CreateRemoval(CharSourceRange::
1075                                    getCharRange(D->getLocStart(), AfterColon));
1076  }
1077  return;
1078}
1079
1080/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1081/// unless they are marked attr(unused).
1082void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1083  FixItHint Hint;
1084  if (!ShouldDiagnoseUnusedDecl(D))
1085    return;
1086
1087  GenerateFixForUnusedDecl(D, Context, Hint);
1088
1089  unsigned DiagID;
1090  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1091    DiagID = diag::warn_unused_exception_param;
1092  else if (isa<LabelDecl>(D))
1093    DiagID = diag::warn_unused_label;
1094  else
1095    DiagID = diag::warn_unused_variable;
1096
1097  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1098}
1099
1100static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1101  // Verify that we have no forward references left.  If so, there was a goto
1102  // or address of a label taken, but no definition of it.  Label fwd
1103  // definitions are indicated with a null substmt.
1104  if (L->getStmt() == 0)
1105    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1106}
1107
1108void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1109  if (S->decl_empty()) return;
1110  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1111         "Scope shouldn't contain decls!");
1112
1113  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1114       I != E; ++I) {
1115    Decl *TmpD = (*I);
1116    assert(TmpD && "This decl didn't get pushed??");
1117
1118    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1119    NamedDecl *D = cast<NamedDecl>(TmpD);
1120
1121    if (!D->getDeclName()) continue;
1122
1123    // Diagnose unused variables in this scope.
1124    if (!S->hasErrorOccurred())
1125      DiagnoseUnusedDecl(D);
1126
1127    // If this was a forward reference to a label, verify it was defined.
1128    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1129      CheckPoppedLabel(LD, *this);
1130
1131    // Remove this name from our lexical scope.
1132    IdResolver.RemoveDecl(D);
1133  }
1134}
1135
1136/// \brief Look for an Objective-C class in the translation unit.
1137///
1138/// \param Id The name of the Objective-C class we're looking for. If
1139/// typo-correction fixes this name, the Id will be updated
1140/// to the fixed name.
1141///
1142/// \param IdLoc The location of the name in the translation unit.
1143///
1144/// \param TypoCorrection If true, this routine will attempt typo correction
1145/// if there is no class with the given name.
1146///
1147/// \returns The declaration of the named Objective-C class, or NULL if the
1148/// class could not be found.
1149ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1150                                              SourceLocation IdLoc,
1151                                              bool DoTypoCorrection) {
1152  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1153  // creation from this context.
1154  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1155
1156  if (!IDecl && DoTypoCorrection) {
1157    // Perform typo correction at the given location, but only if we
1158    // find an Objective-C class name.
1159    TypoCorrection C;
1160    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1161                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1162        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1163      Diag(IdLoc, diag::err_undef_interface_suggest)
1164        << Id << IDecl->getDeclName()
1165        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1166      Diag(IDecl->getLocation(), diag::note_previous_decl)
1167        << IDecl->getDeclName();
1168
1169      Id = IDecl->getIdentifier();
1170    }
1171  }
1172
1173  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1174}
1175
1176/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1177/// from S, where a non-field would be declared. This routine copes
1178/// with the difference between C and C++ scoping rules in structs and
1179/// unions. For example, the following code is well-formed in C but
1180/// ill-formed in C++:
1181/// @code
1182/// struct S6 {
1183///   enum { BAR } e;
1184/// };
1185///
1186/// void test_S6() {
1187///   struct S6 a;
1188///   a.e = BAR;
1189/// }
1190/// @endcode
1191/// For the declaration of BAR, this routine will return a different
1192/// scope. The scope S will be the scope of the unnamed enumeration
1193/// within S6. In C++, this routine will return the scope associated
1194/// with S6, because the enumeration's scope is a transparent
1195/// context but structures can contain non-field names. In C, this
1196/// routine will return the translation unit scope, since the
1197/// enumeration's scope is a transparent context and structures cannot
1198/// contain non-field names.
1199Scope *Sema::getNonFieldDeclScope(Scope *S) {
1200  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1201         (S->getEntity() &&
1202          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1203         (S->isClassScope() && !getLangOptions().CPlusPlus))
1204    S = S->getParent();
1205  return S;
1206}
1207
1208/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1209/// file scope.  lazily create a decl for it. ForRedeclaration is true
1210/// if we're creating this built-in in anticipation of redeclaring the
1211/// built-in.
1212NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1213                                     Scope *S, bool ForRedeclaration,
1214                                     SourceLocation Loc) {
1215  Builtin::ID BID = (Builtin::ID)bid;
1216
1217  ASTContext::GetBuiltinTypeError Error;
1218  QualType R = Context.GetBuiltinType(BID, Error);
1219  switch (Error) {
1220  case ASTContext::GE_None:
1221    // Okay
1222    break;
1223
1224  case ASTContext::GE_Missing_stdio:
1225    if (ForRedeclaration)
1226      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1227        << Context.BuiltinInfo.GetName(BID);
1228    return 0;
1229
1230  case ASTContext::GE_Missing_setjmp:
1231    if (ForRedeclaration)
1232      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1233        << Context.BuiltinInfo.GetName(BID);
1234    return 0;
1235  }
1236
1237  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1238    Diag(Loc, diag::ext_implicit_lib_function_decl)
1239      << Context.BuiltinInfo.GetName(BID)
1240      << R;
1241    if (Context.BuiltinInfo.getHeaderName(BID) &&
1242        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1243          != Diagnostic::Ignored)
1244      Diag(Loc, diag::note_please_include_header)
1245        << Context.BuiltinInfo.getHeaderName(BID)
1246        << Context.BuiltinInfo.GetName(BID);
1247  }
1248
1249  FunctionDecl *New = FunctionDecl::Create(Context,
1250                                           Context.getTranslationUnitDecl(),
1251                                           Loc, Loc, II, R, /*TInfo=*/0,
1252                                           SC_Extern,
1253                                           SC_None, false,
1254                                           /*hasPrototype=*/true);
1255  New->setImplicit();
1256
1257  // Create Decl objects for each parameter, adding them to the
1258  // FunctionDecl.
1259  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1260    SmallVector<ParmVarDecl*, 16> Params;
1261    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1262      ParmVarDecl *parm =
1263        ParmVarDecl::Create(Context, New, SourceLocation(),
1264                            SourceLocation(), 0,
1265                            FT->getArgType(i), /*TInfo=*/0,
1266                            SC_None, SC_None, 0);
1267      parm->setScopeInfo(0, i);
1268      Params.push_back(parm);
1269    }
1270    New->setParams(Params.data(), Params.size());
1271  }
1272
1273  AddKnownFunctionAttributes(New);
1274
1275  // TUScope is the translation-unit scope to insert this function into.
1276  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1277  // relate Scopes to DeclContexts, and probably eliminate CurContext
1278  // entirely, but we're not there yet.
1279  DeclContext *SavedContext = CurContext;
1280  CurContext = Context.getTranslationUnitDecl();
1281  PushOnScopeChains(New, TUScope);
1282  CurContext = SavedContext;
1283  return New;
1284}
1285
1286/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1287/// same name and scope as a previous declaration 'Old'.  Figure out
1288/// how to resolve this situation, merging decls or emitting
1289/// diagnostics as appropriate. If there was an error, set New to be invalid.
1290///
1291void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1292  // If the new decl is known invalid already, don't bother doing any
1293  // merging checks.
1294  if (New->isInvalidDecl()) return;
1295
1296  // Allow multiple definitions for ObjC built-in typedefs.
1297  // FIXME: Verify the underlying types are equivalent!
1298  if (getLangOptions().ObjC1) {
1299    const IdentifierInfo *TypeID = New->getIdentifier();
1300    switch (TypeID->getLength()) {
1301    default: break;
1302    case 2:
1303      if (!TypeID->isStr("id"))
1304        break;
1305      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1306      // Install the built-in type for 'id', ignoring the current definition.
1307      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1308      return;
1309    case 5:
1310      if (!TypeID->isStr("Class"))
1311        break;
1312      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1313      // Install the built-in type for 'Class', ignoring the current definition.
1314      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1315      return;
1316    case 3:
1317      if (!TypeID->isStr("SEL"))
1318        break;
1319      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1320      // Install the built-in type for 'SEL', ignoring the current definition.
1321      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1322      return;
1323    }
1324    // Fall through - the typedef name was not a builtin type.
1325  }
1326
1327  // Verify the old decl was also a type.
1328  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1329  if (!Old) {
1330    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1331      << New->getDeclName();
1332
1333    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1334    if (OldD->getLocation().isValid())
1335      Diag(OldD->getLocation(), diag::note_previous_definition);
1336
1337    return New->setInvalidDecl();
1338  }
1339
1340  // If the old declaration is invalid, just give up here.
1341  if (Old->isInvalidDecl())
1342    return New->setInvalidDecl();
1343
1344  // Determine the "old" type we'll use for checking and diagnostics.
1345  QualType OldType;
1346  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1347    OldType = OldTypedef->getUnderlyingType();
1348  else
1349    OldType = Context.getTypeDeclType(Old);
1350
1351  // If the typedef types are not identical, reject them in all languages and
1352  // with any extensions enabled.
1353
1354  if (OldType != New->getUnderlyingType() &&
1355      Context.getCanonicalType(OldType) !=
1356      Context.getCanonicalType(New->getUnderlyingType())) {
1357    int Kind = 0;
1358    if (isa<TypeAliasDecl>(Old))
1359      Kind = 1;
1360    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1361      << Kind << New->getUnderlyingType() << OldType;
1362    if (Old->getLocation().isValid())
1363      Diag(Old->getLocation(), diag::note_previous_definition);
1364    return New->setInvalidDecl();
1365  }
1366
1367  // The types match.  Link up the redeclaration chain if the old
1368  // declaration was a typedef.
1369  // FIXME: this is a potential source of weirdness if the type
1370  // spellings don't match exactly.
1371  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1372    New->setPreviousDeclaration(Typedef);
1373
1374  if (getLangOptions().Microsoft)
1375    return;
1376
1377  if (getLangOptions().CPlusPlus) {
1378    // C++ [dcl.typedef]p2:
1379    //   In a given non-class scope, a typedef specifier can be used to
1380    //   redefine the name of any type declared in that scope to refer
1381    //   to the type to which it already refers.
1382    if (!isa<CXXRecordDecl>(CurContext))
1383      return;
1384
1385    // C++0x [dcl.typedef]p4:
1386    //   In a given class scope, a typedef specifier can be used to redefine
1387    //   any class-name declared in that scope that is not also a typedef-name
1388    //   to refer to the type to which it already refers.
1389    //
1390    // This wording came in via DR424, which was a correction to the
1391    // wording in DR56, which accidentally banned code like:
1392    //
1393    //   struct S {
1394    //     typedef struct A { } A;
1395    //   };
1396    //
1397    // in the C++03 standard. We implement the C++0x semantics, which
1398    // allow the above but disallow
1399    //
1400    //   struct S {
1401    //     typedef int I;
1402    //     typedef int I;
1403    //   };
1404    //
1405    // since that was the intent of DR56.
1406    if (!isa<TypedefNameDecl>(Old))
1407      return;
1408
1409    Diag(New->getLocation(), diag::err_redefinition)
1410      << New->getDeclName();
1411    Diag(Old->getLocation(), diag::note_previous_definition);
1412    return New->setInvalidDecl();
1413  }
1414
1415  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1416  // is normally mapped to an error, but can be controlled with
1417  // -Wtypedef-redefinition.  If either the original or the redefinition is
1418  // in a system header, don't emit this for compatibility with GCC.
1419  if (getDiagnostics().getSuppressSystemWarnings() &&
1420      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1421       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1422    return;
1423
1424  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1425    << New->getDeclName();
1426  Diag(Old->getLocation(), diag::note_previous_definition);
1427  return;
1428}
1429
1430/// DeclhasAttr - returns true if decl Declaration already has the target
1431/// attribute.
1432static bool
1433DeclHasAttr(const Decl *D, const Attr *A) {
1434  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1435  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1436    if ((*i)->getKind() == A->getKind()) {
1437      // FIXME: Don't hardcode this check
1438      if (OA && isa<OwnershipAttr>(*i))
1439        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1440      return true;
1441    }
1442
1443  return false;
1444}
1445
1446/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1447static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1448                                ASTContext &C, bool mergeDeprecation = true) {
1449  if (!oldDecl->hasAttrs())
1450    return;
1451
1452  bool foundAny = newDecl->hasAttrs();
1453
1454  // Ensure that any moving of objects within the allocated map is done before
1455  // we process them.
1456  if (!foundAny) newDecl->setAttrs(AttrVec());
1457
1458  for (specific_attr_iterator<InheritableAttr>
1459       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1460       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1461    // Ignore deprecated and unavailable attributes if requested.
1462    if (!mergeDeprecation &&
1463        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1464      continue;
1465
1466    if (!DeclHasAttr(newDecl, *i)) {
1467      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1468      newAttr->setInherited(true);
1469      newDecl->addAttr(newAttr);
1470      foundAny = true;
1471    }
1472  }
1473
1474  if (!foundAny) newDecl->dropAttrs();
1475}
1476
1477/// mergeParamDeclAttributes - Copy attributes from the old parameter
1478/// to the new one.
1479static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1480                                     const ParmVarDecl *oldDecl,
1481                                     ASTContext &C) {
1482  if (!oldDecl->hasAttrs())
1483    return;
1484
1485  bool foundAny = newDecl->hasAttrs();
1486
1487  // Ensure that any moving of objects within the allocated map is
1488  // done before we process them.
1489  if (!foundAny) newDecl->setAttrs(AttrVec());
1490
1491  for (specific_attr_iterator<InheritableParamAttr>
1492       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1493       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1494    if (!DeclHasAttr(newDecl, *i)) {
1495      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1496      newAttr->setInherited(true);
1497      newDecl->addAttr(newAttr);
1498      foundAny = true;
1499    }
1500  }
1501
1502  if (!foundAny) newDecl->dropAttrs();
1503}
1504
1505namespace {
1506
1507/// Used in MergeFunctionDecl to keep track of function parameters in
1508/// C.
1509struct GNUCompatibleParamWarning {
1510  ParmVarDecl *OldParm;
1511  ParmVarDecl *NewParm;
1512  QualType PromotedType;
1513};
1514
1515}
1516
1517/// getSpecialMember - get the special member enum for a method.
1518Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1519  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1520    if (Ctor->isDefaultConstructor())
1521      return Sema::CXXDefaultConstructor;
1522
1523    if (Ctor->isCopyConstructor())
1524      return Sema::CXXCopyConstructor;
1525
1526    if (Ctor->isMoveConstructor())
1527      return Sema::CXXMoveConstructor;
1528  } else if (isa<CXXDestructorDecl>(MD)) {
1529    return Sema::CXXDestructor;
1530  } else if (MD->isCopyAssignmentOperator()) {
1531    return Sema::CXXCopyAssignment;
1532  } else if (MD->isMoveAssignmentOperator()) {
1533    return Sema::CXXMoveAssignment;
1534  }
1535
1536  return Sema::CXXInvalid;
1537}
1538
1539/// canRedefineFunction - checks if a function can be redefined. Currently,
1540/// only extern inline functions can be redefined, and even then only in
1541/// GNU89 mode.
1542static bool canRedefineFunction(const FunctionDecl *FD,
1543                                const LangOptions& LangOpts) {
1544  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1545          !LangOpts.CPlusPlus &&
1546          FD->isInlineSpecified() &&
1547          FD->getStorageClass() == SC_Extern);
1548}
1549
1550/// MergeFunctionDecl - We just parsed a function 'New' from
1551/// declarator D which has the same name and scope as a previous
1552/// declaration 'Old'.  Figure out how to resolve this situation,
1553/// merging decls or emitting diagnostics as appropriate.
1554///
1555/// In C++, New and Old must be declarations that are not
1556/// overloaded. Use IsOverload to determine whether New and Old are
1557/// overloaded, and to select the Old declaration that New should be
1558/// merged with.
1559///
1560/// Returns true if there was an error, false otherwise.
1561bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1562  // Verify the old decl was also a function.
1563  FunctionDecl *Old = 0;
1564  if (FunctionTemplateDecl *OldFunctionTemplate
1565        = dyn_cast<FunctionTemplateDecl>(OldD))
1566    Old = OldFunctionTemplate->getTemplatedDecl();
1567  else
1568    Old = dyn_cast<FunctionDecl>(OldD);
1569  if (!Old) {
1570    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1571      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1572      Diag(Shadow->getTargetDecl()->getLocation(),
1573           diag::note_using_decl_target);
1574      Diag(Shadow->getUsingDecl()->getLocation(),
1575           diag::note_using_decl) << 0;
1576      return true;
1577    }
1578
1579    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1580      << New->getDeclName();
1581    Diag(OldD->getLocation(), diag::note_previous_definition);
1582    return true;
1583  }
1584
1585  // Determine whether the previous declaration was a definition,
1586  // implicit declaration, or a declaration.
1587  diag::kind PrevDiag;
1588  if (Old->isThisDeclarationADefinition())
1589    PrevDiag = diag::note_previous_definition;
1590  else if (Old->isImplicit())
1591    PrevDiag = diag::note_previous_implicit_declaration;
1592  else
1593    PrevDiag = diag::note_previous_declaration;
1594
1595  QualType OldQType = Context.getCanonicalType(Old->getType());
1596  QualType NewQType = Context.getCanonicalType(New->getType());
1597
1598  // Don't complain about this if we're in GNU89 mode and the old function
1599  // is an extern inline function.
1600  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1601      New->getStorageClass() == SC_Static &&
1602      Old->getStorageClass() != SC_Static &&
1603      !canRedefineFunction(Old, getLangOptions())) {
1604    if (getLangOptions().Microsoft) {
1605      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1606      Diag(Old->getLocation(), PrevDiag);
1607    } else {
1608      Diag(New->getLocation(), diag::err_static_non_static) << New;
1609      Diag(Old->getLocation(), PrevDiag);
1610      return true;
1611    }
1612  }
1613
1614  // If a function is first declared with a calling convention, but is
1615  // later declared or defined without one, the second decl assumes the
1616  // calling convention of the first.
1617  //
1618  // For the new decl, we have to look at the NON-canonical type to tell the
1619  // difference between a function that really doesn't have a calling
1620  // convention and one that is declared cdecl. That's because in
1621  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1622  // because it is the default calling convention.
1623  //
1624  // Note also that we DO NOT return at this point, because we still have
1625  // other tests to run.
1626  const FunctionType *OldType = cast<FunctionType>(OldQType);
1627  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1628  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1629  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1630  bool RequiresAdjustment = false;
1631  if (OldTypeInfo.getCC() != CC_Default &&
1632      NewTypeInfo.getCC() == CC_Default) {
1633    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1634    RequiresAdjustment = true;
1635  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1636                                     NewTypeInfo.getCC())) {
1637    // Calling conventions really aren't compatible, so complain.
1638    Diag(New->getLocation(), diag::err_cconv_change)
1639      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1640      << (OldTypeInfo.getCC() == CC_Default)
1641      << (OldTypeInfo.getCC() == CC_Default ? "" :
1642          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1643    Diag(Old->getLocation(), diag::note_previous_declaration);
1644    return true;
1645  }
1646
1647  // FIXME: diagnose the other way around?
1648  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1649    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1650    RequiresAdjustment = true;
1651  }
1652
1653  // Merge regparm attribute.
1654  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1655      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1656    if (NewTypeInfo.getHasRegParm()) {
1657      Diag(New->getLocation(), diag::err_regparm_mismatch)
1658        << NewType->getRegParmType()
1659        << OldType->getRegParmType();
1660      Diag(Old->getLocation(), diag::note_previous_declaration);
1661      return true;
1662    }
1663
1664    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1665    RequiresAdjustment = true;
1666  }
1667
1668  if (RequiresAdjustment) {
1669    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1670    New->setType(QualType(NewType, 0));
1671    NewQType = Context.getCanonicalType(New->getType());
1672  }
1673
1674  if (getLangOptions().CPlusPlus) {
1675    // (C++98 13.1p2):
1676    //   Certain function declarations cannot be overloaded:
1677    //     -- Function declarations that differ only in the return type
1678    //        cannot be overloaded.
1679    QualType OldReturnType = OldType->getResultType();
1680    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1681    QualType ResQT;
1682    if (OldReturnType != NewReturnType) {
1683      if (NewReturnType->isObjCObjectPointerType()
1684          && OldReturnType->isObjCObjectPointerType())
1685        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1686      if (ResQT.isNull()) {
1687        if (New->isCXXClassMember() && New->isOutOfLine())
1688          Diag(New->getLocation(),
1689               diag::err_member_def_does_not_match_ret_type) << New;
1690        else
1691          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1692        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1693        return true;
1694      }
1695      else
1696        NewQType = ResQT;
1697    }
1698
1699    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1700    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1701    if (OldMethod && NewMethod) {
1702      // Preserve triviality.
1703      NewMethod->setTrivial(OldMethod->isTrivial());
1704
1705      // MSVC allows explicit template specialization at class scope:
1706      // 2 CXMethodDecls referring to the same function will be injected.
1707      // We don't want a redeclartion error.
1708      bool IsClassScopeExplicitSpecialization =
1709                              OldMethod->isFunctionTemplateSpecialization() &&
1710                              NewMethod->isFunctionTemplateSpecialization();
1711      bool isFriend = NewMethod->getFriendObjectKind();
1712
1713      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1714          !IsClassScopeExplicitSpecialization) {
1715        //    -- Member function declarations with the same name and the
1716        //       same parameter types cannot be overloaded if any of them
1717        //       is a static member function declaration.
1718        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1719          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1720          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1721          return true;
1722        }
1723
1724        // C++ [class.mem]p1:
1725        //   [...] A member shall not be declared twice in the
1726        //   member-specification, except that a nested class or member
1727        //   class template can be declared and then later defined.
1728        unsigned NewDiag;
1729        if (isa<CXXConstructorDecl>(OldMethod))
1730          NewDiag = diag::err_constructor_redeclared;
1731        else if (isa<CXXDestructorDecl>(NewMethod))
1732          NewDiag = diag::err_destructor_redeclared;
1733        else if (isa<CXXConversionDecl>(NewMethod))
1734          NewDiag = diag::err_conv_function_redeclared;
1735        else
1736          NewDiag = diag::err_member_redeclared;
1737
1738        Diag(New->getLocation(), NewDiag);
1739        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1740
1741      // Complain if this is an explicit declaration of a special
1742      // member that was initially declared implicitly.
1743      //
1744      // As an exception, it's okay to befriend such methods in order
1745      // to permit the implicit constructor/destructor/operator calls.
1746      } else if (OldMethod->isImplicit()) {
1747        if (isFriend) {
1748          NewMethod->setImplicit();
1749        } else {
1750          Diag(NewMethod->getLocation(),
1751               diag::err_definition_of_implicitly_declared_member)
1752            << New << getSpecialMember(OldMethod);
1753          return true;
1754        }
1755      } else if (OldMethod->isExplicitlyDefaulted()) {
1756        Diag(NewMethod->getLocation(),
1757             diag::err_definition_of_explicitly_defaulted_member)
1758          << getSpecialMember(OldMethod);
1759        return true;
1760      }
1761    }
1762
1763    // (C++98 8.3.5p3):
1764    //   All declarations for a function shall agree exactly in both the
1765    //   return type and the parameter-type-list.
1766    // We also want to respect all the extended bits except noreturn.
1767
1768    // noreturn should now match unless the old type info didn't have it.
1769    QualType OldQTypeForComparison = OldQType;
1770    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1771      assert(OldQType == QualType(OldType, 0));
1772      const FunctionType *OldTypeForComparison
1773        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1774      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1775      assert(OldQTypeForComparison.isCanonical());
1776    }
1777
1778    if (OldQTypeForComparison == NewQType)
1779      return MergeCompatibleFunctionDecls(New, Old);
1780
1781    // Fall through for conflicting redeclarations and redefinitions.
1782  }
1783
1784  // C: Function types need to be compatible, not identical. This handles
1785  // duplicate function decls like "void f(int); void f(enum X);" properly.
1786  if (!getLangOptions().CPlusPlus &&
1787      Context.typesAreCompatible(OldQType, NewQType)) {
1788    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1789    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1790    const FunctionProtoType *OldProto = 0;
1791    if (isa<FunctionNoProtoType>(NewFuncType) &&
1792        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1793      // The old declaration provided a function prototype, but the
1794      // new declaration does not. Merge in the prototype.
1795      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1796      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1797                                                 OldProto->arg_type_end());
1798      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1799                                         ParamTypes.data(), ParamTypes.size(),
1800                                         OldProto->getExtProtoInfo());
1801      New->setType(NewQType);
1802      New->setHasInheritedPrototype();
1803
1804      // Synthesize a parameter for each argument type.
1805      SmallVector<ParmVarDecl*, 16> Params;
1806      for (FunctionProtoType::arg_type_iterator
1807             ParamType = OldProto->arg_type_begin(),
1808             ParamEnd = OldProto->arg_type_end();
1809           ParamType != ParamEnd; ++ParamType) {
1810        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1811                                                 SourceLocation(),
1812                                                 SourceLocation(), 0,
1813                                                 *ParamType, /*TInfo=*/0,
1814                                                 SC_None, SC_None,
1815                                                 0);
1816        Param->setScopeInfo(0, Params.size());
1817        Param->setImplicit();
1818        Params.push_back(Param);
1819      }
1820
1821      New->setParams(Params.data(), Params.size());
1822    }
1823
1824    return MergeCompatibleFunctionDecls(New, Old);
1825  }
1826
1827  // GNU C permits a K&R definition to follow a prototype declaration
1828  // if the declared types of the parameters in the K&R definition
1829  // match the types in the prototype declaration, even when the
1830  // promoted types of the parameters from the K&R definition differ
1831  // from the types in the prototype. GCC then keeps the types from
1832  // the prototype.
1833  //
1834  // If a variadic prototype is followed by a non-variadic K&R definition,
1835  // the K&R definition becomes variadic.  This is sort of an edge case, but
1836  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1837  // C99 6.9.1p8.
1838  if (!getLangOptions().CPlusPlus &&
1839      Old->hasPrototype() && !New->hasPrototype() &&
1840      New->getType()->getAs<FunctionProtoType>() &&
1841      Old->getNumParams() == New->getNumParams()) {
1842    SmallVector<QualType, 16> ArgTypes;
1843    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1844    const FunctionProtoType *OldProto
1845      = Old->getType()->getAs<FunctionProtoType>();
1846    const FunctionProtoType *NewProto
1847      = New->getType()->getAs<FunctionProtoType>();
1848
1849    // Determine whether this is the GNU C extension.
1850    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1851                                               NewProto->getResultType());
1852    bool LooseCompatible = !MergedReturn.isNull();
1853    for (unsigned Idx = 0, End = Old->getNumParams();
1854         LooseCompatible && Idx != End; ++Idx) {
1855      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1856      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1857      if (Context.typesAreCompatible(OldParm->getType(),
1858                                     NewProto->getArgType(Idx))) {
1859        ArgTypes.push_back(NewParm->getType());
1860      } else if (Context.typesAreCompatible(OldParm->getType(),
1861                                            NewParm->getType(),
1862                                            /*CompareUnqualified=*/true)) {
1863        GNUCompatibleParamWarning Warn
1864          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1865        Warnings.push_back(Warn);
1866        ArgTypes.push_back(NewParm->getType());
1867      } else
1868        LooseCompatible = false;
1869    }
1870
1871    if (LooseCompatible) {
1872      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1873        Diag(Warnings[Warn].NewParm->getLocation(),
1874             diag::ext_param_promoted_not_compatible_with_prototype)
1875          << Warnings[Warn].PromotedType
1876          << Warnings[Warn].OldParm->getType();
1877        if (Warnings[Warn].OldParm->getLocation().isValid())
1878          Diag(Warnings[Warn].OldParm->getLocation(),
1879               diag::note_previous_declaration);
1880      }
1881
1882      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1883                                           ArgTypes.size(),
1884                                           OldProto->getExtProtoInfo()));
1885      return MergeCompatibleFunctionDecls(New, Old);
1886    }
1887
1888    // Fall through to diagnose conflicting types.
1889  }
1890
1891  // A function that has already been declared has been redeclared or defined
1892  // with a different type- show appropriate diagnostic
1893  if (unsigned BuiltinID = Old->getBuiltinID()) {
1894    // The user has declared a builtin function with an incompatible
1895    // signature.
1896    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1897      // The function the user is redeclaring is a library-defined
1898      // function like 'malloc' or 'printf'. Warn about the
1899      // redeclaration, then pretend that we don't know about this
1900      // library built-in.
1901      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1902      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1903        << Old << Old->getType();
1904      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1905      Old->setInvalidDecl();
1906      return false;
1907    }
1908
1909    PrevDiag = diag::note_previous_builtin_declaration;
1910  }
1911
1912  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1913  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1914  return true;
1915}
1916
1917/// \brief Completes the merge of two function declarations that are
1918/// known to be compatible.
1919///
1920/// This routine handles the merging of attributes and other
1921/// properties of function declarations form the old declaration to
1922/// the new declaration, once we know that New is in fact a
1923/// redeclaration of Old.
1924///
1925/// \returns false
1926bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1927  // Merge the attributes
1928  mergeDeclAttributes(New, Old, Context);
1929
1930  // Merge the storage class.
1931  if (Old->getStorageClass() != SC_Extern &&
1932      Old->getStorageClass() != SC_None)
1933    New->setStorageClass(Old->getStorageClass());
1934
1935  // Merge "pure" flag.
1936  if (Old->isPure())
1937    New->setPure();
1938
1939  // Merge attributes from the parameters.  These can mismatch with K&R
1940  // declarations.
1941  if (New->getNumParams() == Old->getNumParams())
1942    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1943      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1944                               Context);
1945
1946  if (getLangOptions().CPlusPlus)
1947    return MergeCXXFunctionDecl(New, Old);
1948
1949  return false;
1950}
1951
1952
1953void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1954                                const ObjCMethodDecl *oldMethod) {
1955  // We don't want to merge unavailable and deprecated attributes
1956  // except from interface to implementation.
1957  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1958
1959  // Merge the attributes.
1960  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
1961
1962  // Merge attributes from the parameters.
1963  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1964         ni = newMethod->param_begin(), ne = newMethod->param_end();
1965       ni != ne; ++ni, ++oi)
1966    mergeParamDeclAttributes(*ni, *oi, Context);
1967
1968  CheckObjCMethodOverride(newMethod, oldMethod, true);
1969}
1970
1971/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1972/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1973/// emitting diagnostics as appropriate.
1974///
1975/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1976/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1977/// check them before the initializer is attached.
1978///
1979void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1980  if (New->isInvalidDecl() || Old->isInvalidDecl())
1981    return;
1982
1983  QualType MergedT;
1984  if (getLangOptions().CPlusPlus) {
1985    AutoType *AT = New->getType()->getContainedAutoType();
1986    if (AT && !AT->isDeduced()) {
1987      // We don't know what the new type is until the initializer is attached.
1988      return;
1989    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1990      // These could still be something that needs exception specs checked.
1991      return MergeVarDeclExceptionSpecs(New, Old);
1992    }
1993    // C++ [basic.link]p10:
1994    //   [...] the types specified by all declarations referring to a given
1995    //   object or function shall be identical, except that declarations for an
1996    //   array object can specify array types that differ by the presence or
1997    //   absence of a major array bound (8.3.4).
1998    else if (Old->getType()->isIncompleteArrayType() &&
1999             New->getType()->isArrayType()) {
2000      CanQual<ArrayType> OldArray
2001        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2002      CanQual<ArrayType> NewArray
2003        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2004      if (OldArray->getElementType() == NewArray->getElementType())
2005        MergedT = New->getType();
2006    } else if (Old->getType()->isArrayType() &&
2007             New->getType()->isIncompleteArrayType()) {
2008      CanQual<ArrayType> OldArray
2009        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2010      CanQual<ArrayType> NewArray
2011        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2012      if (OldArray->getElementType() == NewArray->getElementType())
2013        MergedT = Old->getType();
2014    } else if (New->getType()->isObjCObjectPointerType()
2015               && Old->getType()->isObjCObjectPointerType()) {
2016        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2017                                                        Old->getType());
2018    }
2019  } else {
2020    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2021  }
2022  if (MergedT.isNull()) {
2023    Diag(New->getLocation(), diag::err_redefinition_different_type)
2024      << New->getDeclName();
2025    Diag(Old->getLocation(), diag::note_previous_definition);
2026    return New->setInvalidDecl();
2027  }
2028  New->setType(MergedT);
2029}
2030
2031/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2032/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2033/// situation, merging decls or emitting diagnostics as appropriate.
2034///
2035/// Tentative definition rules (C99 6.9.2p2) are checked by
2036/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2037/// definitions here, since the initializer hasn't been attached.
2038///
2039void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2040  // If the new decl is already invalid, don't do any other checking.
2041  if (New->isInvalidDecl())
2042    return;
2043
2044  // Verify the old decl was also a variable.
2045  VarDecl *Old = 0;
2046  if (!Previous.isSingleResult() ||
2047      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2048    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2049      << New->getDeclName();
2050    Diag(Previous.getRepresentativeDecl()->getLocation(),
2051         diag::note_previous_definition);
2052    return New->setInvalidDecl();
2053  }
2054
2055  // C++ [class.mem]p1:
2056  //   A member shall not be declared twice in the member-specification [...]
2057  //
2058  // Here, we need only consider static data members.
2059  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2060    Diag(New->getLocation(), diag::err_duplicate_member)
2061      << New->getIdentifier();
2062    Diag(Old->getLocation(), diag::note_previous_declaration);
2063    New->setInvalidDecl();
2064  }
2065
2066  mergeDeclAttributes(New, Old, Context);
2067  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2068  if (New->getAttr<WeakImportAttr>() &&
2069      Old->getStorageClass() == SC_None &&
2070      !Old->getAttr<WeakImportAttr>()) {
2071    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    // Remove weak_import attribute on new declaration.
2074    New->dropAttr<WeakImportAttr>();
2075  }
2076
2077  // Merge the types.
2078  MergeVarDeclTypes(New, Old);
2079  if (New->isInvalidDecl())
2080    return;
2081
2082  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2083  if (New->getStorageClass() == SC_Static &&
2084      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2085    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2086    Diag(Old->getLocation(), diag::note_previous_definition);
2087    return New->setInvalidDecl();
2088  }
2089  // C99 6.2.2p4:
2090  //   For an identifier declared with the storage-class specifier
2091  //   extern in a scope in which a prior declaration of that
2092  //   identifier is visible,23) if the prior declaration specifies
2093  //   internal or external linkage, the linkage of the identifier at
2094  //   the later declaration is the same as the linkage specified at
2095  //   the prior declaration. If no prior declaration is visible, or
2096  //   if the prior declaration specifies no linkage, then the
2097  //   identifier has external linkage.
2098  if (New->hasExternalStorage() && Old->hasLinkage())
2099    /* Okay */;
2100  else if (New->getStorageClass() != SC_Static &&
2101           Old->getStorageClass() == SC_Static) {
2102    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2103    Diag(Old->getLocation(), diag::note_previous_definition);
2104    return New->setInvalidDecl();
2105  }
2106
2107  // Check if extern is followed by non-extern and vice-versa.
2108  if (New->hasExternalStorage() &&
2109      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2110    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2111    Diag(Old->getLocation(), diag::note_previous_definition);
2112    return New->setInvalidDecl();
2113  }
2114  if (Old->hasExternalStorage() &&
2115      !New->hasLinkage() && New->isLocalVarDecl()) {
2116    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2117    Diag(Old->getLocation(), diag::note_previous_definition);
2118    return New->setInvalidDecl();
2119  }
2120
2121  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2122
2123  // FIXME: The test for external storage here seems wrong? We still
2124  // need to check for mismatches.
2125  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2126      // Don't complain about out-of-line definitions of static members.
2127      !(Old->getLexicalDeclContext()->isRecord() &&
2128        !New->getLexicalDeclContext()->isRecord())) {
2129    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2130    Diag(Old->getLocation(), diag::note_previous_definition);
2131    return New->setInvalidDecl();
2132  }
2133
2134  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2135    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2136    Diag(Old->getLocation(), diag::note_previous_definition);
2137  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2138    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2139    Diag(Old->getLocation(), diag::note_previous_definition);
2140  }
2141
2142  // C++ doesn't have tentative definitions, so go right ahead and check here.
2143  const VarDecl *Def;
2144  if (getLangOptions().CPlusPlus &&
2145      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2146      (Def = Old->getDefinition())) {
2147    Diag(New->getLocation(), diag::err_redefinition)
2148      << New->getDeclName();
2149    Diag(Def->getLocation(), diag::note_previous_definition);
2150    New->setInvalidDecl();
2151    return;
2152  }
2153  // c99 6.2.2 P4.
2154  // For an identifier declared with the storage-class specifier extern in a
2155  // scope in which a prior declaration of that identifier is visible, if
2156  // the prior declaration specifies internal or external linkage, the linkage
2157  // of the identifier at the later declaration is the same as the linkage
2158  // specified at the prior declaration.
2159  // FIXME. revisit this code.
2160  if (New->hasExternalStorage() &&
2161      Old->getLinkage() == InternalLinkage &&
2162      New->getDeclContext() == Old->getDeclContext())
2163    New->setStorageClass(Old->getStorageClass());
2164
2165  // Keep a chain of previous declarations.
2166  New->setPreviousDeclaration(Old);
2167
2168  // Inherit access appropriately.
2169  New->setAccess(Old->getAccess());
2170}
2171
2172/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2173/// no declarator (e.g. "struct foo;") is parsed.
2174Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2175                                       DeclSpec &DS) {
2176  return ParsedFreeStandingDeclSpec(S, AS, DS,
2177                                    MultiTemplateParamsArg(*this, 0, 0));
2178}
2179
2180/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2181/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2182/// parameters to cope with template friend declarations.
2183Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2184                                       DeclSpec &DS,
2185                                       MultiTemplateParamsArg TemplateParams) {
2186  Decl *TagD = 0;
2187  TagDecl *Tag = 0;
2188  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2189      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2190      DS.getTypeSpecType() == DeclSpec::TST_union ||
2191      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2192    TagD = DS.getRepAsDecl();
2193
2194    if (!TagD) // We probably had an error
2195      return 0;
2196
2197    // Note that the above type specs guarantee that the
2198    // type rep is a Decl, whereas in many of the others
2199    // it's a Type.
2200    Tag = dyn_cast<TagDecl>(TagD);
2201  }
2202
2203  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2204    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2205    // or incomplete types shall not be restrict-qualified."
2206    if (TypeQuals & DeclSpec::TQ_restrict)
2207      Diag(DS.getRestrictSpecLoc(),
2208           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2209           << DS.getSourceRange();
2210  }
2211
2212  if (DS.isConstexprSpecified()) {
2213    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2214    // and definitions of functions and variables.
2215    if (Tag)
2216      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2217        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2218            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2219            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2220    else
2221      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2222    // Don't emit warnings after this error.
2223    return TagD;
2224  }
2225
2226  if (DS.isFriendSpecified()) {
2227    // If we're dealing with a decl but not a TagDecl, assume that
2228    // whatever routines created it handled the friendship aspect.
2229    if (TagD && !Tag)
2230      return 0;
2231    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2232  }
2233
2234  // Track whether we warned about the fact that there aren't any
2235  // declarators.
2236  bool emittedWarning = false;
2237
2238  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2239    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2240
2241    if (!Record->getDeclName() && Record->isDefinition() &&
2242        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2243      if (getLangOptions().CPlusPlus ||
2244          Record->getDeclContext()->isRecord())
2245        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2246
2247      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2248        << DS.getSourceRange();
2249      emittedWarning = true;
2250    }
2251  }
2252
2253  // Check for Microsoft C extension: anonymous struct.
2254  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2255      CurContext->isRecord() &&
2256      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2257    // Handle 2 kinds of anonymous struct:
2258    //   struct STRUCT;
2259    // and
2260    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2261    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2262    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2263        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2264         DS.getRepAsType().get()->isStructureType())) {
2265      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2266        << DS.getSourceRange();
2267      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2268    }
2269  }
2270
2271  if (getLangOptions().CPlusPlus &&
2272      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2273    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2274      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2275          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2276        Diag(Enum->getLocation(), diag::ext_no_declarators)
2277          << DS.getSourceRange();
2278        emittedWarning = true;
2279      }
2280
2281  // Skip all the checks below if we have a type error.
2282  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2283
2284  if (!DS.isMissingDeclaratorOk()) {
2285    // Warn about typedefs of enums without names, since this is an
2286    // extension in both Microsoft and GNU.
2287    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2288        Tag && isa<EnumDecl>(Tag)) {
2289      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2290        << DS.getSourceRange();
2291      return Tag;
2292    }
2293
2294    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2295      << DS.getSourceRange();
2296    emittedWarning = true;
2297  }
2298
2299  // We're going to complain about a bunch of spurious specifiers;
2300  // only do this if we're declaring a tag, because otherwise we
2301  // should be getting diag::ext_no_declarators.
2302  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2303    return TagD;
2304
2305  // Note that a linkage-specification sets a storage class, but
2306  // 'extern "C" struct foo;' is actually valid and not theoretically
2307  // useless.
2308  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2309    if (!DS.isExternInLinkageSpec())
2310      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2311        << DeclSpec::getSpecifierName(scs);
2312
2313  if (DS.isThreadSpecified())
2314    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2315  if (DS.getTypeQualifiers()) {
2316    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2317      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2318    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2319      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2320    // Restrict is covered above.
2321  }
2322  if (DS.isInlineSpecified())
2323    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2324  if (DS.isVirtualSpecified())
2325    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2326  if (DS.isExplicitSpecified())
2327    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2328
2329  // FIXME: Warn on useless attributes
2330
2331  return TagD;
2332}
2333
2334/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2335/// builds a statement for it and returns it so it is evaluated.
2336StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2337  StmtResult R;
2338  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2339    Expr *Exp = DS.getRepAsExpr();
2340    QualType Ty = Exp->getType();
2341    if (Ty->isPointerType()) {
2342      do
2343        Ty = Ty->getAs<PointerType>()->getPointeeType();
2344      while (Ty->isPointerType());
2345    }
2346    if (Ty->isVariableArrayType()) {
2347      R = ActOnExprStmt(MakeFullExpr(Exp));
2348    }
2349  }
2350  return R;
2351}
2352
2353/// We are trying to inject an anonymous member into the given scope;
2354/// check if there's an existing declaration that can't be overloaded.
2355///
2356/// \return true if this is a forbidden redeclaration
2357static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2358                                         Scope *S,
2359                                         DeclContext *Owner,
2360                                         DeclarationName Name,
2361                                         SourceLocation NameLoc,
2362                                         unsigned diagnostic) {
2363  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2364                 Sema::ForRedeclaration);
2365  if (!SemaRef.LookupName(R, S)) return false;
2366
2367  if (R.getAsSingle<TagDecl>())
2368    return false;
2369
2370  // Pick a representative declaration.
2371  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2372  assert(PrevDecl && "Expected a non-null Decl");
2373
2374  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2375    return false;
2376
2377  SemaRef.Diag(NameLoc, diagnostic) << Name;
2378  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2379
2380  return true;
2381}
2382
2383/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2384/// anonymous struct or union AnonRecord into the owning context Owner
2385/// and scope S. This routine will be invoked just after we realize
2386/// that an unnamed union or struct is actually an anonymous union or
2387/// struct, e.g.,
2388///
2389/// @code
2390/// union {
2391///   int i;
2392///   float f;
2393/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2394///    // f into the surrounding scope.x
2395/// @endcode
2396///
2397/// This routine is recursive, injecting the names of nested anonymous
2398/// structs/unions into the owning context and scope as well.
2399static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2400                                                DeclContext *Owner,
2401                                                RecordDecl *AnonRecord,
2402                                                AccessSpecifier AS,
2403                              SmallVector<NamedDecl*, 2> &Chaining,
2404                                                      bool MSAnonStruct) {
2405  unsigned diagKind
2406    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2407                            : diag::err_anonymous_struct_member_redecl;
2408
2409  bool Invalid = false;
2410
2411  // Look every FieldDecl and IndirectFieldDecl with a name.
2412  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2413                               DEnd = AnonRecord->decls_end();
2414       D != DEnd; ++D) {
2415    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2416        cast<NamedDecl>(*D)->getDeclName()) {
2417      ValueDecl *VD = cast<ValueDecl>(*D);
2418      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2419                                       VD->getLocation(), diagKind)) {
2420        // C++ [class.union]p2:
2421        //   The names of the members of an anonymous union shall be
2422        //   distinct from the names of any other entity in the
2423        //   scope in which the anonymous union is declared.
2424        Invalid = true;
2425      } else {
2426        // C++ [class.union]p2:
2427        //   For the purpose of name lookup, after the anonymous union
2428        //   definition, the members of the anonymous union are
2429        //   considered to have been defined in the scope in which the
2430        //   anonymous union is declared.
2431        unsigned OldChainingSize = Chaining.size();
2432        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2433          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2434               PE = IF->chain_end(); PI != PE; ++PI)
2435            Chaining.push_back(*PI);
2436        else
2437          Chaining.push_back(VD);
2438
2439        assert(Chaining.size() >= 2);
2440        NamedDecl **NamedChain =
2441          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2442        for (unsigned i = 0; i < Chaining.size(); i++)
2443          NamedChain[i] = Chaining[i];
2444
2445        IndirectFieldDecl* IndirectField =
2446          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2447                                    VD->getIdentifier(), VD->getType(),
2448                                    NamedChain, Chaining.size());
2449
2450        IndirectField->setAccess(AS);
2451        IndirectField->setImplicit();
2452        SemaRef.PushOnScopeChains(IndirectField, S);
2453
2454        // That includes picking up the appropriate access specifier.
2455        if (AS != AS_none) IndirectField->setAccess(AS);
2456
2457        Chaining.resize(OldChainingSize);
2458      }
2459    }
2460  }
2461
2462  return Invalid;
2463}
2464
2465/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2466/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2467/// illegal input values are mapped to SC_None.
2468static StorageClass
2469StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2470  switch (StorageClassSpec) {
2471  case DeclSpec::SCS_unspecified:    return SC_None;
2472  case DeclSpec::SCS_extern:         return SC_Extern;
2473  case DeclSpec::SCS_static:         return SC_Static;
2474  case DeclSpec::SCS_auto:           return SC_Auto;
2475  case DeclSpec::SCS_register:       return SC_Register;
2476  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2477    // Illegal SCSs map to None: error reporting is up to the caller.
2478  case DeclSpec::SCS_mutable:        // Fall through.
2479  case DeclSpec::SCS_typedef:        return SC_None;
2480  }
2481  llvm_unreachable("unknown storage class specifier");
2482}
2483
2484/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2485/// a StorageClass. Any error reporting is up to the caller:
2486/// illegal input values are mapped to SC_None.
2487static StorageClass
2488StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2489  switch (StorageClassSpec) {
2490  case DeclSpec::SCS_unspecified:    return SC_None;
2491  case DeclSpec::SCS_extern:         return SC_Extern;
2492  case DeclSpec::SCS_static:         return SC_Static;
2493  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2494    // Illegal SCSs map to None: error reporting is up to the caller.
2495  case DeclSpec::SCS_auto:           // Fall through.
2496  case DeclSpec::SCS_mutable:        // Fall through.
2497  case DeclSpec::SCS_register:       // Fall through.
2498  case DeclSpec::SCS_typedef:        return SC_None;
2499  }
2500  llvm_unreachable("unknown storage class specifier");
2501}
2502
2503/// BuildAnonymousStructOrUnion - Handle the declaration of an
2504/// anonymous structure or union. Anonymous unions are a C++ feature
2505/// (C++ [class.union]) and a GNU C extension; anonymous structures
2506/// are a GNU C and GNU C++ extension.
2507Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2508                                             AccessSpecifier AS,
2509                                             RecordDecl *Record) {
2510  DeclContext *Owner = Record->getDeclContext();
2511
2512  // Diagnose whether this anonymous struct/union is an extension.
2513  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2514    Diag(Record->getLocation(), diag::ext_anonymous_union);
2515  else if (!Record->isUnion())
2516    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2517
2518  // C and C++ require different kinds of checks for anonymous
2519  // structs/unions.
2520  bool Invalid = false;
2521  if (getLangOptions().CPlusPlus) {
2522    const char* PrevSpec = 0;
2523    unsigned DiagID;
2524    // C++ [class.union]p3:
2525    //   Anonymous unions declared in a named namespace or in the
2526    //   global namespace shall be declared static.
2527    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2528        (isa<TranslationUnitDecl>(Owner) ||
2529         (isa<NamespaceDecl>(Owner) &&
2530          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2531      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2532      Invalid = true;
2533
2534      // Recover by adding 'static'.
2535      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2536                             PrevSpec, DiagID, getLangOptions());
2537    }
2538    // C++ [class.union]p3:
2539    //   A storage class is not allowed in a declaration of an
2540    //   anonymous union in a class scope.
2541    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2542             isa<RecordDecl>(Owner)) {
2543      Diag(DS.getStorageClassSpecLoc(),
2544           diag::err_anonymous_union_with_storage_spec);
2545      Invalid = true;
2546
2547      // Recover by removing the storage specifier.
2548      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2549                             PrevSpec, DiagID, getLangOptions());
2550    }
2551
2552    // Ignore const/volatile/restrict qualifiers.
2553    if (DS.getTypeQualifiers()) {
2554      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2555        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2556          << Record->isUnion() << 0
2557          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2558      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2559        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2560          << Record->isUnion() << 1
2561          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2562      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2563        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2564          << Record->isUnion() << 2
2565          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2566
2567      DS.ClearTypeQualifiers();
2568    }
2569
2570    // C++ [class.union]p2:
2571    //   The member-specification of an anonymous union shall only
2572    //   define non-static data members. [Note: nested types and
2573    //   functions cannot be declared within an anonymous union. ]
2574    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2575                                 MemEnd = Record->decls_end();
2576         Mem != MemEnd; ++Mem) {
2577      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2578        // C++ [class.union]p3:
2579        //   An anonymous union shall not have private or protected
2580        //   members (clause 11).
2581        assert(FD->getAccess() != AS_none);
2582        if (FD->getAccess() != AS_public) {
2583          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2584            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2585          Invalid = true;
2586        }
2587
2588        // C++ [class.union]p1
2589        //   An object of a class with a non-trivial constructor, a non-trivial
2590        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2591        //   assignment operator cannot be a member of a union, nor can an
2592        //   array of such objects.
2593        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2594          Invalid = true;
2595      } else if ((*Mem)->isImplicit()) {
2596        // Any implicit members are fine.
2597      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2598        // This is a type that showed up in an
2599        // elaborated-type-specifier inside the anonymous struct or
2600        // union, but which actually declares a type outside of the
2601        // anonymous struct or union. It's okay.
2602      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2603        if (!MemRecord->isAnonymousStructOrUnion() &&
2604            MemRecord->getDeclName()) {
2605          // Visual C++ allows type definition in anonymous struct or union.
2606          if (getLangOptions().Microsoft)
2607            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2608              << (int)Record->isUnion();
2609          else {
2610            // This is a nested type declaration.
2611            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2612              << (int)Record->isUnion();
2613            Invalid = true;
2614          }
2615        }
2616      } else if (isa<AccessSpecDecl>(*Mem)) {
2617        // Any access specifier is fine.
2618      } else {
2619        // We have something that isn't a non-static data
2620        // member. Complain about it.
2621        unsigned DK = diag::err_anonymous_record_bad_member;
2622        if (isa<TypeDecl>(*Mem))
2623          DK = diag::err_anonymous_record_with_type;
2624        else if (isa<FunctionDecl>(*Mem))
2625          DK = diag::err_anonymous_record_with_function;
2626        else if (isa<VarDecl>(*Mem))
2627          DK = diag::err_anonymous_record_with_static;
2628
2629        // Visual C++ allows type definition in anonymous struct or union.
2630        if (getLangOptions().Microsoft &&
2631            DK == diag::err_anonymous_record_with_type)
2632          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2633            << (int)Record->isUnion();
2634        else {
2635          Diag((*Mem)->getLocation(), DK)
2636              << (int)Record->isUnion();
2637          Invalid = true;
2638        }
2639      }
2640    }
2641  }
2642
2643  if (!Record->isUnion() && !Owner->isRecord()) {
2644    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2645      << (int)getLangOptions().CPlusPlus;
2646    Invalid = true;
2647  }
2648
2649  // Mock up a declarator.
2650  Declarator Dc(DS, Declarator::MemberContext);
2651  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2652  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2653
2654  // Create a declaration for this anonymous struct/union.
2655  NamedDecl *Anon = 0;
2656  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2657    Anon = FieldDecl::Create(Context, OwningClass,
2658                             DS.getSourceRange().getBegin(),
2659                             Record->getLocation(),
2660                             /*IdentifierInfo=*/0,
2661                             Context.getTypeDeclType(Record),
2662                             TInfo,
2663                             /*BitWidth=*/0, /*Mutable=*/false,
2664                             /*HasInit=*/false);
2665    Anon->setAccess(AS);
2666    if (getLangOptions().CPlusPlus)
2667      FieldCollector->Add(cast<FieldDecl>(Anon));
2668  } else {
2669    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2670    assert(SCSpec != DeclSpec::SCS_typedef &&
2671           "Parser allowed 'typedef' as storage class VarDecl.");
2672    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2673    if (SCSpec == DeclSpec::SCS_mutable) {
2674      // mutable can only appear on non-static class members, so it's always
2675      // an error here
2676      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2677      Invalid = true;
2678      SC = SC_None;
2679    }
2680    SCSpec = DS.getStorageClassSpecAsWritten();
2681    VarDecl::StorageClass SCAsWritten
2682      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2683
2684    Anon = VarDecl::Create(Context, Owner,
2685                           DS.getSourceRange().getBegin(),
2686                           Record->getLocation(), /*IdentifierInfo=*/0,
2687                           Context.getTypeDeclType(Record),
2688                           TInfo, SC, SCAsWritten);
2689  }
2690  Anon->setImplicit();
2691
2692  // Add the anonymous struct/union object to the current
2693  // context. We'll be referencing this object when we refer to one of
2694  // its members.
2695  Owner->addDecl(Anon);
2696
2697  // Inject the members of the anonymous struct/union into the owning
2698  // context and into the identifier resolver chain for name lookup
2699  // purposes.
2700  SmallVector<NamedDecl*, 2> Chain;
2701  Chain.push_back(Anon);
2702
2703  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2704                                          Chain, false))
2705    Invalid = true;
2706
2707  // Mark this as an anonymous struct/union type. Note that we do not
2708  // do this until after we have already checked and injected the
2709  // members of this anonymous struct/union type, because otherwise
2710  // the members could be injected twice: once by DeclContext when it
2711  // builds its lookup table, and once by
2712  // InjectAnonymousStructOrUnionMembers.
2713  Record->setAnonymousStructOrUnion(true);
2714
2715  if (Invalid)
2716    Anon->setInvalidDecl();
2717
2718  return Anon;
2719}
2720
2721/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2722/// Microsoft C anonymous structure.
2723/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2724/// Example:
2725///
2726/// struct A { int a; };
2727/// struct B { struct A; int b; };
2728///
2729/// void foo() {
2730///   B var;
2731///   var.a = 3;
2732/// }
2733///
2734Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2735                                           RecordDecl *Record) {
2736
2737  // If there is no Record, get the record via the typedef.
2738  if (!Record)
2739    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2740
2741  // Mock up a declarator.
2742  Declarator Dc(DS, Declarator::TypeNameContext);
2743  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2744  assert(TInfo && "couldn't build declarator info for anonymous struct");
2745
2746  // Create a declaration for this anonymous struct.
2747  NamedDecl* Anon = FieldDecl::Create(Context,
2748                             cast<RecordDecl>(CurContext),
2749                             DS.getSourceRange().getBegin(),
2750                             DS.getSourceRange().getBegin(),
2751                             /*IdentifierInfo=*/0,
2752                             Context.getTypeDeclType(Record),
2753                             TInfo,
2754                             /*BitWidth=*/0, /*Mutable=*/false,
2755                             /*HasInit=*/false);
2756  Anon->setImplicit();
2757
2758  // Add the anonymous struct object to the current context.
2759  CurContext->addDecl(Anon);
2760
2761  // Inject the members of the anonymous struct into the current
2762  // context and into the identifier resolver chain for name lookup
2763  // purposes.
2764  SmallVector<NamedDecl*, 2> Chain;
2765  Chain.push_back(Anon);
2766
2767  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2768                                          Record->getDefinition(),
2769                                          AS_none, Chain, true))
2770    Anon->setInvalidDecl();
2771
2772  return Anon;
2773}
2774
2775/// GetNameForDeclarator - Determine the full declaration name for the
2776/// given Declarator.
2777DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2778  return GetNameFromUnqualifiedId(D.getName());
2779}
2780
2781/// \brief Retrieves the declaration name from a parsed unqualified-id.
2782DeclarationNameInfo
2783Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2784  DeclarationNameInfo NameInfo;
2785  NameInfo.setLoc(Name.StartLocation);
2786
2787  switch (Name.getKind()) {
2788
2789  case UnqualifiedId::IK_ImplicitSelfParam:
2790  case UnqualifiedId::IK_Identifier:
2791    NameInfo.setName(Name.Identifier);
2792    NameInfo.setLoc(Name.StartLocation);
2793    return NameInfo;
2794
2795  case UnqualifiedId::IK_OperatorFunctionId:
2796    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2797                                           Name.OperatorFunctionId.Operator));
2798    NameInfo.setLoc(Name.StartLocation);
2799    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2800      = Name.OperatorFunctionId.SymbolLocations[0];
2801    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2802      = Name.EndLocation.getRawEncoding();
2803    return NameInfo;
2804
2805  case UnqualifiedId::IK_LiteralOperatorId:
2806    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2807                                                           Name.Identifier));
2808    NameInfo.setLoc(Name.StartLocation);
2809    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2810    return NameInfo;
2811
2812  case UnqualifiedId::IK_ConversionFunctionId: {
2813    TypeSourceInfo *TInfo;
2814    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2815    if (Ty.isNull())
2816      return DeclarationNameInfo();
2817    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2818                                               Context.getCanonicalType(Ty)));
2819    NameInfo.setLoc(Name.StartLocation);
2820    NameInfo.setNamedTypeInfo(TInfo);
2821    return NameInfo;
2822  }
2823
2824  case UnqualifiedId::IK_ConstructorName: {
2825    TypeSourceInfo *TInfo;
2826    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2827    if (Ty.isNull())
2828      return DeclarationNameInfo();
2829    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2830                                              Context.getCanonicalType(Ty)));
2831    NameInfo.setLoc(Name.StartLocation);
2832    NameInfo.setNamedTypeInfo(TInfo);
2833    return NameInfo;
2834  }
2835
2836  case UnqualifiedId::IK_ConstructorTemplateId: {
2837    // In well-formed code, we can only have a constructor
2838    // template-id that refers to the current context, so go there
2839    // to find the actual type being constructed.
2840    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2841    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2842      return DeclarationNameInfo();
2843
2844    // Determine the type of the class being constructed.
2845    QualType CurClassType = Context.getTypeDeclType(CurClass);
2846
2847    // FIXME: Check two things: that the template-id names the same type as
2848    // CurClassType, and that the template-id does not occur when the name
2849    // was qualified.
2850
2851    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2852                                    Context.getCanonicalType(CurClassType)));
2853    NameInfo.setLoc(Name.StartLocation);
2854    // FIXME: should we retrieve TypeSourceInfo?
2855    NameInfo.setNamedTypeInfo(0);
2856    return NameInfo;
2857  }
2858
2859  case UnqualifiedId::IK_DestructorName: {
2860    TypeSourceInfo *TInfo;
2861    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2862    if (Ty.isNull())
2863      return DeclarationNameInfo();
2864    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2865                                              Context.getCanonicalType(Ty)));
2866    NameInfo.setLoc(Name.StartLocation);
2867    NameInfo.setNamedTypeInfo(TInfo);
2868    return NameInfo;
2869  }
2870
2871  case UnqualifiedId::IK_TemplateId: {
2872    TemplateName TName = Name.TemplateId->Template.get();
2873    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2874    return Context.getNameForTemplate(TName, TNameLoc);
2875  }
2876
2877  } // switch (Name.getKind())
2878
2879  assert(false && "Unknown name kind");
2880  return DeclarationNameInfo();
2881}
2882
2883static QualType getCoreType(QualType Ty) {
2884  do {
2885    if (Ty->isPointerType() || Ty->isReferenceType())
2886      Ty = Ty->getPointeeType();
2887    else if (Ty->isArrayType())
2888      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2889    else
2890      return Ty.withoutLocalFastQualifiers();
2891  } while (true);
2892}
2893
2894/// isNearlyMatchingFunction - Determine whether the C++ functions
2895/// Declaration and Definition are "nearly" matching. This heuristic
2896/// is used to improve diagnostics in the case where an out-of-line
2897/// function definition doesn't match any declaration within the class
2898/// or namespace. Also sets Params to the list of indices to the
2899/// parameters that differ between the declaration and the definition.
2900static bool isNearlyMatchingFunction(ASTContext &Context,
2901                                     FunctionDecl *Declaration,
2902                                     FunctionDecl *Definition,
2903                                     llvm::SmallVectorImpl<unsigned> &Params) {
2904  Params.clear();
2905  if (Declaration->param_size() != Definition->param_size())
2906    return false;
2907  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2908    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2909    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2910
2911    // The parameter types are identical
2912    if (Context.hasSameType(DefParamTy, DeclParamTy))
2913      continue;
2914
2915    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2916    QualType DefParamBaseTy = getCoreType(DefParamTy);
2917    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2918    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2919
2920    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2921        (DeclTyName && DeclTyName == DefTyName))
2922      Params.push_back(Idx);
2923    else  // The two parameters aren't even close
2924      return false;
2925  }
2926
2927  return true;
2928}
2929
2930/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2931/// declarator needs to be rebuilt in the current instantiation.
2932/// Any bits of declarator which appear before the name are valid for
2933/// consideration here.  That's specifically the type in the decl spec
2934/// and the base type in any member-pointer chunks.
2935static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2936                                                    DeclarationName Name) {
2937  // The types we specifically need to rebuild are:
2938  //   - typenames, typeofs, and decltypes
2939  //   - types which will become injected class names
2940  // Of course, we also need to rebuild any type referencing such a
2941  // type.  It's safest to just say "dependent", but we call out a
2942  // few cases here.
2943
2944  DeclSpec &DS = D.getMutableDeclSpec();
2945  switch (DS.getTypeSpecType()) {
2946  case DeclSpec::TST_typename:
2947  case DeclSpec::TST_typeofType:
2948  case DeclSpec::TST_decltype:
2949  case DeclSpec::TST_underlyingType: {
2950    // Grab the type from the parser.
2951    TypeSourceInfo *TSI = 0;
2952    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2953    if (T.isNull() || !T->isDependentType()) break;
2954
2955    // Make sure there's a type source info.  This isn't really much
2956    // of a waste; most dependent types should have type source info
2957    // attached already.
2958    if (!TSI)
2959      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2960
2961    // Rebuild the type in the current instantiation.
2962    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2963    if (!TSI) return true;
2964
2965    // Store the new type back in the decl spec.
2966    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2967    DS.UpdateTypeRep(LocType);
2968    break;
2969  }
2970
2971  case DeclSpec::TST_typeofExpr: {
2972    Expr *E = DS.getRepAsExpr();
2973    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2974    if (Result.isInvalid()) return true;
2975    DS.UpdateExprRep(Result.get());
2976    break;
2977  }
2978
2979  default:
2980    // Nothing to do for these decl specs.
2981    break;
2982  }
2983
2984  // It doesn't matter what order we do this in.
2985  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2986    DeclaratorChunk &Chunk = D.getTypeObject(I);
2987
2988    // The only type information in the declarator which can come
2989    // before the declaration name is the base type of a member
2990    // pointer.
2991    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2992      continue;
2993
2994    // Rebuild the scope specifier in-place.
2995    CXXScopeSpec &SS = Chunk.Mem.Scope();
2996    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2997      return true;
2998  }
2999
3000  return false;
3001}
3002
3003Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3004  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3005                          /*IsFunctionDefinition=*/false);
3006}
3007
3008/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3009///   If T is the name of a class, then each of the following shall have a
3010///   name different from T:
3011///     - every static data member of class T;
3012///     - every member function of class T
3013///     - every member of class T that is itself a type;
3014/// \returns true if the declaration name violates these rules.
3015bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3016                                   DeclarationNameInfo NameInfo) {
3017  DeclarationName Name = NameInfo.getName();
3018
3019  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3020    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3021      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3022      return true;
3023    }
3024
3025  return false;
3026}
3027
3028Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3029                             MultiTemplateParamsArg TemplateParamLists,
3030                             bool IsFunctionDefinition) {
3031  // TODO: consider using NameInfo for diagnostic.
3032  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3033  DeclarationName Name = NameInfo.getName();
3034
3035  // All of these full declarators require an identifier.  If it doesn't have
3036  // one, the ParsedFreeStandingDeclSpec action should be used.
3037  if (!Name) {
3038    if (!D.isInvalidType())  // Reject this if we think it is valid.
3039      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3040           diag::err_declarator_need_ident)
3041        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3042    return 0;
3043  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3044    return 0;
3045
3046  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3047  // we find one that is.
3048  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3049         (S->getFlags() & Scope::TemplateParamScope) != 0)
3050    S = S->getParent();
3051
3052  DeclContext *DC = CurContext;
3053  if (D.getCXXScopeSpec().isInvalid())
3054    D.setInvalidType();
3055  else if (D.getCXXScopeSpec().isSet()) {
3056    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3057                                        UPPC_DeclarationQualifier))
3058      return 0;
3059
3060    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3061    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3062    if (!DC) {
3063      // If we could not compute the declaration context, it's because the
3064      // declaration context is dependent but does not refer to a class,
3065      // class template, or class template partial specialization. Complain
3066      // and return early, to avoid the coming semantic disaster.
3067      Diag(D.getIdentifierLoc(),
3068           diag::err_template_qualified_declarator_no_match)
3069        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3070        << D.getCXXScopeSpec().getRange();
3071      return 0;
3072    }
3073    bool IsDependentContext = DC->isDependentContext();
3074
3075    if (!IsDependentContext &&
3076        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3077      return 0;
3078
3079    if (isa<CXXRecordDecl>(DC)) {
3080      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3081        Diag(D.getIdentifierLoc(),
3082             diag::err_member_def_undefined_record)
3083          << Name << DC << D.getCXXScopeSpec().getRange();
3084        D.setInvalidType();
3085      } else if (isa<CXXRecordDecl>(CurContext) &&
3086                 !D.getDeclSpec().isFriendSpecified()) {
3087        // The user provided a superfluous scope specifier inside a class
3088        // definition:
3089        //
3090        // class X {
3091        //   void X::f();
3092        // };
3093        if (CurContext->Equals(DC))
3094          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3095            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3096        else
3097          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3098            << Name << D.getCXXScopeSpec().getRange();
3099
3100        // Pretend that this qualifier was not here.
3101        D.getCXXScopeSpec().clear();
3102      }
3103    }
3104
3105    // Check whether we need to rebuild the type of the given
3106    // declaration in the current instantiation.
3107    if (EnteringContext && IsDependentContext &&
3108        TemplateParamLists.size() != 0) {
3109      ContextRAII SavedContext(*this, DC);
3110      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3111        D.setInvalidType();
3112    }
3113  }
3114
3115  if (DiagnoseClassNameShadow(DC, NameInfo))
3116    // If this is a typedef, we'll end up spewing multiple diagnostics.
3117    // Just return early; it's safer.
3118    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3119      return 0;
3120
3121  NamedDecl *New;
3122
3123  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3124  QualType R = TInfo->getType();
3125
3126  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3127                                      UPPC_DeclarationType))
3128    D.setInvalidType();
3129
3130  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3131                        ForRedeclaration);
3132
3133  // See if this is a redefinition of a variable in the same scope.
3134  if (!D.getCXXScopeSpec().isSet()) {
3135    bool IsLinkageLookup = false;
3136
3137    // If the declaration we're planning to build will be a function
3138    // or object with linkage, then look for another declaration with
3139    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3140    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3141      /* Do nothing*/;
3142    else if (R->isFunctionType()) {
3143      if (CurContext->isFunctionOrMethod() ||
3144          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3145        IsLinkageLookup = true;
3146    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3147      IsLinkageLookup = true;
3148    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3149             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3150      IsLinkageLookup = true;
3151
3152    if (IsLinkageLookup)
3153      Previous.clear(LookupRedeclarationWithLinkage);
3154
3155    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3156  } else { // Something like "int foo::x;"
3157    LookupQualifiedName(Previous, DC);
3158
3159    // Don't consider using declarations as previous declarations for
3160    // out-of-line members.
3161    RemoveUsingDecls(Previous);
3162
3163    // C++ 7.3.1.2p2:
3164    // Members (including explicit specializations of templates) of a named
3165    // namespace can also be defined outside that namespace by explicit
3166    // qualification of the name being defined, provided that the entity being
3167    // defined was already declared in the namespace and the definition appears
3168    // after the point of declaration in a namespace that encloses the
3169    // declarations namespace.
3170    //
3171    // Note that we only check the context at this point. We don't yet
3172    // have enough information to make sure that PrevDecl is actually
3173    // the declaration we want to match. For example, given:
3174    //
3175    //   class X {
3176    //     void f();
3177    //     void f(float);
3178    //   };
3179    //
3180    //   void X::f(int) { } // ill-formed
3181    //
3182    // In this case, PrevDecl will point to the overload set
3183    // containing the two f's declared in X, but neither of them
3184    // matches.
3185
3186    // First check whether we named the global scope.
3187    if (isa<TranslationUnitDecl>(DC)) {
3188      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3189        << Name << D.getCXXScopeSpec().getRange();
3190    } else {
3191      DeclContext *Cur = CurContext;
3192      while (isa<LinkageSpecDecl>(Cur))
3193        Cur = Cur->getParent();
3194      if (!Cur->Encloses(DC)) {
3195        // The qualifying scope doesn't enclose the original declaration.
3196        // Emit diagnostic based on current scope.
3197        SourceLocation L = D.getIdentifierLoc();
3198        SourceRange R = D.getCXXScopeSpec().getRange();
3199        if (isa<FunctionDecl>(Cur))
3200          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3201        else
3202          Diag(L, diag::err_invalid_declarator_scope)
3203            << Name << cast<NamedDecl>(DC) << R;
3204        D.setInvalidType();
3205      }
3206    }
3207  }
3208
3209  if (Previous.isSingleResult() &&
3210      Previous.getFoundDecl()->isTemplateParameter()) {
3211    // Maybe we will complain about the shadowed template parameter.
3212    if (!D.isInvalidType())
3213      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3214                                          Previous.getFoundDecl()))
3215        D.setInvalidType();
3216
3217    // Just pretend that we didn't see the previous declaration.
3218    Previous.clear();
3219  }
3220
3221  // In C++, the previous declaration we find might be a tag type
3222  // (class or enum). In this case, the new declaration will hide the
3223  // tag type. Note that this does does not apply if we're declaring a
3224  // typedef (C++ [dcl.typedef]p4).
3225  if (Previous.isSingleTagDecl() &&
3226      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3227    Previous.clear();
3228
3229  bool Redeclaration = false;
3230  bool AddToScope = true;
3231  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3232    if (TemplateParamLists.size()) {
3233      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3234      return 0;
3235    }
3236
3237    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3238  } else if (R->isFunctionType()) {
3239    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3240                                  move(TemplateParamLists),
3241                                  IsFunctionDefinition, Redeclaration,
3242                                  AddToScope);
3243  } else {
3244    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3245                                  move(TemplateParamLists),
3246                                  Redeclaration);
3247  }
3248
3249  if (New == 0)
3250    return 0;
3251
3252  // If this has an identifier and is not an invalid redeclaration or
3253  // function template specialization, add it to the scope stack.
3254  if (New->getDeclName() && AddToScope &&
3255       !(Redeclaration && New->isInvalidDecl()))
3256    PushOnScopeChains(New, S);
3257
3258  return New;
3259}
3260
3261/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3262/// types into constant array types in certain situations which would otherwise
3263/// be errors (for GCC compatibility).
3264static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3265                                                    ASTContext &Context,
3266                                                    bool &SizeIsNegative,
3267                                                    llvm::APSInt &Oversized) {
3268  // This method tries to turn a variable array into a constant
3269  // array even when the size isn't an ICE.  This is necessary
3270  // for compatibility with code that depends on gcc's buggy
3271  // constant expression folding, like struct {char x[(int)(char*)2];}
3272  SizeIsNegative = false;
3273  Oversized = 0;
3274
3275  if (T->isDependentType())
3276    return QualType();
3277
3278  QualifierCollector Qs;
3279  const Type *Ty = Qs.strip(T);
3280
3281  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3282    QualType Pointee = PTy->getPointeeType();
3283    QualType FixedType =
3284        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3285                                            Oversized);
3286    if (FixedType.isNull()) return FixedType;
3287    FixedType = Context.getPointerType(FixedType);
3288    return Qs.apply(Context, FixedType);
3289  }
3290  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3291    QualType Inner = PTy->getInnerType();
3292    QualType FixedType =
3293        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3294                                            Oversized);
3295    if (FixedType.isNull()) return FixedType;
3296    FixedType = Context.getParenType(FixedType);
3297    return Qs.apply(Context, FixedType);
3298  }
3299
3300  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3301  if (!VLATy)
3302    return QualType();
3303  // FIXME: We should probably handle this case
3304  if (VLATy->getElementType()->isVariablyModifiedType())
3305    return QualType();
3306
3307  Expr::EvalResult EvalResult;
3308  if (!VLATy->getSizeExpr() ||
3309      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3310      !EvalResult.Val.isInt())
3311    return QualType();
3312
3313  // Check whether the array size is negative.
3314  llvm::APSInt &Res = EvalResult.Val.getInt();
3315  if (Res.isSigned() && Res.isNegative()) {
3316    SizeIsNegative = true;
3317    return QualType();
3318  }
3319
3320  // Check whether the array is too large to be addressed.
3321  unsigned ActiveSizeBits
3322    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3323                                              Res);
3324  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3325    Oversized = Res;
3326    return QualType();
3327  }
3328
3329  return Context.getConstantArrayType(VLATy->getElementType(),
3330                                      Res, ArrayType::Normal, 0);
3331}
3332
3333/// \brief Register the given locally-scoped external C declaration so
3334/// that it can be found later for redeclarations
3335void
3336Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3337                                       const LookupResult &Previous,
3338                                       Scope *S) {
3339  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3340         "Decl is not a locally-scoped decl!");
3341  // Note that we have a locally-scoped external with this name.
3342  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3343
3344  if (!Previous.isSingleResult())
3345    return;
3346
3347  NamedDecl *PrevDecl = Previous.getFoundDecl();
3348
3349  // If there was a previous declaration of this variable, it may be
3350  // in our identifier chain. Update the identifier chain with the new
3351  // declaration.
3352  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3353    // The previous declaration was found on the identifer resolver
3354    // chain, so remove it from its scope.
3355
3356    if (S->isDeclScope(PrevDecl)) {
3357      // Special case for redeclarations in the SAME scope.
3358      // Because this declaration is going to be added to the identifier chain
3359      // later, we should temporarily take it OFF the chain.
3360      IdResolver.RemoveDecl(ND);
3361
3362    } else {
3363      // Find the scope for the original declaration.
3364      while (S && !S->isDeclScope(PrevDecl))
3365        S = S->getParent();
3366    }
3367
3368    if (S)
3369      S->RemoveDecl(PrevDecl);
3370  }
3371}
3372
3373llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3374Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3375  if (ExternalSource) {
3376    // Load locally-scoped external decls from the external source.
3377    SmallVector<NamedDecl *, 4> Decls;
3378    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3379    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3380      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3381        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3382      if (Pos == LocallyScopedExternalDecls.end())
3383        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3384    }
3385  }
3386
3387  return LocallyScopedExternalDecls.find(Name);
3388}
3389
3390/// \brief Diagnose function specifiers on a declaration of an identifier that
3391/// does not identify a function.
3392void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3393  // FIXME: We should probably indicate the identifier in question to avoid
3394  // confusion for constructs like "inline int a(), b;"
3395  if (D.getDeclSpec().isInlineSpecified())
3396    Diag(D.getDeclSpec().getInlineSpecLoc(),
3397         diag::err_inline_non_function);
3398
3399  if (D.getDeclSpec().isVirtualSpecified())
3400    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3401         diag::err_virtual_non_function);
3402
3403  if (D.getDeclSpec().isExplicitSpecified())
3404    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3405         diag::err_explicit_non_function);
3406}
3407
3408NamedDecl*
3409Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3410                             QualType R,  TypeSourceInfo *TInfo,
3411                             LookupResult &Previous, bool &Redeclaration) {
3412  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3413  if (D.getCXXScopeSpec().isSet()) {
3414    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3415      << D.getCXXScopeSpec().getRange();
3416    D.setInvalidType();
3417    // Pretend we didn't see the scope specifier.
3418    DC = CurContext;
3419    Previous.clear();
3420  }
3421
3422  if (getLangOptions().CPlusPlus) {
3423    // Check that there are no default arguments (C++ only).
3424    CheckExtraCXXDefaultArguments(D);
3425  }
3426
3427  DiagnoseFunctionSpecifiers(D);
3428
3429  if (D.getDeclSpec().isThreadSpecified())
3430    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3431  if (D.getDeclSpec().isConstexprSpecified())
3432    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3433      << 1;
3434
3435  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3436    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3437      << D.getName().getSourceRange();
3438    return 0;
3439  }
3440
3441  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3442  if (!NewTD) return 0;
3443
3444  // Handle attributes prior to checking for duplicates in MergeVarDecl
3445  ProcessDeclAttributes(S, NewTD, D);
3446
3447  CheckTypedefForVariablyModifiedType(S, NewTD);
3448
3449  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3450}
3451
3452void
3453Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3454  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3455  // then it shall have block scope.
3456  // Note that variably modified types must be fixed before merging the decl so
3457  // that redeclarations will match.
3458  QualType T = NewTD->getUnderlyingType();
3459  if (T->isVariablyModifiedType()) {
3460    getCurFunction()->setHasBranchProtectedScope();
3461
3462    if (S->getFnParent() == 0) {
3463      bool SizeIsNegative;
3464      llvm::APSInt Oversized;
3465      QualType FixedTy =
3466          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3467                                              Oversized);
3468      if (!FixedTy.isNull()) {
3469        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3470        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3471      } else {
3472        if (SizeIsNegative)
3473          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3474        else if (T->isVariableArrayType())
3475          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3476        else if (Oversized.getBoolValue())
3477          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3478        else
3479          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3480        NewTD->setInvalidDecl();
3481      }
3482    }
3483  }
3484}
3485
3486
3487/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3488/// declares a typedef-name, either using the 'typedef' type specifier or via
3489/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3490NamedDecl*
3491Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3492                           LookupResult &Previous, bool &Redeclaration) {
3493  // Merge the decl with the existing one if appropriate. If the decl is
3494  // in an outer scope, it isn't the same thing.
3495  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3496                       /*ExplicitInstantiationOrSpecialization=*/false);
3497  if (!Previous.empty()) {
3498    Redeclaration = true;
3499    MergeTypedefNameDecl(NewTD, Previous);
3500  }
3501
3502  // If this is the C FILE type, notify the AST context.
3503  if (IdentifierInfo *II = NewTD->getIdentifier())
3504    if (!NewTD->isInvalidDecl() &&
3505        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3506      if (II->isStr("FILE"))
3507        Context.setFILEDecl(NewTD);
3508      else if (II->isStr("jmp_buf"))
3509        Context.setjmp_bufDecl(NewTD);
3510      else if (II->isStr("sigjmp_buf"))
3511        Context.setsigjmp_bufDecl(NewTD);
3512      else if (II->isStr("__builtin_va_list"))
3513        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3514    }
3515
3516  return NewTD;
3517}
3518
3519/// \brief Determines whether the given declaration is an out-of-scope
3520/// previous declaration.
3521///
3522/// This routine should be invoked when name lookup has found a
3523/// previous declaration (PrevDecl) that is not in the scope where a
3524/// new declaration by the same name is being introduced. If the new
3525/// declaration occurs in a local scope, previous declarations with
3526/// linkage may still be considered previous declarations (C99
3527/// 6.2.2p4-5, C++ [basic.link]p6).
3528///
3529/// \param PrevDecl the previous declaration found by name
3530/// lookup
3531///
3532/// \param DC the context in which the new declaration is being
3533/// declared.
3534///
3535/// \returns true if PrevDecl is an out-of-scope previous declaration
3536/// for a new delcaration with the same name.
3537static bool
3538isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3539                                ASTContext &Context) {
3540  if (!PrevDecl)
3541    return false;
3542
3543  if (!PrevDecl->hasLinkage())
3544    return false;
3545
3546  if (Context.getLangOptions().CPlusPlus) {
3547    // C++ [basic.link]p6:
3548    //   If there is a visible declaration of an entity with linkage
3549    //   having the same name and type, ignoring entities declared
3550    //   outside the innermost enclosing namespace scope, the block
3551    //   scope declaration declares that same entity and receives the
3552    //   linkage of the previous declaration.
3553    DeclContext *OuterContext = DC->getRedeclContext();
3554    if (!OuterContext->isFunctionOrMethod())
3555      // This rule only applies to block-scope declarations.
3556      return false;
3557
3558    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3559    if (PrevOuterContext->isRecord())
3560      // We found a member function: ignore it.
3561      return false;
3562
3563    // Find the innermost enclosing namespace for the new and
3564    // previous declarations.
3565    OuterContext = OuterContext->getEnclosingNamespaceContext();
3566    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3567
3568    // The previous declaration is in a different namespace, so it
3569    // isn't the same function.
3570    if (!OuterContext->Equals(PrevOuterContext))
3571      return false;
3572  }
3573
3574  return true;
3575}
3576
3577static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3578  CXXScopeSpec &SS = D.getCXXScopeSpec();
3579  if (!SS.isSet()) return;
3580  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3581}
3582
3583bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3584  QualType type = decl->getType();
3585  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3586  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3587    // Various kinds of declaration aren't allowed to be __autoreleasing.
3588    unsigned kind = -1U;
3589    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3590      if (var->hasAttr<BlocksAttr>())
3591        kind = 0; // __block
3592      else if (!var->hasLocalStorage())
3593        kind = 1; // global
3594    } else if (isa<ObjCIvarDecl>(decl)) {
3595      kind = 3; // ivar
3596    } else if (isa<FieldDecl>(decl)) {
3597      kind = 2; // field
3598    }
3599
3600    if (kind != -1U) {
3601      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3602        << kind;
3603    }
3604  } else if (lifetime == Qualifiers::OCL_None) {
3605    // Try to infer lifetime.
3606    if (!type->isObjCLifetimeType())
3607      return false;
3608
3609    lifetime = type->getObjCARCImplicitLifetime();
3610    type = Context.getLifetimeQualifiedType(type, lifetime);
3611    decl->setType(type);
3612  }
3613
3614  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3615    // Thread-local variables cannot have lifetime.
3616    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3617        var->isThreadSpecified()) {
3618      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3619        << var->getType();
3620      return true;
3621    }
3622  }
3623
3624  return false;
3625}
3626
3627NamedDecl*
3628Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3629                              QualType R, TypeSourceInfo *TInfo,
3630                              LookupResult &Previous,
3631                              MultiTemplateParamsArg TemplateParamLists,
3632                              bool &Redeclaration) {
3633  DeclarationName Name = GetNameForDeclarator(D).getName();
3634
3635  // Check that there are no default arguments (C++ only).
3636  if (getLangOptions().CPlusPlus)
3637    CheckExtraCXXDefaultArguments(D);
3638
3639  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3640  assert(SCSpec != DeclSpec::SCS_typedef &&
3641         "Parser allowed 'typedef' as storage class VarDecl.");
3642  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3643  if (SCSpec == DeclSpec::SCS_mutable) {
3644    // mutable can only appear on non-static class members, so it's always
3645    // an error here
3646    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3647    D.setInvalidType();
3648    SC = SC_None;
3649  }
3650  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3651  VarDecl::StorageClass SCAsWritten
3652    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3653
3654  IdentifierInfo *II = Name.getAsIdentifierInfo();
3655  if (!II) {
3656    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3657      << Name.getAsString();
3658    return 0;
3659  }
3660
3661  DiagnoseFunctionSpecifiers(D);
3662
3663  if (!DC->isRecord() && S->getFnParent() == 0) {
3664    // C99 6.9p2: The storage-class specifiers auto and register shall not
3665    // appear in the declaration specifiers in an external declaration.
3666    if (SC == SC_Auto || SC == SC_Register) {
3667
3668      // If this is a register variable with an asm label specified, then this
3669      // is a GNU extension.
3670      if (SC == SC_Register && D.getAsmLabel())
3671        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3672      else
3673        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3674      D.setInvalidType();
3675    }
3676  }
3677
3678  bool isExplicitSpecialization = false;
3679  VarDecl *NewVD;
3680  if (!getLangOptions().CPlusPlus) {
3681    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3682                            D.getIdentifierLoc(), II,
3683                            R, TInfo, SC, SCAsWritten);
3684
3685    if (D.isInvalidType())
3686      NewVD->setInvalidDecl();
3687  } else {
3688    if (DC->isRecord() && !CurContext->isRecord()) {
3689      // This is an out-of-line definition of a static data member.
3690      if (SC == SC_Static) {
3691        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3692             diag::err_static_out_of_line)
3693          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3694      } else if (SC == SC_None)
3695        SC = SC_Static;
3696    }
3697    if (SC == SC_Static) {
3698      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3699        if (RD->isLocalClass())
3700          Diag(D.getIdentifierLoc(),
3701               diag::err_static_data_member_not_allowed_in_local_class)
3702            << Name << RD->getDeclName();
3703
3704        // C++ [class.union]p1: If a union contains a static data member,
3705        // the program is ill-formed.
3706        //
3707        // We also disallow static data members in anonymous structs.
3708        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3709          Diag(D.getIdentifierLoc(),
3710               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3711            << Name << RD->isUnion();
3712      }
3713    }
3714
3715    // Match up the template parameter lists with the scope specifier, then
3716    // determine whether we have a template or a template specialization.
3717    isExplicitSpecialization = false;
3718    bool Invalid = false;
3719    if (TemplateParameterList *TemplateParams
3720        = MatchTemplateParametersToScopeSpecifier(
3721                                  D.getDeclSpec().getSourceRange().getBegin(),
3722                                                  D.getIdentifierLoc(),
3723                                                  D.getCXXScopeSpec(),
3724                                                  TemplateParamLists.get(),
3725                                                  TemplateParamLists.size(),
3726                                                  /*never a friend*/ false,
3727                                                  isExplicitSpecialization,
3728                                                  Invalid)) {
3729      if (TemplateParams->size() > 0) {
3730        // There is no such thing as a variable template.
3731        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3732          << II
3733          << SourceRange(TemplateParams->getTemplateLoc(),
3734                         TemplateParams->getRAngleLoc());
3735        return 0;
3736      } else {
3737        // There is an extraneous 'template<>' for this variable. Complain
3738        // about it, but allow the declaration of the variable.
3739        Diag(TemplateParams->getTemplateLoc(),
3740             diag::err_template_variable_noparams)
3741          << II
3742          << SourceRange(TemplateParams->getTemplateLoc(),
3743                         TemplateParams->getRAngleLoc());
3744      }
3745    }
3746
3747    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3748                            D.getIdentifierLoc(), II,
3749                            R, TInfo, SC, SCAsWritten);
3750
3751    // If this decl has an auto type in need of deduction, make a note of the
3752    // Decl so we can diagnose uses of it in its own initializer.
3753    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3754        R->getContainedAutoType())
3755      ParsingInitForAutoVars.insert(NewVD);
3756
3757    if (D.isInvalidType() || Invalid)
3758      NewVD->setInvalidDecl();
3759
3760    SetNestedNameSpecifier(NewVD, D);
3761
3762    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3763      NewVD->setTemplateParameterListsInfo(Context,
3764                                           TemplateParamLists.size(),
3765                                           TemplateParamLists.release());
3766    }
3767
3768    if (D.getDeclSpec().isConstexprSpecified()) {
3769      // FIXME: check this is a valid use of constexpr.
3770      NewVD->setConstexpr(true);
3771    }
3772  }
3773
3774  if (D.getDeclSpec().isThreadSpecified()) {
3775    if (NewVD->hasLocalStorage())
3776      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3777    else if (!Context.getTargetInfo().isTLSSupported())
3778      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3779    else
3780      NewVD->setThreadSpecified(true);
3781  }
3782
3783  // Set the lexical context. If the declarator has a C++ scope specifier, the
3784  // lexical context will be different from the semantic context.
3785  NewVD->setLexicalDeclContext(CurContext);
3786
3787  // Handle attributes prior to checking for duplicates in MergeVarDecl
3788  ProcessDeclAttributes(S, NewVD, D);
3789
3790  // In auto-retain/release, infer strong retension for variables of
3791  // retainable type.
3792  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3793    NewVD->setInvalidDecl();
3794
3795  // Handle GNU asm-label extension (encoded as an attribute).
3796  if (Expr *E = (Expr*)D.getAsmLabel()) {
3797    // The parser guarantees this is a string.
3798    StringLiteral *SE = cast<StringLiteral>(E);
3799    StringRef Label = SE->getString();
3800    if (S->getFnParent() != 0) {
3801      switch (SC) {
3802      case SC_None:
3803      case SC_Auto:
3804        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3805        break;
3806      case SC_Register:
3807        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3808          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3809        break;
3810      case SC_Static:
3811      case SC_Extern:
3812      case SC_PrivateExtern:
3813        break;
3814      }
3815    }
3816
3817    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3818                                                Context, Label));
3819  }
3820
3821  // Diagnose shadowed variables before filtering for scope.
3822  if (!D.getCXXScopeSpec().isSet())
3823    CheckShadow(S, NewVD, Previous);
3824
3825  // Don't consider existing declarations that are in a different
3826  // scope and are out-of-semantic-context declarations (if the new
3827  // declaration has linkage).
3828  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3829                       isExplicitSpecialization);
3830
3831  if (!getLangOptions().CPlusPlus)
3832    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3833  else {
3834    // Merge the decl with the existing one if appropriate.
3835    if (!Previous.empty()) {
3836      if (Previous.isSingleResult() &&
3837          isa<FieldDecl>(Previous.getFoundDecl()) &&
3838          D.getCXXScopeSpec().isSet()) {
3839        // The user tried to define a non-static data member
3840        // out-of-line (C++ [dcl.meaning]p1).
3841        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3842          << D.getCXXScopeSpec().getRange();
3843        Previous.clear();
3844        NewVD->setInvalidDecl();
3845      }
3846    } else if (D.getCXXScopeSpec().isSet()) {
3847      // No previous declaration in the qualifying scope.
3848      Diag(D.getIdentifierLoc(), diag::err_no_member)
3849        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3850        << D.getCXXScopeSpec().getRange();
3851      NewVD->setInvalidDecl();
3852    }
3853
3854    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3855
3856    // This is an explicit specialization of a static data member. Check it.
3857    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3858        CheckMemberSpecialization(NewVD, Previous))
3859      NewVD->setInvalidDecl();
3860  }
3861
3862  // attributes declared post-definition are currently ignored
3863  // FIXME: This should be handled in attribute merging, not
3864  // here.
3865  if (Previous.isSingleResult()) {
3866    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3867    if (Def && (Def = Def->getDefinition()) &&
3868        Def != NewVD && D.hasAttributes()) {
3869      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3870      Diag(Def->getLocation(), diag::note_previous_definition);
3871    }
3872  }
3873
3874  // If this is a locally-scoped extern C variable, update the map of
3875  // such variables.
3876  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3877      !NewVD->isInvalidDecl())
3878    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3879
3880  // If there's a #pragma GCC visibility in scope, and this isn't a class
3881  // member, set the visibility of this variable.
3882  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3883    AddPushedVisibilityAttribute(NewVD);
3884
3885  MarkUnusedFileScopedDecl(NewVD);
3886
3887  return NewVD;
3888}
3889
3890/// \brief Diagnose variable or built-in function shadowing.  Implements
3891/// -Wshadow.
3892///
3893/// This method is called whenever a VarDecl is added to a "useful"
3894/// scope.
3895///
3896/// \param S the scope in which the shadowing name is being declared
3897/// \param R the lookup of the name
3898///
3899void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3900  // Return if warning is ignored.
3901  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3902        Diagnostic::Ignored)
3903    return;
3904
3905  // Don't diagnose declarations at file scope.
3906  if (D->hasGlobalStorage())
3907    return;
3908
3909  DeclContext *NewDC = D->getDeclContext();
3910
3911  // Only diagnose if we're shadowing an unambiguous field or variable.
3912  if (R.getResultKind() != LookupResult::Found)
3913    return;
3914
3915  NamedDecl* ShadowedDecl = R.getFoundDecl();
3916  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3917    return;
3918
3919  // Fields are not shadowed by variables in C++ static methods.
3920  if (isa<FieldDecl>(ShadowedDecl))
3921    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3922      if (MD->isStatic())
3923        return;
3924
3925  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3926    if (shadowedVar->isExternC()) {
3927      // For shadowing external vars, make sure that we point to the global
3928      // declaration, not a locally scoped extern declaration.
3929      for (VarDecl::redecl_iterator
3930             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3931           I != E; ++I)
3932        if (I->isFileVarDecl()) {
3933          ShadowedDecl = *I;
3934          break;
3935        }
3936    }
3937
3938  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3939
3940  // Only warn about certain kinds of shadowing for class members.
3941  if (NewDC && NewDC->isRecord()) {
3942    // In particular, don't warn about shadowing non-class members.
3943    if (!OldDC->isRecord())
3944      return;
3945
3946    // TODO: should we warn about static data members shadowing
3947    // static data members from base classes?
3948
3949    // TODO: don't diagnose for inaccessible shadowed members.
3950    // This is hard to do perfectly because we might friend the
3951    // shadowing context, but that's just a false negative.
3952  }
3953
3954  // Determine what kind of declaration we're shadowing.
3955  unsigned Kind;
3956  if (isa<RecordDecl>(OldDC)) {
3957    if (isa<FieldDecl>(ShadowedDecl))
3958      Kind = 3; // field
3959    else
3960      Kind = 2; // static data member
3961  } else if (OldDC->isFileContext())
3962    Kind = 1; // global
3963  else
3964    Kind = 0; // local
3965
3966  DeclarationName Name = R.getLookupName();
3967
3968  // Emit warning and note.
3969  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3970  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3971}
3972
3973/// \brief Check -Wshadow without the advantage of a previous lookup.
3974void Sema::CheckShadow(Scope *S, VarDecl *D) {
3975  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3976        Diagnostic::Ignored)
3977    return;
3978
3979  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3980                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3981  LookupName(R, S);
3982  CheckShadow(S, D, R);
3983}
3984
3985/// \brief Perform semantic checking on a newly-created variable
3986/// declaration.
3987///
3988/// This routine performs all of the type-checking required for a
3989/// variable declaration once it has been built. It is used both to
3990/// check variables after they have been parsed and their declarators
3991/// have been translated into a declaration, and to check variables
3992/// that have been instantiated from a template.
3993///
3994/// Sets NewVD->isInvalidDecl() if an error was encountered.
3995void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3996                                    LookupResult &Previous,
3997                                    bool &Redeclaration) {
3998  // If the decl is already known invalid, don't check it.
3999  if (NewVD->isInvalidDecl())
4000    return;
4001
4002  QualType T = NewVD->getType();
4003
4004  if (T->isObjCObjectType()) {
4005    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4006      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4007    T = Context.getObjCObjectPointerType(T);
4008    NewVD->setType(T);
4009  }
4010
4011  // Emit an error if an address space was applied to decl with local storage.
4012  // This includes arrays of objects with address space qualifiers, but not
4013  // automatic variables that point to other address spaces.
4014  // ISO/IEC TR 18037 S5.1.2
4015  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4016    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4017    return NewVD->setInvalidDecl();
4018  }
4019
4020  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4021      && !NewVD->hasAttr<BlocksAttr>()) {
4022    if (getLangOptions().getGCMode() != LangOptions::NonGC)
4023      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4024    else
4025      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4026  }
4027
4028  bool isVM = T->isVariablyModifiedType();
4029  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4030      NewVD->hasAttr<BlocksAttr>())
4031    getCurFunction()->setHasBranchProtectedScope();
4032
4033  if ((isVM && NewVD->hasLinkage()) ||
4034      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4035    bool SizeIsNegative;
4036    llvm::APSInt Oversized;
4037    QualType FixedTy =
4038        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4039                                            Oversized);
4040
4041    if (FixedTy.isNull() && T->isVariableArrayType()) {
4042      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4043      // FIXME: This won't give the correct result for
4044      // int a[10][n];
4045      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4046
4047      if (NewVD->isFileVarDecl())
4048        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4049        << SizeRange;
4050      else if (NewVD->getStorageClass() == SC_Static)
4051        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4052        << SizeRange;
4053      else
4054        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4055        << SizeRange;
4056      return NewVD->setInvalidDecl();
4057    }
4058
4059    if (FixedTy.isNull()) {
4060      if (NewVD->isFileVarDecl())
4061        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4062      else
4063        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4064      return NewVD->setInvalidDecl();
4065    }
4066
4067    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4068    NewVD->setType(FixedTy);
4069  }
4070
4071  if (Previous.empty() && NewVD->isExternC()) {
4072    // Since we did not find anything by this name and we're declaring
4073    // an extern "C" variable, look for a non-visible extern "C"
4074    // declaration with the same name.
4075    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4076      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4077    if (Pos != LocallyScopedExternalDecls.end())
4078      Previous.addDecl(Pos->second);
4079  }
4080
4081  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4082    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4083      << T;
4084    return NewVD->setInvalidDecl();
4085  }
4086
4087  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4088    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4089    return NewVD->setInvalidDecl();
4090  }
4091
4092  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4093    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4094    return NewVD->setInvalidDecl();
4095  }
4096
4097  // Function pointers and references cannot have qualified function type, only
4098  // function pointer-to-members can do that.
4099  QualType Pointee;
4100  unsigned PtrOrRef = 0;
4101  if (const PointerType *Ptr = T->getAs<PointerType>())
4102    Pointee = Ptr->getPointeeType();
4103  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4104    Pointee = Ref->getPointeeType();
4105    PtrOrRef = 1;
4106  }
4107  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4108      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4109    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4110        << PtrOrRef;
4111    return NewVD->setInvalidDecl();
4112  }
4113
4114  if (!Previous.empty()) {
4115    Redeclaration = true;
4116    MergeVarDecl(NewVD, Previous);
4117  }
4118}
4119
4120/// \brief Data used with FindOverriddenMethod
4121struct FindOverriddenMethodData {
4122  Sema *S;
4123  CXXMethodDecl *Method;
4124};
4125
4126/// \brief Member lookup function that determines whether a given C++
4127/// method overrides a method in a base class, to be used with
4128/// CXXRecordDecl::lookupInBases().
4129static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4130                                 CXXBasePath &Path,
4131                                 void *UserData) {
4132  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4133
4134  FindOverriddenMethodData *Data
4135    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4136
4137  DeclarationName Name = Data->Method->getDeclName();
4138
4139  // FIXME: Do we care about other names here too?
4140  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4141    // We really want to find the base class destructor here.
4142    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4143    CanQualType CT = Data->S->Context.getCanonicalType(T);
4144
4145    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4146  }
4147
4148  for (Path.Decls = BaseRecord->lookup(Name);
4149       Path.Decls.first != Path.Decls.second;
4150       ++Path.Decls.first) {
4151    NamedDecl *D = *Path.Decls.first;
4152    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4153      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4154        return true;
4155    }
4156  }
4157
4158  return false;
4159}
4160
4161/// AddOverriddenMethods - See if a method overrides any in the base classes,
4162/// and if so, check that it's a valid override and remember it.
4163bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4164  // Look for virtual methods in base classes that this method might override.
4165  CXXBasePaths Paths;
4166  FindOverriddenMethodData Data;
4167  Data.Method = MD;
4168  Data.S = this;
4169  bool AddedAny = false;
4170  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4171    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4172         E = Paths.found_decls_end(); I != E; ++I) {
4173      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4174        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4175        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4176            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4177            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4178          AddedAny = true;
4179        }
4180      }
4181    }
4182  }
4183
4184  return AddedAny;
4185}
4186
4187static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4188                                         bool isFriendDecl) {
4189  DeclarationName Name = NewFD->getDeclName();
4190  DeclContext *DC = NewFD->getDeclContext();
4191  LookupResult Prev(S, Name, NewFD->getLocation(),
4192                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4193  llvm::SmallVector<unsigned, 1> MismatchedParams;
4194  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4195  TypoCorrection Correction;
4196  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4197                                  : diag::err_member_def_does_not_match;
4198
4199  NewFD->setInvalidDecl();
4200  S.LookupQualifiedName(Prev, DC);
4201  assert(!Prev.isAmbiguous() &&
4202         "Cannot have an ambiguity in previous-declaration lookup");
4203  if (!Prev.empty()) {
4204    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4205         Func != FuncEnd; ++Func) {
4206      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4207      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4208                                         MismatchedParams)) {
4209        // Add 1 to the index so that 0 can mean the mismatch didn't
4210        // involve a parameter
4211        unsigned ParamNum =
4212            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4213        NearMatches.push_back(std::make_pair(FD, ParamNum));
4214      }
4215    }
4216  // If the qualified name lookup yielded nothing, try typo correction
4217  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4218                                         Prev.getLookupKind(), 0, 0, DC)) &&
4219             Correction.getCorrection() != Name) {
4220    DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4221                           : diag::err_member_def_does_not_match_suggest;
4222    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4223                                    CDeclEnd = Correction.end();
4224         CDecl != CDeclEnd; ++CDecl) {
4225      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4226      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4227                                         MismatchedParams)) {
4228        // Add 1 to the index so that 0 can mean the mismatch didn't
4229        // involve a parameter
4230        unsigned ParamNum =
4231            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4232        NearMatches.push_back(std::make_pair(FD, ParamNum));
4233      }
4234    }
4235  }
4236
4237  if (Correction)
4238    S.Diag(NewFD->getLocation(), DiagMsg)
4239        << Name << DC << Correction.getQuoted(S.getLangOptions())
4240        << FixItHint::CreateReplacement(
4241            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4242  else
4243    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4244
4245  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4246       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4247       NearMatch != NearMatchEnd; ++NearMatch) {
4248    FunctionDecl *FD = NearMatch->first;
4249
4250    if (unsigned Idx = NearMatch->second) {
4251      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4252      S.Diag(FDParam->getTypeSpecStartLoc(),
4253             diag::note_member_def_close_param_match)
4254          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4255    } else if (Correction) {
4256      S.Diag(FD->getLocation(), diag::note_previous_decl)
4257        << Correction.getQuoted(S.getLangOptions());
4258    } else
4259      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4260  }
4261}
4262
4263NamedDecl*
4264Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4265                              QualType R, TypeSourceInfo *TInfo,
4266                              LookupResult &Previous,
4267                              MultiTemplateParamsArg TemplateParamLists,
4268                              bool IsFunctionDefinition, bool &Redeclaration,
4269                              bool &AddToScope) {
4270  assert(R.getTypePtr()->isFunctionType());
4271
4272  // TODO: consider using NameInfo for diagnostic.
4273  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4274  DeclarationName Name = NameInfo.getName();
4275  FunctionDecl::StorageClass SC = SC_None;
4276  switch (D.getDeclSpec().getStorageClassSpec()) {
4277  default: assert(0 && "Unknown storage class!");
4278  case DeclSpec::SCS_auto:
4279  case DeclSpec::SCS_register:
4280  case DeclSpec::SCS_mutable:
4281    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4282         diag::err_typecheck_sclass_func);
4283    D.setInvalidType();
4284    break;
4285  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4286  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4287  case DeclSpec::SCS_static: {
4288    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4289      // C99 6.7.1p5:
4290      //   The declaration of an identifier for a function that has
4291      //   block scope shall have no explicit storage-class specifier
4292      //   other than extern
4293      // See also (C++ [dcl.stc]p4).
4294      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4295           diag::err_static_block_func);
4296      SC = SC_None;
4297    } else
4298      SC = SC_Static;
4299    break;
4300  }
4301  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4302  }
4303
4304  if (D.getDeclSpec().isThreadSpecified())
4305    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4306
4307  // Do not allow returning a objc interface by-value.
4308  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4309    Diag(D.getIdentifierLoc(),
4310         diag::err_object_cannot_be_passed_returned_by_value) << 0
4311    << R->getAs<FunctionType>()->getResultType()
4312    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4313
4314    QualType T = R->getAs<FunctionType>()->getResultType();
4315    T = Context.getObjCObjectPointerType(T);
4316    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4317      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4318      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4319                                  FPT->getNumArgs(), EPI);
4320    }
4321    else if (isa<FunctionNoProtoType>(R))
4322      R = Context.getFunctionNoProtoType(T);
4323  }
4324
4325  FunctionDecl *NewFD;
4326  bool isInline = D.getDeclSpec().isInlineSpecified();
4327  bool isFriend = false;
4328  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4329  FunctionDecl::StorageClass SCAsWritten
4330    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4331  FunctionTemplateDecl *FunctionTemplate = 0;
4332  bool isExplicitSpecialization = false;
4333  bool isFunctionTemplateSpecialization = false;
4334  bool isDependentClassScopeExplicitSpecialization = false;
4335
4336  if (!getLangOptions().CPlusPlus) {
4337    // Determine whether the function was written with a
4338    // prototype. This true when:
4339    //   - there is a prototype in the declarator, or
4340    //   - the type R of the function is some kind of typedef or other reference
4341    //     to a type name (which eventually refers to a function type).
4342    bool HasPrototype =
4343    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4344    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4345
4346    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4347                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4348                                 HasPrototype);
4349    if (D.isInvalidType())
4350      NewFD->setInvalidDecl();
4351
4352    // Set the lexical context.
4353    NewFD->setLexicalDeclContext(CurContext);
4354    // Filter out previous declarations that don't match the scope.
4355    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4356                         /*ExplicitInstantiationOrSpecialization=*/false);
4357  } else {
4358    isFriend = D.getDeclSpec().isFriendSpecified();
4359    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4360    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4361    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4362    bool isVirtualOkay = false;
4363
4364    // Check that the return type is not an abstract class type.
4365    // For record types, this is done by the AbstractClassUsageDiagnoser once
4366    // the class has been completely parsed.
4367    if (!DC->isRecord() &&
4368      RequireNonAbstractType(D.getIdentifierLoc(),
4369                             R->getAs<FunctionType>()->getResultType(),
4370                             diag::err_abstract_type_in_decl,
4371                             AbstractReturnType))
4372      D.setInvalidType();
4373
4374    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4375      // This is a C++ constructor declaration.
4376      assert(DC->isRecord() &&
4377             "Constructors can only be declared in a member context");
4378
4379      R = CheckConstructorDeclarator(D, R, SC);
4380
4381      // Create the new declaration
4382      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4383                                         Context,
4384                                         cast<CXXRecordDecl>(DC),
4385                                         D.getSourceRange().getBegin(),
4386                                         NameInfo, R, TInfo,
4387                                         isExplicit, isInline,
4388                                         /*isImplicitlyDeclared=*/false,
4389                                         isConstexpr);
4390
4391      NewFD = NewCD;
4392    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4393      // This is a C++ destructor declaration.
4394      if (DC->isRecord()) {
4395        R = CheckDestructorDeclarator(D, R, SC);
4396        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4397
4398        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4399                                          D.getSourceRange().getBegin(),
4400                                          NameInfo, R, TInfo,
4401                                          isInline,
4402                                          /*isImplicitlyDeclared=*/false);
4403        NewFD = NewDD;
4404        isVirtualOkay = true;
4405
4406        // If the class is complete, then we now create the implicit exception
4407        // specification. If the class is incomplete or dependent, we can't do
4408        // it yet.
4409        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4410            Record->getDefinition() && !Record->isBeingDefined() &&
4411            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4412          AdjustDestructorExceptionSpec(Record, NewDD);
4413        }
4414
4415      } else {
4416        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4417
4418        // Create a FunctionDecl to satisfy the function definition parsing
4419        // code path.
4420        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4421                                     D.getIdentifierLoc(), Name, R, TInfo,
4422                                     SC, SCAsWritten, isInline,
4423                                     /*hasPrototype=*/true, isConstexpr);
4424        D.setInvalidType();
4425      }
4426    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4427      if (!DC->isRecord()) {
4428        Diag(D.getIdentifierLoc(),
4429             diag::err_conv_function_not_member);
4430        return 0;
4431      }
4432
4433      CheckConversionDeclarator(D, R, SC);
4434      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4435                                        D.getSourceRange().getBegin(),
4436                                        NameInfo, R, TInfo,
4437                                        isInline, isExplicit, isConstexpr,
4438                                        SourceLocation());
4439
4440      isVirtualOkay = true;
4441    } else if (DC->isRecord()) {
4442      // If the name of the function is the same as the name of the record,
4443      // then this must be an invalid constructor that has a return type.
4444      // (The parser checks for a return type and makes the declarator a
4445      // constructor if it has no return type).
4446      if (Name.getAsIdentifierInfo() &&
4447          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4448        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4449          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4450          << SourceRange(D.getIdentifierLoc());
4451        return 0;
4452      }
4453
4454      bool isStatic = SC == SC_Static;
4455
4456      // [class.free]p1:
4457      // Any allocation function for a class T is a static member
4458      // (even if not explicitly declared static).
4459      if (Name.getCXXOverloadedOperator() == OO_New ||
4460          Name.getCXXOverloadedOperator() == OO_Array_New)
4461        isStatic = true;
4462
4463      // [class.free]p6 Any deallocation function for a class X is a static member
4464      // (even if not explicitly declared static).
4465      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4466          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4467        isStatic = true;
4468
4469      // This is a C++ method declaration.
4470      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4471                                               Context, cast<CXXRecordDecl>(DC),
4472                                               D.getSourceRange().getBegin(),
4473                                               NameInfo, R, TInfo,
4474                                               isStatic, SCAsWritten, isInline,
4475                                               isConstexpr,
4476                                               SourceLocation());
4477      NewFD = NewMD;
4478
4479      isVirtualOkay = !isStatic;
4480    } else {
4481      // Determine whether the function was written with a
4482      // prototype. This true when:
4483      //   - we're in C++ (where every function has a prototype),
4484      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4485                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4486                                   true/*HasPrototype*/, isConstexpr);
4487    }
4488
4489    if (isFriend && !isInline && IsFunctionDefinition) {
4490      // C++ [class.friend]p5
4491      //   A function can be defined in a friend declaration of a
4492      //   class . . . . Such a function is implicitly inline.
4493      NewFD->setImplicitlyInline();
4494    }
4495
4496    SetNestedNameSpecifier(NewFD, D);
4497    isExplicitSpecialization = false;
4498    isFunctionTemplateSpecialization = false;
4499    if (D.isInvalidType())
4500      NewFD->setInvalidDecl();
4501
4502    // Set the lexical context. If the declarator has a C++
4503    // scope specifier, or is the object of a friend declaration, the
4504    // lexical context will be different from the semantic context.
4505    NewFD->setLexicalDeclContext(CurContext);
4506
4507    // Match up the template parameter lists with the scope specifier, then
4508    // determine whether we have a template or a template specialization.
4509    bool Invalid = false;
4510    if (TemplateParameterList *TemplateParams
4511          = MatchTemplateParametersToScopeSpecifier(
4512                                  D.getDeclSpec().getSourceRange().getBegin(),
4513                                  D.getIdentifierLoc(),
4514                                  D.getCXXScopeSpec(),
4515                                  TemplateParamLists.get(),
4516                                  TemplateParamLists.size(),
4517                                  isFriend,
4518                                  isExplicitSpecialization,
4519                                  Invalid)) {
4520      if (TemplateParams->size() > 0) {
4521        // This is a function template
4522
4523        // Check that we can declare a template here.
4524        if (CheckTemplateDeclScope(S, TemplateParams))
4525          return 0;
4526
4527        // A destructor cannot be a template.
4528        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4529          Diag(NewFD->getLocation(), diag::err_destructor_template);
4530          return 0;
4531        }
4532
4533        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4534                                                        NewFD->getLocation(),
4535                                                        Name, TemplateParams,
4536                                                        NewFD);
4537        FunctionTemplate->setLexicalDeclContext(CurContext);
4538        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4539
4540        // For source fidelity, store the other template param lists.
4541        if (TemplateParamLists.size() > 1) {
4542          NewFD->setTemplateParameterListsInfo(Context,
4543                                               TemplateParamLists.size() - 1,
4544                                               TemplateParamLists.release());
4545        }
4546      } else {
4547        // This is a function template specialization.
4548        isFunctionTemplateSpecialization = true;
4549        // For source fidelity, store all the template param lists.
4550        NewFD->setTemplateParameterListsInfo(Context,
4551                                             TemplateParamLists.size(),
4552                                             TemplateParamLists.release());
4553
4554        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4555        if (isFriend) {
4556          // We want to remove the "template<>", found here.
4557          SourceRange RemoveRange = TemplateParams->getSourceRange();
4558
4559          // If we remove the template<> and the name is not a
4560          // template-id, we're actually silently creating a problem:
4561          // the friend declaration will refer to an untemplated decl,
4562          // and clearly the user wants a template specialization.  So
4563          // we need to insert '<>' after the name.
4564          SourceLocation InsertLoc;
4565          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4566            InsertLoc = D.getName().getSourceRange().getEnd();
4567            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4568          }
4569
4570          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4571            << Name << RemoveRange
4572            << FixItHint::CreateRemoval(RemoveRange)
4573            << FixItHint::CreateInsertion(InsertLoc, "<>");
4574        }
4575      }
4576    }
4577    else {
4578      // All template param lists were matched against the scope specifier:
4579      // this is NOT (an explicit specialization of) a template.
4580      if (TemplateParamLists.size() > 0)
4581        // For source fidelity, store all the template param lists.
4582        NewFD->setTemplateParameterListsInfo(Context,
4583                                             TemplateParamLists.size(),
4584                                             TemplateParamLists.release());
4585    }
4586
4587    if (Invalid) {
4588      NewFD->setInvalidDecl();
4589      if (FunctionTemplate)
4590        FunctionTemplate->setInvalidDecl();
4591    }
4592
4593    // C++ [dcl.fct.spec]p5:
4594    //   The virtual specifier shall only be used in declarations of
4595    //   nonstatic class member functions that appear within a
4596    //   member-specification of a class declaration; see 10.3.
4597    //
4598    if (isVirtual && !NewFD->isInvalidDecl()) {
4599      if (!isVirtualOkay) {
4600        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4601             diag::err_virtual_non_function);
4602      } else if (!CurContext->isRecord()) {
4603        // 'virtual' was specified outside of the class.
4604        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4605             diag::err_virtual_out_of_class)
4606          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4607      } else if (NewFD->getDescribedFunctionTemplate()) {
4608        // C++ [temp.mem]p3:
4609        //  A member function template shall not be virtual.
4610        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4611             diag::err_virtual_member_function_template)
4612          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4613      } else {
4614        // Okay: Add virtual to the method.
4615        NewFD->setVirtualAsWritten(true);
4616      }
4617    }
4618
4619    // C++ [dcl.fct.spec]p3:
4620    //  The inline specifier shall not appear on a block scope function declaration.
4621    if (isInline && !NewFD->isInvalidDecl()) {
4622      if (CurContext->isFunctionOrMethod()) {
4623        // 'inline' is not allowed on block scope function declaration.
4624        Diag(D.getDeclSpec().getInlineSpecLoc(),
4625             diag::err_inline_declaration_block_scope) << Name
4626          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4627      }
4628    }
4629
4630    // C++ [dcl.fct.spec]p6:
4631    //  The explicit specifier shall be used only in the declaration of a
4632    //  constructor or conversion function within its class definition; see 12.3.1
4633    //  and 12.3.2.
4634    if (isExplicit && !NewFD->isInvalidDecl()) {
4635      if (!CurContext->isRecord()) {
4636        // 'explicit' was specified outside of the class.
4637        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4638             diag::err_explicit_out_of_class)
4639          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4640      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4641                 !isa<CXXConversionDecl>(NewFD)) {
4642        // 'explicit' was specified on a function that wasn't a constructor
4643        // or conversion function.
4644        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4645             diag::err_explicit_non_ctor_or_conv_function)
4646          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4647      }
4648    }
4649
4650    if (isConstexpr) {
4651      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4652      // are implicitly inline.
4653      NewFD->setImplicitlyInline();
4654
4655      // FIXME: If this is a redeclaration, check the original declaration was
4656      // marked constepr.
4657
4658      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4659      // be either constructors or to return a literal type. Therefore,
4660      // destructors cannot be declared constexpr.
4661      if (isa<CXXDestructorDecl>(NewFD))
4662        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4663             diag::err_constexpr_dtor);
4664    }
4665
4666
4667    // Filter out previous declarations that don't match the scope.
4668    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4669                         isExplicitSpecialization ||
4670                         isFunctionTemplateSpecialization);
4671
4672    if (isFriend) {
4673      // For now, claim that the objects have no previous declaration.
4674      if (FunctionTemplate) {
4675        FunctionTemplate->setObjectOfFriendDecl(false);
4676        FunctionTemplate->setAccess(AS_public);
4677      }
4678      NewFD->setObjectOfFriendDecl(false);
4679      NewFD->setAccess(AS_public);
4680    }
4681
4682    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4683      // A method is implicitly inline if it's defined in its class
4684      // definition.
4685      NewFD->setImplicitlyInline();
4686    }
4687
4688    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4689        !CurContext->isRecord()) {
4690      // C++ [class.static]p1:
4691      //   A data or function member of a class may be declared static
4692      //   in a class definition, in which case it is a static member of
4693      //   the class.
4694
4695      // Complain about the 'static' specifier if it's on an out-of-line
4696      // member function definition.
4697      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4698           diag::err_static_out_of_line)
4699        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4700    }
4701  }
4702
4703  // Handle GNU asm-label extension (encoded as an attribute).
4704  if (Expr *E = (Expr*) D.getAsmLabel()) {
4705    // The parser guarantees this is a string.
4706    StringLiteral *SE = cast<StringLiteral>(E);
4707    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4708                                                SE->getString()));
4709  }
4710
4711  // Copy the parameter declarations from the declarator D to the function
4712  // declaration NewFD, if they are available.  First scavenge them into Params.
4713  SmallVector<ParmVarDecl*, 16> Params;
4714  if (D.isFunctionDeclarator()) {
4715    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4716
4717    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4718    // function that takes no arguments, not a function that takes a
4719    // single void argument.
4720    // We let through "const void" here because Sema::GetTypeForDeclarator
4721    // already checks for that case.
4722    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4723        FTI.ArgInfo[0].Param &&
4724        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4725      // Empty arg list, don't push any params.
4726      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4727
4728      // In C++, the empty parameter-type-list must be spelled "void"; a
4729      // typedef of void is not permitted.
4730      if (getLangOptions().CPlusPlus &&
4731          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4732        bool IsTypeAlias = false;
4733        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4734          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4735        else if (const TemplateSpecializationType *TST =
4736                   Param->getType()->getAs<TemplateSpecializationType>())
4737          IsTypeAlias = TST->isTypeAlias();
4738        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4739          << IsTypeAlias;
4740      }
4741    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4742      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4743        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4744        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4745        Param->setDeclContext(NewFD);
4746        Params.push_back(Param);
4747
4748        if (Param->isInvalidDecl())
4749          NewFD->setInvalidDecl();
4750      }
4751    }
4752
4753  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4754    // When we're declaring a function with a typedef, typeof, etc as in the
4755    // following example, we'll need to synthesize (unnamed)
4756    // parameters for use in the declaration.
4757    //
4758    // @code
4759    // typedef void fn(int);
4760    // fn f;
4761    // @endcode
4762
4763    // Synthesize a parameter for each argument type.
4764    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4765         AE = FT->arg_type_end(); AI != AE; ++AI) {
4766      ParmVarDecl *Param =
4767        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4768      Param->setScopeInfo(0, Params.size());
4769      Params.push_back(Param);
4770    }
4771  } else {
4772    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4773           "Should not need args for typedef of non-prototype fn");
4774  }
4775  // Finally, we know we have the right number of parameters, install them.
4776  NewFD->setParams(Params.data(), Params.size());
4777
4778  // Process the non-inheritable attributes on this declaration.
4779  ProcessDeclAttributes(S, NewFD, D,
4780                        /*NonInheritable=*/true, /*Inheritable=*/false);
4781
4782  if (!getLangOptions().CPlusPlus) {
4783    // Perform semantic checking on the function declaration.
4784    bool isExplicitSpecialization=false;
4785    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4786                             Redeclaration);
4787    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4788            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4789           "previous declaration set still overloaded");
4790  } else {
4791    // If the declarator is a template-id, translate the parser's template
4792    // argument list into our AST format.
4793    bool HasExplicitTemplateArgs = false;
4794    TemplateArgumentListInfo TemplateArgs;
4795    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4796      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4797      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4798      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4799      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4800                                         TemplateId->getTemplateArgs(),
4801                                         TemplateId->NumArgs);
4802      translateTemplateArguments(TemplateArgsPtr,
4803                                 TemplateArgs);
4804      TemplateArgsPtr.release();
4805
4806      HasExplicitTemplateArgs = true;
4807
4808      if (NewFD->isInvalidDecl()) {
4809        HasExplicitTemplateArgs = false;
4810      } else if (FunctionTemplate) {
4811        // Function template with explicit template arguments.
4812        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4813          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4814
4815        HasExplicitTemplateArgs = false;
4816      } else if (!isFunctionTemplateSpecialization &&
4817                 !D.getDeclSpec().isFriendSpecified()) {
4818        // We have encountered something that the user meant to be a
4819        // specialization (because it has explicitly-specified template
4820        // arguments) but that was not introduced with a "template<>" (or had
4821        // too few of them).
4822        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4823          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4824          << FixItHint::CreateInsertion(
4825                                        D.getDeclSpec().getSourceRange().getBegin(),
4826                                                  "template<> ");
4827        isFunctionTemplateSpecialization = true;
4828      } else {
4829        // "friend void foo<>(int);" is an implicit specialization decl.
4830        isFunctionTemplateSpecialization = true;
4831      }
4832    } else if (isFriend && isFunctionTemplateSpecialization) {
4833      // This combination is only possible in a recovery case;  the user
4834      // wrote something like:
4835      //   template <> friend void foo(int);
4836      // which we're recovering from as if the user had written:
4837      //   friend void foo<>(int);
4838      // Go ahead and fake up a template id.
4839      HasExplicitTemplateArgs = true;
4840        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4841      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4842    }
4843
4844    // If it's a friend (and only if it's a friend), it's possible
4845    // that either the specialized function type or the specialized
4846    // template is dependent, and therefore matching will fail.  In
4847    // this case, don't check the specialization yet.
4848    if (isFunctionTemplateSpecialization && isFriend &&
4849        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4850      assert(HasExplicitTemplateArgs &&
4851             "friend function specialization without template args");
4852      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4853                                                       Previous))
4854        NewFD->setInvalidDecl();
4855    } else if (isFunctionTemplateSpecialization) {
4856      if (CurContext->isDependentContext() && CurContext->isRecord()
4857          && !isFriend) {
4858        isDependentClassScopeExplicitSpecialization = true;
4859        Diag(NewFD->getLocation(), getLangOptions().Microsoft ?
4860          diag::ext_function_specialization_in_class :
4861          diag::err_function_specialization_in_class)
4862          << NewFD->getDeclName();
4863      } else if (CheckFunctionTemplateSpecialization(NewFD,
4864                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4865                                                     Previous))
4866        NewFD->setInvalidDecl();
4867
4868      // C++ [dcl.stc]p1:
4869      //   A storage-class-specifier shall not be specified in an explicit
4870      //   specialization (14.7.3)
4871      if (SC != SC_None) {
4872        if (SC != NewFD->getStorageClass())
4873          Diag(NewFD->getLocation(),
4874               diag::err_explicit_specialization_inconsistent_storage_class)
4875            << SC
4876            << FixItHint::CreateRemoval(
4877                                      D.getDeclSpec().getStorageClassSpecLoc());
4878
4879        else
4880          Diag(NewFD->getLocation(),
4881               diag::ext_explicit_specialization_storage_class)
4882            << FixItHint::CreateRemoval(
4883                                      D.getDeclSpec().getStorageClassSpecLoc());
4884      }
4885
4886    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4887      if (CheckMemberSpecialization(NewFD, Previous))
4888          NewFD->setInvalidDecl();
4889    }
4890
4891    // Perform semantic checking on the function declaration.
4892    if (!isDependentClassScopeExplicitSpecialization)
4893      CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4894                               Redeclaration);
4895
4896    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4897            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4898           "previous declaration set still overloaded");
4899
4900    NamedDecl *PrincipalDecl = (FunctionTemplate
4901                                ? cast<NamedDecl>(FunctionTemplate)
4902                                : NewFD);
4903
4904    if (isFriend && Redeclaration) {
4905      AccessSpecifier Access = AS_public;
4906      if (!NewFD->isInvalidDecl())
4907        Access = NewFD->getPreviousDeclaration()->getAccess();
4908
4909      NewFD->setAccess(Access);
4910      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4911
4912      PrincipalDecl->setObjectOfFriendDecl(true);
4913    }
4914
4915    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4916        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4917      PrincipalDecl->setNonMemberOperator();
4918
4919    // If we have a function template, check the template parameter
4920    // list. This will check and merge default template arguments.
4921    if (FunctionTemplate) {
4922      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4923      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4924                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4925                            D.getDeclSpec().isFriendSpecified()
4926                              ? (IsFunctionDefinition
4927                                   ? TPC_FriendFunctionTemplateDefinition
4928                                   : TPC_FriendFunctionTemplate)
4929                              : (D.getCXXScopeSpec().isSet() &&
4930                                 DC && DC->isRecord() &&
4931                                 DC->isDependentContext())
4932                                  ? TPC_ClassTemplateMember
4933                                  : TPC_FunctionTemplate);
4934    }
4935
4936    if (NewFD->isInvalidDecl()) {
4937      // Ignore all the rest of this.
4938    } else if (!Redeclaration) {
4939      // Fake up an access specifier if it's supposed to be a class member.
4940      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4941        NewFD->setAccess(AS_public);
4942
4943      // Qualified decls generally require a previous declaration.
4944      if (D.getCXXScopeSpec().isSet()) {
4945        // ...with the major exception of templated-scope or
4946        // dependent-scope friend declarations.
4947
4948        // TODO: we currently also suppress this check in dependent
4949        // contexts because (1) the parameter depth will be off when
4950        // matching friend templates and (2) we might actually be
4951        // selecting a friend based on a dependent factor.  But there
4952        // are situations where these conditions don't apply and we
4953        // can actually do this check immediately.
4954        if (isFriend &&
4955            (TemplateParamLists.size() ||
4956             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4957             CurContext->isDependentContext())) {
4958          // ignore these
4959        } else {
4960          // The user tried to provide an out-of-line definition for a
4961          // function that is a member of a class or namespace, but there
4962          // was no such member function declared (C++ [class.mfct]p2,
4963          // C++ [namespace.memdef]p2). For example:
4964          //
4965          // class X {
4966          //   void f() const;
4967          // };
4968          //
4969          // void X::f() { } // ill-formed
4970          //
4971          // Complain about this problem, and attempt to suggest close
4972          // matches (e.g., those that differ only in cv-qualifiers and
4973          // whether the parameter types are references).
4974
4975          DiagnoseInvalidRedeclaration(*this, NewFD, false);
4976        }
4977
4978        // Unqualified local friend declarations are required to resolve
4979        // to something.
4980      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4981        DiagnoseInvalidRedeclaration(*this, NewFD, true);
4982      }
4983
4984    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4985               !isFriend && !isFunctionTemplateSpecialization &&
4986               !isExplicitSpecialization) {
4987      // An out-of-line member function declaration must also be a
4988      // definition (C++ [dcl.meaning]p1).
4989      // Note that this is not the case for explicit specializations of
4990      // function templates or member functions of class templates, per
4991      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4992      // for compatibility with old SWIG code which likes to generate them.
4993      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4994        << D.getCXXScopeSpec().getRange();
4995    }
4996  }
4997
4998
4999  // Handle attributes. We need to have merged decls when handling attributes
5000  // (for example to check for conflicts, etc).
5001  // FIXME: This needs to happen before we merge declarations. Then,
5002  // let attribute merging cope with attribute conflicts.
5003  ProcessDeclAttributes(S, NewFD, D,
5004                        /*NonInheritable=*/false, /*Inheritable=*/true);
5005
5006  // attributes declared post-definition are currently ignored
5007  // FIXME: This should happen during attribute merging
5008  if (Redeclaration && Previous.isSingleResult()) {
5009    const FunctionDecl *Def;
5010    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5011    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5012      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5013      Diag(Def->getLocation(), diag::note_previous_definition);
5014    }
5015  }
5016
5017  AddKnownFunctionAttributes(NewFD);
5018
5019  if (NewFD->hasAttr<OverloadableAttr>() &&
5020      !NewFD->getType()->getAs<FunctionProtoType>()) {
5021    Diag(NewFD->getLocation(),
5022         diag::err_attribute_overloadable_no_prototype)
5023      << NewFD;
5024
5025    // Turn this into a variadic function with no parameters.
5026    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5027    FunctionProtoType::ExtProtoInfo EPI;
5028    EPI.Variadic = true;
5029    EPI.ExtInfo = FT->getExtInfo();
5030
5031    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5032    NewFD->setType(R);
5033  }
5034
5035  // If there's a #pragma GCC visibility in scope, and this isn't a class
5036  // member, set the visibility of this function.
5037  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5038    AddPushedVisibilityAttribute(NewFD);
5039
5040  // If this is a locally-scoped extern C function, update the
5041  // map of such names.
5042  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5043      && !NewFD->isInvalidDecl())
5044    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5045
5046  // Set this FunctionDecl's range up to the right paren.
5047  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5048
5049  if (getLangOptions().CPlusPlus) {
5050    if (FunctionTemplate) {
5051      if (NewFD->isInvalidDecl())
5052        FunctionTemplate->setInvalidDecl();
5053      return FunctionTemplate;
5054    }
5055  }
5056
5057  MarkUnusedFileScopedDecl(NewFD);
5058
5059  if (getLangOptions().CUDA)
5060    if (IdentifierInfo *II = NewFD->getIdentifier())
5061      if (!NewFD->isInvalidDecl() &&
5062          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5063        if (II->isStr("cudaConfigureCall")) {
5064          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5065            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5066
5067          Context.setcudaConfigureCallDecl(NewFD);
5068        }
5069      }
5070
5071  // Here we have an function template explicit specialization at class scope.
5072  // The actually specialization will be postponed to template instatiation
5073  // time via the ClassScopeFunctionSpecializationDecl node.
5074  if (isDependentClassScopeExplicitSpecialization) {
5075    ClassScopeFunctionSpecializationDecl *NewSpec =
5076                         ClassScopeFunctionSpecializationDecl::Create(
5077                                Context, CurContext,  SourceLocation(),
5078                                cast<CXXMethodDecl>(NewFD));
5079    CurContext->addDecl(NewSpec);
5080    AddToScope = false;
5081  }
5082
5083  return NewFD;
5084}
5085
5086/// \brief Perform semantic checking of a new function declaration.
5087///
5088/// Performs semantic analysis of the new function declaration
5089/// NewFD. This routine performs all semantic checking that does not
5090/// require the actual declarator involved in the declaration, and is
5091/// used both for the declaration of functions as they are parsed
5092/// (called via ActOnDeclarator) and for the declaration of functions
5093/// that have been instantiated via C++ template instantiation (called
5094/// via InstantiateDecl).
5095///
5096/// \param IsExplicitSpecialiation whether this new function declaration is
5097/// an explicit specialization of the previous declaration.
5098///
5099/// This sets NewFD->isInvalidDecl() to true if there was an error.
5100void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5101                                    LookupResult &Previous,
5102                                    bool IsExplicitSpecialization,
5103                                    bool &Redeclaration) {
5104  // If NewFD is already known erroneous, don't do any of this checking.
5105  if (NewFD->isInvalidDecl()) {
5106    // If this is a class member, mark the class invalid immediately.
5107    // This avoids some consistency errors later.
5108    if (isa<CXXMethodDecl>(NewFD))
5109      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
5110
5111    return;
5112  }
5113
5114  if (NewFD->getResultType()->isVariablyModifiedType()) {
5115    // Functions returning a variably modified type violate C99 6.7.5.2p2
5116    // because all functions have linkage.
5117    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5118    return NewFD->setInvalidDecl();
5119  }
5120
5121  if (NewFD->isMain())
5122    CheckMain(NewFD);
5123
5124  // Check for a previous declaration of this name.
5125  if (Previous.empty() && NewFD->isExternC()) {
5126    // Since we did not find anything by this name and we're declaring
5127    // an extern "C" function, look for a non-visible extern "C"
5128    // declaration with the same name.
5129    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5130      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5131    if (Pos != LocallyScopedExternalDecls.end())
5132      Previous.addDecl(Pos->second);
5133  }
5134
5135  // Merge or overload the declaration with an existing declaration of
5136  // the same name, if appropriate.
5137  if (!Previous.empty()) {
5138    // Determine whether NewFD is an overload of PrevDecl or
5139    // a declaration that requires merging. If it's an overload,
5140    // there's no more work to do here; we'll just add the new
5141    // function to the scope.
5142
5143    NamedDecl *OldDecl = 0;
5144    if (!AllowOverloadingOfFunction(Previous, Context)) {
5145      Redeclaration = true;
5146      OldDecl = Previous.getFoundDecl();
5147    } else {
5148      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5149                            /*NewIsUsingDecl*/ false)) {
5150      case Ovl_Match:
5151        Redeclaration = true;
5152        break;
5153
5154      case Ovl_NonFunction:
5155        Redeclaration = true;
5156        break;
5157
5158      case Ovl_Overload:
5159        Redeclaration = false;
5160        break;
5161      }
5162
5163      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5164        // If a function name is overloadable in C, then every function
5165        // with that name must be marked "overloadable".
5166        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5167          << Redeclaration << NewFD;
5168        NamedDecl *OverloadedDecl = 0;
5169        if (Redeclaration)
5170          OverloadedDecl = OldDecl;
5171        else if (!Previous.empty())
5172          OverloadedDecl = Previous.getRepresentativeDecl();
5173        if (OverloadedDecl)
5174          Diag(OverloadedDecl->getLocation(),
5175               diag::note_attribute_overloadable_prev_overload);
5176        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5177                                                        Context));
5178      }
5179    }
5180
5181    if (Redeclaration) {
5182      // NewFD and OldDecl represent declarations that need to be
5183      // merged.
5184      if (MergeFunctionDecl(NewFD, OldDecl))
5185        return NewFD->setInvalidDecl();
5186
5187      Previous.clear();
5188      Previous.addDecl(OldDecl);
5189
5190      if (FunctionTemplateDecl *OldTemplateDecl
5191                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5192        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5193        FunctionTemplateDecl *NewTemplateDecl
5194          = NewFD->getDescribedFunctionTemplate();
5195        assert(NewTemplateDecl && "Template/non-template mismatch");
5196        if (CXXMethodDecl *Method
5197              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5198          Method->setAccess(OldTemplateDecl->getAccess());
5199          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5200        }
5201
5202        // If this is an explicit specialization of a member that is a function
5203        // template, mark it as a member specialization.
5204        if (IsExplicitSpecialization &&
5205            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5206          NewTemplateDecl->setMemberSpecialization();
5207          assert(OldTemplateDecl->isMemberSpecialization());
5208        }
5209      } else {
5210        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5211          NewFD->setAccess(OldDecl->getAccess());
5212        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5213      }
5214    }
5215  }
5216
5217  // Semantic checking for this function declaration (in isolation).
5218  if (getLangOptions().CPlusPlus) {
5219    // C++-specific checks.
5220    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5221      CheckConstructor(Constructor);
5222    } else if (CXXDestructorDecl *Destructor =
5223                dyn_cast<CXXDestructorDecl>(NewFD)) {
5224      CXXRecordDecl *Record = Destructor->getParent();
5225      QualType ClassType = Context.getTypeDeclType(Record);
5226
5227      // FIXME: Shouldn't we be able to perform this check even when the class
5228      // type is dependent? Both gcc and edg can handle that.
5229      if (!ClassType->isDependentType()) {
5230        DeclarationName Name
5231          = Context.DeclarationNames.getCXXDestructorName(
5232                                        Context.getCanonicalType(ClassType));
5233        if (NewFD->getDeclName() != Name) {
5234          Diag(NewFD->getLocation(), diag::err_destructor_name);
5235          return NewFD->setInvalidDecl();
5236        }
5237      }
5238    } else if (CXXConversionDecl *Conversion
5239               = dyn_cast<CXXConversionDecl>(NewFD)) {
5240      ActOnConversionDeclarator(Conversion);
5241    }
5242
5243    // Find any virtual functions that this function overrides.
5244    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5245      if (!Method->isFunctionTemplateSpecialization() &&
5246          !Method->getDescribedFunctionTemplate()) {
5247        if (AddOverriddenMethods(Method->getParent(), Method)) {
5248          // If the function was marked as "static", we have a problem.
5249          if (NewFD->getStorageClass() == SC_Static) {
5250            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5251              << NewFD->getDeclName();
5252            for (CXXMethodDecl::method_iterator
5253                      Overridden = Method->begin_overridden_methods(),
5254                   OverriddenEnd = Method->end_overridden_methods();
5255                 Overridden != OverriddenEnd;
5256                 ++Overridden) {
5257              Diag((*Overridden)->getLocation(),
5258                   diag::note_overridden_virtual_function);
5259            }
5260          }
5261        }
5262      }
5263    }
5264
5265    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5266    if (NewFD->isOverloadedOperator() &&
5267        CheckOverloadedOperatorDeclaration(NewFD))
5268      return NewFD->setInvalidDecl();
5269
5270    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5271    if (NewFD->getLiteralIdentifier() &&
5272        CheckLiteralOperatorDeclaration(NewFD))
5273      return NewFD->setInvalidDecl();
5274
5275    // In C++, check default arguments now that we have merged decls. Unless
5276    // the lexical context is the class, because in this case this is done
5277    // during delayed parsing anyway.
5278    if (!CurContext->isRecord())
5279      CheckCXXDefaultArguments(NewFD);
5280
5281    // If this function declares a builtin function, check the type of this
5282    // declaration against the expected type for the builtin.
5283    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5284      ASTContext::GetBuiltinTypeError Error;
5285      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5286      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5287        // The type of this function differs from the type of the builtin,
5288        // so forget about the builtin entirely.
5289        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5290      }
5291    }
5292  }
5293}
5294
5295void Sema::CheckMain(FunctionDecl* FD) {
5296  // C++ [basic.start.main]p3:  A program that declares main to be inline
5297  //   or static is ill-formed.
5298  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5299  //   shall not appear in a declaration of main.
5300  // static main is not an error under C99, but we should warn about it.
5301  bool isInline = FD->isInlineSpecified();
5302  bool isStatic = FD->getStorageClass() == SC_Static;
5303  if (isInline || isStatic) {
5304    unsigned diagID = diag::warn_unusual_main_decl;
5305    if (isInline || getLangOptions().CPlusPlus)
5306      diagID = diag::err_unusual_main_decl;
5307
5308    int which = isStatic + (isInline << 1) - 1;
5309    Diag(FD->getLocation(), diagID) << which;
5310  }
5311
5312  QualType T = FD->getType();
5313  assert(T->isFunctionType() && "function decl is not of function type");
5314  const FunctionType* FT = T->getAs<FunctionType>();
5315
5316  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5317    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5318    FD->setInvalidDecl(true);
5319  }
5320
5321  // Treat protoless main() as nullary.
5322  if (isa<FunctionNoProtoType>(FT)) return;
5323
5324  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5325  unsigned nparams = FTP->getNumArgs();
5326  assert(FD->getNumParams() == nparams);
5327
5328  bool HasExtraParameters = (nparams > 3);
5329
5330  // Darwin passes an undocumented fourth argument of type char**.  If
5331  // other platforms start sprouting these, the logic below will start
5332  // getting shifty.
5333  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5334    HasExtraParameters = false;
5335
5336  if (HasExtraParameters) {
5337    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5338    FD->setInvalidDecl(true);
5339    nparams = 3;
5340  }
5341
5342  // FIXME: a lot of the following diagnostics would be improved
5343  // if we had some location information about types.
5344
5345  QualType CharPP =
5346    Context.getPointerType(Context.getPointerType(Context.CharTy));
5347  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5348
5349  for (unsigned i = 0; i < nparams; ++i) {
5350    QualType AT = FTP->getArgType(i);
5351
5352    bool mismatch = true;
5353
5354    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5355      mismatch = false;
5356    else if (Expected[i] == CharPP) {
5357      // As an extension, the following forms are okay:
5358      //   char const **
5359      //   char const * const *
5360      //   char * const *
5361
5362      QualifierCollector qs;
5363      const PointerType* PT;
5364      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5365          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5366          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5367        qs.removeConst();
5368        mismatch = !qs.empty();
5369      }
5370    }
5371
5372    if (mismatch) {
5373      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5374      // TODO: suggest replacing given type with expected type
5375      FD->setInvalidDecl(true);
5376    }
5377  }
5378
5379  if (nparams == 1 && !FD->isInvalidDecl()) {
5380    Diag(FD->getLocation(), diag::warn_main_one_arg);
5381  }
5382
5383  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5384    Diag(FD->getLocation(), diag::err_main_template_decl);
5385    FD->setInvalidDecl();
5386  }
5387}
5388
5389bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5390  // FIXME: Need strict checking.  In C89, we need to check for
5391  // any assignment, increment, decrement, function-calls, or
5392  // commas outside of a sizeof.  In C99, it's the same list,
5393  // except that the aforementioned are allowed in unevaluated
5394  // expressions.  Everything else falls under the
5395  // "may accept other forms of constant expressions" exception.
5396  // (We never end up here for C++, so the constant expression
5397  // rules there don't matter.)
5398  if (Init->isConstantInitializer(Context, false))
5399    return false;
5400  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5401    << Init->getSourceRange();
5402  return true;
5403}
5404
5405namespace {
5406  // Visits an initialization expression to see if OrigDecl is evaluated in
5407  // its own initialization and throws a warning if it does.
5408  class SelfReferenceChecker
5409      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5410    Sema &S;
5411    Decl *OrigDecl;
5412    bool isRecordType;
5413    bool isPODType;
5414
5415  public:
5416    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5417
5418    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5419                                                    S(S), OrigDecl(OrigDecl) {
5420      isPODType = false;
5421      isRecordType = false;
5422      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5423        isPODType = VD->getType().isPODType(S.Context);
5424        isRecordType = VD->getType()->isRecordType();
5425      }
5426    }
5427
5428    void VisitExpr(Expr *E) {
5429      if (isa<ObjCMessageExpr>(*E)) return;
5430      if (isRecordType) {
5431        Expr *expr = E;
5432        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5433          ValueDecl *VD = ME->getMemberDecl();
5434          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5435          expr = ME->getBase();
5436        }
5437        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5438          HandleDeclRefExpr(DRE);
5439          return;
5440        }
5441      }
5442      Inherited::VisitExpr(E);
5443    }
5444
5445    void VisitMemberExpr(MemberExpr *E) {
5446      if (isa<FieldDecl>(E->getMemberDecl()))
5447        if (DeclRefExpr *DRE
5448              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5449          HandleDeclRefExpr(DRE);
5450          return;
5451        }
5452      Inherited::VisitMemberExpr(E);
5453    }
5454
5455    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5456      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5457          (isRecordType && E->getCastKind() == CK_NoOp)) {
5458        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5459        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5460          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5461        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5462          HandleDeclRefExpr(DRE);
5463          return;
5464        }
5465      }
5466      Inherited::VisitImplicitCastExpr(E);
5467    }
5468
5469    void VisitUnaryOperator(UnaryOperator *E) {
5470      // For POD record types, addresses of its own members are well-defined.
5471      if (isRecordType && isPODType) return;
5472      Inherited::VisitUnaryOperator(E);
5473    }
5474
5475    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5476      Decl* ReferenceDecl = DRE->getDecl();
5477      if (OrigDecl != ReferenceDecl) return;
5478      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5479                          Sema::NotForRedeclaration);
5480      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5481                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5482                              << Result.getLookupName()
5483                              << OrigDecl->getLocation()
5484                              << DRE->getSourceRange());
5485    }
5486  };
5487}
5488
5489/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5490void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5491  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5492}
5493
5494/// AddInitializerToDecl - Adds the initializer Init to the
5495/// declaration dcl. If DirectInit is true, this is C++ direct
5496/// initialization rather than copy initialization.
5497void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5498                                bool DirectInit, bool TypeMayContainAuto) {
5499  // If there is no declaration, there was an error parsing it.  Just ignore
5500  // the initializer.
5501  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5502    return;
5503
5504  // Check for self-references within variable initializers.
5505  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5506    // Variables declared within a function/method body are handled
5507    // by a dataflow analysis.
5508    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5509      CheckSelfReference(RealDecl, Init);
5510  }
5511  else {
5512    CheckSelfReference(RealDecl, Init);
5513  }
5514
5515  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5516    // With declarators parsed the way they are, the parser cannot
5517    // distinguish between a normal initializer and a pure-specifier.
5518    // Thus this grotesque test.
5519    IntegerLiteral *IL;
5520    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5521        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5522      CheckPureMethod(Method, Init->getSourceRange());
5523    else {
5524      Diag(Method->getLocation(), diag::err_member_function_initialization)
5525        << Method->getDeclName() << Init->getSourceRange();
5526      Method->setInvalidDecl();
5527    }
5528    return;
5529  }
5530
5531  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5532  if (!VDecl) {
5533    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5534    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5535    RealDecl->setInvalidDecl();
5536    return;
5537  }
5538
5539  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5540  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5541    TypeSourceInfo *DeducedType = 0;
5542    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5543      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5544        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5545        << Init->getSourceRange();
5546    if (!DeducedType) {
5547      RealDecl->setInvalidDecl();
5548      return;
5549    }
5550    VDecl->setTypeSourceInfo(DeducedType);
5551    VDecl->setType(DeducedType->getType());
5552
5553    // In ARC, infer lifetime.
5554    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5555      VDecl->setInvalidDecl();
5556
5557    // If this is a redeclaration, check that the type we just deduced matches
5558    // the previously declared type.
5559    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5560      MergeVarDeclTypes(VDecl, Old);
5561  }
5562
5563
5564  // A definition must end up with a complete type, which means it must be
5565  // complete with the restriction that an array type might be completed by the
5566  // initializer; note that later code assumes this restriction.
5567  QualType BaseDeclType = VDecl->getType();
5568  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5569    BaseDeclType = Array->getElementType();
5570  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5571                          diag::err_typecheck_decl_incomplete_type)) {
5572    RealDecl->setInvalidDecl();
5573    return;
5574  }
5575
5576  // The variable can not have an abstract class type.
5577  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5578                             diag::err_abstract_type_in_decl,
5579                             AbstractVariableType))
5580    VDecl->setInvalidDecl();
5581
5582  const VarDecl *Def;
5583  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5584    Diag(VDecl->getLocation(), diag::err_redefinition)
5585      << VDecl->getDeclName();
5586    Diag(Def->getLocation(), diag::note_previous_definition);
5587    VDecl->setInvalidDecl();
5588    return;
5589  }
5590
5591  const VarDecl* PrevInit = 0;
5592  if (getLangOptions().CPlusPlus) {
5593    // C++ [class.static.data]p4
5594    //   If a static data member is of const integral or const
5595    //   enumeration type, its declaration in the class definition can
5596    //   specify a constant-initializer which shall be an integral
5597    //   constant expression (5.19). In that case, the member can appear
5598    //   in integral constant expressions. The member shall still be
5599    //   defined in a namespace scope if it is used in the program and the
5600    //   namespace scope definition shall not contain an initializer.
5601    //
5602    // We already performed a redefinition check above, but for static
5603    // data members we also need to check whether there was an in-class
5604    // declaration with an initializer.
5605    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5606      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5607      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5608      return;
5609    }
5610
5611    if (VDecl->hasLocalStorage())
5612      getCurFunction()->setHasBranchProtectedScope();
5613
5614    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5615      VDecl->setInvalidDecl();
5616      return;
5617    }
5618  }
5619
5620  // Capture the variable that is being initialized and the style of
5621  // initialization.
5622  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5623
5624  // FIXME: Poor source location information.
5625  InitializationKind Kind
5626    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5627                                                   Init->getLocStart(),
5628                                                   Init->getLocEnd())
5629                : InitializationKind::CreateCopy(VDecl->getLocation(),
5630                                                 Init->getLocStart());
5631
5632  // Get the decls type and save a reference for later, since
5633  // CheckInitializerTypes may change it.
5634  QualType DclT = VDecl->getType(), SavT = DclT;
5635  if (VDecl->isLocalVarDecl()) {
5636    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5637      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5638      VDecl->setInvalidDecl();
5639    } else if (!VDecl->isInvalidDecl()) {
5640      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5641      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5642                                                MultiExprArg(*this, &Init, 1),
5643                                                &DclT);
5644      if (Result.isInvalid()) {
5645        VDecl->setInvalidDecl();
5646        return;
5647      }
5648
5649      Init = Result.takeAs<Expr>();
5650
5651      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5652      // Don't check invalid declarations to avoid emitting useless diagnostics.
5653      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5654        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5655          CheckForConstantInitializer(Init, DclT);
5656      }
5657    }
5658  } else if (VDecl->isStaticDataMember() &&
5659             VDecl->getLexicalDeclContext()->isRecord()) {
5660    // This is an in-class initialization for a static data member, e.g.,
5661    //
5662    // struct S {
5663    //   static const int value = 17;
5664    // };
5665
5666    // Try to perform the initialization regardless.
5667    if (!VDecl->isInvalidDecl()) {
5668      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5669      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5670                                          MultiExprArg(*this, &Init, 1),
5671                                          &DclT);
5672      if (Result.isInvalid()) {
5673        VDecl->setInvalidDecl();
5674        return;
5675      }
5676
5677      Init = Result.takeAs<Expr>();
5678    }
5679
5680    // C++ [class.mem]p4:
5681    //   A member-declarator can contain a constant-initializer only
5682    //   if it declares a static member (9.4) of const integral or
5683    //   const enumeration type, see 9.4.2.
5684    QualType T = VDecl->getType();
5685
5686    // Do nothing on dependent types.
5687    if (T->isDependentType()) {
5688
5689    // Require constness.
5690    } else if (!T.isConstQualified()) {
5691      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5692        << Init->getSourceRange();
5693      VDecl->setInvalidDecl();
5694
5695    // We allow integer constant expressions in all cases.
5696    } else if (T->isIntegralOrEnumerationType()) {
5697      // Check whether the expression is a constant expression.
5698      SourceLocation Loc;
5699      if (Init->isValueDependent())
5700        ; // Nothing to check.
5701      else if (Init->isIntegerConstantExpr(Context, &Loc))
5702        ; // Ok, it's an ICE!
5703      else if (Init->isEvaluatable(Context)) {
5704        // If we can constant fold the initializer through heroics, accept it,
5705        // but report this as a use of an extension for -pedantic.
5706        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5707          << Init->getSourceRange();
5708      } else {
5709        // Otherwise, this is some crazy unknown case.  Report the issue at the
5710        // location provided by the isIntegerConstantExpr failed check.
5711        Diag(Loc, diag::err_in_class_initializer_non_constant)
5712          << Init->getSourceRange();
5713        VDecl->setInvalidDecl();
5714      }
5715
5716    // We allow floating-point constants as an extension in C++03, and
5717    // C++0x has far more complicated rules that we don't really
5718    // implement fully.
5719    } else {
5720      bool Allowed = false;
5721      if (getLangOptions().CPlusPlus0x) {
5722        Allowed = T->isLiteralType();
5723      } else if (T->isFloatingType()) { // also permits complex, which is ok
5724        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5725          << T << Init->getSourceRange();
5726        Allowed = true;
5727      }
5728
5729      if (!Allowed) {
5730        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5731          << T << Init->getSourceRange();
5732        VDecl->setInvalidDecl();
5733
5734      // TODO: there are probably expressions that pass here that shouldn't.
5735      } else if (!Init->isValueDependent() &&
5736                 !Init->isConstantInitializer(Context, false)) {
5737        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5738          << Init->getSourceRange();
5739        VDecl->setInvalidDecl();
5740      }
5741    }
5742  } else if (VDecl->isFileVarDecl()) {
5743    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5744        (!getLangOptions().CPlusPlus ||
5745         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5746      Diag(VDecl->getLocation(), diag::warn_extern_init);
5747    if (!VDecl->isInvalidDecl()) {
5748      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5749      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5750                                                MultiExprArg(*this, &Init, 1),
5751                                                &DclT);
5752      if (Result.isInvalid()) {
5753        VDecl->setInvalidDecl();
5754        return;
5755      }
5756
5757      Init = Result.takeAs<Expr>();
5758    }
5759
5760    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5761    // Don't check invalid declarations to avoid emitting useless diagnostics.
5762    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5763      // C99 6.7.8p4. All file scoped initializers need to be constant.
5764      CheckForConstantInitializer(Init, DclT);
5765    }
5766  }
5767  // If the type changed, it means we had an incomplete type that was
5768  // completed by the initializer. For example:
5769  //   int ary[] = { 1, 3, 5 };
5770  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5771  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5772    VDecl->setType(DclT);
5773    Init->setType(DclT);
5774  }
5775
5776  // Check any implicit conversions within the expression.
5777  CheckImplicitConversions(Init, VDecl->getLocation());
5778
5779  if (!VDecl->isInvalidDecl())
5780    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5781
5782  Init = MaybeCreateExprWithCleanups(Init);
5783  // Attach the initializer to the decl.
5784  VDecl->setInit(Init);
5785
5786  CheckCompleteVariableDeclaration(VDecl);
5787}
5788
5789/// ActOnInitializerError - Given that there was an error parsing an
5790/// initializer for the given declaration, try to return to some form
5791/// of sanity.
5792void Sema::ActOnInitializerError(Decl *D) {
5793  // Our main concern here is re-establishing invariants like "a
5794  // variable's type is either dependent or complete".
5795  if (!D || D->isInvalidDecl()) return;
5796
5797  VarDecl *VD = dyn_cast<VarDecl>(D);
5798  if (!VD) return;
5799
5800  // Auto types are meaningless if we can't make sense of the initializer.
5801  if (ParsingInitForAutoVars.count(D)) {
5802    D->setInvalidDecl();
5803    return;
5804  }
5805
5806  QualType Ty = VD->getType();
5807  if (Ty->isDependentType()) return;
5808
5809  // Require a complete type.
5810  if (RequireCompleteType(VD->getLocation(),
5811                          Context.getBaseElementType(Ty),
5812                          diag::err_typecheck_decl_incomplete_type)) {
5813    VD->setInvalidDecl();
5814    return;
5815  }
5816
5817  // Require an abstract type.
5818  if (RequireNonAbstractType(VD->getLocation(), Ty,
5819                             diag::err_abstract_type_in_decl,
5820                             AbstractVariableType)) {
5821    VD->setInvalidDecl();
5822    return;
5823  }
5824
5825  // Don't bother complaining about constructors or destructors,
5826  // though.
5827}
5828
5829void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5830                                  bool TypeMayContainAuto) {
5831  // If there is no declaration, there was an error parsing it. Just ignore it.
5832  if (RealDecl == 0)
5833    return;
5834
5835  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5836    QualType Type = Var->getType();
5837
5838    // C++0x [dcl.spec.auto]p3
5839    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5840      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5841        << Var->getDeclName() << Type;
5842      Var->setInvalidDecl();
5843      return;
5844    }
5845
5846    switch (Var->isThisDeclarationADefinition()) {
5847    case VarDecl::Definition:
5848      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5849        break;
5850
5851      // We have an out-of-line definition of a static data member
5852      // that has an in-class initializer, so we type-check this like
5853      // a declaration.
5854      //
5855      // Fall through
5856
5857    case VarDecl::DeclarationOnly:
5858      // It's only a declaration.
5859
5860      // Block scope. C99 6.7p7: If an identifier for an object is
5861      // declared with no linkage (C99 6.2.2p6), the type for the
5862      // object shall be complete.
5863      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5864          !Var->getLinkage() && !Var->isInvalidDecl() &&
5865          RequireCompleteType(Var->getLocation(), Type,
5866                              diag::err_typecheck_decl_incomplete_type))
5867        Var->setInvalidDecl();
5868
5869      // Make sure that the type is not abstract.
5870      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5871          RequireNonAbstractType(Var->getLocation(), Type,
5872                                 diag::err_abstract_type_in_decl,
5873                                 AbstractVariableType))
5874        Var->setInvalidDecl();
5875      return;
5876
5877    case VarDecl::TentativeDefinition:
5878      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5879      // object that has file scope without an initializer, and without a
5880      // storage-class specifier or with the storage-class specifier "static",
5881      // constitutes a tentative definition. Note: A tentative definition with
5882      // external linkage is valid (C99 6.2.2p5).
5883      if (!Var->isInvalidDecl()) {
5884        if (const IncompleteArrayType *ArrayT
5885                                    = Context.getAsIncompleteArrayType(Type)) {
5886          if (RequireCompleteType(Var->getLocation(),
5887                                  ArrayT->getElementType(),
5888                                  diag::err_illegal_decl_array_incomplete_type))
5889            Var->setInvalidDecl();
5890        } else if (Var->getStorageClass() == SC_Static) {
5891          // C99 6.9.2p3: If the declaration of an identifier for an object is
5892          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5893          // declared type shall not be an incomplete type.
5894          // NOTE: code such as the following
5895          //     static struct s;
5896          //     struct s { int a; };
5897          // is accepted by gcc. Hence here we issue a warning instead of
5898          // an error and we do not invalidate the static declaration.
5899          // NOTE: to avoid multiple warnings, only check the first declaration.
5900          if (Var->getPreviousDeclaration() == 0)
5901            RequireCompleteType(Var->getLocation(), Type,
5902                                diag::ext_typecheck_decl_incomplete_type);
5903        }
5904      }
5905
5906      // Record the tentative definition; we're done.
5907      if (!Var->isInvalidDecl())
5908        TentativeDefinitions.push_back(Var);
5909      return;
5910    }
5911
5912    // Provide a specific diagnostic for uninitialized variable
5913    // definitions with incomplete array type.
5914    if (Type->isIncompleteArrayType()) {
5915      Diag(Var->getLocation(),
5916           diag::err_typecheck_incomplete_array_needs_initializer);
5917      Var->setInvalidDecl();
5918      return;
5919    }
5920
5921    // Provide a specific diagnostic for uninitialized variable
5922    // definitions with reference type.
5923    if (Type->isReferenceType()) {
5924      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5925        << Var->getDeclName()
5926        << SourceRange(Var->getLocation(), Var->getLocation());
5927      Var->setInvalidDecl();
5928      return;
5929    }
5930
5931    // Do not attempt to type-check the default initializer for a
5932    // variable with dependent type.
5933    if (Type->isDependentType())
5934      return;
5935
5936    if (Var->isInvalidDecl())
5937      return;
5938
5939    if (RequireCompleteType(Var->getLocation(),
5940                            Context.getBaseElementType(Type),
5941                            diag::err_typecheck_decl_incomplete_type)) {
5942      Var->setInvalidDecl();
5943      return;
5944    }
5945
5946    // The variable can not have an abstract class type.
5947    if (RequireNonAbstractType(Var->getLocation(), Type,
5948                               diag::err_abstract_type_in_decl,
5949                               AbstractVariableType)) {
5950      Var->setInvalidDecl();
5951      return;
5952    }
5953
5954    // Check for jumps past the implicit initializer.  C++0x
5955    // clarifies that this applies to a "variable with automatic
5956    // storage duration", not a "local variable".
5957    // C++0x [stmt.dcl]p3
5958    //   A program that jumps from a point where a variable with automatic
5959    //   storage duration is not in scope to a point where it is in scope is
5960    //   ill-formed unless the variable has scalar type, class type with a
5961    //   trivial default constructor and a trivial destructor, a cv-qualified
5962    //   version of one of these types, or an array of one of the preceding
5963    //   types and is declared without an initializer.
5964    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5965      if (const RecordType *Record
5966            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5967        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5968        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5969            (getLangOptions().CPlusPlus0x &&
5970             (!CXXRecord->hasTrivialDefaultConstructor() ||
5971              !CXXRecord->hasTrivialDestructor())))
5972          getCurFunction()->setHasBranchProtectedScope();
5973      }
5974    }
5975
5976    // C++03 [dcl.init]p9:
5977    //   If no initializer is specified for an object, and the
5978    //   object is of (possibly cv-qualified) non-POD class type (or
5979    //   array thereof), the object shall be default-initialized; if
5980    //   the object is of const-qualified type, the underlying class
5981    //   type shall have a user-declared default
5982    //   constructor. Otherwise, if no initializer is specified for
5983    //   a non- static object, the object and its subobjects, if
5984    //   any, have an indeterminate initial value); if the object
5985    //   or any of its subobjects are of const-qualified type, the
5986    //   program is ill-formed.
5987    // C++0x [dcl.init]p11:
5988    //   If no initializer is specified for an object, the object is
5989    //   default-initialized; [...].
5990    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5991    InitializationKind Kind
5992      = InitializationKind::CreateDefault(Var->getLocation());
5993
5994    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5995    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5996                                      MultiExprArg(*this, 0, 0));
5997    if (Init.isInvalid())
5998      Var->setInvalidDecl();
5999    else if (Init.get())
6000      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6001
6002    CheckCompleteVariableDeclaration(Var);
6003  }
6004}
6005
6006void Sema::ActOnCXXForRangeDecl(Decl *D) {
6007  VarDecl *VD = dyn_cast<VarDecl>(D);
6008  if (!VD) {
6009    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6010    D->setInvalidDecl();
6011    return;
6012  }
6013
6014  VD->setCXXForRangeDecl(true);
6015
6016  // for-range-declaration cannot be given a storage class specifier.
6017  int Error = -1;
6018  switch (VD->getStorageClassAsWritten()) {
6019  case SC_None:
6020    break;
6021  case SC_Extern:
6022    Error = 0;
6023    break;
6024  case SC_Static:
6025    Error = 1;
6026    break;
6027  case SC_PrivateExtern:
6028    Error = 2;
6029    break;
6030  case SC_Auto:
6031    Error = 3;
6032    break;
6033  case SC_Register:
6034    Error = 4;
6035    break;
6036  }
6037  // FIXME: constexpr isn't allowed here.
6038  //if (DS.isConstexprSpecified())
6039  //  Error = 5;
6040  if (Error != -1) {
6041    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6042      << VD->getDeclName() << Error;
6043    D->setInvalidDecl();
6044  }
6045}
6046
6047void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6048  if (var->isInvalidDecl()) return;
6049
6050  // In ARC, don't allow jumps past the implicit initialization of a
6051  // local retaining variable.
6052  if (getLangOptions().ObjCAutoRefCount &&
6053      var->hasLocalStorage()) {
6054    switch (var->getType().getObjCLifetime()) {
6055    case Qualifiers::OCL_None:
6056    case Qualifiers::OCL_ExplicitNone:
6057    case Qualifiers::OCL_Autoreleasing:
6058      break;
6059
6060    case Qualifiers::OCL_Weak:
6061    case Qualifiers::OCL_Strong:
6062      getCurFunction()->setHasBranchProtectedScope();
6063      break;
6064    }
6065  }
6066
6067  // All the following checks are C++ only.
6068  if (!getLangOptions().CPlusPlus) return;
6069
6070  QualType baseType = Context.getBaseElementType(var->getType());
6071  if (baseType->isDependentType()) return;
6072
6073  // __block variables might require us to capture a copy-initializer.
6074  if (var->hasAttr<BlocksAttr>()) {
6075    // It's currently invalid to ever have a __block variable with an
6076    // array type; should we diagnose that here?
6077
6078    // Regardless, we don't want to ignore array nesting when
6079    // constructing this copy.
6080    QualType type = var->getType();
6081
6082    if (type->isStructureOrClassType()) {
6083      SourceLocation poi = var->getLocation();
6084      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6085      ExprResult result =
6086        PerformCopyInitialization(
6087                        InitializedEntity::InitializeBlock(poi, type, false),
6088                                  poi, Owned(varRef));
6089      if (!result.isInvalid()) {
6090        result = MaybeCreateExprWithCleanups(result);
6091        Expr *init = result.takeAs<Expr>();
6092        Context.setBlockVarCopyInits(var, init);
6093      }
6094    }
6095  }
6096
6097  // Check for global constructors.
6098  if (!var->getDeclContext()->isDependentContext() &&
6099      var->hasGlobalStorage() &&
6100      !var->isStaticLocal() &&
6101      var->getInit() &&
6102      !var->getInit()->isConstantInitializer(Context,
6103                                             baseType->isReferenceType()))
6104    Diag(var->getLocation(), diag::warn_global_constructor)
6105      << var->getInit()->getSourceRange();
6106
6107  // Require the destructor.
6108  if (const RecordType *recordType = baseType->getAs<RecordType>())
6109    FinalizeVarWithDestructor(var, recordType);
6110}
6111
6112/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6113/// any semantic actions necessary after any initializer has been attached.
6114void
6115Sema::FinalizeDeclaration(Decl *ThisDecl) {
6116  // Note that we are no longer parsing the initializer for this declaration.
6117  ParsingInitForAutoVars.erase(ThisDecl);
6118}
6119
6120Sema::DeclGroupPtrTy
6121Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6122                              Decl **Group, unsigned NumDecls) {
6123  SmallVector<Decl*, 8> Decls;
6124
6125  if (DS.isTypeSpecOwned())
6126    Decls.push_back(DS.getRepAsDecl());
6127
6128  for (unsigned i = 0; i != NumDecls; ++i)
6129    if (Decl *D = Group[i])
6130      Decls.push_back(D);
6131
6132  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6133                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6134}
6135
6136/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6137/// group, performing any necessary semantic checking.
6138Sema::DeclGroupPtrTy
6139Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6140                           bool TypeMayContainAuto) {
6141  // C++0x [dcl.spec.auto]p7:
6142  //   If the type deduced for the template parameter U is not the same in each
6143  //   deduction, the program is ill-formed.
6144  // FIXME: When initializer-list support is added, a distinction is needed
6145  // between the deduced type U and the deduced type which 'auto' stands for.
6146  //   auto a = 0, b = { 1, 2, 3 };
6147  // is legal because the deduced type U is 'int' in both cases.
6148  if (TypeMayContainAuto && NumDecls > 1) {
6149    QualType Deduced;
6150    CanQualType DeducedCanon;
6151    VarDecl *DeducedDecl = 0;
6152    for (unsigned i = 0; i != NumDecls; ++i) {
6153      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6154        AutoType *AT = D->getType()->getContainedAutoType();
6155        // Don't reissue diagnostics when instantiating a template.
6156        if (AT && D->isInvalidDecl())
6157          break;
6158        if (AT && AT->isDeduced()) {
6159          QualType U = AT->getDeducedType();
6160          CanQualType UCanon = Context.getCanonicalType(U);
6161          if (Deduced.isNull()) {
6162            Deduced = U;
6163            DeducedCanon = UCanon;
6164            DeducedDecl = D;
6165          } else if (DeducedCanon != UCanon) {
6166            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6167                 diag::err_auto_different_deductions)
6168              << Deduced << DeducedDecl->getDeclName()
6169              << U << D->getDeclName()
6170              << DeducedDecl->getInit()->getSourceRange()
6171              << D->getInit()->getSourceRange();
6172            D->setInvalidDecl();
6173            break;
6174          }
6175        }
6176      }
6177    }
6178  }
6179
6180  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6181}
6182
6183
6184/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6185/// to introduce parameters into function prototype scope.
6186Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6187  const DeclSpec &DS = D.getDeclSpec();
6188
6189  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6190  VarDecl::StorageClass StorageClass = SC_None;
6191  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6192  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6193    StorageClass = SC_Register;
6194    StorageClassAsWritten = SC_Register;
6195  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6196    Diag(DS.getStorageClassSpecLoc(),
6197         diag::err_invalid_storage_class_in_func_decl);
6198    D.getMutableDeclSpec().ClearStorageClassSpecs();
6199  }
6200
6201  if (D.getDeclSpec().isThreadSpecified())
6202    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6203  if (D.getDeclSpec().isConstexprSpecified())
6204    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6205      << 0;
6206
6207  DiagnoseFunctionSpecifiers(D);
6208
6209  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6210  QualType parmDeclType = TInfo->getType();
6211
6212  if (getLangOptions().CPlusPlus) {
6213    // Check that there are no default arguments inside the type of this
6214    // parameter.
6215    CheckExtraCXXDefaultArguments(D);
6216
6217    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6218    if (D.getCXXScopeSpec().isSet()) {
6219      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6220        << D.getCXXScopeSpec().getRange();
6221      D.getCXXScopeSpec().clear();
6222    }
6223  }
6224
6225  // Ensure we have a valid name
6226  IdentifierInfo *II = 0;
6227  if (D.hasName()) {
6228    II = D.getIdentifier();
6229    if (!II) {
6230      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6231        << GetNameForDeclarator(D).getName().getAsString();
6232      D.setInvalidType(true);
6233    }
6234  }
6235
6236  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6237  if (II) {
6238    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6239                   ForRedeclaration);
6240    LookupName(R, S);
6241    if (R.isSingleResult()) {
6242      NamedDecl *PrevDecl = R.getFoundDecl();
6243      if (PrevDecl->isTemplateParameter()) {
6244        // Maybe we will complain about the shadowed template parameter.
6245        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6246        // Just pretend that we didn't see the previous declaration.
6247        PrevDecl = 0;
6248      } else if (S->isDeclScope(PrevDecl)) {
6249        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6250        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6251
6252        // Recover by removing the name
6253        II = 0;
6254        D.SetIdentifier(0, D.getIdentifierLoc());
6255        D.setInvalidType(true);
6256      }
6257    }
6258  }
6259
6260  // Temporarily put parameter variables in the translation unit, not
6261  // the enclosing context.  This prevents them from accidentally
6262  // looking like class members in C++.
6263  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6264                                    D.getSourceRange().getBegin(),
6265                                    D.getIdentifierLoc(), II,
6266                                    parmDeclType, TInfo,
6267                                    StorageClass, StorageClassAsWritten);
6268
6269  if (D.isInvalidType())
6270    New->setInvalidDecl();
6271
6272  assert(S->isFunctionPrototypeScope());
6273  assert(S->getFunctionPrototypeDepth() >= 1);
6274  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6275                    S->getNextFunctionPrototypeIndex());
6276
6277  // Add the parameter declaration into this scope.
6278  S->AddDecl(New);
6279  if (II)
6280    IdResolver.AddDecl(New);
6281
6282  ProcessDeclAttributes(S, New, D);
6283
6284  if (New->hasAttr<BlocksAttr>()) {
6285    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6286  }
6287  return New;
6288}
6289
6290/// \brief Synthesizes a variable for a parameter arising from a
6291/// typedef.
6292ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6293                                              SourceLocation Loc,
6294                                              QualType T) {
6295  /* FIXME: setting StartLoc == Loc.
6296     Would it be worth to modify callers so as to provide proper source
6297     location for the unnamed parameters, embedding the parameter's type? */
6298  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6299                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6300                                           SC_None, SC_None, 0);
6301  Param->setImplicit();
6302  return Param;
6303}
6304
6305void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6306                                    ParmVarDecl * const *ParamEnd) {
6307  // Don't diagnose unused-parameter errors in template instantiations; we
6308  // will already have done so in the template itself.
6309  if (!ActiveTemplateInstantiations.empty())
6310    return;
6311
6312  for (; Param != ParamEnd; ++Param) {
6313    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6314        !(*Param)->hasAttr<UnusedAttr>()) {
6315      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6316        << (*Param)->getDeclName();
6317    }
6318  }
6319}
6320
6321void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6322                                                  ParmVarDecl * const *ParamEnd,
6323                                                  QualType ReturnTy,
6324                                                  NamedDecl *D) {
6325  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6326    return;
6327
6328  // Warn if the return value is pass-by-value and larger than the specified
6329  // threshold.
6330  if (ReturnTy.isPODType(Context)) {
6331    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6332    if (Size > LangOpts.NumLargeByValueCopy)
6333      Diag(D->getLocation(), diag::warn_return_value_size)
6334          << D->getDeclName() << Size;
6335  }
6336
6337  // Warn if any parameter is pass-by-value and larger than the specified
6338  // threshold.
6339  for (; Param != ParamEnd; ++Param) {
6340    QualType T = (*Param)->getType();
6341    if (!T.isPODType(Context))
6342      continue;
6343    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6344    if (Size > LangOpts.NumLargeByValueCopy)
6345      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6346          << (*Param)->getDeclName() << Size;
6347  }
6348}
6349
6350ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6351                                  SourceLocation NameLoc, IdentifierInfo *Name,
6352                                  QualType T, TypeSourceInfo *TSInfo,
6353                                  VarDecl::StorageClass StorageClass,
6354                                  VarDecl::StorageClass StorageClassAsWritten) {
6355  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6356  if (getLangOptions().ObjCAutoRefCount &&
6357      T.getObjCLifetime() == Qualifiers::OCL_None &&
6358      T->isObjCLifetimeType()) {
6359
6360    Qualifiers::ObjCLifetime lifetime;
6361
6362    // Special cases for arrays:
6363    //   - if it's const, use __unsafe_unretained
6364    //   - otherwise, it's an error
6365    if (T->isArrayType()) {
6366      if (!T.isConstQualified()) {
6367        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6368          << TSInfo->getTypeLoc().getSourceRange();
6369      }
6370      lifetime = Qualifiers::OCL_ExplicitNone;
6371    } else {
6372      lifetime = T->getObjCARCImplicitLifetime();
6373    }
6374    T = Context.getLifetimeQualifiedType(T, lifetime);
6375  }
6376
6377  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6378                                         Context.getAdjustedParameterType(T),
6379                                         TSInfo,
6380                                         StorageClass, StorageClassAsWritten,
6381                                         0);
6382
6383  // Parameters can not be abstract class types.
6384  // For record types, this is done by the AbstractClassUsageDiagnoser once
6385  // the class has been completely parsed.
6386  if (!CurContext->isRecord() &&
6387      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6388                             AbstractParamType))
6389    New->setInvalidDecl();
6390
6391  // Parameter declarators cannot be interface types. All ObjC objects are
6392  // passed by reference.
6393  if (T->isObjCObjectType()) {
6394    Diag(NameLoc,
6395         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6396      << FixItHint::CreateInsertion(NameLoc, "*");
6397    T = Context.getObjCObjectPointerType(T);
6398    New->setType(T);
6399  }
6400
6401  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6402  // duration shall not be qualified by an address-space qualifier."
6403  // Since all parameters have automatic store duration, they can not have
6404  // an address space.
6405  if (T.getAddressSpace() != 0) {
6406    Diag(NameLoc, diag::err_arg_with_address_space);
6407    New->setInvalidDecl();
6408  }
6409
6410  return New;
6411}
6412
6413void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6414                                           SourceLocation LocAfterDecls) {
6415  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6416
6417  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6418  // for a K&R function.
6419  if (!FTI.hasPrototype) {
6420    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6421      --i;
6422      if (FTI.ArgInfo[i].Param == 0) {
6423        llvm::SmallString<256> Code;
6424        llvm::raw_svector_ostream(Code) << "  int "
6425                                        << FTI.ArgInfo[i].Ident->getName()
6426                                        << ";\n";
6427        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6428          << FTI.ArgInfo[i].Ident
6429          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6430
6431        // Implicitly declare the argument as type 'int' for lack of a better
6432        // type.
6433        AttributeFactory attrs;
6434        DeclSpec DS(attrs);
6435        const char* PrevSpec; // unused
6436        unsigned DiagID; // unused
6437        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6438                           PrevSpec, DiagID);
6439        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6440        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6441        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6442      }
6443    }
6444  }
6445}
6446
6447Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6448                                         Declarator &D) {
6449  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6450  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6451  Scope *ParentScope = FnBodyScope->getParent();
6452
6453  Decl *DP = HandleDeclarator(ParentScope, D,
6454                              MultiTemplateParamsArg(*this),
6455                              /*IsFunctionDefinition=*/true);
6456  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6457}
6458
6459static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6460  // Don't warn about invalid declarations.
6461  if (FD->isInvalidDecl())
6462    return false;
6463
6464  // Or declarations that aren't global.
6465  if (!FD->isGlobal())
6466    return false;
6467
6468  // Don't warn about C++ member functions.
6469  if (isa<CXXMethodDecl>(FD))
6470    return false;
6471
6472  // Don't warn about 'main'.
6473  if (FD->isMain())
6474    return false;
6475
6476  // Don't warn about inline functions.
6477  if (FD->isInlined())
6478    return false;
6479
6480  // Don't warn about function templates.
6481  if (FD->getDescribedFunctionTemplate())
6482    return false;
6483
6484  // Don't warn about function template specializations.
6485  if (FD->isFunctionTemplateSpecialization())
6486    return false;
6487
6488  bool MissingPrototype = true;
6489  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6490       Prev; Prev = Prev->getPreviousDeclaration()) {
6491    // Ignore any declarations that occur in function or method
6492    // scope, because they aren't visible from the header.
6493    if (Prev->getDeclContext()->isFunctionOrMethod())
6494      continue;
6495
6496    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6497    break;
6498  }
6499
6500  return MissingPrototype;
6501}
6502
6503void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6504  // Don't complain if we're in GNU89 mode and the previous definition
6505  // was an extern inline function.
6506  const FunctionDecl *Definition;
6507  if (FD->isDefined(Definition) &&
6508      !canRedefineFunction(Definition, getLangOptions())) {
6509    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6510        Definition->getStorageClass() == SC_Extern)
6511      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6512        << FD->getDeclName() << getLangOptions().CPlusPlus;
6513    else
6514      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6515    Diag(Definition->getLocation(), diag::note_previous_definition);
6516  }
6517}
6518
6519Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6520  // Clear the last template instantiation error context.
6521  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6522
6523  if (!D)
6524    return D;
6525  FunctionDecl *FD = 0;
6526
6527  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6528    FD = FunTmpl->getTemplatedDecl();
6529  else
6530    FD = cast<FunctionDecl>(D);
6531
6532  // Enter a new function scope
6533  PushFunctionScope();
6534
6535  // See if this is a redefinition.
6536  if (!FD->isLateTemplateParsed())
6537    CheckForFunctionRedefinition(FD);
6538
6539  // Builtin functions cannot be defined.
6540  if (unsigned BuiltinID = FD->getBuiltinID()) {
6541    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6542      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6543      FD->setInvalidDecl();
6544    }
6545  }
6546
6547  // The return type of a function definition must be complete
6548  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6549  QualType ResultType = FD->getResultType();
6550  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6551      !FD->isInvalidDecl() &&
6552      RequireCompleteType(FD->getLocation(), ResultType,
6553                          diag::err_func_def_incomplete_result))
6554    FD->setInvalidDecl();
6555
6556  // GNU warning -Wmissing-prototypes:
6557  //   Warn if a global function is defined without a previous
6558  //   prototype declaration. This warning is issued even if the
6559  //   definition itself provides a prototype. The aim is to detect
6560  //   global functions that fail to be declared in header files.
6561  if (ShouldWarnAboutMissingPrototype(FD))
6562    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6563
6564  if (FnBodyScope)
6565    PushDeclContext(FnBodyScope, FD);
6566
6567  // Check the validity of our function parameters
6568  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6569                           /*CheckParameterNames=*/true);
6570
6571  // Introduce our parameters into the function scope
6572  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6573    ParmVarDecl *Param = FD->getParamDecl(p);
6574    Param->setOwningFunction(FD);
6575
6576    // If this has an identifier, add it to the scope stack.
6577    if (Param->getIdentifier() && FnBodyScope) {
6578      CheckShadow(FnBodyScope, Param);
6579
6580      PushOnScopeChains(Param, FnBodyScope);
6581    }
6582  }
6583
6584  // Checking attributes of current function definition
6585  // dllimport attribute.
6586  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6587  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6588    // dllimport attribute cannot be directly applied to definition.
6589    // Microsoft accepts dllimport for functions defined within class scope.
6590    if (!DA->isInherited() &&
6591        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6592      Diag(FD->getLocation(),
6593           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6594        << "dllimport";
6595      FD->setInvalidDecl();
6596      return FD;
6597    }
6598
6599    // Visual C++ appears to not think this is an issue, so only issue
6600    // a warning when Microsoft extensions are disabled.
6601    if (!LangOpts.Microsoft) {
6602      // If a symbol previously declared dllimport is later defined, the
6603      // attribute is ignored in subsequent references, and a warning is
6604      // emitted.
6605      Diag(FD->getLocation(),
6606           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6607        << FD->getName() << "dllimport";
6608    }
6609  }
6610  return FD;
6611}
6612
6613/// \brief Given the set of return statements within a function body,
6614/// compute the variables that are subject to the named return value
6615/// optimization.
6616///
6617/// Each of the variables that is subject to the named return value
6618/// optimization will be marked as NRVO variables in the AST, and any
6619/// return statement that has a marked NRVO variable as its NRVO candidate can
6620/// use the named return value optimization.
6621///
6622/// This function applies a very simplistic algorithm for NRVO: if every return
6623/// statement in the function has the same NRVO candidate, that candidate is
6624/// the NRVO variable.
6625///
6626/// FIXME: Employ a smarter algorithm that accounts for multiple return
6627/// statements and the lifetimes of the NRVO candidates. We should be able to
6628/// find a maximal set of NRVO variables.
6629static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6630  ReturnStmt **Returns = Scope->Returns.data();
6631
6632  const VarDecl *NRVOCandidate = 0;
6633  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6634    if (!Returns[I]->getNRVOCandidate())
6635      return;
6636
6637    if (!NRVOCandidate)
6638      NRVOCandidate = Returns[I]->getNRVOCandidate();
6639    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6640      return;
6641  }
6642
6643  if (NRVOCandidate)
6644    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6645}
6646
6647Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6648  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6649}
6650
6651Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6652                                    bool IsInstantiation) {
6653  FunctionDecl *FD = 0;
6654  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6655  if (FunTmpl)
6656    FD = FunTmpl->getTemplatedDecl();
6657  else
6658    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6659
6660  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6661  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6662
6663  if (FD) {
6664    FD->setBody(Body);
6665    if (FD->isMain()) {
6666      // C and C++ allow for main to automagically return 0.
6667      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6668      FD->setHasImplicitReturnZero(true);
6669      WP.disableCheckFallThrough();
6670    } else if (FD->hasAttr<NakedAttr>()) {
6671      // If the function is marked 'naked', don't complain about missing return
6672      // statements.
6673      WP.disableCheckFallThrough();
6674    }
6675
6676    // MSVC permits the use of pure specifier (=0) on function definition,
6677    // defined at class scope, warn about this non standard construct.
6678    if (getLangOptions().Microsoft && FD->isPure())
6679      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6680
6681    if (!FD->isInvalidDecl()) {
6682      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6683      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6684                                             FD->getResultType(), FD);
6685
6686      // If this is a constructor, we need a vtable.
6687      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6688        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6689
6690      ComputeNRVO(Body, getCurFunction());
6691    }
6692
6693    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6694  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6695    assert(MD == getCurMethodDecl() && "Method parsing confused");
6696    MD->setBody(Body);
6697    if (Body)
6698      MD->setEndLoc(Body->getLocEnd());
6699    if (!MD->isInvalidDecl()) {
6700      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6701      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6702                                             MD->getResultType(), MD);
6703    }
6704    if (ObjCShouldCallSuperDealloc) {
6705      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6706      ObjCShouldCallSuperDealloc = false;
6707    }
6708    if (ObjCShouldCallSuperFinalize) {
6709      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6710      ObjCShouldCallSuperFinalize = false;
6711    }
6712  } else {
6713    return 0;
6714  }
6715
6716  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6717         "ObjC methods, which should have been handled in the block above.");
6718  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6719         "ObjC methods, which should have been handled in the block above.");
6720
6721  // Verify and clean out per-function state.
6722  if (Body) {
6723    // C++ constructors that have function-try-blocks can't have return
6724    // statements in the handlers of that block. (C++ [except.handle]p14)
6725    // Verify this.
6726    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6727      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6728
6729    // Verify that gotos and switch cases don't jump into scopes illegally.
6730    if (getCurFunction()->NeedsScopeChecking() &&
6731        !dcl->isInvalidDecl() &&
6732        !hasAnyUnrecoverableErrorsInThisFunction())
6733      DiagnoseInvalidJumps(Body);
6734
6735    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6736      if (!Destructor->getParent()->isDependentType())
6737        CheckDestructor(Destructor);
6738
6739      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6740                                             Destructor->getParent());
6741    }
6742
6743    // If any errors have occurred, clear out any temporaries that may have
6744    // been leftover. This ensures that these temporaries won't be picked up for
6745    // deletion in some later function.
6746    if (PP.getDiagnostics().hasErrorOccurred() ||
6747        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6748      ExprTemporaries.clear();
6749      ExprNeedsCleanups = false;
6750    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6751      // Since the body is valid, issue any analysis-based warnings that are
6752      // enabled.
6753      ActivePolicy = &WP;
6754    }
6755
6756    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6757    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6758  }
6759
6760  if (!IsInstantiation)
6761    PopDeclContext();
6762
6763  PopFunctionOrBlockScope(ActivePolicy, dcl);
6764
6765  // If any errors have occurred, clear out any temporaries that may have
6766  // been leftover. This ensures that these temporaries won't be picked up for
6767  // deletion in some later function.
6768  if (getDiagnostics().hasErrorOccurred()) {
6769    ExprTemporaries.clear();
6770    ExprNeedsCleanups = false;
6771  }
6772
6773  return dcl;
6774}
6775
6776/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6777/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6778NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6779                                          IdentifierInfo &II, Scope *S) {
6780  // Before we produce a declaration for an implicitly defined
6781  // function, see whether there was a locally-scoped declaration of
6782  // this name as a function or variable. If so, use that
6783  // (non-visible) declaration, and complain about it.
6784  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6785    = findLocallyScopedExternalDecl(&II);
6786  if (Pos != LocallyScopedExternalDecls.end()) {
6787    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6788    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6789    return Pos->second;
6790  }
6791
6792  // Extension in C99.  Legal in C90, but warn about it.
6793  if (II.getName().startswith("__builtin_"))
6794    Diag(Loc, diag::warn_builtin_unknown) << &II;
6795  else if (getLangOptions().C99)
6796    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6797  else
6798    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6799
6800  // Set a Declarator for the implicit definition: int foo();
6801  const char *Dummy;
6802  AttributeFactory attrFactory;
6803  DeclSpec DS(attrFactory);
6804  unsigned DiagID;
6805  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6806  (void)Error; // Silence warning.
6807  assert(!Error && "Error setting up implicit decl!");
6808  Declarator D(DS, Declarator::BlockContext);
6809  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6810                                             0, 0, true, SourceLocation(),
6811                                             SourceLocation(),
6812                                             EST_None, SourceLocation(),
6813                                             0, 0, 0, 0, Loc, Loc, D),
6814                DS.getAttributes(),
6815                SourceLocation());
6816  D.SetIdentifier(&II, Loc);
6817
6818  // Insert this function into translation-unit scope.
6819
6820  DeclContext *PrevDC = CurContext;
6821  CurContext = Context.getTranslationUnitDecl();
6822
6823  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6824  FD->setImplicit();
6825
6826  CurContext = PrevDC;
6827
6828  AddKnownFunctionAttributes(FD);
6829
6830  return FD;
6831}
6832
6833/// \brief Adds any function attributes that we know a priori based on
6834/// the declaration of this function.
6835///
6836/// These attributes can apply both to implicitly-declared builtins
6837/// (like __builtin___printf_chk) or to library-declared functions
6838/// like NSLog or printf.
6839///
6840/// We need to check for duplicate attributes both here and where user-written
6841/// attributes are applied to declarations.
6842void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6843  if (FD->isInvalidDecl())
6844    return;
6845
6846  // If this is a built-in function, map its builtin attributes to
6847  // actual attributes.
6848  if (unsigned BuiltinID = FD->getBuiltinID()) {
6849    // Handle printf-formatting attributes.
6850    unsigned FormatIdx;
6851    bool HasVAListArg;
6852    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6853      if (!FD->getAttr<FormatAttr>())
6854        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6855                                                "printf", FormatIdx+1,
6856                                               HasVAListArg ? 0 : FormatIdx+2));
6857    }
6858    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6859                                             HasVAListArg)) {
6860     if (!FD->getAttr<FormatAttr>())
6861       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6862                                              "scanf", FormatIdx+1,
6863                                              HasVAListArg ? 0 : FormatIdx+2));
6864    }
6865
6866    // Mark const if we don't care about errno and that is the only
6867    // thing preventing the function from being const. This allows
6868    // IRgen to use LLVM intrinsics for such functions.
6869    if (!getLangOptions().MathErrno &&
6870        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6871      if (!FD->getAttr<ConstAttr>())
6872        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6873    }
6874
6875    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6876      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6877    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6878      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6879  }
6880
6881  IdentifierInfo *Name = FD->getIdentifier();
6882  if (!Name)
6883    return;
6884  if ((!getLangOptions().CPlusPlus &&
6885       FD->getDeclContext()->isTranslationUnit()) ||
6886      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6887       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6888       LinkageSpecDecl::lang_c)) {
6889    // Okay: this could be a libc/libm/Objective-C function we know
6890    // about.
6891  } else
6892    return;
6893
6894  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6895    // FIXME: NSLog and NSLogv should be target specific
6896    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6897      // FIXME: We known better than our headers.
6898      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6899    } else
6900      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6901                                             "printf", 1,
6902                                             Name->isStr("NSLogv") ? 0 : 2));
6903  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6904    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6905    // target-specific builtins, perhaps?
6906    if (!FD->getAttr<FormatAttr>())
6907      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6908                                             "printf", 2,
6909                                             Name->isStr("vasprintf") ? 0 : 3));
6910  }
6911}
6912
6913TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6914                                    TypeSourceInfo *TInfo) {
6915  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6916  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6917
6918  if (!TInfo) {
6919    assert(D.isInvalidType() && "no declarator info for valid type");
6920    TInfo = Context.getTrivialTypeSourceInfo(T);
6921  }
6922
6923  // Scope manipulation handled by caller.
6924  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6925                                           D.getSourceRange().getBegin(),
6926                                           D.getIdentifierLoc(),
6927                                           D.getIdentifier(),
6928                                           TInfo);
6929
6930  // Bail out immediately if we have an invalid declaration.
6931  if (D.isInvalidType()) {
6932    NewTD->setInvalidDecl();
6933    return NewTD;
6934  }
6935
6936  // C++ [dcl.typedef]p8:
6937  //   If the typedef declaration defines an unnamed class (or
6938  //   enum), the first typedef-name declared by the declaration
6939  //   to be that class type (or enum type) is used to denote the
6940  //   class type (or enum type) for linkage purposes only.
6941  // We need to check whether the type was declared in the declaration.
6942  switch (D.getDeclSpec().getTypeSpecType()) {
6943  case TST_enum:
6944  case TST_struct:
6945  case TST_union:
6946  case TST_class: {
6947    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6948
6949    // Do nothing if the tag is not anonymous or already has an
6950    // associated typedef (from an earlier typedef in this decl group).
6951    if (tagFromDeclSpec->getIdentifier()) break;
6952    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6953
6954    // A well-formed anonymous tag must always be a TUK_Definition.
6955    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6956
6957    // The type must match the tag exactly;  no qualifiers allowed.
6958    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6959      break;
6960
6961    // Otherwise, set this is the anon-decl typedef for the tag.
6962    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6963    break;
6964  }
6965
6966  default:
6967    break;
6968  }
6969
6970  return NewTD;
6971}
6972
6973
6974/// \brief Determine whether a tag with a given kind is acceptable
6975/// as a redeclaration of the given tag declaration.
6976///
6977/// \returns true if the new tag kind is acceptable, false otherwise.
6978bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6979                                        TagTypeKind NewTag, bool isDefinition,
6980                                        SourceLocation NewTagLoc,
6981                                        const IdentifierInfo &Name) {
6982  // C++ [dcl.type.elab]p3:
6983  //   The class-key or enum keyword present in the
6984  //   elaborated-type-specifier shall agree in kind with the
6985  //   declaration to which the name in the elaborated-type-specifier
6986  //   refers. This rule also applies to the form of
6987  //   elaborated-type-specifier that declares a class-name or
6988  //   friend class since it can be construed as referring to the
6989  //   definition of the class. Thus, in any
6990  //   elaborated-type-specifier, the enum keyword shall be used to
6991  //   refer to an enumeration (7.2), the union class-key shall be
6992  //   used to refer to a union (clause 9), and either the class or
6993  //   struct class-key shall be used to refer to a class (clause 9)
6994  //   declared using the class or struct class-key.
6995  TagTypeKind OldTag = Previous->getTagKind();
6996  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6997    if (OldTag == NewTag)
6998      return true;
6999
7000  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7001      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7002    // Warn about the struct/class tag mismatch.
7003    bool isTemplate = false;
7004    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7005      isTemplate = Record->getDescribedClassTemplate();
7006
7007    if (!ActiveTemplateInstantiations.empty()) {
7008      // In a template instantiation, do not offer fix-its for tag mismatches
7009      // since they usually mess up the template instead of fixing the problem.
7010      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7011        << (NewTag == TTK_Class) << isTemplate << &Name;
7012      return true;
7013    }
7014
7015    if (isDefinition) {
7016      // On definitions, check previous tags and issue a fix-it for each
7017      // one that doesn't match the current tag.
7018      if (Previous->getDefinition()) {
7019        // Don't suggest fix-its for redefinitions.
7020        return true;
7021      }
7022
7023      bool previousMismatch = false;
7024      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7025           E(Previous->redecls_end()); I != E; ++I) {
7026        if (I->getTagKind() != NewTag) {
7027          if (!previousMismatch) {
7028            previousMismatch = true;
7029            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7030              << (NewTag == TTK_Class) << isTemplate << &Name;
7031          }
7032          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7033            << (NewTag == TTK_Class)
7034            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7035                                            NewTag == TTK_Class?
7036                                            "class" : "struct");
7037        }
7038      }
7039      return true;
7040    }
7041
7042    // Check for a previous definition.  If current tag and definition
7043    // are same type, do nothing.  If no definition, but disagree with
7044    // with previous tag type, give a warning, but no fix-it.
7045    const TagDecl *Redecl = Previous->getDefinition() ?
7046                            Previous->getDefinition() : Previous;
7047    if (Redecl->getTagKind() == NewTag) {
7048      return true;
7049    }
7050
7051    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7052      << (NewTag == TTK_Class)
7053      << isTemplate << &Name;
7054    Diag(Redecl->getLocation(), diag::note_previous_use);
7055
7056    // If there is a previous defintion, suggest a fix-it.
7057    if (Previous->getDefinition()) {
7058        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7059          << (Redecl->getTagKind() == TTK_Class)
7060          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7061                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7062    }
7063
7064    return true;
7065  }
7066  return false;
7067}
7068
7069/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7070/// former case, Name will be non-null.  In the later case, Name will be null.
7071/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7072/// reference/declaration/definition of a tag.
7073Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7074                     SourceLocation KWLoc, CXXScopeSpec &SS,
7075                     IdentifierInfo *Name, SourceLocation NameLoc,
7076                     AttributeList *Attr, AccessSpecifier AS,
7077                     MultiTemplateParamsArg TemplateParameterLists,
7078                     bool &OwnedDecl, bool &IsDependent,
7079                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7080                     TypeResult UnderlyingType) {
7081  // If this is not a definition, it must have a name.
7082  assert((Name != 0 || TUK == TUK_Definition) &&
7083         "Nameless record must be a definition!");
7084  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7085
7086  OwnedDecl = false;
7087  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7088
7089  // FIXME: Check explicit specializations more carefully.
7090  bool isExplicitSpecialization = false;
7091  bool Invalid = false;
7092
7093  // We only need to do this matching if we have template parameters
7094  // or a scope specifier, which also conveniently avoids this work
7095  // for non-C++ cases.
7096  if (TemplateParameterLists.size() > 0 ||
7097      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7098    if (TemplateParameterList *TemplateParams
7099          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7100                                                TemplateParameterLists.get(),
7101                                                TemplateParameterLists.size(),
7102                                                    TUK == TUK_Friend,
7103                                                    isExplicitSpecialization,
7104                                                    Invalid)) {
7105      if (TemplateParams->size() > 0) {
7106        // This is a declaration or definition of a class template (which may
7107        // be a member of another template).
7108
7109        if (Invalid)
7110          return 0;
7111
7112        OwnedDecl = false;
7113        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7114                                               SS, Name, NameLoc, Attr,
7115                                               TemplateParams, AS,
7116                                           TemplateParameterLists.size() - 1,
7117                 (TemplateParameterList**) TemplateParameterLists.release());
7118        return Result.get();
7119      } else {
7120        // The "template<>" header is extraneous.
7121        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7122          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7123        isExplicitSpecialization = true;
7124      }
7125    }
7126  }
7127
7128  // Figure out the underlying type if this a enum declaration. We need to do
7129  // this early, because it's needed to detect if this is an incompatible
7130  // redeclaration.
7131  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7132
7133  if (Kind == TTK_Enum) {
7134    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7135      // No underlying type explicitly specified, or we failed to parse the
7136      // type, default to int.
7137      EnumUnderlying = Context.IntTy.getTypePtr();
7138    else if (UnderlyingType.get()) {
7139      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7140      // integral type; any cv-qualification is ignored.
7141      TypeSourceInfo *TI = 0;
7142      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7143      EnumUnderlying = TI;
7144
7145      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7146
7147      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7148        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7149          << T;
7150        // Recover by falling back to int.
7151        EnumUnderlying = Context.IntTy.getTypePtr();
7152      }
7153
7154      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7155                                          UPPC_FixedUnderlyingType))
7156        EnumUnderlying = Context.IntTy.getTypePtr();
7157
7158    } else if (getLangOptions().Microsoft)
7159      // Microsoft enums are always of int type.
7160      EnumUnderlying = Context.IntTy.getTypePtr();
7161  }
7162
7163  DeclContext *SearchDC = CurContext;
7164  DeclContext *DC = CurContext;
7165  bool isStdBadAlloc = false;
7166
7167  RedeclarationKind Redecl = ForRedeclaration;
7168  if (TUK == TUK_Friend || TUK == TUK_Reference)
7169    Redecl = NotForRedeclaration;
7170
7171  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7172
7173  if (Name && SS.isNotEmpty()) {
7174    // We have a nested-name tag ('struct foo::bar').
7175
7176    // Check for invalid 'foo::'.
7177    if (SS.isInvalid()) {
7178      Name = 0;
7179      goto CreateNewDecl;
7180    }
7181
7182    // If this is a friend or a reference to a class in a dependent
7183    // context, don't try to make a decl for it.
7184    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7185      DC = computeDeclContext(SS, false);
7186      if (!DC) {
7187        IsDependent = true;
7188        return 0;
7189      }
7190    } else {
7191      DC = computeDeclContext(SS, true);
7192      if (!DC) {
7193        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7194          << SS.getRange();
7195        return 0;
7196      }
7197    }
7198
7199    if (RequireCompleteDeclContext(SS, DC))
7200      return 0;
7201
7202    SearchDC = DC;
7203    // Look-up name inside 'foo::'.
7204    LookupQualifiedName(Previous, DC);
7205
7206    if (Previous.isAmbiguous())
7207      return 0;
7208
7209    if (Previous.empty()) {
7210      // Name lookup did not find anything. However, if the
7211      // nested-name-specifier refers to the current instantiation,
7212      // and that current instantiation has any dependent base
7213      // classes, we might find something at instantiation time: treat
7214      // this as a dependent elaborated-type-specifier.
7215      // But this only makes any sense for reference-like lookups.
7216      if (Previous.wasNotFoundInCurrentInstantiation() &&
7217          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7218        IsDependent = true;
7219        return 0;
7220      }
7221
7222      // A tag 'foo::bar' must already exist.
7223      Diag(NameLoc, diag::err_not_tag_in_scope)
7224        << Kind << Name << DC << SS.getRange();
7225      Name = 0;
7226      Invalid = true;
7227      goto CreateNewDecl;
7228    }
7229  } else if (Name) {
7230    // If this is a named struct, check to see if there was a previous forward
7231    // declaration or definition.
7232    // FIXME: We're looking into outer scopes here, even when we
7233    // shouldn't be. Doing so can result in ambiguities that we
7234    // shouldn't be diagnosing.
7235    LookupName(Previous, S);
7236
7237    if (Previous.isAmbiguous() &&
7238        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7239      LookupResult::Filter F = Previous.makeFilter();
7240      while (F.hasNext()) {
7241        NamedDecl *ND = F.next();
7242        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7243          F.erase();
7244      }
7245      F.done();
7246    }
7247
7248    // Note:  there used to be some attempt at recovery here.
7249    if (Previous.isAmbiguous())
7250      return 0;
7251
7252    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7253      // FIXME: This makes sure that we ignore the contexts associated
7254      // with C structs, unions, and enums when looking for a matching
7255      // tag declaration or definition. See the similar lookup tweak
7256      // in Sema::LookupName; is there a better way to deal with this?
7257      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7258        SearchDC = SearchDC->getParent();
7259    }
7260  } else if (S->isFunctionPrototypeScope()) {
7261    // If this is an enum declaration in function prototype scope, set its
7262    // initial context to the translation unit.
7263    SearchDC = Context.getTranslationUnitDecl();
7264  }
7265
7266  if (Previous.isSingleResult() &&
7267      Previous.getFoundDecl()->isTemplateParameter()) {
7268    // Maybe we will complain about the shadowed template parameter.
7269    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7270    // Just pretend that we didn't see the previous declaration.
7271    Previous.clear();
7272  }
7273
7274  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7275      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7276    // This is a declaration of or a reference to "std::bad_alloc".
7277    isStdBadAlloc = true;
7278
7279    if (Previous.empty() && StdBadAlloc) {
7280      // std::bad_alloc has been implicitly declared (but made invisible to
7281      // name lookup). Fill in this implicit declaration as the previous
7282      // declaration, so that the declarations get chained appropriately.
7283      Previous.addDecl(getStdBadAlloc());
7284    }
7285  }
7286
7287  // If we didn't find a previous declaration, and this is a reference
7288  // (or friend reference), move to the correct scope.  In C++, we
7289  // also need to do a redeclaration lookup there, just in case
7290  // there's a shadow friend decl.
7291  if (Name && Previous.empty() &&
7292      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7293    if (Invalid) goto CreateNewDecl;
7294    assert(SS.isEmpty());
7295
7296    if (TUK == TUK_Reference) {
7297      // C++ [basic.scope.pdecl]p5:
7298      //   -- for an elaborated-type-specifier of the form
7299      //
7300      //          class-key identifier
7301      //
7302      //      if the elaborated-type-specifier is used in the
7303      //      decl-specifier-seq or parameter-declaration-clause of a
7304      //      function defined in namespace scope, the identifier is
7305      //      declared as a class-name in the namespace that contains
7306      //      the declaration; otherwise, except as a friend
7307      //      declaration, the identifier is declared in the smallest
7308      //      non-class, non-function-prototype scope that contains the
7309      //      declaration.
7310      //
7311      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7312      // C structs and unions.
7313      //
7314      // It is an error in C++ to declare (rather than define) an enum
7315      // type, including via an elaborated type specifier.  We'll
7316      // diagnose that later; for now, declare the enum in the same
7317      // scope as we would have picked for any other tag type.
7318      //
7319      // GNU C also supports this behavior as part of its incomplete
7320      // enum types extension, while GNU C++ does not.
7321      //
7322      // Find the context where we'll be declaring the tag.
7323      // FIXME: We would like to maintain the current DeclContext as the
7324      // lexical context,
7325      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7326        SearchDC = SearchDC->getParent();
7327
7328      // Find the scope where we'll be declaring the tag.
7329      while (S->isClassScope() ||
7330             (getLangOptions().CPlusPlus &&
7331              S->isFunctionPrototypeScope()) ||
7332             ((S->getFlags() & Scope::DeclScope) == 0) ||
7333             (S->getEntity() &&
7334              ((DeclContext *)S->getEntity())->isTransparentContext()))
7335        S = S->getParent();
7336    } else {
7337      assert(TUK == TUK_Friend);
7338      // C++ [namespace.memdef]p3:
7339      //   If a friend declaration in a non-local class first declares a
7340      //   class or function, the friend class or function is a member of
7341      //   the innermost enclosing namespace.
7342      SearchDC = SearchDC->getEnclosingNamespaceContext();
7343    }
7344
7345    // In C++, we need to do a redeclaration lookup to properly
7346    // diagnose some problems.
7347    if (getLangOptions().CPlusPlus) {
7348      Previous.setRedeclarationKind(ForRedeclaration);
7349      LookupQualifiedName(Previous, SearchDC);
7350    }
7351  }
7352
7353  if (!Previous.empty()) {
7354    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7355
7356    // It's okay to have a tag decl in the same scope as a typedef
7357    // which hides a tag decl in the same scope.  Finding this
7358    // insanity with a redeclaration lookup can only actually happen
7359    // in C++.
7360    //
7361    // This is also okay for elaborated-type-specifiers, which is
7362    // technically forbidden by the current standard but which is
7363    // okay according to the likely resolution of an open issue;
7364    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7365    if (getLangOptions().CPlusPlus) {
7366      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7367        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7368          TagDecl *Tag = TT->getDecl();
7369          if (Tag->getDeclName() == Name &&
7370              Tag->getDeclContext()->getRedeclContext()
7371                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7372            PrevDecl = Tag;
7373            Previous.clear();
7374            Previous.addDecl(Tag);
7375            Previous.resolveKind();
7376          }
7377        }
7378      }
7379    }
7380
7381    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7382      // If this is a use of a previous tag, or if the tag is already declared
7383      // in the same scope (so that the definition/declaration completes or
7384      // rementions the tag), reuse the decl.
7385      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7386          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7387        // Make sure that this wasn't declared as an enum and now used as a
7388        // struct or something similar.
7389        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7390                                          TUK == TUK_Definition, KWLoc,
7391                                          *Name)) {
7392          bool SafeToContinue
7393            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7394               Kind != TTK_Enum);
7395          if (SafeToContinue)
7396            Diag(KWLoc, diag::err_use_with_wrong_tag)
7397              << Name
7398              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7399                                              PrevTagDecl->getKindName());
7400          else
7401            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7402          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7403
7404          if (SafeToContinue)
7405            Kind = PrevTagDecl->getTagKind();
7406          else {
7407            // Recover by making this an anonymous redefinition.
7408            Name = 0;
7409            Previous.clear();
7410            Invalid = true;
7411          }
7412        }
7413
7414        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7415          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7416
7417          // All conflicts with previous declarations are recovered by
7418          // returning the previous declaration.
7419          if (ScopedEnum != PrevEnum->isScoped()) {
7420            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7421              << PrevEnum->isScoped();
7422            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7423            return PrevTagDecl;
7424          }
7425          else if (EnumUnderlying && PrevEnum->isFixed()) {
7426            QualType T;
7427            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7428                T = TI->getType();
7429            else
7430                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7431
7432            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7433              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7434                   diag::err_enum_redeclare_type_mismatch)
7435                << T
7436                << PrevEnum->getIntegerType();
7437              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7438              return PrevTagDecl;
7439            }
7440          }
7441          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7442            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7443              << PrevEnum->isFixed();
7444            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7445            return PrevTagDecl;
7446          }
7447        }
7448
7449        if (!Invalid) {
7450          // If this is a use, just return the declaration we found.
7451
7452          // FIXME: In the future, return a variant or some other clue
7453          // for the consumer of this Decl to know it doesn't own it.
7454          // For our current ASTs this shouldn't be a problem, but will
7455          // need to be changed with DeclGroups.
7456          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7457               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7458            return PrevTagDecl;
7459
7460          // Diagnose attempts to redefine a tag.
7461          if (TUK == TUK_Definition) {
7462            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7463              // If we're defining a specialization and the previous definition
7464              // is from an implicit instantiation, don't emit an error
7465              // here; we'll catch this in the general case below.
7466              if (!isExplicitSpecialization ||
7467                  !isa<CXXRecordDecl>(Def) ||
7468                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7469                                               == TSK_ExplicitSpecialization) {
7470                Diag(NameLoc, diag::err_redefinition) << Name;
7471                Diag(Def->getLocation(), diag::note_previous_definition);
7472                // If this is a redefinition, recover by making this
7473                // struct be anonymous, which will make any later
7474                // references get the previous definition.
7475                Name = 0;
7476                Previous.clear();
7477                Invalid = true;
7478              }
7479            } else {
7480              // If the type is currently being defined, complain
7481              // about a nested redefinition.
7482              const TagType *Tag
7483                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7484              if (Tag->isBeingDefined()) {
7485                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7486                Diag(PrevTagDecl->getLocation(),
7487                     diag::note_previous_definition);
7488                Name = 0;
7489                Previous.clear();
7490                Invalid = true;
7491              }
7492            }
7493
7494            // Okay, this is definition of a previously declared or referenced
7495            // tag PrevDecl. We're going to create a new Decl for it.
7496          }
7497        }
7498        // If we get here we have (another) forward declaration or we
7499        // have a definition.  Just create a new decl.
7500
7501      } else {
7502        // If we get here, this is a definition of a new tag type in a nested
7503        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7504        // new decl/type.  We set PrevDecl to NULL so that the entities
7505        // have distinct types.
7506        Previous.clear();
7507      }
7508      // If we get here, we're going to create a new Decl. If PrevDecl
7509      // is non-NULL, it's a definition of the tag declared by
7510      // PrevDecl. If it's NULL, we have a new definition.
7511
7512
7513    // Otherwise, PrevDecl is not a tag, but was found with tag
7514    // lookup.  This is only actually possible in C++, where a few
7515    // things like templates still live in the tag namespace.
7516    } else {
7517      assert(getLangOptions().CPlusPlus);
7518
7519      // Use a better diagnostic if an elaborated-type-specifier
7520      // found the wrong kind of type on the first
7521      // (non-redeclaration) lookup.
7522      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7523          !Previous.isForRedeclaration()) {
7524        unsigned Kind = 0;
7525        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7526        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7527        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7528        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7529        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7530        Invalid = true;
7531
7532      // Otherwise, only diagnose if the declaration is in scope.
7533      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7534                                isExplicitSpecialization)) {
7535        // do nothing
7536
7537      // Diagnose implicit declarations introduced by elaborated types.
7538      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7539        unsigned Kind = 0;
7540        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7541        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7542        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7543        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7544        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7545        Invalid = true;
7546
7547      // Otherwise it's a declaration.  Call out a particularly common
7548      // case here.
7549      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7550        unsigned Kind = 0;
7551        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7552        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7553          << Name << Kind << TND->getUnderlyingType();
7554        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7555        Invalid = true;
7556
7557      // Otherwise, diagnose.
7558      } else {
7559        // The tag name clashes with something else in the target scope,
7560        // issue an error and recover by making this tag be anonymous.
7561        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7562        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7563        Name = 0;
7564        Invalid = true;
7565      }
7566
7567      // The existing declaration isn't relevant to us; we're in a
7568      // new scope, so clear out the previous declaration.
7569      Previous.clear();
7570    }
7571  }
7572
7573CreateNewDecl:
7574
7575  TagDecl *PrevDecl = 0;
7576  if (Previous.isSingleResult())
7577    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7578
7579  // If there is an identifier, use the location of the identifier as the
7580  // location of the decl, otherwise use the location of the struct/union
7581  // keyword.
7582  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7583
7584  // Otherwise, create a new declaration. If there is a previous
7585  // declaration of the same entity, the two will be linked via
7586  // PrevDecl.
7587  TagDecl *New;
7588
7589  bool IsForwardReference = false;
7590  if (Kind == TTK_Enum) {
7591    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7592    // enum X { A, B, C } D;    D should chain to X.
7593    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7594                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7595                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7596    // If this is an undefined enum, warn.
7597    if (TUK != TUK_Definition && !Invalid) {
7598      TagDecl *Def;
7599      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7600        // C++0x: 7.2p2: opaque-enum-declaration.
7601        // Conflicts are diagnosed above. Do nothing.
7602      }
7603      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7604        Diag(Loc, diag::ext_forward_ref_enum_def)
7605          << New;
7606        Diag(Def->getLocation(), diag::note_previous_definition);
7607      } else {
7608        unsigned DiagID = diag::ext_forward_ref_enum;
7609        if (getLangOptions().Microsoft)
7610          DiagID = diag::ext_ms_forward_ref_enum;
7611        else if (getLangOptions().CPlusPlus)
7612          DiagID = diag::err_forward_ref_enum;
7613        Diag(Loc, DiagID);
7614
7615        // If this is a forward-declared reference to an enumeration, make a
7616        // note of it; we won't actually be introducing the declaration into
7617        // the declaration context.
7618        if (TUK == TUK_Reference)
7619          IsForwardReference = true;
7620      }
7621    }
7622
7623    if (EnumUnderlying) {
7624      EnumDecl *ED = cast<EnumDecl>(New);
7625      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7626        ED->setIntegerTypeSourceInfo(TI);
7627      else
7628        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7629      ED->setPromotionType(ED->getIntegerType());
7630    }
7631
7632  } else {
7633    // struct/union/class
7634
7635    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7636    // struct X { int A; } D;    D should chain to X.
7637    if (getLangOptions().CPlusPlus) {
7638      // FIXME: Look for a way to use RecordDecl for simple structs.
7639      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7640                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7641
7642      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7643        StdBadAlloc = cast<CXXRecordDecl>(New);
7644    } else
7645      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7646                               cast_or_null<RecordDecl>(PrevDecl));
7647  }
7648
7649  // Maybe add qualifier info.
7650  if (SS.isNotEmpty()) {
7651    if (SS.isSet()) {
7652      New->setQualifierInfo(SS.getWithLocInContext(Context));
7653      if (TemplateParameterLists.size() > 0) {
7654        New->setTemplateParameterListsInfo(Context,
7655                                           TemplateParameterLists.size(),
7656                    (TemplateParameterList**) TemplateParameterLists.release());
7657      }
7658    }
7659    else
7660      Invalid = true;
7661  }
7662
7663  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7664    // Add alignment attributes if necessary; these attributes are checked when
7665    // the ASTContext lays out the structure.
7666    //
7667    // It is important for implementing the correct semantics that this
7668    // happen here (in act on tag decl). The #pragma pack stack is
7669    // maintained as a result of parser callbacks which can occur at
7670    // many points during the parsing of a struct declaration (because
7671    // the #pragma tokens are effectively skipped over during the
7672    // parsing of the struct).
7673    AddAlignmentAttributesForRecord(RD);
7674
7675    AddMsStructLayoutForRecord(RD);
7676  }
7677
7678  // If this is a specialization of a member class (of a class template),
7679  // check the specialization.
7680  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7681    Invalid = true;
7682
7683  if (Invalid)
7684    New->setInvalidDecl();
7685
7686  if (Attr)
7687    ProcessDeclAttributeList(S, New, Attr);
7688
7689  // If we're declaring or defining a tag in function prototype scope
7690  // in C, note that this type can only be used within the function.
7691  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7692    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7693
7694  // Set the lexical context. If the tag has a C++ scope specifier, the
7695  // lexical context will be different from the semantic context.
7696  New->setLexicalDeclContext(CurContext);
7697
7698  // Mark this as a friend decl if applicable.
7699  // In Microsoft mode, a friend declaration also acts as a forward
7700  // declaration so we always pass true to setObjectOfFriendDecl to make
7701  // the tag name visible.
7702  if (TUK == TUK_Friend)
7703    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7704                               getLangOptions().Microsoft);
7705
7706  // Set the access specifier.
7707  if (!Invalid && SearchDC->isRecord())
7708    SetMemberAccessSpecifier(New, PrevDecl, AS);
7709
7710  if (TUK == TUK_Definition)
7711    New->startDefinition();
7712
7713  // If this has an identifier, add it to the scope stack.
7714  if (TUK == TUK_Friend) {
7715    // We might be replacing an existing declaration in the lookup tables;
7716    // if so, borrow its access specifier.
7717    if (PrevDecl)
7718      New->setAccess(PrevDecl->getAccess());
7719
7720    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7721    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7722    if (Name) // can be null along some error paths
7723      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7724        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7725  } else if (Name) {
7726    S = getNonFieldDeclScope(S);
7727    PushOnScopeChains(New, S, !IsForwardReference);
7728    if (IsForwardReference)
7729      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7730
7731  } else {
7732    CurContext->addDecl(New);
7733  }
7734
7735  // If this is the C FILE type, notify the AST context.
7736  if (IdentifierInfo *II = New->getIdentifier())
7737    if (!New->isInvalidDecl() &&
7738        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7739        II->isStr("FILE"))
7740      Context.setFILEDecl(New);
7741
7742  OwnedDecl = true;
7743  return New;
7744}
7745
7746void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7747  AdjustDeclIfTemplate(TagD);
7748  TagDecl *Tag = cast<TagDecl>(TagD);
7749
7750  // Enter the tag context.
7751  PushDeclContext(S, Tag);
7752}
7753
7754void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7755  assert(isa<ObjCContainerDecl>(IDecl) &&
7756         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7757  DeclContext *OCD = cast<DeclContext>(IDecl);
7758  assert(getContainingDC(OCD) == CurContext &&
7759      "The next DeclContext should be lexically contained in the current one.");
7760  CurContext = OCD;
7761}
7762
7763void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7764                                           SourceLocation FinalLoc,
7765                                           SourceLocation LBraceLoc) {
7766  AdjustDeclIfTemplate(TagD);
7767  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7768
7769  FieldCollector->StartClass();
7770
7771  if (!Record->getIdentifier())
7772    return;
7773
7774  if (FinalLoc.isValid())
7775    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7776
7777  // C++ [class]p2:
7778  //   [...] The class-name is also inserted into the scope of the
7779  //   class itself; this is known as the injected-class-name. For
7780  //   purposes of access checking, the injected-class-name is treated
7781  //   as if it were a public member name.
7782  CXXRecordDecl *InjectedClassName
7783    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7784                            Record->getLocStart(), Record->getLocation(),
7785                            Record->getIdentifier(),
7786                            /*PrevDecl=*/0,
7787                            /*DelayTypeCreation=*/true);
7788  Context.getTypeDeclType(InjectedClassName, Record);
7789  InjectedClassName->setImplicit();
7790  InjectedClassName->setAccess(AS_public);
7791  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7792      InjectedClassName->setDescribedClassTemplate(Template);
7793  PushOnScopeChains(InjectedClassName, S);
7794  assert(InjectedClassName->isInjectedClassName() &&
7795         "Broken injected-class-name");
7796}
7797
7798void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7799                                    SourceLocation RBraceLoc) {
7800  AdjustDeclIfTemplate(TagD);
7801  TagDecl *Tag = cast<TagDecl>(TagD);
7802  Tag->setRBraceLoc(RBraceLoc);
7803
7804  if (isa<CXXRecordDecl>(Tag))
7805    FieldCollector->FinishClass();
7806
7807  // Exit this scope of this tag's definition.
7808  PopDeclContext();
7809
7810  // Notify the consumer that we've defined a tag.
7811  Consumer.HandleTagDeclDefinition(Tag);
7812}
7813
7814void Sema::ActOnObjCContainerFinishDefinition() {
7815  // Exit this scope of this interface definition.
7816  PopDeclContext();
7817}
7818
7819void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7820  AdjustDeclIfTemplate(TagD);
7821  TagDecl *Tag = cast<TagDecl>(TagD);
7822  Tag->setInvalidDecl();
7823
7824  // We're undoing ActOnTagStartDefinition here, not
7825  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7826  // the FieldCollector.
7827
7828  PopDeclContext();
7829}
7830
7831// Note that FieldName may be null for anonymous bitfields.
7832bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7833                          QualType FieldTy, const Expr *BitWidth,
7834                          bool *ZeroWidth) {
7835  // Default to true; that shouldn't confuse checks for emptiness
7836  if (ZeroWidth)
7837    *ZeroWidth = true;
7838
7839  // C99 6.7.2.1p4 - verify the field type.
7840  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7841  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7842    // Handle incomplete types with specific error.
7843    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7844      return true;
7845    if (FieldName)
7846      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7847        << FieldName << FieldTy << BitWidth->getSourceRange();
7848    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7849      << FieldTy << BitWidth->getSourceRange();
7850  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7851                                             UPPC_BitFieldWidth))
7852    return true;
7853
7854  // If the bit-width is type- or value-dependent, don't try to check
7855  // it now.
7856  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7857    return false;
7858
7859  llvm::APSInt Value;
7860  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7861    return true;
7862
7863  if (Value != 0 && ZeroWidth)
7864    *ZeroWidth = false;
7865
7866  // Zero-width bitfield is ok for anonymous field.
7867  if (Value == 0 && FieldName)
7868    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7869
7870  if (Value.isSigned() && Value.isNegative()) {
7871    if (FieldName)
7872      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7873               << FieldName << Value.toString(10);
7874    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7875      << Value.toString(10);
7876  }
7877
7878  if (!FieldTy->isDependentType()) {
7879    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7880    if (Value.getZExtValue() > TypeSize) {
7881      if (!getLangOptions().CPlusPlus) {
7882        if (FieldName)
7883          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7884            << FieldName << (unsigned)Value.getZExtValue()
7885            << (unsigned)TypeSize;
7886
7887        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7888          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7889      }
7890
7891      if (FieldName)
7892        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7893          << FieldName << (unsigned)Value.getZExtValue()
7894          << (unsigned)TypeSize;
7895      else
7896        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7897          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7898    }
7899  }
7900
7901  return false;
7902}
7903
7904/// ActOnField - Each field of a C struct/union is passed into this in order
7905/// to create a FieldDecl object for it.
7906Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7907                       Declarator &D, ExprTy *BitfieldWidth) {
7908  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7909                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7910                               /*HasInit=*/false, AS_public);
7911  return Res;
7912}
7913
7914/// HandleField - Analyze a field of a C struct or a C++ data member.
7915///
7916FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7917                             SourceLocation DeclStart,
7918                             Declarator &D, Expr *BitWidth, bool HasInit,
7919                             AccessSpecifier AS) {
7920  IdentifierInfo *II = D.getIdentifier();
7921  SourceLocation Loc = DeclStart;
7922  if (II) Loc = D.getIdentifierLoc();
7923
7924  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7925  QualType T = TInfo->getType();
7926  if (getLangOptions().CPlusPlus) {
7927    CheckExtraCXXDefaultArguments(D);
7928
7929    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7930                                        UPPC_DataMemberType)) {
7931      D.setInvalidType();
7932      T = Context.IntTy;
7933      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7934    }
7935  }
7936
7937  DiagnoseFunctionSpecifiers(D);
7938
7939  if (D.getDeclSpec().isThreadSpecified())
7940    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7941  if (D.getDeclSpec().isConstexprSpecified())
7942    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7943      << 2;
7944
7945  // Check to see if this name was declared as a member previously
7946  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7947  LookupName(Previous, S);
7948  assert((Previous.empty() || Previous.isOverloadedResult() ||
7949          Previous.isSingleResult())
7950    && "Lookup of member name should be either overloaded, single or null");
7951
7952  // If the name is overloaded then get any declaration else get the single result
7953  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7954    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7955
7956  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7957    // Maybe we will complain about the shadowed template parameter.
7958    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7959    // Just pretend that we didn't see the previous declaration.
7960    PrevDecl = 0;
7961  }
7962
7963  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7964    PrevDecl = 0;
7965
7966  bool Mutable
7967    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7968  SourceLocation TSSL = D.getSourceRange().getBegin();
7969  FieldDecl *NewFD
7970    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7971                     TSSL, AS, PrevDecl, &D);
7972
7973  if (NewFD->isInvalidDecl())
7974    Record->setInvalidDecl();
7975
7976  if (NewFD->isInvalidDecl() && PrevDecl) {
7977    // Don't introduce NewFD into scope; there's already something
7978    // with the same name in the same scope.
7979  } else if (II) {
7980    PushOnScopeChains(NewFD, S);
7981  } else
7982    Record->addDecl(NewFD);
7983
7984  return NewFD;
7985}
7986
7987/// \brief Build a new FieldDecl and check its well-formedness.
7988///
7989/// This routine builds a new FieldDecl given the fields name, type,
7990/// record, etc. \p PrevDecl should refer to any previous declaration
7991/// with the same name and in the same scope as the field to be
7992/// created.
7993///
7994/// \returns a new FieldDecl.
7995///
7996/// \todo The Declarator argument is a hack. It will be removed once
7997FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7998                                TypeSourceInfo *TInfo,
7999                                RecordDecl *Record, SourceLocation Loc,
8000                                bool Mutable, Expr *BitWidth, bool HasInit,
8001                                SourceLocation TSSL,
8002                                AccessSpecifier AS, NamedDecl *PrevDecl,
8003                                Declarator *D) {
8004  IdentifierInfo *II = Name.getAsIdentifierInfo();
8005  bool InvalidDecl = false;
8006  if (D) InvalidDecl = D->isInvalidType();
8007
8008  // If we receive a broken type, recover by assuming 'int' and
8009  // marking this declaration as invalid.
8010  if (T.isNull()) {
8011    InvalidDecl = true;
8012    T = Context.IntTy;
8013  }
8014
8015  QualType EltTy = Context.getBaseElementType(T);
8016  if (!EltTy->isDependentType() &&
8017      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8018    // Fields of incomplete type force their record to be invalid.
8019    Record->setInvalidDecl();
8020    InvalidDecl = true;
8021  }
8022
8023  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8024  // than a variably modified type.
8025  if (!InvalidDecl && T->isVariablyModifiedType()) {
8026    bool SizeIsNegative;
8027    llvm::APSInt Oversized;
8028    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8029                                                           SizeIsNegative,
8030                                                           Oversized);
8031    if (!FixedTy.isNull()) {
8032      Diag(Loc, diag::warn_illegal_constant_array_size);
8033      T = FixedTy;
8034    } else {
8035      if (SizeIsNegative)
8036        Diag(Loc, diag::err_typecheck_negative_array_size);
8037      else if (Oversized.getBoolValue())
8038        Diag(Loc, diag::err_array_too_large)
8039          << Oversized.toString(10);
8040      else
8041        Diag(Loc, diag::err_typecheck_field_variable_size);
8042      InvalidDecl = true;
8043    }
8044  }
8045
8046  // Fields can not have abstract class types
8047  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8048                                             diag::err_abstract_type_in_decl,
8049                                             AbstractFieldType))
8050    InvalidDecl = true;
8051
8052  bool ZeroWidth = false;
8053  // If this is declared as a bit-field, check the bit-field.
8054  if (!InvalidDecl && BitWidth &&
8055      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8056    InvalidDecl = true;
8057    BitWidth = 0;
8058    ZeroWidth = false;
8059  }
8060
8061  // Check that 'mutable' is consistent with the type of the declaration.
8062  if (!InvalidDecl && Mutable) {
8063    unsigned DiagID = 0;
8064    if (T->isReferenceType())
8065      DiagID = diag::err_mutable_reference;
8066    else if (T.isConstQualified())
8067      DiagID = diag::err_mutable_const;
8068
8069    if (DiagID) {
8070      SourceLocation ErrLoc = Loc;
8071      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8072        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8073      Diag(ErrLoc, DiagID);
8074      Mutable = false;
8075      InvalidDecl = true;
8076    }
8077  }
8078
8079  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8080                                       BitWidth, Mutable, HasInit);
8081  if (InvalidDecl)
8082    NewFD->setInvalidDecl();
8083
8084  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8085    Diag(Loc, diag::err_duplicate_member) << II;
8086    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8087    NewFD->setInvalidDecl();
8088  }
8089
8090  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8091    if (Record->isUnion()) {
8092      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8093        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8094        if (RDecl->getDefinition()) {
8095          // C++ [class.union]p1: An object of a class with a non-trivial
8096          // constructor, a non-trivial copy constructor, a non-trivial
8097          // destructor, or a non-trivial copy assignment operator
8098          // cannot be a member of a union, nor can an array of such
8099          // objects.
8100          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8101            NewFD->setInvalidDecl();
8102        }
8103      }
8104
8105      // C++ [class.union]p1: If a union contains a member of reference type,
8106      // the program is ill-formed.
8107      if (EltTy->isReferenceType()) {
8108        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8109          << NewFD->getDeclName() << EltTy;
8110        NewFD->setInvalidDecl();
8111      }
8112    }
8113  }
8114
8115  // FIXME: We need to pass in the attributes given an AST
8116  // representation, not a parser representation.
8117  if (D)
8118    // FIXME: What to pass instead of TUScope?
8119    ProcessDeclAttributes(TUScope, NewFD, *D);
8120
8121  // In auto-retain/release, infer strong retension for fields of
8122  // retainable type.
8123  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8124    NewFD->setInvalidDecl();
8125
8126  if (T.isObjCGCWeak())
8127    Diag(Loc, diag::warn_attribute_weak_on_field);
8128
8129  NewFD->setAccess(AS);
8130  return NewFD;
8131}
8132
8133bool Sema::CheckNontrivialField(FieldDecl *FD) {
8134  assert(FD);
8135  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8136
8137  if (FD->isInvalidDecl())
8138    return true;
8139
8140  QualType EltTy = Context.getBaseElementType(FD->getType());
8141  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8142    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8143    if (RDecl->getDefinition()) {
8144      // We check for copy constructors before constructors
8145      // because otherwise we'll never get complaints about
8146      // copy constructors.
8147
8148      CXXSpecialMember member = CXXInvalid;
8149      if (!RDecl->hasTrivialCopyConstructor())
8150        member = CXXCopyConstructor;
8151      else if (!RDecl->hasTrivialDefaultConstructor())
8152        member = CXXDefaultConstructor;
8153      else if (!RDecl->hasTrivialCopyAssignment())
8154        member = CXXCopyAssignment;
8155      else if (!RDecl->hasTrivialDestructor())
8156        member = CXXDestructor;
8157
8158      if (member != CXXInvalid) {
8159        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8160          // Objective-C++ ARC: it is an error to have a non-trivial field of
8161          // a union. However, system headers in Objective-C programs
8162          // occasionally have Objective-C lifetime objects within unions,
8163          // and rather than cause the program to fail, we make those
8164          // members unavailable.
8165          SourceLocation Loc = FD->getLocation();
8166          if (getSourceManager().isInSystemHeader(Loc)) {
8167            if (!FD->hasAttr<UnavailableAttr>())
8168              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8169                                  "this system field has retaining ownership"));
8170            return false;
8171          }
8172        }
8173
8174        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8175              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8176        DiagnoseNontrivial(RT, member);
8177        return true;
8178      }
8179    }
8180  }
8181
8182  return false;
8183}
8184
8185/// DiagnoseNontrivial - Given that a class has a non-trivial
8186/// special member, figure out why.
8187void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8188  QualType QT(T, 0U);
8189  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8190
8191  // Check whether the member was user-declared.
8192  switch (member) {
8193  case CXXInvalid:
8194    break;
8195
8196  case CXXDefaultConstructor:
8197    if (RD->hasUserDeclaredConstructor()) {
8198      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8199      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8200        const FunctionDecl *body = 0;
8201        ci->hasBody(body);
8202        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8203          SourceLocation CtorLoc = ci->getLocation();
8204          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8205          return;
8206        }
8207      }
8208
8209      assert(0 && "found no user-declared constructors");
8210      return;
8211    }
8212    break;
8213
8214  case CXXCopyConstructor:
8215    if (RD->hasUserDeclaredCopyConstructor()) {
8216      SourceLocation CtorLoc =
8217        RD->getCopyConstructor(0)->getLocation();
8218      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8219      return;
8220    }
8221    break;
8222
8223  case CXXMoveConstructor:
8224    if (RD->hasUserDeclaredMoveConstructor()) {
8225      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8226      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8227      return;
8228    }
8229    break;
8230
8231  case CXXCopyAssignment:
8232    if (RD->hasUserDeclaredCopyAssignment()) {
8233      // FIXME: this should use the location of the copy
8234      // assignment, not the type.
8235      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8236      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8237      return;
8238    }
8239    break;
8240
8241  case CXXMoveAssignment:
8242    if (RD->hasUserDeclaredMoveAssignment()) {
8243      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8244      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8245      return;
8246    }
8247    break;
8248
8249  case CXXDestructor:
8250    if (RD->hasUserDeclaredDestructor()) {
8251      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8252      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8253      return;
8254    }
8255    break;
8256  }
8257
8258  typedef CXXRecordDecl::base_class_iterator base_iter;
8259
8260  // Virtual bases and members inhibit trivial copying/construction,
8261  // but not trivial destruction.
8262  if (member != CXXDestructor) {
8263    // Check for virtual bases.  vbases includes indirect virtual bases,
8264    // so we just iterate through the direct bases.
8265    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8266      if (bi->isVirtual()) {
8267        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8268        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8269        return;
8270      }
8271
8272    // Check for virtual methods.
8273    typedef CXXRecordDecl::method_iterator meth_iter;
8274    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8275         ++mi) {
8276      if (mi->isVirtual()) {
8277        SourceLocation MLoc = mi->getSourceRange().getBegin();
8278        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8279        return;
8280      }
8281    }
8282  }
8283
8284  bool (CXXRecordDecl::*hasTrivial)() const;
8285  switch (member) {
8286  case CXXDefaultConstructor:
8287    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8288  case CXXCopyConstructor:
8289    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8290  case CXXCopyAssignment:
8291    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8292  case CXXDestructor:
8293    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8294  default:
8295    assert(0 && "unexpected special member"); return;
8296  }
8297
8298  // Check for nontrivial bases (and recurse).
8299  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8300    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8301    assert(BaseRT && "Don't know how to handle dependent bases");
8302    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8303    if (!(BaseRecTy->*hasTrivial)()) {
8304      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8305      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8306      DiagnoseNontrivial(BaseRT, member);
8307      return;
8308    }
8309  }
8310
8311  // Check for nontrivial members (and recurse).
8312  typedef RecordDecl::field_iterator field_iter;
8313  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8314       ++fi) {
8315    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8316    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8317      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8318
8319      if (!(EltRD->*hasTrivial)()) {
8320        SourceLocation FLoc = (*fi)->getLocation();
8321        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8322        DiagnoseNontrivial(EltRT, member);
8323        return;
8324      }
8325    }
8326
8327    if (EltTy->isObjCLifetimeType()) {
8328      switch (EltTy.getObjCLifetime()) {
8329      case Qualifiers::OCL_None:
8330      case Qualifiers::OCL_ExplicitNone:
8331        break;
8332
8333      case Qualifiers::OCL_Autoreleasing:
8334      case Qualifiers::OCL_Weak:
8335      case Qualifiers::OCL_Strong:
8336        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8337          << QT << EltTy.getObjCLifetime();
8338        return;
8339      }
8340    }
8341  }
8342
8343  assert(0 && "found no explanation for non-trivial member");
8344}
8345
8346/// TranslateIvarVisibility - Translate visibility from a token ID to an
8347///  AST enum value.
8348static ObjCIvarDecl::AccessControl
8349TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8350  switch (ivarVisibility) {
8351  default: assert(0 && "Unknown visitibility kind");
8352  case tok::objc_private: return ObjCIvarDecl::Private;
8353  case tok::objc_public: return ObjCIvarDecl::Public;
8354  case tok::objc_protected: return ObjCIvarDecl::Protected;
8355  case tok::objc_package: return ObjCIvarDecl::Package;
8356  }
8357}
8358
8359/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8360/// in order to create an IvarDecl object for it.
8361Decl *Sema::ActOnIvar(Scope *S,
8362                                SourceLocation DeclStart,
8363                                Declarator &D, ExprTy *BitfieldWidth,
8364                                tok::ObjCKeywordKind Visibility) {
8365
8366  IdentifierInfo *II = D.getIdentifier();
8367  Expr *BitWidth = (Expr*)BitfieldWidth;
8368  SourceLocation Loc = DeclStart;
8369  if (II) Loc = D.getIdentifierLoc();
8370
8371  // FIXME: Unnamed fields can be handled in various different ways, for
8372  // example, unnamed unions inject all members into the struct namespace!
8373
8374  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8375  QualType T = TInfo->getType();
8376
8377  if (BitWidth) {
8378    // 6.7.2.1p3, 6.7.2.1p4
8379    if (VerifyBitField(Loc, II, T, BitWidth)) {
8380      D.setInvalidType();
8381      BitWidth = 0;
8382    }
8383  } else {
8384    // Not a bitfield.
8385
8386    // validate II.
8387
8388  }
8389  if (T->isReferenceType()) {
8390    Diag(Loc, diag::err_ivar_reference_type);
8391    D.setInvalidType();
8392  }
8393  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8394  // than a variably modified type.
8395  else if (T->isVariablyModifiedType()) {
8396    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8397    D.setInvalidType();
8398  }
8399
8400  // Get the visibility (access control) for this ivar.
8401  ObjCIvarDecl::AccessControl ac =
8402    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8403                                        : ObjCIvarDecl::None;
8404  // Must set ivar's DeclContext to its enclosing interface.
8405  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8406  ObjCContainerDecl *EnclosingContext;
8407  if (ObjCImplementationDecl *IMPDecl =
8408      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8409    if (!LangOpts.ObjCNonFragileABI2) {
8410    // Case of ivar declared in an implementation. Context is that of its class.
8411      EnclosingContext = IMPDecl->getClassInterface();
8412      assert(EnclosingContext && "Implementation has no class interface!");
8413    }
8414    else
8415      EnclosingContext = EnclosingDecl;
8416  } else {
8417    if (ObjCCategoryDecl *CDecl =
8418        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8419      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8420        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8421        return 0;
8422      }
8423    }
8424    EnclosingContext = EnclosingDecl;
8425  }
8426
8427  // Construct the decl.
8428  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8429                                             DeclStart, Loc, II, T,
8430                                             TInfo, ac, (Expr *)BitfieldWidth);
8431
8432  if (II) {
8433    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8434                                           ForRedeclaration);
8435    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8436        && !isa<TagDecl>(PrevDecl)) {
8437      Diag(Loc, diag::err_duplicate_member) << II;
8438      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8439      NewID->setInvalidDecl();
8440    }
8441  }
8442
8443  // Process attributes attached to the ivar.
8444  ProcessDeclAttributes(S, NewID, D);
8445
8446  if (D.isInvalidType())
8447    NewID->setInvalidDecl();
8448
8449  // In ARC, infer 'retaining' for ivars of retainable type.
8450  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8451    NewID->setInvalidDecl();
8452
8453  if (II) {
8454    // FIXME: When interfaces are DeclContexts, we'll need to add
8455    // these to the interface.
8456    S->AddDecl(NewID);
8457    IdResolver.AddDecl(NewID);
8458  }
8459
8460  return NewID;
8461}
8462
8463/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8464/// class and class extensions. For every class @interface and class
8465/// extension @interface, if the last ivar is a bitfield of any type,
8466/// then add an implicit `char :0` ivar to the end of that interface.
8467void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8468                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8469  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8470    return;
8471
8472  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8473  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8474
8475  if (!Ivar->isBitField())
8476    return;
8477  uint64_t BitFieldSize =
8478    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8479  if (BitFieldSize == 0)
8480    return;
8481  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8482  if (!ID) {
8483    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8484      if (!CD->IsClassExtension())
8485        return;
8486    }
8487    // No need to add this to end of @implementation.
8488    else
8489      return;
8490  }
8491  // All conditions are met. Add a new bitfield to the tail end of ivars.
8492  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8493  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8494
8495  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8496                              DeclLoc, DeclLoc, 0,
8497                              Context.CharTy,
8498                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8499                                                               DeclLoc),
8500                              ObjCIvarDecl::Private, BW,
8501                              true);
8502  AllIvarDecls.push_back(Ivar);
8503}
8504
8505void Sema::ActOnFields(Scope* S,
8506                       SourceLocation RecLoc, Decl *EnclosingDecl,
8507                       Decl **Fields, unsigned NumFields,
8508                       SourceLocation LBrac, SourceLocation RBrac,
8509                       AttributeList *Attr) {
8510  assert(EnclosingDecl && "missing record or interface decl");
8511
8512  // If the decl this is being inserted into is invalid, then it may be a
8513  // redeclaration or some other bogus case.  Don't try to add fields to it.
8514  if (EnclosingDecl->isInvalidDecl()) {
8515    // FIXME: Deallocate fields?
8516    return;
8517  }
8518
8519
8520  // Verify that all the fields are okay.
8521  unsigned NumNamedMembers = 0;
8522  SmallVector<FieldDecl*, 32> RecFields;
8523
8524  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8525  bool ARCErrReported = false;
8526  for (unsigned i = 0; i != NumFields; ++i) {
8527    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8528
8529    // Get the type for the field.
8530    const Type *FDTy = FD->getType().getTypePtr();
8531
8532    if (!FD->isAnonymousStructOrUnion()) {
8533      // Remember all fields written by the user.
8534      RecFields.push_back(FD);
8535    }
8536
8537    // If the field is already invalid for some reason, don't emit more
8538    // diagnostics about it.
8539    if (FD->isInvalidDecl()) {
8540      EnclosingDecl->setInvalidDecl();
8541      continue;
8542    }
8543
8544    // C99 6.7.2.1p2:
8545    //   A structure or union shall not contain a member with
8546    //   incomplete or function type (hence, a structure shall not
8547    //   contain an instance of itself, but may contain a pointer to
8548    //   an instance of itself), except that the last member of a
8549    //   structure with more than one named member may have incomplete
8550    //   array type; such a structure (and any union containing,
8551    //   possibly recursively, a member that is such a structure)
8552    //   shall not be a member of a structure or an element of an
8553    //   array.
8554    if (FDTy->isFunctionType()) {
8555      // Field declared as a function.
8556      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8557        << FD->getDeclName();
8558      FD->setInvalidDecl();
8559      EnclosingDecl->setInvalidDecl();
8560      continue;
8561    } else if (FDTy->isIncompleteArrayType() && Record &&
8562               ((i == NumFields - 1 && !Record->isUnion()) ||
8563                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8564                 (i == NumFields - 1 || Record->isUnion())))) {
8565      // Flexible array member.
8566      // Microsoft and g++ is more permissive regarding flexible array.
8567      // It will accept flexible array in union and also
8568      // as the sole element of a struct/class.
8569      if (getLangOptions().Microsoft) {
8570        if (Record->isUnion())
8571          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8572            << FD->getDeclName();
8573        else if (NumFields == 1)
8574          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8575            << FD->getDeclName() << Record->getTagKind();
8576      } else if (getLangOptions().CPlusPlus) {
8577        if (Record->isUnion())
8578          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8579            << FD->getDeclName();
8580        else if (NumFields == 1)
8581          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8582            << FD->getDeclName() << Record->getTagKind();
8583      } else if (NumNamedMembers < 1) {
8584        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8585          << FD->getDeclName();
8586        FD->setInvalidDecl();
8587        EnclosingDecl->setInvalidDecl();
8588        continue;
8589      }
8590      if (!FD->getType()->isDependentType() &&
8591          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8592        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8593          << FD->getDeclName() << FD->getType();
8594        FD->setInvalidDecl();
8595        EnclosingDecl->setInvalidDecl();
8596        continue;
8597      }
8598      // Okay, we have a legal flexible array member at the end of the struct.
8599      if (Record)
8600        Record->setHasFlexibleArrayMember(true);
8601    } else if (!FDTy->isDependentType() &&
8602               RequireCompleteType(FD->getLocation(), FD->getType(),
8603                                   diag::err_field_incomplete)) {
8604      // Incomplete type
8605      FD->setInvalidDecl();
8606      EnclosingDecl->setInvalidDecl();
8607      continue;
8608    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8609      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8610        // If this is a member of a union, then entire union becomes "flexible".
8611        if (Record && Record->isUnion()) {
8612          Record->setHasFlexibleArrayMember(true);
8613        } else {
8614          // If this is a struct/class and this is not the last element, reject
8615          // it.  Note that GCC supports variable sized arrays in the middle of
8616          // structures.
8617          if (i != NumFields-1)
8618            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8619              << FD->getDeclName() << FD->getType();
8620          else {
8621            // We support flexible arrays at the end of structs in
8622            // other structs as an extension.
8623            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8624              << FD->getDeclName();
8625            if (Record)
8626              Record->setHasFlexibleArrayMember(true);
8627          }
8628        }
8629      }
8630      if (Record && FDTTy->getDecl()->hasObjectMember())
8631        Record->setHasObjectMember(true);
8632    } else if (FDTy->isObjCObjectType()) {
8633      /// A field cannot be an Objective-c object
8634      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8635        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8636      QualType T = Context.getObjCObjectPointerType(FD->getType());
8637      FD->setType(T);
8638    }
8639    else if (!getLangOptions().CPlusPlus) {
8640      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8641        // It's an error in ARC if a field has lifetime.
8642        // We don't want to report this in a system header, though,
8643        // so we just make the field unavailable.
8644        // FIXME: that's really not sufficient; we need to make the type
8645        // itself invalid to, say, initialize or copy.
8646        QualType T = FD->getType();
8647        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8648        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8649          SourceLocation loc = FD->getLocation();
8650          if (getSourceManager().isInSystemHeader(loc)) {
8651            if (!FD->hasAttr<UnavailableAttr>()) {
8652              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8653                                "this system field has retaining ownership"));
8654            }
8655          } else {
8656            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8657          }
8658          ARCErrReported = true;
8659        }
8660      }
8661      else if (getLangOptions().ObjC1 &&
8662               getLangOptions().getGCMode() != LangOptions::NonGC &&
8663               Record && !Record->hasObjectMember()) {
8664        if (FD->getType()->isObjCObjectPointerType() ||
8665            FD->getType().isObjCGCStrong())
8666          Record->setHasObjectMember(true);
8667        else if (Context.getAsArrayType(FD->getType())) {
8668          QualType BaseType = Context.getBaseElementType(FD->getType());
8669          if (BaseType->isRecordType() &&
8670              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8671            Record->setHasObjectMember(true);
8672          else if (BaseType->isObjCObjectPointerType() ||
8673                   BaseType.isObjCGCStrong())
8674                 Record->setHasObjectMember(true);
8675        }
8676      }
8677    }
8678    // Keep track of the number of named members.
8679    if (FD->getIdentifier())
8680      ++NumNamedMembers;
8681  }
8682
8683  // Okay, we successfully defined 'Record'.
8684  if (Record) {
8685    bool Completed = false;
8686    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8687      if (!CXXRecord->isInvalidDecl()) {
8688        // Set access bits correctly on the directly-declared conversions.
8689        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8690        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8691             I != E; ++I)
8692          Convs->setAccess(I, (*I)->getAccess());
8693
8694        if (!CXXRecord->isDependentType()) {
8695          // Objective-C Automatic Reference Counting:
8696          //   If a class has a non-static data member of Objective-C pointer
8697          //   type (or array thereof), it is a non-POD type and its
8698          //   default constructor (if any), copy constructor, copy assignment
8699          //   operator, and destructor are non-trivial.
8700          //
8701          // This rule is also handled by CXXRecordDecl::completeDefinition().
8702          // However, here we check whether this particular class is only
8703          // non-POD because of the presence of an Objective-C pointer member.
8704          // If so, objects of this type cannot be shared between code compiled
8705          // with instant objects and code compiled with manual retain/release.
8706          if (getLangOptions().ObjCAutoRefCount &&
8707              CXXRecord->hasObjectMember() &&
8708              CXXRecord->getLinkage() == ExternalLinkage) {
8709            if (CXXRecord->isPOD()) {
8710              Diag(CXXRecord->getLocation(),
8711                   diag::warn_arc_non_pod_class_with_object_member)
8712               << CXXRecord;
8713            } else {
8714              // FIXME: Fix-Its would be nice here, but finding a good location
8715              // for them is going to be tricky.
8716              if (CXXRecord->hasTrivialCopyConstructor())
8717                Diag(CXXRecord->getLocation(),
8718                     diag::warn_arc_trivial_member_function_with_object_member)
8719                  << CXXRecord << 0;
8720              if (CXXRecord->hasTrivialCopyAssignment())
8721                Diag(CXXRecord->getLocation(),
8722                     diag::warn_arc_trivial_member_function_with_object_member)
8723                << CXXRecord << 1;
8724              if (CXXRecord->hasTrivialDestructor())
8725                Diag(CXXRecord->getLocation(),
8726                     diag::warn_arc_trivial_member_function_with_object_member)
8727                << CXXRecord << 2;
8728            }
8729          }
8730
8731          // Adjust user-defined destructor exception spec.
8732          if (getLangOptions().CPlusPlus0x &&
8733              CXXRecord->hasUserDeclaredDestructor())
8734            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8735
8736          // Add any implicitly-declared members to this class.
8737          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8738
8739          // If we have virtual base classes, we may end up finding multiple
8740          // final overriders for a given virtual function. Check for this
8741          // problem now.
8742          if (CXXRecord->getNumVBases()) {
8743            CXXFinalOverriderMap FinalOverriders;
8744            CXXRecord->getFinalOverriders(FinalOverriders);
8745
8746            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8747                                             MEnd = FinalOverriders.end();
8748                 M != MEnd; ++M) {
8749              for (OverridingMethods::iterator SO = M->second.begin(),
8750                                            SOEnd = M->second.end();
8751                   SO != SOEnd; ++SO) {
8752                assert(SO->second.size() > 0 &&
8753                       "Virtual function without overridding functions?");
8754                if (SO->second.size() == 1)
8755                  continue;
8756
8757                // C++ [class.virtual]p2:
8758                //   In a derived class, if a virtual member function of a base
8759                //   class subobject has more than one final overrider the
8760                //   program is ill-formed.
8761                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8762                  << (NamedDecl *)M->first << Record;
8763                Diag(M->first->getLocation(),
8764                     diag::note_overridden_virtual_function);
8765                for (OverridingMethods::overriding_iterator
8766                          OM = SO->second.begin(),
8767                       OMEnd = SO->second.end();
8768                     OM != OMEnd; ++OM)
8769                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8770                    << (NamedDecl *)M->first << OM->Method->getParent();
8771
8772                Record->setInvalidDecl();
8773              }
8774            }
8775            CXXRecord->completeDefinition(&FinalOverriders);
8776            Completed = true;
8777          }
8778        }
8779      }
8780    }
8781
8782    if (!Completed)
8783      Record->completeDefinition();
8784
8785    // Now that the record is complete, do any delayed exception spec checks
8786    // we were missing.
8787    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8788      const CXXDestructorDecl *Dtor =
8789              DelayedDestructorExceptionSpecChecks.back().first;
8790      if (Dtor->getParent() != Record)
8791        break;
8792
8793      assert(!Dtor->getParent()->isDependentType() &&
8794          "Should not ever add destructors of templates into the list.");
8795      CheckOverridingFunctionExceptionSpec(Dtor,
8796          DelayedDestructorExceptionSpecChecks.back().second);
8797      DelayedDestructorExceptionSpecChecks.pop_back();
8798    }
8799
8800  } else {
8801    ObjCIvarDecl **ClsFields =
8802      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8803    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8804      ID->setLocEnd(RBrac);
8805      // Add ivar's to class's DeclContext.
8806      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8807        ClsFields[i]->setLexicalDeclContext(ID);
8808        ID->addDecl(ClsFields[i]);
8809      }
8810      // Must enforce the rule that ivars in the base classes may not be
8811      // duplicates.
8812      if (ID->getSuperClass())
8813        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8814    } else if (ObjCImplementationDecl *IMPDecl =
8815                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8816      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8817      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8818        // Ivar declared in @implementation never belongs to the implementation.
8819        // Only it is in implementation's lexical context.
8820        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8821      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8822    } else if (ObjCCategoryDecl *CDecl =
8823                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8824      // case of ivars in class extension; all other cases have been
8825      // reported as errors elsewhere.
8826      // FIXME. Class extension does not have a LocEnd field.
8827      // CDecl->setLocEnd(RBrac);
8828      // Add ivar's to class extension's DeclContext.
8829      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8830        ClsFields[i]->setLexicalDeclContext(CDecl);
8831        CDecl->addDecl(ClsFields[i]);
8832      }
8833    }
8834  }
8835
8836  if (Attr)
8837    ProcessDeclAttributeList(S, Record, Attr);
8838
8839  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8840  // set the visibility of this record.
8841  if (Record && !Record->getDeclContext()->isRecord())
8842    AddPushedVisibilityAttribute(Record);
8843}
8844
8845/// \brief Determine whether the given integral value is representable within
8846/// the given type T.
8847static bool isRepresentableIntegerValue(ASTContext &Context,
8848                                        llvm::APSInt &Value,
8849                                        QualType T) {
8850  assert(T->isIntegralType(Context) && "Integral type required!");
8851  unsigned BitWidth = Context.getIntWidth(T);
8852
8853  if (Value.isUnsigned() || Value.isNonNegative()) {
8854    if (T->isSignedIntegerOrEnumerationType())
8855      --BitWidth;
8856    return Value.getActiveBits() <= BitWidth;
8857  }
8858  return Value.getMinSignedBits() <= BitWidth;
8859}
8860
8861// \brief Given an integral type, return the next larger integral type
8862// (or a NULL type of no such type exists).
8863static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8864  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8865  // enum checking below.
8866  assert(T->isIntegralType(Context) && "Integral type required!");
8867  const unsigned NumTypes = 4;
8868  QualType SignedIntegralTypes[NumTypes] = {
8869    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8870  };
8871  QualType UnsignedIntegralTypes[NumTypes] = {
8872    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8873    Context.UnsignedLongLongTy
8874  };
8875
8876  unsigned BitWidth = Context.getTypeSize(T);
8877  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8878                                                        : UnsignedIntegralTypes;
8879  for (unsigned I = 0; I != NumTypes; ++I)
8880    if (Context.getTypeSize(Types[I]) > BitWidth)
8881      return Types[I];
8882
8883  return QualType();
8884}
8885
8886EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8887                                          EnumConstantDecl *LastEnumConst,
8888                                          SourceLocation IdLoc,
8889                                          IdentifierInfo *Id,
8890                                          Expr *Val) {
8891  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
8892  llvm::APSInt EnumVal(IntWidth);
8893  QualType EltTy;
8894
8895  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8896    Val = 0;
8897
8898  if (Val) {
8899    if (Enum->isDependentType() || Val->isTypeDependent())
8900      EltTy = Context.DependentTy;
8901    else {
8902      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8903      SourceLocation ExpLoc;
8904      if (!Val->isValueDependent() &&
8905          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8906        Val = 0;
8907      } else {
8908        if (!getLangOptions().CPlusPlus) {
8909          // C99 6.7.2.2p2:
8910          //   The expression that defines the value of an enumeration constant
8911          //   shall be an integer constant expression that has a value
8912          //   representable as an int.
8913
8914          // Complain if the value is not representable in an int.
8915          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8916            Diag(IdLoc, diag::ext_enum_value_not_int)
8917              << EnumVal.toString(10) << Val->getSourceRange()
8918              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8919          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8920            // Force the type of the expression to 'int'.
8921            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8922          }
8923        }
8924
8925        if (Enum->isFixed()) {
8926          EltTy = Enum->getIntegerType();
8927
8928          // C++0x [dcl.enum]p5:
8929          //   ... if the initializing value of an enumerator cannot be
8930          //   represented by the underlying type, the program is ill-formed.
8931          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8932            if (getLangOptions().Microsoft) {
8933              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8934              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8935            } else
8936              Diag(IdLoc, diag::err_enumerator_too_large)
8937                << EltTy;
8938          } else
8939            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8940        }
8941        else {
8942          // C++0x [dcl.enum]p5:
8943          //   If the underlying type is not fixed, the type of each enumerator
8944          //   is the type of its initializing value:
8945          //     - If an initializer is specified for an enumerator, the
8946          //       initializing value has the same type as the expression.
8947          EltTy = Val->getType();
8948        }
8949      }
8950    }
8951  }
8952
8953  if (!Val) {
8954    if (Enum->isDependentType())
8955      EltTy = Context.DependentTy;
8956    else if (!LastEnumConst) {
8957      // C++0x [dcl.enum]p5:
8958      //   If the underlying type is not fixed, the type of each enumerator
8959      //   is the type of its initializing value:
8960      //     - If no initializer is specified for the first enumerator, the
8961      //       initializing value has an unspecified integral type.
8962      //
8963      // GCC uses 'int' for its unspecified integral type, as does
8964      // C99 6.7.2.2p3.
8965      if (Enum->isFixed()) {
8966        EltTy = Enum->getIntegerType();
8967      }
8968      else {
8969        EltTy = Context.IntTy;
8970      }
8971    } else {
8972      // Assign the last value + 1.
8973      EnumVal = LastEnumConst->getInitVal();
8974      ++EnumVal;
8975      EltTy = LastEnumConst->getType();
8976
8977      // Check for overflow on increment.
8978      if (EnumVal < LastEnumConst->getInitVal()) {
8979        // C++0x [dcl.enum]p5:
8980        //   If the underlying type is not fixed, the type of each enumerator
8981        //   is the type of its initializing value:
8982        //
8983        //     - Otherwise the type of the initializing value is the same as
8984        //       the type of the initializing value of the preceding enumerator
8985        //       unless the incremented value is not representable in that type,
8986        //       in which case the type is an unspecified integral type
8987        //       sufficient to contain the incremented value. If no such type
8988        //       exists, the program is ill-formed.
8989        QualType T = getNextLargerIntegralType(Context, EltTy);
8990        if (T.isNull() || Enum->isFixed()) {
8991          // There is no integral type larger enough to represent this
8992          // value. Complain, then allow the value to wrap around.
8993          EnumVal = LastEnumConst->getInitVal();
8994          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8995          ++EnumVal;
8996          if (Enum->isFixed())
8997            // When the underlying type is fixed, this is ill-formed.
8998            Diag(IdLoc, diag::err_enumerator_wrapped)
8999              << EnumVal.toString(10)
9000              << EltTy;
9001          else
9002            Diag(IdLoc, diag::warn_enumerator_too_large)
9003              << EnumVal.toString(10);
9004        } else {
9005          EltTy = T;
9006        }
9007
9008        // Retrieve the last enumerator's value, extent that type to the
9009        // type that is supposed to be large enough to represent the incremented
9010        // value, then increment.
9011        EnumVal = LastEnumConst->getInitVal();
9012        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9013        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9014        ++EnumVal;
9015
9016        // If we're not in C++, diagnose the overflow of enumerator values,
9017        // which in C99 means that the enumerator value is not representable in
9018        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9019        // permits enumerator values that are representable in some larger
9020        // integral type.
9021        if (!getLangOptions().CPlusPlus && !T.isNull())
9022          Diag(IdLoc, diag::warn_enum_value_overflow);
9023      } else if (!getLangOptions().CPlusPlus &&
9024                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9025        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9026        Diag(IdLoc, diag::ext_enum_value_not_int)
9027          << EnumVal.toString(10) << 1;
9028      }
9029    }
9030  }
9031
9032  if (!EltTy->isDependentType()) {
9033    // Make the enumerator value match the signedness and size of the
9034    // enumerator's type.
9035    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9036    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9037  }
9038
9039  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9040                                  Val, EnumVal);
9041}
9042
9043
9044Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9045                              SourceLocation IdLoc, IdentifierInfo *Id,
9046                              AttributeList *Attr,
9047                              SourceLocation EqualLoc, ExprTy *val) {
9048  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9049  EnumConstantDecl *LastEnumConst =
9050    cast_or_null<EnumConstantDecl>(lastEnumConst);
9051  Expr *Val = static_cast<Expr*>(val);
9052
9053  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9054  // we find one that is.
9055  S = getNonFieldDeclScope(S);
9056
9057  // Verify that there isn't already something declared with this name in this
9058  // scope.
9059  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9060                                         ForRedeclaration);
9061  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9062    // Maybe we will complain about the shadowed template parameter.
9063    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9064    // Just pretend that we didn't see the previous declaration.
9065    PrevDecl = 0;
9066  }
9067
9068  if (PrevDecl) {
9069    // When in C++, we may get a TagDecl with the same name; in this case the
9070    // enum constant will 'hide' the tag.
9071    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9072           "Received TagDecl when not in C++!");
9073    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9074      if (isa<EnumConstantDecl>(PrevDecl))
9075        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9076      else
9077        Diag(IdLoc, diag::err_redefinition) << Id;
9078      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9079      return 0;
9080    }
9081  }
9082
9083  // C++ [class.mem]p13:
9084  //   If T is the name of a class, then each of the following shall have a
9085  //   name different from T:
9086  //     - every enumerator of every member of class T that is an enumerated
9087  //       type
9088  if (CXXRecordDecl *Record
9089                      = dyn_cast<CXXRecordDecl>(
9090                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9091    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9092      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9093
9094  EnumConstantDecl *New =
9095    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9096
9097  if (New) {
9098    // Process attributes.
9099    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9100
9101    // Register this decl in the current scope stack.
9102    New->setAccess(TheEnumDecl->getAccess());
9103    PushOnScopeChains(New, S);
9104  }
9105
9106  return New;
9107}
9108
9109void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9110                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9111                         Decl **Elements, unsigned NumElements,
9112                         Scope *S, AttributeList *Attr) {
9113  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9114  QualType EnumType = Context.getTypeDeclType(Enum);
9115
9116  if (Attr)
9117    ProcessDeclAttributeList(S, Enum, Attr);
9118
9119  if (Enum->isDependentType()) {
9120    for (unsigned i = 0; i != NumElements; ++i) {
9121      EnumConstantDecl *ECD =
9122        cast_or_null<EnumConstantDecl>(Elements[i]);
9123      if (!ECD) continue;
9124
9125      ECD->setType(EnumType);
9126    }
9127
9128    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9129    return;
9130  }
9131
9132  // TODO: If the result value doesn't fit in an int, it must be a long or long
9133  // long value.  ISO C does not support this, but GCC does as an extension,
9134  // emit a warning.
9135  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9136  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9137  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9138
9139  // Verify that all the values are okay, compute the size of the values, and
9140  // reverse the list.
9141  unsigned NumNegativeBits = 0;
9142  unsigned NumPositiveBits = 0;
9143
9144  // Keep track of whether all elements have type int.
9145  bool AllElementsInt = true;
9146
9147  for (unsigned i = 0; i != NumElements; ++i) {
9148    EnumConstantDecl *ECD =
9149      cast_or_null<EnumConstantDecl>(Elements[i]);
9150    if (!ECD) continue;  // Already issued a diagnostic.
9151
9152    const llvm::APSInt &InitVal = ECD->getInitVal();
9153
9154    // Keep track of the size of positive and negative values.
9155    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9156      NumPositiveBits = std::max(NumPositiveBits,
9157                                 (unsigned)InitVal.getActiveBits());
9158    else
9159      NumNegativeBits = std::max(NumNegativeBits,
9160                                 (unsigned)InitVal.getMinSignedBits());
9161
9162    // Keep track of whether every enum element has type int (very commmon).
9163    if (AllElementsInt)
9164      AllElementsInt = ECD->getType() == Context.IntTy;
9165  }
9166
9167  // Figure out the type that should be used for this enum.
9168  QualType BestType;
9169  unsigned BestWidth;
9170
9171  // C++0x N3000 [conv.prom]p3:
9172  //   An rvalue of an unscoped enumeration type whose underlying
9173  //   type is not fixed can be converted to an rvalue of the first
9174  //   of the following types that can represent all the values of
9175  //   the enumeration: int, unsigned int, long int, unsigned long
9176  //   int, long long int, or unsigned long long int.
9177  // C99 6.4.4.3p2:
9178  //   An identifier declared as an enumeration constant has type int.
9179  // The C99 rule is modified by a gcc extension
9180  QualType BestPromotionType;
9181
9182  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9183  // -fshort-enums is the equivalent to specifying the packed attribute on all
9184  // enum definitions.
9185  if (LangOpts.ShortEnums)
9186    Packed = true;
9187
9188  if (Enum->isFixed()) {
9189    BestType = BestPromotionType = Enum->getIntegerType();
9190    // We don't need to set BestWidth, because BestType is going to be the type
9191    // of the enumerators, but we do anyway because otherwise some compilers
9192    // warn that it might be used uninitialized.
9193    BestWidth = CharWidth;
9194  }
9195  else if (NumNegativeBits) {
9196    // If there is a negative value, figure out the smallest integer type (of
9197    // int/long/longlong) that fits.
9198    // If it's packed, check also if it fits a char or a short.
9199    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9200      BestType = Context.SignedCharTy;
9201      BestWidth = CharWidth;
9202    } else if (Packed && NumNegativeBits <= ShortWidth &&
9203               NumPositiveBits < ShortWidth) {
9204      BestType = Context.ShortTy;
9205      BestWidth = ShortWidth;
9206    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9207      BestType = Context.IntTy;
9208      BestWidth = IntWidth;
9209    } else {
9210      BestWidth = Context.getTargetInfo().getLongWidth();
9211
9212      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9213        BestType = Context.LongTy;
9214      } else {
9215        BestWidth = Context.getTargetInfo().getLongLongWidth();
9216
9217        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9218          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9219        BestType = Context.LongLongTy;
9220      }
9221    }
9222    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9223  } else {
9224    // If there is no negative value, figure out the smallest type that fits
9225    // all of the enumerator values.
9226    // If it's packed, check also if it fits a char or a short.
9227    if (Packed && NumPositiveBits <= CharWidth) {
9228      BestType = Context.UnsignedCharTy;
9229      BestPromotionType = Context.IntTy;
9230      BestWidth = CharWidth;
9231    } else if (Packed && NumPositiveBits <= ShortWidth) {
9232      BestType = Context.UnsignedShortTy;
9233      BestPromotionType = Context.IntTy;
9234      BestWidth = ShortWidth;
9235    } else if (NumPositiveBits <= IntWidth) {
9236      BestType = Context.UnsignedIntTy;
9237      BestWidth = IntWidth;
9238      BestPromotionType
9239        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9240                           ? Context.UnsignedIntTy : Context.IntTy;
9241    } else if (NumPositiveBits <=
9242               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9243      BestType = Context.UnsignedLongTy;
9244      BestPromotionType
9245        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9246                           ? Context.UnsignedLongTy : Context.LongTy;
9247    } else {
9248      BestWidth = Context.getTargetInfo().getLongLongWidth();
9249      assert(NumPositiveBits <= BestWidth &&
9250             "How could an initializer get larger than ULL?");
9251      BestType = Context.UnsignedLongLongTy;
9252      BestPromotionType
9253        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9254                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9255    }
9256  }
9257
9258  // Loop over all of the enumerator constants, changing their types to match
9259  // the type of the enum if needed.
9260  for (unsigned i = 0; i != NumElements; ++i) {
9261    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9262    if (!ECD) continue;  // Already issued a diagnostic.
9263
9264    // Standard C says the enumerators have int type, but we allow, as an
9265    // extension, the enumerators to be larger than int size.  If each
9266    // enumerator value fits in an int, type it as an int, otherwise type it the
9267    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9268    // that X has type 'int', not 'unsigned'.
9269
9270    // Determine whether the value fits into an int.
9271    llvm::APSInt InitVal = ECD->getInitVal();
9272
9273    // If it fits into an integer type, force it.  Otherwise force it to match
9274    // the enum decl type.
9275    QualType NewTy;
9276    unsigned NewWidth;
9277    bool NewSign;
9278    if (!getLangOptions().CPlusPlus &&
9279        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9280      NewTy = Context.IntTy;
9281      NewWidth = IntWidth;
9282      NewSign = true;
9283    } else if (ECD->getType() == BestType) {
9284      // Already the right type!
9285      if (getLangOptions().CPlusPlus)
9286        // C++ [dcl.enum]p4: Following the closing brace of an
9287        // enum-specifier, each enumerator has the type of its
9288        // enumeration.
9289        ECD->setType(EnumType);
9290      continue;
9291    } else {
9292      NewTy = BestType;
9293      NewWidth = BestWidth;
9294      NewSign = BestType->isSignedIntegerOrEnumerationType();
9295    }
9296
9297    // Adjust the APSInt value.
9298    InitVal = InitVal.extOrTrunc(NewWidth);
9299    InitVal.setIsSigned(NewSign);
9300    ECD->setInitVal(InitVal);
9301
9302    // Adjust the Expr initializer and type.
9303    if (ECD->getInitExpr() &&
9304        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9305      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9306                                                CK_IntegralCast,
9307                                                ECD->getInitExpr(),
9308                                                /*base paths*/ 0,
9309                                                VK_RValue));
9310    if (getLangOptions().CPlusPlus)
9311      // C++ [dcl.enum]p4: Following the closing brace of an
9312      // enum-specifier, each enumerator has the type of its
9313      // enumeration.
9314      ECD->setType(EnumType);
9315    else
9316      ECD->setType(NewTy);
9317  }
9318
9319  Enum->completeDefinition(BestType, BestPromotionType,
9320                           NumPositiveBits, NumNegativeBits);
9321}
9322
9323Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9324                                  SourceLocation StartLoc,
9325                                  SourceLocation EndLoc) {
9326  StringLiteral *AsmString = cast<StringLiteral>(expr);
9327
9328  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9329                                                   AsmString, StartLoc,
9330                                                   EndLoc);
9331  CurContext->addDecl(New);
9332  return New;
9333}
9334
9335DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9336                                   IdentifierInfo &ModuleName,
9337                                   SourceLocation ModuleNameLoc) {
9338  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9339                                                     ModuleName, ModuleNameLoc);
9340  if (!Module)
9341    return true;
9342
9343  // FIXME: Actually create a declaration to describe the module import.
9344  (void)Module;
9345  return DeclResult((Decl *)0);
9346}
9347
9348void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9349                             SourceLocation PragmaLoc,
9350                             SourceLocation NameLoc) {
9351  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9352
9353  if (PrevDecl) {
9354    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9355  } else {
9356    (void)WeakUndeclaredIdentifiers.insert(
9357      std::pair<IdentifierInfo*,WeakInfo>
9358        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9359  }
9360}
9361
9362void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9363                                IdentifierInfo* AliasName,
9364                                SourceLocation PragmaLoc,
9365                                SourceLocation NameLoc,
9366                                SourceLocation AliasNameLoc) {
9367  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9368                                    LookupOrdinaryName);
9369  WeakInfo W = WeakInfo(Name, NameLoc);
9370
9371  if (PrevDecl) {
9372    if (!PrevDecl->hasAttr<AliasAttr>())
9373      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9374        DeclApplyPragmaWeak(TUScope, ND, W);
9375  } else {
9376    (void)WeakUndeclaredIdentifiers.insert(
9377      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9378  }
9379}
9380
9381Decl *Sema::getObjCDeclContext() const {
9382  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9383}
9384